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Executive Sumninry 

This research addressed the design, implementation, and empirical evaluation of task-

analytic models and intelligent aids for operators in the control of complex dynamic systems, 

specifically aerospace systems. The work carried out under the sponsorship of this grant * 

includes three related activities. First, we studied the use and development of models of operator 

decision making in complex and predominantly automated space systems. The primary 

representation was the operator function model (OFM). Second, the OFM was used to represent 

operator activities in a NASA Goddard satellite ground control system, the MultiSatellite 

Operations Control Center (MSOCC). Finally, and most significantly, OFMspert (Operator 

Function Model Expert System), the third portion of this research addressed the development of an 

operator's assistant: a stand-alone knowledge-based system that interacts with a human operator 

in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an 

architecture for an operator's assistant that uses the OFM as its system and operator knowledge 

base and a blackboard paradigm of problem solving to dynamically generate expectations about 

upcoming operator activities and interpreting actual operator actions. An experiment validated 

the OFMspert's intent inferencing capability and showed that it inferred the intentions of 

operators in ways comparable to both a human expert and operators themselves. Next, OFMspert 

was augmented with control capabilities. An interface allowed the operator to interact with 

OFMspert, delegating as much or as little control responsibility as the operator chose. With its 

design based on the OFM, OFMspert's control capabilities were available at multiple levels of 

abstraction and allowed the operator a great deal of discretion over the amount and level of 

delegated control. An experiment showed that overall system performance was comparable for 

teams consisting of two human operators versus a human operator and OFMspert team. 

Overall, this research has been very productive. In addition to the empirically validated 

proof-of-concept demonstrations of intent inferencing and operator aiding, this grant supported 

two Ph.D. theses, a master's thesis, and an undergraduate senior design project. Furthermore, the 

research received three awards and was the topic of dozens of invited conference presentations 

and a range of publications in international journals, newsletters, and technical reports. A 

summary of the papers and presentations is contained in Appendix A. Appendix B contain copies 

of the primary papers and technical reports. 

*  
This research was also supported in part by NASA Goddard Space Flight Center grant 

NAS5-28575, Walt Truszkowski, technical monitor. 



Introduction 

The human's role as a supervisory controller of a complex, predominantly automated, 

dynamic system often leads to problems, including (1) an increased monitoring load; (2) a false 

sense of security whereby the operator trusts the automation to such an extent that any human 

intervention or checking seems unnecessary; and (3) "out of the loop" familiarity, i.e., a 

supervisory controller who acts primarily as a passive monitor rather than an active controller 

and who is less likely to respond as quickly or appropriately to system failures (Wickens, 1984). 

These and other difficulties with the increasing proliferation of automation have serious 

implications for the ability of operators to cope with emergency situations. 

Although one path is to pursue increasingly sophisticated automation, eventually 

replacing human decision makers in complex systems, there is widespread acknowledgement 

that within the foreseeable future, humans will continue to play a critical role is ensuring system 

safety and efficiency (e.g., Chambers and Nagel, 1985). Thus, a major automation design issue is 

the use of automation to enhance, rather than replace, the human in the control and decision 

process. The goal is to use automation to amplify the human's strengths and compensate for the 

human's limitations. A complementary issue is to design automation so that the human can take 

advantage of the power of automated tools and systems, and yet remain alert to inherent and 

transient automation limitations. 

This research explored the design of a computer-based assistant that amplifies the 

human's expertise and awareness of system evolution, yet compensates for known human 

limitations. It was based on the assumption that while some control tasks and functions can be 

fully automated, many important control functions require a design that incorporates human 

overrides. Thus, a computer-based assistant interacts dynamically with a human operator. 

However, as the name 'assistant' implies, the relationship between human and computer decision 

makers is one of superior to subordinate, with the human operator always in control. The 

computer serves as an assistant to whom the operator can dynamically delegate as few or as many 

control activities as s/he chooses. 

This research proposed an architecture for a computer-based assistant that embodied these 

properties. Implemented in a NASA satellite ground control application, empirical evaluation 

demonstrated the extent to which the operator's assistant could dynamically understand operator 

intentions and correctly interpret operator actions. Using its understanding and interpretation, 

the assistant could then offer context-sensitive advice, reminders, and assistance in carrying out 

the control functions. 

An operator's assistant raises many research issues (see for example the discussion in 

Chambers and Nagel (1985) and Rouse et al. (1987)). A critical issue is the requirement for a 
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model of the human operator. This may be the single most important design issue because its 

successful resolution is a necessary condition for the rest of the system. The operator model 

provides the intelligence or the knowledge that an adaptive, computer-based assistant needs to 

assist intelligently a human operator in the control of a complex, dynamic system. The computer 

assistant uses the operator model to estimate correct and predicted operator state, i.e., to assess and 

predict operator functions, intentions, and performance given current system state. 

This research used and extended the operator function model (OFM) methodology to define 

its knowledge about operator behavior. This report provides a brief summary of the operator 

function model (OFM) methodology, particularly how it is used in a computer-based operator's 

assistant. Next, because a proof-of-concept and subsequent validation depend on a domain of 

application, the NASA Goddard Space Flight Center satellite ground control system, MSOCC 

(Multisatellite Operations Control. Center), is described together with its operator function model. 

Finally, the remainder of the report describes the operator-assistant architecture--OFMspert 

(Operator Function Model Expert System). First, an overview of the architecture is presented. A 

summary of an empirical study that validated OFMspert's intent understanding capability 

follows. Finally, ALLY, OFMspert augmented with control capabilities, is described together with 

the results of an experiment demonstrating that an OFMspert-human team controlled the satellite 

ground control system as well as a team comprised of two experienced human operators. 

Operator Function Model 

The operator function model (OFM) provides a flexible framework for representing 

operator activities in the context of dynamic systems (Mitchell, 1987). The OFM is a 

representation of how an operator might decompose and coordinate system control functions to 

meet system objectives and ensure system safety. An OFM represents the interrelations between 

dynamic system states and operator activities. Figure 1 depicts a generic OFM structure. 

The OFM is a network in which nodes represent operator activities. Activities are 

structured hierarchically, representing primary operator control functions at the highest level and 

individual control actions at the lowest. Typical decomposition of activities is function to 

component subfunctions, subfunction to component tasks, and task to component actions. Actions 

can be both physical (e.g., an information query or system control command) or cognitive (e.g., 

information gathering, information processing, and decision making). 

The OFM network is also heterarchic; that is, at the same level, there may be several 

activities that, given system state, are undertaken concurrently. The heterarchy accounts for the 

coordination and concurrent nature of operator activities as well as the operator's dynamic focus 

of attention. 
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The OFM represents the dynamic nature of the system-operator interaction by network 

arcs. The network arcs represent system events or the results of operator actions that initiate or 

terminate operator activities at various levels of the network hierarchy. 

The operator function model is a prescriptive model that specifies nondeterministically a 

set of plausible operator functions and related activities given current system state and recent 

operator actions. As such, it provides two necessary components of a computer-based assistant: (1) 

the structure to represent knowledge about the system and operator activities; and (2) a mechanism 

to define expectations of operator activities given current system state. In other applications, the 

OFM has been successfully used to model, design, and control user interfaces (Mitchell and Saisi, 

1987; Dunkler et al. 1988). In this research, the OFM provided the structure to organize the 

knowledge about the controlled system and related operator activities required by the computer-

based operator assistant. 

GT-MSOCC 

In order to demonstrate and test the modeling and aiding techniques developed in this 

research a realistic test-bed was required. We used GT-MSOCC, the Georgia Tech-Multisatellite 

Operations Control Center. GT-MSOCC is an interactive, real-time simulation of MSOCC, a 

ground control system for NASA near-earth satellites located at NASA Goddard Space Flight 

Center in Greenbelt, Maryland. GT-MSOCC is a high fidelity simulation of the operator interface 

to the actual control system and was designed to support a range of research topics on operator 

modeling, training, and aiding (e.g., Mitchell, 1987; Mitchell and Saisi, 1987; Mitchell and 

Forren, 1987). The GT-MSOCC operator monitors the data transmitted by satellites to ensure data 

integrity, compensates for equipment failures and schedule anomalies, and responds to ad hoc 

support requests. 

GT-MSOCC Configuration 

GT-MSOCC supports 17 spacecraft (16 near-earth satellites and the Space Shuttle). 

Individual spacecraft have different requirements for the number and types of equipment needed 

to support communication and data transmission. An overview of the MSOCC equipment network 

is given in Figure 2. In general, all spacecraft use several NASA communication lines (Nascom 

lines) to transmit their data through a variety of computer and communications networks for data 

processing and recording. These configurations may include a Recorder Utility Processor 

(RUP), a Telemetry and Command computer (TAC), one or more Application Processor computers 

(AP), a Gate Way processor (GW), a Command Management System computer (CMS), and a 

Virtual Interface Processor (VIP). Finally, data are sent to a Mission Operations Room (MOR) or 
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to a Shuttle Payload Facility (SPF). MORs and SPFs are spacecraft specific control rooms where 

operators monitor and control the spacecraft. It should be noted that RUPs, CMSs, GWs, and VIPs 

do not transmit data to subsequent components; rather they are 'endpoints' in the equipment 

configuration. 

GT-MSOCC Operator Function Model 

At the highest level, the GT-MSOCC operator function model depicts the major operator 

functions and the system events that cause the operator to transition among the functions or pursue 

concurrent functions (Figure 3). This level of description represents operator goals in the context 

of current system state. The arcs define system events that initiate a refocus of attention or the 

addition of a function to the current set of operator duties. The GT-MSOCC operator function model 

is presented in detail because this model defines the knowledge used to infer intentions and 

understand operator actions, and, subsequently, to identify the control abilities that the operator's 

assistant can offer. 

Control of Current Missions. The default high-level function is to control satellites that 

are currently transmitting data (Figure 4). This function involves two primary (default) 

subfunctions: monitor the data flow at the equipment endpoints and monitor the hardware status. 

If a hardware failure occurs, the operator initiates a fault compensation subfunction to replace the 

faulty equipment. While monitoring data flow, if the operator suspects a problem with the amount 

or integrity of the data at one of the terminal points in the equipment network, s/he will initiate a 

troubleshooting/fault detection subfunction. To troubleshoot the operator examines individual 

components in the equipment network attempting to locate the cause of the problem; if a suspect 

component is identified, a fault compensation subfunction is initiated. Each subfunction is 

further defined by a collection of tasks which in turn are supported by operator actions (e.g., 

system reconfiguration commands or display requests). 

Support for Unscheduled Requests. System events cause the operator to focus attention on 

additional or alternative high level functions. A request to the operator to configure the necessary 

equipment for an unscheduled spacecraft contact causes the operator to initiate the "configure to 

meet support requests" (Figure 5). This function consists of a variety of subfunctions including 

(1) checking the overall system to ensure capacity is not exceeded (GT-MSOCC can support up to 

five missions concurrently.); (2) checking the equipment requirements of the spacecraft in 

question; (3) attempting to identify available equipment; and (4) if all the conditions are met, 

indicating that the support request can be met and manually configuring the spacecraft's network. 

As in the control of current mission function, each subfunction is further defined by a collection of 

tasks which in turn are supported by operator actions. 
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Compensate for Automated Schedule Failures. Figure 6 depicts the subfunctions and tasks 

associated with the compensate for schedule conflicts operator function. The automated schedule 

that controls the allocation of specific pieces of GT-MSOCC equipment to specific spacecraft passes 

is always dated, i.e., the schedules are often as old as twelve hours and, as such, do not reflect the 

most recent system conditions. As a result, recently failed equipment or equipment originally 

scheduled but currently supporting another spacecraft is not taken into account by the automated 

schedule and control system. When the automated control system finds that the scheduled 

equipment is not available, the operator receives a request to manually reconfigure the equipment 

network, specifying an alternative component. Three tasks comprise the reconfigure function. 

First, the operator identifies the hardware components that are causing the conflict. Second, the 

operator attempts to find replacement equipment. Third, if successful, the operator uses this 

equipment to configure the equipment network. Since the spacecraft contact is relatively short 

(approximately ten minutes), it is important that the operator configure the equipment network as 

quickly as possible to avoid delays in contacting the spacecraft. 

Deconfigure Manually Configured Network. Figure 7 depicts the subfunction and tasks 

associated with the deconfigure operator function. When the operator manually configures or 

reconfigures an equipment network for a spacecraft, the operator must manually deconfigure it. 

The system notifies the operator that the satellite contact is completed and tells the operator to 

deconfigure the equipment network manually. The operator types the appropriate deconfigure 

command and the equipment network is deconfigured. This is the operator's highest priority 

function since equipment is not available for use by other spacecraft until it is deconfigured. 

Thus, although the deconfigure operator function appears somewhat simple, the deconfigure 

function is critical to overall system effectiveness. 

Browsing I Planning. Although the high-level representation of the GT-MSOCC operator 

function model includes a high-level planning/browsing function (e.g., Figure 3), the 

planning/browsing function was not implemented in OFMspert. The browsing/planning 

hierarchical decomposition is less straightforward than other high-level operator functions. For 

example, one approach accounts for all actions that cannot be interpreted by other activities as 

browsing/planning activities. Current research is beginning to examine browsing and planning 

functions and suggest mechanisms to support intent inferencing for these functions. 

OFMspert 

Background 

An operator's assistant supports natural, real-time interaction with the human operator. 

Our goal is to design the computer component of the supervisory control system so that it mimics 

5 



the functions that a human assistant performs. A computer assistant should be able to swiftly 

assume responsibility for control tasks that the human operator may delegate and to offer the 

human operator context-sensitive suggestions, advice, and reminders. The operator's assistant 

design can be characterized in terms of three principles: a stand-alone cooperative subordinate, 

dynamic task allocation, and dynamic intent inferencing. The stand-alone property is a 

characteristic of knowledge-based systems. Dynamic task allocation is a philosophy that 

underpins how human operators and knowledge-based systems cooperate in the control of complex 

dynamic systems. Dynamic intent inferencing is the component that provides intelligence. As 

such, it is at the very heart of the OFMspert design. 

Dynamic Intent Inferencing 

The intelligence and utility of the operator's assistant rest on its abilities to understand the 

operator's current intentions and to provide context-sensitive assistance in the form of operator 

aids (e.g., suggestions, advice, or reminders) or by assuming responsibility for portions of the 

control task. To ensure generalizability, the operator's assistant requires a well-defined 

knowledge structure that represents information about the controlled system and operator 

functions, as well as a problem solving structure to build a dynamic representation of operator 

intentions which reflects current system state and recent operator actions. There are several 

candidate models that might be used for both of these requirements (Geddes, 1985; Jones, 1988; 

Jones et al., 1990). The OFMspert research uses the operator function model (Mitchell, 1987) to 

organize knowledge about the controlled system and related operator activities, and the 

blackboard model of problem solving (Nii, 1986) to build a current hypothesis of operator 

intentions. The next section summarizes how these models are used in the Actions Interpreter 

(ACTIN), the understanding component of OFMspert. 

ACTIN (Actions Interpreter): OFMspert's Understanding Component 

The Actions Interpreter (ACTIN) is the OFMspert component that is primarily responsible 

for dynamic intent inferencing. ACTIN dynamically builds a model (or "current best 

hypothesis") of operator intentions in the context of current system state and attempts to "interpret" 

operator actions in light of this understanding. The operator function model (Mitchell, 1987) 

forms the basis of ACTIN's knowledge about how system events trigger likely operator activities 

(e.g., a failure may initiate activities to compensate for that failure). Using the OFM, operator 

activities are structured in a hierarchy of functions, subfunctions, tasks, together with operator 

actions undertaken to support the activities. 

The ACTIN model of intentions is implemented as a blackboard (Englemore, Morgan, 

and Nii, 1988; Nii, 1986). Thus, ACTIN consists of a blackboard data structure which contains the 
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evolving representation of current operator intentions (i.e., functions, subfunctions, tasks, and 

actions), and a collection of knowledge sources that constructs, maintains, and assesses the 

blackboard data structure. As system triggering events occur in real time, ACTIN posts new 

functions, subfunctions, and tasks on the blackboard. As operator actions occur, they are posted on 

the blackboard and "connected" to any current tasks which they support. This process of 

"connection" is intent inferencing and provides OFMspert's understanding. Figure 8 depicts 

ACTIN's intent inferencing structure. More detail about OFMspert's blackboard is given in the 

section that follows. 

OFMspert Architecture 

The generic structure of OFMspert is depicted in Figure 9. Six functional components 

comprise the system. Each of these components performs certain functions necessary to an 

operator's assistant. 

In general, the arrows in Figure 9 represent message-sending paths within OFMspert. A 

one-way arrow represents unidirectional communication; the tail of the arrow denotes the 

component that sends the message and the head of the arrow denotes the component that receives it. 

The receiver of a message may return a value to the sender. However, the reply path of a message 

is not shown. For example, the workstation component has no arrows leaving it, indicating that 

the workstation is a passive component that can only reply to messages but cannot generate any of 

its own. A two-way arrow represents bi-directional communication between the two components; 

in this case both components are capable of initiating communication. The message type in one 

direction may be of a different type than the message type of the other direction. A message 

between any two components may be a request for information or a request for the receiving 

component to carry out an internal event. Each OFMspert component defines its own internal 

events, and therefore appears as a black box to other system components. 

In general, all new messages from the controlled system or information about operator 

actions enter OFMspert through the OFMspert interface. The interface decodes the messages, and 

new activities, called events, are sent to OFMspert's high level controller (HLC). The high level 

controller schedules and manages the execution of OFMspert's internal events. HLC events can 

be one of three types. The first is an update to the current problem space (CPS), OFMspert's 

representation of the controlled system. The second type of event is an enhanced normative model 

(ENM) event. The enhanced normative model contains normative information derived from the 

OFM. This module also contains OFMspert 's control properties. The third type of event is a 

blackboard event that changes ACTIN, OFMspert's blackboard. 

The final OFMspert component depicted in Figure 9 is called the workstation, and it 

contains a semantic description of the actual workstation the human operator uses in the control of 
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the system. The workstation itself does not initiate any events or activities; rather, it contains 

information other OFMspert components may need. The remainder of this section provides a 

detailed description of the OFMspert modules and control processes. 

OFMspert Interface. The OFMspert interface, from an abstract point of view, is simply a 

black box that provides the logical communications between OFMspert and the controlled system 

(and human operator). At a very low level, there exists some form of hardware communications 

between the computers supporting the controlled system and OFMspert (if they are located on 

physically separate machines). At a higher level, the interface is responsible for decoding 

messages sent to OFMspert and encoding messages sent by OFMspert back to the controlled 

system. When the interface decodes a message received from the controlled system, it creates an 

event based on the message type and posts the event in the high level controller's event queue to be 

processed at the earliest time possible. For example, if an event occurs in the controlled system 

(e.g., an equipment failure or an operator action) that instantiates a new operator function, a 

message is sent to the OFMspert interface. The interface then creates a high level controller event 

that, when processed, will instanciate a function/subfunction/task structure that is placed on the 

blackboard. Abstractly, the OFMspert interface is an endless loop that continually decodes 

messages, creates events, and posts events in the HLC event queue. 

High Level Controller (HLC). The high level controller is the central scheduler for events 

within OFMspert. HLC events are the result of activities initiated by either the operator or the 

controlled system itself. Messages from the controlled system are decoded by the OFMspert 

interface and cause OFMspert events to be created and scheduled for execution during OFMspert 

system cycles. A system cycle begins when the HL'C initiates the execution of a scheduled event 

and ends when the sequence of actions required to carry out the event are executed. New events 

created during the current system cycle and placed in the HLC event queue to execute at future 

times are not considered part of the current system cycle. On each system cycle, the HLC executes 

the first event in its queue whose time is before or at the current system time. As seen in Figure 9, 

the arrows that point to the HLC originate at components that are capable of placing an event in the 

HLC event queue. Modules with arrows initiated at the HLC are OFMspert components that can 

execute an event when the HLC deems that one is ready. 

Current Problem Space (CPS). OFMspert, in most facets of its operation, requires 

knowledge of the current status of the controlled system. This information is used to hypothesize 

operator functions, verify the semantics of operator actions, and assist in blackboard 

assessments. OFMspert's current problem space maintains an internal representation of the most 

prominent features of the current state of the controlled system. The CPS receives a message from 

the OFMspert interface whenever there is a relevant state change in the controlled system and uses 

this information to update its representation. Some less important status information may not be 
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continuously stored within OFMspert due to space or speed constraints. When OFMspert needs 

additional status information about the controlled system it may ask for and receive this 

information on an as-needed basis. The latter interaction is depicted in Figure 9 by the arrow 

from CPS to the OFMspert interface. 

Enhanced Normative Model (ENM). The enhanced normative model contains normative 

information about the controlled system and the OFM-derived information about operator 

functions and procedures. This component plays a critical role in intent inferencing and in 

OFMspert's ability to interact with the controlled system. The final ENM implementation 

contains all necessary information for both intent inferencing and system control. 

The ENM contains the function, subfunction, and task activity trees that are used by 

ACTIN for intent inferencing. Activity trees are static knowledge stored in an ENM data base 

and indexed by system state changes. System events that initiate operator state changes are 

derived from the OFM and are therefore also static information. When a relevant system state 

change is decoded by the interface, an ENM event is placed in the HLC event queue. This event is 

executed on the next system cycle and the ENM uses the proper system state change index to 

retrieve the appropriate activity tree. Then, an ACTIN event to update the blackboard 

representation is placed in ACTIN's event list. System events that cause new task information to 

be sent to ACTIN are referred to as initiating conditions. 

Operator actions, which are encoded into messages and sent to OFMspert by the controlled 

system, are decoded by the interface, placed on the HLC events queue, and eventually sent to the 

enhanced normative model. The ENM converts these actions to the proper blackboard form and 

creates an ACTIN event to update the representation. 

ACTIN (Actions Interpreter). ACTIN is OFMspert's blackboard and it is responsible for 

the intent inferencing functions. Like most blackboards, ACTIN has three primary components: 

a blackboard data structure, knowledge sources, and blackboard control. Figure 10 depicts the 

ACTIN component in more detail. 

ACTIN's blackboard is a hierarchical structure of nodes defining functions, subfunctions, 

tasks, and actions. Blackboard nodes on the higher three levels, i.e., function, subfunction, and 

task nodes, are usually model-derived; thus, some system event, i.e., initiating condition, 

triggers an OFMspert cycle that posts nodes defined by an enhanced normative model activity 

tree. Action nodes are always data-derived; thus, a blackboard action node is always the result of 

an actual human operator action that was decoded at the interface, processed by the HLC, 

interpreted by the ENM, and posted and processed by ACTIN's event list and corresponding 

knowledge sources. Occasionally there are data-derived function, subfunctions, or task nodes. 

Data-derived nodes are used by ACTIN to infer a function, subfunction, or task from one or more 

operator actions not fully understood in the context of the current blackboard representation. 
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ACTIN, like HASP (Nii et al., 1982), contains three hierarchically related types of 

knowledge sources (KSs): strategy, activator and specialist. The specialist KSs contain the 

domain-specific knowledge needed to manipulate the blackboard data structure; these KSs 

construct the blackboard representation (current best hypothesis) and perform blackboard 

assessments. The activator KSs select the specialists and together form part of the blackboard 

control structure. 

Within the blackboard there are two major types of events: construction and maintenance 

of the operator representation, and assessment of the representation to evaluate operator 

performance with respect to the normative procedures prescribed in the ENM. Every time the HLC 

schedules an ACTIN cycle, the strategy knowledge source is the first control entity called. The 

HLC has no control over what type of event the blackboard executes; this control resides in the 

strategy KS. Every time the ENM schedules a blackboard cycle, the strategy KS determines which 

type of event to focus on next. After selecting an event, the strategy knowledge source calls an 

appropriate activator knowledge source. Events are one of two types: maintenance or assessment. 

For each event type, there is a corresponding activator knowledge source. The activator KS chooses 

the most appropriate specialist KS to process the event. 

The strategy KS analyzes three lists to determine what event to focus on next. These lists 

are the clock-events list, the events list, and the problems lists. Clock-events exert the greatest 

influence on the blackboard control process. The clock-events list contains events scheduled for 

future execution, for example, a periodic assessment of some control task. All events in the clock-

events list that are scheduled to perform at or before the current time are immediately executed. 

The events list contains events that are generated by the ENM while interpreting system state 

changes and operator actions. All new information is placed in the blackboard events list and, 

thus, provides the strategy KS with a central location for finding new events on which to focus. 

During a single ACTIN cycle, all events on the events list are processed. The problems list 

contains all operator action nodes that could not be understood when they arrived in ACTIN, i.e., 

actions that were posted on the action level but could not be connected to one or more task nodes at 

the task level. Unconnected actions are put in the problems list in the hope that future operator 

actions or system events can help to disambiguate their meaning. The problems list is examined 

after all ready clock-events and events list events in the current cycle have been processed. Any 

item in the problems list that is subsequently explained is removed and processed. 

Information Fusion. The first requirement of the intent inferencer is to construct a 

representation of the operator's current state. To do this, both model-derived and data-derived 

information are posted and manipulated on the blackboard data structure by knowledge sources. 

The relationship between the objects at different levels is specified by named links generated by 

the knowledge sources. The objects and links between them generally form a representation that 

10 



pictorially resembles a forest of rooted trees. Each 'tree' represents a function and its associated 

subfunctions, tasks, and actions. When a new action enters ACTIN and is placed on the 

blackboard, the KSs attempt to connect it to all possible tasks that the action may support. An action 

that connects to tasks located in different activity trees is assumed to support all active functions. 

However, this may or may not be true. When new information enters ACTIN, there is often 

insufficient information to determine which task(s) the action is intended to support. Our policy is 

to maximally connect new actions, i.e., connect an action to all possible tasks that it might 

support. The problem solving strategy opportunistically disambiguates the situation at a later 

time. 

Information Removal. An important issue in constructing and maintaining the 

operator's current state representation within ACTIN is that of knowing when to remove 

information from the blackboard. At some point, the utility of individual pieces (or groups) of 

information becomes negligible, i.e., old information becomes outdated or obsolete. To facilitate 

current maintenance and assessment operations, information with low utility should be removed. 

The dilemma arises in determining when information has negligible value. Removing 

information that is still needed may cause future assessments to hypothesize incorrectly that an 

operator error has occurred. To prevent this situation, information removal is governed by a 

strategy of least commitment in which the decision to remove information is delayed until it is 

absolutely certain that the information has no value. 

OFMspert uses well-defined system events as the primary means of determining when 

information should be removed from the blackboard. The enabling conditions for transitions 

between nodes at the heterarchic level of the OFM include those that cause information removal. 

Within OFMspert, enabling conditions that terminate an operator function cause an assessment 

of the function, subfunction, or task and information removal of the corresponding blackboard 

nodes. Action nodes are removed only when they are no longer connected to any current tasks, 

i.e., no longer in support of any current functions or subfunctions. Maximal connection of actions 

ensures a conservative information removal strategy. 

Blackboard Assessment. In OFMspert, knowledge sources, derived from the OFM of the 

controlled system, carry out assessments. Assessment knowledge sources are invoked by 

blackboard control to determine the extent to which operator actions support currently hypothesized 

functions, subfunctions, and tasks. Assessments are always made in the context of a particular 

functions or subfunctions. Initially, the result of an assessment is a detailed evaluation written to 

a file. The second phase of this research, OFMspert with control capabilities, uses assessments in 

real time to provide the basis for active operator aiding. 

An Example of OFMspert Intent Inferencing Operation. A general example of OFMspert 

intent inferencing is presented below. However, first we must distinguish between initiating and 
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terminating conditions. Initiating conditions "start something" in the controlled system and thus 

will cause the posting of new operator function, subfunction, and tasks on the blackboard. 

Terminating conditions "finish something" in the controlled system and thus will cause the 

assessment and removal of now-obsolete functions, subfunction, tasks, and any connected actions 

from the blackboard. It is possible that operator actions and changes in the controlled system are 

neither initiating nor terminating, e.g., an information request. It is also possible that the same 

action or system change can be both terminating and initiating--that is, finish one thing and start 

something else in the controlled system, e.g., a manual configuration action terminates the 

configure function and initiates a control of current mission function. 

Suppose the operator executes an action in the controlled system. This action is coded into a 

message and sent to the OFMspert interface, which parses the message and schedules the 

appropriate enhanced normative model event for handling this input and, if necessary, schedules 

another event to update the current problem space. "Scheduling" here means adding an event to 

the high level controller's event queue in time-sorted order. The event queue is repeatedly checked 

to see if it is time for its first event to "fire." When that time comes, the message to begin 

processing will be sent to the ENM. The ENM will generate events to be processed by the 

blackboard. The exact nature of these events depends on whether the operator's action was 

initiating or terminating. For any operator action, the ENM will always add a "post action" event 

to the blackboard's event list. If the action is initiating, the ENM will also generate the appropriate 

functions subfunction, and task structure and add a "post activity tree" to the blackboard's event 

list. If the action is terminating, the ENM will add "assess" and "information removal" events to 

the blackboard's event list. If the action is both initiating and terminating, the ENM will create 

and add "assess", "information removal", and "post activity tree" events to the blackboard's 

event list. After this direct interaction with the blackboard, the ENM schedules an event in the 

high level controller's event queue to actually carry out the events just added to the blackboard's 

event list. Subsequent OFMspert system cycles update the current problem space and the 

blackboard. 

Summary. The generic OFMspert consists of six major components. The blackboard 

architecture permits a hierarchical representation of the operator's inferred current functions, 

subfunctions, and tasks. This dynamic and hierarchic organization of the blackboard parallels 

the structure of the operator function model. The blackboard data structure naturally and 

efficiently represents operator actions and controlled system events as a structure of functions, 

subfunctions, tasks and actions. The knowledge sources are convenient, well-organized 

structures that represent domain knowledge and can assess the overall effectiveness of how the 

operator coordinates control actions to meet higher level system goals. Details of the software 

engineering design and specification are given in Rubin et al. (1988). 
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The effectiveness of an operator's assistant depends on the validity of its model of operator 

intentions and its interpretation of operator action. Thus, the next step in this research project 

addressed the validity of OFMspert's intent inferencing component. 

Validation of OFMspert's Intent Understanding 

This phase of the OFMspert research assessed the degree to which OFMspert possessed the 

knowledge or understanding to intelligently assist an operator. Validation of intent inferencing 

assures that the system is correctly inferring the intentions of the human operator. Within the 

context of ACTIN's structure of intentions, this means that the system infers support for the same 

tasks (and by extension, subfunctions and functions) as the human, given the same set of operator 

actions. The "human" in this case can be a human domain expert performing a post - hoc 

analysis, or the human operator giving a concurrent verbal account of intentions. Thus, the 

experimental validation of ACTIN's intent inferencing was conducted in two studies. In 

Experiment 1, a domain expert's interpretations of operator data were compared to ACTIN's 

interpretations of those same actions on an action-by-action basis. In Experiment 2, concurrent 

verbal protocols were collected from GT-MSOCC operators. Statements of intentions for each 

action were compared to ACTIN's interpretations. 

In experiment 1 a domain expert hypothesized intentions from the data of ten GT-MSOCC 

operators. These ten operators were the original GT-MSOCC subjects (Mitchell and Saisi, 1987; 

Mitchell and Forren, 1987) in a GT-MSOCC control condition. The last three sessions of each 

subject were used in this analysis, yielding a total 'of 30 hours of experimental data. The data from 

these subjects consisted of various logfiles that detailed the events that occurred during the 

experimental sessions. Perfect state information (i.e., what missions were currently configured, 

what equipment failures existed) was available, as well as every action by the operator. The 

domain expert used these logfiles as the basis for interpretations. 

The second experiment compared subject verbal protocols to ACTIN interpretations. This 

experiment used verbal data as a measure of subjects' intentions in controlling GT-MSOCC. 

Verbal protocol data have been extremely useful in the development of human-machine models. 

Verbal data can be treated as any other class of data that proposes a correspondence between 

observed behavior and predictions of a model; in fact, verbal reports may be a preferred source of 

data because of the richness of information available (Anderson, 1987, Ericsson and Simon, 1984; 

Miller, Polson, and Kintsch, 1984). 

The data in Experiment 2 consist of verbal protocols from two subjects for seven GT-

MSOCC sessions. Both subjects were trained in the standard control condition (see Mitchell and 

Saisi, 1987). The subject participated in 12 experimental sessions. The first five were considered 
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training. During sessions 6 through 12, the subject controlled the GT-MSOCC system while 

verbalizing intentions, actions, and problem solving activities. The subjects were instructed to 

verbalize why they performed every action in the system; occasionally the experiment prompted 

the subjects with "Why?" when they failed to verbalize an intention for an action. 

The verbal protocols were transcribed and interpreted by the experimenter. (Complete 

segmented protocol transcriptions are available in Jones, 1988.) Intentions were coded from the 

verbalizations in several ways. The most straightforward was a direct statement of intent (e.g., 

an utterance of the type "I'm asking for this display because I want to find out this."). A variation 

of this straightforward verbalizing was of the type "I want to do this", immediately preceded or 

followed by the subject's typing in the relevant command. A less direct method of inferring 

intentions involves examining what information the subject used as a result of the action. 

The data from the two experiments consist of corresponding sets of interpretations for the 

same actions. One set of interpretations is from ACTIN, the other from a human. These data can 

be considered paired observations, since for every action there are two interpretations; the same 

entity (action) is observed under two experimental conditions: ACTIN and human 

interpretations. 

Data summarizing the results of these two experiments are given in Figures 11 and 12. 

Overall, ACTIN's intent inferencing ability compared favorably to human interpretations of the 

same actions, both in the expert's analysis of data files and the verbal protocol analysis. The 

observed differences were primarily due to model error and can be remedied in part by some 

extensions to the operator function model and to ACTIN. Many mismatches occurred because the 

GT-MSOCC OFM did not represent planning and browsing (e.g., information requests to support 

upcoming events). Certain classes of actions--notably important system configuration 

commands--were very well-matched. More detail is available in Jones (1988) and Jones et al. 

(1990). 

ALLY: OFMspert with Control Properties 

OFMspert components coordinate their functions to build a representation of the operator's 

current functions and associated subfunctions, tasks, and actions. In the initial phase, OFMspert 

had the knowledge about how to control the system, e.g., how to troubleshoots or compensate for 

failures, but did not have control capabilities. Given an effective model of operator intentions, the 

next step in the OFMspert research made OFMspert less passive, enabling it both to engage in 

system control and to interact with the operator in the mode of an assistant. The next sections 

describe ALLY, OFMspert enhanced with control properties, and the empirical evaluation of 

ALLY as an operator's assistant. 
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Characteristics of an Operator's Assistant. 

The two primary characteristics of an effective operator's assistant are understanding 

and control. ACTIN, OFMspert's understanding component, was shown to be an effective 

architecture for postulating and interpreting operator activities. Given a reliable understanding 

component, the next OFMspert phase focused on providing OFMspert with system control 

properties which the human operator could initiate, refine, and terminate. OFMspert control 

properties were intended to be as effective as those of a human assistant and include interactive 

refinements between OFMspert and the human operator that emulated the manner in which 

experienced teams of human operators interact. 

ALLY, like OFMspert itself, is both a theory of interaction and an architecture in which the 

theory is implemented and evaluated. The theory underpinning the ALLY architecture is based 

on a literature review and a case study of two human operators jointly controlling a dynamic 

system 

The literature suggests three printiples of effective cooperation. First, operators use 

multiple mental models to represent knowledge of the physical system, their own activities, and 

their knowledge of other team members. These models are maintained at multiple levels of 

abstraction. The appropriate level is dynamic and determined by a cooperation strategy. The 

second principle is that cooperation includes "cognitive balancing"--dynamically balancing the 

workload among team members given current system demands and operator availabilities. 

Finally, the literature suggests that cooperation is flexible. Activities between operators are 

dynamic and interactive. 

Case Study of a Team of Human Operators. 

ALLY is designed to assist the GT-MSOCC operator in carrying out all of the GT-MSOCC 

supervisory control functions. The design was based on a model of the GT-MSOCC operator 

control functions and attempted to duplicate the capabilities of a human assistant observed in the 

case study. The case study documented the interaction of a team of two experienced operators 

controlling GT-MSOCC. During operation, verbal protocols of the two-person team were collected. 

In the case study, the relationship between the human operator and the human assistant 

was one in which the operator supervised the assistant. The assistant, however, was not passive. 

The assistant understood the cognitive complexities of the operator functions and actively 

monitored the system for failures, and, when necessary, initiated fault detection and 

compensation activities. The assistant helped the primary operator by issuing reminders of 

incomplete activities . The primary operator dynamically delegated the tasks to the assistant. At 

times, the responsibility for a whole function would be given to the assistant; at other times, the 
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second operator assisted the primary operator in performing a function. The two operator team 

effectively controlled GT-MSOCC. Together, the two operators controlled the system such that 

overall system performance was better than performance for a single operator. 

ALLY Architecture 

The operational concept in ALLY's design is that ALLY functions in a manner similar to 

a human assistant. The operator has complete control over ALLY and can delegate as few or as 

many of the control responsibilities to ALLY as desired. ALLY is not passive, however; it also 

actively monitors the system and initiates troubleshooting activities when necessary. 

ALLY interacts with the GT-MSOCC system in a distributed fashion (Figure 13). The 

distributed architecture simulates the environment of a human assistant. ALLY, like the human 

assistant, performs independently of the GT-MSOCC system. This architecture is consistent with 

the concept of an assistant that executes autonomously in its own environment. 

ALLY has the same information as the human operator. ALLY receives messages from 

the GT-MSOCC system indicating changes in system state. As with the human operator, ALLY's 

knowledge of system events always lags somewhat behind the actual state of the system. For 

example, if the operator replaces a failed component, ALLY does not update its representation until 

GT-MSOCC finishes the replace and notifies both the operator and ALLY of the change. 

ALLY receives some information automatically, primarily information about changes in 

system state. ALLY requests other information from the system. Time and speed problems is a 

distributed architecture prevent an autonomous agent from having and maintaining complete 

knowledge about the controlled system. For the GT-MSOCC application, ALLY, like the human 

operator, requests satellite and equipment schedule information on an "as needed" basis. When 

ALLY needs schedule information to perform a specific activity (e.g., find a replacement), ALLY 

requests the appropriate schedule from the GT-MSOCC system. 

ALLY Operator Interface 

In order to interact with ALLY, the three monitor GT-MSOCC workstation was augmented 

with an ALLY workstation. The ALLY workstation consists of a computer, a CRT and a mouse. 

The operator uses the workstation to delegate tasks to ALLY and ALLY uses it to communicate with 

the operator. 

The ALLY display consists of three primary windows (see Figure 14). The top window 

displays the current time. The middle window consists of control buttons that the operator uses to 

delegate control tasks to ALLY. The bottom window is the Message Transcript window. ALLY 

uses this window to communicate with the operator. In the Message window, ALLY precedes each 
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message with a time stamp indicating when the message was written; for critical messages, 

ALLY uses an audio signal to notify the operator and precedes the message line with asterisks. 

ALLY's Control Capabilities 

The operator delegates activities to ALLY by clicking the mouse on one of the control 

buttons. The tasks defined in the control buttons are based on the operator function model of the 

GT-MSOCC operator. The "Check Telemetry", "Failure Support", "Question Support", 

"Reconfigure Support", and "Deconfigure Support" control buttons relate directly to the five 

control functions defined by the GT-MSOCC operator function model. In addition, ALLY provides 

"Mission Support" and "Equipment Support" information to the operator. These classes of support 

were suggested by the case study. The operator uses the "Interrupt" control button to stop ALLY 

from carrying out a task. This interrupt capability provides the operator with complete control 

over ALLY. Not only can the operator decide which tasks to delegate to ALLY, the "Interrupt" 

control button provides the operator with the capability to flexibly 'de-allocate' tasks. Gaines and 

Shaw (1983) described this "reset" capability as an important part of a user interface; Fox (1987) 

identifies it as an essential part of interaction in problem solving and tutoring. 

Each of the control functions defined by the control buttons, except for "Interrupt", has an 

associated set of subtasks. These tasks reflect different levels of abstraction and/or aggregation at 

which the operator can interact with ALLY. The operator can delegate to ALLY as much or as little 

responsibility as desired. 

ALLY uses a series of "pop-up" windows to define the range of subtasks. When the operator 

selects one of the control buttons, ALLY displays a submenu. If at any point during task 

specification, the operator makes a mistake or changes his/her mind and decides not to have 

ALLY perform the task, the operator can click outside of the menu and ALLY stops the task 

specification process. This "repair" capability keeps the operator in complete control of the 

conversation (Fox, 1987). 

When ALLY completes an assigned task, it checks to see if the overall operator or control 

function the task was supporting has been completed. If the function is incomplete and ALLY 

knows that it can now complete the function, ALLY offers to do so. For example, assume that 

Application Processor 4 (AP4) failed. The operator tells ALLY to find a replacement for AP4. 

ALLY determines that AP1 can be used and tells the operator; then, ALLY offers to perform the 

actual replacement task. The operator can either authorize ALLY to perform the task or do it 

him/herself. 

The principle is that ALLY understands the operator's functions in the system and knows 

that a related task will need to be undertaken eventually. While ALLY only performs delegated 

system control tasks, it understands the overall control functions and thus, can assess the degree 
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to which they are completed and offer timely assistance. This behavior is similar to the 

interaction between the two human operators controlling the GT-MSOCC system. The human 

assistant would consistently offer to complete a function if only part of the tasks were performed. 

This flexibility does not reduce any of the operator's control over ALLY. Rather, it permits the 

operator to balance the workload in the context of current system state. 

The following sections describe the functionality of each ALLY control button and how the 

operator uses the buttons to delegate tasks to ALLY. The relation between control buttons and the 

GT-MSOCC operator function model is also described. 

Mission Support. The operator uses "Mission Support" to request ALLY to provide 

information about a specific mission. At this time, "Mission Support" consists of one task; the 

operator can ask ALLY to identify the time a current mission is scheduled to be completed. 

"Mission Support" can be used to assist in several operator tasks defined in the operator 

function model. For a mission with a failed component, ALLY can determine how long a 

replacement component is needed by checking the duration of the mission(s). The duration of 

current missions also supports the "Check System Constraints" subfunction of the "Respond to 

Unscheduled Support Requests" (i.e., determine if the maximum number of concurrent missions 

supported by GT-MSOCC will be exceeded). 

Figure 15 shows the menus ALLY uses for "Mission Support". When the operator clicks on 

"Mission Support", ALLY displays a menu showing the tasks that the operator can delegate to 

ALLY. When the operator selects "Show Mission Time Down", ALLY displays a list of the current 

missions and asks the operator to select one. For the selected mission, ALLY determines its 

termination time from the OFMspert Current Problem Space and reports the time to the operator in 

the Message Transcript window. 

Equipment Support. The operator uses "Equipment Support" to ask ALLY to provide 

information about equipment and classes of equipment. Figure 16 shows the various ALLY menus 

for this function. These tasks, i.e., "Check if Equipment Available" and "Find a Free 

Equipment", support several of the GT-MSOCC control functions, including "Identify 

Replacement Equipment" for both the "Fault Compensation" and "Compensate for Schedule 

Conflict" functions, and "Identify Equipment" for the "Unscheduled Support Request" function. 

For "Check if Equipment is Available", ALLY determines if a specific piece of equipment 

is available for a specified period of time (e.g., AP1 available for 3 minutes). In a series of pop-up 

menus, ALLY asks the operator to define the equipment class, component number, and duration. 

ALLY then asks GT-MSOCC for the equipment schedule for the designated component. When 

ALLY receives the schedule, it checks to see if the equipment is available for the time desired and 

tells the operator the answer in the Message Transcript window. 
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For "Find a Free Equipment", ALLY identifies an available component of a specified 

class for a specific duration. Again, ALLY uses a series of pop-up menus with which the operator 

defines the equipment class and duration. Then, ALLY requests a schedule from GT-MSOCC for 

all components of that equipment class. ALLY searches the schedules to identify a component that 

is free for the duration requested. The results of ALLY's search, either successful or not, are 

written in the Message Transcript window. 

Check Telemetry. In the GT-MSOCC operator function model, "Control Current Mission" 

consists of three major subfunctions: "Monitor for Hardware Failures and Software Problems'', 

"Detect the Cause of Software Problems", and "Compensate for Failed or Degraded Hardware". 

These subfunctions are, in turn, abstracted into several operator tasks . ALLY decomposes 

"Control of Current Missions" into two activities: "Check Telemetry" and the "Failure Support". 

Figure 17 depicts the relationship between the operator activities described in the operator 

function model and ALLY's "Check Telemetry" function. "Check Telemetry" is divided into two 

activities, monitor the network endpoints (e.g., mission operations room (MOR)) and 

troubleshoot. The operator can delegate either of these activities to ALLY. The operator can 

delegate two monitoring tasks to ALLY: "Monitor Endpoints (e.g., RUP3)" and "Monitor 

MORs/SPFs". Both activities directly relate to the OFM monitor subfunction. The operator can 

delegate three troubleshoot tasks to ALLY: "Troubleshoot Interior Points", "Troubleshoot All 

Equipment", and "Troubleshoot a Specific Equipment". The troubleshoot tasks relate to the 

operator function model's "identify degraded hardware" subfunction. 

Taken together, these ALLY activities provide the operator with the flexibility to choose the 

extent of the troubleshooting activity that s/he delegates to ALLY. With the exception of the 

"Troubleshoot a Specific Equipment" task, when the operator delegates any of the monitor or 

troubleshoot tasks to ALLY, ALLY asks the operator to specify which of the current missions to 

check. ALLY maintains a collection of the current missions in OFMspert's Current Problem 

Space and provides the operator with a list of all of these missions, together with an option to check 

all of the missions. The operator can, therefore, ask ALLY to focus on a specific mission or on all 

of the missions. 

Failure Support . "Failure Support" consists of three activities: "Find a Replacement", 

"Replace a Failed Equipment", and "Issue an Alert Message". Figure 18 depicts the relationship 

between OFM and ALLY. The ALLY activities are structured to provide the operator with the 

capability to delegate a range of fault compensation tasks to ALLY. 

The first ALLY activity in Figure 18, "Find a Replacement", corresponds to the "Identify 

Replacement Hardware" operator control activity. When the operator delegates this task to ALLY, 

ALLY requests the appropriate equipment schedules from the controlled system and attempts to 

identify a replacement. In the "Find Replacement" activity, ALLY does not replace the 

19 



component; rather, ALLY examines the equipment schedules and reports the results to the 

operator. As with a human assistant, if ALLY finds a replacement, ALLY then offers to replace 

the failed component. If ALLY cannot find a free replacement, it offers to send the appropriate 

alert message to the GT-MSOCC system. 

"Replace a Failed Equipment" corresponds to the "Manually Reconfigure" operator 

control activity in the operator function model. When the operator delegates this task to ALLY, 

ALLY first checks to see if it has already found a replacement (i.e., the "Identify Replacement 

Hardware" task). If ALLY finds a replacement, it issues the replace command. If ALLY does not 

find a replacement, it offers to send the appropriate message back to the controlled system. When 

the operator selects the "Issue alert" option, ALLY tells the controlled system that no replacement 

equipment is available. 

When the operator delegates any of these three tasks to ALLY, ALLY uses a series of pop-up 

menus to allow the operator to identify the failed component (Figure 19). ALLY assumes that the 

failure is one of its currently hypothesized failures and therefore displays a list of the currently 

hypothesized equipment failures. The opei.ator, however, might know about other failed 

components; consequently, the "Other" menu option provides the operator with the capability to 

identify a failure that ALLY does not list. When the operator selects "Other", ALLY uses pop-up 

menus to let the operator identify a new failed component. If ALLY does not know about any 

failures, ALLY immediately goes to these menus to have the operator specify the failure. 

"Failure Support" also allows the operator to update ALLY's set of suspected failures. 

Occasionally, ALLY may misdiagnose a software failure. A failure identified by ALLY may 

have been the normal fluctuations in the system. The operator uses "Remove a Failure" to tell 

ALLY to remove a component from its failure list. 

Question Support. "Response to Unscheduled Support Requests" is a function that consists 

of four related activities: "Determine Feasibility of Support", "Determine Equipment Needed", 

"Identify Equipment", and "Manually Configure Mission". Each of these activities are supported 

by various tasks under ALLY's "Questions Support" control button. "Question Support" consists of 

a range of activities that the operator can ask ALLY to perform: "Show Question", "Show 

Equipment Needed", "Check Mission Schedules", "Check Equipment Schedules", "Determine 

Answer, "Answer Question", and "Configure Mission". Figure 20 depicts how each of these tasks 

supports the corresponding subfunctions in the operator function model. 

"Question Support" has a range of activities from very simple support (e.g., "Show 

Question") to the complete set of activities required by the function (e.g., "Answer Question"). In 

this manner, the operator decides how much or how little support ALLY provides. When the 

operator selects "Show Question", ALLY restates the support request. "Show Equipment Needed" 

corresponds to the "Determine Equipment Needed" subfunction. When asked, ALLY provides the 
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operator with the mission's equipment requirements. "Check Mission Schedules" corresponds to 

the "Determine Feasibility of Support" subfunction. When the operator delegates this activity to 

ALLY, ALLY check three system constraints. First, ALLY checks the current system state to see if 

five missions are already being supported. If so, the request cannot be supported. Next, ALLY 

requests the GT-MSOCC schedule to see if scheduling this mission will cause more than five 

missions to be supported concurrently in the time frame under consideration. Finally, ALLY 

requests the mission schedule to see if the mission is already scheduled during the time frame of 

the support request. If ALLY determines that the request cannot be supported, ALLY tells the 

operator and offers to answer "NO" to the question. If the mission can be supported, ALLY reports 

this to the operator in the Message Transcript window. 

The "Identify Equipment" operator subfunction corresponds to ALLY's "Check Equipment 

Schedules". When requested, ALLY attempts to identify the available equipment that can be used 

to support the mission. For each class of equipment needed by the mission, ALLY requests 

schedules from GT-MSOCC and identifies specific components that are free and unscheduled. If 

ALLY finds that all of the equipment is available, ALLY reports this result in the Message 

Transcript window together with the specific pieces of equipment. If ALLY finds that some of the 

necessary equipment is not available, ALLY tells the operator what is not available and offers to 

answer "NO" to the question. 

ALLY's "Determine Answer" activity corresponds to two operator subfunctions: 

"Determine Feasibility of Support" and "Identify Equipment Needed". When the operator selects 

"Determine Answer", ALLY first checks the system constraints. If ALLY finds that the 

constraints are satisfied, ALLY proceeds to check the equipment schedules to identify the specific 

components that can be used to support the mission. If ALLY finds the necessary equipment, ALLY 

then indicates to the operator that the mission can be supported and specifies an equipment network 

that can be used. ALLY then offers to configure the mission; the operator may ask ALLY to 

configure the mission or do it him/herself. If ALLY finds that the mission cannot be supported, 

ALLY reports the result and reason in the Message Transcript window and offers to answer "NO" 

to the question. 

"Answer Question" is similar to the previous activity, except that in this case, ALLY 

answers the question, i.e., ALLY sends a message to GT-MSOCC. Then, if the answer is "yes", 

ALLY offers to configure the mission. 

The "Configure Mission" task corresponds to three of the operator subfunctions: 

"Determine Feasibility of Support", "Identify Equipment Needed", and "Manually Configure 

Mission". When the operator selects "Configure Mission", ALLY performs the same activities as 

"Answer Question", except, when the answer is affirmative, ALLY automatically configures the 
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mission. If the mission cannot be supported, ALLY reports to the operator and offers to send an 

alert message to GT-MSOCC. 

ALLY activities requiring interaction with the controlled system are somewhat difficult 

for ALLY (see the discussion of ALLY limitations in a subsequent section), thus, care was taken to 

structure the tasks to allow the operator to delegate a range of responsibilities. In this way, the 

operator can choose how to use ALLYs advice and has control over the type of support ALLY 

provides. For example, the operator may ask for a recommendation or may actually delegate the 

entire replacement task to ALLY. 

Reconfigure Support. The operator uses "Configure Support" to delegate activities to ALLY 

related to the "Compensate for Automated Schedule Failure" operator control function. This 

function consists of three subfunctions: "Determine What Hardware Component is 

Unavailable", "Identify Replacement Hardware", and "Manually Reconfigure". Each of these 

subfunctions are supported by menu options in "Reconfigure Support". The menu options are 

"Find Replacement Equipment", "Reconfigure the Mission", and "Issue an Alert". Figure 21 

depicts the relationship between the OFM and ALLY for reconfigure support. 

ALLY maintains a list of pending requests. When the operator delegates any of these 

activities to ALLY, ALLY asks the operator to identify the pending mission (i.e., the mission that 

was unable to be configured) from the list ALLY displays. 

"Find Replacement Equipment" corresponds to two operator subfunctions: "Determine 

What Hardware Component is Unavailable" and "Identify Replacement Hardware". When the 

operator selects "Find Replacement Equipment", ALLY identifies the equipment that is 

unavailable from information contained in OFMspert's Current Problem Space. ALLY then 

attempts to identify replacement equipment. For a failed component, ALLY requests schedules for 

that component's equipment class from GT-MSOCC. If a replacement cannot be found, ALLY 

informs the operator and offers to issue the appropriate Alert message. If a replacement is found, 

ALLY tells the operator and offers to reconfigure the mission. 

"Reconfigure Mission" combines all three of the operator subfunctions. When the operator 

delegate this activity to ALLY, ALLY first identifies the unavailable equipment, then attempts to 

find replacements, and, if a replacement is found, configures the mission. If ALLY cannot 

reconfigure the mission because there is no replacement component, ALLY tells the operator and 

offers to issue the appropriate Alert message. 

Finally, when the operator selects "Issue an Alert", ALLY sends the appropriate Alert 

message to GT-MSOCC. This activity supports the "Configure Mission" subfunction since a task 

for this subfunction is to issue an alert if the mission cannot be configured. 

Deconfigure Support. "Deconfigure Support" corresponds to the "Manual Deconfigure 

Mission" function in the operator function model. This function consists of two activities: 
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"Identify Hardware String" and "Remove Components". "Deconfigure Support" has only one 

activity, "Deconfigure Mission". This task corresponds to both of OFM deconfigure activities; 

Figure 22 depicts the relationship between ALLY and the OFM deconfigure function. 

When the operator selects "Deconfigure Mission", ALLY asks the operator to specify the 

mission to be deconfigured. ALLY generates a list of missions from OFMspert's currently 

hypothesized deconfigure subfunctions. ALLY then issues the deconfigure command to the 

controlled system and tells the operator that the mission is deconfigured. 

Interrupt Button. The last control button is "Interrupt". The operator uses "Interrupt" to 

stop ALLY from performing a delegated activity. The operator interrupts ALLY by clicking the 

"Interrupt" control button. ALLY stops processing the current task and does not report any 

intermediate results to the operator. 

Summary. The control buttons were designed with specific principles in mind. First, and 

foremost, the operator is provided a great deal of flexibility to decide how much or how little support 

ALLY gives. The operator has complete control over the extent of ALLY's system control 

activities. The operator may ask ALLY to -determine an answer and then the operator may carry 

out the function him/herself; or, the operator may ask ALLY to perform the entire function. 

Second, the definition of the system control activities is well defined. ALLY only performs 

the task that the operator delegates, and nothing more. For example, "Answer Question" means to 

answer the support request question and nothing more. It does not imply that ALLY should 

configure the mission if the answer is yes. In this manner, both the operator and ALLY 

understand exactly what is meant by the set of mutual activities and there are no hidden 

meanings. 

Third, while ALLY only performs the activities that the operator requests, ALLY's model of 

the operator and the operator control function also permits ALLY to offer assistance and reminders 

with respect to the current operator functions. For example, if a control activity is incomplete, 

ALLY offers to complete it, if it can. "Respond to Support Request", for example, does not end with 

answering "YES" to the support request question; the mission must also be configured. ALLY 

anticipates that the operator might request ALLY to configure the mission and offers to do so. It is 

important to note, however, that timely offers of assistance or reminders do not limit any of the 

operator's control flexibility; the operator may always say "NO" to ALLY's offer of assistance. 

ALLY's Automatic Tasks 
In addition to system control activities requested by the operator, ALLY also performs 

several operator support tasks automatically. For the GT-MSOCC domain, ALLY monitors, and 

when appropriate, troubleshoots the equipment networks. ALLY also automatically monitors 
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deconfigure a mission's equipment network, manually reconfigure the network of a scheduled 

mission, and manually configure an unscheduled 

After some period of time, ALLY checks to see if the appropriate operator action has been 

completed. If it has not been completed, ALLY reminds the operator of the missed system request 

and offers to perform the task. The operator may then tell ALLY to perform the task or choose to do 

it him/herself. 

If the operator tells ALLY not to perform the task, ALLY does not provide additional 

reminders. Repeated reminding was intentionally not implemented to prevent ALLY from 

becoming a nuisance or a nag, if for some reason the operator intentionally choose not perform a 

task (Knaeuper and Morris, 1984). 

ALLY's Limitations 

As with any cognitive system, either human or artificial, ALLY has strengths and 

limitations. ALLY's strengths are speed and computational processing capabilities. ALLY 

limitations in the GT-MSOCC domain are incorrect identification of software failures and a 

limited ability to successfully undertake planning. 

ALLY does not accurately determine all software failures; it makes both Type I (i.e, false 

alarms) and Type II (i.e., missed failures). Since ALLY does not have perfect knowledge of the 

state of the system, it makes incorrect inferences about the data quantity and quality in the 

equipment networks. Errors occur when ALLY is testing hypotheses about the status of a 

particular component (i.e., normal or failed). ALLY can generate false alarms when an 

equipment has not failed and can miss a failure that has occurred. These errors are not 

intentional but are due to misinterpretation of the random noise in the system associated with 

normal fluctuations in the data flows. 

ALLY's other limitation is planning. In GT-MSOCC, ALLY does not always accurately 

perform activities that support unscheduled support requests. These activities require ALLY to 

identify equipment that will be available for the duration of the support request. To determine 

feasibility of support, ALLY needs to know three things: 1) exactly when the configure command 

will be issued; 2) how long it takes to identify all of the needed equipment: and 3) much time the 

operator takes before issuing the configure command.. ALLY must estimate these time. These 

estimates, plus the duration specified in the support request, define an exact planning window that 

ALLY uses to determine if the support request can be scheduled. 

To carry out unscheduled configure support requests, ALLY takes a snapshot of the current 

system state and checks to see if the mission can be supported throughout the planning window. If 

any of the system constraints or any of the equipment requirements are not satisfied during any 

portion of the planning window, ALLY concludes that the mission cannot be supported. ALLY does 
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not have the capability to "slide" the planning window to determine if waiting a few seconds 

changes the answer. A human operator, on the other hand, will notice that the mission could be 

supported if the configure command was delayed for 30 seconds, for example. ALLY is unable to 

do this type of sensitivity analysis. Consequently, ALLY can commit an error by indicating that 

the mission cannot be supported when in fact it can. 

ALLY can also indicate that a mission can be supported, but, by the time the operator 

actually issues the configure command, a conflict exists. This occurs when the planning window 

ALLY used was not long enough to include operator delays. 

Both of these errors are examples of the "brittle" trait of knowledge-based systems. Even 

state-of-the-art systems are not as flexible as a human decision maker in novel or ambiguous 

situations. 

Although ALLY has limitations, these limitations do not hinder its capability to function 

effectively as an operator's assistant. As with any joint cognitive system, each cognitive agent 

must recognize the strengths and limitations of the other agents. In order for a joint cognitive 

system to perform effectively, cognitive "impedance matching" must occur (Moray, 1986; Woods, 

1986). With respect to ALLY, ALLY's limitations in planning are compensated by the human 

operator's planning capability. In addition, ALLY's strength in computational and recording 

capabilities compensate for the human operator's limitations in monitoring and troubleshooting 

data flows. 

Experimental Evaluation of Ally 

Experimental Design 

An experiment was conducted to evaluate the effectiveness of ALLY as an operator's 

assistant. The experiment compared the performance of a team of two human operators with a 

team comprised of an operator and ALLY (Figure 23). Performance measures included those in 

the original GT-MSOCC experiments (Mitchell and Saisi, 1987; Mitchell and Forren, 1987). 

Ten undergraduate Air Force ROTC cadets from Georgia Institute of Technology 

participated as subjects for the experiment. Subjects participated in both experimental conditions: 

control of GT-MSOCC with a human assistant and control of GT-MSOCC with ALLY. Several 

questionnaires were used during the experiment to collect subjective data. At the end of each 

experimental session, the subjects completed a questionnaire to attempt to elicit the 

interaction/cooperation strategy subjects used with either the human or computer-based assistant. 

In addition, the subjects completed an ALLY Exit questionnaire and a Human Exit questionnaire 

at the end of their last data session with the respective assistant. The purpose of exit questionnaires 

was to elicit opinions about important aspects of the assistant. Finally, at the end of the 
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experiment, the subjects were asked to complete a Subjective Comparison Rating questionnaire to 

compare their opinions about the two assistants. 

The subjects participated in twenty-four sessions: eight sessions of baseline GT-MSOCC 

training, three sessions of human assistant training, four sessions human assistant data 

collection, five sessions of ALLY training, and four sessions of ALLY data collection. A total of 

240 hours of data were collected. The sessions were approximately 45 minutes in length. The 

sessions were typically run on consecutive days with one session per day. Occasionally, subjects 

missed a day and made up the session by running multiple sessions in a single day. 

Analyses of variances were performed to determine the effect of each of the four 

independent variables (Condition, Group, Session, and Subject) on each of the sixteen dependent 

measures. A significance of .10 was used to detect significant effects. In addition to the statistical 

analysis, the results of the questionnaires and analysis of audit logs of the subjects' activities were 

examined to provide additional insight into the individual interaction strategies used by the 

subjects. These analyses, in conjunction with the statistical analyses, were used to evaluate the 

effectiveness of ALLY as an operator's assistant and to evaluate the proposed theory of cooperation 

as it was implemented in ALLY. 

Experimental Results 

The experimental results are summarized in Figure 24a, b, c. These data indicate that, on 

the average, a human-ALLY team performed comparably to a team of two human operators. Only 

two performance measures yielded a significant difference: time to compensate for software 

failures characterized by termination of data flow and the number of correct responses to 

unscheduled support requests. For these measures, the human-ALLY team performed more 

effectively. On all other performance measures the ALLY team performed as well as the team of 

two human operators. A more detailed discussion is provided in Bushman (1989). 

Overall, the performance of the subjects using ALLY as an assistant was as effective as 

performance with the human assistant. Individual strategies enabled some of the subjects to 

perform better with ALLY than with the human assistant. The primary area that was affected by 

personal strategies was in detecting and compensating for software failures. Several subjects 

were able to develop a style of interacting with ALLY that enabled them to detect software failures 

before either the operator or ALLY could on their own. This enabled them to detect the failures 

faster and to correct a larger percentage of the total failures. 

Since ALLY does not have the capability to anticipate schedule conflicts; it is not able to 

plan for these events in advance. The subjects that relied on ALLY's capability to respond to 

schedule conflicts did not take advantage of their own planning ability. The subjects that 
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performed best with ALLY did not rely exclusively on ALLY, but used their own capabilities to 

anticipate and plan for these events. 

An unexpected result was a side-effect associated with the difficulty ALLY has with 

planning. ALLY performed as well as the human assistant in responding to unscheduled support 

requests. However, because the subjects knew that this was an area in which ALLY made 

mistakes, they regularly checked ALLY's answers. The additional checking resulted in more 

correct responses to support requests with ALLY. 

Subjective preferences indicated that subjects liked different aspects of the two assistants. 

They found ALLY to be more efficient and the human assistant to be more natural. 

Summary 

This experiment provides strong support for the assumption that a computer-based 

assistant based on a model of the operator's function can perform as well as a human in a 

supervisory control team. As with any cognitive system (either human or artificial), ALLY had 

strengths and limitations. The subjects that performed the best with ALLY were able to capitalize 

on its strengths and compensate for its weaknesses. The result was an overall increase in the 

system performance. 

This research demonstrated that a computer-based assistant founded on the identified 

principles of human-machine cooperation and an operator function model of the supervisory 

control task can achieve performance compatible with a human assistant. In addition, this 

research has provided a "starting-point" from which a finer theory of cooperation can be 

developed. The significance of this research is that it has provided empirical data about the nature 

and effectiveness of human-machine cooperation in supervisory control applications. 

Quantitative experimental data demonstrated the feasibility of the architecture for a 

computer-based assistant. Qualitative data, in the form of subjective evaluations, identified some 

of the individual interaction and cooperation strategies. 

These quantitative and qualitative analyses may form the basis of a more refined theory of 

human-machine cooperation. Since no theory exists, exploratory research is essential to develop a 

more definitive theory of cooperation. 

Conclusions 

Overall, this research has been very productive. It pioneered research into the possibility of 

constructing an intelligent operator's assistant. An architecture for a model-based intent 

inferencer was designed and implemented. Once running, the ability of the system to correctly 

maintain a model of operator intentions as postulated functions, subfunctions, and tasks, and to 
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critical events and reminds the operator when it appears that the operator may have forgotten or 

overlooked an event. 

The type of automatic support that ALLY provides will vary with the domain; the principle, 

however, is that automatic activities are those that exploit the power of a computer-based assistant. 

When faced with multiple tasks, the human operator typically performs them serially. A 

computer, on the other hand, can perform tasks concurrently. Consequently, since the design 

objective of the computer-based assistant is not only to replicate the human assistant, but to provide 

a tool that the operator could use, ALLY takes advantage of the computer's processing capabilities. 

ALLY performs automatic activities in addition to activities that the operator delegates. In 

this manner, the operator remains in control of GT-MSOCC and ALL. In addition, the operator 

has a tool to assist in performing the most cognitively demanding activity, i.e., monitoring the 

equipment networks, without having to ask specifically for help. 

ALLY'S Automatic Fault Detection. ALLY, using the power of a computer, continually 

monitors the data transmissions at the network endpoints for each currently supported mission. If 

ALLY detects a problem, ALLY informs the operator and automatically begins to troubleshoot the 

network to identify the cause of the problem. Once ALLY has identified the cause, ALLY informs 

the operator that it suspects a component failure. ALLY does not initiate replacement activities, 

however, unless the operator directs ALLY to do so. 

ALLY's automatic monitoring and troubleshooting activity is based on a cognitive task 

analysis described in the operator function model. The operator function model describes the 

operator functions in levels of abstraction. The most cognitively demanding task is monitoring 

and troubleshooting. This activity is very difficult because of the format of the telemetry 

information displayed to the operator and because not all of the information necessary to perform 

the task is immediately or simultaneously available. 

Part of the nature of a cooperative problem solving team is that both operators understand 

the cognitive nature of the task and act accordingly. The operators attempt to "balance" the 

workload between them. ALLY understands the cognitive nature of the supervisory control 

functions and attempts to provide assistance for tasks that the operator needs help in performing 

(i.e., monitoring and troubleshooting). The primary purpose of an assistant is to reduce workload 

and improve overall system performance. By aggregating and abstracting the raw telemetry data 

to something more meaningful to the operator--a task that a computer performs effortlessly--ALLY 

reduces the human operator's cognitive workload in the control of GT-MSOCC. 

Reminding Capability. ALLY's other automatic activity is to remind the operator of 

critical events that might have been missed or overlooked. In the GT-MSOCC system, ALLY, 

when necessary, reminds the operator of three types of events, all three are system requests asking 

the operator to manually change the system state. For GT-MSOCC these requests are manually 
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interpret actual actions in that context was extensively evaluated. Given a valid model of operator 

intentions, OFMspert was augmented with control properties. Again, an extensive empirical 

evaluation demonstrated that a human-ALLY team controlled a simulated satellite ground 

control system as effectively as a team comprised of two human operators. 

This research showed that for complex dynamic systems, such as satellite ground control, 

the operator function model (OFM) provided a compact representation of functions, intentions, and 

operator activities in complex dynamic system. Furthermore, the OFM was a successful 

organization for information that OFMspert could use to hypothesize and interpret current operator 

activities. OFMspert's ACTIN, blending the OFM and a blackboard paradigm for problem 

solving, proved to be an effective means of dynamically constructing and maintaining a model of 

operator intentions. Finally, the OFM guided the design of OFMspert's control capabilities. The 

interactive, flexible functionality of ALLY (OFMspert with control) was shown to be as effective an 

assistant to the human controller as another experienced operator. 

The OFM and the OFMspert structures show strong promise for application in a variety of 

domains in which a task-analytic description of operator activity is available and where there is 

an interest in providing expert system capability to augment human operator capability. Finally, 

OFMspert exists as an alternative use of artificial intelligence (i.e. its Blackboard model of 

problem solving) in complex systems. Rather than replacing operator control activities or 

running in parallel, OFMspert was designed to interact with the human operator and act as a 

assistant . The intention was not to design two, parallel decision makers, but rather a human-

computer symbiosis that acts in similar ways to effective teams of human decision makers. 

This research resulted in many papers and presentations and several research awards. 

Listings of the papers and presentation are in Appendix A. Copies the major papers and technical 

reports follow in Appendix B. 
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