
A Robust Data Obfuscation Approach for Privacy

Preserving Collaborative Filtering

A Thesis
Presented to

The Academic Faculty

by

Rupa Parameswaran

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

Aug, 2006

A Robust Data Obfuscation Approach for Privacy

Preserving Collaborative Filtering

Approved by:

Professor Douglas Blough, Advisor
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Professor Linda Wills
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Professor David Schimmel
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Professor Faramarz Fekri
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Professor Sham Navathe
College of Computing
Georgia Institute of Technology

Date Approved: May 09, 2006

Dedicated to my loving parents.

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Prof. Douglas Blough for his constant encourage-

ment and guidance and especially for inspiring me to pursue a PhD. He provided me with

the opportunity to work on several interesting projects during the course of my study. I

would like to thank him for involving me in the Data Obfuscation project that led to this

dissertation. He has always been there to listen and give advice.

I would like to thank Prof. Linda Wills for her interest in my research. In addition to

being a committee member in my proposal and thesis defense, she also took a keen interest

in my progress. Prof. Sham Navathe deserves a special mention for his involvement in my

thesis. I would like to thank him for his time and insightful advice. I would like to thank

the rest of the committee members Prof. David Schimmel and Prof. Faramarz Fekri for

their comments, suggestions and willingness to participate in the dissertation defense.

The financial support offered by the department during the last two semesters is highly

appreciated. I consider myself lucky to be allowed to instruct a course. I would like to

sincerely thank Prof. Paul Steffes for considering me favorably for the position. I would

like to thank Marilou Mycko for being there to make sure that I had all my paper-work in

order and also for her advice and guidance throughout my course of study. Another person

that deserves a special thanks is Suzzette Willingham for her eagerness to help and foe her

kind advice.

I would like to thank all my lab-mates over the years. Rahul Motwani, Weilai Yang,

and Chris Wood helped me through my first two years at Georgia Tech. I would like to

thank Saraswati Bharatipudi for her friendship and assistance through good and difficult

times both professionally and personally. I would also like to thank all my friends Sangeeta

Bhattacharya, Pradeep Kamath, Harshit Shah, Bala Ganesh, Priya Gopalakrishnan, Vijay

Bharadwaj, Vaidya Sankaran, and Jini Khetan for their friendhip and support.

I would like to thank my family for their love and encouragement. Most importantly, I

iv

would like to thank my parents P. V. Parameswaran and T. K. Rukmani for encouraging

me to pursue my interests. They have always believed in me and supported me in all my

endeavors - thank you.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xii

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Privacy and Collaborative Filtering . 1

1.2 Contributions . 5

II PROBLEM STATEMENT . 7

2.1 Data Privacy Attack Model . 8

2.1.1 Existing Attack Model . 9

2.1.2 Proposed Attack Model . 10

2.2 System Model . 12

III BACKGROUND AND RELATED WORK 14

3.1 Collaborative Filtering . 14

3.2 Data Obfuscation Techniques . 16

IV DATA OBFUSCATION PROPERTIES 20

4.1 Data Usability . 20

4.2 Data Privacy . 22

4.3 Reversibility - A Standard for Classification 23

4.3.1 Classification of Transformations 25

V NEAREST NEIGHBOR DATA SUBSTITUTION 29

5.1 Existing Data Obfuscation Techniques . 29

5.1.1 Data Randomization . 29

5.1.2 Data Anonymization . 30

5.1.3 Data Swapping . 30

5.1.4 Geometric Transformations . 30

vi

5.2 Nearest Neighbor Data Substitution . 32

5.2.1 Algorithm . 34

5.2.2 Limitation of NeNDS . 41

5.2.3 Time Complexity of NeNDS . 43

5.3 GT-NeNDS: A Hybrid Data Substitution Approach 44

5.4 NeNDS: Special Cases . 47

5.4.1 Duplicate data items . 48

5.4.2 Identical transformations . 50

VI EVALUATING PRIVACY AND USABILITY OF DO TECHNIQUES 55

6.1 Privacy Analysis . 55

6.1.1 Analysis of Random Data Perturbation 55

6.1.2 Analysis of Geometric Transformations 56

6.1.3 Analysis of NeNDS and Data Swapping 59

6.2 Experiment Results . 62

6.2.1 Data Clustering Techniques . 62

6.2.2 Experimental Set-up . 64

6.2.3 Qualitative Analysis . 67

6.2.4 Quantitative Analysis . 77

6.2.5 Neighborhood Size and Time Complexity 88

6.2.6 Clustering Randomized Data . 90

6.2.7 Cluster Preservation Performance of DO Techniques 92

6.3 Comparison of Data Obfuscation Techniques 94

VII PRIVACY PRESERVING COLLABORATIVE FILTERING 97

7.1 The Privacy Framework . 97

7.1.1 Data Selection . 98

7.2 NeNDS-based Collaborative Filtering . 100

VIIIPERFORMANCE ANALYSIS: NENDS-BASED CF 105

8.1 Collaborative Filtering Algorithms . 105

8.1.1 Pearson Correlation . 105

8.1.2 Vector Similarity . 106

vii

8.1.3 Personality Diagnosis . 106

8.2 Experimental Evaluation . 107

8.2.1 Data Sets . 108

8.2.2 Experiment Results . 109

8.3 Effect of Neighborhood Size on NeNDS-based Filtering 114

IX CONCLUSION AND FUTURE WORK 117

REFERENCES . 120

INDEX . 125

viii

LIST OF TABLES

1 Original database. 38

2 Age transformed database. 40

3 Age and Salary transformed database. 40

4 Original database with duplicates. 41

5 Obfuscated database with duplicates. 43

6 Original database for GT-NeNDS. 46

7 GT-NeNDS: NeNDS Obfuscated database. 46

8 GT-NeNDS: Scaled NeNDS transformed database. 47

9 GT-NeNDS: Rotated NeNDS transformed database. 47

10 Original database with duplicates. 48

11 Obfuscated database with duplicates. 49

12 Scaled-NeNDS transformed database with duplicates. 49

13 Special case: Original database. 50

14 Special case: Obfuscated database. 51

15 Special case: Re-obfuscated database. 51

16 Special case: Original database with duplicates. 52

17 Special case: Obfuscated database with duplicates. 52

18 Special case: Re-obfuscated database with duplicates. 53

19 Neighborhood sizes. 79

20 Clustering versus neighborhood size using K-Means, K=5, N = 3000. 80

21 Clustering versus neighborhood size using K-Means, K=10, N = 3000. . . . 80

22 Clustering versus neighborhood size using K-Means, K=15, N = 3000. . . . 81

23 Clustering versus neighborhood size using Hierarchical Clustering,K = 5,
N = 3000. 82

24 Clustering versus Neighborhood size using Hierarchical Clustering, K = 10,
N = 3000. 82

25 Clustering versus neighborhood size using Hierarchical Clustering, K = 15,
N = 3000. 83

26 Clustering versus neighborhood size using K-Means, K = 10, N = 5, 000. . 84

27 Clustering versus neighborhood size using K-Means, K = 15, N = 5, 000. . 84

ix

28 Clustering versus neighborhood size using K-Means, K = 20, N = 5, 000. . 84

29 Clustering versus neighborhood size using Hierarchical Clustering, K = 10,
N = 5, 000. 85

30 Clustering versus neighborhood size using Hierarchical Clustering, K = 15,
N = 5, 000. 85

31 Clustering versus neighborhood size using Hierarchical Clustering, K = 15,
N = 5, 000. 86

32 Clustering versus neighborhood size using K-Means, K = 20, N = 7, 200. . 86

33 Clustering versus neighborhood size using K-Means, K = 30, N = 7, 200. . 87

34 Clustering versus neighborhood size using K-Means, K = 40, N = 7, 200. . 87

35 Clustering versus neighborhood size using Hierarchical Clustering, K = 20,
N = 7, 200. 88

36 Clustering versus neighborhood size using Hierarchical Clustering, K = 30,
N = 7, 200. 88

37 Clustering versus neighborhood size using Hierarchical Clustering, K = 40,
N = 7, 200. 89

38 MCE % for randomized data using K-means clustering. 92

39 MCE % for randomized data using Hierarchical Clustering. 93

40 Comparison of misclassification error %. 94

41 Comparison of DO techniques. 95

42 User-info database. 101

43 Transformed User-info database. 101

44 Ratings-info database. 102

45 NeNDS transformed Ratings-info database. 102

46 Scaled-NeNDS transformed Ratings-info database. 102

47 Prediction results for obfuscated data. 103

48 Prediction results for unobfuscated data. 103

49 Training and test set partitions. 109

50 Prediction accuracy for the All-but-one test. 110

51 Prediction accuracy for the Given-2 test. 111

52 Prediction accuracy for the Given-10 test. 111

53 Performance based on the rank scoring test. 112

54 Performance based on the rank scoring test. 112

x

55 Prediction accuracy for the All-but-one test. 113

56 Prediction accuracy for the Given-2 test. 113

57 Prediction accuracy for the Given-10 test. 114

58 Effect of number of neighborhoods: All-but-one test. 115

59 Effect of number of neighborhoods: Given-2 test. 116

60 Effect of number of neighborhoods: Given-10 test. 116

xi

LIST OF FIGURES

1 Existing attack model for analysis. 10

2 Proposed attack Model for analysis. 11

3 Classification of the reversibility property. 23

4 Permutation tree for the Age data set. 37

5 Permutation tree for the Salary data set. 39

6 Illustration of permutation tree with duplicate entries. 42

7 Comparison of DO techniques for Large Database (N = 10, 000, Cin = 2,K =
2). 68

8 Comparison of DO techniques for large database for (N = 10, 000, Cin =
2,K = 5). 70

9 Comparison of DO techniques, for (D1,D2), (N = 2, 125, Cin = 5,K = 5). . 71

10 Comparison of DO techniques, for (D2,D3), (N = 2, 125, Cin = 5,K = 5). . 72

11 Comparison of DO techniques, for (D1,D2), N = 2, 125, Cin = 5,K = 10. . . 73

12 Comparison of DO techniques, for (D2,D3), N = 2, 125, Cin = 5,K = 10. . . 74

13 Performance of GT-NeNDS using the Diabetes database with N = 150. . . 75

14 Performance of GT-NeNDS using the Thyroid database with N = 7,200. . . 76

15 Effect of misclassification error on neighborhood size. 90

16 Effect of computation time on neighborhood size. 91

17 Privacy preserving framework for CF. 98

xii

SUMMARY

Privacy is defined as the freedom from unauthorized intrusion. The availability of

personal information through online databases, such as government records, medical records,

and voters lists, pose a threat to personal privacy. The concern over individual privacy has

led to the development of legal codes for safeguarding privacy in several countries [56].

However, the ignorance of individuals as well as loopholes in the systems, have led to

information breaches even in the presence of such rules and regulations. Protection against

data privacy requires modification of the data itself. The term data obfuscation is used to

refer to the class of algorithms that modify the values of the data items without distorting

the usefulness of the data. The main goal of this thesis is the development of a data

obfuscation technique that provides robust privacy protection with minimal loss in usability

of the data.

Although medical and financial services are two of the major areas where information

privacy is a concern, privacy breaches are not restricted to these domains. One of the areas

where the concern over data privacy is of growing interest is collaborative filtering. Col-

laborative filtering systems are being widely used in E-commerce applications to provide

recommendations to users regarding products that might be of interest to them. The pre-

diction accuracy of these systems is dependent on the size and accuracy of the data provided

by users. However, the lack of sufficient guidelines governing the use and distribution of user

data raises concerns over individual privacy. Users often provide the minimal information

that is required for accessing these E-commerce services. The lack of rules governing the use

and distribution of data disallows sharing of data among different communities for collabo-

rative filtering. The goals of this thesis are (a) the definition of a standard for classifying DO

techniques, (b) the development of a robust cluster preserving data obfuscation algorithm,

and (c) the design and implementation of a privacy-preserving shared collaborative filtering

framework using the data obfuscation algorithm.

xiii

CHAPTER I

INTRODUCTION

1.1 Privacy and Collaborative Filtering

People are faced with choices every day, some more important than others. Most of the

time, we seek help from various sources in order to make the right decision. There are sev-

eral resources from which information can be obtained, such as review boards, peers with

similar interests, professional advisers, and information from relevant news articles. Scan-

ning through all the resources can be extremely cumbersome. In some cases, the breadth

of information provided by the resources can make the decision process more difficult by

increasing the number of available choices. The growth of Internet age has increased the

availability of information, further increasing the number of choices.

Collaborative Filtering (CF) systems automate the process of filtering out relevant in-

formation that might be of interests to users. These systems identify common patterns

or preferences of sets of users and use these preferences to make recommendations regard-

ing articles or items of potential interest to them [60]. Early CF systems required users

to seek information from a known set of users. The development of information retrieval

techniques led to the implementation of automated CF systems. These systems provide the

user with recommendation without the user having to seek information [27]. Other develop-

ments in CF systems include the improvement from a completely memory-based approach

using nearest-neighbor techniques to a model-based approach using methods like Bayesian

clustering. Although several CF systems have been implemented, the improvements in the

accuracy of predictions have only been marginal. In order to provide personalized informa-

tion to a user, the CF system requires sufficient information regarding his or her preferences,

behavioral characteristics, as well as demographic information of the individual. The ac-

curacy of the recommendations is dependent largely on how much of this information is

known to the CF system. However, this information can prove to be extremely dangerous

1

if it falls in the wrong hands. The concerns over personal privacy impose a limitation on

the amount of information that can be provided to a CF system. Individuals refrain from

providing information because of fears of personal safety. The lack of laws governing the use

and distribution of this data is one of the prime reasons for these concerns. The accuracy

of CF systems is limited by the sparseness of available data. The results of a survey on

personal privacy [17] indicates that more than 81% of the people in the survey were willing

to provide information as long as their privacy are guaranteed. The implementation of a

privacy preserving framework for protecting user information is a step in this direction.

The need for privacy preserving techniques is not restricted to Collaborative filtering

systems. All databases that store personal/user information are susceptible to privacy

breaches and need to be protected. Databases that store sensitive information such as health

records, financial records, government records, and employee information are particularly

vulnerable to privacy breaches. Some examples of sensitive databases are given below.

• Health records

When dealing with a patient’s medical records, data privacy is of the utmost con-

cern. This requirement fundamentally conflicts with the basic repeatability needs of

scientific methods, which require that research results be independently validated and

extended. Even in the most controlled circumstances, where the records are stripped

of sensitive information such as Social Security numbers and other identifiers, dissemi-

nating patient medical records greatly increases the odds of data misuse. In particular,

accurate knowledge of a few of the non-sensitive fields in a database leads to the iden-

tification of individual records [62]. Judicious medical record obfuscation can preserve

data usability for medical research while preserving data anonymity and thus thwart-

ing such attacks. It can work because many medical studies use large collections of

confidential patient records, cross-correlating the arithmetic mean of different data

items such as blood pressure, cholesterol, time exercising, and the amount of fat in

a person’s diet. In other cases, small statistical perturbations of each data item are

within experimental tolerances.

2

• Financial transactions

Data protection is also important for databases that contain information regarding

billing transactions. The need for privacy in these databases is explained using an

example of transponder-based toll collection for toll roads [67]. This business operates

using toll booth sensors to track users’ individual transponders and bill them accord-

ingly. The privacy of customers using the toll is essential to protect against spying

and tracking drivers’ habits; records of purchases made by customers are necessary

in case of a questionable credit card transaction. Hiding or disguising the sensitive

information contained in the billing statements before selling it to a credit card issuer

would prevent data from being cross-referenced to driving habits.

• Military information

Military weaponry is another highly sensitive area that could benefit by data pro-

tection techniques. Obfuscating statistical information about military-grade weapons

capability and technical parameters might make it possible for third parties that do

not hold top security clearance, such as academics and consultants, to demonstrate

a weapon’s effectiveness and feasibility without releasing full accuracy and thus its

full military value. This technique would help prevent an adversary from using the

distributed information to develop the weapons or countermeasures against them.

These databases are analyzed by applying several different data mining techniques to

draw useful inferences from the data. Some of these databases are also required to be

available in the public domain, thus increasing their vulnerability to privacy breaches. The

sensitive data in these databases require transformation into a form where the individual

values are protected without distorting their information content.

Over the past decade, data protection techniques have been proposed for privacy pre-

serving mining of data. The term data obfuscation (DO) is used to refer to data protection

techniques that transform the original data into a less sensitive form. DO techniques de-

sensitize the original data by transformations such as the addition of random noise [5],

partial suppression [62], swapping [51], and linear transformation [44][45]. In all of these

3

approaches, the resulting data sets are different from the original data sets and cannot be

mapped to their original form. DO techniques perform the transformation in such a way

that the aggregates are still preserved in the dataset. Most of the techniques proposed until

now cater to specific domains and perform well for a limited set of applications. In the

absence of a standard for classifying DO techniques, comparison and performance analysis

of the different techniques is not straight-forward. The domain of interest in this research

is data mining. Many data mining applications involve learning through cluster analysis.

The term Usability is used to refer to the usefulness of the transformed data. Usability

is measured in this dissertation in terms of the preservation of the inherent clustering of

the original data. The need for an obfuscation technique that preserves privacy as well as

usability of the transformed data has motivated the design, development, and performance

analysis of a robust cluster retaining DO technique in this research.

This thesis is organized as follows: First, some of the existing data obfuscation tech-

niques for data mining applications are discussed. Next, a new data obfuscation approach

for privacy preservation of data mining applications, called Nearest Neighbor Data Sub-

stitution (NeNDS), is proposed and described in detail. Third, the properties of data

obfuscation techniques are examined and measures for comparing data obfuscation tech-

niques are defined. The reversibility metric for measuring privacy and usability metric for

measuring the information content preservation are some of the measures proposed in this

dissertation. This is followed by an experimental evaluation of NeNDS and a discussion of

the strengths and weaknesses of the different data obfuscation techniques. The proposed

data obfuscation technique is then applied to a collaborative filtering framework. The con-

cept of collaborative filtering and the types of collaborative filtering systems are discussed.

This dissertation extends the CF system to a shared system that can be used by multiple

sources. A framework for preserving privacy in CF system is explained and demonstrated

with examples. This is followed by an experimental evaluation of the privacy preserving

framework by comparing the accuracy of the results using original data with the results

using obfuscated data. The dissertation is concluded with a summary of the thesis and

proposal of future work in this area.

4

1.2 Contributions

The goal of this thesis is to develop a privacy preserving framework for shared collaborative

filtering. The underlying requirement for privacy is a good data protection technique also

known as data obfuscation technique. The steps involved in the development of a privacy

preserving framework are (1) defining the meaning of privacy in the context of data mining,

(2) assessing the utility requirements for data mining applications, (3) developing a data

obfuscation technique for privacy preservation of sensitive data, (4) analyzing the existing

collaborative filtering framework, and (5) implementing a model for privacy preserving

collaborative filtering.

The main contributions of this thesis are listed as follows:

• A strong attack model for privacy breach: The existing attack models did not consider

threats resulting from partial knowledge about the data or the obfuscation process that

might be available to the attacker. There are several ways in which the attacker can

obtain this information, some of which are listed in Chapter 2.1. The first contribution

of this thesis is a strong attack model that covers all scenarios that could lead to a

compromise of some or all of the records in the database.

• A robust data obfuscation technique: The goal of data mining applications is to mine

database to provide as much accurate information as possible to the end user. This

goal seemingly conflicts with data privacy, which attempts to conceal as much infor-

mation as possible. The contradicting requirements of data usability and data privacy

are balanced by understanding the meaning of usability with respect to the applica-

tions that use the database. Data mining applications are the domain of interest in

this thesis. The main requirement for data mining applications is the preservation of

dependencies among data items. The Nearest Neighbor Data Substitution (NeNDS)

technique proposed and implemented as part of this research is one of the main con-

tributions in this thesis. NeNDS protects privacy by permuting similar sets of data

items. Usability is provided by NeNDS by grouping similar items together before

5

permutation. The claim of the usability of NeNDS is backed by experimental analy-

sis of cluster preservation for different databases obfuscated by NeNDS. A hybrid of

the NeNDS-based obfuscation technique, called GT-NeNDS, is also implemented and

evaluated as part of this thesis.

• Privacy preserving properties for data obfuscation: An important part of the research

in data privacy involves the definition of “good” privacy. In this context, identifying

the characteristics of a data obfuscation technique that makes it a strong privacy

preserving mechanism is very important. Data obfuscation properties that make an

obfuscation technique robust form an important part of this research.

• Privacy preserving collaborative filtering (CF): The final goal of the thesis is to de-

velop a framework for privacy preserving data mining. The hybrid version of NeNDS,

GT-NeNDS, formed the basis of the privacy preserving framework. A NeNDS-based

privacy preserving framework also resulted in the proposal of a model for CF in which

multiple E-commerce vendors can share their databases with a centralized server. A

NeNDS based privacy preserving framework for shared collaborative filtering is the

final contribution of this dissertation.

6

CHAPTER II

PROBLEM STATEMENT

The motivation for this thesis is the growing concern over the threat to personal privacy

resulting from sensitive databases. The main challenge in overcoming privacy threats is to

develop data protection techniques that protect the sensitive data contained in the databases

without losing the useful information provided by them. This involves understanding the

meaning of privacy and modeling attack scenarios that violate privacy. Privacy preservation

requires data to be modified or obfuscated. The requirement that the obfuscated data

should still be useful places a bound on the extent to which the data can be modified.

It is impossible to achieve data protection without some loss in usability [10]. A good

data obfuscation (DO) technique is one that maximizes the usability of the resulting data

while protecting privacy of the records in the database. The properties of DO techniques

that enable privacy protection need to be identified. A good obfuscation technique is one

that exhibits all the properties required for privacy protection. The proposed technique is

then validated by evaluating its usability and privacy preservation property. Finally, the

applicability of the technique in practical applications needs to be validated.

The problem statement for this dissertation is listed as follows.

• Definition of Privacy: Privacy is defined as the freedom from unauthorized intrusion.

A privacy preserving transformation is one which hides the identity of individual

records and protects the transformed data from being mapped to their original values.

Although several data obfuscation techniques have been developed in the past, no

standard has yet been developed to compare the strengths and weaknesses of the

techniques. The identification of properties of good DO techniques is the first challenge

in this thesis.

• Definition of Usability: The usefulness of the data depends on the applications that use

7

the obfuscated data. The domain of this research is data mining applications. These

applications use different types of clustering techniques for finding useful patterns in

the data. The relationship among the data items in the database are analyzed to draw

inferences on the characteristics exhibited by different groups of data, the dependencies

of the different fields in the database, the anomalies in the database, and so on. The

usability requirement for such applications is that the resulting obfuscated database

should preserve the dependencies and inter-relationships of the data items.

• The privacy preservation technique: The main goal of this thesis is to propose and

implement a robust data obfuscation technique that enables data mining in a privacy

preserving framework.

• A privacy preserving collaborative filtering framework: The applicability of the data

obfuscation technique is evaluated by applying it to a collaborative filtering frame-

work.

2.1 Data Privacy Attack Model

The first part to developing a data obfuscation technique is to build an attack model to

assess the vulnerable points that the attacker can use to compromise the database. There

are ways of accessing a database.

1. The user makes queries to a centralized server. In this case, the user does not have

access to the entire database, and is provided only with the information requested.

The centralized server can store the data in the obfuscated form itself or make queries

to the original database and obfuscate the results just before sending it to the user.

The first approach is called input-based obfuscation and the latter approach is called

response-based obfuscation. The input-based obfuscation approach results in perma-

nently altering the database. This might result in the loss of usable information. The

response-based approach returns accurate results, which can be obfuscated depending

on the type of user, the kind of query made to the server, and the number of pertinent

queries made previously. Although the response-based obfuscation appears to provide

8

better usability, it is prone to targeted attacks by users. Even though the results are

obfuscated, the database is susceptible to attacks where the user adaptively queries

the server based on the previous results to compromise the database [10]. The input-

based obfuscation approach places a bound on the accuracy of the information that

can be provided to the user and prevents the user from obtaining the information that

has already been obfuscated.

2. The user is provided with the entire database. In this case, the database is obfuscated

to protect all the sensitive data. This has to be done in such a way that preserves the

usefulness of the database.

The attack models presented in this chapter assume that the database that the attacker

queries are stored in the obfuscated form. This means that the result of the database remains

the same every time for the same query posed by the attacker. The models presented here

are applicable for both data access scenarios. The discussion also assumes a query-based

centralized database. However, the models are also applicable when the attacker has access

to the entire obfuscated database.

2.1.1 Existing Attack Model

The attack model for DO is different from the attack model for encryption-based security

techniques, but no common standard has been implemented as yet for the analysis of DO

techniques. Each of the proposed DO techniques uses a different form of comparison of

the effectiveness of the approach. Existing work on the privacy analysis of DO techniques

has primarily considered a model where the attacker correlates obfuscated responses with

data from other publicly-accessible databases in order to reveal the sensitive information of

interest. The attack model is shown in Figure 1.

The attacker is assumed to have access to publicly available databases, some of which

are unobfuscated. In this attack model, the attacker makes queries to the target database

and compares the results of the query with the records in the databases that he has access

to. The privacy preserving techniques proposed so far assume this type of attack model. In

this model, a privacy breach results when an attacker is able to obtain previously unknown

9

information about one or more records from the obfuscated database by comparing and

correlating the database contents with other databases that he is able to access. Although

this attack model is a likely scenario for compromise, it does not model all the modes of

attack that lead to a breach of privacy.

Figure 1: Existing attack model for analysis.

2.1.2 Proposed Attack Model

The model proposed in this dissertation is shown in Figure 2. The previous model assumes

that the attacker has no a priori knowledge of the process used for data obfuscation. It also

assumes that the attacker does not know any of the entries in the target database. These

are impractical assumptions. There are several reasons for assuming that the attacker may

have access to some of the records in the database. Some of the reasons are listed below:

10

• The attacker is a part of the database. In this case, he has information regarding at

least one record in the database.

• The attacker has a friends or family members who are a part of the database. In this

case, the attacker has knowledge of a finite number of records in the database.

• The attacker was involved in collecting a part of the information in the database. In

this case, the attacker has complete knowledge of that part of the database.

• The attacker is the administrator of the database. In this case, the attacker has

complete knowledge of the obfuscation process used for data obfuscation.

Figure 2: Proposed attack Model for analysis.

These are only a few ways in which an attacker can gain access to some information

about the database. Hence, the attack model should include the partial knowledge available

11

to the attacker. The attack model in Figure 2 includes side channels from the original target

database and the data obfuscation process to model the partial information gained by the

attacker. The attacker can then use this partial information to attempt to reverse engineer

the entire data set.

One useful byproduct of this model is a measure of the robustness of a data obfuscation

technique, namely the percentage of the unobfuscated data set that an attacker must know

in order to be able to learn the entire set. This new measure is used to evaluate the

robustness of existing DO techniques. It has been demonstrated in this thesis that many

well-known data obfuscation techniques are highly vulnerable to reverse engineering through

unintentional release of only a small percentage of the unobfuscated data set. In this

attack model, the privacy provided by a DO technique can be measured by the amount of

information required for reverse engineering the obfuscated data.

2.2 System Model

Two system models are used in this dissertation, a generic data mining system model, and

a collaborative filtering system model. The generic system model evaluates the privacy and

usability of databases obfuscated using data obfuscation techniques for clustering-based

data mining. Privacy is defined for this model as the protection of individual records in the

obfuscated database from being identified or being mapped back to the original records.

The difficulty of reverse-engineering the original record(s) from the obfuscated database

is a measure of the privacy provided by the data obfuscation technique. The usability

of the obfuscated database in the generic system model is measured by evaluating the

distortions introduced in the clusters. Clustering algorithms are applied to the original and

obfuscated databases, and the distortions in the clusters formed by the obfuscated databases

are measured. The extent of the distortion in clustering is a measure of the usability in the

generic system model.

The collaborative filtering system model evaluates the applicability of the obfuscation

technique in a practical application, which in this case is collaborative filtering (CF). A CF

system uses data mining techniques to identify the purchase patterns of users by using the

12

demographic information of the users, their purchase histories, and the ratings/feedback

provided by the users on the purchased items. The CF system uses the purchase patterns

to predict the items that users might be interested in purchasing and recommends the pre-

dicted items to the users. The input to this system is a set of three databases, the first

database containing demographic information regarding the user, the second database con-

taining the items in the store’s inventory, and the third database containing the ratings

provided by users on the purchased items. The output of this model is the database con-

taining the recommended ratings for items that have not been purchased by users. The

attack model only considers the user information and the ratings information databases as

sensitive databases. Hence, only these databases are obfuscated before applying collabo-

rative filtering techniques to mine the databases. In this model, privacy is defined as the

protection of individual records of the user database as well as the database containing

the ratings provided by users. Usability is measured as the decrease in accuracy of the

predictions as a result of data obfuscation.

The generic system model evaluates the cluster-preserving property of DO techniques

by applying clustering algorithms and measuring the distortions in the resulting clusters.

The collaborative filtering model uses clustering, similarity, probabilistic techniques on the

database to make recommendations. This model evaluates the extent to which the results

are distorted when the results of data mining are used to make predictions.

13

CHAPTER III

BACKGROUND AND RELATED WORK

This chapter is divided into two sections. The development of collaborative filtering tech-

niques and research related to privacy in collaborative filtering is described in Section 3.1.

The next section discusses privacy preservation of databases in general. The different data

protection techniques and their limitations are discussed in Section 3.2. In this thesis a

new data obfuscation technique for data mining applications is proposed, developed and

implemented in a collaborative filtering system.

3.1 Collaborative Filtering

The term ’Collaborative Filtering’ (CF) was first introduced in the Tapestry system [21],

for filtering electronic documents through e-mail and Usenet postings. In this system, a

user explicitly requests recommendations based on reviews of a specific set of known indi-

viduals. The drawback of this system is that it requires a close-knit group of people who are

aware of each other’s interests. The lack of scalability of this system for larger networks led

to the development of more Automated Collaborative Filtering systems (ACF) [54]. The

GroupLens CF system [52] pioneered the research on ACF by using pseudonymous users

to provide ratings for movies and Usenet news articles. Some of the other recommendation

systems such as the e-mail based music recommendation system [66], Ringo, and the web-

based movie recommendation [30], Video Recommender, also developed ACF algorithms for

recommendations. All three systems use neighborhood-based prediction algorithms such as

Pearson’s correlation and vector similarity. These algorithms are referred to as memory-

based algorithms because they use the raw data in the database to make recommendations.

Model-based approaches such as Bayesian network models and cluster-based models were

proposed in [65][16]. These algorithms first develop cluster-based models or Bayesian net-

work models on the database. The models are then used for making predictions for users

14

on items that have not yet been rated by them. This makes model-based CF algorithms

faster and less memory-intensive. Hybrid memory-model based approaches have also been

developed to improve accuracy of predictions [49].

As with any system that stores personal information of individuals, CF systems are

vulnerable to privacy invasion. Although meta-store fronts such as Amazon, C-net, Yahoo

assert privacy policies that protect user data, their policies are intentionally vague in certain

areas. For instance, Amazon’s policy states that in the event that the company is bought

over, the personal assets are subject to be transferred to the parent company. Such loop

holes in the policies present privacy concerns resulting in users refraining from divulging

any personally identifiable information. This results in incomplete or sparse databases.

The absence of complete information or dense databases affects the accuracy of the rec-

ommendation systems. Privacy preservation by factor analysis [12][14] proposes a secure

computation technique using homomorphic encryptions. Here users’ ratings are stored as

encrypted vectors and aggregates of the data are provided in the public domain. This

approach requires the users to seek out recommendations explicitly. The random pertur-

bation approach proposed in [50] uses a noise vector to mask the original data. Although

the technique permits heterogeneous diffusion based recommendations, the accuracy of the

predictions is dependent on the amount of noise added. The drawbacks of random pertur-

bations are discussed in [46]. In this paper, we propose a frame-work for privacy preserving

collaborative filtering by a hybrid NeNDS based data obfuscation approach.

Secure recommendations using trust-based CF techniques have been proposed in [37][38]

to protect against targeted attacks to push a chosen set of items. Such attacks, known as

shilling attacks [69][35] are achieved by introducing false profiles in the database that rate

a chosen set of items in such a way that their overall rating changes significantly. Trust-

based systems prevent such attacks by introducing a web of trusted users whose ratings are

preferred over the un-trusted users. While trust-based systems protect the truthfulness of

the ratings and avoid attacks on the CF system, the privacy framework attempts to protect

the personally identifiable fields of individuals participating in the ratings. A secure CF

system should protect the quality of the recommendations as well as the privacy of the

15

participants that provide the ratings.

3.2 Data Obfuscation Techniques

The abundance of information available online has resulted in the loss of individual pri-

vacy [18]. Several methods have been proposed and implemented for privacy preservation

of sensitive data sets [32]. The term data obfuscation [7] is used as a generalization of all ap-

proaches that involve distorting the data for privacy preservation and other purposes. One

of the more common techniques is cryptography, where sensitive data is encrypted with a

key and is accessible only to an authenticated user. In several applications, it is necessary to

provide different levels of precision of data, based on the type of user requesting access. The

encryption of data does not provide this capability. The usability of the data is therefore

restricted only to a narrow set of users. Secure multi-party encryption techniques propose

to perform computations on data in the encrypted form [55].

Techniques have been developed to perform order-preserving encryption on data [4].

These techniques, however, are limited only to simple addition and multiplication operations

and to date have not been applied to more complex statistical computations. For trend

analysis and statistical and inference-based computations from data sets, encryption-based

security schemes add complexity without much benefit in terms of privacy.

Privacy laws such as the HIPAA laws for protecting medical records, and the Gramm

Bleach and Bliley act for financial record privacy use access control based methods for

data protection. Access control policies for databases, such as Hierarchical access control

policies [9] and role-based access control policies [59] have been proposed. These methods

protect the data from unauthorized users. Policy-based protection does not preclude mis-

use of the data by authorized users either intentionally or unintentionally. Access control

policies arenecessary but not sufficient to provide robust privacy protection. Data obfus-

cation techniques attempt to protect the data by applying transformations that retain the

usefulness of the data but protect the sensitive information. In this case, authorized users

are not required to be provided with the original data, thereby providing better privacy

protection.

16

Privacy preservation by data randomization is based on adding a noise vector to the

original data, thereby desensitizing the precise information content [5]. Data randomization

mainly operates on a subset of database tables, fields, and records and is designed to

maintain the statistical properties of a database. Unless the noise distribution follows the

distribution of the original data, information regarding dependencies among the attributes

would be lost.

Data anonymization [34] attempts to classify data into fixed or variable intervals. The

usefulness of the obfuscated data and the privacy factor are dependent on the choice of the

interval. A large interval makes the data less useful, while an interval that is too small does

not provide sufficient privacy protection of the data. In [62], the author proposes a general-

ization and suppression approach to obtaining the required anonymity level: generalization

replaces a value with a less specific value, while suppression does not release a value at all.

This guarantees that each data item will relate to at least k other entries, even if

the records are directly linked to external information. K-anonymization has been proven

to be an NP-hard problem [39]. Various algorithms, such as the k-optimal anonymiza-

tion algorithm [62], the simulated annealing technique [68], and the condensation-based k-

anonymization [2], have been proposed to optimize and solve the generalization/suppression

problem, but even the most optimum algorithm that uses an approximation technique now

has a polynomial complexity. The other drawback of the anonymization technique is the

loss of information. The generalization approach categorizes quantitative information into

intervals, thus reducing the granularity of the information. Furthermore, data entries that

are not possible to generalize are suppressed. This leads to a complete loss of information

regarding certain fields.

The term usability pertains to the usefulness of the data that has been obfuscated. The

most important characteristics that must be preserved for data mining applications are

the multivariate statistical distributions as well as the clustering property of the data. An

optimum data obfuscation technique is one that preserves both these properties while still

providing strong privacy preservation. One of the techniques that proposes to preserve

usability while preserving privacy is Geometric Transformation [44] [45]. In this approach,

17

geometric transformations such as rotation, scaling, and translation are used to obfuscate

the data. This type of obfuscation is proposed for preserving the inherent clustering infor-

mation of data. As geometric transformations are isometric, the transformed data retains

its isometric properties. While this technique does involve “modifying” data, the inter-

relation of the data elements within the data sets and across the fields is maintained even

after the obfuscation. This type of approach is useful in applications where the data needs

to be disguised completely, such as the third-party mining of sensitive data. Geometric

transformation-based obfuscation is weak in terms of privacy preservation and is unsuitable

for use in sensitive databases. Random data perturbation, as well as anonymization, result

in the “modification” of data. This results in slight differences of the characteristics be-

tween the original and obfuscated distributions. Such differences are likely to be very small

for large data sets, but are observed to be significant for smaller data sets [42]. Owners of

sensitive databases, such as the Census Bureau, look unfavorably upon such “modifying”

data obfuscation techniques. Since the preservation of multi-variate characteristics while

preserving privacy is an intractable problem, the next important statistical characteristic to

preserve is the marginal distribution characteristics. One of the obfuscation techniques that

have been widely adopted for sensitive data protection is data swapping [23]. The concept

of obfuscating data sets by swapping the elements in the data set was first proposed in [51].

This technique intelligently swaps entries within a single field in a set of records so that

the individual record entries are unmatched, but the statistics are maintained across the

individual fields. Swapping can be implemented such that the swapped values are close to

each other, thus approximating the information in the non-obfuscated data records [19]. As

data swapping does not “modify” the actual values of the data, the characteristics of the

marginal distributions of the variables are preserved exactly [42].

The requirement of preserving privacy as well as the usability of sensitive data has led

to the proposal and development of a robust data obfuscation technique called Nearest

Neighbor Data Substitution (NeNDS). The underling principle of this technique is a more

generalized version of data swapping. In NeNDS, sets of data that are close to each other

18

in Euclidean space are grouped together into neighborhoods. The data within each neigh-

borhood are permuted in such a way that the original values are replaced by one of the

neighbors in a non-reflective manner. The non-reflective condition is enforced to avoid the

swapping of data and to make it less vulnerable to reversal. This approach benefits from

the advantages of data swapping, and proposes a more robust privacy-preserving scheme

for data obfuscation.

A hybrid version of the NeNDS transformation technique is also proposed here for ap-

plications where the usability lies only in cluster preservation and the data is required to

be completely disguised. The weak privacy preservation of geometric transformation makes

it unsuitable for use by itself. The proposed technique, called GT-NeNDS, uses geometric

transformations to mask the data and performs a data substitution on the transformed data.

Since GT-NeNDS is a combination of two DO techniques (NeNDS and geometric trans-

formations) that preserve the inherent clusters in the data, GT-NeNDS also exhibits the

cluster-preserving property. The robust privacy protection provided by NeNDS strengthens

the transformation process and results in a robust data-disguising obfuscation technique for

data mining applications.

The analysis of the data obfuscation techniques requires a standard for comparison.

No common standard has been implemented as yet, and each of the proposed obfuscation

techniques uses a different form of comparing the effectiveness of the approach. The clas-

sification of data obfuscation techniques based on their ease of reversal is proposed here.

The property, called reversibility, is described and categorized for different types of trans-

formations.

19

CHAPTER IV

DATA OBFUSCATION PROPERTIES

The term data privacy is broadly defined as the implementation of appropriate safeguards

to ensure the security and confidentiality of data records. To implement appropriate safe-

guards, it is necessary to first understand the nature of the application using the data as

well as the security and confidentiality threats that need to be protected against. Hiding

too much of information results in loss of data usability, while insufficient protection poses

a threat to data privacy. Although several Data Obfuscation (DO) techniques have been

proposed for the protection of data privacy, no standard has been developed as yet for mea-

suring or comparing DO techniques. This chapter identifies the different aspects of privacy

protection and proposes Data Usability and Data Privacy as properties that can be used to

evaluate the strength of DO techniques. The Data Usability property defines the usefulness

of the data obfuscated by a DO technique, while the Data Privacy metric measures the

extent of privacy provided by the DO technique.

4.1 Data Usability

The main difficulty in finding a solution to the problem of privacy is the contradicting

requirement of hiding sensitive data while still providing useful information content. The

definition of “useful information content” varies from one database application to another.

Similarly, the definition of “sensitive information” is specific to each database application.

The problem of privacy is formally defined in this research as the protection of sensitive

information of individual records or a subset of sensitive records while preserving the ag-

gregate information contained in the database. A good DO technique is one that hides

information about individual records in the database, but provides accurate information

in the aggregate. The term Data Usability refers to the ability of a DO technique to pro-

vide accurate aggregate information. In this research, two aspects of Data Usability are

20

considered.

• Preservation of statistical information: One of the most common applications of

databases is to draw statistical inferences from the data. The moments, marginal

statistics, and multivariate statistics of the obfuscated data are analyzed and com-

pared with those of the original data. The distortion in the statistical results resulting

from the DO technique provides an estimate of the Data Usability of the DO technique

for statistical purposes.

• Preservation of clusters: Clustering-based techniques are extensively used in data min-

ing applications to study interesting patterns in databases. Obfuscated data that loses

its original clustering becomes unsuitable for data mining purposes. Hence, cluster

preservation is a critical factor in selecting a DO technique for such databases. In this

research, the distortion in the clusters resulting from the obfuscated database provides

an estimate of the Data Usability of the DO technique for data mining purposes.

An ideal DO technique is one that preserves both statistical information as well as

clustering information. Data randomization techniques [5], which obfuscate data by the

addition of random noise to the original data, can be tailored to preserve statistical infor-

mation. However, the inherent clusters in the original data are distorted because of the

addition of random noise. Data anonymization techniques [62], which categorize sets of

k similar records by a process of suppression and generalization, can preserve statistical

information for small values of k, but fail to preserve the original clusters because of the

process of suppression and generalization. Geometric transformation techniques [44] obfus-

cate the data using linear transformations such as rotation, scaling, and translation. These

transformations distort the statistical distributions of the data. Geometric transformation

techniques preserve the original clusters by virtue of their linearity property and are suitable

for data mining applications. Data swapping, which obfuscates by a process of swapping

nearest neighbors, preserves statistical moments over individual datasets. NeNDS, which

is the data obfuscation approach proposed in this research, obfuscates data by permuting

amongst similar data items. NeNDS preserves all statistical moments over each dataset in

21

the database, but fail to preserve multi-variate statistics. NeNDS also preserves the original

clusters even after obfuscation. The cluster preservation property of NeNDS is evaluated

experimentally in Section 6.2.

4.2 Data Privacy

The definition of privacy is dependent on the type of data that needs to be protected as

well as the target applications that use the data. In some privacy sensitive databases or

applications, distortion of the original data such that it is similar but not exactly identical

to the original data is considered as acceptable privacy. In other applications, any similarity

between the obfuscated data and the original data is unacceptable and is equivalent to an

invasion of privacy. Similarly, in applications such as medical databases, the breach of even

a single record is unacceptable. However, in the case of publicly available databases, the

breach of up to two percent of the total database is considered as acceptable privacy. Hence,

any method that measures the strength of DO techniques needs to address the different

requirements of privacy for different applications. The privacy measure proposed in this

research measures the strength of DO techniques based on three aspects of privacy invasion.

• Approximate privacy invasion: This refers to the ability of a DO technique to conceal

any similarity between the obfuscated data and the original data.

• Absolute privacy invasion: This refers to the ease or difficulty of retrieving the original

data accurately from the obfuscated data.

• Susceptibility to partial privacy invasion: This refers to the ease or difficulty of re-

trieving a part of the original data from the obfuscated data.

Privacy against approximate invasion, absolute invasion, and partial invasion cover the

basic requirements of privacy for any sensitive database or application that uses the sensitive

data. The property of reversibility is proposed here to characterize the privacy provided by

DO techniques with respect to the three aspects of privacy invasion. The term reversibility

is defined as the property that dictates the ease or difficulty of the process of reverse engi-

neering obfuscated data [7]. The reversibility property provides a measure of the robustness

22

to privacy protection that is provided by a DO technique. The reversibility property exhib-

ited by a DO technique can be measured either by the time required for reverse engineering

the data or by the amount of a priori information required to reverse engineer the rest of the

original data from the obfuscated data. In this research, the amount of a priori information

that leads to a privacy breach is used as a measure of reversibility of DO techniques.

4.3 Reversibility - A Standard for Classification

Cryptanalysis is used for analyzing the security provided by encryption-based techniques [61].

Since encryption is a deterministic and reversible process, cryptanalysis assumes the trans-

formation to be deterministic as well as reversible. However, DO techniques have no such

restriction and therefore require a new standard for analysis.

This section provides a hierarchical classification of the property of reversibility as shown

in Figure 3. The reversibility property is divided into two main categories, process re-

versibility and irreversibility, based on whether the DO technique can be reverse engineered

to retrieve the original data. Each of these categories is further classified based on the

different attributes of reversibility exhibited by various obfuscation techniques.

Process Reversibility Irreversibility

Partial
Knowledge

Reversibility

Random
Number

Reversibility

Partial
Irreversibility

Total
Irreversibility

Reversibility Property

Figure 3: Classification of the reversibility property.

An obfuscation technique that can be reversed with the knowledge of the process is

23

known as a process reversible transformation function. A model similar to the cryptan-

alytic attack model may be used for this category of transformations. Cryptanalysis of

encryption techniques proves the weakness of algorithms to one or more of the well known

attack models: plain-text attacks, chosen-plain-text attacks, and chosen-cipher-text attacks.

Similarly, process reversible DO techniques can be analyzed with respect to their vulnera-

bility to complete reversal under one or more of the following conditions: with no a priori

information, with some a priori information of the DO process, and with complete a pri-

ori knowledge of the DO process. Process reversibility is sub-classified into the following

categories.

1. Partial knowledge reversibility: Partial knowledge reversibility implies that a transfor-

mation function exhibiting this property can be reverse engineered with the knowledge

of either some of the original data entries or a combination of some original entries

of data and some information regarding the process used. The level of difficulty of

the reversal process is dependent on the DO technique. Obfuscation techniques that

involve a one-to-one mapping between the original and the transformed data, are

vulnerable to partial knowledge reversibility. The reversibility analysis for linear and

non-linear one-to-one transformations is provided in Section 6.1.3.

2. Random number reversibility: This property indicates that the original data set can

be reverse engineered with knowledge of the process, the Pseudo-Random-Number

Generator (PRNG), and the seed. Most obfuscation techniques invoke PRNGs to

generate random sequences. The robustness of DO techniques exhibiting this prop-

erty relies in protecting the PRNG sequence. As long as the random seed and the

sequence are unknown to the attacker, the obfuscated data is robust to reversal. Once

this information is revealed and the obfuscation process is known, the entire data is

compromised. Transformations that fall under this category cannot be analyzed using

cryptanalysis due to their non-deterministic nature.

Obfuscation techniques that result in a non-invertible transformation exhibit irreversibil-

ity. A Maximum-likelihood reversibility estimate can be made in the case of some of the

24

techniques, which provides an estimate of the confidence with which a guess can be made

on the original data. Cryptanalysis fails to account for such transformations as well. With

irreversible techniques, there is an inherent loss of information. Lossy compression tech-

niques and data generalization techniques, which make it impossible to exactly recover the

original data, fall under this category. The second category of irreversibility contains the

set of obfuscation techniques in which a part of the obfuscated data becomes irreversible

during the transformation. An example of partial irreversibility is substitution with repeti-

tion, where each data element is replaced by its nearest neighbor. Data elements that are

not nearest neighbors of any other element are not included in the final data set and are

lost completely. In such cases, the elements that are eliminated from the database cannot

be exactly restored by any reversal process.

4.3.1 Classification of Transformations

Reverse engineering can be performed with or without a priori knowledge of partial in-

formation regarding the data obfuscation technique. If no prior information regarding the

process is available to the user, the reversal is a probabilistic estimate where the confidence

in the estimated process increases with the number of records available. The confidence in

the estimated process converges with every additional record for which the conditions of the

process are satisfied. The confidence remains a fraction until the process is verified for every

record in the database. Thus, in the absence of any prior knowledge regarding the process

used in data obfuscation, reversibility can be measured only in terms of a probability, with

the confidence in the estimated guess increasing with the number of original records in the

database.

In the second case, where the attacker has a priori knowledge of a subset of possible

processes, the complexity of the reversal process is related to the complexity of the reversal

of the processes in the subset. In the simplest case, the guess estimate made by the user

based on the set of available records fits exactly one of the processes in the subset of

possible processes. This can be estimated either by a set of records that uniquely identify

the process or by a set of records cannot identify the rest of the processes in the subset of

25

likely contenders. In the first case, the number of records required to uniquely determine

this process is the measure of the reversibility. For invertible processes, the upper bound

on the number of records needed is m − 1, where m is the total number of records in the

database. In the second case, we study the complexity when more than one process satisfies

the guess made by the attacker. In this case, the attacker would require the knowledge of

the particular records that distinguish it among the contenders.

Data transformation techniques are classified into three categories and are analyzed with

respect to the ease of reverse engineering the obfuscated data.

1. Linear bijective transformation: A function f : X → Y is said to be bijective if

and only if there is exactly one x ∈ X with y = f(x), ∀y ∈ Y . This implies that

there exists a unique function f(x) that maps every element x in the domain X to a

unique element y in the co-domain Y . Linear bijection describes the set of bijective

transformation functions that satisfies the conditions of linear functions. Geometric

transformations such as rotation, translation, and scaling are examples of linear bijec-

tive transformations. Another example of a linear bijective transformation function is

f(x) = Cx, where C is a non-zero constant. Here, every element in the co-domain Y

is mapped to a unique element in the domain X. These transformation functions ex-

hibit the property of partial reversibility and provide weak privacy preservation. The

reversibility of linear bijective transformations is further evaluated in Section 6.1.2.

2. Non-linear bijective transformation: A non-linear bijection is a bijective transforma-

tion function that has an uncertainty factor added to the transformation. The func-

tions that fall under this category do not fulfill the linearity properties of composition

and scaling. An example of a non-linear bijection function is given as f(x) = x3 − 1.

Here, the non-linearity lies in the fact that f(x) is a polynomial function, but the bi-

jective property still makes it process reversible. Non-linear bijections can be reversed

with knowledge of either the process involved or a minimum of k records from the

original database, where k is dependent on the type of function used. The proposed

data obfuscation technique, NeNDS, is an example of this type of transformation.

26

Although it exhibits partial reversibility, the fraction of the original data that is re-

quired for reversal is large. The fraction of the number of original elements required

for reversal of NeNDS is evaluated in the next section.

3. Surjective (but not bijective) transformation: A function f : X → Y is surjective

if, ∀y ∈ Y , ∃x ∈ X with f(x) = y. A surjective (but not bijective) transformation

function implies that multiple elements in the domain map to a single element in the

co-domain. From the reversibility perspective, such a transformation function is hard

to estimate since some elements in the obfuscated data reflect back to more than one

entry in the original database. As a result, the attacker would retrieve the k entries

in X that map to the entry y ∈ Y , but in the absence of knowledge of the original

value, there is no way to distinguish the correct pre-image.

A DO technique that results in a transformation that is difficult to reverse-engineer is

robust to partial privacy invasion. The nonresemblance property makes a DO technique

robust to approximate privacy invasion. A robust privacy preserving DO technique is one

which results in a transformation that is difficult of reverse-engineer and that bears no

nonresemblance to the original data.

1. Difficult to reverse-engineer: This property is measured based on the time required

to reverse-engineer and the amount of information required to reverse-engineer the

obfuscated data. An irreversible transformation is regarded as requiring infinite time

and infinite amount of information for reverse-engineering.

2. Nonresemblance: A good data obfuscation technique is one that transforms the data

into a form where the individual data items are significantly different from the original

data items.

The usability property is measured based on the ability of the data obfuscation tech-

nique to transform the data into a privacy preserving form without distorting the inter-

relationship of the data items. The distortions in the inherent clustering in the original

27

data are a measure of the usability. DO techniques are evaluated based on these properties

in Chapter 6.1.

28

CHAPTER V

NEAREST NEIGHBOR DATA SUBSTITUTION

5.1 Existing Data Obfuscation Techniques

The need for privacy preserving techniques for protecting sensitive data has resulted in

the development of different data obfuscation (DO) techniques. Some of the existing data

obfuscation techniques are described in this section.

5.1.1 Data Randomization

Data Randomization is one of the first data obfuscation techniques proposed for privacy

preserving data mining. In this approach, a data set is obfuscated by adding a random

value ’r’ to each item in the data set, where ’r’ is drawn from a uniform distribution [−α, α]

or a Gaussian distribution [µ, σ].

The data is stored in the randomized form along with the parameters for the noise

distribution. The parameters are needed to reconstruct the original distribution before the

data can be used. The reconstruction process involves the generating a second distribution

with the stored distribution parameters, which is then subtracted from the randomized data

set. The resulting database preserves the distribution of the original data set although the

actual values of the data items have changed. The reconstructed distributions are accurate

if the noise distribution function is similar to the distribution function of the original data.

For instance, if the original data is distributed follows a normal Gaussian distribution and a

Gaussian noise distribution is added to it, the reconstructed data preserves the distribution

exactly. However, it has been shown in [5] that the there is a loss of accuracy (0− 10%) if

the distributions do not match.

The randomized database stores the distributions of the individual data sets, but the

inter-relationship of the data across the different fields of the database are not preserved in

this type of obfuscation.

29

5.1.2 Data Anonymization

Data anonymization (k-anonymity)uses a generalization/suppression approach for data ob-

fuscation. Generalization is the process of making the data less precise but still consistent.

Replacing the birthday of an individual by just the birth year is an example of data gener-

alization. Suppression involves the removal of a data item from the database. K-anonymity

iteratively suppresses and generalizes data items in the database until each record is iden-

tical to ’k’ other records in the database.

5.1.3 Data Swapping

Data swapping involves ranking data items in a pre-specified order and swapping records

that are close to each other. In contrast with Data randomization and K-anonymity, Data

swapping does not “modify” the values of the database. The data are moved around without

altering the values.

5.1.4 Geometric Transformations

An overview of the geometric transformation-based data obfuscation proposed in [44] [45]

is given here. This technique makes use of transformations such as rotation, scaling, and

translation for distorting the data [24]. The advantage of using geometric transforma-

tions is that these transforms are cluster preserving. Rotation, translation, and scaling are

isotropic transformations and hence preserve the distances between the data points even

after transformation. Isotropy and similarity are properties of geometric transformations

that retain the shape of an image even after transformation. This ensures the usability

of the database for clustering applications, where the relationships of the data points are

analyzed. An analysis of geometric transformations is presented in this paper with respect

to their privacy-preservation property.

Basic transforms: The following section describes the basic geometric transformations in

a two-dimensional space. Here, any pair of numerical fields in the database is visualized as

an image and the coordinates of the data items are distorted by geometric transformation.

The approaches can also be scaled to three or more dimensions without loss of generality.

30

The database is represented as a two-dimensional space Dk,n, where k is the number of

attributes and n represents the number of instances in the database. The transformations

translation, scaling, and rotation can be implemented using matrix multiplication. A general

affine transformation is represented by Equation (1). Each of the three transformations can

be represented in terms of this equation. Translation is obtained by defining just the B

matrix and reducing A to an identity matrix, as shown in Equation (2). Defining only

matrix A as shown in Equation (3), results in a pure scaling transformation. For a pure

rotation, the matrix B is reduced to 0, and A is defined as shown in Equation 4. The

transform matrices for these transformations are given next.

X′

Y ′

= A∗

X

Y

+B (1)

In all of the transformations, A,B are the transformation matrices, (X,Y) are the

original data, and (X′, Y ′) are the results of the transformations on the original data.

T : A =

1 0

0 1

B = +

X0

Y0

(2)

S : A =

Sx 0

0 Sy

B =

0

0

(3)

R : A =

cos(θ) sin(θ)

− sin(θ) cos(θ)

B =

0

0

(4)

The matrices in (2), (3), (4) represent the matrices for translation, scaling, and rotation

respectively. The rotational transformation is more complicated than scaling and transla-

tion, as the distortions along the coordinates are inter-dependent. From the description of

the transformations, it can be observed that each data set is distorted by the same amount

relative to the placement of the individual elements in the set. In this way the clusters are

maintained during obfuscation. In the following sections, the robustness of this technique

with respect to privacy preservation is analyzed in greater depth.

31

5.2 Nearest Neighbor Data Substitution

The Nearest Neighbor Data Substitution(NeNDS) technique is a lossless data obfuscation

technique that preserves the privacy of individual data elements by substituting them with

one of their Euclidean space neighbors. NeNDS uses a permutation-based approach in which

groups of similar items undergo permutation. The permutation approach hides the original

value of a data item by substituting it with another data item that is similar to it but

not the same. NeNDS treats a database Σ = [Σ1,Σ2, · · · ,Σm] as m individual data sets.

Each data set represents one field or attribute of the database such as the Age, Income,

and Zipcode. The substitution process is applied to each data set individually independent

of the rest of the data sets. The individually substituted data sets Σi
′, i ∈ [i,m] are then

recombined to form the obfuscated database Σ′ = [Σ1
′,Σ2

′, · · · ,Σm
′]. The first step in

NeNDS is the creation of similar sets of items called neighborhoods. Each data set is

divided into a pre-specified number of neighborhoods. The items in each neighborhood

are then permuted in such a way that each item is displaced from its original position,

no two items undergo swapping, and the difference between the values of the original and

the obfuscated items is minimal. The minimum number of neighbors in a neighborhood is

specified by the neighborhood size parameter NHsize, where [3 < NHsize < N], and N is

the size of the data set. If NHsize = 1, each item in the data set forms a neighborhood.

Permutation cannot take place since there is only one data item in a neighborhood. For

NHsize = 2, the data set is divided into N/2 neighborhoods, each containing 2 neighbors.

In this case, the two data items can only be swapped with each other, which limit the level

of obfuscation possible. Hence, the minimum size of a neighborhood for data obfuscation

using NeNDS is NHsize = 3. The way in which the data items in a data set are permuted

differs with different values for NHsize resulting in a new obfuscated data set for each value

of NHsize. The number of neighborhoods NH that are created for a data set is given as

NH = N
NHsize

. The choice of value for NHsize is made by the owner of the database based

on the required level of privacy. A larger value of NHsize implies that the number of items

that are permuted together is large, which leads to better privacy protection. The level of

privacy provided by NeNDS for different sizes of neighborhoods is discussed in Section 6.1.3.

32

The substitution process is performed by determining the optimal permutation set sub-

ject to the following conditions.

1. No two elements in the neighborhood undergo swapping.

2. The elements are displaced from their original position.

3. Substitution is not performed between duplicate elements.

These three conditions ensure that each element in the transformed dataset is different

from the original dataset. The reflective nature of data swapping makes it vulnerable to

partial reversibility. Consider an example where an attacker has information regarding one

of the records Xi = [x1, x2, · · · , xm] in the original database. Let Yi = [x1, z2, · · · , ym]

be the new record with which the data item x1 has been swapped. Since the attacker

knows that x1 is the true value of Xi and that x1 has been swapped with y1, he now knows

that the true value of the first field of Yi is yi. This shortcoming is overcome by avoiding

swapping of data items. The displacement condition is necessary to ensure that each item

in a record (row of the database Σ) is different from its original value. NeNDS can also

be applied to data sets with multiple duplicate entries. In cases where duplicates exist in

a neighborhood, the permutation process ensures that each duplicate entry is substituted

by a different non-identical item. The details of the substitution process in the presence of

duplicates are explained later in this chapter.

Algorithm 5.2.1 shows the working of NeNDS. Σin is the input database with m at-

tributes(fields) an n records. The number of neighbors in each neighborhood, c, is the

input parameter for the algorithm. Each individual dataset of the original and trans-

formed database is denoted by Σiin, Σ
i
out, respectively, where i ∈ [1,m]. Each dataset

is divided into NHsize neighborhoods, denoted by NHj , j ∈ [1, NHsize]. The recursive

CreateTree algorithm is then invoked to build a c − ary tree for each NH j . The proce-

dure Ancestors(Tree, NH) returns all the ancestors of a specified node, and the procedure

Identical(Parent, NH) returns all the entries in NH that are identical to the parent of

the specified node. ChildrenTree holds the set of valid children of the parent node in Tree.

The populated tree is then assigned to the variable Treej in Algorithm 5.2.1. All paths in

33

Treej that have a length equal to the size of the neighborhood are candidates for substitu-

tion. The maximum edge distance CME is determined for each candidate path. Procedure

min(CandidateSet) identifies the path with the smallest CME as the optimum substitution

pattern. This path is then assigned to NH ′
j . The datasets (Σ

1
out,Σ

2
out, . . . ,Σ

m
out) form

the transformed database Σout. Each dataset Σ
1
out is reconstructed from the transformed

neighborhoods as shown in Equation 5.

Σiout = (NH ′
1, NH ′

2, . . . , NH ′
NHsize) (5)

5.2.1 Algorithm

NeNDS(c)

1. For each i ∈ [1,m] do

(a) NHsize = b N
c+1c

(b) Σiin = (NH1, NH2, . . . NHNHsize)

(c) For each NHj ∈ Σ
i
in do

i. Treej = CreateTree(NHj ,0, NHsize)

ii. dj = depth(Treej)

iii. For each pathk in Treej of length dj − 1

• CandidateSet = CandidateSet + (pathk)

iv. NH ′
j = min(CandidateSet)

2. Σiout = (NH ′
1, NH ′

2, . . . , NH ′
NHsize)

CreateTree(NH, Tree, Size)

1. If Tree = 0 then Tree = NH[0]

2. If NH = 0 then Return Tree

3. ChildrenTree = NH - Ancestors(Tree) - Identical(Parent, NH)

4. Child(Tree) = Sort(ChildrenTree)

34

5. Tree = Child(Tree)

Figure 4 shows the tree-based permutation process for the neighborhood [35 37 38 40 42].

The first item in the set is made the root of the tree. The remaining elements [37 38 40 42]

become the children of the root node and are ordered from left to right based on their

nearness to the parent node. The distance between the parent and child is given along the

edge connecting them. For instance, the edge distance between the root (35) and its left

most child (37) is 2, which is assigned to the edge connecting the two nodes E35−37 and is

called the cost of the edge CE35−37
. Each child of the root becomes the root of a sub tree

with all the data items that are not in the path from the root of the tree to the root of the

sub tree becoming the children of this root. The nodes are expanded using a depth first

approach from left to right, which means that the leftmost child of the root is expanded

completely before the next child is expanded. In the figure, the first child (37) of the root

(35) becomes the parent node for the nodes [38 40 42], which are not in its path from the

root. The next node that is expanded is (38) because it is the leftmost child of the parent

(37). The leftmost child is expanded each time until the leaf node is reached. The node

(42) is the leaf node for the leftmost path in the figure. The root node is appended to the

leaf and the distance between the two nodes is assigned as its edge distance. The edge with

the largest edge cost, called CME is marked with a green box. This is the maximum cost

of the specified path. The path (35 → 37 → 38 → 40 → 42 → 35) with CME = 7 becomes

a candidate for the permutation set. The next node that is expanded is the second child of

the node (38), which is (42). The maximum edge cost for this path is CME = 5, which is

less than the cost of the previous path and hence replaces the first path as the candidate

permutation set. The new candidate set is now (35 → 37 → 38 → 42 → 40 → 35) with

CME = 5. The algorithm backtracks to the next unexpanded node, which is the second

child of node (37), which is (40). The maximum edge cost for the leftmost path of this sub

tree is CME = 7. Since the cost of the maximum edge for this path is greater than the

cost of the candidate set, this path is ignored. The next path in the sub tree has an edge

cost CME = 3, which is smaller than the maximum cost of the candidate set. The path

(35→ 37→ 40→ 42→ 38→ 35) replaces the candidate set and becomes the new candidate

35

with CME = 3. The next node to be expanded is the third child of (37), which is (42). The

edge cost for this edge CE37−42
= 5, which is larger than CME . Any path in this sub tree

would have a maximum edge cost greater than or equal to 5. Hence the node is aborted

and marked in yellow. The rest of the children of the root node have edge costs greater

than the maximum edge cost of the candidate set CME = 3. As a result, none of these

nodes are expanded. The final candidate set is (35 → 37 → 40 → 42 → 38 → 35), which

is represented by a green arrow in the figure. The permutation set for the neighborhood

[35 37 38 40 42] is obtained from the candidate 35→ 37→ 40→ 42→ 38→ 35 by replacing

each item in the neighborhood by the item on the right of it in the candidate set. The

permutation set for this neighborhood is [37 40 35 42 38].

By considering only those nodes that are not yet in the path from the root of the tree

to the root of the sub tree, the size of the tree is significantly reduced. This method also

avoids swapping of data items. The maximum edge cost helps remove all those paths that

would result in a less optimal solution, which reduces the complexity of the search process.

Only those nodes that can lead to a minimum cost path are expanded. The depth first

approach used here is derived from the Depth First Search tree traversal algorithm. Since

the tree is finite, the DFS search will complete and will yield a solution.

The process of NeNDS based obfuscation is described with the help of an example

database shown in Table 1. The database Σ = [Age Salary Location] has three fields and

5 records. The database is first divided into 3 individual datasets Σ1 = Age, Σ2 = Salary,

and Σ3 = Location. Since the third dataset is a categorical set, it is not obfuscated.

Only the Age and Salary fields are obfuscated. The minimum neighborhood size for

NeNDS is 3, so the maximum number of neighborhoods into which the data sets can be

divided is NH = b53c = 1. Both the data sets are treated as single neighborhood sets.

The permutation process for the Age data set is shown in Figure 4 and the permutation

set is represented in the first column of Table 2. The permutation tree for the Salary

data set is shown in Figure 5. The items in the tree represent the first two digits of the

salary, i.e. 88 = 88, 000. The candidate set for permutation for the Salary data set is

(85 → 86 → 93 → 94 → 88 → 85). The permuted set is represented in the second column

36

Figure 4: Permutation tree for the Age data set.

37

of Table 3.

Table 3 represents the completely transformed database. It can be observed from the

two tables that the data transformation obscures the individual information in each record.

Each record in the obfuscated database Σ′ is different from all the records in the original

database Σ.

Table 1: Original database.

Sl. No Age Salary Location

1 35 86,000 LA

2 37 88,000 NY

3 38 93,000 SJC

4 40 85,000 SFO

5 42 94,000 LA

NeNDS can be performed on any data set in which the elements are related by some

notion of distance, and can be expressed as a metric space. The algorithm is run for

each field in the database that forms a metric space. A brute-force analysis of the DFS

based algorithm for finding the substitution pattern indicates that the algorithm has an

exponential order of complexity. However, the heuristic nature of the branch and bound

implemented reduces the exponential order of complexity to a much smaller value, which

is indicated by the successful completion of NeNDS even for large data sets. The time

complexity for NeNDS is discussed in Section 5.2.3

The data-substitution process for neighborhoods that contain multiple identical ele-

ments is the same as described above, with the additional restriction on identical element

substitution - a parent node cannot have an identical child. The existence of such a path

with no identical substitutions is ensured by including a sufficient number of non-identical

elements in each neighborhood.

Clustering techniques can be used for creating neighborhoods of the datasets. The

neighborhoods created are likely to be of different sizes, depending on the number of iden-

tical elements in each neighborhood. An additional condition is imposed on the size of a

neighborhood with multiple identical entries - the neighborhood should contain at least one

38

Figure 5: Permutation tree for the Salary data set.

39

Table 2: Age transformed database.

Sl. No Age Salary Location

1 37 86,000 LA

2 40 88,000 NY

3 35 93,000 SJC

4 42 85,000 SFO

5 38 94,000 LA

Table 3: Age and Salary transformed database.

Sl. No Age Salary Location

1 37 93,000 LA

2 40 85,000 NY

3 35 94,000 SJC

4 42 86,000 SFO

5 38 88,000 LA

distinct data element for each identical entry in the neighborhood. This requirement is

enforced to ensure that each of the identical elements is substituted with a non-identical

value. This rule can lead to the selection of very large neighborhoods in the event of sev-

eral occurrences of identical elements. An alternative for obfuscating data sets with large

number of duplicate data items is discussed in Section 5.4.1.

The algorithm treats is capable of handling multiple duplicate items in a neighborhood.

When multiple duplicate items exist within a neighborhood, each duplicate is considered

as a separate entry. The children of a node include only non-identical items. By ensuring

no-swaps between duplicates, an optimal permutation set can be obtained for data sets with

multiple duplicate entries too. Table 4 consists of a database with 9 records and 2 fields

[Age, Salary].

Three records in the database have the same value for Age. The minimum size of a

neighborhood (NHsize) with duplicate entries is three times the total number of dupli-

cate data items. If NHsize is between two and three times the total number of duplicate

40

Table 4: Original database with duplicates.

Sl. No Age Salary

1 35 75,000

2 35 80,000

3 35 78,000

4 38 81,000

5 39 120,000

6 42 110,000

7 44 105,000

8 48 130,000

9 50 125,000

entries, a permutation set is achievable, but one or more pairs of items would undergo

swapping. Since the Age data set has three duplicates, the minimum size of the neigh-

borhood needs to be 9, which includes the entire data set. The tree in Figure 6 shows the

permutation tree for obfuscating the Age data set. The permutation set for this data set is

[38 42 48 39 35 44 35 50 35]. The Salary data set is also permuted as a single neighborhood

and the permutation set obtained is shown in the second column of Table 5. The algo-

rithm described in this section is capable of handling a small number of multiple duplicate

entries. Data sets that consist of significantly large number of duplicates are discussed in

Section 5.4.

5.2.2 Limitation of NeNDS

The minimum size of a neighborhood for NeNDS is dependent on the existence and number

of duplicate items. In the presence of d duplicate items, the neighborhood size is increased

to include at least 3d distinct values. This dependency limits the maximum number of

duplicate items in a dataset to one-third of the entire dataset. This makes NeNDS unsuitable

for binary valued fields or categorical fields.

The nearest neighbor permutation for NeNDS uses the distance between data items

to determine the nearest distance neighbors. NeNDS-based data obfuscation can be only

be applied to datasets that form a metric space. Hence, attributes such as names and

41

Figure 6: Illustration of permutation tree with duplicate entries.

42

Table 5: Obfuscated database with duplicates.

Sl. No Age Salary

1 38 80,000

2 42 78,000

3 48 81,000

4 39 75,000

5 35 125,000

6 44 105,000

7 35 120,000

8 50 110,000

9 35 130,000

locations cannot be obfuscated using NeNDS. This problem can be averted by performing

data generalization or suppression on the non-numeric and categorical attributes and a data

substitution on the rest of the database. This ensures a completely robust framework for

data mining applications by preserving all the information content for statistical analysis

purposes, and providing a secure and privacy-preserving framework for drawing inferences

on the data.

5.2.3 Time Complexity of NeNDS

NeNDS uses a Depth First Search (DFS) tree traversal approach with backtracking to

determine the optimal permutation set for each neighborhood in the data set that is to be

obfuscated. The permutation tree shown in Figure 5 is used as an example to analyze the

complexity of NeNDS. Each path in the tree is a potential candidate for substitution as it has

a depth equal to the neighborhood size. The algorithm proceeds by traversing each path one

at a time with backtracking. The first path in this tree (85 → 86 → 88 → 93 → 94 → 85)

has a max edge cost CME = 9. The second path that is traversed, (85→ 86→ 88→ 94→

93 → 85), has a CME = 7. The third path, (85 → 86 → 93 → 88 → 94 → 85) has a cost

CME = 9 and is eliminated, but the fourth path (85 → 86 → 93 → 94 → 88 → 85) with

CME = 7 is considered as a potential candidate. The sub tree for the next child of the root

is truncated at the second or third levels because the edge costs exceed the current CME .

43

It can be seen that the edge costs between the root node and all the remaining children of

the root are greater than CME , so the search is terminated. The optimal permutation set

for this neighborhood is [93 85 94 86 88]. In this case, the permutation set was obtained by

expanding less than half the nodes in the set. In the worst case, every path of the pruned

tree needs to be traversed before the ideal permutation set is obtained. The time required

for exploring each node of the tree is (n − 1)!. Although the worst case time complexity

for the algorithm has a complexity O((n − 1)!), a solution is obtained by exploring less

than half the tree in most cases. Since each of the paths in the tree is a candidate set for

permutation, the algorithm is guaranteed to produce a result always.

5.3 GT-NeNDS: A Hybrid Data Substitution Approach

NeNDS obfuscates data by permuting sets of similar items. The example provided in

Tables 1, 2, and 3 shows how the data is obfuscated. The original values of the data are

modified, however, these values are still close enough to the original values to be considered a

breach of privacy. While the proximity to the original data is suitable for some applications,

it is insufficient to provide privacy in highly sensitive databases. Increasing the distance

between the original and obfuscated value ensures better privacy but results in loss of

information content. NeNDS obfuscates data without “modifying” the values of the data

set. Items in each data set are replaced by other similar items so that the information stored

in each record of the database is not distorted significantly. The advantage of obfuscating

the data in this way is that the clusters in the original database are not altered even after

obfuscation. An enhancement to the basic NeNDS algorithm, which protects against the

vulnerability due to “proximity breaches” is proposed in this section.

In this section, we propose a hybrid version of NeNDS. In this approach, termed as GT-

NeNDS, the data sets are transformed using NeNDS and then geometrically transformed.

Here, the geometric transformations provide an additional privacy wrapper around NeNDS.

The transformation functions like rotation and translation are isometric in nature, thereby

preserving cluster information of the data sets and retaining the nearest neighbor informa-

tion for the substitution step. In this way, the data can be transformed to a form suitable

44

for use by a third party analyst. The two step transformation results in transformed data

that preserve clustering information, but bear no resemblance to the original database. As

a result, GT-NeNDS is also robust to the notion of privacy breaches as proposed by [20],

making it a suitable candidate for privacy preserving data mining.

The procedure for GT-NeNDS is explained with the example database shown in Table 6.

The database Σ = [Age Salary] has two fields and 9 records. Each individual data set is

first obfuscated using NeNDS. Since the Age data set has 3 duplicate entries, the minimum

size of the neighborhood for the data set is 1. The salary field is divided into 2 neighborhoods

NH1 = [75, 000 78, 000 80, 000 81, 000] andNH2 = [105, 000 110, 000 120, 000 125, 000 130, 000].

The Age transformed database is shown in Table 7. The permutation sets for each

of the neighborhoods in the Salary data set are NH ′
1 = [80, 000 75, 000 81, 000 78, 000]

and NH ′
2 = [120, 000 105, 000 130, 000 110, 000 125, 000]. The complete NeNDS obfuscated

database is shown in Table 8.

The NeNDS-obfuscated database can be geometrically transformed by using either rota-

tion or scaling. The obfuscated databases using both scaling and rotational transformations

are represented here. For scaling, the first data set is scaled by 1.4 and the second data set

is scaled by 0.8. For rotational data transformation, the database is rotated by an angle

of 30o. Rotation is performed by first normalizing the data sets. Normalization is done in

order to reduce the data sets to the same scale before rotation. Each item DΣi
in a data set

Σi is normalized using Equation 6, where Mean(Σi) is the mean of the data set and Var(Σi)

is the variance of the items in the data set.

DΣinormalized =
|DΣi

−Mean(Σi)|

V ar(Σi)
(6)

The scaled and rotated databases are shown in Tables 8 and 9. The databases bear no

resemblance to the original database and therefore protect the privacy of the records in the

database.

This type of obfuscation provides robust privacy protection to the database. The linear-

ity of the geometric transformations ensures that the inter-relationships of the data items

45

Table 6: Original database for GT-NeNDS.

Sl. No Age Salary

1 35 75,000

2 35 80,000

3 35 78,000

4 38 81,000

5 39 120,000

6 42 110,000

7 44 105,000

8 48 130,000

9 50 125,000

Table 7: GT-NeNDS: NeNDS Obfuscated database.

Sl. No Age Salary

1 38 80,000

2 42 81,000

3 48 75,000

4 39 78,000

5 35 130,000

6 44 105,000

7 35 120,000

8 50 125,000

9 35 110,000

in the database are preserved. The data items are scaled and rotated while preserving the

distances between the individual items. The clusters of similar items are preserved even

after transformation. NeNDS combines data items that are similar and permutes the set of

similar items. The information contained in each record of the database is distorted only

by a small amount. The information provided by each record remains approximately the

same. Records that are similar to each other in the original database preserve the similar-

ity property even after being transformed by NeNDS or GT-NeNDS. This is because each

item in the record is replaced by another item that is similar to it. The cluster preserving

46

Table 8: GT-NeNDS: Scaled NeNDS transformed database.

Sl. No Age Salary

1 53 64,000

2 59 64,800

3 67 60,000

4 55 62,400

5 49 104,000

6 62 84,000

7 49 96,000

8 70 100,000

9 49 88,000

Table 9: GT-NeNDS: Rotated NeNDS transformed database.

Sl. No Age Salary

1 41 3,980,000

2 41 1,965,600

3 42 10,930,000

4 41 2,492,000

5 42 8,448,000

6 41 4,973,400

7 42 4,937,400

8 42 13,908,000

9 42 8,447,700

property makes NeNDS and GT-NeNDS favorable for data mining applications.

5.4 NeNDS: Special Cases

NeNDS obfuscates data by creating neighborhoods of similar items, generating a permu-

tation set for each neighborhood, and replacing the original neighborhoods with their cor-

responding permutation sets. The generation of a permutation set has been explained in

the previous section. While the algorithm provides a general solution for nearest neighbor

data substitution, there are a few cases where the data need to be treated differently. Two

special cases are discussed in this section.

47

5.4.1 Duplicate data items

The Algorithm for NeNDS generates a permutation pattern for obfuscating data sets with

unique data items as well as data sets with a small number of duplicate entries. However,

if the number of duplicate entries is significantly large, the data are treated differently.

Consider the example shown in Table 10. The Age field in the database has more than

half of the entries with the same value for age. In such cases, the identical entries are left

unobfuscated. Only the unique data items are obfuscated. The obfuscated Age, Salary

data sets are shown in Table 11. It can be observed that the salaries corresponding to

the duplicate age records have changed although the ages are still the same. If necessary,

the duplicates are obfuscated using data randomization. Such situations are discussed in

Section 5.4.2. The large number of duplicates makes the records indistinguishable and the

additional distortions of the rest of the fields protect the identities of the records.

Table 10: Original database with duplicates.

Sl. No Age Salary

1 35 75,000

2 37 80,000

3 38 81,000

4 39 85,000

5 39 78,000

6 39 110,000

7 39 105,000

8 40 120,000

9 42 115,000

The database can be further protected by applying a geometric transformation to the

NeNDS transformed database. The geometric transformation masks the values of the iden-

tical items completely. Table 12 shows a scaled database with a scaling factor of 1.3 for

each data set.

In general, if the number of duplicates in the data set exceeds a pre-specified value k,

the duplicates can be left unobfuscated. The value k is an input parameter to be entered

48

Table 11: Obfuscated database with duplicates.

Sl. No Age Salary

1 37 80,000

2 40 78,000

3 35 85,000

4 39 81,000

5 39 75,000

6 39 125,000

7 39 115,000

8 42 105,000

9 38 110,000

Table 12: Scaled-NeNDS transformed database with duplicates.

Sl. No Age Salary

1 48 104,000

2 52 101,400

3 46 110,500

4 51 105,300

5 51 97,500

6 51 162,500

7 51 149,500

8 55 136,500

9 49 143,000

49

by the database administrator. The default value of k is one-third of the size of the data

set. Hybrid-NeNDS protects the actual value of the duplicates by applying a geometric

transformation to the actual values.

5.4.2 Identical transformations

NeNDS obfuscates each data set of the database individually by selecting neighborhoods

of similar items and permuting the data in each neighborhood. In this type of obfuscation

there is a likelihood of one or more data items of a specific record to be transformed in

the same way. This would result in the record remaining identical except for a change

of position. Table 13 shows a database Σ = [Age Salary] with 5 records. The NeNDS

obfuscated database is shown in Table 14, the first record in the original database is identical

to the third record in the obfuscated database. A post processing step for NeNDS involves

scanning the entire database to ensure that the records in the obfuscated database do not

map back to any record in the original database. In case of a match, one of the data sets

is replaced by a different permutation set as shown in Table 15. The data items have been

permuted such that each of the records in the output database is different from all records

in the original database.

Table 13: Special case: Original database.

Sl. No Age Salary Location

1 35 76,000 LA

2 37 79,000 NY

3 38 84,000 SJC

4 40 78,000 SFO

5 42 82,000 LA

The probability that such situations should occur is discussed here. The database shown

in Table 13 has only two data sets. Each item in the first data set can be moved to 4 other

positions. Similarly, each item in the second data set can be moved to 4 other positions.

The probability that both items in any row ri in the original database are moved to the

row rj , i 6= j in the obfuscated database is P (true) = 1/4 ∗ 1/4 ∗ 5 = 0.31. In general, for

50

Table 14: Special case: Obfuscated database.

Sl. No Age Salary Location

1 37 84,000 LA

2 40 78,000 NY

3 35 82,000 SJC

4 42 84,000 SFO

5 38 79,000 LA

Table 15: Special case: Re-obfuscated database.

Sl. No Age Salary Location

1 37 78,000 LA

2 40 76,000 NY

3 35 82,000 SJC

4 42 84,000 SFO

5 38 79,000 LA

a database Σ = [Σ1,Σ2, · · · ,Σm] with m fields (data sets) and N records, the probability

that the obfuscation results in moving all items of a row in the same way is given as

P = (1
N−1)

m
N . The probability of identical transformations decreases significantly for

databases with more fields. Practical databases have 10 − 100 fields on an average, which

reduces the probability of identical transformations considerably.

A special case involving identical transformations is when a record is not displaced from

its original position even after data obfuscation using NeNDS or GT-NeNDS. For data

sets with no duplicate items, NeNDS ensures that each data item is displaced from its

original position. This is also holds true when the number of duplicate items in a data

set is small in comparison with the size of the data set. However, if there are a large

number of duplicates, the NeNDS based DO obfuscates the unique items and leaves the

duplicate items unobfuscated as discussed in Section 5.4.1. In this case, the duplicate data

item is not displaced from its original position in the database even after obfuscation. The

likelihood of an entire record remaining unchanged is demonstrated with the help of the

database shown in Table 16. The database Σ =[Age Salary] consists of two fields and 9

51

records. The minimum neighborhood size for this neighborhood is 4. The Age data set

has 5 duplicate items, which is greater than 1/3 of the data set. The data set is divided

into two neighborhoods. The first neighborhood consists of the 4 duplicate items and the

second data set includes the unique data items. The Salary data set has 5 duplicate items.

The number of duplicate items in this data set is also grater than 1/3 of the data set. This

data set is therefore divided into two neighborhoods: the first neighborhood includes all the

unique items and the second neighborhood consists of the duplicate data items. The result

of the NeNDS-based DO is shown in Table 17.

Table 16: Special case: Original database with duplicates.

Sl. No Age Salary

1 35 86,000

2 35 89,000

3 35 94,000

4 35 88,000

5 35 105,000

6 37 92,000

7 38 105,000

8 40 105,000

9 42 105,000

Table 17: Special case: Obfuscated database with duplicates.

Sl. No Age Salary

1 35 88,000

2 35 92,000

3 35 86,000

4 35 89,000

5 35 105,000

6 40 94,000

7 37 105,000

8 42 105,000

9 38 105,000

52

It can be seen that the fifth record in the original database and the obfuscated database

is the same, leaving record 5 unprotected against privacy attacks. This situation is handled

by re-obfuscating some of the neighborhoods in each data set in the following way.

In the first data set, the number of data items in the duplicate-items-neighborhood

is 5. In this case, the duplicate data item corresponding to row 5 is combined with the

second neighborhood. The sizes of the two neighborhoods for the Age data set are now

NH1size = 4 and NH2size = 5, where NH1 is the duplicate items set and NH2 is the

neighborhood with unique data items. The corresponding obfuscated data set for the Age

data set is shown in the first column of Table 18.

In the second data set, the number of duplicate items is 4. If the data item corre-

sponding to row 5 is moved to the neighborhoods with unique data items, NH1, then the

neighborhood size of the duplicate-items-neighborhood is reduced to 3, which is lesser than

the minimum size specified for a neighborhood NHsize = 4. In this case, all the duplicate

items are randomized by adding a noise factor generated from a Normal (Gaussian zero-

mean) distribution [0, δ], where δ is the deviation of the data items in the neighborhood

containing unique data items. The deviation δ for this example is δ = 3.89. The noise

added neighborhood is shown in the second column of Table 18.

Table 18: Special case: Re-obfuscated database with duplicates.

Sl. No Age Salary

1 35 88,000

2 35 92,000

3 35 86,000

4 35 89,000

5 37 106,000

6 40 94,000

7 35 101,200

8 42 111,600

9 38 102,000

As a generalization, let p be the number of data items in the duplicate-items-neighborhood

53

that have to be re-obfuscated. Let NHdupsize be the number of duplicate items in a

duplicate-items-neighborhood. If NHdupsize−p > NHsize, then the p data items are moved

to the next closest neighborhood. The new neighborhood is permuted with the new data

items that are included. If the difference NHdupsize − p < NHsize, then all the NHdupsize

data items are obfuscated by adding a random noise factor generated from a normal dis-

tribution [0, δ]. The value of δ is computed according to Equation 7, where µNHnext
is the

mean of the data items in the next closes neighborhood and X is the value of the duplicate

data items.

δ = 1/2(µNHnext
−X) (7)

The p offsets generated from the normal distribution are added to the duplicate items.

All the identical transformations resulting from duplicate data items are treated in this way.

The situations discussed in this section show that NeNDS is capable of handling situa-

tions that might lead to a privacy breach due to identical transformations.

54

CHAPTER VI

EVALUATING PRIVACY AND USABILITY OF DO

TECHNIQUES

The working mechanisms of different data obfuscation (DO) techniques including NeNDS-

based DO are described in Chapter 5.2. This chapter compares the strengths and weak-

nesses of the different DO techniques by evaluating their ability to provide robust privacy

protection and also preserve the usability of the databases after obfuscation. The privacy

protection capability is evaluated based on the privacy properties discussed in Chapter 4.3.

The Usability comparison is done experimentally by evaluating the ability of the DO tech-

niques to obfuscate the databases without distorting the inherent clusters among the data

items.

6.1 Privacy Analysis

The privacy protection provided by DO techniques are evaluated based on two important

properties, difficulty of reverse-engineering the obfuscated database and the nonresemblance

of the obfuscated database to the original database. This section analyzes some of the DO

techniques based on their privacy properties.

6.1.1 Analysis of Random Data Perturbation

Random data perturbation techniques use random noise to obfuscate the data. The random-

ness makes the obfuscated database irreversible. The nonresemblance property is dependent

on the parameters used to generate the Gaussian or uniform noise distribution. If the noise

distribution is generated with a small deviation from the mean, the resulting obfuscated

data is similar to the original data, making the DO vulnerable to approximate privacy

breach. Nonresemblance of the obfuscated database is achieved by adding a noise distribu-

tion generated with a large deviation. The maximum deviation of the noise distribution is

55

limited by the usability property, which is evaluated in Section 6.2.

6.1.2 Analysis of Geometric Transformations

Geometric transformations fall under the category of linear transformation functions. These

functions are susceptible to partial reversibility and are the most vulnerable DO techniques.

The linearity property of this data obfuscation technique preserves the clustered nature

of the data, but also results in weak privacy protection. The assumption made here is

that the attacker is aware that the DO process is a linear transformation. In this case,

we prove that for a database with d ∗ n entries, where d is the number of attributes and

n is the number of records, the knowledge of only d + 1 affinely independent records in

the original matrix is sufficient to uniquely determine the linear transformation. Once

the transformation matrix is obtained, all the original data entries for which the obfuscated

values are available are compromised. Therefore, the Geometric transformations of [44] [45],

being instances of linear transformation functions, are compromised with the knowledge of

d+ 1 affinely independent records in the original data.

In the proof of Theorem 6.1.2, matrix A is the transformation matrix and x, y represent

the original and obfuscated database. Each xi, yi : i ∈ 1 . . . k, represent the values in one

attribute of the original and obfuscated databases respectively. The proof shows that with

the knowledge of only k + 1 records in the original database, the rest of the data can be

retrieved. The affine independence condition ensures that the data space is completely

covered. Because of this condition, if the records are affinely dependent, more than k + 1

of them are needed to determine the transformation function. As the number of records

needed for complete reversal is a function of the number of attributes involved in the data-

obfuscation process, a database in which only a few of the attributes are obfuscated would

be easier to reverse than one in which more of the attributes are involved in the obfuscation.

Theorem 1. Let f(x) = Ax+ b : Rk → Rk where

56

A =

aT1

aT2
...

aTk

∈ Rm∗k b =

b1

b2
...

bk

∈ Rk (8)

Suppose that

x1, . . . , xm ∈ Rk

y1, . . . , ym ∈ Rk

Ax1 + b = y1
...

...
...

...

Axm + b = ym

(9)

where m = k + 1, and the matrix given in (10) is invertible.

xT1 1

xT2 1

...
...

xTm 1

(10)

Let

A =

aT1

aT2
...

aTm

∈ Rk∗k b =

b1

b2
...

bm

∈ Rk (11)

If there exists any pair A and b that satisfies the set of equations given by (12), for

i = 1 . . . k, j = 1 . . .m, then it can be proved that A = A, b = b :

aTi xij + bi = yij (12)

57

Proof. First show the existence of A, b, such that Equations (12) are satisfied.

∀i

aTi x1 + bi = yi1
...

...
...

...
...

aTi xm + bi = yim

(13)

and ai and bi occur uniquely in Equation (13). For the big set of Equations (12)

to have a solution, it is sufficient to show that (13) has a solution for each i = 1 . . . k.

∀i = 1 . . . k ∈ (13), Equation (14) holds true.

xT1 1

...
...

xTm 1

ai

bi

=

yi1

...

yim

(14)

This has a solution if (15) is invertible, which is an assumption.

xT1 1

...
...

xTm 1

(15)

Therefore, ∃A and b satisfying (12). Now we need to show that Ax+b = Ax+b∀x ∈ Rk.

Since the matrix (15) is invertible, the matrix (15) form the basis for the vectors in the k*n

original matrix. Hence, ∀x ∈ Rk, ∃α1, . . . αm ∈ R, such that x = α1x1 + . . . + αmxm and

α1 + . . .+ αm = 1.

Ax+ b = A(
m

∑

j=1

αjxj) + b(
m

∑

j=1

αj) (16)

=

m
∑

j=1

αj(Axj + b) =

m
∑

j=1

αj(yj), sinceA, b satisfy(12)

=

m
∑

j=1

αj(Axj + b)

= A(

m
∑

j=1

αjxj) + b(

m
∑

j=1

αj)

= Ax+ b

⇒ A = A and b = b

Q.E.D

58

The proof of Theorem 6.1.2 indicates that linear transformation functions offer poor

privacy. These techniques can transform the data items in such a way that they bear no

resemblance the original data items. Geometric transformations offer weak privacy in terms

of reversibility, but offer strong privacy against approximate privacy breaches.

6.1.3 Analysis of NeNDS and Data Swapping

Data swapping and NeNDS fall under the category of non-linear bijective transformations.

In this type of transformation, reversibility is dependent on the minimum number of records

r that are sufficient for complete reverse engineering. In the case of data swapping, the

minimum value for r is half the number of elements in the data set. For each element in the

data set that is known a priori, the corresponding element involved in the swap is revealed.

NeNDS for distinct items

In the case of NeNDS, complete reversal of the entire data set would require the knowl-

edge of at least r = c − 1 distinct data elements for each neighborhood, where c is the

minimum size of a neighborhood. Even partial reversal of a single neighborhood would

require the knowledge of c − 1 of its elements. The fraction ci−1
ci
determines the ease of

reversal of a specific neighborhood i having exactly ci elements. The proof for this claim

is provided below. The goal of the attacker is to retrieve the original value corresponding

to one of the obfuscated items in a dataset with absolute certainty. We refer to this as a

targeted value attack.

Theorem 1. Let [X,Y] be the original and obfuscated datasets of size n respectively.

X = x1, x2, . . . , xn (17)

Y = y1, y2, . . . , yn (18)

Let yt|yt ∈ Y be the obfuscated item whose original value xt the attacker wants to retrieve

and let xt belong to the p
th neighborhood. Assume that all c items in the pth neighborhood are

distinct values. Assume that the attacker has complete knowledge of the NeNDS algorithm,

59

including the value of neighborhood size c used to produce Y , but no additional knowledge

except for a subset of the original data items. Then, the attacker needs to know at least

c− 1 original data items other than the targeted item to succeed in a targeted value attack.

Proof. Let [Xp, Yp] be the original and obfuscated data items in the p
th neighborhood.

Xp = xp1, xp2, . . . , xpc (19)

Yp = yp1, yp2, . . . , ypc (20)

We evaluate what can be determined with the knowledge of at most c− 2 original data

items.

The only information known to the attacker:

X ′
p = xp1, xp2, . . . , U, . . . , U, . . . , xpc (21)

Y = y1, y2, . . . , yn (22)

where X ′
p is a set of c− 2 original data items, and each U represents a missing value. The

goal of the attacker is to identify two missing original values and determine which of these

corresponds to the original value of yt.

Case 1: There exist two items in the obfuscated dataset yk, yl that fall within the interval

[min(Yp),max(Yp)]. In this case, the attacker knows that yk, yl are the missing items in the

neighborhood p. These two items can be placed in the neighborhood in two ways, both of

which produce the same obfuscated neighborhood Yp:

X ′
p = xp1, xp2, . . . , yk, . . . , yl, . . . xpc (23)

X ′′
p = xp1, xp2, . . . , yl, . . . , yk, . . . xpc (24)

60

Since there is no additional information that enables the attacker to accurately iden-

tify which of the two sequences X ′
p, X

′′
p is the original neighborhood, the attacker cannot

determine with certainty whether yk or yl is equal to xt.

Case 2: There are no items in the obfuscated data set that fall within the interval

[min(Yp),max(Yp)]. In this case, the missing items are one of the three pairs: min(Yp) −

2,min(Yp)− 1, max(Yp)+1,max(Yp)+2 or min(Yp)− 1,max(Yp)+1. For each pair, there

are two permutations of the neighborhood that could be the original neighborhood. In this

case, the original value corresponding to yt can be one of 6 values, and the attacker cannot

determine with certainty which of these corresponds to xt.

Case 3: One item in the obfuscated dataset lies in [min(Yp),max(Yp)]. Let this item be

denoted as ykl. In this case, the missing items can be one of two pairs: min(Yp)− 1, ykl or

ykl,max(Yp)+1. Each pair can fill up the missing positions in two ways. In this case, there

are 4 candidates corresponding to the original value for yt and again the attacker cannot

know the value of xt with certainty.

This shows that even with the knowledge of c− 2 items in a neighborhood, the attacker

cannot determine the original values of the remaining items with certainty.

NeNDS with duplicates

In the presence of duplicate entries, the minimum size of a neighborhood with m du-

plicates is c = 3m. In this case, retrieving the original value of even a single obfuscated

item requires a priori knowledge of at least 2m or 2c/3 original items in the neighborhood

containing the targeted original value. The minimum bound applies to cases where the

unknown items are all duplicates. If the missing items are distinct, the minimum amount

of information required is still c− 1 items in the original neighborhood p that contains the

targeted item. Even in the worst case for data with duplicate items, the attacker needs

to know at least 2/3 of the items in a neighborhood to be able to retrieve even a specific

targeted original value.

The poor privacy provided by linear transformation functions is proved in Section 6.1.2.

61

The cluster preserving property of the linear geometric transformations make them attrac-

tive for use in DO, but their vulnerability to reversal makes them unsuitable. The NeNDS

transformation technique offers a stronger privacy preserving capability. In GT-NeNDS,

The obfuscated data that results from Geometric transformations is obfuscated by NeNDS.

Combining it with a stronger transformation function such as NeNDS strengthens the weak

reversibility property of geometric transformations. The multi-tier obfuscation makes GT-

NeNDSmore difficult to reverse engineer than NeNDS. A comparison of the cluster retention

capability is analyzed experimentally in Chapter 6.2, proving that GT-NeNDS is an opti-

mum data obfuscation technique that provides robust data privacy as well as high data

usability.

6.2 Experiment Results

The reversibility analysis of NeNDS in Section 6.1.3 proves that this technique provides

stronger privacy protection than other techniques like data swapping and geometric trans-

formations. The Usability of data obfuscated using NeNDS is evaluated in this chapter.

Usability refers to the usefulness of the obfuscated data for data mining applications. Data

clustering techniques are commonly used in data mining applications to find patterns or sim-

ilar trends in databases. The clustering results obtained by applying clustering techniques

to obfuscated data are compared to the results obtained by applying the same techniques on

the original data. The distortion introduced due to the obfuscated data is used to measure

the usability of data obfuscation techniques.

6.2.1 Data Clustering Techniques

Data clustering techniques classify data into clusters or groups that are similar. Several data

clustering techniques have been implemented for efficient clustering. These techniques are

classified into two categories, hierarchical clustering and partitional clustering. Hierarchical

clustering techniques, successive clusters are derived from parent clusters in an iterative

manner. Partitional clustering techniques use a more direct approach and create

• Hierarchical clustering: Techniques that fall in this category build a hierarchy of

62

clusters. They begin by assuming each data item as a single cluster. Pairs of clusters

that are closest to each other are then combined in the next step, to form clusters of

size 2. This process is repeated until a single cluster is obtained, which includes all the

data items. The clusters are represented as a tree with the single cluster as the root,

and the single item clusters as the leaves. The rows of the tree represent the different

clusters. Rows closer to the root provide coarser clusters and those further down the

tree yield finer clusters with fewer elements. The Elbow criterion is commonly used

to determine the row of the tree that yields the optimum number and size of clusters.

The criterion states that the number of clusters should be chosen such that addition

of another cluster does add significant value. In a graph plot of the percentage of

variance versus the number of clusters, the point on the x-axis(number of clusters)

corresponding to the elbow region of the graph indicates the optimum number of

clusters. The distance measure used for combining data items is an important factor

in hierarchical techniques. Commonly used distance metrics are:

– Manhattan distance: This is also referred to as the ’city block’ metric and is

equal to the sum of absolute distances for each variable.

– Euclidean distance: This distance measure is obtained by computing the square

root of the sum of squares of the variables. The Euclidean distance is most

commonly used as the distance measure for hierarchical clustering.

Examples of hierarchical clustering techniques are the Single Linkage (SLINK), Com-

plete Linkage (CLINK), and Group Average (GAVE). These techniques differ in the

way the clusters are combined. SLINK combines clusters based on the shortest link

between any two data items in each cluster. CLINK first determines the furthest

points between pairs of clusters and combines the pair that has the smallest distance

between the extreme items. GAVE forms clusters based on the average value of the

items in each cluster rather than the minimum or maximum distances.

• Partitional clustering: Partitional clustering techniques differ from hierarchical tech-

niques in that the number of clusters are decided a priori, and clusters are created

63

based on the specified numberM of clusters. Clusters are created by selectingM rep-

resentatives or cluster centers, following which all the data items are assigned to one

of the cluster centers. The creation of cluster centers is dependent on the technique

used. Examples of partitional clustering techniques are:

– K-means: The variable K for the K-means algorithm is the number of clusters

that are to be created. The algorithm randomly generates k cluster centers and

assigns each data item to the nearest cluster. The process of generating cluster

centers and assigning the data items to each cluster is repeated until a bounding

criterion is reached.

– Quality Threshold: In this algorithm, the user specifies the maximum distance

between items instead of the number of clusters. The algorithm creates a cluster

for each point by including items one at a time until the threshold distance is

exceeded. The cluster containing the maximum number of items is preserved

and all other clusters are dissolved. Clusters are created for each point that is

not a part of the preserved luster and the process is repeated until there are no

more items.

– Fuzzy c-means: This algorithm is a derivative of the K-means algorithm. In this

technique, each item is associated with a probability co-efficient that indicated

the degree of being in each cluster k.

The usability of the obfuscated data is evaluated by applying both types of clustering tech-

niques on the data. The Group Average (GAVE) algorithm with Euclidean distance as the

distance metric is used to evaluate the performance of hierarchical clustering. The perfor-

mance of Partitional clustering techniques on the obfuscated data is studied by applying

the K-means clustering algorithm.

6.2.2 Experimental Set-up

The evaluation of usability is carried out using both real and synthetic data. Real data is

obtained from the UCI repository that provides sample data for data mining applications.

64

Two real databases are used in these experiments. The diabetes database containing 403

records and 19 that were collected to study the prevalence of obesity, diabetes, and other

cardiovascular risk factors in central Virginia for African Americans. Of these 403 records,

only 150 records were complete. The rest had missing entries in three or more fields. Hence,

only the 150 complete records are used in the experimental analysis. Of the 19 fields, 3 fields

are non-numerical and are not obfuscated. All the other fields are obfuscated. The Thyroid

database containing 7, 200 records and 21 was collected to study symptoms of hypo- and

hyper-thyroid conditions. Out of the 21 fields, 19 are binary fields and 6 fields are numeric-

continuous fields. The six fields that are continuous and numeric are obfuscated.

Synthetic data is generated using an open-source synthetic data generator code that

was developed as a part of IBM Almaden Research center’s Quest Data generator project.

The inherent clustering degree Cin of the database to be generated can be specified as

an input parameter, which enables the generation of databases with different clustering

patterns. The other input specified to the data generator is the number of records required.

The generator outputs a database with 9 fields and N records, where N is the number of

records specified as the input.

1. Salary generated with equal likelihood probability in the range 20,000 to 150,000

2. Commission if Salary ≥ 75000, Commission = 0 else as a number in the range 10000−

75000 with equal likelihood probability

3. Age in the range 20− 80

4. Education chosen from 0− 4

5. Car make of the car, chosen from 1− 20

6. Zipcode chosen from 9 available zipcodes

7. HouseValue a number in the range 0.5 ∗ k ∗ 100000− 1.5 ∗ k ∗ 100000 generated with

equal likelihood probability, where 0 ≤ k ≤ 9 and depends on the ZipCode

8. YearsOwned uniformly distributed from 1− 30

65

9. Loan uniformly distributed from 0− 500, 000

Of these nine attributes, Education, Car, Zipcode are categorical attributes and are

not considered for data obfuscation. The rest of the attributes are candidates for data

obfuscation.

The original database is denoted as DBorig. The set-up for each of the obfuscation

techniques is as follows.

• NeNDS: Each dataset (field/attribute) of the database is divided into NH neighbor-

hoods. The minimum number of data items in each neighborhood NHsize is an input

parameter to the algorithm. The obfuscated data sets are recombined to form the

obfuscated database, denoted as DBNeNDS .

• Geometric Transformations: The transformation vector, rotation vector for rotation-

based transformation, and a scaling vector for a scaling-based transformation are

specified as inputs, denoted as DBgeom.

• Geometrically transformed NeNDS (GT-NeNDS): Each data set of the divided into

NH neighborhoods using NeNDS. The NeNDS obfuscated database is multiplied by

a transformation vector to produce the GT-NeNDS obfuscated database, denoted as

DBGT−NeNDS .

The K-means clustering algorithm and the hierarchical Group Average algorithm are

applied to each of the databases, DBorig, DBNeNDS , DBgeom, and DBGT−NeNDS are. The

number of clusters for K-means is specified as an input to the algorithm.

The evaluation of the usability is performed in three parts. In the first part, a quali-

tative analysis of the clustering algorithm is carried out by comparing the performance of

the K-means algorithm on the original database, the database obfuscated using geometric

transformations, and on the database obfuscated using NeNDS. In the second part, a quan-

titative analysis of the distortions produced by the data obfuscation technique is evaluated

based on the Misclassification Error percentage. The performance of both hierarchical clus-

tering and K-means on data obfuscated by NeNDS is compared with the original results for

66

different neighborhood sizes. The third part evaluates the effect the neighborhood size of

NeNDS has on the misclassification error percentage and the computation time.

6.2.3 Qualitative Analysis

The preliminary evaluation of the cluster preserving property of NeNDS and GT-NeNDS

is performed here. In this set of experiments, the neighborhood size is fixed and equal

to the total number of records in the database. The aim of the experiments is to assess

the feasibility of using NeNDS transformed data for data mining. A qualitative analysis is

performed in this set of experiments and the results are plotted on a 2-D graph.

The clustering algorithms can produce clusters on N-dimensional data. However, for

the ease of visualizing the results, clustering is performed only on pairs of attributes in

this section. Three attributes of the synthetic database, Salary, Commission, and Age,

are obfuscated using NeNDS and rotation-based geometric-transformation. The three at-

tributes are denoted as D1, D2, D3 in the graphs. The K-means algorithm is then applied

to each pair of attributes of each of the databases DBorig, DBNeNDS , and DBgeom, and

the average of a 100 runs of K-means are plotted on a graph. Each set of graphs represents

a different value of K or number of clusters for the K-means algorithm.

Figures 7, 8, 9, 10, 11, and 12 show the K-means clustering results for the synthetic

database. In the graphs in Figures 7, and 8, the databases are generated with an inherent

cluster degree Cin = 2 and 10, 000 records. Rotation is performed with respect to the

pairs (D1, D2) and (D1, D3). The angle of rotation used for geometric transformation is

89.4o. The different colors indicate the clusters to which the data points belong. The

color codes in each graph are independent and only identify the different clusters in the

graph. In Figure 7, the K-means algorithm is run with K = 2. The algorithm divides the

data into two clusters. It is observed that two distinct data clusters are created for all three

databases DBorig, DBNeNDS , and DBgeom. This shows that for a small number of clusters,

NeNDS and geometric transformations do not distort the results of clustering. The results

of running K-means with K = 5 is shown in Figure 8. The results in the figure show that

in this case, the obfuscated databases perform as well as the original database even when

67

2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1
ll2

1
2

(a) Original Data

0 0.5 1 1.5 2 2.5 3

x 10
7

0

1

2

3

4

5

6
x 10

7

ll1rot

ll2
ro

t

1
2

(b) Rotated Data

2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1−NeNDS

D
2−

N
eN

D
S

1
2

(c) NeNDS transformed Data

Figure 7: Comparison of DO techniques for Large Database (N = 10, 000, Cin = 2,K = 2).

68

the number of clusters K is greater than the inherent clustering degree Cin.

The experiment results shown in Figures 9 and 10 are obtained by running a K-means

algorithm with K = 5 on a synthetic database generated with an inherent clustering degree

Cin = 5 and 2, 125 records. The angle of rotation between D1 and D2 is 89.9o. Figure 9

shows the results for D1 versus D2 for the original, rotated, and NeNDS transformed

databases. The clusters appear to be identical in all three cases. The graphs in Figure 10

show the results of the K-means algorithm with K = 5 plotted for D2 versus D3. The

angle of rotation is changed to 35.4 for this experiment. The rotation graph appears to be

significantly different from the other two. The reason for this is the angle of rotation. The

proof of cluster preservation is provided in Section 6.2.3.

The experiment results shown in Figure 11 and 12 use the same database as Figures 9

and 10. The angle of rotation between D1 and D2 is 89.9o. The results of clustering

D1 and D2 using K-means with K = 10 are shown in Figure 11. Some distortions in the

clusters can be observed in the NeNDS transformed data. Figure 12 shows similar results,

indicating that when the number of clusters is much larger than the inherent clustering

degree Cin of the database, the results are distorted slightly. The amount of distortion

introduced is evaluated in Section 6.2.3.

The results of clustering data obfuscated using GT-NeNDS are shown in Figures 13

and 14. Both the experiments are performed on real data. The databases are clustered

using K-means clustering with K = 5. The database used in Figure 13 uses two attributes

from the diabetes dataset that has 150 records. A scaling factor of 0.6 is used for scaled-

NeNDS and an angle of rotation 90o is used for rotated-NeNDS. It is observed that the

shape of the graph is similar in all three cases showing that clustering is preserved. The

thyroid database used in Figure 14 contains 7, 00 records. Only two of the attributes are

used in this experiment. The angle of rotation used for GT-NeNDS is 45o. The shapes of

the clusters appear to have changed in this case. A more quantitative evaluation of the

performance of NeNDS and GT-NeNDS is provided in the next section.

69

2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1
D

2

1
2
3
4
5

(a) Original Data

0 0.5 1 1.5 2 2.5 3

x 10
7

0

1

2

3

4

5

6
x 10

7

D1rot

D
2r

ot

1
2
3
4
5

(b) Rotated Data

2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1−NeNDS

D
2−

N
eN

D
S

1
2
3
4
5

(c) NeNDS transformed Data

Figure 8: Comparison of DO techniques for large database for (N = 10, 000, Cin = 2,K =
5).

70

2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1
D

2

1
2
3
4
5

(a) Original Data

0 2 4 6 8 10 12 14 16 18

x 10
6

0

1

2

3

4

5

6
x 10

7

D1rot

D
2r

ot

1
2
3
4
5

(b) Rotated Data

2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1−NeNDS

D
2−

N
eN

D
S

1
2
3
4
5

(c) NeNDS transformed Data

Figure 9: Comparison of DO techniques, for (D1,D2), (N = 2, 125, Cin = 5,K = 5).

71

0 1 2 3 4 5

x 10
5

20

30

40

50

60

70

80

D2
D

3

1
2
3
4
5

(a) Original Data

0 1 2 3 4 5 6

x 10
7

0

1000

2000

3000

4000

5000

6000

D2rot

D
3r

ot

1
2
3
4
5

(b) Rotated Data

0 1 2 3 4 5

x 10
5

20

30

40

50

60

70

80

D2−NeNDS

D
3−

N
eN

D
S

1
2
3
4
5

(c) NeNDS transformed Data

Figure 10: Comparison of DO techniques, for (D2,D3), (N = 2, 125, Cin = 5,K = 5).

72

2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1
D

2

1
2
3
4
5
6
7
8
9
10

(a) Original Data

0 2 4 6 8 10 12 14 16 18

x 10
6

0

1

2

3

4

5

6
x 10

7

D1rot

D
2r

ot

1
2
3
4
5
6
7
8
9
10

(b) Rotated Data

2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

D1swap

D
2s

w
ap

1
2
3
4
5
6
7
8
9
10

(c) NeNDS transformed Data

Figure 11: Comparison of DO techniques, for (D1,D2), N = 2, 125, Cin = 5,K = 10.

73

0 1 2 3 4 5

x 10
5

20

30

40

50

60

70

80

D2
D

3

1
2
3
4
5
6
7
8
9
10

(a) Original Data

0 1 2 3 4 5 6

x 10
7

0

1000

2000

3000

4000

5000

6000

D2rot

D
3r

ot

1
2
3
4
5
6
7
8
9
10

(b) Rotated Data

0 1 2 3 4 5

x 10
5

20

30

40

50

60

70

80

D2−NeNDS

D
3−

N
eN

D
S

1
2
3
4
5
6
7
8
9
10

(c) NeNDS transformed Data

Figure 12: Comparison of DO techniques, for (D2,D3), N = 2, 125, Cin = 5,K = 10.

74

(a) Original Data

(b) Scaled-NeNDS Data

(c) Rotated-NeNDS Data

Figure 13: Performance of GT-NeNDS using the Diabetes database with N = 150.

75

(a) Original Data

(b) Rotated-NeNDS Data

Figure 14: Performance of GT-NeNDS using the Thyroid database with N = 7,200.

76

6.2.4 Quantitative Analysis

A qualitative assessment of NeNDS and GT-NeNDS was performed in the previous section.

A more comprehensive and quantitative analysis of the distortions in clustering due to

NeNDS-based data obfuscation is performed here. A measure known as theMisclassification

Error Percentage is used to compute the distortion produced by data obfuscation. The

metric was proposed in [63] to evaluate the number of data points that have moved from

one cluster to another. The average number of clusters that have moved from their original

clusters is computed using Equation 25, where N is the total number of records in the data

set, X : X ∈ Dk,n represents a data item with n fields, K is the number of clusters into

which the data are grouped, and Clusteri(X) is the original cluster and Clusteri(X
′) is the

new cluster formed from the obfuscated data.

MCE =
1

N
∗

K
∑

i=1

(|Clusteri(X)| − |Clusteri(X
′)|) (25)

This section also evaluates the effect of the clustering results when different neighbor-

hood sizes are used for NeNDS and GT-NeNDS. The tests are carried out for minimum

neighborhood sizes NHsize varying from 1% of the database to 20% of the database for

real and synthetic data. The different neighborhood sizes for each database are listed in

Table 19. The actual size of some of the neighborhoods in the may be larger than the

minimum size because of one of two reasons

• The existence of duplicate entries in a dataset could potentially lead to the creation

of one or more neighborhoods with size greater than NHsize. For these experiments,

the threshold for permuting duplicates is set to be equal to the value of the minimum

neighborhood size parameter NHsize. If the number of duplicates is less than NHsize,

the duplicates are included in the permutation process. This is done by merging up

to 3 closest neighborhoods into one. For instance, let a data set has 1000 items and

the specified value for NHsize = 30 If the number of duplicates Ndupi
of any item i is

less than or equal to 10, then a neighborhood of size NHsize is sufficient to permute

the duplicate elements uniquely. If 10 < Ndupi
< 20, then the minimum size of the

77

neighborhood required for permuting each duplicate entry uniquely is 3 ∗Ndupi
= 60

items. The neighborhood containing the duplicate items is merged with its closest

neighbor to form a neighborhood of size 60. For values of 10 < Ndupi
< 30, the

minimum size of the neighborhood required is 90, which is three times NHsizemin
. In

this case, the neighborhood containing the duplicate items is merged with two of its

closest neighbors. For all items i for which Ndupi
> NHsize, the duplicate items are

retained without permuting. The neighborhood size sets a bound on the permissible

level of anonymity to the set. In this case, even if the attacker is aware of the exact

value of the data item, presence of Ndupi
instances protects the identity of the record.

The maximum size of any neighborhood in a data set is limited to three times the

specified value NHsize.

• If the minimum neighborhood size NHsize specified is not a factor of the total size

of the data set, one of the neighborhoods is likely to have fewer than the specified

number of elements. This situation is also likely in the presence of duplicate items in

the data set. In these cases, the neighborhood is merged with a neighborhood closest

to it.

The maximum number of neighborhoods into which the data sets are partitioned are

NH = b N
NHsize

c, where N is the number of items in the data set. The maximum num-

ber of neighborhoods for each of the databases specified in Table 19 are [100, 50, 20, 10, 5]

corresponding to the different neighborhood sizes [1%, 2%, 5%, 10%, 20%] of N respectively.

Each data set of the database is divided into a maximum of NH neighborhoods. NeNDS

is applied to each neighborhood of each data set to produce NH obfuscated neighborhoods

for every data set.

The performance of hierarchical and K-means clustering algorithms are evaluated in this

section. Table 20 shows the results of applying K-means withK = 5 on a synthetic database

generated with an inherent clustering degree Cin = 10, containing 3, 000 records. The six

non-categorical attributes are obfuscated using NeNDS with varying neighborhood sizes

(NHsize = [1%, 2%, 5%, 10%, 20%]). The results are averaged over 100 runs of the K-means

78

Table 19: Neighborhood sizes.

Database 1 % 2 % 5 % 10 % 20 %

Synthetic (3000) 30 60 150 300 600

Synthetic (5000) 50 100 250 500 1000

Thyroid (7200) 72 144 360 720 1440

algorithm. The six non-categorical fields in the database are obfuscated using NeNDS for

different neighborhood sizes to yield 5 NeNDS obfuscated database DBNeNDSi
, i ∈ [1, 5].

For geometric transformation, a rotation vector is generated each time, which is multiplied

to the original database to produce one database DBgeom. The datasets DBNeNDSi
are

geometrically transformed by multiplying the databases by a randomly generated rotation

vector to produce 5 GT-NeNDS obfuscated databases DBGT−NeNDSi
. The three columns

in the table represent theMCE% resulting from clustering data obfuscated using geometric

transformation (rotation), NeNDS, and GT-NeNDS respectively. Since geometric transfor-

mations are independent of the number of neighborhoods, all the entries in the first column

are identical in the table. A 0.04% misclassification error for geometric transformation im-

plies that in the database containing 3000 records and 6 fields, an average of one record

is displaced to a different cluster as a result of the geometric transformation. For NeNDS-

transformed data, the results are similar and show that an average of 1 record moves from

one cluster to another as a result of the transformation. The displacement of clusters for

GT-NeNDS is similar to NeNDS, indicating that all three obfuscation techniques perform

similarly for this set of experiments. There is a slight change in the MCE percentage for

different neighborhood sizes. However, the actual number of records displaced is still the

same.

In Table 21, K-means clustering is performed on the same databases as the experiment

above. The only parameter changed here is the number of clusters K that is specified

for creating clusters. For this set of experiments, K-means clustering is performed with

K = 10, which is equal to the inherent degree of clustering Cin of the generated database.

TheMCE% for all the obfuscated databases are higher than the values obtained for K = 5.

79

Table 20: Clustering versus neighborhood size using K-Means, K=5, N = 3000.

Neighborhood Size Rotation NeNDS GT-NeNDS

30 0.04 0.03 0.03

60 0.04 0.03 0.03

150 0.04 0.03 0.04

300 0.04 0.04 0.04

600 0.04 0.04 0.04

For the geometrically transformed database, the MCE% is increased to 0.13%. For larger

number of neighborhoods NeNDS is observed to perform marginally better than geometric

transformations. The performance of GT-NeNDS is slightly worse than the other two

algorithms. However, the actual change in the number of records that are displaced is less

than 1 record in the 3000 record database. The average number of records that are displaced

for all the databases is 4.

Table 21: Clustering versus neighborhood size using K-Means, K=10, N = 3000.

Neighborhood Size Rotation NeNDS GT-NeNDS

30 0.13 0.12 0.13

60 0.13 0.12 0.13

150 0.13 0.13 0.14

300 0.13 0.14 0.14

600 0.13 0.14 0.14

The effect on the clusters when the number of clusters for K-means exceeds the clustering

degree Cin is evaluated and shown in Table 22. When the number of clusters K exceeds

the degree of clustering in the database, the clusters produced by the K-means algorithm

are not optimal. This is because some of the resulting clusters are likely to be very different

from the inherent clustering of the data. Algorithms for predicting the correct number

of clusters have been proposed and implemented due to this drawback of K-means. In

this dissertation, the aim of the experiments is to study the distortion in the results of

clustering, which includes the distortions produced for the correct number of clusters as

80

well as distortions produced when the number of clusters are less or more than the exact

number of clusters. The value of K for this set of experiments is 15, which implies that the

K-means algorithm creates 15 clusters from the database that has a clustering degree of

10. The results in Table 22 show that the MCE% for geometrically transformed databases

is 0.27. This is almost twice the MCE% for K-means with K = 10. The distortions

result from the less than optimal selection of K. NeNDS has an average MCE% = 0.27.

The difference between the smallest and largest MCE% is 0.04, which indicates that the

choice of different values for NH changes the clustering results by a maximum of 1 record.

The average MCE% for GT-NeNDS ranges from 0.27 − 0.31, which is similar to NeNDS.

It is observed that the change in MCE% are almost negligible for different number of

neighborhoods.

Table 22: Clustering versus neighborhood size using K-Means, K=15, N = 3000.

Neighborhood Size Rotation NeNDS GT-NeNDS

30 0.27 0.27 0.27

60 0.27 0.26 0.29

150 0.27 0.29 0.31

300 0.27 0.30 0.30

600 0.27 0.29 0.31

The results indicate that for this set of experiments the distortions produced by ob-

fuscating the data are very small when the data are clustered using K-means clustering

irrespective of the size of the neighborhoods.

Tables 23, 24 and 25 show the effect of obfuscated data on the performance of hierarchical

clustering algorithms. The three sets of experiments carried out for K-means clustering are

repeated for evaluating the distortions produced when hierarchical clustering is used. The

GAVE algorithm is used for hierarchical clustering and the resulting tree of clusters are cut

at the rows corresponding to K = 5, K = 10 and K = 15. The results of the hierarchical

clustering tree corresponding to K = 5 are shown in Table 23. For all the databases,

obfuscated using geometric transformation, NeNDS and GT-NeNDS, the average MCE%

81

for all the databases is 0.08. The MCE% for the geometrically transformed database is

0.06%. For NeNDS, the error percentage varies between 0.06−0.08. The changes inMCE%

with respect to the number of neighborhoods is random and the actual variation produced

is extremely small. GT-NeNDS performs similar to NeNDS with the only change being a

slightly higher MCE%.

Table 23: Clustering versus neighborhood size using Hierarchical Clustering,K = 5, N =
3000.

Neighborhood Size Rotation NeNDS GT-NeNDS

30 0.06 0.07 0.08

60 0.06 0.06 0.07

150 0.06 0.07 0.09

300 0.06 0.08 0.0.08

600 0.06 0.07 0.0.08

Table 24 shows the results of the hierarchical cluster tree for K = 10. This is also equal

to the inherent clustering degree of the database. The results obtained for hierarchical

clustering are similar to the results produced by applying the K-means clustering algorithm

on the databases as shown in Table 21. Here again, NeNDS and GT-NeNDS transformed

databases perform slightly worse than the geometrically transformed databases. In one of

the experiments, with 150 records, NeNDS performs marginally better than the geometri-

cally transformed database.

Table 24: Clustering versus Neighborhood size using Hierarchical Clustering, K = 10,
N = 3000.

Neighborhood Size Rotation NeNDS GT-NeNDS

30 0.14 0.12 0.14

60 0.14 0.14 0.14

150 0.14 0.13 0.14

300 0.04 0.14 0.15

600 0.04 0.15 0.15

In Table 25 the hierarchical cluster tree is cut at the row corresponding to K = 15. The

82

number of clusters created is greater than the inherent clustering degree of the generated

database. Hierarchical clustering behaves similar to K-means when the number of clusters

exceeds the optimum clustering degree of the database. The results of this set of experiments

shows that the distortions produced when the number of clusters created is greater than

the inherent clustering are higher than the distortions resulting from clustering the data

with K being less than or equal to the clustering degree. The average distortion for the

geometrically transformed databases is MCE% = 0.28. As was the case with K-means, the

results of the hierarchical clustering on the obfuscated databases indicates that theMCE%

with K = 15 is almost twice the value for K = 10. The Elbow criterion for the GAVE

algorithm is found to be 9 − 11. This shows that the optimum number of clusters were

formed for K = [9, 11].

Table 25: Clustering versus neighborhood size using Hierarchical Clustering, K = 15,
N = 3000.

Neighborhood Size Rotation NeNDS GT-NeNDS

30 0.28 0.26 0.29

60 0.28 0.27 0.29

150 0.28 0.28 0.31

300 0.28 0.30 0.34

600 0.28 0.30 0.31

Tables 26, 27, and 22 show the effect of the neighborhood sizes on clustering for a

larger database N = 5, 000. The inherent clustering degree for this data is Cin = 20. The

performance of K-means and hierarchical for K = [10, 15, 20] are shown. For K = 10,

the results in Table 26 show that the MCE percentage for geometrically transformed data

is 0.11%. For this database, the error corresponds to a displacement of 5 records on an

average. For NeNDS and GT-NeNDS the average value of the distortions is less than one in

all but one case, where the average distortion corresponds to 5− 7 records being displaced

from their original clusters.

The results in Table 27 are obtained by applying K-means clustering to the databases

with K = 15. The values of K is still less than the inherent clustering degree. The

83

Table 26: Clustering versus neighborhood size using K-Means, K = 10, N = 5, 000.

Neighborhood Size Rotation NeNDS GT-NeNDS

50 0.11 0.11 0.12

100 0.11 0.12 0.15

250 0.11 0.11 0.12

500 0.11 0.13 0.14

1000 0.11 0.14 0.14

results here indicate that on an average, one record is displaced from its original cluster

in a database with 5, 000 records. Similar results are obtained when the value of K is

increased to 15. The average MCE% for these databases is MCE% = 0.26. The average

performance of the geometrically transformed database and NeNDS-transformed databases

are slightly lower than the average. However, NeNDS performs marginally better than

geometric transformations for NH = 50, 100 neighborhoods. The performance of GT-

NeNDS is marginally higher than the average.

Table 27: Clustering versus neighborhood size using K-Means, K = 15, N = 5, 000.

Neighborhood Size Rotation NeNDS GT-NeNDS

50 0.25 0.24 0.26

100 0.25 0.23 0.27

250 0.25 0.26 0.26

500 0.25 0.26 0.28

1000 0.25 0.27 0.28

Table 28: Clustering versus neighborhood size using K-Means, K = 20, N = 5, 000.

Neighborhood Size Rotation NeNDS GT-NeNDS

50 0.32 0.30 0.32

100 0.32 0.31 0.33

250 0.32 0.31 0.34

500 0.32 0.35 0.34

1000 0.32 0.34 0.35

84

Tables 29, 30, and 31 show how theMCE% varies when hierarchical clustering is applied

to NeNDS transformed data, geometrically transformed data, and GT-NeNDS. The cluster

tree resulting from GAVE is cut at the appropriate rows corresponding to K = [10, 15, 20].

The results obtained for hierarchical clustering have the same trends as K-means. In all three

cases, NeNDS performs slightly better than geometric transformations for NH = 100, 250,

but the average value ofMCE% is equal to or slightly greater than theMCE% for geometric

transformations. The performance of GT-NeNDS is marginally worse than NeNDS and

geometric transformations.

Table 29: Clustering versus neighborhood size using Hierarchical Clustering, K = 10,
N = 5, 000.

Neighborhood Size Rotation NeNDS GT-NeNDS

50 0.11 0.13 0.13

100 0.11 0.12 0.13

250 0.11 0.12 0.13

500 0.11 0.13 0.14

1000 0.11 0.13 0.14

Table 30: Clustering versus neighborhood size using Hierarchical Clustering, K = 15,
N = 5, 000.

Neighborhood Size Rotation NeNDS GT-NeNDS

50 0.24 0.26 0.27

100 0.24 0.25 0.25

250 0.24 0.24 0.26

500 0.24 0.23 0.26

1000 0.24 0.25 0.27

In Table 31 it is seen that for geometrically transformed databases, the MCE% = 0.36

indicating that 15 − 16 records are displaced from their original clusters as a result of

data obfuscation. For NeNDS and GT-NeNDS, the MCE% = 0.35 − 0.39. In the best

case, for NH = 100, 250, the performance of NeNDS is marginally better than geometric

transformations. The difference between the maximum MCE% = 0.39 and the average

85

Table 31: Clustering versus neighborhood size using Hierarchical Clustering, K = 15,
N = 5, 000.

Neighborhood Size Rotation NeNDS GT-NeNDS

50 0.36 0.34 0.39

100 0.36 0.35 0.39

250 0.36 0.34 0.38

500 0.36 0.37 0.39

1000 0.36 0.36 0.37

value MCE% = 0.37 is 0.02, which corresponds to a difference of 1 record in the database

The results obtained when clustering algorithms K-means and hierarchical clustering

are evaluated in the following sets of experiments. The Thyroid database with 21 fields and

7, 200 records is used for evaluation. In Table 32, the obfuscated databases are clustered

using K-means clustering with K = 20. The inherent clustering degree for this database is

not known as it is a real database. The results show that for all the obfuscated databases

the MCE% is 0.32. The geometrically transformed database results in an MCE% that is

slightly less than the average distortion. In this experiment, both NeNDS and GT-NeNDS

perform slightly worse than geometric transformation.

Table 32: Clustering versus neighborhood size using K-Means, K = 20, N = 7, 200.

Neighborhood Size Rotation NeNDS GT-NeNDS

72 0.28 0.30 0.31

144 0.28 0.30 0.32

360 0.28 0.30 0.32

720 0.28 0.32 0.33

1440 0.28 0.32 0.34

Table 33 shows the results of applying K-means clustering to the obfuscated databases

with K = 30. The results indicate MCE of [0.45%, 0.49%, 0.51%] for the obfuscated

databases. The increase in MCE% is attributed to the increase in the number of clus-

ters K for K-means from 20 to 30. Since the database used in this experiment is a real

86

database, the inherent clustering of the database is not known a priori. However, the

results seem to indicate that the value of K is larger than the inherent clustering degree.

Table 33: Clustering versus neighborhood size using K-Means, K = 30, N = 7, 200.

Neighborhood Size Rotation NeNDS GT-NeNDS

72 0.45 0.49 0.48

144 0.45 0.49 0.49

360 0.45 0.48 0.49

720 0.45 0.5 0.51

1440 0.45 0.5 0.54

Table 34 shows the results of applying K-means to the obfuscated databases with K =

40. The results obtained in this case are similar to the results in Table 33. The average

MCE% in this case is 0.85. The change in number of neighborhoods changes the MCE%

only by a small amount. The worsening of the MCE% for K = 40 strengthens the guess

that the number of clusters for K-means clustering is larger than the inherent clustering of

the database.

Table 34: Clustering versus neighborhood size using K-Means, K = 40, N = 7, 200.

Neighborhood Size Rotation NeNDS GT-NeNDS

72 0.82 0.83 0.86

144 0.82 0.83 0.90

360 0.82 0.85 0.91

720 0.82 0.91 0.91

1440 0.82 0.90 0.91

Tables 35, 36, and 37 show the results of performing hierarchical clustering on the

Thyroid database containing 7, 200 records and 31 fields. The three tables show the results

of the GAVE clustering tree cut at the rows corresponding to K = 20, K = 30, and

K = 40. The Elbow for GAVE is found to be between 20−22 clusters. The results obtained

for hierarchical clustering resembles the performance for K-means clustering very closely.

In each case, the results for the geometrically transformed database are marginally better

87

than NeNDS and GT-NeNDS. The actual difference between the MCE% for the best and

worst cases is less than 0.1 for all cases. The number of neighborhoods does not have a

significant impact on the performance of the clustering algorithms.

Table 35: Clustering versus neighborhood size using Hierarchical Clustering, K = 20,
N = 7, 200.

Neighborhood Size Rotation NeNDS GT-NeNDS

72 0.31 0.33 0.35

144 0.31 0.32 0.35

360 0.31 0.33 0.34

720 0.31 0.34 0.36

1440 0.31 0.33 0.34

Table 36: Clustering versus neighborhood size using Hierarchical Clustering, K = 30,
N = 7, 200.

Neighborhood Size Rotation NeNDS GT-NeNDS

72 0.47 0.46 0.48

144 0.47 0.49 0.49

360 0.47 0.48 0.49

720 0.47 0.49 0.50

1440 0.47 0.49 0.50

The results indicate that the performance of geometric transformations, NeNDS, and

GT-NeNDS are extremely close to the results without obfuscation when the number of

clusters created is close to the optimal value. There is a slight worsening of the performance

when the granularity is increased. However, as seen from the tables, the error percentage

even in the worst case is less than 1% of the database.

6.2.5 Neighborhood Size and Time Complexity

The distortions produced when clustering algorithms are applied to obfuscated data have

been evaluated for two types of clustering techniques- K-means and hierarchical clustering.

The results of the experiments show that NeNDS and GT-NeNDS produce very small

88

Table 37: Clustering versus neighborhood size using Hierarchical Clustering, K = 40,
N = 7, 200.

Neighborhood Size Rotation NeNDS GT-NeNDS

72 0.81 0.83 0.85

144 0.81 0.83 0.87

360 0.81 0.85 0.88

720 0.81 0.87 0.89

1440 0.81 0.84 0.84

distortions to the inherent clustering of the databases. Both types of clustering technique

produced similar results for all the experiments. The effect of varying the neighborhood

size for NeNDS analyzed for two types of clustering algorithms and different neighborhood

sizes. Clustering experiments were carried out for different neighborhood sizes to evaluate

the effect of different neighborhood sizes on the creation of clusters. The experiments

showed that the distortions introduced by changing the neighborhood sizes are very small.

Figure 15 shows a graph of the MCE% versus the number of neighborhoods, where the

number of neighborhoods is increased from 0−100 for the synthetic database generated with

an inherent clustering Cin = 10 and 3, 000 records. The number of neighborhoods NH is

expressed as b N
NHsize

c, where NHsize is the neighborhood size and N is the size of the data

set. The graph shows the MCE% varies only slightly when the number of neighborhoods

are increased from 0− 100. The difference between the extreme values of MCE% is 0.02%

indicating that by changing the neighborhood size from 0− 100 alters less than 1 record in

the database. Plotting the MCE% versus number of neighborhoods for different databases

produced similar results. This shows that the choice of neighborhood size NH size or the

number of neighborhoods NH has little or no effect on the misclassification error.

The size of the neighborhood and the number of neighborhoods for NeNDS does not af-

fect theMCE% significantly. However, a large neighborhood is likely to take longer time to

compute the permutation candidate than a smaller neighborhood. Figure 16 shows a graph

of the Computation time (t) versus the number of neighborhoods for a synthetic database

containing 3, 000 records and an inherent clustering degree Cin = 10. The graphs show

89

0 20 40 60 80 100
Number of Neighborhoods

0

0.05

0.1

0.15

0.2

0.25
M

isc
la

ss
ifi

ca
tio

n
Er

ro
r P

er
ce

nt
ag

e
(M

CE
%

)

Number of clusters: 10, Number of records: 3000

Figure 15: Effect of misclassification error on neighborhood size.

that the computation time decreases exponentially when the number of neighborhoods are

increased. When the neighborhood size NH = 1, each data set (field) in the database is

treated as a single neighborhood with 3, 000 data items. Increasing the number of neighbor-

hoods decreases the size of each neighborhood. This results in reducing the size of the tree

for computing the optimum permutation candidate. Although the graph is exponential in

nature, the computation time for the worst case (NH = 1) is a finite number and was com-

pleted in 1, 700 seconds. This is enabled by the heuristic branch and bound tree traversal

algorithm for NeNDS. It is seen that by increasing the number of neighborhoods by a small

number, a significant reduction in computation time is obtained. Choosing a neighborhood

size up to 1/3 of the entire data set will still result in a reasonably fast obfuscation that

provides good privacy and preserves clustering.

6.2.6 Clustering Randomized Data

The distortion of clusters produced by clustering data obfuscated using random data pertur-

bation is evaluated to assess the usability of randomized data. The RDP algorithm takes as

90

0 10 20 30 40 50 60 70
Number of Neighborhoods

0

500

1000

1500

2000

Ti
m

e
(s

ec
on

ds
)

Number of clusters: 10, Number of records: 3000

Figure 16: Effect of computation time on neighborhood size.

input the mean and standard deviation [µ, σ] and generates a Gaussian distribution, which

is then added to the original data set. Following this, a second Gaussian distribution with

the same parameters is generated and subtracted from the noise added data set. The final

database consists of the datasets to which a noise distribution is added and a second distri-

bution with the same parameters is subtracted. Four randomized databases are generated,

each with a different set of parameters for the noise distribution. The parameters chosen are

[0, 1], [0, 10], [0, 20], [1, 5]. The first parameter produces a noise distribution with 0 mean and

a standard deviation of 1. The resulting randomized data sets by a very small value. The

second and third parameter sets generate noise distributions that have 0 mean but larger

deviations. The last parameter generates a skewed distribution because of the non-zero

mean. The experiments are carried out for the two synthetic databases, N = [3000, 5000]

and the real database with 7, 200 records of Thyroid data.

Table 38 and 39 show the MCE% results when the randomized databases are clustered

using the K-means clustering and hierarchical clustering algorithms respectively for K =

[10, 20, 30]. The misclassification error is very small 0.01% for randomized data with a

91

small noise distribution [0.1]. For all other cases, the MCE% is much larger range from

13.5%−45.6%. The misclassification error is worse when the number of clusters is increased.

The large percentage of data items that are displaced from their original clusters makes

randomized DO unsuitable for clustering-based data mining applications. Randomization

techniques provide good clustering for small values of σ. However, the privacy risk resulting

from small offsets, as discussed in Section 4.3 makes it unfeasible to use such small offsets

for data randomization.

Table 38: MCE % for randomized data using K-means clustering.

Database [0, 1] [0, 10] [0, 20] [1, 5]

K-means K = 10

3000 0.02 13.5 11.4 15.5

5000 0.05 12.3 14.4 12.37

7200 0.05 18.1 12.32 11.2

K-means K = 20

3000 0.04 0.18 22.3 31.7

5000 0.07 0.22 28.2 33.9

7200 0.08 25.3 32.6 35.4

K-means K = 30

3000 0.1 33.2 45.0 44.5

5000 0.08 39.6 46.4 45.6

7200 0.07 30.3 43.7 42.1

6.2.7 Cluster Preservation Performance of DO Techniques

Table 40 shows a summary of the misclassification error for the different data obfuscation

techniques. Random Data Perturbation (RDP) is performed by adding a noise vector of

mean µ = 0 and variance σ2 = 100. The angle of rotation for rotation-based geometric

transformation is 89.4 degrees. The value of k for NeNDS as well as GT-NeNDS is computed

by finding the average performance for NH = [50, 100, 150, 300, 1000]. The size of the

database used for comparison is N = 5, 000, and the inherent clustering factor Cin = 10.

The error percentages resulting from k-means and hierarchical clustering are comparable,

92

Table 39: MCE % for randomized data using Hierarchical Clustering.

Database [0, 1] [0, 5] [0, 20] [1, 5]

Hierarchical Clustering K = 10

3000 0.0 13.1 14.2 13.2

5000 0.08 12.1 13.1 13.8

7200 0.07 12.0 13.3 14.1

Hierarchical Clustering K = 20

3000 0.02 19.1 18.4 20.4

5000 0.07 23.8 22.4 21.5

7200 0.06 21.9 24.8 25.4

Hierarchical Clustering K = 30

3000 0.03 32.3 45.0 41.8

5000 0.05 36.4 41.7 45.5

7200 0.05 33.6 45.2 42.7

and an average of the two results is used in the table. The table provides a comparison of

the misclassification error as a percentage. It is observed that RDP performs poorly for all

cluster sizes, whereas the other obfuscation techniques are comparable. Although rotation

provides the smallest error percentage, its vulnerability to reverse engineering makes it

unusable for the data obfuscation of sensitive data. The performance of the hybrid data

obfuscation approach is observed to be almost as good as geometric transformations. The

robust privacy-preservation capability of GT-NeNDS makes it a more suitable candidate

for data protection. The performance of the obfuscation techniques degrade if the number

of clusters required is chosen as a number much larger than the inherent clustering of the

data, as can be noted in the case where the number of clusters is 20. This is twice the value

of C. The loss of information in this case is a necessary condition for privacy preservation

to prevent individual records from being exposed. The results of the preliminary analysis

indicate that NeNDS and GT −NeNDS provide cluster-preserving obfuscated data that is

difficult to reverse-engineer.

The experimental analysis provided here shows that the cluster-preservation capability

of NeNDS is comparable to the inherent cluster-preserving geometrical transformations.

93

Table 40: Comparison of misclassification error %.

Obfuscation RDP RDP Rotation NeNDS GT-NeNDS
- [0,10] [0,1] Random Average Average
Clusters

2 3.1 0.0 0.0 0.0 0.0

3 8.3 0.02 0.02 0.01 0.02

5 13.5 0.03 0.04 0.04 0.04

10 18.1 0.05 0.13 0.14 0.14

20 22.3 0.18 0.45 0.51 0.59

40 42.1 0.25 0.87 0.92 0.95

60 47.3 0.21 1.12 1.64 1.71

The usability of a data obfuscation technique is defined in terms of its preservation of sta-

tistical distribution characteristics as well as cluster-preservation capability. An ideal ob-

fuscation technique would be one that preserves multi-variate distribution characteristics,

but such a technique would be vulnerable to privacy breaches. The next important statis-

tical characteristics to be preserved are marginal distributions. NeNDS preserves marginal

distributions of variables because the data is not “modified’.’ The cluster-preservation ca-

pability of NeNDS is analyzed experimentally in this section and proved to be as good as

geometrical transformations. The robustness of the privacy preservation of NeNDS is stud-

ied in Section 6.1.3. Although NeNDS falls under the non-linear bijective transformation,

the large fraction of minimum information required for complete as well as partial reversal

strengthens the privacy-preservation capability of this technique, making it very difficult to

reverse engineer.

6.3 Comparison of Data Obfuscation Techniques

The DO metrics Data Usability and Data Privacy proposed in this section measure the

strength of a DO technique. Table 41 gives a detailed comparison of the performance of

different DO techniques. The DO techniques are listed in the first column of the table.

94

The techniques that are compared here are Data randomization with small and large off-

sets (Random-Low, Random-High), Data Anonymization with small and large values for

k (k-Anon-Low, k-Anon-High), Data Swapping, NeNDS, Geometric transformations (Geo-

Trans), and GT-NeNDS. The metrics used for comparison form the rows of the table. The

Displacement metric indicates the similarity between the absolute values of the original and

obfuscated data. A low displacement implies high vulnerability to approximate privacy

breaches. The Reversibility metric evaluates the amount of information required for retriev-

ing the original data from the obfuscated data. The Stat metric evaluates the extent to

which the statistical distributions of the original data are maintained. The cluster preser-

vation property of the DO techniques is measured by the Cluster metric.

Table 41: Comparison of DO techniques.
Obfuscation Displacement Reversibility Stat Cluster

Random-Low Very Low Very Difficult Good Fair

Random-High High Very Difficult Good Poor

k-Anon-Low Very Low Easy Good Fair

k-Anon-High High Difficult Fair Poor

Data Swapping Low Moderate bN2 c Moments Good

NeNDS Low Difficult b cNc+1c Moments Very Good

Geo-Trans High Easy d+ 1 Poor Very Good

GT-NeNDS High Difficult > b cNc+1c Poor Very Good

Data randomization with small offsets (Random-Low) and high offsets (Random-High) is

robust to absolute reversibility. The small offset of Random-Low makes it vulnerable to

approximate privacy invasion and unsuitable for applications where approximate informa-

tion is considered a breach. The large offset of Random-High makes it unsuitable for data

95

mining applications because of the distortion of the original clusters. Data anonymization

for small values of k(k-Anon-Low) and large values of k(k-Anon-High) perform similar to

Data randomization and are unsuitable for data that are used for data mining applications.

The DO techniques Data swapping, NeNDS, Geometric transformations, and GT-NeNDS

can be used for obfuscation in data mining applications. Data swapping and NeNDS are

vulnerable to approximate reversal. Data swapping is vulnerable to absolute reversibility

only if bN2 c of the data elements in a database of size N are known a priori. The amount of

a priori information that leads to complete reversal of a neighborhood of NeNDS is b cNc+1c,

where N is the number of records in the database, and c is the size of each neighborhood

that is permuted. Reversal of an entire dataset requires the knowledge of the permutation

pattern of all the neighborhoods into which the data is distributed. Geometric transfor-

mations offer very little resistance to privacy and are unsuitable for use by themselves.

GT-NeNDS, which combines NeNDS and Geometric transformations, provides robust pro-

tection against approximate privacy invasion as well as absolute reversibility. GT-NeNDS

preserves the original clusters and also preserves moments over individual datasets.

The comparison chart for the different DO techniques indicates that a single DO tech-

nique cannot be used as a universal solution for all databases. The proposed metrics provide

a baseline for selecting the optimum DO technique for a given database application.

96

CHAPTER VII

PRIVACY PRESERVING COLLABORATIVE FILTERING

Automated Collaborative Filtering (CF) applications are being widely used by E-commerce

applications for predicting items that might be of interest to users based on the recom-

mendations of other users with similar purchase histories. CF systems store inventories of

items, transaction records of items purchased by users, ratings provided by users for items

purchased by them, as well as demographic information of the users themselves. Some of

the information fields in the User database include Age, Location, Occupation, which may

be used to identify individual users and thus violating personal privacy. Furthermore, the

lack of sufficient safeguards over the protection of user data raises concerns over individual

privacy and prevents users from providing more than the minimal amount of information

required to access the E-commerce services.

7.1 The Privacy Framework

The model for privacy preserving collaborative filtering is explained in detail in this section.

The privacy framework serves as a wrapper that obfuscates the relevant fields of data before

they are fed to the CF engine. A diagrammatic view of the model is shown in Figure 17

using an example having three meta-store fronts [MS1,MS2,MS3] such as Amazon, C-

net, Yahoo that wish to share information in a privacy preserving way. Each MSi has three

databases, a User-info database that stores demographic information regarding its users,

an Item-info database that stores information regarding the items in its inventory, and a

Ratings-info database that stores information regarding the ratings provided by the users

on the items purchased. The databases are obfuscated and sent to the central CF server.

The CF engine combines the information from all three meta-store fronts and creates three

aggregated databases as shown. Recommendations are made for all the unrated items for

each record in the ratings database. The aggregate database is then divided back into the

97

three individual databases, which are now populated with recommendations for unrated

items. The databases are then sent back to the meta-store fronts. The stores provide

recommendations to their users based on the results obtained from the CF engine. Since

the databases are dynamic in nature, theMSi obfuscate the updated databases periodically

and send them to the CF server so that the recommendations are made on the most recent

ratings made by individuals.

Figure 17: Privacy preserving framework for CF.

7.1.1 Data Selection

Figure 17 shows that the CF engine performs predictions on the obfuscated data. For the

recommendations to be accurate, the obfuscated data should preserve maximum information

content while still ensuring data privacy. In this section, the problem of privacy is analyzed

with respect to each database to determine which of the fields need to be obfuscated. Each

98

field in the database is referred to as a dataset. The decision to obfuscate a dataset is made

based on the following questions

1. Can the dataset be used to single out an individual in the database? An example

of such a dataset is the social-security number or the name of an individual. Such

information is highly susceptible to privacy breach and should be removed from the

database if possible, or at least obfuscated with a robust data obfuscation technique.

2. Does the dataset contain any information that can be used in combination with other

datasets to identify an individual? Fields such as Age and Location in any database

can be used in conjunction with other fields to identify one or more records. Such

fields can lead to indirect privacy breach and need to be obfuscated.

3. Can a priori knowledge of some of the entries in the dataset lead to identification of

an individual’s entire record?. Knowledge of an individual’s exact preference on a set

of items can be used to track down personal information of the individual. Such fields

need to be obfuscated to protect the identity of the individuals in the database.

If the answer to any of these questions is Yes, then it needs to be obfuscated. The

CF engine uses three databases for prediction, User-info, Ratings-info, Item-info. The

first database, User-info contains demographic information of each user, which includes the

[User-id, Name, Age, Location, ...]. All of these fields pose a privacy threat and need

to be protected. Some of these fields, such as the [Age, Location] are likely to be used

by the CF engine for optimized prediction and need to be obfuscated. Fields such as the

[Name] are never used and should be removed from the database. The second database,

Ratings-info stores the ratings provided by individual users. The ratings do not hold any

personal information by themselves. However, if a person’s exact ratings for a set of items

are known, the corresponding user-id from the ratings database can be used to retrieve

other information regarding the individual and to target the individual with subsequent

attacks. All the ratings need to be obfuscated.

99

7.2 NeNDS-based Collaborative Filtering

Several approaches have been proposed for privacy preserving data mining applications.

Random data perturbation [5] and data anonymization [62] are some commonly used data

obfuscation techniques for applications where aggregate statistics are sufficient. These ap-

proaches protect data by adding random noise to them or by a process of suppression and

generalization. The lossy nature of the transformations destroys the inherent clustering in

the data, making them unsuitable for applications that use classification or cluster-based

data mining. Geometric transformations [44][45] and data swapping [51] preserve clustering,

but offer weak privacy preservation of the data, which renders them unsuitable for sensi-

tive applications [46]. In NeNDS, each field of the database is treated separately, and the

datasets are obfuscated by permuting sets of similar items. The permutation process en-

sures lossless transformation and also offers a stronger transformation than data swapping.

Permutation among similar elements ensures that the clusters are preserved. A comparison

of the strength of the data obfuscation techniques with respect to privacy protection and

data usability is presented in [46]. The results show that NeNDS offers robust data privacy

as well as data usability. The approach can be applied on any dataset that forms a metric

space. One drawback of NeNDS is that the transformed data might be close enough to

the original value to be considered vulnerable. This vulnerability is fixed by performing a

geometric transformation such as rotation, scaling, or translation on the NeNDS-obfuscated

data. The linearity property of geometric transformations preserves clustering and changes

the values of the individual data. The weakness of geometric transformations is taken care of

by performing NeNDS-based data obfuscation as a first step. This hybrid-NeNDS approach

is used here to obfuscate the data for CF.

The following example demonstrates the process of data obfuscation using hybrid-

NeNDS. Table 42 represents a User-info database containing records of 8 users with 3

fields [User-ID, Name, Age]. Among these fields, the User-ID field is retained without

obfuscation.

The [Name field] can be removed as it not necessary for CF. The [Age] field is a

necessary field and is subjected to NeNDS as follows. The first step in NeNDS is the creation

100

Table 42: User-info database.

User-ID Name Age

1 John Smith 42

2 Alan Finn 65

3 Ann Taylor 40

4 Corey Meyers 35

5 Fred Sutton 68

6 Jack Thomas 75

7 Jenny Higgins 37

8 Rene Robinson 52

of neighborhoods. The data are divided into two neighborhoods of similar elements, each

consisting of 4 elements. The first neighborhood NH1 consists of the ages [35, 37, 40, 42] and

neighborhood NH2 consists of ages [52, 65, 68, 75]. The data items in each neighborhood

are permuted based on the nearest neighbor algorithm 5.2.

Table 43: Transformed User-info database.

User-ID Age′ Age′′

1 40 28

2 52 36

3 35 25

4 37 26

5 75 53

6 65 46

7 42 29

8 68 48

Table 44 represents a Ratings-info database with ratings of the 8 users on 2 items. The

ratings are on a scale of [1−10]. These ratings are first transformed using NeNDS by creating

2 neighborhoods for each dataset and then permuting the data in each neighborhood. The

NeNDS transformed data are presented in Table 45. The missing entries in the database are

not included in any neighborhood and are retained even after transformation. The NeNDS-

transformed database is then scaled by a factor of 0.8 on both fields. The transformed

database is shown in Table 46.

101

Table 44: Ratings-info database.

Item-ID Rating-1 Rating-2

1 4 3.5

2 5.5 4.1

3 2.5

4 9 7.5

5 8.5 8

6 4.5

7 9.5 9

8 10 9.5

Table 45: NeNDS transformed Ratings-info database.

Item-ID Rating-1 Rating-2

1 4.5 2.5

2 4 3.5

3 4.1

4 8.5 9

5 10 7.5

6 5.5

7 9.5 9.5

8 9 8

Table 46: Scaled-NeNDS transformed Ratings-info database.

Item-ID Rating-1 Rating-2

1 3.6 2

2 3.2 2.8

3 3.2

4 6.8 7.2

5 6.4 6

6 3.8

7 7.6 7.6

8 7.1 6.4

The Item-info database is retained in the unobfuscated form. All three databases Obf-

User-info, Obf-Rating-info, and Item-info are sent to the CF server for predicting recom-

mendations for items that have not yet been rated by the users. The result of the CF engine

102

is shown in Table 47. These ratings are then used for making recommendations to the user.

The ratings can be stored and used in its scaled form or scaled back to its original range.

Table 47 contains the predictions on the unrated items for the unobfuscated database. The

predictions for the unrated items on the obfuscated database Pobf = [3.8, 3.3] correspond

to P ′
obf = [5.4, 4.7] when scaled back by a factor of 0.7. These ratings are similar to the

predicted values on the unobfuscated data Porig = [4.5, 4]. Since this is just an example

with very few data items, the results in the two cases do not match exactly. The difference

is almost negligible for larger datasets.

Table 47: Prediction results for obfuscated data.

Item-ID Rating − 1 Rating − 2

1 3.6 2

2 3.2 2.8

3 3.8 3.2

4 6.8 7.2

5 6.4 6

6 3.8 3.3

7 7.6 7.6

8 7.1 6.4

Table 48: Prediction results for unobfuscated data.

Item-ID Rating − 1 Rating − 2

1 4 3.5

2 5.5 4.1

3 4.5 2.5

4 9 7.5

5 8.5 8

6 4.5 4

7 9.5 9

8 10 9.5

The accuracy of the predictions for large databases is studied in Section 8.2. For shared

CF, each meta-store front performs a NeNDS transformation on the data followed by a

geometric transformation using the same parameters. The parameters for the geometric

103

transformations can be decided by the central server, or by a secure token exchange among

the meta-store fronts. Rotation-based transformations cannot be used here because of the

presence of incomplete records. Rotation of a record with a missing entry results in a

transformed record that has a non-zero value in place of the missing entry. Rotation of

such records distorts the relative distances between records. CF systems using similarity

measures for predicting user preference would fail if the relative distances are altered sig-

nificantly. Since most of the databases used for CF are sparse databases, rotation-based

transformations are not feasible. The scaling transformation discussed here can be replaced

by any linear transformation vector that is not affected by missing entries.

104

CHAPTER VIII

PERFORMANCE ANALYSIS: NENDS-BASED CF

8.1 Collaborative Filtering Algorithms

Several collaborative filtering approaches have been developed for recommendation systems.

Automated CF systems are widely used for providing recommendations to users based

on the ratings of users with similar interests. The different CF systems can be broadly

classified into memory-based CF, model-based CF, and hybrid memory-model CF. Memory

based systems use the raw data in the database by applying nearest neighbor techniques

for predicting user preferences. Model-based approaches first create a model based on the

available information and use this model to make probabilistic predictions for the unrated

items. Hybrid approaches use the model based approach to create sets of similar users.

The predictions are then made by using memory-based techniques on the set of similar

users, thus optimizing the accuracy and time complexity of the predictions. In this paper,

we use the Pearson’s correlation co-efficient and Vector similarity algorithms, which are

memory based approaches. We also use the personality diagnosis algorithm to analyze its

performance on obfuscated data.

8.1.1 Pearson Correlation

This was the first automated CF technique introduced by GroupLens [52] to provide per-

sonalized recommendations for Usenet news articles. This is a memory-based approach

where the Pearson correlation is used to weight user similarity. All the correlated neigh-

bors are used in the prediction. The prediction for an active user is based on the weighted

average of the deviation from the mean of the neighbors. In Equation 26 pa,i is the final

prediction for an active user i on item a, n represents the number of neighbors, j represents

an individual neighbor, and wa,j is the similarity weight between the user and the neigh-

bor computed for item a. The weight is determined from Pearson’s correlation co-efficient

105

shown in Equation 27.

pa,j = ra +

∑n
i=1[(ru,i − ru) ∗ wa,u]

∑n
i=1wa,u

(26)

wa,u =

∑m
i=1[(ra,i − ra)(ru,i − ru)]

√

∑

i=1m(ra,i − ra)
2∑m

i=1 (ru,i − ru)
2

(27)

8.1.2 Vector Similarity

The vector similarity algorithm was proposed for information retrieval. It was first used

by GroupLens for collaborative filtering. Here each user’s ratings are treated as a vector,

and similarity weights are computed based on the cosine of the angle between the ratings

vectors. The weights are computed based on the Equation 28, where raj is the rating for

item j by active user a, and Ia is the set of items for which ratings have been provided by

the active user a. The terms in the denominator are squared to normalize the votes so that

users are given the same weight regardless of the number of titles that they provide ratings

for.

wa,i =
∑

j

raj
√

[
∑

k∈Ia
rak2]

rij
√

[
∑

k∈Ii
ri,k2]

(28)

8.1.3 Personality Diagnosis

Personality diagnosis based CF was proposed by [49]. This approach takes advantage of

the benefits of memory and model based approaches. Model-based approaches operate by

creating a probabilistic model of the data, following which predictions are made using just

the model. The advantage of this method is the reduced memory usage with respect to the

memory-based approaches. However, developing the model is time-intensive. Each time

a data point needs to be added to the ratings, the model needs to be recalculated. The

personality diagnosis approach uses a probabilistic model to compute the personality type

of a user based on the true ratings of the user. The second iteration involves comparing the

preferences of the active user with all other users who have a similar personality type using

a memory-based approach.

106

8.2 Experimental Evaluation

The performance of the privacy framework using hybrid-NeNDS is discussed in this section.

The experiments compare the prediction results of the obfuscated data with the prediction

results of the original data. Two sets of tests are performed to study the performance of

the privacy framework. The first set involves the accuracy of predicting an item one at a

time to a user. The second test studies the results when an ordered set of recommendations

are provided to a user. The amount of distortion in the results due to data obfuscation is

analyzed here.

The first step of the experiment involves dividing the data (users and their ratings) into

a training set and a test set. The training set is used as the database for the CF engine.

Each user/ratings record in the test set is iteratively presented to the CF engine for making

predictions. The ratings of the test user, known as the active user are divided into a set of

observed ratings, Ia and a set of unrated ratings Pr. The ratings Ia are presented to the

CF engine and the predicted ratings PCF for the unrated items are compared with the set

Pr.

The first set of tests to compare the performance of one-at-a-time recommendations are

measured by using the average absolute deviation of the predicted ratings pi with respect

to the actual ratings on items for which the test set users have entered ratings (ri). This

metric was first introduced in GroupLens [52] and is used as a standard for comparing CF

systems. The mean absolute deviation for a single user on ma predicted items is given by

Equation 29. The error is averaged over all the users in the test set. Since the two data

collections used here have different ranges for ratings, the normalized mean absolute error

NMAE is evaluated [22] as shown in Equation 30.

|E| =

∑N
i=1 |pi − ri|

N
(29)

|NMAE| =
|E|

rmax − rmin
(30)

The second set of tests, which measure the ranking sequence of the ordered list of

recommendations, is evaluated using the rank scoring metric proposed in [33]. The metric

107

extends the binary precision-recall metric used in information retrieval to estimate the

likelihood that the user selects an item on the ordered list. The metric represents the

expected utility of a ranked list of items by Equation 31. The list of items are sorted by

index j in the decreasing order of the rating ra,j . The parameters d denote the neutral vote

and is applied to items for which user rating is not available. The term α represents the

number of the item on the list such that the likelihood of the user viewing it is 50%.

Ra =
∑

j

max(rα,j − d, 0)

2(j−1)/(α−1)
(31)

The final score for the set of active users is given in equation 32, where Ra
max is the

maximum achievable utility which is achieved when all the observed items appeared at the

top of the ordered list of recommendations. This equation normalizes the results and makes

it independent of the test set and number of items.

R = 100

∑

aRa
∑

aRa
max (32)

8.2.1 Data Sets

The evaluation considers two different database collections.

1. BookCrossing [70]: This collection consists of three databases [User-info, Book-

info, and Ratings-info]. The User-info database contains demographic informa-

tion of 278, 858 users [ID, Location, Age]. The [Book-info] database has informa-

tion regarding the title, ISBN, year of publication, author, publisher, and edition for

271, 379 books. The [Ratings-info] database contains a total of 1, 149, 780 ratings by

the listed users for the books specified in the database. The fields that are obfuscated

are: [User-info: Age] and all the fields in the [Ratings-info] database.

2. Movielens [25]: The three databases [User-info, Movie-info, and Ratings-info]

form this database. The User-info database contains demographic information of

6040 users [ID, Age, gender, occupation, zip]. The [Movie-info] database has

information regarding the Movie-ID, title, release date, and video release date for

3, 900 movies. The [Ratings-info] database contains a total of 2, 811, 983 ratings by

108

the listed users for the movies specified in the database. The fields that are obfuscated

are: [User-info: Age, zip code]. The gender and occupation fields are removed

from the database before sending it to the CF server. All the fields in the [Ratings-

info] database are obfuscated.

8.2.2 Experiment Results

To evaluate the performance of the CF engine, we carried out three types of tests for the one-

at-a-time and ordered-list recommendations. The All-but-one test provides all the ratings

except one for each active user in the test set. The accuracy of prediction of the single

rating is measured in this test. In the Given-2 test, the observed ratings set Ia contains

only two ratings. The accuracy of predictions of the rest of the ratings in the unrated set

Pr is analyzed here. Given-10 measures the accuracy of the predictions with 10 ratings in

the active user’s observed-ratings set.

The data collections are arbitrarily divided into three sets, each set representing the

repository of one meta-store front. All three repositories are first obfuscated using NeNDS,

where each data set was divided into 100 neighborhoods. All three repositories apply the

same geometric transformation to the data. For the User-info data, a scaling transformation

of 0.8 was applied for each field. The ratings-info database was transformed with a different

scaling vector that was generated randomly. The resulting databases were then appended

to form a single collection. The collection was then divided into a training set and test

set in the ratio 75% : 25%. The training/test sets for the two data collections are shown

in table 49. Each of the entries in the test set is then added to the training set one at a

time to determine the mean absolute error and ranking score for all three tests. The tests

are performed three times, once with each CF algorithm: Pearson, Vector Similarity, and

Personality diagnosis.

Table 49: Training and test set partitions.
Data collection Training Set Test Set

Bookcrossing 209144 69714

Movielens 4530 1510

Table 50 shows the prediction results of the three algorithms for the ’All-but-1’ case.

109

The results obtained for the individual algorithms with original data match the results

obtained in [33]. The normalized mean absolute error for the obfuscate data are consistent

with the results for the original data. This shows that the privacy framework does not affect

the CF for the all-but-1 case.

Table 50: Prediction accuracy for the All-but-one test.
CF Algorithm Original Obfuscated Error %

Data Data

Pearsons 0.198 0.198 0.0
Movielens

V. Similarity 0.241 0.242 0.1
Movielens

P. Diagnosis 0.192 0.193 0.1
Movielens

Pearsons 0.201 0.202 0.1
Bookcrossing

V. Similarity 0.211 0.211 0.1
Bookcrossing

P. Diagnosis 0.201 0.203 0.2
Bookcrossing

The results for the Given-2 test are shown in Table 51. It is observed that the predicted

results on the obfuscated data have small differences from the predictions using original

data in a few cases. The difference for the vector similarity algorithm is slightly higher

than for the other two algorithms. However, the error introduced by the data obfuscation is

around 2% in the worst case, which should be acceptable given the additional benefit from

privacy preservation.

Table 52 contains the results for the Given-10 test. The results in this test indicate that

the errors introduced in this case are much smaller than the errors introduced when only two

ratings were provided to the CF engine. Two of the three algorithms yield similar results

with and without data obfuscation. The vector similarity algorithm produces results that

are different from the original predictions, but the performance is better than the Given-

2 case. The performance of the algorithms with increasing number of Given-n ratings

was evaluated. The error difference between the original and obfuscated results decrease

exponentially with the increase in number of Given ratings.

110

Table 51: Prediction accuracy for the Given-2 test.
CF Algorithm Original Obfuscated Error %

Data Data

Pearsons 0.228 0.229 0.1
Movielens

V. Similarity 0.291 0.312 2.1
Movielens

P. Diagnosis 0.209 0.211 0.2
Movielens

Pearsons 0.231 0.232 0.1
Bookcrossing

V. Similarity 0.247 0.262 1.5
Bookcrossing

P. Diagnosis 0.213 0.215 0.2
Bookcrossing

Table 52: Prediction accuracy for the Given-10 test.
CF Algorithm Original Obfuscated Error %

Data Data

Pearsons 0.199 0.200 0.1
Movielens

V. Similarity 0.208 0.209 0.1
Movielens

P. Diagnosis 0.196 0.196 0.0
Movielens

Pearsons 0.201 0.202 0.1
Bookcrossing

V. Similarity 0.237 0.239 0.2
Bookcrossing

P. Diagnosis 0.197 0.201 0.4
Bookcrossing

The results for the ranking score for ordered recommendations are tabulated in Ta-

bles 53,54 for the Given-2 and Given-10 tests respectively. The ranking score is a percentage

that measures the utility of the items recommended based on the order of recommendation.

A higher value indicates better performance. It is observed that a ranking score of 48.4 is

achieved using Pearsons correlation in the Movielens data and a score of 36.9 is achieved in

the case of the Bookcrossing data when 10 ratings are provided to the CF for each active

user. The performance of the CF recommendations is better when more ratings are available

for prediction. The performances of the CF algorithms on obfuscated data are observed

111

to follow the original predictions closely. Data obfuscation affects the results of the rank

scoring by 5% on the average, and performs the worst for the hybrid model. The reason

for the distortion can be attributed to the fact that the actual ratings are distorted, which

causes the highest rating to be substituted by a lower value. As a result, the corresponding

recommendation is moved to a lower rank in the recommended list.

Table 53: Performance based on the rank scoring test.
CF Algorithm Original Obfuscated Error %

Data Data

Pearsons 42.8 40.5 2.3
Movielens

V. Similarity 36.5 35.2 1.3
Movielens

P. Diagnosis 39.6 31.8 7.8
Movielens

Pearsons 33.9 31.7 2.2
Bookcrossing

V. Similarity 31.4 30.5 0.9
Bookcrossing

P. Diagnosis 29.2 25.1 4.1
Bookcrossing

Table 54: Performance based on the rank scoring test.
CF Algorithm Original Obfuscated Error %

Data Data

Pearsons 48.4 44.5 3.9
Movielens

V. Similarity 39.5 35.2 4.3
Movielens

P. Diagnosis 45.6 40.8 4.8
Movielens

Pearsons 36.9 34.7 2.2
Bookcrossing

V. Similarity 32.4 30.5 1.9
Bookcrossing

P. Diagnosis 38.2 31.1 7.1
Bookcrossing

Tests were also conducted by applying random data perturbations to the original data

before applying the CF algorithms. The tests are carried out for two sets of random dis-

tribution parameters: [µ1, σ1] = [0, 0.5] and [µ2, σ2] = [0, 10], where [µ, σ] represent the

112

mean and standard deviation for the normal distribution. The results for the All-but-one,

Given-2, and Given-10 tests are provided in Tables 55, 56, and 57 respectively. In each

of the three tests, the performances of the CF algorithms are comparable to the original

predictions for the data randomized using [µ1, σ1] = [0, 0.5].

Table 55: Prediction accuracy for the All-but-one test.
CF Algorithm Rand. Rand. Error Error

Data Data % %

[µ1, σ1] [µ2, σ2]

Pearsons 0.198 0.598 0.0 40.0
Movielens

V. Similarity 0.245 0.621 0.4 38.0
Movielens

P. Diagnosis 0.192 0.432 0.0 24.0
Movielens

Pearsons 0.204 0.501 0.3 49.7
Bookcrossing

V. Similarity 0.211 0.634 0.0 41.7
Bookcrossing

P. Diagnosis 0.201 0.453 0.0 25.2
Bookcrossing

Table 56: Prediction accuracy for the Given-2 test.
CF Algorithm Rand. Rand. Error Error

Data Data % %
[µ1, σ1] [µ2, σ2]

Pearsons 0.228 0.399 0.0 17.1
Movielens

V. Similarity 0.292 0.493 0.1 20.2
Movielens

P. Diagnosis 0.211 0.506 0.2 29.7
Movielens

Pearsons 0.235 0.552 0.4 32.1
Bookcrossing

V. Similarity 0.247 0.426 0.0 17.9
Bookcrossing

P. Diagnosis 0.213 0.548 0.0 33.5
Bookcrossing

The results for second random distribution [µ2, σ2] = [0, 10] are significantly worse than

the original predictions in all the three tests. The reason for this behavior is that the noise

distribution distorts the relative distances among the individual data items. The accuracy

113

Table 57: Prediction accuracy for the Given-10 test.
CF Algorithm Rand. Rand. Error Error

Data Data % %
[µ1, σ1] [µ2, σ2]

Pearsons 0.199 0.30 0.0 10.1
Movielens

V. Similarity 0.21 0.298 0.2 9.0
Movielens

P. Diagnosis 0.197 0.496 0.1 30.0
Movielens

Pearsons 0.201 0.302 0.0 10.1
Bookcrossing

V. Similarity 0.240 0.443 0.3 20.6
Bookcrossing

P. Diagnosis 0.201 0.321 0.4 12.4
Bookcrossing

of prediction for CF algorithms on randomly perturbed data is dependent on the type of

distribution and range of distribution for the random variable. The random distribution

range cannot exceed a threshold value. However, this restriction contradicts the requirement

of data privacy. If the noise distribution is not sufficiently large to do a good job of hiding

the original values, the datasets become vulnerable to approximate privacy breach [46]. The

selection of a distribution range for random perturbation is a critical factor that affects the

privacy and usability of data. The only input parameter for NeNDS is the neighborhood

size NH. In [46], the sensitivity of the neighborhood size NH on the Misclassification error

(MCE) in clustering was evaluated. The results show that the performance of NeNDS is

insensitive to the parameter NH. We expect NeNDS to perform similarly for the different

test scenarios and are currently evaluating the effect of varying NH sizes on the accuracy

of the predicted results. The ability of hybrid-NeNDS to provide privacy without trading

off usability of the CF system makes it an excellent candidate for privacy protection of data

used for CF.

8.3 Effect of Neighborhood Size on NeNDS-based Filtering

All the experiments to evaluate the performance of CF systems on NeNDS transformed were

carried out for NH = 100 neighborhoods. In Chapter 6.2, it was shown that varying the

114

number of neighborhoods for NeNDS had little or no effect on the clustering performance of

K-means and hierarchical clustering. In this section the effect of neighborhood size on the

performance of collaborative filtering is evaluated. Each of the databases, MovieLens and

Bookcrossing are obfuscated to produce three different databases [DB50, DB500, DB1000]

for NH = [50, 500, 1000] neighborhoods. The obfuscated databases are evaluated for the

[All-but-1, Given-2, Given-10]. The results of the three tests are shown in Tables 58, 59

and 60. Table 58 shows that the results of the All-but-1 test are identical in for all three

obfuscated databases. The number of neighborhoods for NeNDS has no effect on the results

of the All-but-1 test. In Table 59, it is observed that the results for NH = 1000 are slightly

better than the results forNH = [50, 500]. However, the improvement is only 0.001−0.002%

in each case of the Given-2 test. The results for the Given-10 test shown in Table 60 indicate

that the performance of the obfuscated data for NH = [500, 1000] are marginally better

than the database obfuscated with NH = 50. Here again, the improvement is 0.01− 0.04.

The results for NH = 1000 is closer to the original database results indicating that there

is a marginal improvement in the performance of the Given-10 test for larger number of

neighborhoods.

Table 58: Effect of number of neighborhoods: All-but-one test.
CF Algorithm Original Data Obfuscated Data

* * NH = 50 NH=500 NH=1000

Pearsons 0.198 0.198 0.198 0.198
Movielens

V. Similarity 0.241 242 0.242 0.242
Movielens

P. Diagnosis 0.192 0.192 0.191 0.191
Movielens

Pearsons 0.201 0.202 0.202 0.202
Bookcrossing

V. Similarity 0.211 0.211 0.211 0.211
Bookcrossing

P. Diagnosis 0.201 0.203 0.202 0.202
Bookcrossing

These experiments show that the number of neighborhoods chosen for NeNDS does

not have a significant effect on the performance of the CF algorithms. The number of

115

Table 59: Effect of number of neighborhoods: Given-2 test.
CF Algorithm Original Data Obfuscated Data

* * NH = 50 NH=500 NH=1000

Pearsons 0.228 0.229 0.229 0.228
Movielens

V. Similarity 0.291 0.312 0.311 0.309
Movielens

P. Diagnosis 0.209 0.211 0.211 0.210
Movielens

Pearsons 0.231 0.234 0.232 0.232
Bookcrossing

V. Similarity 0.247 0.264 0.263 0.260
Bookcrossing

P. Diagnosis 0.213 0.215 0.215 0.214
Bookcrossing

Table 60: Effect of number of neighborhoods: Given-10 test.
CF Algorithm Original Data Obfuscated Data

* * NH = 50 NH=500 NH=1000

Pearsons 0.199 0.201 0.200 0.200
Movielens

V. Similarity 0.208 0.210 0.209 0.208
Movielens

P. Diagnosis 0.196 0.197 0.196 0.196
Movielens

Pearsons 0.201 0.202 0.201 0.201
Bookcrossing

V. Similarity 0.237 0.239 0.238 0.237
Bookcrossing

P. Diagnosis 0.197 0.201 0.200 0.200
Bookcrossing

neighborhoods can therefore be selected based on the size of the database and the privacy

requirements for the CF system.

116

CHAPTER IX

CONCLUSION AND FUTURE WORK

This thesis proposes privacy preserving framework for collaborative filtering applications.

The problem of privacy is still not a well-understood one. While there is a definite need

for privacy, there is no clear-cut answer to the question of what information is considered

private and when a database is considered to be breached. In general, if any information

about an individual revealed from a database can be obtained in any other way without

access to the database, the information is no considered as private. Gaining access to

such information is not considered as a privacy breach [10]. In practical databases, this

implies that any query in a database should not reveal information that could lead to the

identification of an individual otherwise impossible without the database. The definition

of privacy used in this dissertation is to prevent any information regarding an individual

from being revealed either directly or by reverse-engineering the database. NeNDS-based

transformations obfuscate individual records by permuting each dataset individually. Any

query made to the database is guaranteed to reveal an answer that is close to the truth but

different from the exact truth. GT-NeNDS takes privacy a step further by transforming

the data to a state where the values in the database are clearly different from the original

values. The inter-relationship among the data items are preserved, which makes this DO

approach an excellent candidate for data mining applications.

While there has been tremendous growth in the areas of information retrieval and op-

timization measures for CF systems, there has been little research in the area of privacy

preserving CF. Trust-based systems have been proposed to thwart targeted attacks on CF

systems to promote or demote items maliciously. CF using factor analysis proposes a secure

method for CF among peers. This method can only be used among a known set of users,

where an active user seeks out information. This paper proposes a privacy framework that

allows automated recommendations to be made to users in a privacy preserving manner

117

that ensures the privacy of users. The framework can be used to share information among

multiple meta-store fronts for information for mutual gain. New sellers suffer an initial

setback, referred to as cold-start, because of the lack of a data pool to provide recommen-

dations to its users. The cold start problem can be averted by the presence of a shared CF

engine. The experimental results indicate that the accuracy of CF engines remains nearly

the same in spite of the preliminary data obfuscation process. Although the rank scoring

metric indicated that the utility of the ranking order is decreased by data obfuscation, the

error is only about 5% on average, which is an acceptable trade-off, given the benefits of a

robust privacy-preservation mechanism.

Some interesting problems for future work are listed below.

• NeNDS-based DO can be performed only on static databases. For dynamic databases,

or databases that undergo constant changes, NeNDS can be applied to the database

periodically. However, this could be time-intensive for some applications because the

entire database has to be obfuscated each time. An interesting problem is to study

ways in which NeNDS-based obfuscation can be applied only to the parts of the

database that have been modified without losing clustering information of the data.

• The DO technique proposed in this research assumes that the databases have been

pre-processed and cleaned. This means that the database has no duplicate records,

incomplete records, or invalid data. An un-cleaned database could distort the re-

sults of the obfuscation process. One of the pre-processing steps for data mining is

data cleaning and sanitization. Data obfuscation can only be performed on sanitized

databases. An interesting problem to consider is the development of a DO technique

that can be used to obfuscate databases that have not been processed.

• The collaborative filtering framework proposed here assumes that the users of the

E-commerce sites are valid users and are not malicious. The framework does not

include mechanisms to avoid shilling or targeted attacks on the CF system. Methods

such as building a web of trust, and trust-aware CF have been proposed to counter

such targeted attacks. An evaluation of the performance of the NeNDS-based CF

118

framework that incorporates trust-based techniques is an interesting future work.

Such a framework would provide a robust architecture for sharing information among

multiple E-commerce vendors for centralized collaborative filtering.

119

REFERENCES

[1] ACM, ”Privacy Preserving K-means Clustering over Vertically Partitioned Data”,
(Washington D.C), Aug 2003.

[2] Aggarwal, C. and Yu, P., “A Condensation Approach to Privacy Preserving Data
Mining,” in Advances in Database Technology - EDBT 2004, pp. 183–199, 2004.

[3] Agrawal, D. and Aggarwal, C., “”On the Design and Quantification of Privacy
Preserving Algorithms”,” in Proc. of the conference on Special Interest Group for Man-
agement of Data, (Santa Barbara, California), pp. 247–255, May 2001.

[4] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y., “”Order Preserving Encryp-
tion for Numeric Data”,” in Proc. of Special Interest Group on Management of Data,
(Paris, France), pp. 563–574, ACM Press, June 2004.

[5] Agrawal, R. and Ramakrishnan, S., “”Privacy-Preserving Data Mining”,” in ACM
Special Interest Group on Management of Data, pp. 439–450, 2000.

[6] http://www-2.cs.cmu.edu/awm/tutorials/kmeans.html, Feb 12, 2005.

[7] Bakken, D., Parameswaran, R., and Blough, D., “”Data Obfuscation:
Anonymity and Desensitization of Usable Data Sets”,” IEEE Security and Privacy,
vol. 2, pp. 34–41, Nov-Dec 2004.

[8] Bakken, D., Parameswaran, R., and Blough, D., “Data Obfuscation: Anonymity
and Desensitization of Usable data Sets,” IEEE Security and Privacy, vol. 2, pp. 34–41,
Nov-Dec 2004.

[9] Bertino, E., Jajodia, S., and Samarati, P., “Supporting multiple access control
policies,” in IEEE Symposium on Security and Privacy, (Oakland, CA), pp. 94–109,
IEEE Society Computer Press, 1996.

[10] Blum, A., Dwork, C., McSherry, A. F., and Nissim, K., “Practical privacy:
The sulq framework,” in ACM Principles of Database Systems (PODS), (Baltimore,
Maryland), June 2005.

[11] Breese, J., Heckerman, D., and Kadie, C., “”Empirical Analysis of Predictive Al-
gorithms for Collaborative Filtering”,” in Proceedings of the Fourteenth Annual Con-
ference on Uncertainty in Artificial Intelligence, pp. 43–52, July 1998.

[12] Canny, J., “Collaborative filtering with privacy,” 2002.

[13] Canny, J., “”Collaborative Filtering with Privacy”,” in IEEE Symposium on Security
and Privacy, (Oakland, CA), pp. 45–57, May 2002.

[14] Canny, J., “”Collaborative Filtering with Privacy via Factor Analysis”,” in ACM
SIGIR Conference on Research and Development in Information Retrieval, (Tam-
pere,Finland), pp. 238–245, Aug 2002.

120

[15] Cheeseman and Stutz, “”Bayesian Classification(Auto-Class): Theory and Re-
sults”,” in Advances in Knowledge Discovery and Data Mining (Press, A., ed.),
(Menlo Park, CA), pp. 153–180, 1995.

[16] Chien, Y.-H. and George, E. I., “A bayesian model for collaborative filtering,”
in Proceedings of the Seventh International Workshop on Artificial Intelligence and
Statistics, (San Francisco, California), Morgan Kaufmann, 1999.

[17] Cranor, L., Reagle, J., and Ackerman, M., “Beyond concern: Understanding net
users attitudes about online privacy,” 1999.

[18] Denning, D. and Schwartz, M., “”The Tracker A Threat to Statistical Database
Security”,” in ACM Transactions on Database Systems, vol. 4, pp. 76–96, 1979.

[19] Estivill-Castro, V. and Brankovic, L., “”Data Swapping: Balancing Privacy
Against Mining of Association Rules”,” in Proc. of Knowledge Discovery and Data
Warehousing, (Florence, Italy), pp. 389–398, Aug 1999.

[20] Evfimievski, A., Gehrke, J., and Srikant, R., “”Limiting Privacy Breaches in
Privacy Preserving Data Mining”,” in Principles of Database Systems, (San Diego,
CA), June 2003.

[21] Goldberg, D., Nichols, D., Oki, B., and Terry, D., “”Using Collaborative Fil-
tering to Weave an Information Tapestry”,” Communications of the ACM, vol. 35,
pp. 61–70, Dec 1992.

[22] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C., “Eigentaste: A constant
time collaborative filtering algorithm,” Information Retrieval, vol. 4, no. 2, pp. 133–
151, 2001.

[23] Gomatam, S. andKarr, A., “”Distortion Measures for Categorical Data Swapping”,”
Tech. Rep. 131, US National Institute for Statistical Sciences, Jan 2003.

[24] Gonzalez, R. and Woods, R., ”Digital Image Processing”. Addison-Wesley Pub-
lishing Company, 1992.

[25] Grouplens. ”http://www.grouplens.org/data/”, May 20, 2005.

[26] Herlihy, M., “A methodology for implementing highly concurrent data objects,”
ACM Trans. Program. Lang. Syst., vol. 15, pp. 745–770, November 1993.

[27] Herlocker, J., Konstan, J., Borchers, A., and Reidl, J., “”An Algorithmic
Framework for Collaborative Filtering”,” in ACM SIGIR Conference on Research and
Development in Information Retrieval, (Tampere, Finland), Aug 2002.

[28] Herlocker, J., Konstan, J., Borchers, A., and Reidl, J., “”An Algorithmic
Framework for Collaborative Filtering”,” in ACM SIGIR Conference on Research and
Development in Information Retrieval, (Tampere, Finland), Aug 2002.

[29] Herlocker, J., Konstan, J., and Riedl, J., “” Explaining Collaborative Filtering
Recommendations”,” in ACM 2000 Conference on Computer Supported Cooperative
Work, pp. 241–250, Dec 2000.

121

[30] Hill, W., Stead, L., Rosenstein, M., and Fumas, G. W., “”recommending and
evaluating choices in a virtual community of use”,” in ACM Conference on human
factos in computer systems CHI’95, (Denver, Colorado), pp. 194–201, 1995.

[31] “http://www.almaden.ibm.com/software/quest/resources/ datasets/syndata.html,”
Nov 05, 2004.

[32] Ishitani, L., Almeida, V., and Meiru, W., “”Masks: Bringing Anonimity and
Personalization Together”,” in Ninth INFORMS Conference on Information Systems
and Technology, Oct 2004.

[33] J.S, B., D., H., and C, K., “Emperical analysis of predictive algorithms for collab-
orative filtering,” in Proceedings of the 14th conference on Uncertainty in Artificial
Intelligence, pp. 43–52, 1998.

[34] Klosgen, W., “”Anonimization Techniquesfor Knowledge Discovery in Databases”,”
in Proc. of the First International Conference on Knowledge and Discovery in Data
Mining, (Montreal, Canada), pp. 186–191, Aug 1995.

[35] Lam, S. and Riedl, J., “Shilling recommender systems for fun and profit.”

[36] Lamport, L., LaTeX User’s Guide and Document Reference Manual. Reading, Mas-
sachusetts: Addison-Wesley Publishing Company, 1986.

[37] Massa, P. and Avesani, P., “Trust-aware collaborative filtering for recommender
systems,” 2004.

[38] Massa, P. and Bhattacharjee, B., “Using trust in recommender systems: an ex-
perimental analysis,” 2004.

[39] Mayerson, A. and Williams, R., “”On the Complexity of Optimal k-Anonimity”,”
in Proc. of the 23rd ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles
of Database Systems, pp. 223–238, 2004.

[40] Moore, R., “”Controlled Data-swapping Techniques for Masking Public Use Micro-
data Sets”,” in SRD Report RR 96-04, U.S. Bureau of the Census, 1996.

[41] Moursmund, D., “”Chebyshev Solution of n+1 Linear Equations in n Unknowns”,”
Journal of the ACM, vol. 12, pp. 383 – 387, July 1965.

[42] Muralidhar, K. and Sarathy, R., “”Disclosure Risk and Data Utility Character-
istics of Data Swapping: A Preliminary Investigation,” in IEEE Security and Privacy,
vol. 1, pp. 18–23, May 2003.

[43] http://mathworld.wolfram.com/Affine.html, June 20, 2004.

[44] Oliveira, S. and Zaane, O., “”Privacy Preserving Clustering by Data Transfor-
mation”,” in Proc. of the 18th Brazilian Symposium on Databases, (Manaus, Brazil),
pp. 304–318, Oct 2003.

[45] Oliveira, S. and Zaane, O., “”Achieving Privacy Preservation When Sharing
Data for Clustering”,” in Workshop on Secure Data Management in conjunction with
VLDB2004, (Toronto, Canada), Springer Verlag LNCS 3178, Aug 2004.

122

[46] Parameswaran, R. and Blough, D., “A Robust Data-obfuscation Approach for
Privacy Preservation of Clustered Data,” in Workshop Proceedings of the 2005 IEEE
International Conference on Data Mining, (Houston, Texas), pp. 18–25, IEEE, 2005.

[47] Parameswaran, R. and Blough, D., “”An Investigation of the Cluster Preservation
Property of Nends”,” tech. rep., Georgia Institute of Technology, 2005.

[48] Pennock, D., Horovitz, E., Lawrence, S., and Gilles, C., “”Collaborative Fil-
tering by Personaliyt Diagnosis: A Hybrid Memory and Model Based Approach”,”
in Sixteenth Conference on Uncertainty i Artificial Intelligence, (San Francisco, CA),
pp. 473–480, Morgan Kauffmann, 2000.

[49] Pennock, D., Horvitz, E., Lawrence, S., and Giles, C. L., “Collaborative fil-
tering by personality diagnosis: A hybrid memory- and model-based approach,” in
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, UAI 2000,
(Stanford, CA), pp. 473–480, 2000.

[50] Polat, H. and Du, W., “Privacy-preserving collaborative filtering using randomized
perturbation techniques,” 2003.

[51] Reiss, S. P., “”Practical Data-swapping The First Steps”,” in ACM Transactions on
Database Systems, vol. 9, pp. 20–37, Mar 1984.

[52] Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., and Riedl, J., “Grou-
pLens: An Open Architecture for Collaborative Filtering of Netnews,” in Proceedings
of ACM 1994 Conference on Computer Supported Cooperative Work, (Chapel Hill,
North Carolina), pp. 175–186, ACM, 1994.

[53] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J., “”Grou-
plens: An Open Architecture for Collaborative Filetering of Netnews,” in ACM Con-
ference on Computer Supported Cooperative Work, pp. 175–186, 1994.

[54] Resnick, P. and Varian, H. R., “Recommender Systems,” in Communications of
the ACM, vol. 4, pp. 56–58, ACM, 1997.

[55] Rivest, R., Adleman, L., and Dertouzas, M., “”On Data Banks and Privacy
Homomorphisms”,” in Foundations of Secure Computations (et al, R. A. D., ed.),
pp. 169–179, Academic Press, 1978.

[56] Rotenberg, M., “”The Privacy Sourcebook 2000: United States Law, International
Law, and Recent Developments”.” Electronic Privacy Information Center, 2000.

[57] Salas, S. and Hille, E., Calculus: One and Several Variable. New York: John Wiley
and Sons, 1978.

[58] Samarati, P., “”Protecting Respondent’s Privacy in Microdata Release”,” IEEE
Transactions on Knowledge and Databases, vol. 13, no. 6, 2001.

[59] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C., “Role-based access con-
trol models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[60] Shardanand, U. and Maes, P., “Social information filtering: Algorithms for au-
tomating “word of mouth”,” in Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, vol. 1, pp. 210–217, 1995.

123

[61] Stallings, W., ”Network Security Essentials”. Prentice Hall, 2000.

[62] Sweeney, L., “”k-Anonymity: A Model for Protecting Privacy”,” International Jour-
nal on Uncertainty, Fuzziness and Knowledge-based Systems, vol. 10, no. 5, pp. 557–
570, 2002.

[63] Toussaint, G., “”Bibliography on Estimation of Misclassification”,” IEEE Transac-
tions on Information Theory, vol. 20, pp. 472–479, July 1974.

[64] http://kdd.ics.uci.edu/, Oct 21, 2004.

[65] Ungar, L. and Foster, D., “Clustering methods for collaborative filtering,” in Pro-
ceedings of the Workshop on Recommendation Systems, AAAI Press, Menlo Park Cal-
ifornia, 1998.

[66] Upendra, S., “Social information filtering for music recommendation,” 1994.

[67] Warrior, J., McHenry, E., and McGee, K., “”They Know Where You Are”,”
IEEE Spectrum, vol. 40, no. 7, pp. 20–25, 2003.

[68] Winkler, W., “”Using Simulated Annealing for k-Anonymity”,” in Research Report
Series, U.S. Census Bureau, 2002.

[69] Wolfgang, C. D., “Preventing shilling attacks in online recommender systems paul-
alexandru chirita.”

[70] Ziegler, C.-N. and Freiburg, D. ”http://www.informatik.uni-
freiburg.de/ cziegler/BX/”, May 15, 2005.

124

INDEX

125

