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SUMMARY 

The direct influence of spatial and structural arrangement in various length scales 

to the performance characteristics of materials is a core premise of materials science. 

Spatial correlations in the form of n-point statistics have been shown to be very effective 

in robustly describing the structural features of a plethora of materials systems, with a high 

number of cases where the obtained futures were successfully used to establish highly 

accurate and precise relationships to performance measures and manufacturing parameters. 

This work addresses issues in calculation, representation, inference and utilization 

of spatial statistics under practical considerations to the materials researcher. Modifications 

are presented to the theory and algorithms of the existing convolution based computation 

framework in order to accommodate deformed, irregular, rotated, missing or degenerate 

data, with complex or non-probabilistic state definitions. Memory efficient personal 

computer oriented implementations are discussed for the extended framework. A universal 

microstructure generation framework with the ability to efficiently address a vast variety 

of geometric or statistical constraints including those imposed by spatial statistics is 

assembled while maintaining scalability, and compatibility with structure generators in 

literature.
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CHAPTER 1. INTRODUCTION 

Most materials of interest to modern technology display internal architectures of 

various complexity at multiple length scales, ranging from atomic/molecular arrangements 

to imposed structural patterns at the visible scales. Certain, not yet fully identified 

characteristics of these architectures directly control the properties exhibited by a given 

material. Understanding the complex hierarchical internal structure of materials (referred 

simply as the material microstructure) and the related effects on the physical phenomenon 

of interest is central to virtually all considerations in the field of materials science and 

engineering. As such, one of the core products of materials science is the expression of 

such relationships in the form of process-structure-property linkages, which requires robust 

identification and quantification of the important microstructure metrics and the associated 

properties. 

While the quantification of process and property metrics have a rich history 

arguably dating back millennia, the quantification of structure is a fairly recent field with 

accumulated legacy knowledge based mostly on anecdotes and empirical metrics. Until the 

advent of modern imaging techniques such as electron microscopy or x-ray computed 

tomography, it was impossible to obtain any meaningful representation of structure in 

lower length scales for most material systems. Therefore, most early work on description 

of structures relied on hypothetical constructs of simple geometric shapes, such as tightly 

packed spheres. With the rapid development of sophisticated high-resolution experimental 

techniques and imaging tools, there is now a critical need for efficient strategies to distill 

useful insights and descriptive metrics from massive amounts of 3D and 4D materials 
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datasets. Although the end goals are usually different, many parallels are ripe to be drawn 

from signal/image processing and machine learning paradigms as enablers for efficient 

processing of such datasets. 

A microstructure quantification framework heavily relying on signal processing 

and feature selection techniques already exist in the literature as spatial correlations, 

practical computation of which requires the utilization of moving windows. Spatial 

correlations of various forms have been widely used in both analytical [1, 2] and 

computational [3-10] linkages tying material structure to effective properties. However, 

significant limitations exist in the computation and application of spatial statistics in real 

data obtained through imaging. Furthermore, much work is needed on the proper 

interpretation of spatial statistics in order to guide physical models, as well the 

quantification of the effect of modifications to microstructure on its spatial statistics.  

This dissertation is focused on improvements and extensions to the existing 

framework in both forward mapping from microstructure to spatial statistics descriptors 

and backwards mapping from spatial statistics to microstructural information. Specifically: 

1) Efficient accommodation of conditions and problems commonly encountered real 

world materials data in computation of spatial statistics. Modifications are derived and 

described to the existing theory and algorithms of the convolution based computation 

framework in order to accommodate deformed, irregular, rotated, missing or 

degenerate data, with complex or non-probabilistic state definitions. Strategies are 

described for memory efficient personal computer oriented implementations of the 

extended framework.  
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2) Assembly of a universal microstructure generation framework with the ability to 

efficiently address a wide variety of geometric/physical or statistical constraint 

including those imposed by spatial statistics with a focus on scalability; while 

maintaining compatibility with any and all specialized structure generators in literature. 

This framework can be used to solve the reverse mapping problem to an extent, as well 

being useful as a dataset design or enrichment tool.   
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CHAPTER 2. BACKGROUND 

This dissertation deals predominantly with tools and methodologies related to the 

understanding of material microstructure. What follows is a brief survey of existing metrics 

and methodologies for structural description. 

2.1 Microstructure Function 

A microstructure function expresses spatially resolved material structure information 

gathered from any source, either experiments or simulations. Conceptually, one can think 

of the microstructure function as 𝑙(𝑥), where 𝑙 denotes the local state occupying the spatial 

position 𝑥. In this notation, the local state refers to any combination of attributes used to 

define the material locally (e.g., a combination of elemental composition, phase identifier, 

crystal lattice orientation, and dislocation density may be used to define the local state in 

multiphase polycrystalline materials at the mesoscale). Brief reflection will expose the 

unwieldy nature of such a description, especially when one tries to include a diverse set of 

local state attributes over multiple hierarchical length scales. In an effort to overcome this 

challenge, the concept of a stochastic microstructure function was introduced [11]. In this 

novel concept, the microstructure function is defined as 𝑚(𝑙, 𝑥), where 𝑚 denotes the 

probability density associated with finding the local state 𝑙 at the spatial position 𝑥. 

Consequently, 𝑚(𝑙, 𝑥)𝑑𝑙𝑑𝑥 captures the corresponding probability measure.  

Although it is theoretically possible to extract a digital representation of the 

microstructure function using a multitude of choices in the selection of the basis functions 

for both the spatial and local state variables [12, 13], for clarity, we focus our attention in 
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the background section on the simplest of these bases corresponding to the primitive 

binning of the spatial domain as well as the local state space. With this choice, 𝑚(𝑙, 𝑥) 

admits a simple digital description as: 

 
𝑚(𝑙, 𝑥)𝑑𝑙𝑑𝑥 ≈ ෍ ෍ 𝑚௦

௛𝜒௦(𝑥)𝜒௛(𝑙)

 

௦

 

௛

 (1) 

where 𝜒௜() denotes a set of indicator basis functions, and 𝑚௦
௛ denotes a digital 

microstructure signal. For example, 𝜒௦(𝑥) allows partitioning of the spatial domain into 

non-overlapping volumes (typically employed as uniform binning of the space so that DFT 

methods can be applied later), with the function taking the value one for all points inside 

the sub-volume enumerated by 𝑠 and the value zero for all other points. Note that 𝜒௛(𝑙) 

can be defined in a similar manner for any local state space of interest.  Figure 1 presents 

a simple illustration of these concepts. It is also important to recognize that 𝑚௦
௛ can be 

physically interpreted as the probability of finding any of the local states corresponding to 

local state bin enumerated by ℎ in the spatial bin enumerated by 𝑠. Consequently, it should 

be noted that 𝑚௦
௛ reflects a spatially resolved description of the material structure in a 

broadly applicable form. Note that 0 ≤ 𝑚௦
௛ ≤ 1. It is also emphasized that the digital 

microstructure signal is inherently tied to a specific length scale (defined by size of spatial 

bins) and a specific resolution of the local state (defined by size of local state bins).  
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Figure 1 – Illustration of the discretized microstructure, 𝒎𝒔
𝒏. In this highly simplified 

microstructure, there are only two local states that are conveniently indexed by 𝒉, 
with 𝒉 = 𝟏 denoting the phase represented by white and 𝒉 = 𝟐 denoting the phase 
represented by gray. Example values of the microstructure signal are 𝒎(𝟏,𝟐)

𝟏 = 𝟏, 

𝒎(𝟏,𝟐)
𝟐 = 𝟎, 𝒎(𝟐,𝟎)

𝟏 = 𝟎, and 𝒎(𝟐,𝟎)
𝟐 = 𝟏. The interpretation for the index t used to label 

the discretized vector space is also illustrated. Note that both s and t are used as vector 
indices in this figure. 

2.2 Empirical Metrics of Structure 

Conventional practices for the quantification of the material microstructure have 

largely relied on accumulated legacy knowledge by domain experts and intuition. These 

measures usually include simple scalar values representing some average quantity of the 

entire structure (or image). The most common and most intuitive of these metrics is the 

volume fraction [14-21], representing the percentage of the volume under consideration 

belonging to a particular local state (equivalent to a color or intensity histogram for regular 

images). Local states represent any discrete mapping of material qualities to 
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numbers/intensities in an image. For the purposes of this paper a local state can be defined 

as any attribute relevant to a problem of consideration, such as whether a particular voxel 

contains a solid or a liquid, a hard material or a soft material, aluminum or copper etc. 

Other traditional metrics include but are not limited to particle size [15-17], grain size [22], 

particle spacing [14, 15, 17, 23],  aspect ratio [14, 17, 24], roundness [24], coordination 

number [21], surface area [16, 19], connectivity [18] and  tortuosity [25-27]. It can easily 

be shown that metrics composed of a small set of scalars are unlikely to be able to fully 

describe a structure, because it is easy to imagine multiple shapes/patterns that would 

exhibit the same average qualities but have different structures, resulting in vastly different 

performance characteristics.  

2.3 2-Point Statistics 

Given the vast separation between the length scales of interest in most materials 

development activities, any specific microstructure dataset collected for the material of 

interest is best interpreted as an experimental outcome of a stochastic process. Under this 

consideration, attempts to quantify the material microstructure should be able 

accommodate statistical interpretations, be insensitive enough to account for issues such as 

limited sampling size or experimental errors but sensitive enough to reveal common or 

distinctive structural features.  

Robust statistical descriptions of structure are found in literature in the form of 

spatial correlations [1, 11, 28-33]. Although a number of different measures of the spatial 

correlations in the microstructure are possible, the n-point spatial correlations (or n-point 

statistics) provide the most complete set of measures that are naturally organized by 
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increasing amounts of structure information. The most basic of the n-point statistics are the 

1-point statistics, and they reflect the probability of finding a specific local state of interest 

at any randomly selected voxel in the material structure. In other words, they essentially 

capture the information on volume fractions of the various distinct local states present in 

the material system.  

The next higher level of structure information is contained in the 2-point statistics, 

which capture the probability of finding specified local states h and h' at the tail and head, 

respectively, of a prescribed vector r randomly placed into the material structure. This can 

be expressed using the concept of the microstructure function, as: 

 
𝑓(𝑙, 𝑙ᇱ|𝑟) =

1

|Ω(𝑟)|
න 𝑚(𝑙, 𝑥)𝑚(𝑙ᇱ, 𝑥 + 𝑟)𝑑𝑥

 

ஐ(௥)

 (2) 

Note that the vector here 𝑟 carries both the magnitude and direction in this definition. Ω(𝑟) 

here denotes the volumetric domain of the material internal structure analyzed, with |Ω(𝑟)| 

denoting the measure of the corresponding volume. It is important to note the dependence 

of the volumetric domain on the vector itself. This is because material structures studied 

often have finite domains (except when periodicity is invoked) and the domain available 

for evaluating the 2-point spatial correlation depends on the vector 𝑟. This is because only 

those points where it is possible to evaluate both 𝑚(𝑙, 𝑥) and 𝑚(𝑙ᇱ, 𝑥 + 𝑟) can be included 

in the evaluation of Eq. 2. As one might imagine there are certain regions near the 

boundaries of a given microstructure image where this condition is not met (i.e., either 𝑥 

or 𝑥 + 𝑟 fall outside the given image) and therefore the region available for use should be 

expected to show a strong dependence on 𝑟.  
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Analogous to the treatment of the microstructure function earlier, we can express 

the probability measure as 𝑓(𝑙, 𝑙ᇱ|𝑟)𝑑𝑙𝑑𝑙ᇱ and establish a simple digital representation of 

this function as: 

 
𝑓(𝑙, 𝑙ᇱ|𝑟)𝑑𝑙𝑑𝑙ᇱ ≈ ෍ ෍ ෍ 𝑓௧

௟௟ᇲ
𝜒௧(𝑟)𝜒௛(𝑙)𝜒௛ᇲ

(𝑙ᇱ)

 

௧

 

௛

 

௛ᇲ

 (3) 

where the index 𝑡 effectively bins the vector space associated with 𝑟 as illustrated in Figure 

1. Starting with the above notions, one can establish the desired relationship between the 

digital representations of microstructure and the (directionally resolved) 2-point spatial 

correlations as [29, 30]: 

 
𝑓௧

௛௛ᇲ
=

1

𝑆௧
෍ 𝑚௦

௛𝑚௦ା௧
௛ᇲ

ௌ೟

௦ୀଵ

 (4) 

where 𝑆௧ captures the 𝑟-dependence of Ω(𝑟).  The denominator 𝑆௧ is essentially the total 

number of trials conducted (where each trial denotes checking what local states exist in 

spatial bins marked 𝑠 and 𝑠 + 𝑡) and the numerator ∑ 𝑚௦
௛𝑚௦ା௧

௛ᇲௌ೟
௦ୀଵ  denotes an expected 

measure of total success in these trials (i.e., actually finding the selected local states ℎ and 

ℎᇱ at the two bins, respectively). Recognizing this feature allows one to make any needed 

corrections for different situations. 

The computation of 𝑓௧
௛௛ᇲ

for a specified combination of ℎ and ℎᇱ, essentially 

requires Ο(𝑆ଶ) (i.e., of the order of 𝑆ଶ) computations (Ο(𝑆) for each value of 𝑡 and there 

are Ο(𝑆) different values of 𝑡). Such calculations are generally very expensive and are not 

easily scalable for datasets with high values of 𝑆. In recent years, it has been demonstrated 
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that these computations can be accomplished at Ο(𝑆𝑙𝑜𝑔 𝑆) using Fast Fourier Transforms 

(FFTs) [29, 30]. However, FFTs implicitly assume that the microstructure being studied is 

periodic in all directions (i.e., it can be extended by simply repeating the entire domain as 

many times as needed). With the assumption of periodicity, 𝑆௧ can be taken to be the same 

as 𝑆 (the total number of spatial bins in the microstructure). This is because every spatial 

bin in the microstructure can be used to place the tail (or equivalently the head) of the 

vector in evaluating the 2-point statistics. Furthermore, one can simply use the properties 

of DFTs to compute 𝑓௧
௛௛ᇲ

. This is because Eq. 4, with the assumption of periodicity, 

translates to the following in the DFT space via the convolution theorem: 

 
𝐹௞

௛௛ᇲ
=

1

𝑆
𝑀௞

௛∗ ⊙ 𝑀௞
௛ᇲ

, 𝐹௞
௛௛ᇲ

= ℑ൫𝑓௧
௛௛ᇲ

൯,         𝑀௞
௛ = ℑ(𝑚௦

௛) (5) 

where ⊙ is the element-wise product operator (also known as Hadamard or Schur product). 

Superscript * denotes the complex conjugate and ℑ() denotes the DFT transformation of 

the data to the frequency space enumerated by 𝑘 (in the context of this paper, this is the 

spatial frequency space).  As a result the computation of the 2-point statistics is reduced to 

computing the DFT of 𝑚௦
௛, performing requisite products in the frequency space (where they 

are fully uncoupled), and performing an inverse DFT. For plotting the 2-point statistics, the 

most intuitive visualizations of 2-pt. statistics would result if 𝑡 = 0 lies in the center of 

plot. This shift is accomplished trivially by making use of the periodicity implied in the 

DFT based computations.  

Figure 2 illustrates the above concepts through a simple “honeycomb” 

microstructure, where each pixel or voxel is colored either white or black. Since there are 
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two local states, we can potentially compute a total of four different 2-point spatial 

correlations functions: 𝑓௧
ଵଵ, 𝑓௧

ଵଶ, 𝑓௧
ଶଵ, and 𝑓௧

ଶଶ, where ℎ = 1 refers to the white-colored 

phase and ℎ = 2 refers to the black-colored phase in Figure 2. Exploiting the known 

properties of DFTs, Niezgoda et al. [29] have demonstrated that the number of independent 

2-point spatial correlations is only 𝐻 − 1, where 𝐻 is the total number of distinct local 

states present in the material system of interest. Consequently, for two-phase 

microstructures in most of the examples in this dissertation, we generally need to compute 

only one of the autocorrelations. Figure 2 shows a plot of white-white autocorrelation.  

The autocorrelations presented in Figure 2 capture a number of salient features of 

the microstructure. The hexagonal symmetry, the feature shape, and the feature spacing are 

readily apparent. Furthermore, the periodicity implied in the use of DFTs resulted in the 

autocorrelations also exhibiting the same periodicity. Note also that the autocorrelation for 

the zero vector (at the center of the plot) provides the phase volume fraction.  An important 

consequence of invoking periodicity assumptions is that the number of trials for all vectors 

is exactly the same and is equal to the number of pixels or voxels in the microstructure 

studied. In other words, all vectors of interest have been sampled fairly. 
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Figure 2 – Illustration of the computation and visualization of 2-point statistics while 
invoking the periodicity assumption. Left: the microstructure used in the 
computation. The actual microstructure, shown in the green box in the center, is 
extended by invoking the periodicity assumption. This extension is only for 
visualization purposes, and allows us to see the use of the exact same sampling size 
for all vectors of interest in the microstructure domain. Right: the corresponding 
white-white autocorrelation map.   

It is also possible to use DFTs to compute 2 point statistics with non-periodic 

boundary conditions, As a specific example, we will revisit the same structure illustrated 

earlier, but without invoking the assumption of periodicity. In other words, our interest is 

to compute the autocorrelations as defined in Eq. (4), while accounting for the fact that 

𝑆௧ ≠ 𝑆. However, as stated earlier, a direct implementation would incur Ο(𝑆ଶ) 

computations. A much better computational strategy would result if one “pads” the 

microstructure such that only long vectors (larger than the vectors of interest in computing 

the 2-point statistics) can wrap around from one edge of the original image to the opposite 

edge when the periodic assumption is implicitly invoked to take advantage of the 

computational expediency of the DFTs. 
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The padding strategy described above is illustrated in Figure 3. Let 𝑆 = (𝑆ଵ, 𝑆ଶ) 

denote the number of spatial bins in the original two-dimensional microstructure (shown 

in the inner green box). The padding now extends the microstructure function to 𝑆ሚ =

(𝑆ଵ + 𝑇ଵ, 𝑆ଶ + 𝑇ଶ), where 𝑇 = (𝑇ଵ, 𝑇ଶ) identifies the range of the vectors for which the 2-

point statistics are to be computed. The reader is cautioned that use of very high values of 

𝑇 can produce meaningless answers. As an example, if one chooses 𝑇 = (𝑆ଵ, 𝑆ଶ), then one 

can see that the number of trials conducted for the largest vector in computing the 2-point 

statistics is just one. Based on prior experience, 𝑇 < (𝑆ଵ 2⁄ , 𝑆ଶ 2⁄ ) is recommended. Let 

the padded microstructure be denoted as 𝑚෥௦
௡. The spatial bins in the padded region of the 

microstructure may be assigned any of the local states that are not involved in the 

computation of the desired 2-point statistics. For example, if we are interested in computing 

𝑓௧
ଵଵ only, then the spatial bins in the padded region can be assigned a local state enumerated 

by 2 or a completely new local state enumerated by 3 (making the padded microstructure 

a 3-phase microstructure).  

 

Figure 3 – Illustration of the padding strategy to compute the 2-point statistics using 
DFT representations while avoiding the errors associated with the implicit periodic 
boundary assumptions. The green box around the original microstructure is only for 
visualization. 
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With the padded microstructures, we are now in a position to take advantage of 

DFTs. We can first compute 𝑀෩௞
௛ = ℑ(𝑚෥ ௦

௛), and then ℑିଵ൫𝑀෩௞
௛∗ ∘ 𝑀෩௞

௛൯, which produces an 

accurate count of the number of successes in finding local states 𝑛 and 𝑝 separated by all 

vectors 𝑡 ≤ 𝑇. In fact, the computation described above produces results even for vectors 

𝑡 > 𝑇, but these results are corrupted by vectors wrapping around the padded region 

because of the periodicity assumption implicit in the DFTs. However, since our interest 

here is exclusively in 𝑡 ≤ 𝑇, we will only take these results from the DFT computation 

described above. In order to compute the 2-point statistics of interest, we simply need to 

divide these numbers with a suitable denominator denoting the total number of trials 

involved, which is expressed simply as (𝑆ଵ − |𝑡ଵ|)(𝑆ଶ − |𝑡ଶ|).  The padding in Figure 3 is 

shown such that it equally envelopes all sides of the original microstructure. This is just for 

easy visualization and interpretation. In reality, any placement of the original 

microstructure inside the overall padded region (i.e., any unequal distribution of the 

padding as long as the extended microstructure has the same overall size) will produce 

identical results for the computed 2-point statistics (this is, once again, a consequence of 

using DFTs).  

Figure 3 also depicts a plot of the 𝑓௧
ଵଵ (white-white) autocorrelations that are not 

tainted by the periodicity assumptions implied in the use of DFTs. A comparison of the 

autocorrelations in Figures 2 and 3 reveals important consequences of the assumption of 

periodicity. For example, the hexagonal symmetry is no longer evident in the 

autocorrelations (see the values corresponding to the black and red vectors shown in these 

figures). This is mainly because the different vectors are no longer sampled the exact same 

number of times. Although this may not be as important when one deals with a very large 
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image, it clearly has an effect for the relatively small image shown in Figure 3. In this 

simple example, one can easily reconcile the different values of the autocorrelations for the 

red and black vectors depicted in Figure 3, by noting that we can indeed place many more 

red vectors with both endpoints in a white pixel, when compared to the similar placement 

of the black vectors. It is therefore important to recognize that the assumption of periodicity 

can indeed influence significantly the computed 2-point statistics, especially when one has 

a limited number of features in the image.  Note that the strategy described above can be 

applied selectively on any of the bounding planes of the image. In other words, one can 

decide to invoke periodicity assumption on certain bounding planes and employ the 

padding strategy described above selectively on the other bounding planes. 

2.4 Other Statistical Measures of Structure 

There are a few other statistical descriptions/functions of structure in literature. Some 

of the most prominent are: 

- Surface Correlation Function (SFC): The probability of finding an interface 

between local states in the microstructure at the tail and head, respectively, of a 

prescribed vector r randomly placed into the material structure. [1, 9] 

- Radial Distribution Function (RDF): The probability of finding specified local 

states h and h' at the tail and head, respectively, of a prescribed vector of length |𝑟| 

randomly placed into the material structure. RDF discards any angular information 

on the prescribed vectors.[1, 2, 8, 34, 35] 
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- Lineal Path Function (LPF): The probability of finding the specified local state h 

wholly within a prescribed line segment r randomly placed into the material 

structure.[7, 9, 10, 36] 

- Chord Length Distribution (CLD): The probability of finding the specified local 

state h wholly within a prescribed chord r randomly placed into the material 

structure. The distinction between LPF and CLD is that CLD only considers chords 

(vectors that are drawn from interface to interface) while LPF includes all line 

segments.[1, 3, 37-39] 

Despite claims to the contrary in literature [1, 10], brief inspection will immediately reveal 

that in general all 4 of these functions are specific subsets of n-point statistics. The 

relationship between these functions are shown in Figure 4. The figure is only a reference 

for subset relationships, any depiction of the relative size of these sets are highly inaccurate. 

We can redefine these functions as: 

- Surface Correlation Function (SFC): The probability of finding specified local 

states h, which is an interface indicator function, at the tail and head, respectively, 

of a prescribed vector of length r. Related to 2-point statistics by a narrower 

definition of local states. 

- Radial Distribution Function (RDF): The probability of finding specified local 

states h and h' at the tail and head, respectively, of a prescribed vector of length |𝑟| 

randomly placed into the material structure. This is an angular integral of 2-point 

statistics. 

- Lineal Path Function (LPF): For a line segment with the length of r spatial bins, 

the probability of finding the specified local state h at every spatial bin on over the 
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r points. As such, LPF consists of a collection of very particular subsets of r point 

statistics.  

- Chord Length Distribution (CLD): For a line segment with the length of r spatial 

bins, the probability of finding the specified local state h at every spatial bin on 

over the r points, as well finding the local state ℎᇱ ≠ ℎ at a bin before and a bin 

after the line segment. As such, CLD consists of a collection of very particular 

subsets of r+2 point statistics.  

 

Figure 4 – Relationship between various subsets of n-point statistics. Each stage of the 
pyramid represents information content in addition to the previous stages. The 
graphic is intended only to show subset relationships and does not reflect an accurate 
size of information content. 
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2.5 Supporting Arguments for 2-point Statistics as Structure Descriptors 

2-point statistics is the structural measure of choice for the work in this dissertation. 

There are several reasons for this: 

- Natural Origin Problem: 

Because of the absence of a natural origin from where one might start indexing the 

spatial bins, only the relative placement of local states in the material structure 

contains meaningful information. In other words, only the spatial correlations in the 

material structure contain high value information. 

- Anisotropy of Real Data: 

Most complex material systems show considerable anisotropy, as such average 

measures or measures that discard directional information such as the RDF cannot 

be used effectively. 

- Convolution Based Formulations: 

2-point statistics can be computed in a linear moving window using convolutions 

in O(SlogS) time via FFTs. This enables seamless interplay with many image 

processing concepts. 

- Analytical Work Showing Direct Relationships to Material Properties: 

The strongest support for the choice of n-point spatial correlations as the most 

appropriate measures of material structure comes from the pioneering work of 

Kroner [40], who has shown that the effective properties of composite material 

systems can be conveniently expressed as a series sum with the structure details 

entering this series explicitly in the form of n-point spatial correlations. These 

composite theories have been generalized to a broad range of materials phenomena, 
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and have been summarized in several books [1, 41, 42]. There are also several 

reports in literature, where they have been successfully applied to estimate effective 

properties (both linear and nonlinear) of a broad range of materials with complex 

structures [43-48]. Physically, the n-point spatial correlations are very effective in 

rigorously quantifying the local neighbourhoods in the complex internal structure 

of most advanced materials. Since the local neighbourhoods control the local 

response, it is only logical that the n-point spatial correlations are the ideal measures 

of the material structure in formulating process-structure-property (PSP) linkages 

of interest in designing high performance engineering components. 

- Past Success in Establishing Direct Relationships to Material Properties and 

Process Parameters: 

In prior work, 2-point statistics have been successfully utilized to establish structure 

relations to property or process in multiphase composite systems [6, 49-53], 

atomistic datasets [5, 54], and polycrystalline microstructures [55, 56].  

2.6 Dimensionality Reduction 

It should be noted that there is a tremendous leap in the amount of structure 

information contained in the 2-point statistics compared to the 1-point statistics. In a 

microstructure image with a 1000x1000 pixels (or spatial bins) resolution, there will be 

millions to tens of millions of statistics depending on the local state definitions. In order to 

make sense of these metrics when compared with different microstructures, it is essential 

to utilize a feature extraction method. The method of choice here is Principal Component 

Analysis, which projects a dataset of 2-point statistics of multiple microstructures from 

millions (the statistic corresponding to each vector is treated as a dimension) to a handful 
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of orthogonal dimensions in order of decreasing explained variance. Singular Value 

Decomposition is the method of choice for computing the principal components in 

examples shown in this dissertation. For a centered (column means are subtracted) data 

matrix A with each row representing a microstructure and each column representing a 

statistic corresponding to a vector, the SVD is defined as: 

 𝐴 = 𝑈𝛴𝑉் (6) 

where U is the orthonormal matrix representing the left singular vectors or the axis vectors 

corresponding to PCA embedding, 𝛴 is the diagonal matrix of singular values and 𝑉 is the 

orthonormal matrix representing the right singular vectors or the projection matrix from 

the statistics space to the principal space. 

 Utility of PCA in the context of microstructure datasets can be shown with an 

example. A toy dataset consisting of 10 microstructures per 4 different “classes” were 

generated resulting in a total of 40 structures. Figure 5 shows a member from each class. 

The classes used are: randomly distributed randomly oriented non-overlapping rectangles, 

randomly distributed randomly oriented non-overlapping circles, randomly distributed 

horizontal non-overlapping rectangles and randomly distributed vertical non-overlapping 

rectangles. The number of shapes in these 40 microstructures are also random. These 

classes were chosen due to ease of interpretability of the principal component embedding 

of their statistics. Figure 6 shows the principal component embedding of this dataset from 

PC1 vs PC2 and PC2 vs PC3 views. Note that even though PCA is uninformed of the 
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specific classes of each microstructure, the dataset is naturally organized into distinct 

regions in the principal space corresponding to each class.  

 

Figure 5 – A member form each class for the example data. a) randomly distributed 
randomly oriented non-overlapping rectangles b) randomly distributed randomly 
oriented non-overlapping circles c) randomly distributed horizontal non-overlapping 
rectangles d) randomly distributed vertical non-overlapping rectangles. The number 
of shapes in each of the 40 microstructures is also determined randomly. 
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Figure 6 – Principal component embedding of the example dataset. Notice that 
between the first 3 principal components, all 4 classes are clearly separated. 

 Further insight is possible when the basis vectors for this embedding are inspected. 

Recall that the PCA of a centered data matrix measures the deviation from the average 

trend. Figure 7.a shows the average statistics for these 40 microstructures. The average 

trend shows preference to horizontal and vertical alignment as expected, since half of the 

dataset is enforced to such an arrangement. Figure 7.b shows the basis vector for the first 

principal component, which represents the highest variance. The first basis shows clear 

sensitivity to 𝑡 = 0 vector which corresponds to volume fraction, which is not surprising 

as the number of objects in each structure was uncontrolled. The spread of different volume 

fractions can easily be seen on along the PC1 axis of Figure 6. Figure 7.c shows the basis 

vector for the second principal component, which appears to discriminate strict alignment 

in exactly horizontal and exactly vertical directions, while remaining indifferent to any 

other trend. This can visually be verified from Figure 6 as well, since the class that 

consistent only of horizontal rectangles is strictly contained to the positive side of the axis 

(in line with the positive weights in the basis vector in the same direction), while the class 
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of vertical rectangles is strictly contained in the negative side. While these two classes are 

very well separated, PC2 does a poor job in distinguishing the other two classes that did 

not impose a strict alignment. Finally Figure 7.d shows the basis vector for the third 

principal component, which discriminates positively to both strictly horizontal and strictly 

vertical alignment, and discriminates negatively to alignment in any other direction. As 

such, in Figure 6 both horizontal and vertical rectangle classes remain on the positive side 

of the axis, while the randomly oriented rectangle class is collected on the negative axis. 

Since circles have no particular alignment overall (or equal “alignment” in all directions), 

they result in an average (or 0) score on the third axis. 

 

Figure 7 – a) The mean of statistics for all 40 datasets. b,c,d) Principal component 
basis vectors. 
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2.7 Reconstruction of Microstructure Function from Statistical Descriptions 

So far the discussion has been entirely focused on obtaining statistical 

representations of microstructures. The reverse problem is unsurprisingly also of popular 

interest, where given a set of statistical measures it is desired to obtain the corresponding 

structure representation in real space (or the original image or microstructure function). 

While there have been studies using many statistical functions in conjunction such as the 

cluster functions [1], surface correlation functions [9] and lineal path functions [7, 36], 

these have been mostly successful in limited to niche cases and structures of specific form 

and shape. Reobtaining a physical representation from a complete set of 2-point statistics 

is analogous to the extensively studied signal processing problem of phase recovery. Given 

a set of two point statistics for instance, the probability of occurrence (amplitude) of each 

vector is known while the information necessary to pinpoint the locations (phase) of those 

vectors is lost. Previously, Fullwood et al. [30] adapted the well-established phase recovery 

method Gerchberg–Saxton algorithm to reconstruct physical representations of binary (two 

local states) microstructures described by a complete set of two-point statistics. Hasanabadi 

et al. [57] proposed an approach that estimates the information in the missing 3D 

orientations by exploiting the theoretical bounds and trends to the two and three point 

statistics based on the values in the known planes. They have then followed the Gerchberg–

Saxton method to reconstruct a 3D microstructure using the complete set of statistics they 

have estimated. 
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2.8 Microstructure Generation 

The fundamental assumption in a reconstruction problem is that the statistical 

description at hand contains a single underlying truth, and this truth needs to be reached 

through optimization. However, in most realistic cases where reconstructions are desirable, 

the statistical information at hand is deficient in some manner. These cases can include 

rank deficiency for statistics estimated by an established process-structure or structure- 

property linkage (from only knowing a few PCs and the mean), tainted/missing statistics 

for a particular length scale (such as those obtained experimentally as diffraction data), or 

perhaps most notoriously cases where statistical information is only available in a limited 

number of oblique 2D planes of orientation. Recognizing the extreme lack of information 

in the cases described above it can clearly be seen that the only reasonable approach to this 

problem is the generation of microstructures, instead of reconstruction. From this point of 

view, the statistical information is regarded as incomplete with many microstructure 

variations satisfying the statistical criteria with minimal error. The objective now is to 

create a viable microstructure instance that comes within a margin of having the same 

incomplete statistical description as the reference. The viability measure can come from 

physical constraints like manufacturability or theoretical constraints.   

For instance, the last case listed above (3D image from 2D exemplars) is of 

significant interest in many fields and material systems where obtaining 3D structural 

information via current imaging technologies is either very expensive or impossible, 

however it is relatively straightforward to obtain 2D images from certain angles. Thus, 

there is a potential for high impact for any method that can successfully generate a 

statistically representative 3D microstructure from a given set of 2D cross sections. For 
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this problem Turner et al. [58] recently adapted a solid texture synthesis approach from 

Kopf et al. used in computer graphics to construct an estimate of a 3D structure by using 

the 2D images of the microstructures in real space. While the method is not guided by 2-

point statistics, it was still able to produce microstructures that had very minimal error in 

2-point statistics with respect to the reference in certain cases, while requiring significant 

improvement in others. To the best of the author’s knowledge, no microstructure 

generation method exists in literature that can function under a spatial statistics (including 

RDF, SCF, LPF, CLD or cluster functions) constraint. 

Computer vision literature contains numerous works in texture synthesis which can 

at first seem directly applicable, however a distinction needs to be drawn between the goals 

of microstructure generation and the goals of texture synthesis. Texture synthesis is only 

concerned with the generation of a smooth and visually appealing image from a given 

reference. For all intents and purposes, texture synthesis methods mostly exclusively utilize 

the information from a sample or samples and create variations. However, the goal of 

microstructure generation is to create instances that could have come from the population 

that a given reference was sampled. The information available is also very different in the 

two problems: a texture is a product of imagination, while a microstructure is a product of 

a measurement of a material that was manufactured, and as such a synthesized 

microstructure should also be realizable at least in theory. 

In consideration of the above objectives, microstructure generators are very rare in 

literature, with most successful cases exploiting the constraints on a very narrow niche or 

a special geometric case. An example of these is the generation of images consisting of 

non-overlapping geometric shapes like the ones used for the discussion in the 
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dimensionality reduction section. Such a microstructure representation is usually a gross 

over simplification and only useful for theoretical arguments, however generation of 

randomly packed shapes is perhaps the most common family of random generation 

problems across all engineering and scientific domains. Yet, only a very few methods exists 

in literature that can solve this problem to minimal satisfaction, and none that can exert any 

kind of control over the nature of generation such as exact distances between shapes or 

allowing some range of overlap. The most promising implementation in literature is by 

Tschopp et al. [59], which is essentially a highly optimized brute force solution, where a 

random point is picked and checked for overlap until a point without overlap is found. 

Another example exploits the nature of polycrystalline microstructures in order to generate 

more instances from a reference [60, 61]. However these methods prioritize the matching 

of the relative spatial distribution of clusters of individual local states, without paying 

attention to the shapes of these clusters (i.e. a blue blob and a red blob has to be neighbors 

to each other but the shapes of these blobs are not important). As such, these microstructure 

generators are in essence solving an entirely different class of problems that are only valid 

in their specific application area. 
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CHAPTER 3. OVERVIEW OF CONTRIBUTIONS 

This dissertation is organized into the following tasks: 

TASK 1: Efficient Tools to Map Real Microstructures to Low Dimensional 

Descriptors 

The main objective of this task is to expand the existing framework for structure 

descriptions using spatial correlations beyond the underlying trivial/simplistic assumptions 

in their original derivation. Microstructures of real material systems acquired through 

imaging techniques such as various methods of microscopy or tomography, can contain 

many irregularities, have elaborate local state definitions, be susceptible to observer 

rotations and have very high resolutions resulting in gigabytes or terabytes of data. This 

task deals with methods and strategies that accommodate: 

1. Missing Data and Irregular Structural Domains 

2. Complex/Unbounded Local States 

3. Invariance to Observer Rotations 

4. Very Large Data Sizes 

TASK 2: Universal Microstructure Generation Framework 

The main objective of this task is to formally describe a heavily extensible and scalable 

microstructure generation framework that can accommodate a wide array of structural 

manipulation tasks, which include microstructure building, modulation and evolution. 
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CHAPTER 4. EFFICIENT TOOLS TO MAP REAL MICROSTRUCTURES 

TO LOW DIMENSIONAL DESCRIPTORS 

4.1 Missing Data and Irregular Domains 

A key requirement to fast calculation of spatial statistics is that the data is on a 

uniform grid, so that convolution theorem can be exploited with the use of DFTs. 

Synthetically generated structural data is generally reliable and in most cases can be made 

to conform to a perfect rectangular domain.  However experimental datasets can easily 

have non-rectangular boundaries, and frequently contain regions of high uncertainty or 

gaps within the uniform mesh.  These concerns require the framework to be able 

accommodate an indicator function mapping the valid points within a dataset. A Boolean 

representation of such a function on the same grid as the dataset under consideration is 

generally referred to as a “mask” in the image processing community. This work 

incorporates the concept of masks to calculation of spatial correlations. 

Consider the simplified case in Figure 8. An otherwise periodic hexagonal mesh 

was only accurately observed (due to perhaps, experimental difficulties) in a very 

irregularly bounded region. Naïve computation of spatial correlations would result in the 

imposition of the irregular boundary as an inherent property of the microstructure, which 

is a fallacy. In this situation, it is convenient to define two microstructure functions: (i) an 

extended microstructure function denoted as 𝑚෥  
௛ =  𝑚 

௛ ⊙ 𝑐 
  , where we have introduced 

an additional fictitious local state (i.e., the third phase colored gray) in the masked region 

as well as the boundary padded regions, and (ii) a mask function denoted as 𝑐 
  such that it 
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takes a value of zero for spatial bins (shown as black) in the masked regions and one (shown 

as white) everywhere else.   

 

Figure 8 – Illustration of the masking strategy to compute 2-point statistics on 
irregular domains. The green boxes around the original microstructure are only for 
visualization. 

Following the methodology described in the earlier sections, we compute 𝑀෩ 
௛ =

ℑ(𝑚෥  
௛) and then ℑିଵ൫𝑀෩ 

௛∗ ⊙ 𝑀෩ 
௛ᇲ

൯ to accurately count of the number of successes in 

finding local states 𝑛 and 𝑝 separated by all vectors of interest (as mentioned earlier it is 

important to include padding if we wish to avoid the default assumption of periodicity 

implicit in the use of DFTs). In order to compute the 2-point statistics of interest, we simply 

need to divide these numbers with a suitable denominator denoting the total number of 

trials involved. For the masked microstructures described here, the denominator can be 

computed easily as ℑିଵ(𝐶 
∗ ⊙ 𝐶 

 ), where 𝐶 
 = ℑ(𝑐 

 ). This leads to the generalized form: 
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𝑓(ℎ, ℎ′|𝑡) = 𝑓௧ 

௛௛ᇲ

=
∑ 𝑚෥௦

௛𝑚෥௦ା௧
௛ᇲ

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

 (7) 

 
𝑓  

௛௛ᇲ

=
ℑିଵ൫𝑀෩ 

௛∗ ⊙ 𝑀෩ 
௛ᇲ

൯

ℑିଵ(𝐶 
∗ ⊙ 𝐶 

 )
=

ℑିଵ ቀℑ(𝑚෥  
௛)∗ ⊙ ℑ൫𝑚෥  

௛ᇲ
൯

 

 
ቁ

ℑିଵ(ℑ(𝑐 
 ) 

∗ ⊙ ℑ(𝑐 
 ) 

 )
 (8) 

Figure 8 also depicts a plot of the 𝑓 
ଵଵ (white-white) autocorrelations where the 

computations were limited to the unmasked regions (the white region of the mask). 

Furthermore, there was no assumption of periodicity in this computation. However, it is 

seen that these autocorrelations are indeed very similar to the ones shown in Figure 2 

(performed assuming periodicity and limited to a much smaller range of vectors).  

It should be noted that the computed two-point statistics from the above equations, 

if computed assuming a periodic domain S and taking full advantage of the FFT algorithm, 

are valid only for |𝑡|  ≤ 𝑡୫ୟ୶ , with 𝑡୫ୟ୶ determined by the extent of the padding employed. 

Although the padding by itself increases the computational cost of the DFTs by a small 

amount, the cost savings in the overall computation of the two-point statistics using this 

strategy for non-periodic microstructures, compared to direct computation is quite 

significant. 

The application of the concept of masking/padding for computing spatial 

correlations is further illustrated in Figure 9 using an example of simple two-dimensional 

irregular, non-periodic, domain with excluded patches (white squares). In this 

microstructure, let us say that we are specifically interested in the spatial correlations 

between the two local states colored red (h = 1) and blue (h = 2), respectively. The rest of 
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the spatial bins in Figure 9.a are occupied by other local states and are colored gray. In 

order to apply the protocols described above, we first pad the microstructure domain as 

shown in Figure 9.b and Figure 9.c and introduce the mask function shown in Figure 9.d. 

The microstructure functions 𝑚 
ଵ and 𝑚 

ଶ are defined such that they take values of one in 

red and blue voxels, respectively, and zeroes for all other voxels. The mask function, 𝑐 
 , is 

created by assigning values of one to the voxels colored black, and zeroes to all other 

voxels. The mask function essentially marks all of the voxels in the original microstructure 

identified in Figure 9.a.  

 

Figure 9 – Illustration of padding and masking for irregularly shaped, non-periodic, 
microstructure domains.  

4.2 Conditional Two-Point Probability 
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Although two-point correlations capture the probability of simultaneously finding 

two selected local states in space for a specified vector of translation 𝑟, it is sometimes 

desirable to calculate the conditional probabilities between the two local states, namely the 

probability of finding one local state ℎᇱ, at a location 𝑟 from another given local state ℎ. 

This conditional probability is defined as: 

 
𝑓௧

௛ᇲ|௛
= 𝑓(ℎ′ |ℎ , 𝑡) =

𝑓(ℎ, ℎᇱ|𝑡)

𝑓(ℎ |𝑡)
=

∑ 𝑚෥௦
௛𝑚෥௦ା௧

௛ᇲ

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

 (9) 

 
𝑓 

௛ᇲ|௛ =
ℑିଵ ቀℑ(𝑚෥  

௛)∗ ⊙ ℑ൫𝑚෥  
௛ᇲ

൯
 

 
ቁ

ℑିଵ(ℑ(𝑚෥  
௛)∗ ⊙ ℑ( 𝑐 

 ) 
 )

 (10) 

Note that the only difference in expression with respect to the joint probability is in 

the denominator (in both definitions this normalization term computes the number of valid 

trials). As illustrated graphically in Figure 9c, the conditional probability uses the number 

of vectors t with tails on 1 (red) and heads in the original microstructure domain as the 

normalization factor, whereas the joint probability uses the total number of vectors t 

regardless of the local states present at their heads or tails (Figure 9b). It is easy to see that 

the conditional two-point statistics will have values between 0 and 1. When two local states 

n and p are perfectly correlated in a microstructure, the conditional probability is equal to 

1; when there is no correlation between the two local states, the conditional probability is 

equal to the expected value of 𝑚 
௣, which is equal to the volume fraction of p in the 

microstructure domain.  
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Figure 10 – (a) The joint probability finds the number of vectors with tails and heads 
on red and blue voxels, respectively, and is (b) normalized by the number of valid 
trials possible in the given microstructure domain. The conditional probability uses 
the same numerator (a), but the normalization factor on the denominator is replaced 
by the number of vectors with tails on a red voxel and heads anywhere in the original 
microstructure domain (c). 

4.3 Complex/Unbounded Local States 

The current framework for spatial statistics can accommodate multiple local states 

with unique labels/colors, as well as fractional local states that indicate a mixture of 

multiple local states within a single voxel. However, there exists cases where a single voxel 

can be occupied by multiple independent local states, similar for example to the RGB 

channels of a color image. Furthermore, some local states are also defined across a range 

of values but do not represent fractional mixture information, including local states with 

negative values. 

One promising avenue of analysis for such datasets is to quantify how correlated 

two spatial fields are with respect to each other in ways that allow positive and negative 

correlations (note that probability-based concepts discussed thus far do not allow such an 
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interpretation in a direct manner). Pearson product-moment correlation coefficient is a 

commonly used value in statistics to quantify such correlations. It is first useful observe 

the following relation:  

 𝑓௧ 
௛௛ᇲ

= Εൣ𝑚௦
௛𝑚௦ା௧

௛ᇲ
൧ (11) 

We can then define a two-point Pearson correlation function as: 

 
𝜌௧

௛௛ᇲ
=

𝐶𝑜𝑣൫𝑚෥௦
௛, 𝑚෥௦ା௧

௛ᇲ
൯

𝜎௧
௛𝜎௧

௛ᇱ =
Εൣ𝑚෥௦

௛𝑚෥ ௦ା௧
௛ᇲ

൧ − Ε[𝑚෥௦
௛]Εൣ𝑚෥ ௦ା௧

௛ᇲ
൧

𝜎௧
௛𝜎௧

௛ᇱ =
𝑓௧

௛௛ᇲ
− 𝜇௧

௛𝜇௧
௛ᇱ

𝜎௧
௛𝜎௧

௛ᇱ  (12) 

 
𝜌 

௛௛ᇲ
=

𝑓 
௛௛ᇲ

− 𝜇 
௛ ⊙ 𝜇 

௛ᇱ

𝜎 
௛ ⊙ 𝜎 

௛ᇱ  (13) 

where, for any given 𝑡: 

 
𝜇௧

௛ = 𝑓௧
௛ =

∑ 𝑚෥௦
௛𝑐௦ା௧

 
௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

 (14) 

 
𝜇௧

௛ᇲ
= 𝑓௧

௛ᇲ
=

∑ 𝑐௦
 𝑚෥௦ା௧

௛ᇲ

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

 (15) 

 

𝜎௧
௛ = ඨ

∑ 𝑚෥௦
௛𝑚෥௦

௛𝑐௦ା௧
 

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

− ቆ
∑ 𝑚෥௦

௛𝑐௦ା௧
 

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

ቇ

ଶ

 (16) 
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𝜎௧
௛ᇲ

= ඨ
∑ 𝑐௦

 𝑚෥௦ା௧
௛ᇲ

𝑚෥௦ା௧
௛ᇲ

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

− ቆ
∑ 𝑐௦

 𝑚෥௦ା௧
௛

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

ቇ

ଶ

 (17) 

and in their matrix form: 

 
𝜇 

௛ =
ℑିଵ(ℑ(𝑚෥  

௛)∗ ⊙ ℑ(c) 
 )

ℑିଵ(ℑ(c)∗ ⊙ ℑ( 𝑐 
 ) 

 )
 (18) 

 
𝜇 

௛ᇲ
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ቁ
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 ) 
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ቁ
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 ) 
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ቍ

ଶ

 (21) 

Assumption of a global mean for each phase ℎ and ℎᇱ , without accounting for shifts in the 

image corresponding to head and tail of placed vectors, will simplify this calculation quite 

a bit, while mostly preserving the desired effect of eliminating mean contributions to 

calculated correlations. Under these conditions we can define: 

 
𝜇 

௛ =
∑ 𝑚෥௦

௛
௦

∑ 𝑐௦
 

௦
 (22) 
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𝜇 

௛ᇲ
=

∑ 𝑚෥௦
௛ᇲ

௦

∑ 𝑐௦
 

௦
 (23) 

 
𝜎 

௛ = ඨ
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ℑିଵ(ℑ(c)∗ ⊙ ℑ( 𝑐 
 ) 
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 (24) 
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= ඨ
ℑିଵ൫ℑ(c) 
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௛ᇲ
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௛ᇲ
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൯

ℑିଵ(ℑ(c)∗ ⊙ ℑ( 𝑐 
 ) 

 )
 (25) 

This simplified definition is used in any examples and discussions hereafter. 

In comparison with the two-point spatial correlations described earlier, the two-

point Pearson correlation defined above incorporates two main changes: (i) the global 

means are subtracted from the spatial fields of interest before performing the correlation, 

and (ii) the correlations are normalized by the standard deviations. The central advantage 

of introducing these modifications is that the two-point Pearson correlations are valued 

between 1 and −1, with 𝜌 = 1 meaning perfection correlation, 𝜌 = −1 meaning perfect anti-

correlation, and 𝜌 = 0 indicating that the two functions are uncorrelated in space. 

4.4 Rotationally Invariant Spatial Statistics 

Yet another potential concern in application of the concept of two point statistics is 

the sensitivity to observer rotations. Consider for example the micrographs presented in 

Figure 11. Two samples of similar microstructures were imaged by a microscope. 

However, the view angle of the images are different, perhaps simply due to the way the 
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samples were mounted. The current framework requires explicit correction for such cases, 

and otherwise will assume the orientation difference in the microstructures to be an 

inherent feature, resulting in the identification of the microstructures in Figure 11.a and 

Figure 11.b to be drastically different from each other.  

 

Figure 11 – An example demonstrating the potential shortcomings of two-point 
statistics in datasets containing observer rotations.  

Another complication of the same kind can be observed when microstructure data 

from two different sources are compared for similarities. Figure 12 shows an example 

where an experimentally obtained dataset in Figure 12.a is compared to the result of a 

simulation of the same system in Figure 12.b. Without a manual correction, these two 

structures will be identified to contain drastically different patterns, when in fact they have 

reasonably similar patterns. It is possible to imagine many other cases where this 

shortcoming can adversely affect analysis.  
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Figure 12 – Example of a case when two-point statistics may classify similar looking 
microstructures as being very different. Reproduced with permission from [62]. 

Typical work arounds to these cases either involve manual corrections via rotations, 

which may not be determined with reliable accuracy in most real cases, or resorting to the 

use of radial distribution functions. While RDFs are invariant to observer rotations, they 

ignore the relative spatial arrangements within a structure as well as observer rotations. 

Therefore, an alternative is desirable which retains the angular resolution of patterns 

contained in two point statistics, while discarding the effects of a rotation of the observer 

frame of reference.  

 Recall the expression for Discrete Fourier Transform: 

 
𝑋௞ = ෍ 𝑥௡𝑒ି௜ଶగ௞௡/ே 

ேିଵ

௡ୀ଴

 (26) 

where 𝑥௡ is the data in the real space and 𝑋௞ is the data in Fourier space. According to the 

Shift Theorem, when a periodic shift ∆ is introduced to the data in real space we can trace 

its affect in the Fourier space as: 
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𝑋ത௞ = ෍ 𝑥௡ି∆𝑒ି௜ଶగ௞௡/ே 

ேିଵ

௡ୀ଴

 (27) 

 
𝑋ത௞ = ෍ 𝑥௠𝑒ି௜ଶగ௞(௠ା∆)/ே

ேିଵି∆

௠ୀି∆

         (𝑚 = 𝑛 − ∆) (28) 

 
𝑋ത௞ = 𝑒ି௜ଶగ௞∆/ே ෍ 𝑥௠𝑒ି௜ଶగ௞௠/ே 

ேିଵ

௠ୀ଴

 (29) 

Notice that a shift in real space only affects the phase of the Fourier coefficients. It follows: 

 |𝑋௞| = |𝑋ത௞| (30) 

Utilizing this property, we can render two point statistics invariant to observer rotations by 

calculating DFTs along the angular dimensions at discrete values of radii, eliminating the 

phase information, then returning to real space via IDFTs. For a 2D case this amounts to: 

 𝑓௧ೣ,௧೤

௛௛ᇲ
→ 𝑓௥,ఏ

௛௛ᇲ
 (31) 
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 (33) 

which can be trivially extended to 3D cases.  
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We can demonstrate this concept with an example. Consider the example 

microstructure shown in Figure 13.a. A representation of the two point autocorrelation of 

the white phase calculated using the existing FFT framework is shown in Figure 13.b. In 

order to operate on a subset of these statistics defined by a constant radius using FFTs, it 

is more convenient to cast them in to polar coordinates. This can easily be achieved with 

reasonable accuracy by interpolation. For the current discussion, linear interpolation will 

be sufficient. Figure 13.c shows the same statistics in a polar grid, discretized by 1 pixel 

steps in radius and 1 degree steps in angle. We can now take Fourier transforms along the 

constant radius grids and eliminate the phase information. Figure 13.d shows the resulting 

rotationally invariant representation of two point statistics in real space.  

An immediate instinct is to assume that Figure 13.d is simply a rigid rotation of 

Figure 13.b. However, close inspection will reveal that this is definitely not the case.  It is 

important to recognize that Figure 13b is in the Cartesian coordinates while Figure 6 is in 

polar coordinates. Also, the statistics corresponding to the angle of zero in Figure 6d will 

be subsequently interpreted as the radial distribution function (RDF). This function is not 

easily observed in Figure 13b. The non-equivalence between these plots can be easily 

understood by noting that the shifts obtained through the DFT at each constant value of the 

radius are independent of each other. Consequently, barring trivial structures, it is 

impossible to achieve this effect by a rigid rotation. It is also important to note that while 

the current example allows easy interpretation in the form of an overall rotational trend in 

the clockwise direction, other examples may include vastly varying angles of effective 

rotation in both clockwise and counter-clockwise directions between different radius 

values. 
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Figure 13 – a) An example microstructure b) its 2-point statistics in Cartesian 
coordinates c) its 2-point statistics in polar coordinates. d) The rotationally invariant 
2-point statistics of the example structure in Cartesian coordinates. 

We can also determine how the newly defined rotationally invariant 2-point 

statistics compare to RDFs: 

 
𝑅𝐷𝐹௥

௛௛ᇲ
=

1

𝐍ఏ
෍ 𝑓௥,ఏ

௛௛ᇲ
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1

𝐍ఏ
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௛௛ᇲ
 (34) 
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Figure 14 shows a plot of 
ଵ

𝐍ഇ
𝐹௥,௞

௛௛ᇲ
for the example structure in Figure 13.a, centered at the 

0 frequency for convenience. The central line, also shown from a profile view in Figure 15 

corresponds to the RDF within machine precision, whereas values at any other frequency 

in Figure 14 reflect information not captured by the RDF. 

 

Figure 14 – Radius vs frequency space representation of 2-point statistics in polar 
coordinates. 
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Figure 15 – The line profile of the 0 frequency across all radii from Figure 14. 

Another example is in order, to show that the rotationally invariant statistics achieve 

the intended results in distinguishing between different patterns, while identifying the 

rotated variations of a pattern as similar. For this experiment a total of 400 artificial patterns 

are generated with the following composition: 20 instances of randomly placed non-

overlapping rectangles all oriented at the same angle, which is changed by increments of 

10 degrees in the range of 0 to 170 degrees, resulting in a total of 360 patterns; 20 instances 

of randomly placed non-overlapping rectangles of random orientations within a pattern; 20 

instances of randomly placed chamfered circles. The dataset contains 20 classes in total, 

18 of which is the same pattern with different rotations and 2 of which are unique. All 400 

patterns contain the same volume fraction of the white phase. A visualization of one 

member from each class is presented in Figure 16.  Figure 17 shows visualizations of the 
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corresponding traditional two-point auto correlations of the white phases for each structure 

in Figure 16, while Figure 18 shows the visualizations of the corresponding rotationally 

invariant two-point statistics. The slight differences in the statistics of the similar patterns 

can be attributed to the fact that they are generated from scratch for each instance and are 

not simply rotations of the same image. Figure 19 contains a visualization of the PCA 

embedding of the 400 instances using the traditional statistics. The embedding is well 

organized that one can intuitively make the associations with the different classes of 

microstructures employed in this case study. Notice that the 18 classes of rotated rectangle 

patterns are identified individually. Figure 20 shows the PCA embedding using rotationally 

invariant statistics, which now shows all 18 rotated rectangle classes lumped together as a 

single class, while still retaining the ability to distinguish the other 2 unique classes. The 

formalism defined here for rotational invariance in two point statistics clearly achieve the 

desired result.  
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Figure 16 – Visualizations of microstructures from each of the 20 classes.  
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Figure 17 – Visualizations of the 2-point statistic of microstructures from each of the 
20 classes. 
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Figure 18 – Visualizations of the rotationally invariant 2-point statistic of 
microstructures from each of the 20 classes. 
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Figure 19 – PCA embedding of the 400 microstructures using traditional 2-point 
statistics. 

 

Figure 20 – PCA embedding of the 400 microstructures using rotationally invariant 
statistics. 
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4.5 Strategies to Accommodate Large Data Sizes 

 A final consideration here is the accommodation of datasets that are too large to fit 

in the memory of a personal computer during the calculation of two point statistics or PCA. 

This is of importance due to the fact that many engineering researchers neither have access 

to HPC resources nor possess the knowhow to properly utilize said resources. Furthermore, 

many experimental datasets require extensive preparation and down time for acquisition, 

meaning collected datasets are usually instanced and are not streamed.  

The analysis methods described in this thesis do not require parallelism to be 

effective under these considerations and will execute in mere seconds for the 

overwhelming majority of cases, since they either have O(SlogS) runtime complexities or 

have to only be executed once (PCA). Therefore, memory mapping is an ideal solution to 

enable the everyday engineer to perform these analyses on the nearest resource while being 

able to accommodate large datasets. The design specifics of memory mapping 

implementations are beyond the scope of this thesis. Instead, strategies will be highlighted 

here that will enable a divide and conquer approach.  

Calculation of two point statistics utilizes convolutions by FFTs, which lend 

themselves to a divide and conquer approach fairly trivially. For a 2D dataset with 

coordinates indexed by 𝑥ଵand 𝑥ଶ, the Fourier transform will be taken sequentially as: 
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௛ 𝑒ି௜ଶగ௞భ௫భ/ேభ 

ேభିଵ

௫భୀ଴

 

𝑀௞భ,௞మ
= ෍ 𝑀௞భ,௫మ

௛ 𝑒ି௜ଶగ௞మ௫మ/ேమ 

ேమିଵ
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(35) 

only requiring access to 1 row or column at a time. The convolution operation itself is an 

element-wise product in the Fourier domain, only requiring access to 2 elements at a time. 

Both operations can be batched adaptively for available memory for an efficient memory 

mapped implementation. 

  Depending on the number of microstructures and choice of local states, it is easily 

possible to hit the memory limit of most personal computers or even small clusters for 

realistic datasets during the calculation of PCA. Typical problems can have thousands of 

microstructures, with millions to billions of dimensions each corresponding to a choice of 

h, h’ and t. To address this issue, the common formulation of Kernel PCA can be exploited 

with a linear kernel to allow partial access to the data. Given 𝐴 = 𝑈𝑆𝑉், the linear kernel 

PCA follows: 

 𝐴𝐴் = 𝑈𝑆𝑉்𝑉𝑆்𝑈் = 𝑈𝑆ଶ𝑈் (36) 

which requires the explicit formation of the covariance matrix 𝐴𝐴். This matrix can be 

formed while accessing only 2 rows of the matrix A at any given time. In most realistic 

cases 𝐴𝐴் is small enough that no further memory mapping is required during the 

calculation of PCA. The basis vectors can be obtained by: 
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 𝑉் = 𝑆𝑈்𝐴 (37) 

which can be computed as a vector-matrix product accessing only 1 column of U and 1 

column of A at a time. Both operations allow batched execution for efficiency. 

4.6 Case Study: Coarsening of Dendritic Structures  

Dendrites are one of the most frequently seen microstructures during solidification 

of metals and alloys. The morphologies of these dendritic microstructures can strongly 

affect the physical, chemical and mechanical properties of the subsequent products of many 

metallurgical technologies, such as casting [63]. This makes the study of the evolution of 

dendritic microstructures a crucial part in predicting and controlling the properties of 

metallic materials. However, like many other microstructures present in nature, dendrites 

are complex structures. They have irregular shapes, and are often highly interconnected. 

Moreover, as most real problems demand three-dimensional or even four-dimensional 

(including time) considerations, it makes it practically difficult to visualize the data, and 

even more so to analyze it. As a result, two-dimensional sections of the data are usually 

made in order to obtain salient attributes of the three-dimensional dataset, such as the 

secondary and tertiary arm spacings (𝜆ଶ, 𝜆ଷ) of the dendrite [64]. As the system size grows 

larger, the dataset may become unwieldy to handle as a whole, and hence data processing 

and interpretation must be done in a piece by piece manner. This adds significantly to the 

challenges in arriving at meaningful global (bulk) descriptors of the microstructure that are 

also of high value in correlating to its performance characteristics. 
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A number of statistical quantities have been utilized in the past to serve as 

microstructure descriptors. For example, the interface shape distribution (ISD) [65-67] and 

the interface normal distribution (IND) [68-70] have been used to capture the statistical 

distribution of the shapes and orientations of the interface areal elements. However, these 

descriptors capture the desired information in a grossly simplified manner by treating each 

measurement at a randomly selected point in the microstructure as a completely 

independent sample (i.e. as one-point statistics) and do not capture information on the 

spatial distribution of the selected features in a representative domain (volume) of the 

microstructure.  Radial distribution functions have also found some use in previous studies, 

however shortcomings of the RDF in comparison to angularly resolved two point statistics 

has been extensively described in earlier sections. 

This case study will demonstrate the application of the new concepts presented in 

Task 1 on experimental datasets of a dendritic microstructures in Al-Cu alloys undergoing 

coarsening.  The datasets consists of time snapshots of 4 experiments on samples of 

directionally solidified Al-Cu alloys. The raw material was cut into cylinders that are 3 to 

5 cm in length by 1 cm diameter, with the axial direction approximately parallel to the 

direction of solidification. During the experiments, samples were heated to 558°C (5°C 

above the eutectic temperature), forming a liquid-solid mixture with a constant amount of 

the two phases with 28/35/55/80% solid volume fractions. The samples were then held at 

that temperature, in which state the interfaces between liquid and solid can rapidly coarsen 

to decrease the total interfacial area and thus total energy of the system. The isothermal 

condition was held for 2 to 15 hours while the sample was being scanned by X-ray 
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computed tomography (XCT) every 50 to 250 seconds. The XCT scans were performed at 

the TOMCAT beamline at the Swiss Light Source.  

This case study was chosen due to the fact that it is an experimental dataset (i.e. the 

underlying problems are real and to be expected in many other cases) which requires the 

use of every method described/derived in this chapter to be properly analyzed: 

 The regions of interest are the solid-liquid interfaces, which requires the utilization of 

masks to select highly irregular sub-regions of rectangularly bounded datasets. 

 The quantities of interests (i.e. phases) are interface curvature and velocity, both of 

which have continuous values that can be negative. 

 The 4 experiments are each in contained in cylindrical volumes that are susceptible to 

observer rotations around the cylindrical axis.  

 The dataset contains 500 time steps, with each time frame consisting of on average an 

1100x700x700x3 voxel double precision array, resulting in statistics computations 

normally requiring upwards of 50GB memory, and PCA computations normally 

requiring around 1TB memory. 
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4.6.1 Data Preparation and Pre-Processing 

In order to determine the interface locations between the liquid and solid phases 

with sufficient accuracy and hence be able to calculate interfacial curvature and velocity, 

the grayscale data reconstructed from XCT scans was segmented using a level-set based 

method [71]. In this method, a signed distance function (SDF) is used to implicitly define 

the interface locations. An SDF is an array of data in which the value at each voxel gives 

the distance to the nearest interface, with opposite signs on the two sides of the interface. 

In this study, positive values are used to represent voxels inside the solid phase, and 

negative values the liquid phase. Therefore, the interface is defined as where the SDF 

crosses zero.  Two-dimensional slices of the SDF for a selected time snapshot are shown 

in Figure 21, with zero value contour lines marked by white lines. In 3D, the SDF = 0 

isosurfaces for the same time snapshot are shown as a mesh in Figure 22. 

For the efficient computation of two-point statistics utilizing the methods described 

in this thesis, voxelized representations of the interface is needed.  To achieve this, the SDF 

arrays were first segmented by thresholding at 0 into a binary array representing the liquid 

and solid phases. The segmented microstructures were shifted by one voxel and subtracted 

from the original microstructure to identify all of the interface voxels (only these voxels 

have non-zero values after this operation). This operation was performed in both directions 

in each of the three reference directions to make sure all of the interface voxels were 

captured. Additionally, we selected only the interface voxels in the solid phase at the solid-

liquid boundary. This results in an interface with thickness of one voxel length. 
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 Since the samples were directionally solidified along the axial direction of the 

cylinder, the primary dendrite arms are all aligned approximately in the axial direction of 

the cylindrical samples. Perpendicular to the primary arm are the secondary arms, and 

perpendicular to the secondary arms are the tertiary arms. This is shown in Figure 21, where 

the primary, secondary and tertiary arm directions are labeled as 𝑎ଵ, 𝑎ଶ and 𝑎ଷ, respectively 

on the signed distance function plots. Note that the dendrite arm axes (𝑎ଵ, 𝑎ଶ, 𝑎ଷ) are 

slightly different from the data axes (x, y, z). In Figure 21b and c, quaternary dendrite arms 

can be seen along directions roughly perpendicular to tertiary arms. However, due to the 

small spacing between the tertiary arms, the quaternary arms are short and tilted. 

 

Figure 21 – 2D slices of the signed distance function (SDF). The value of the SDF 
indicates the distance in pixels to the nearest interface, with positive values being the 
solid phase and negative being liquid. (a) 3D view of the 2D SDF slices. The three 
slicing planes are orthogonal to each other and chosen to be aligned with the primary 
dendrite arm (𝒂𝟏), secondary dendrite arm (𝒂𝟐), and tertiary dendrite arm (𝒂𝟑) 
directions. The x, y, z are the original data axes. (b–d) Enlarged 2D views of the SDF 
slices in (a). The white lines indicate the location of the interface. 
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Figure 22 – Solid-liquid interface of Al-Cu alloy during coarsening. The locations of 
the interface and the interfacial curvatures and velocity are calculated from X-ray 
tomography experimental data using level-set method. The colors of the interfaces 
shown in the figures indicates the local mean curvature H of the interface. Red colors 
indicate high (positive) curvature, and blue colors indicate low (negative) curvature. 

4.6.2 Local State Selection 

The microstructure variables of interest for this study are the interfacial curvatures 

and interfacial velocity (V, in the direction normal to the interface, where the normal is 

directed from the solid to the liquid. Thus positive V denotes local solidification). The 

interfacial curvature can be represented by the two principle curvatures 𝜅ଵ and 𝜅ଶ or the 

combination of the mean curvature H = (𝜅ଵ + 𝜅ଶ)/2 and the Gaussian curvature K = 𝜅ଵ𝜅ଶ. 

These interfacial properties can be easily extracted from X-ray tomography data using a 

level-set method based on signed distance function (SDF) [71]. 

In Figure 23c and d, the histograms of H and V are shown. While the histogram of 

the velocity behaves like a Gaussian distribution centered on V = 0, the histogram of H is 

skewed towards the H > 0 direction. Moreover, the difference in the shape of the 

distribution profiles of H and V indicates that there is not a one-to-one correspondence 

between H and V. This is also illustrated by the H − V joint probability distribution (Figure 

23a). For each value of H, there is a broad range of V values present, and vice versa. 
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Figure 23 – Two-dimensional probability density distribution of interfacial mean 
curvature H vs velocity V (a) and principal curvatures 𝜿𝟏 vs 𝜿𝟐 (b). Probability 
density distribution of interfacial mean curvature H (c) and velocity V (d). The high 
and low 0.1% of the data are clipped. The histograms are taken with 256 evenly 
spaced bins. The mean (m) and standard deviation (s) are also shown. Red dashed 
lines indicate 1s deviation from mean.  

Although the classic Allen-Cahn theory for interfacial dynamics suggests a 

negative proportionality between the interfacial mean curvature H and interfacial velocity 

V in the ideal case [72], the lack of one-to-one correspondence between H and V may come 

from two reasons. Firstly, given a certain value of H, the actually shape of the interface 

may not be set since the two principle curvatures 𝜅ଵ and 𝜅ଶ can still vary. Secondly, even 

if we pick a combination of 𝜅ଵ and 𝜅ଶ, the velocity of the interface can be influenced by 

its neighboring interfaces, since unlike in the Allen-Cahn case, coarsening proceeds by the 
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long range diffusion of solute, thus leading to non-local interactions and a dependence of 

the velocity on the surrounding interfaces. Therefore, it is important to account for these 

local effects by including the spatial variance of H and V in our analysis, justifying the case 

for the use of two-point spatial correlations.  

Since H and V are continuous local state variables, we can directly use their values 

as state definitions and use Eq. 13 for the computation of two-point Pearson correlation, 

𝜌௧
ு௏. However, for computing the probabilistic two-point correlations, it is necessary to 

discretize the local state space. In this study, the local state spaces for H and V were each 

discretized into ten bins in such a way that the number of interfacial voxels (these are the 

only voxels for which H and V are defined) corresponding to each bin were equal (see 

Figure 24). In other words, the first bin H1 represents the complete range of local states 

(i.e., mean curvatures) encountered in the lowest decile of the interfacial voxels, when 

sorted by the values of H. H2 represents the next decile of interfacial voxels in the same 

sorting (see also Figure 24a). The local state space for V is also binned in an analogous 

manner, as shown in Figure 24b. Note that a finer binning (i.e. using more bins) will give 

a finer resolution in the local state space, whereas, at the same time, reduce the number of 

data points in each bin hence impairing the statistical significance of the result. With the 

use of the discretized local state spaces described above, the discretized microstructure 

functions 𝑚௦
ு೔ and 𝑚௦

௏೔ for 𝑖 = 1 . . 10 essentially take values of zero or one. In prior work 

[30], microstructures of this type were termed eigenmicrostructures.  
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Figure 24 – Discretization of the local states H and V. The local state spaces for H and 
V are each discretized into ten bins with equal number of interfacial voxels in each 
bin. The first bin H1 represents the complete range of H encountered in the lowest 
decile of the interfacial voxels, when sorted by the values of H. H2 represents the next 
decile of interfacial voxels in the same sorting. The discretization of V is done 
analogously. 

It is also possible to bin the local states with respect to interfacial shape. The two 

principal curvatures 𝜅ଵ and 𝜅ଶ can be used to classify interface patches based on their 

specific shapes from the 𝜅ଵ − 𝜅ଶ distribution map (Figure 23b), or the so called interface 

shape distribution (ISD). As shown in Figure 25, we can select regions from the ISD 

corresponding to positive (solid) spheres (𝜅ଵ > 0, 𝜅ଶ > 0), negative (liquid) spheres (𝜅ଵ < 

0, 𝜅ଶ < 0), positive (solid) cylinders (𝜅ଵ ≈ 0, 𝜅ଶ > 0), negative (liquid) cylinders (𝜅ଵ < 0, 

𝜅ଶ ≈ 0), and planar interfaces (𝜅ଵ ≈ 0, 𝜅ଶ ≈ 0), etc. This classification is tantamount to 

discretization (i.e., binning) in the 𝜅ଵ − 𝜅ଶ space.  
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Figure 25 – Illustration of the principal curvatures 𝜿𝟏, 𝜿𝟐 (a) and the interfacial shape 
distribution (ISD) (b) Interfaces with specific shapes can be selected from the ISD by 
putting constraints on 𝜿𝟏 and 𝜿𝟐. Near the origin are the flat interfaces; on the 𝜿𝟏 = 
0 and 𝜿𝟐 = 0 axes are the solid (positive, solid on the concave side) and liquid (negative, 
liquid on the concave side) cylinders respectively; and along the line of 𝜿𝟏 = 𝜿𝟐 are 
the solid and liquid spheres. In regions between these extremes are interfaces of 
intermediate shapes. 

As noted earlier, the values of the local state variables H and V are available only 

in the cylindrical sample volume (an irregularly shaped volume) and only for the solid-

liquid interface voxels. Consequently, it is necessary to use masks to compute all the 

different two-point correlations defined earlier in a computationally efficient manner. For 

the present work, two mask functions are defined as: 

 
𝑐௦ =  ൜

1,     𝑠 is on the interface
0,     otherwise                  

 (38) 

 
𝑐௦̅ =  ൜

1,     𝑠 is inside the cylinder
0,     otherwise                        

 (39) 

 



 62

Additionally, in order to implement a non-periodic treatment of the microstructure, the 

microstructure domain was padded with a minimum of 200 voxels in each direction. 

Padding was accomplished in a manner that converted the given cylindrical volume into a 

regular rectangular parallelepiped volume with uniformly sized voxels. Because the extent 

of padding was at least 200 voxels in each reference direction (x, y, z), the correlations 

computed using the equations presented in earlier sections are valid at least for all vectors 

with all three components smaller than 200 voxels. 

4.6.3 Analysis within the Scope of a Time Step 

We will first treat H and V data as continuous local states and compute the two-

point Pearson correlations, 𝜌௧
ுு, 𝜌௧

௏௏, and 𝜌௧
ு௏.  Of these, the first two are called auto-

correlations, while the third is referred to as a cross- correlation. All three correlation maps 

are shown in Figure 26 in forms of orthogonal two-dimensional slices, up to vectors whose 

components are smaller than 200 pixels (358 µm). The 2D slices shown in this figure are 

selected perpendicular to secondary (𝑎ଶ) and tertiary (𝑎ଷ) arm directions; compare with the 

sections of the microstructure volume shown in Figure 21. 
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Figure 26 – Two-dimensional slices of the two-point Pearson auto-correlation of 
interfacial mean curvature H (a,d) and velocity V (b,e), and two-point Pearson cross-
correlation of H and V (c,f). The slices are selected perpendicular to the tertiary 
dendrite arms 𝒂𝟑 (a-c), and perpendicular to the secondary dendrite arms 𝒂𝟐 (d-f). 
These slices correspond to the 2D slices of the SDF in Figure 21. 

In all of the three correlation maps (H − H, V − V, H − V), we see four-fold 

symmetric patterns, reflecting the four-fold symmetry of the dendrite arms. In the H − H 

auto-correlation (Figure 26a,d), we see long range correlations along the secondary and 

tertiary dendrite arm axes (𝑎ଶ and 𝑎ଷ). More specifically, the two-point Pearson correlation 

function 𝜌௧
ுு ≥  0.2 up to a distance of |t|  ≈  250 µm along 𝑎ଷ.  This correlation distance is 

even larger for the 𝑎ଶ  direction, where 𝜌௧
ுு  ≥ 0.2 for distances as far as |t| ≈ 350 µm.  

These long range correlations of the interfacial curvatures along the tertiary and secondary 

dendrite arms indicate that the secondary and tertiary dendrite arms are aligned parallel to 

each other (along the 𝑎ଶ and 𝑎ଷ axes, respectively), and that their interfacial shapes are 

similar along their respective axial directions. This can also be verified from the slices of 
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the SDF in Figure 21. The continuous correlations come from the stems of the secondary 

and tertiary dendrite arms, which have extended structures along directions matching the 

strong correlation stripes. Along the 𝑎ଵ axis, the Pearson auto-correlation coefficient of H 

shows periodic patterns with a periodicity of ∼ 270 µm (Figure 26a,d). This indicates 

periodically repeated microstructures along the primary dendrite arm direction in the 

sample, which naturally suggests that this periodicity comes from the secondary branches 

on the primary arm. Therefore, this distance of ∼ 270 µm should correspond to the 

secondary dendrite arm spacing 𝜆ଶ, the value of which is in good agreement with the SDF 

plots (Figure 21). The correlation along 𝑎ଵ does not show continuous patterns in the long 

range as seen along 𝑎ଶ and 𝑎ଷ. This indicates an absence of extended microstructure along 

𝑎ଵ. In other words, there is no primary dendrite arm in the microstructure domain studied. 

From Figure 21c, we can confirm that it is indeed the case (the primary dendrite arm is cut 

out of the sample cylinder during sample preparation). 

While  the  interfacial  curvature  H  shows  long  range  auto-correlations  with  

𝜌௧
ுு  ≥  0.2  at  distances  |t|  ≥ 250 µm along all three dendrite arm axes, we see a much 

weaker correlation in the interfacial velocity V auto- correlation maps (Figure 26b,e).  In 

fact, we only see strong (𝜌௧
௏௏ ≥ 0.2) correlation within |t| ≤ 100 µm along 𝑎ଵ and 𝑎ଷ, and |t| 

≤ 65 µm along 𝑎ଶ. The first correlation range (100 µm) is smaller than the inter-dendritic 

distance 𝜆ଶ of the secondary arms along the primary arm axis, as obtained from the H auto-

correlation; and, as we shall see later, the second correlation range (65 µm) is about the 

same as the tertiary dendrite arm spacing 𝜆ଷ of the tertiary arms on the same secondary 

arm. This implies that the interfacial velocity V only strongly correlates with each other 

within the same secondary or tertiary dendrite arm. Since the motion of the interface is 
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determined by the diffusion of solute in the alloy, the distance of velocity correlation (i.e., 

100 µm) is a good measurement of the solute diffusion length. Moreover, in contrast to the 

H correlation which shows only positive correlation coefficient in the short range (|t| ≤ 100 

µm), the interfacial velocity V shows negative correlation near the strong center peak in 

the correlation map. Since the velocity has near-zero mean value, the negative correlation 

indicates a sign reversion of the velocity across a distance of ∼ 30 µm on the interface. 

This in turn reflects the wavelength of perturbation of the diffusion field by the fluctuations 

in the solute concentration. 

We also present the computed H − V cross-correlation in Figure 26c,f. H and V are 

negatively correlated at r = 0 with 𝜌௧
ு௏ = −0.52.  The patterns in the H − V correlation map 

show mixed contributions from the auto- correlations of H and V. More specifically, in the 

short range, H is positively auto-correlated, but V has both positive and negative auto-

correlations, therefore, the correlation pattern resembles that of the V auto-correlation in 

this range. In the long range, auto-correlation of H is strong yet the auto-correlation of V 

is weak, so the combined effect is that the cross-correlation of H and V is also weak. 

In order to better understand the spatial distribution of H and V, we can now utilize 

the bins we defined in their respective local state spaces. These discretized local states were 

defined earlier and labeled as H1, . . . , H10, V1, . . . , V10 . Using these discrete local states, 

we can compute two-point Pearson auto-correlation functions of the corresponding 

microstructure functions 𝑚௦
ுభ , . . . , 𝑚௦

ுభబ, 𝑚௦
௏భ, . . . , 𝑚௦

௏భబ. These are presented in Figure 

27 and Figure 28. It is seen that only first three and the last bins of H (H1, H2, H3, H10) 

show strong long range auto-correlations. In other words, only the 30% most negative and 
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10% most positive values of H have strong long range auto-correlations. The rest of the H 

values do not have strong long range correlations in space. Among the 10 bins of H, the 

first bin (H1) is the most correlated in the long range, and it contributes to most of the 

features in the continuous H auto-correlation pattern in Figure 26. The high negative H 

values represented by H1 correspond to interfaces with concave curvatures on the liquid 

side, which can be either cylindrical or spherical. 

 

Figure 27 – Two-dimensional slices of the two-point Pearson auto-correlation of 
interfacial mean curvature H in 10% bins. The Pearson correlations are computed 
with the microstructure functions built from the discretized local states H1 .. H10. 
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The correlations of V in 10% bins (Figure 28) show the same trend as those of H in 

that the most positive and most negative extremes are the most correlated in the longer 

range, while the center values are only correlated at around t = 0. In other words, the spatial 

distribution of the non-extreme values of V are essentially equivalent. In all of the cases, 

V is only spatially correlated in the short range, which agrees with the result from the full 

V correlation.  

 

Figure 28 – Two-dimensional slices of the two-point Pearson auto-correlation of 
interfacial velocity V in 10% bins. The Pearson correlations are computed with the 
microstructure functions built from the discretized local states V1 .. V10. 
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In order to determine the specific microstructures resulting in the long-range 

correlation pattern seen in the auto-correlation of the most negative values of H, we select 

on the ISD according to Figure 25, curvature regions corresponding to negative (liquid) 

cylinders (𝜅ଵ < −0.02, |𝜅ଶ| < 0.01 ; region A) and negative (liquid) spheroids (𝜅ଵ <

−0.02, 𝜅ଶ < −0.02 ; region B) as shown in Figure 29h. We use these regions as discrete 

local states in the 𝜅ଵ − 𝜅ଶ space and calculated the two-point Pearson correlation functions 

of their microstructure functions. The results are shown in Figure 29a-g. Comparing Figure 

29a,b,d,e with Figure 26, we find that the four-fold “lattice”-like correlation pattern comes 

from the auto-correlation of cylindrical interfaces with negative H. These interfaces are the 

troughs on the stems of the secondary (or tertiary) dendrite arms, between tertiary (or 

quaternary) dendrite branches. These interfaces are well-aligned along the 𝑎ଶ and 𝑎ଷ 

directions and with even spacings along 𝑎ଵ. These contribute to the long stripes in the auto-

correlation map of H. In the 𝑎ଵ − 𝑎ଷ plane (i.e. perpendicular to the secondary dendrite 

arms), the cross-sections of the stems of the secondary dendrite arms show “cross” shapes 

with negative curvature troughs between the roots of tertiary dendrite arms, as highlighted 

by the black dashed box in Figure 21d. An enlarged view of the interface around this area 

is shown in Figure 30a, with the 10% most negative H highlighted in red. These “troughs 

on cross” structures will give a correlation pattern that resembles a “cubic lattice”. In Figure 

30b and c we demonstrate this correlation through a 2D model interfacial structure, in 

which the four-fold lattice-like correlation pattern is reproduced. Following this approach, 

the distance between the center and diagonal peaks in the “lattice” pattern should be the 

diameter of the secondary dendrite arms (d2), as illustrated by the arrows in Figure 30. 

From Figure 29d we know that d2 = 90 µm. From Figure 26c,f we see that the H and V 
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show anti-correlations pertaining the same four-fold symmetric pattern as seen in the H - 

H auto-correlation. In fact, these H - V anti-correlations happen at the same locations where 

H is autocorrelated in the short range. Combining with the argument made just above, it 

suggests that the trough structures on the secondary dendrite arms are moving away from 

each other (i.e. toward the liquid), which will make the curvature at these locations smaller. 

As opposed to H1, H3 shows strong correlations on planes perpendicular to the 𝑎ଶ 

axis. This segment of H corresponds to the near-zero curvature interfaces. Analysis on the 

Gaussian curvature K shows that these are primarily flat interfaces which constitute the 

surface of the tertiary dendrite arms that undergo columnar growth perpendicular to the 

secondary dendrite arms (Figure 21b). To verify this, we utilize the ISD again and compute 

the two-point Pearson auto-correlation with the near-zero curvature bin 𝜅ଵ, 𝜅ଶ ∈

[−0.005,0.005], represented by region D in Figure 29h. The resulting correlation pattern 

greatly resembles that of H3, suggesting that the latter is indeed from the correlation of flat 

interfaces on the columnar tertiary dendrite arms. Therefore, the spacings between the 

“correlation planes” should represent the columnar width or equivalently the inter-dendritic 

spacing of the tertiary dendrite arms. Since the first strong correlation appears at |t| = 65 

µm, the average columnar width should be on the same scale. 
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Figure 29 – Two-dimensional slices of two-point Pearson auto-correlation with 
discrete local states selected from the ISD (Figure 25b) according to Figure 23b. (a,d) 
𝜿𝟏 < −𝟎. 𝟎𝟐, |𝜿𝟐| < 𝟎. 𝟎𝟏 ; 𝐫𝐞𝐠𝐢𝐨𝐧 𝐀 𝐢𝐧 (𝐡), representing negative cylindrical shapes, 
and constituting ~ 3.18% of the whole interface. (b,e) 𝜿𝟏 < −𝟎. 𝟎𝟐, 𝜿𝟐 <
−𝟎. 𝟎𝟐 ; 𝐫𝐞𝐠𝐢𝐨𝐧 𝐁 𝐢𝐧 (𝐡), representing negative spherical and spheroidal shapes, and 
constituting ~ 0.87% of the whole interface. (c,f)  |𝜿𝟏| ≤  𝟎. 𝟎𝟎𝟓, 𝜿𝟐 >
𝟎. 𝟎𝟐 ; 𝐫𝐞𝐠𝐢𝐨𝐧 𝐂 𝐢𝐧 (𝐡), representing positive cylindrical shapes, and constituting ~ 
13.17% of the whole interface. (g)  𝜿𝟏, 𝜿𝟐 ∈ [−𝟎. 𝟎𝟎𝟓, 𝟎. 𝟎𝟎𝟓] ; 𝐫𝐞𝐠𝐢𝐨𝐧 𝐃 𝐢𝐧 (𝐡), 
representing flat interfaces, and constituting ~ 2.94% of the whole interface.  
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Figure 30 – (a) A subset of the sample interface showing the stem of a secondary 
dendrite arm (as highlighted with the black dashed box in Figure 21d), with the 10% 
most negative H interfaces highlighted in red. (b) A 2D model structure representing 
a 2D cross-section of the structure in (a), with high negative curvature interfaces 
highlighted in red and the rest in blue. (c) The two-point Pearson auto-correlation of 
the red local state (microstructure function) in the model structure. The whole 
“interface” (blue and red in b) is used as mask in the calculation. The double-headed 
arrows indicate distances of equal value in the three plots.  

Finally, to obtain a quantitative measure of the probability distribution of H and V 

in space, we calculate the conditional two-point probability function of discretized local 

states H1 and V10. These two should be correlated according to Allen-Cahn theory. In 

Figure 31a and c, we show the auto-correlation conditional probabilities 𝑓௧
ுభ|ுభ  and 

𝑓௧
௏భబ|௏భబ , respectively. The same long stripes and lattice-like patterns appear in the two-

point probability function of H1 as expected. At these “hotspots”, the probability of finding 

an interface with local state H1 (i.e. 10% most negative H) is about 30 %, which is 3 times 

the value in the case where H1 is randomly distributed 𝑓௧→ஶ
ுభ|ுభ = 10%. While the 

probability of finding an interface with H1 is greater than 20 % even at distances |t| = 250 

µm from another interface with H1, the 𝑓௧
௏భబ|௏భబ  tapers off quickly to the random distribution 

value (10 %), as shown in Figure 31b and d. Figure 31e shows line profiles of both 

probability distributions along the white dashed lines in Figure 31a-d. It is clear that the 

auto-correlation of H1 shows peaks with a height of 0.3 at ~ ±270 µm, which indicates 
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strong correlation between neighboring secondary arms. On the other hand, the same line 

for V1 shows no discernible peaks at ~ ±270 µm. This again supports the argument that the 

diffusion of solute is only limited within one dendrite arm. 

 

Figure 31 – Two-dimensional slices of the conditional two-point probability functions 
(auto-correlation) of discretized local states H1 (a,c) and (V10, b,d). (e) Line profiles of 

𝒇𝒕
𝑯𝟏|𝑯𝟏 and 𝒇𝒕

𝑽𝟏𝟎|𝑽𝟏𝟎shown in (a-d), along the white dashed lines. 

4.6.4 Analysis within the Scope of an Experiment 

 This section will deal with the analysis of an experiment as a whole with all of its 

time steps. As the scope of the data is broader, the local states utilized will be limited to 

the interface indicator 𝑐௦  (i.e the interface mask function) and the extreme negative 10% 

bin of the mean curvature H1, as the methods can easily be extended to other states further 

analysis. The reader is reminded that ultimately, the purpose of this case study is to 

demonstrate the utility of the various tools developed in this thesis and not the exhaustive 
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analysis of this dataset. The experiment with 55% solid volume fraction is chosen as the 

example for this section. This experiment contains 94 time steps which will be labeled τ = 

0..93. Figure 32 shows a visualization of the solid liquid interface (zoomed into a cubic 

sub-volume for clarity), and a visualization of the corresponding two point autocorrelation 

of the interface mask function 𝑐௦   (represented by 𝑓௧
ூூ) for the entire cylinder for τ = 0 (a), 

τ = 20 (b), τ = 93 (c).  The 3D visualizations of two point statistics contain 2 isosurfaces at 

𝑓௧
ூூ = 0.0024 and 𝑓௧

ூூ = 0.0038 on all 3 cases.  

 

Figure 32 – Visualizations of the solid liquid interface and two point autocorrelation 
of the interface mask function 𝒄𝒔 are shown for τ = 0 (a), τ = 20 (b), τ = 93 (c). 
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It can clearly be seen from Figure 32 that the dendritic structure is becoming more 

and more dominant and organized as time progresses, which results in a monotonic 

decrease in interface surface area. This notion is supported in the principal component 2D 

projection of the 94 data points as shown in Figure 33. In this plot, each point represents 

the two point autocorrelation of 𝑐௦ for a given time step, and the points corresponding to 

the time steps shown in Figure 32 are shown explicitly. Since PC scores denote deviations 

from the mean, the mean of two point statistics corresponding to all 94 time steps (a,b,c) 

and the basis vector for the first principal component (d,e,f) are shown in three orthogonal 

slices at 𝑧 = 0, 𝑦 = 0 and  𝑥 = 0 planes respectively in Figure 34. The red arrow indicates 

the approximate direction of the cylindrical axis. In Figure 34a,b we can see that there is a 

dominant dendritic pattern almost exactly along and perpendicular to the cylinder axis 

throughout all 94 time steps. Figure 34c shows that the dendritic structure perpendicular to 

the cylinder favors a particular alignment with a roughly 45 degree slant. The existence 

and angle of this slant is a direct result of the particular placement of the experiment 

cylinder with respect to the imaging device and hence an artifact of observer rotations, 

which will be addressed later in the multi-experiment scope analysis section. From Figure 

34d,e we can see that the interface is losing vectors at the tertiary arm spacing range (notice 

the negative sign on the color bar) , as well as along the cylinder axis at a much faster rate 

than other directions. This is a result of independent blobs or small tertiary arms getting 

absorbed into continuous well-formed dendritic arms with homogenous thickness as a 

result of the coarsening process. Figure 34f shows that this absorption has a directional 

preference within the circular plane, resulting in the preservation (within some tolerance) 

of the dominant orientation we see in Figure 34c. In all three slices of the first principal 
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bases, a very sharp peak at the center (which corresponds to volume fraction) is visible. 

Since PC1 scores are increasing over time in the positive direction, this corresponds to a 

sharp rate of decrease in the center statistics, once again showing that with increasing time 

the volume fraction and hence the surface area of the interface is monotonically decreasing. 

 

Figure 33 – Principal component scores for the interface autocorrelation across all 94 
time steps. 
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Figure 34 – Orthogonal slices for the mean (a,b,c) and first principal component basis 
(d,e,f) of interface autocorrelations across all 94 time steps. The red arrow indicates 
the direction of the cylindrical axis.  

 We can now inspect whether features and trends observed in the single time step 

scoped analysis are applicable to the entire experiment. The strongest features and 

meaningful results for the single time step analysis were observed in the autocorrelation of 

the extreme negative curvature autocorrelation (H1), hence we can take this case as a 

suitable example. Firstly, Figure 35 shows a 3D visualization of the mean of the 

autocorrelation of H1 across all time steps. We can once again observe that the dendritic 

pattern is dominant throughout the experiment. Furthermore, there are clear peaks 

corresponding to long range order which were previously identified to be associated with 

𝜆ଶ and 𝑑ଶ, which implies an experiment wide order to the dendritic arrangement. We can 

further observe the evolution of these features by tracking the line profile previously shown 

in Figure 31e where both 𝜆ଶ and 𝑑ଶ were identifiable. Figure 36 shows the evolution of 
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this line profile over time. While the defining peaks for both 𝜆ଶ and 𝑑ଶ exist throughout 

the experiment, they become sharper as time passes, resulting in a more strictly imposed 

and well defined dendritic structure. This effect can be somewhat observed in Figure 32, 

where the dendrite thicknesses and spacings appear to be more uniform in Figure 32c in 

comparison to Figure 32a. 

 

Figure 35 – 3D visualization of the mean of the autocorrelation of H1 across all time 
steps. Features 𝝀𝟐 and 𝒅𝟐 are highlighted. 
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Figure 36 – The evolution of the features 𝝀𝟐 and 𝒅𝟐 over time. Notice that while the 
defining peaks exist throughout the experiment, they become sharper as time passes, 
resulting in a more strictly imposed dendritic structure (compare the blue profile to 
yellow). 

4.6.5 Analysis within the Scope of All 4 Experiments 

 Finally, we will look at analysis techniques at the scope covering all 500 time steps 

from 4 different experiments. While the utilization of selective local state definitions and 

correlation combinations will surely yield additional insights, within the scope of this 

thesis, the analysis will be limited to the interface indicator 𝑐௦ as the local state description. 

As usual however, the methodologies applied here are applicable to any state definition 

and any mode of spatial correlation.  

 We start by naively combining the interface autocorrelations of all 500 time steps 

and projecting them to their principal component space, which is shown in Figure 37. The 

first principal component dominates by 3 orders of magnitude in the explained variance. 

Hence the most important observation here is the fact that PC1 is monotonically 

decreasing, which is again a result of the monotonic decrease in interface surface area. The 

orthogonal cross-sections for the mean and the first principal component basis is shown in 
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Figure 38. While Figure 38 is informative in many ways, Figure 38c and f specifically 

reveal a potential problem with this avenue of analysis. Recall that for the single 

experiment scoped evolution analysis, the mean and first principal component showed 

preference to dendritic patterns of specific slants (Figure 34c and f). However, especially 

Figure 38c is utterly devoid of any anisotropy in mid-range order, showing no signs of a 

dendritic pattern. As mentioned before, the slant in the patterns are a direct result of the 

particular placement of the experiment cylinder with respect to the imaging device, and the 

fact that the combined average is isotropic proves that there is mismatch caused by observer 

rotations.  

 

Figure 37 – Principal component scores of the 500 time steps. The gradient within 
each color implies time evolution, lightest shade being the earliest and the darkest 
shade being the latest time step within a given experiment. 
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Figure 38 – Orthogonal slices for the mean (a,b,c) and first principal component basis 
(d,e,f) of interface autocorrelations across all 500 time steps. The red arrow indicates 
the approximate direction of the cylindrical axis. 

These rotations need to be accounted for if an accurate analysis of the dendritic 

structure is desired. However going back to Figure 21 and Figure 22, a dominant 

orientation that can be used to align these structures by a rotation of the cylinder around its 

axis is not immediately apparent, if at all exists. This is where the rotationally invariant 

statistics derived in this thesis will shine by enabling an accurate analysis of the dendritic 

structure not possible with any other analysis method in literature. The use of pair 

correlation functions here will result in the assumption of isotropy and dissolution of the 

dendritic structure in a similar way. Since the orientation of the cylindrical axis itself is not 

prone to observer rotations, we require a solution that will only impose rotational 

invariance in planes perpendicular to the cylindrical axis. Hence we will employ the 

cylindrical coordinate system for this calculation with a trivial extension to Eq. 33. It is 

now possible to look at the principal component analysis of the rotationally invariant 
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interface autocorrelations of all 500 time steps. The projection to principal space is shown 

in Figure 39. Notice that the projection changed significantly compared to Figure 37. 

Figure 40 shows comparisons between cross-sectional slices of the mean and first principal 

component basis without(a,c,e) and with(b,d,f) imposed rotational invariance. Figure 

40(a,b) and (c,d) show slices perpendicular to the cylinder axis where the invariance was 

imposed for the mean and first principal basis respectively. Notice that the dendritic 

structure is successfully preserved in the mean and the basis across all 500 time steps. (e,f) 

shows slices along the cylindrical axis for the mean, which shows that the trends for the 

basis observed in regular statistics are preserved in rotational invariant statistics (this is 

also true for slices not shown here).  This analysis method can now be applied to local 

states of interest in further extraction of physics and features from all 4 experiments, which 

is beyond the scope of this thesis. 

 

Figure 39 – Principal component scores of the 500 time steps using rotationally 
invariant two point statistics. The gradient within each color implies time evolution, 
lightest shade being the earliest and the darkest shade being the latest time step within 
a given experiment. 
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Figure 40 – Comparison of cross-sectional slices of the mean and first principal 
component basis without(a,c,e) and with(b,d,f) imposed rotational invariance. (a,b) 
and (c,d) show slices perpendicular to the cylinder axis where the invariance was 
imposed for the mean and first principal basis respectively. (e,f) shows slices along 
the cylindrical axis for the mean. 
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CHAPTER 5. UNIVERSAL MICROSTRUCTURE GENERATION 

FRAMEWORK 

This section derives a foundation for a universal framework of microstructure 

generation and showcases a few simple examples.  Significant research is needed in 

exploration, extension and utilization of this framework before it can be adopted for 

widespread use. This task of maturing this framework is left as a future work to next 

generation of researchers. A single iteration of the framework consists of the following 

steps: (1) select object to be placed, (2) obtain geometric and statistical cost functions, (3) 

place object to an optimum location according to some heuristic, (4) check for convergence 

(see Figure 41). Details of each step are presented in the next sections. 

 

Figure 41 – The main workflow of the generation framework. A single iteration of the 
framework consists of the following steps: (1) select object to be placed, (2) obtain 
geometric and statistical cost functions, (3) place object to an optimum location 
according to some heuristic, (4) check for convergence. 
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5.1 Initial Structure  

 In order for the microstructure generation framework to be truly universal, it must 

have the ability to accept any initial structure definition adaptively. The proposed 

framework can be utilized in a multitude of modes to ensure any and all such definitions 

can be accommodated: 

1) Microstructure Building, in which a structure is generated on a blank canvas. In this 

mode, the generator can rapidly build many near-optimal structural instances under a 

variety of constraints.  

2) Microstructure Modulation, in which a structure is generated from another structure. 

The input can be an experimentally obtained image, the output of a simulation or outputs 

from any other pixel/voxel based structure generator in literature. 

3) Microstructure Evolution, in which an existing structure is evolved under the statistical 

description of a process, such as the one obtained in the previous chapter for coarsening of 

an Al-Cu alloy in the form of a principal component basis vector. 

5.2 Object 

 The object selection and design is one of the primary means of injecting prior 

domain knowledge into the structure generation process and plays a crucial role in 

obtaining visually realistic microstructures. While it is possible to generate virtually 

infinitely different patterns or textures with different object selections, for any real 

materials problem, the set of patterns that can be actualized as a material microstructure 

through real world natural/chemical or manufacturing constraints is very tightly and 
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nonlinearly bound (albeit still containing practically infinite variations). This requirement 

of practical manufacturability or replicability is the primary differentiator of a 

microstructure generator from common texture synthesis methods found abundantly in 

literature. Regardless of the guidelines described here, proper object selection requires 

extensive study and is a major future work area in further development of this framework. 

 The most basic choice of a single pixel as an object in conjunction with the 

practicality requirement often leads to the hardest optimization task due to a combinatorial 

explosion on the order of the number of pixels in an image. This choice should be 

appropriate either when the structure can be manufactured at the same resolution via 

additive manufacturing, or when the structure is a result of a complex dynamic process 

such as diffusion or solidification. Objects on the order of a few pixels are also appropriate 

when the objective is the evolution of an existing structure according to a statistical process 

description. 

 Common geometric shapes are another class of objects that are of interest to 

materials researches due to the fact that most models and theory developed before the 

availability of advanced imaging and computing resources heavily rely on them in their 

derivation.  In fact, randomly generated patterns of non-overlapping circles is perhaps the 

most popular problem of this kind in almost all scientific fields.  

 A significant differentiator of this framework is the ability accommodate object 

libraries mined from existing images of similar material structures. Availability of such a 

library significantly reduces the degrees of freedom in the optimization process, and will 

naturally result in the most realistic generation of randomized microstructures theoretically 
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possible. The object library can be enriched by variations of an object under various linear 

transforms such as rotation and scaling where applicable. Mechanisms of automated 

extraction of regions of interest from image libraries is a heavily studied field in computer 

vision, and not in the scope of this thesis. 

Finally, objects can also be handcrafted in order to accommodate very elaborate 

modes of microstructure building such as directional overlaps, Lego-like connections, 

dendrite-axon type connections, perfect alignments etc. This requires the definition of 

intermediate local states that “paint” a specific region on the object for tighter constraints. 

This is further explained in the next section. 

5.3 Cost Functions 

Microstructure instances are generated by a combination of physical/geometric 

constraints to accommodate manufacturing/domain expertise and statistical constraints to 

measure similarity. The central premise of the generation framework is that an incredible 

variety of microstructures with very tight and specific constraints can be generated entirely 

with O(SlogS) computational complexity using filters, where N is the number of pixels in 

the image. Note that under this regime, the computational cost is independent of the state 

of the image (i.e. how many objects are placed) or the type or size of the object. Within the 

scope of this thesis, 3 types of cost functions will be discussed. 

5.3.1 Overlap Based Cost Functions 

The first and most notorious of the cost functions is the overlap between objects. 

The overwhelming majority of pattern or microstructure generators in literature follow a 
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brute force approach. A random location is chosen in the image and placement of the object 

is attempted at that location. If there is any overlap, a new random location is chosen and 

the attempt is repeated until there is no overlap, then the process continues until specified 

number of objects are placed. Numerous disadvantages of such an approach can 

immediately be spotted: 

- The cost of placing a new object increases as more objects are placed, due to more 

frequent failed placement attempts. This is bounded roughly at O(Sଶ). 

- Only 1 object can be placed at a single iteration. 

- The placement becomes even more costly and unstable as the object size increases. 

- The complexity increases with a combinatorial explosion, if partial overlaps at specific 

percentages, or overlaps at specific locations are desired. 

- The complexity increases with a combinatorial explosion if objects are to be placed at 

a specific distance from each other. 

Conversely, in a filtering based approach: 

- The cost of placing a new object is always O(SlogS). 

- Multiple objects can be placed simultaneously in a single iteration, especially in earlier 

stages. 

- The placement cost is independent of object topology or size. 

- Shapes can be placed at partial overlaps such as a percentage, and can be made to 

overlap at a particular location or direction while remaining at O(SlogS) complexity. 

- Shapes can be placed with specified distances while remaining at O(SlogS) complexity. 
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The filtering approach is described pictorially in 2D in Figure 42. The object is 

convolved with the initial structure and normalized by its size in pixel/voxels, which results 

in an overlap cost map. Each pixel in this map describes the percent overlap of the new 

object with existing objects, if the new object were to be placed centered on that pixel. To 

provide context, we can overlay the existing objects over this map and normalize, resulting 

in the Overlap Cost Function (OCF). The OCF can be thresholded and run through a 

distance transform in linear time to obtain a signed distance function. In this image each 

pixel now contains the distance from the nearest object already in the image (away from 

the nearest object if positive, overlapping the nearest object if negative), if the new object 

were to be placed centered on that pixel. Overlaying the existing objects over this image 

and normalizing will yield the Distance Cost Function (DCF). This approach can 

accommodate microstructures with multiple or continuous local state definitions without 

an increase in complexity. Specifically, the OCF is defined as: 

 
𝑂𝐶𝐹 =

ℑିଵ ቀℑ(𝐼𝑚𝑎𝑔𝑒௛)∗ ⊙ ℑ൫𝑂𝑏𝑗𝑒𝑐𝑡 
௛ᇲ

൯
 

 
ቁ

𝑂𝑏𝑗𝑒𝑐𝑡𝑆𝑖𝑧𝑒
 (40) 

 

The DCF is obtained as follows: 

 𝐷𝐶𝐹௦
ା = min

௦ᇲ
dist(𝑠, 𝑠ᇱ) , 𝑠 ∈ 𝑂𝐶𝐹 = 0%, 𝑠ᇱ ∈ 𝑂𝐶𝐹 > 0% (41) 

 

 𝐷𝐶𝐹௦
ି = min

௦ᇲ
dist(𝑠, 𝑠ᇱ) , 𝑠 ∈ 𝑂𝐶𝐹 > 0%, 𝑠ᇱ ∈ 𝑂𝐶𝐹 = 0% (42) 
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 𝐷𝐶𝐹 = 𝐷𝐶𝐹௦
ା + 𝐷𝐶𝐹௦

ି (43) 

where for the purposes of this thesis, the function dist() is the Euclidean distance function 

dist(𝑠, 𝑠ᇱ) = ‖𝑠 − 𝑠ᇱ‖. However other measures of distance can easily be accommodated. 

 

Figure 42 – Graphic depiction of the operations to obtain the overlap based cost 
functions OCF and DCF. 

 An incredibly wide variety of microstructures or patterns can be generated simply 

by joining various overlap and distance constraints. Figure 43 shows an example of how 

overlap and distance constraints can be used in conjunction to create different interactions 
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between objects. In this case, the blue object is already placed and the green object is to be 

placed. Only providing a no-overlap constraint can result in very unpredictable relative 

placement, which can be alleviated by imposing a distance range to the placement. Only 

providing an overlap percentage can result in unintended behavior as well, such as two 

objects joining slightly along a single edge. In these cases, imposing a negative distance 

constraint will ensure the new object is intruding at least a certain amount into the existing 

object. 

 

Figure 43 – Examples showing various placement modes that can be achieved using 
an OCF and a DCF in conjunction. For each example, the blue rectangle is already in 
the microstructure, and the green rectangle is to be placed. 

 A more elaborate example is shown in Figure 44 to demonstrate the intricacy, 

complexity and specificity of the structures that can be generated simply by chaining 

overlap and distance based constraints. In this case, we have more elaborately designed 
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objects with multiple meta local states that color different regions of interest. The objective 

is to make sure objects connect only on the yellow phases without overlap in any other 

phase, while also maintaining a wide angle between connected objects. This is enforced 

first by a yellow-yellow overlap constraint, followed by a yellow to non-yellow and non-

yellow to non-yellow no overlap constraint. The angle of incidence is bound using a 

minimum separation distance constraint to the green/blue body of the objects.  

 

 

Figure 44 – An examples showing how the placement mode evolves as 4 OCFs and a 
DCF is chained to achieve a very specific criteria. For each example, the blue 
rectangle is already in the microstructure, and the green rectangle is to be placed. 
Yellow areas are meta-states to identify the tips of the rectangles. The final goal is to 
achieve a placement where rectangles overlap exclusively in the yellow regions, while 
having a wide angle between them. 

5.3.2 2-Point Statistics Based Cost Functions 

Before the derivation of the Statistical Cost Function (SCF), it is important to 

quantify the effect of an individual pixel/voxel to the overall set of 2-point statistics. Recall 

that the set of all two point statistics is given by: 

 
𝑓௧ 

௛௛ᇲ

=
∑ 𝑚෥௦

௛𝑚෥௦ା௧
௛ᇲ

௦

∑ 𝑐௦
 𝑐௦ା௧

 
௦

, ∀𝑡 ∈ 𝑇 (44) 
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where T is the set of all vectors considered. We can limit our attention to only 𝑚෥௦
௛ and 

quantify the effect a particular spatial bin has on the overall set of statistics as: 

 𝑚෥௫
௛𝑚෥௫ା௧

௛ᇲ
 , ∀𝑡 ∈ 𝑇 (45) 

This expression is essentially defining a point x in the microstructure with respect to every 

point (including itself) in the microstructure, bounded by a neighborhood T. Therefore an 

analogous definition of 2-point statistics would be:  

The frequency that a prescribed vector t appears with a local state n at the tail and 

p at the head, if each point in the microstructure were to be defined with respect to 

every point in the microstructure (via a vector), bounded by a neighborhood T.  

This definition allows the explicit identification the exact contribution of a single pixel to 

the overall set of 2-point statistics. Suppose we would like to observe the effect of changing 

one particular spatial bin in the structure shown in  Figure 45 from the blue state to yellow 

state. Figure 45.a shows a red pixel selected in the image to be painted yellow.  The change 

in spatial statistics can simply be obtained by centering the image on this pixel (the green 

frame in Figure 45.a) in consideration of the boundary conditions. The statistics of the new 

image is now simply the summation of the statistics of the old image with the image 

contained by the green frame normalized by the appropriate 𝑆௧ for each t, where the yellow 

state is represented by 1s and blue state is represented by 0s. (Figure 45.b) . Note that the 

normalization of vectors are unaffected by changes in the structure and are defined by the 

boundary conditions and 𝑐௦
 .  
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Figure 45 – An example of the Rank 1 Update process for spatial statistics. 

In order to make the generation process conform to a particular set of spatial 

statistics, it is necessary to quantify how much closer the spatial statistics of the current 

microstructure will approach to the target statistics, if a particular pixel is filled with a 

particular phase. Let us assume that we have a microstructure that only needs a single pixel 

modification to reach the target 2-point statistics. In this case, by applying the concept from 

Figure 45 we can test the effect of modifying each pixel until we find the right one (Figure 

46.a). However, another way achieving the same effect is to instead find the difference 
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between the target and current statistics to obtain the ideal neighborhood directly, and 

searching the microstructure for this neighborhood (Figure 46.b). While straightforward 

application of both concepts wield yield a search of  O(𝑆ଶ) complexity, the workflow 

described in Figure 46.b can be actualized by convolving the ideal neighborhood with the 

current microstructure, resulting in an O(SlogS) complexity.  

 

Figure 46 – a) The rank-1 update concept for 2-point statistics is shown graphically. 
b) The graphical equation is re-arranged to yield the ideal neighborhood a pixel to be 
placed should possess. 

This concept can be generalized to microstructures that require heavy modification 

to reach desired 2-point statistics by treating the difference in statistics as a weighted filter 

describing the potential gain towards the target statistics. In this filter, larger weights will 

signify high priority neighborhoods. As such modifications to the structure should 
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prioritize pixels that contain a large quantity of high priority neighborhoods. Such a filter 

will be referred henceforth as the Placement Gain Filter (PGF).  

It is now possible to demonstrate the calculation and utilization of the PGF for the 

placement of an object to an existing microstructure. Figure 47 shows an initial structure 

and an object to placed, as well as both of their 2-point autocorrelation plots. Figure 48 

pictorially outlines the necessary operations to obtain a proper PCF for this object and 

initial structure pair, which when chained together can be expressed as: 

 
𝑃𝐺𝐹 = ቆ𝑓̅

   

௛௛ᇲ

−  ℑିଵ ቀℑ(𝐼𝑚𝑎𝑔𝑒௛)∗ ⊙ ℑ൫𝐼𝑚𝑎𝑔𝑒 
௛ᇲ
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ቁ
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൯
 

 
ቁቇ ⊙ 𝑊  

(46) 

where 𝑓̅௛௛ᇲ
 is the target 2-point statistics and 𝑊 is the matrix of neighborhood weights. 

𝑊 enables the generation process to prioritize a specific subset of the statistics, such as 

vectors of a particular length or orientation, based on physics/manufacturing requirements. 

The subtraction of the object 2-point statistics from the target assumes that the object will 

be placed without overlap, however the error introduced is minimal in most overlapping 

cases. Calculation of PGF only contains element wise products, subtractions and Fourier 

transforms for an O(SlogS) complexity. 
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Figure 47 – The example computation of the statistical cost function uses the Initial 
Structure, the Object, and their autocorrelations. A formulation that uses cross-
correlations can trivially be derived. 
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Figure 48 – Graphical depiction of the operations involved in the calculation of the 
PFG. (See Eq. 46). 

 In order to utilize the obtained PGF to calculate the Statistical Cost Function, two 

more convolutions and an element-wise multiplication are necessary, thus the Fourier 

transform remains the operation with the highest complexity. SCF can be found as: 

 𝑆𝐶𝐹 =  ℑିଵ(ℑ( ℑିଵ(ℑ(𝐼𝑚𝑎𝑔𝑒௛)∗ ⊙ ℑ(PGF) 
 )  ⊙ 𝐼𝑚𝑎𝑔𝑒௛ )∗  

⊙  ℑ(𝑂𝑏𝑗𝑒𝑐𝑡௛) ) 
(47) 

This operation is pictorially shown in Figure 49 for clarity. 
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Figure 49 – Graphical depiction of the operations involved in the calculation of the 
SCF. (See Eq. 47). 

5.4 Object Placement 

 The next step in a given generation iteration after cost function calculation is the 

actual placement of the object. There are two key stages to this decision both of which have 

centuries of history in the field of optimization and will not be explored in depth. The first 

one involves the merging of information from the OCF, DCF and SCF (Figure 50). This 

can be achieved in various ways such as addition (soft constraints), multiplication (hard 

constraints) or weighted independent voting. The examples in this thesis are generated 

using multiplicative joining so that: 
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 𝐽𝑜𝑖𝑛𝑡 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑂𝐶𝐹 ⊙ DCF ⊙ SCF  (48) 

Note that the joint cost function can involve multiple OCFs, DCFs and SCFs corresponding 

to different local states. The second stage involves the selection of one or more points the 

actually place the object according to the joint cost function. To the very ill-posed nature 

of most microstructure generation problems, it is usually desirable to allow for random 

variation in the selection process so that the generation doesn’t directly converge to the 

nearest local minima. The examples here treat the normalized joint cost function as a 

probability distribution and draw a sample for placement. 

 

Figure 50 – Joint consideration of all 3 example cost functions computed. In a real 
case, there can be multiple OCFs, DCFs and SCFs. 

5.5 Convergence 

 The final consideration in the microstructure generation framework is the stopping 

criteria. Either 1-point (equivalent to volume fraction or number of objects) or 2-point 

statistics convergence can be used to terminate the generation process. As with placement 

heuristics, error metrics and convergence methods are extremely abundant in optimization 
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literature and will not be explored here. For the examples here the following error metric 

is used when statistical criteria are imposed: 

 

𝑒𝑟𝑟𝑜𝑟 =
ቛ(𝑓 

ഥ
   

௛௛ᇲ

− 𝑓  
௛௛ᇲ

) ⊙ W ቛ

ቛ𝑓 
ഥ

   

௛௛ᇲ

⊙ Wቛ
 (49) 

where 𝑆 is the number of spatial bins in the image and 𝑊  is the neighborhood weight matrix 

from the PGF calculation.  

5.6 Examples 

This section presents some brief examples to demonstrate the utility and performance 

of the microstructure generation framework and the underlying concepts.  

5.6.1 Versatility of Overlap Based Constraints 

First, let us focus our attention to microstructures generated only under physical 

constraints without statistical guidance. The framework is set up in the following manner: 

1) Start with a blank canvas. 

2) While number of objects placed is smaller than number of objects desired: 

a. Randomly rotate the object. 

b. Compute Overlap Cost Functions with desired overlap range. 

c. Compute Distance Cost Functions with desired distance range. 

d. Multiplicatively join the OCFs and DCFs. 

e. Sample a point to place the object assuming the resulting cost function 

represents a probability distribution (with proper normalization). 
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Figure 51 shows 6 outputs under generated the current setup. Figure 51.a is 

generated by using non-overlapping circles. The is the only microstructure out of the 6 that 

can be generated by the brute force method in O(Sଶ), while the others are bounded roughly 

at O(Sଷ) under brute force regime. Figure 51.b shows a microstructure generated using 

non-overlapping circles with a prescribed minimum separation, while Figure 51.c shows 

an example using circles that overlap by 5% to 25% of their area. Figure 51.d,e,f are 

generated using shapes with meta-states like the ones shown in Figure 44. Figure 51.d is 

made by ensuring wider angled overlap between tips of placed rectangles, while Figure 

51.e enforces overlap between the centers of already placed rectangles and tips of 

rectangles to be placed. Figure 51.f is first generated using random non-overlapping circles, 

then modified by placing rectangles with tip regions that overlap the existing circles.  

 

Figure 51 – Various examples of microstructures generated using only overlap and 
distance constraints. 

 The variety in these structures demonstrate the versatility that can be achieved by 

the chaining of overlap and distance constraints, even when only basic geometric shapes 
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are used. With proper object selection or the utilization of object libraries, versatility will 

be even further improved. 

5.6.2 Generation under Statistical Constraints 

The next example demonstrates microstructure generation under 2-point statistical 

guidance. Figure 52.a shows an experimental image obtained by Scanning Electron 

Microscopy (SEM). We will assume now that this image is extremely costly to acquire, 

and we only have this one sample to work with. The task is to generate additional 

microstructure instances that could have come from the same population this sample was 

taken (a very tall order with only one image). We first segment the image in to “flakes” 

(white) and background (black) states (see. Figure 52.b), then we follow the microstructure 

generation procedure in the following way: 

1) Start with a blank canvas. 

2) While the volume fraction of the current image is less than the target image: 

a. Sample an object randomly from the object library 

b. Randomly rotate the object 

c. Compute Overlap Cost Functions with 0% to 50% overlap range, as 

suggested by a visual inspection of the SEM image. 

d. Compute Statistical Cost Functions, set target as the statistics of the 

segmented SEM image. 

e. Multiplicatively join the OCFs and SCFs. 

f. Sample a point to place the object assuming the resulting cost function 

represents a probability distribution (with proper normalization). 
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Figure 52 – An experimental SEM image and its segmentation used as the statistical 
target in the generation process. (Reused with permission from [73]) 

 The information from the original sample is used in two ways: (i) the 2-point 

statistics of the image is used as the target statistics, (ii) an object library is mined from the 

image. A library consisting of 36 objects was manually mined for this example, and is 

shown in Figure 53. Notice that while there are objects of various size and shapes in the 

library, all objects predominantly contain rounded features. 
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Figure 53 – The object library mined from Figure 52 for the statistically guided 
microstructure generation example. 
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Figure 54 shows 3 examples that were generated using the procedure described 

earlier. Notice that while looking significantly different overall, all 3 examples share many 

common features with the original sample including but not limited to: (i) the presence and 

frequency of small island-like formations, (ii) presence of major directional chains 

composed of many overlapping objects, (iii) occasional large gaps between features. While 

the visual judgment of whether is it believable that these 3 examples could have come from 

the same population as the SEM sample is left to the reader, we can investigate further to 

see if such a relationship is statistically believable.  

Figure 55.a shows the error in 2-point statistics compared to the original sample, 

averaged over 100 generated microstructures. It can be seen that the error in statistics has 

some very particular trends. To inspect whether this error comes from the object library or 

overlap conditions, we can generate another 100 microstructures without any statistical 

guidance and obtain their average error in statistics, which is shown in Figure 55.b. 

Comparing the two average error plots, Figure 55.c quantifies the effect of the inclusion of 

the statistical constraints in the generation process. Note that the negative and positive error 

peaks outside of the small range vectors were not affected by the inclusion of the SCF.  
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Figure 54 – 3 examples of microstructures generated using the mined object library 
under statistical guidance.  
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Figure 55 – a) The error in 2-point statistics with respect to the reference, when SCF 
is utilized. b) The error in 2-point statistics with respect to the reference, when SCF 
is not utilized. c) The difference in error between a) and b). 
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To reveal the reason why these peaks exist in their specific locations, we can inspect 

the 2-point statistics of the SEM sample (Figure 56.a). Figure 56.b shows a modified 

version of Figure 56.a where values greater than the average of all 2-point statistics plus 

the standard deviation of the 2-point statistics are colored dark red, and values smaller than 

the average of all 2-point statistics minus the standard deviation of the 2-point statistics are 

colored dark blue. Figure 56.c shows these peaks overlaid on top of the error plot in Figure 

55.a. Notice that they align perfectly. We can thus conclude that these very specific trends 

in error peaks are a result of the placement heuristic of the objects into the structure. The 

error in reaching the target of a 2-point statistic corresponding to a particular vector, is 

proportional to its deviation from the mean of all 2-point statistics. This means that over 

enough placements, the current placement heuristic is governed by the average trend. In 

order to achieve a more homogenous error profile across all vectors, a placement heuristic 

that shows some consistent bias towards high error regions is necessary.  
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Figure 56 – a) The 2-point statistics of the reference. b) The 2-point statistics of the 
reference with the regions above and below a standard deviation away from the mean 
are colored dark red and dark blue respectively. c) The same highlighted regions 
overlaid on the error in 2-point statistics of generation. Notice that the peaks in error 
and the highlighted region align perfectly. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Efficient Tools to Map Real Microstructures to Low Dimensional Descriptors  

Extensions to the spatial statistics computational framework to accommodate 

datasets with irregularities and deficiencies such as non-rectangular boundaries, missing 

data, continuous local states and susceptibility to observer rotations have been described. 

Strategies to scale the analysis methods to very large datasets were presented. These 

attributes are very common in datasets obtained via experiments and imaging equipment.  

The improvements in this work should enable the rapid and seamless analysis of real 

datasets in a plethora of material systems across a wide range of scientific fields. The issues 

addressed here were the most frequently encountered in real datasets that the author have 

been exposed to. Future work will be required as additional complications from real data 

sources arise, such as a unique consideration for a particular materials system or unique 

representation issues for a new experimental data acquisition method. 

6.2 Universal Microstructure Generation Framework 

A framework enabling the rapid and scalable generation of microstructures under 

geometrical and statistical constraints have been assembled with examples to showcase its 

versatility. This framework requires heavy future work, perhaps in the form of a self-

contained dissertation, before it can be utilized by the common materials researcher. There 

are numerous hyper-parameters and optimization alternatives to be explored in-depth 

through case studies on specific material systems. Upon completion, the framework would 

shave countless hours off from the development process of new materials. 
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