

tradture of Paper Science and Toshnology Central filos

PROJECT REPORT FORM

Copies to: Files - 849
Steele
Rowland
Swanson

NOTE BOOK see end of report
SAGEEDGOALW. Sevancoun

1
Further Experiments with Faring Blendor Beating and The Effects of Locust Bean Gum Addition.

Introduction:
Data presented in Report No. 2 of this project indicated that considerable increases in tearing resistance could be obtained simultaneously with increases in bursting strength when a Waring Blendor was used as a beater. Such characteristics are very desirable from a papermaking standpoint since it is the usual occurrence for the tearing resistance to sharply decrease with increase in bursting strength. The unusual properties were not due entirely to addition of locust bean gum because further experiments showed that the pulp alone gave similar tear increases. Therefore it seemed desirable to further investigate this type of beating and the effect of locust bean gum upon the properties in question.

It is well known in the paper industry that most pulps increase in tearing resistance during the very first ort of the beating cycle but thereafter a sharp decrease becomes evident. It is believed that the letter phenomenon may oe due primarily to a shortening of the fiver length and that the Waring 3lendor which presumably might not cut the fiber appreciably does give a unique type of beating action. In talking this matter over with Dr. Rowland and Mr. Wells of the Institute staff it was learned that some information on Waring 31 endor beating was available. (See File on Ronald Triste) This material was examined and found to be quite brief. Since our results seemed interesting enough we decided to rersue the investigation a little further.

Work Done:

1. Two pulps, Weyerhaeuser bleached sulfite and Duracel bleached kraft were beaten for various intervals in the :Taring 3lendor and the Valley beater.
2. Sheets made from these pulps were compared as to bursting and tearing strengths.
3. The effect of locust bean gur on one of the beaten pulps was studied to some extent.

Zeating Procedure at 1.5% consistency

Ten grams of the oulp (0. D. basis) were placed in a :aring Blendor and 714 ml . of water were added. The puly was allowed to soak for five minutes and then the beater ves turned on low speed for the exact number of minutes desired. The pulo was diluted to 2000 ml . ($0.50^{\frac{1}{3}}$) and made int 0.1 .5 g . handsheets on a valley mold in the customary manner.

In the experiments where locust bean gum was added to the pulp this was done by first heating 0.1 g . of the gum (1\% on pulp), in about 50 ml . of water to $80^{\circ} \mathrm{C}$. and then adding the disnersion to the pulp two minutas before the end of the beating time. The pulp was then dtluted as before and made into handsheets.

3eating Procedure at 3.0% Consistency

Twenty grams of pulo (O.D. basis) were placed in a Varing Biendor and 667 ml . of water were added. The mixture was allowed to soak for five minutes end then the beater was turner on high speed for an exact number of minutes. The pulp was diluted to 4000 ml . and made into handsheets as before.

Attemts to beat the pulp at 38 consistency with the low speed were unsuccessful because the pulp did not mix adeguately.

Results and Discussion

The data on the beating of Duracel bleached xraft at 1.5 and 3.0\% consistencies in the varing Blencor and in the Valley beeter are given respectively in Tables I, II, and III. The burst-tear factors are plotted egainst jeating time in Figure 1.

The burst-tear factor is a value ooteined by edaition of the bursting strength per 100 pounds to the teer factor multinlied by 100 . The bursting strength, of course, continues to increase with degree of beating but the tearing resistance (tear factor) oniy incresses during the very first part of the beatine cycle and thereafter decreases regularly. This characteristic of the tear value may be the result of a number of factors, among then being the tyoe of beating action. Thus, in the curves of Figure 1 the meximum height of the curve gives to ε certain extent a relative measure of the ability of the beaters to develop
a combinetion of oursting and tearine strencth in pulps.

The data for Euracel bleached kraft indicete that faring Blendor beatina develops somewhet greater pulp streneth than the Valley beater. Beating in the 3 lendor at high speed and higher consistency (3 , gave about the same meximun value, the only apoarent difference being a more reofd development io tre meximum.

The data on the beating of \%eyerheeuser bleached sulfite are in Teioles IV ond V and for one ver cent locust bean gum addition in Table VI. The burst-tear factors gre nlotted in Figure 1 and from theco it eyvears that the Garing Rlendor yossesses no sienificant edvantege over the Valley better for this sulfite pulc. The addition of one per cent of locust bean gum during the beating cycle showed that the gum neither increased nor decreased the tear value of the resulting sheet of paper. Rather it appears that the sum supplements the hydration effects of the beatine action.

- The work as a whole seems to indicate that the tarin- siendor might zossess some adventace as a beater for hard pulọs such es kraft out no discernible advantage for softer pulps.

Notebook 506
Pages 69-71
98-100
$12^{1}-130$
141-147
150-156
Yotebook 530
Pages E-8
ju-v/dou

TABLE I

VARIATIOI OF BURST AFD TPAR DURING BFATING OF DURACFI BLEACHFD KRAFT IE TYE EARING RLPADCR Consistency $=1.5 \%$

$\begin{aligned} & \text { Beating } \\ & \text { Time } \\ & \text { (minutes) } \end{aligned}$	$\begin{gathered} \text { Basis } \\ \text { Weight } \\ 25 \times 40 / 500 \end{gathered}$	Caliper inch	Apparent Density		g Strength Ptson) 1004	Flmendorf Tear E./sheet	$\begin{aligned} & \text { Tear } \\ & \text { Factor } \end{aligned}$	BurstTear Factor	S.R. Freeness of Puln	$\begin{aligned} & \text { File } \\ & \text { No. } \end{aligned}$
5	48.4	0.0057	8.5	12.9	27	119	2.156	273	850	110489
10	47.4	0.0053	9.0	16.3	34	133	2.81	315	81.5	110490
15	47.8	0.0053	9.0	21.4	45	149	3.12	357	840	110491
25	48.4	0.0052	9.5	27.9	58	156	3.22	380	$\overline{830}$	110588
35**	4.8 .4	0.0050	9.5	32.7	68	190	3.93	461	---	110589
45	46.5	0.0049	9.5	34.8	75	157	3.38	$1!13$	815	110693
60	148.2	0.0049	10.0	39.0	81	159	3.30	411	810	110694
75	48.0	0.0049	10.0	41.8	87	159	3.31	418	790	110695
90	46.4	0.0043	11.0	44.2	95	143	3.08	403	775	110734

** Check on 35 minute beatinf: time

| 35 | 49.0 | 0.0050 | 10.0 | 34.7 | 71 | 164 | 3.35 | 406 | 820 | 110761 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Effect of one per cent Locust Bean Gum adaition to 45 minute beating.

* Freeness at 30 minutes beating time

TABLE II

Stocir - Duracel Bleached IKraft

$\begin{aligned} & \text { Beating } \\ & \text { Time } \\ & \text { (minutes) } \end{aligned}$	S. R. Preeness	$\begin{gathered} \text { Basis } \\ \text { Weight } \\ 25 x^{1}+0 / 500 \end{gathered}$	$\begin{aligned} & \text { Caliper } \\ & \text { inch } \end{aligned}$	Apparent Density	$\begin{aligned} & \text { Burst } \\ & \text { Pts. } \end{aligned}$	$\begin{aligned} & \text { Strength } \\ & \text { len) } \\ & \text { Pts./100\# } \end{aligned}$	$\begin{aligned} & \text { Elmendorf } \\ & \text { Tear } \\ & \mathrm{g} . / \text { sheet } \end{aligned}$	Tear Factor	Burst- Tenr Factor	$\begin{gathered} \text { File } \\ \text { No. } \end{gathered}$
5^{*}	--	47.0	0.0058	8.0	9.8	21	81	$1.7 ?$	193	110801
5	\cdots	47.1	0.0051	9.0	20.3	43	137	2.91	334	110802
10	825	4.7 .2	0.0049	9.5	28.5	60	159	3.37	397	110803
15	815	48.2	0.0051	9.5	30.2	63	174	3.51	424	110804
35	720	49.3	0.0049	10.0	51.8	105	155	3.14.	419	111342

- Used low Waring Blendor speed which geve noor circulation All others at high speed.

TABLE III
THE VARIATION OF BURST ATD TFAR DURITG BFATING OF DURACPK BLFAGHBD KRAFS IN THE VALJEY BEATER*

$\begin{aligned} & \text { Beating } \\ & \text { Time } \\ & \text { (minutes) } \end{aligned}$	S. R. Freeness	$\begin{aligned} & \text { Basis } \\ & \text { Weight } \\ & 25 \times 40 / 500 \end{aligned}$	Caliner inch	Anoarent Density	Burst Pts.	Strength len) Pts./100\#	$\begin{aligned} & \text { Flmendorf } \\ & \text { Tear } \\ & \text { g./sheet } \end{aligned}$	Tear Fretor	BurstTear Fector	$\begin{aligned} & \text { File } \\ & \text { No. } \end{aligned}$
5	850	48.7	0.0056	8.5	14.0	29	99	2.03	232	110826
10	850	49.7	0.0053	9.5	22.6	$1 / 5$	159	3.20	365	110827
15	850	44.9	0.00146	10.0	28.0	62	140	3.12	374	110828
25	830	47.7	0.0046	10.5	43.3	91	130	2.73	364	110829
35	820	47.2	0.0042	11.5	53.9	114	89	1.59	303	110830
45	800	47.8	0.0042	11.5	59.4	124	86	1.80	304	110831
60	765	148.4	0.0041	12.0	65.2	135	86	1.78	313	110832
75	705	47.4	0.0040	12.0	67.9	143	76	1.50	303	110833

- Consistency 1.5\%

450 g g . on bed plate

TABLF IV
VARIATION OF BURST AND THAR DURING RFATING OF : FFYERFARUSFR BLEACHFD SULFITE IN THE WARING BLENDOR

Consistency 1.5%

$\begin{aligned} & \text { Beating } \\ & \text { Mime } \\ & \text { (minutes) } \end{aligned}$	$\begin{aligned} & \text { Basis } \\ & \text { We1.ght } \\ & 25 \times 40 / 500 \end{aligned}$	Caliper inch	Aonarent Density	Bursting Strength (Mullen)		$\begin{aligned} & \text { Slmendorf } \\ & \text { Tear } \\ & 5 . / \text { sheet } \end{aligned}$	Tear Factor	RurstTear Fretor	$\begin{aligned} & \text { File } \\ & \text { No. } \end{aligned}$
5	48.5	--	--	12.1	25	106	2.19	244	110585
10	47.0	\rightarrow	--	16.1	34	103	2.19	253	110585
15	47.0	--	--	18.9	40	118	2.51	291	110585
25	46.4	0.0045	10.5	25.5	55	116	2.50	305	110753
35	1.5 .1	0.0043	10.5	29.0	64	106	2.35	299	110754
45	46.2	0.00143	10.5	31.3	68	95	2.06	274	110755
50	145.7	0.0043	10.5	34.9	76	92	2.01	277	110756
75	45.5	0.0042	21.0	36.1	79	88	1.93	272	110757

TABLD V
VARIATION OF BURST AND TEAR DURI IG BEATING OF WEYERHAFUSER BLYACHPD SULFITT IN THE VALLFY BEATER Consistency 1.5%

$\begin{aligned} & \text { Beating } \\ & \text { Time } \\ & \text { (minutes) } \end{aligned}$	$\begin{gathered} \text { Basis } \\ \text { Weight } \\ 25 \times 40 / 500 \end{gathered}$	Caliper Inch	Apparent Density	Bursting Strength (Mullen)		$\begin{aligned} & \text { Flmendorf } \\ & \text { Tear } \\ & \text { g./sheet } \end{aligned}$	Tear Factor	$\begin{aligned} & \text { Purst- } \\ & \text { Teer } \\ & \text { Factor } \end{aligned}$	File
				Pts.	Pts./100\#				No.
5	50.0	0.0053	9.5	10.5	21	-	--	--	111504
10	16.5	0.0047	10.0	15.0	32	107	2.30	262	111505
15	46.3	0.0045	20.5	2.0 .9	45	. 118	2.52	297	111506
25	$1: 7.5$	0.0043	11.0	32.5	68	85	1.79	247	111507
35	47.5	0.0041	11.5	38.2	80	68	1.43	223	111508

- No good tears

TABLE VI
VARIATION OT BURST AND MTAR DURITG BEATITG UPOI ADDITION OF OME PER OTNT OF COOKED LOCUST BRAN GUM
Stock - Weyerhaeuser Bleached Sulfite
Beater - :Iaring Blendor

$\begin{aligned} & \text { Beating } \\ & \text { T1me } \\ & \text { (minutes) } \end{aligned}$	$\begin{gathered} \text { Basis } \\ \text { Weight } \\ 2.5 \times 40 / 500 \end{gathered}$	$\begin{aligned} & \text { Caliper } \\ & \text { inch } \end{aligned}$	Aoperent Density	Burs Pts.	Strength len) Pts./100\#	Per Cent Increase in Burst*	$\begin{gathered} \text { Elmendorf } \\ \text { Tear } \\ \mathrm{E} \cdot / \text { sheet } \end{gathered}$	Tear Fector	BurstTeer Factor	$\begin{aligned} & \text { File } \\ & \text { No. } \end{aligned}$
5	48.5	0.0051	. 9.5	19.5	41	64.0	113	2.33	274	110866
10	48.2	0.0049	10.0	27.3	57	67.7	121	2. 51	308	110867
15	47.4	0.0048	10.0	31.7	67	67.5	113	2.38	305	110868
25	46.5	0.0045	10.5	38.2	82	49.1	94	2.02	28)!	110869
35	47.0	0.0045	10.5	40.5	86	34.4	82	1. 74	260	110870
45	46.7	0.0043	11.0	12.6	91	$33.8{ }^{\circ}$	75	1.51	252	110871
60	46.14	0.00112	11.0	45.7	98	29.0	70	1.51	249	110872
75	46.5	0.0042	11.0	45.3	98	24.1	73	1.57	255	110873
90	45.3	0.0042	11.0	44.5	97	\cdots	64	1.40	237	110874

* Per cent increase over blank at same bentinf time. See Table IV for corresrondinc blank sheet.

PROJECT REPORT FORM

Copies to: Files Steele Rowland Swanson

PROJECT NO. 849
COOPERATOR Institute
REPORT NO. 11
DATE July 23.-1944. (typed 7/31/4:
NOTE BOOK_.. 57.3 \qquad
PAGE 59-64, 66- T0.81, 111-113 SIGNED OM 2 N . Luraxdone

John W. Swanson

AN EVALUATION OF STEAL BORAX -SODIUM EYPCCHIORITE CONVERTED. mucilage as clay coating adeesi vies

Introduction:

Previous work on Project 969 (Report 1) has shown that converted mannogalacten mucilage are strong adhesives for pigment coatings. It was also found that a limited amount of wet scrub resistance could be obtained by incorporation of a small amount of buffered borax solution. These oxperiments were made with converted products having little possibility of commercial manufacture. A method of conversion on has now been devised which may possibly be commercially feasible. This is the borax-sodium hypochlorite technique. Several member mills have already expressed their interest in converted mucilages of this type. Therefore, it became desirabile to evaluate as coating adhesives some of the promising products made by the new method.

Experimental:

Work Done

1. Several types of converted muctlages were evaluated in coating colors--these included converted Glt, Glut and locast bean gums.
2. The coatings were examined for Denis on wax pick test and Visual smoothness. Two coatings were tested for K and I ink absorption and compared with starch coatings.

Procedure

Since many of the converted products varied considerably in ash and moisture contents all evaluations were mede on an oven dry-ash free basis for the mucilage. After several experiments, the following procedure was adopted.

12 g . of converted mucilage (O.D. and ash free). 240 ml . water.

- Glacial acetic acid to pH 5.0-5.5.

The mixture was heated to $80^{\circ} \mathrm{C}$. With stirring and allowed to cool to about $40^{\circ} \mathrm{C}$. The pR was then adjusted to pH 6.0-6.5 with dilute alkali and added to the following clay slip:

100 G. HT clay
$50-60 \mathrm{ml}$. water
1.5 ml . 10% sodiun tetraphosohate (Quadrafos)

After thorough mixing, the coating mixture was screened through a 100 mesh sieve and used to make drew dorns with a 0.0015 inch bar.

Results and Discussion:

The experiments with converted Gh-2 mucilages showed that this material is unsuitable as a coating adhesive. Coatings made with these products were not only very rough, presumably because of the non-dispersible seed coat present, but also the pick value was very low. (See Table I) At first it was believed that the roughness was due entirely to agalomerated clay particles produced by the salts present in the converted mucilage. Bowever, an experiment with an acid hydrolyzed Gly 2 (G11-556) which had a very low ash content also gave a rough coeting. fhen converted locust bean gums were used, smooth coatines were obtained. In order to show that the $\mathrm{G}^{4}-2$ mucilage was responsible for the roughness, separate contings were made with the cooked mucilage and a clay slip. The mucilage coating was very roush while the clay coating was very smooth. Bramination of the mucilage coating with a low power microscope indicated thet most of the roughness was due to the seed coat present in the oly-2 mucilage. However, numerous craters were also evident and these were the resuit of undispersed particles of mucilage which had been highly swollen while the film was wet but had shrunk won drying. This was evident in finished coatings as ting transparent spots.

Two samoles of converted guar Gli4 were evaluated. (This mucilage has the seed coat removed and is much improved over Glu-2.) Sample R25225 (General Mills code number) was difficult to disperse both before and after conversion and as a result, coatings made with the converted product were rough and unsuitable. Sample R25545, bowever, dispersed quite well and gave very good cootings from the etandpoints of both smoothness and adhesive strength. Twelve per cent of this mucilage based on the weight of the clay, gave average wax pick test values of 5A. This converted macilage is therefore equivalent to casein in adhesive strength.

- The exporiments were made at a relatively low coating solids content because the mucilages were only moderately converted and possessed Viscosities too high for coating at higher solids content. Further experi-

Remarics on Appearance s.วิ17700 50 Very rough
and pitted
 Smooth
 Smooth Smooth Smooth
Rough and
pitted

 Mucilage
Used
G55-573
G11-556*
G133-431* $m m m$
min
1
ind
680
 m
N
n
h
h $674-573$ 674-573
 n
1
0
0

0 | m | m |
| :---: | :---: |
| | |
| 0 | |
| 0 | 0 | These are alcohol acid converted mucilages used for comparison purposes.

 Code No.
of Coating
c59-1-573
c59-2-573
c60-1-573
$c 60-2-573$
$c 61-573$
$c 67-1-573$
$c 67-2-573$
$c 71-573$
$c 79-1-573$
$c 79-2-573$
$c 81-1-573$
$c 81-2-573$
$c 111-573$

RFLAMIVE ITK ABSCEPTIOY VALUES FOR

 MUCIILAGD AND STARCH COATIMGS| File No. | Designation | Adhesive Used | Per Cent Adhesive on Clay | I and N Ink Absorotion Average Reflectance ? | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Ro Original | Ro Inked | Difference |
| 113483 | C79-573 | Hucilage 674-573 | 10 | 75.5 | 43.5 | 32.0 |
| 113484 | c79-573 | Mucilage G74-573 | 12 | 75.0 | 44.1 | 30.9 |
| 113485 | C48-557 | Starch | 18 | 80.1 | 36.6 | 43.5 |
| 113487 | Champion *
 International
 Paper Company | Starch | 22 | 70.4 | 43.5 | 26.9 |
| 113488 | C19-1-557 | Starch | 22.5 | 78.7 | 39.6 | 39.1 |

PROJECT REPORT FORM

Dopiest: Files
Steele
Fer land
Swanson COOPERATOR Institute
REPORT NO._ 10
DATE JuNe 19. 10hly
NOTE BOOLE 575 _- 573
PAGE 150 TO \quad - $-22, ~ 23-46$ SIGNED Gotha W. Luraneon-

Bleaching of Flame Tree Mucilage

Introduction

Abstract

The mannogalactan mucilage obtained from the flame tree seed (Delonix regina) is a particularly potent adhesive for application to the paper industry. Tire principal objection to using the mucilage at the present time is that the dark seed coat cannot be completely infilled out. Therefore, tie e product cannot be used in high grade papers because of tie many dark specks retained by the sheet. All attempts, so far, to effect a separation of mucilage and seed coat inge failed. Therefore, it was decided that bleaching sinould be tried with a borax solution as a suspension medium. (See Report g on time borax technic due). Ereliminary test.tuje experiments shoved tine posaioility of doing this ane several further experiments were made.

The importance of this work lies in the fact that it maces available to the paper industry a cheap potent mucilage suitable for practically all toes of paper.

Ex:evinertal

Fork Done:

1. Flame tree mucilage was suspended in borax solution and bleached witt various quantities of sodium hypochlorite.
2. Those products found to be suitable from a spec standpoint were evaluated as beater adhesives after cooling.
3. Several of the more inghly bleached products were also evaluated as cold water soluble beater adhesives.
4. Attempts were mede to bleach tree mucilage by means of gaseous chlorine and ritrogen dioxide

16

Report ino. 10
Project No. $z^{4} 9$
page 2

Eleaching Froceoure

> 00 g . flane tree zucilage (virouzt to zesin) 000 ml . Water
> 12 E . jorax
I.e borax was dissolved in ti.e water and ine mucilaçe aded with stirring: Tié aixure wäs stirree for 15 minutes at roon temperature and was then filterec (wta difficulty) on a fritted gless Bucener funcl. The procuct was wasied once wita water end the excess removed by suction. the wet pad of mucilafe we find 217.5 g . and was taen separated into three 72.5 E . semples and each sisgeaded in 100 ml . of water. Various quantities of sodiun hypocilorive so-ution were added and ine mixture stirred occesionally for several hours mint the avalable cilorine was mearly consumed. Those samples wifob contained an insuficient amount of cilorine to completely oleaci ine dark specirs were used for furtion exoeriments oy ading more sodium ajochlorite solution. After bleaching, the trodacts were filtered off, wasied with water and air iried.

A seconc series of exceriments wes made wich differed from the first only in that une borax washed muctlage vas resuseacied in fresh 3 ; borax soiucion for the bleac-inf procedure. It was thought that a stronger borax solution might effect a savire of cnlori:ee necessery for bleaching. Both series of experizents are sumarized in Table I. A control was made oy stirrizg 10 g . of the flame tree mucilage in loj ml. of 2% borax solution for 45 minutes followed by filtration and wasting pritf water. Yield 8./ ह.

The mucilages were cooked at $2 ;$ concentration in waver actulajad wivacl go טi $=5.5$. Tne temuerature was raised to $30-55^{\circ} 0$. and aelc. for 20 minutes.

Results and Discussion

In the first exjerinents on the oleacing of flame oree mucilase it was fourd that a consideracle quentity of the colored mateviel could be removed of a preliminary vashing with borax solution. Whis effecied a considerable savine in the enount of chlorine necessary to oleaci the nucilage. The data in Table I maicate that at leasi 3° of availajle chlorine is necessary for bleaciing of the dark specks present in tie mucilace. Ferneps improvezents in the preliminery extraction rroceaure will further reduce the chlorine necessary. Three percent of chlorine gave a producu practically. free of specks having only a fainc yellow color. Increasing percertages of cilorine gave products of increasing brigitress

Report No. 10 Project Nio. Ex, 3
and with 7 to 15% of chlorine pure white mucilaces were obtained. These larger quantities of chlorine are unnecessary from a soeck standpoint and they were used in these experiments only to determine the effect on cold water dispersioility. The 15 hour bleaching period is also unnecessary since only roout one hour is neaded for consumption of the major part of the cilorine. Resuspension of the washed mucilage in 3% borax solution instead of water did not decrease the minimum amount of chlorine necessery for bleaching.

The beater evaluetion data for the oleached mucilages are presented in Tables II snd III. The cooked mucilages at 1.5% addition to the puly gave very ejod increases in bursting strength and folding endurance. These increases are as good as those obtained from guar Gl-2 macilage et 1.5% addition to the pulp. It apoers thet the degree of oleacifne up to lo; chlorine does not alter the strength gualities appreciably. At 15 fic cinorine there was a noticeable decrease in ourst and fold.

Addition of the bleached mucilages to the beater as dry powders gave only ajout $30-50 \%$ of the strength attainable by cooking the mucilage prior to puip addition. This indicates that moderate bleaching did not aporeciably increase the cold water aispersibility. That product which had been treated with 15% of available chlorine gave the highest burst and fold increases.

Bleacilng with Gaseous Onlorine and iitrogen Dioxide

Severel preliminery attempts to bleach fleme tree mucilege by gaseous chlorine and nitrogen dioxide have been made. lieither gas wil oleach the mucilage at fts normal moisture content (about $7-10 \% \tilde{0}_{2} 0$.. It is necessary to increase the moisture in the muctlage to about 15-25\%; before the bleachine will occur. Eovever, even at this zoisture content the sleacined trojuct retains a ratier deep yellow to orane color which does not difepuear. Furtinermore, absorption of the ges mekes the product strongly acticic thereby enabling continuous ectil hydrolysis to occur. Veutralization with amonie leaves a considerable nuentity of emmonium chloride wilich is also aciaic. Some success has been attatned by giving the macilage a preliminary borax extraction followed by passage of the gas tinrough tine wet product in emounts insuffictent to make the mixture acidic. This procedure probably holds no edvantage over jleaching in the aqueous borax solution.

Bleachine of flame tree mucilage wring the cooking procedure has ceen tried to a limited extent. It ves found thei eoout 5% of chilorine was necessery to oleach the specks since the extra coloring neiter had not been removed by extraction.

It is projable that the borax suspension techniaue of
bleacining could be accoapllshed at a cost. of about one cent jer pound of mucilage.
jwis/vis

TASLEI

A Summary of the Bleaching Data of Fleme Tree Nucilage

Sode ̇io.	Fer Cent Availeble Cnlorine Acded on Mucilaģe	$\begin{gathered} \text { Time } \\ \text { in } \\ \text { nours } \end{gathered}$	Fercentrge Yield of Original Nucilaze	Appearance of Froducu	Relative Tiscosity at 1% $30^{\circ} \%$.
G7-1-513	0.5	2	-	Many szecks	-
G7-2-573	1.0	c. 5	-	Vany steciss	-
67-3-573	2.0	3.0	-	Soze speciss	-
67-4-573	2.5	5.0	-	Some specirs	-
67-5-573	3.0	5.0	32.6	```Very few specrs of light yellow color```	21.1
67-0-573	4.0	4.5	82.0	No visible sieck	(2)
6/-7-5/3	5.0	5.0	82.5	\# "	15.1
Following Zlescned in 3;i Eomax Solution					
68-1-513	0.5	3	-	Neny specks	-
GE-2-573	1.0	15	-	: n ny soecks	-
G8-3-573	2.0	15	-	Some suecks	-
68-4-513	3.0	15	-	Zo suecks	-
Gy-5-573	7.0	16	04.0	io specirs rinite coior	-
G=-0-573	10.0	16	-2.6	Fure white	-
69-7-573	15.0	16	80.1	Fure waite	-

[^0]
Tnble II

rile : io.	Sode ito.	per ient Chlorine for Blepch	$\begin{aligned} & 3 n \mathrm{sin} \\ & \text { linifhe } \\ & \therefore .5 \times 40 / 500 \end{aligned}$	$\frac{B_{1} u r s t \ln t}{P_{0} \operatorname{lnt} s}$	$\frac{\text { Strength }}{\text { Fts. } / 100} 1 \text { bs. }$	Finr Cent Increas In Furst	$\begin{aligned} & \text { iir'r } \\ & \text { Fold } \end{aligned}$	For Bn!st Incrense 1: Foll	Gurley Poroelty sec./l (9) ec.	$\begin{aligned} & \text { Elmentorf } \\ & \text { Terr } \\ & \text { G./shent } \end{aligned}$	Tenr Factor
119980	Blant:	-	47.0	28.8	61	-	103	-	15	76	1.62
112984	Conerol	0	47.4	40.6	86	41.0	nno	190	16	56	1.18
119ysil	(97-5-5) 3	3 ;	46.5	38.8	8.3	36.1	31.8	208	19	$5 ?$	1.12
11298?	67-6-573	4	47.2	40.3	86	14.0	296	189	18	54	1.14
112983	67-6-573*	4	47.3	39.7	84	.37 .7	293	184	18	55	1.16
1129087	blank	- \cdot	47.5	28.1	59	-	57	-	19	18	1.64
112986	67-7-573	5	46.9	40.6	87	47.5	289	407	19	55	1.17
113053	69-5-573	7	40.3	37.3	81	37.3	308	446	1.7	57	1.23
1230r,4	69-6-573	10	47.3	38.1	$8 ?$	39.0	319	460	18	61	1.29
11305	69-7-573	15	46.7	38.4	\&2	39.0	212	272	18	$6 ?$	1.33
- Conker	at $1 \cdot i=5$:			-	Table If					

11302 l	Blank	-		48.3	28.6	59	-	38	-	05	80	1.66
1132 2 2	67-6-513	4		48.2	32.1	67	13.5	63	65.8	30	71	1.47
1132.23	67-7-513	5	-	48.6	32.3	66	11.8	$6 ?$	63.9	26	72	1.48
113.72 .4	69-5-573	7		48.6	31.3	64	8.5	94	147.0	22	b8	1.40
113225	6:-6-573	10		41.7	32.0	67	13.5	80	110.0	\%	64	1.34
113280	69-7-573	15		47.6	34.5	72	2. 0	137	260.0	23	63	1.32

PROJECT REPORT FORM

Copies to: Files

Mr. Steele
Dr. Rowland
Mr. Swanson

PROJECT NO. gl
COOPERATOR Institute
REPORT NO. 9
DATE June 1, 1944 (typed 6-12-144) NOTE BOOK 556 . 573
PAGE 14 to $140 \quad 310$ to 40
SIGNED

THE CONVERSION OF MANNOGALACTAN MUCILAGE IN AQUEOUS BORAX SOLUTIONS
Page
Introduction 2
Experimental 2
Work Done 2-3
General Conversion Procedure 3-4
Conversion of Series G. $72-556$ to G. 78 to 556
Alkaline Extraction for Removal of Protein 54-5
Results and DIscussion
Behavior of Locust Bean Gum in Borax Solutions5-6
Preliminary Conversions of Locust Bean Gum 6-9
The Effect of Protein Content on Conversion Reaction 10-12
Extraction of Protein 13-14
The Effect of Alkali Concentration and pH on the rate of Conversion 14-15
The Evaluation of the Converted Mucilage as Tuosize Adhesives 15-16
An Evaluation of the Converted Nucilages as Cold Water Soluble Beater Adhesives 16-20
The Problem of Cold Water Solubility 21
Discussion of Possible Limitations of the Conversion Reaction 21-22
The Economics of Conversion 22
Suggestions for Further Fork 22-23
Summary 23-24

TABLE OF CONTENTS

Project Mo. 849
Report No. 9
Page 2

THE CONVEPSION OF MANNOGALACTAN MUCILAGES IN AQUBOUS BORAX SOLUTIONS

Introduction:

The matter of a suitable conversion medium for thinning down the Viscosity of mannogalactan mucilages has been a considerable impediment to the progress on this problem. The mucilages hydrate readily in water thereby making it difficult and expensive to isolate the converted products. Alcohols and other organic materials in which the products do not hydrate appreciably are expensive and often unsuitable because of reactivity with the converting agent. These factors have been explained in greater detail in previous reports.

The search for a suftable conversion medium has led to the use of aqueous borax solutions. The woric of this report indicates that it is entirely feasible to convert mannogalactans suspended in a water solution of borax. This procedure is simply an application of the property of mannogalactans to form a water insoluble gel in the presence of borax. In thts case, the small particies of mucilage do not dissolve because the borax solution presumably surrounds each particle with a layer of the borax gel, thereby, preventing the penetration of a sufficient amount of water to disperse the mucilage.

This report covers some exploratory work upon the conversion of locust bean gum and guar G4-2 by means of sodium hypochlorite in a borax solution. Locust bean gum was used most frequently because of its greater purity and uniformity. At the present time, however, relatively pure guar products have become avallable and the experimental data obtained from the locust bean gum oxddations have been found to be apolicable to thls guar with minor changes.

The conversion of mannogalactans in aqueous borax solution is not limited to sodium hypocilorite. It is reasonable to expect that many of the alkaline oxidizing agents used for converting starches may be employed. Sodium peroxide has been tried with success and experiments with other compounds will be investigated as time permits.

Experimental:

Mork Done:
Information upon the following points pertinent to this method of converting has been obtained.

1. The possibilities of conversion in borax media and limitations thereof.
2. The relative degree of hydration of the macilage in various concentrations of borax.

Project No. 849
Report No. 9
Page 3
3. The effect of concentration of borax solution upon the speed of conversion, yield and ash content of the converted product.
4. The effects of 1 mpurities in the mucilage such as protetn and seed coat upon the rate of conversion.
5. Methods of protein removal and purification of mucilages.
6. The quantity of chlorine necessary for conversion of the mucilage.
7. The effect of alkali concentration upon the rate of conversion.
8. The possiblifties of these converted mucilages as tubsize adhesives.
9. The possibilities of these products as cold water soluble beater achesives.

General Conversion Procedure:

17 g. Borax
500 ml . water
50 g . Locust bean gum
$91 \mathrm{ml} . \mathrm{NaOCl}\left(6.58 \mathrm{Cl}_{2}\right.$ and 3.1 N in NaOH)
The borax was dissolved in water and the gum was added to the solution with stirring. The sodium hypochlorite solution was then added and the reaction allowed to proceed with continued stirring. Usually a 6 degree rise in temperature was noted. At the desired time, the mixture was filtered off on a Bachner funnel, washed once with water and air dried. Variations in this procedure are noted in Table II where a summary of the conditions of each conversion is presented. For minute details of indifidual conversions the notebook should be consulted. The Code No. of each product represents the page and notebooks number.

TABLE I
SUMMARY OF PROPERTIES OF LOCUST BEAN GUM TREATHD WITH VARIOUS CONCEMTRATIONS OF BORAX SOLUTION-

Conc. of Borax Per cent	Volume of Hydrated Gum after 24 hrs .	Yield of Product grams	Ash Per cent O.D. basis	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { Fer cent } \end{gathered}$	O.D. Ash free Yield	Per cent Yield of Manno- galactan
3.4	37	4.7	7.33	15.3	3.64	86.3
2.72	37	4.4	6.82	11.8	3.58	84.8
2.04	40	4.5	5.44	10.7	3.77	89.1
1.36	40	4.3	4.21	10.4	3.68	87.2
0.68	47	4.2	2.41	8.6	3.74	88.6
0.34	54	4.1	1.5	9.2	3.66	86.8
0.17	63	3.9	0.84	9.7	3.48	82.5

Conversion of the Series G72-556 to G78-556.
52 g. Borax
3000 ml . water
1500 ml . $\mathrm{NaOCl} \quad, 1400 \mathrm{ml}$. of $2.7: \mathrm{Cl}_{2}$ 400 g . Locust bean gim -100 ml . of 6.5 务 Cl_{2}

The ingredients were mixed in the above order in a 5-liter 3-neck flask fitted wi th a thermometer, a mercury sealed stirrer and a delivery tube for collection of evolved gases by water displacement. Upon adidtion of the locust bean gum the temperature increased from 25.0 to $32.5^{\circ} \mathrm{C}$. and about 750 ml . of a colorless gas were evolved and collected. Samples of the converting mixture were removed from time to time by siphoning off aliquots. These were filtered and the products washed with 500 ml . of water and air dried. Five samples were obtained varying in conversion time from 6 to 96 hours. The filtrate in each case was analyzed for chlorine and sodium hydroxide. Glycerine was added just prior to determination of the latter property since boric acid is a strong acid only in the presence of a neutral polyhydroxy compound. A summary of the properties of the products may be found in Table III.

The gas evolved during the first hour of the reaction was insoluble in water, neutral, colorless, had a faint odor of bleach liquor, gave a weak test for CO_{2}, was very unreactive, and appeared to be principally nitrogen. Kagnesium metal was burned in a bottle of the gas and when this was dissolved in water an odor of ammonia was noticed. A determination of the density of the gas gave a value of $1: 28$ - that of nftrogen is 1.25 .

Alkaline Rxtraction for Removal of Protein.
After several preliminary experiments it was found that protein material present in the raw mucilages seriously interfered with the conversion of the mannogalactan. Attempts were made to remove a considerable part of the protein by alkaline extraction. This led to the adoption of the following tentative extraction procedure.

> 12.8 g. borax
> 20.0 g. sodium carbonate
> 500.0 ml . water
> $50 . \mathrm{g}$. mannogalactan gum.

The borax and sodium carbonate were dissolved in the water and the gum added with stirring. The mixture was stirred for one hour at room temperature and the gum filtered off and resuspended in 500 ml . of water. After a few moments the gum was filtered off and the excess water drawn ofi. This product was then resuspended in borax solution (of the desired concentration) and converted as before with sodium hypochiorite solution. The products possessing the code numbers Gl20-556 and beyond were each given this preliminary alkaline extraction prior to conversion. Extraction with 3% borax alone at room temperature was also tried but this procedure gave products of higher nitrogen content and so it was not used. Further wori upon an optimum extraction method has given a still better procedure but this was not used on the products of this report.

Results and Discussion:
Preliminary Investigation of the Behavior of Locust Bean Gum in Borax Solutions.

Test tube experiments with both locust bean grum and grar Glt-2 demonstrated quite clearly that mannogalactans can be quite readily converted with sodium hyoochlorite solution. This led to a more careful study of the procedure which, thus far, has pointed out a number of factors which influence the conversion.

One of the first factors investigated was the permssable range of borax concentration which could be employed from the standpoint of mucilage hydration and solubility. This was done by guspending $5 \mathrm{~g} .(4.22 \mathrm{~g}$. O.D. ash free) of locust bean gum in 100 ml . of the desired concentration of borax solution. The degree of swelling in milliliters was observed after

Froject No. 849
Beport No. 9
Page 6
standing 24 hours. The gums were then filtered off and yields determined. The data are presented in Table I and are plotted in Fig. 1. The ash content increased steadily with borax concentration and there soemed to be some tendency for the moisture content to vary similarly. The degree of hydration or swelling was greatest in the lower concentrations of borax and decreased to approach an almost constant value from 2.0-3. 5 名 borax. The percentage field of recovered mannogalactan was approximately constant (86%) down to 0.3 per cent borax concentration - then a significantly greater amount was lost through solubility. Subsequent experiments have shown that the average yifld for a moderately converted mucilage in one to two per cent borax is about 80-85\%. This seems rather low upon first examination but it is now cnown that 6 - 7 per cent of the raw locust bean gum is protein material, which is soluble in the alkaline medium. Correction for this would bring the yield of mannogalactan up to aoout 90 per cent. The remaining ten per cent of the mucilage remains unaccounted for. It is possible that this fraction does not form an insoluble complex with borax and is therefore leached out. Ferhaps extraction with borax may furnt sh a better means of fractionation of the various mannogalactan polymers for fundamental studies. One of the most important factors made apharent. from these data was that the mucilage may be quite highly swollen without a significant loss in yield. The importance of this lies in the probable heterogeneity of the reaction on particles of mucilage which are not highly svollen. This will be discussed more fully in a subsequent section.

Preliminary Conversions of Locust Bean Gum.
The first attempts to convert 50 g . samples of locust bean gum with sodium hyochlorite solution encountered several puzzling phenomena. When the hypochlorite and grom were mixed a very rapid reaction occurred during which a considerable quantity of a gas was liberated. Starch-iodine tests of the converting mixture gave strongly positive results for chlorine during the first part of the reaction but as the oxidation proceeded the test became less dietiact. At about $3-1 / 2$ hours it became negative. This behavior indicated that the avallable chlorine had been consumed. However, further investigation proved that this was not the case since a considerable quantity of chlorine was found by titration to be present even after 96 hours reaction time. Further experiments indicated that about 80% of the available chlorine was consumed during the first one-half hour of the reaction. Tne remaining 20% of chlorine was consumed at a slower rate. Also, it vas noted that products oxidized for shorter periods of time possessed conslderably higher viscosities than those oxidized for longer periods. Howerer, the additional decrease in ∇ iscosity caused by the action of the last 20% of the available chlorine was found to be considerably dependent upon the borax concentration and amount of alkali present in the mixture. In other words, It was found that at a definite borax concentration the more sodium hydroxide present the greater the reduction in $\mathrm{Viscosity}. \mathrm{Also}$. yielded products having lower viscosities, thereby indicating that the more highly swollen mucilage particles were attacked to a greater extent or perhaps more readily than particles swollen to a lesser extent. See Table II G18-556 to $665-556$. It was believed for a time that the viscosity decrease which occurred in the later part of the reaction m 解t be due to air stirred into

```
Project No. }84
Report No. }
Page }
```

the mixture during the long conversion time. An experiment (G111-1-556 and Glll-2-556) was made by oxidizing a double batch of mucilage for two hours after which time it vas separated into two batches. One half was allowed to continue in the normal manner and atr was bubbled through the other for 2 ? hours. A comparison of the viscosities showed that dissolved air did not appreciably affect the degree of conversion.

A series of converted products (G72-556 to G73-556) were mext made by oxddizing a 400 g . batch of locust bean gum and remoring samples from time to time. The rate of chlorine consumption and changes in aikali concentration were followed throughout the reaction period of 96 hours. The gases evolved during the first hour of the reaction were collected and later analyzed. The data are given in Table III and are plotted in Fig. 2. The Fiscostiy of the products decreased rapidiy during the first six hours of the reaction but thereafter at a much slower rate, presumably because of the much lower concentration of avallable chlorine.

The variation in ratio of sodium hydroxde to chlorine present was one of the important findings of this experiment. It was found that the ratio increased sharply during the first ten hours of reaction and thereafter slowly decreased. This may account for the disappearance of the starch-iodine test while chlorine was still present.

Since there was an excess of sodium hydroxide present in the sodium hypochlorite solution it is to be expected that in a purely oxidative type of reaction the ratio of residual sodium hydroxide to restiual chlorine should continue to increase with time. The curve in $51 g .2$ which illustrates changes in the ratio shows the expected increase during the first hours of conversion but it then attains a maximum and thereafter slowly decines. This seems to indicate that some type of acidic group which neutralizes the excess sodium hydroxide is formed during the reaction. Two possible explanations may be made -
(a) the protein may react with the hypochlorite to form an acidic compound or
(b) uronic acid groups may be formed on the mannogalactan chain. Some evidence has been obtained for the latter reaction. The filtrates from each of the above converted products were mixed with two volumes of acetone and alloved to stand overnight. This gave in each case about 2.3 g. of a carbohydrate product which was rich in uronic acids. These samples did not possess a reducing value with Fehling's solution but a small amount of a blue prectipitate formed. Tests for uronic acid on locust bean gum and the converted mucilage G30-556 gave 1.21% and 1.38% carbon dioxide respectively. It is planned when time permits to analyze the filtrate solucle material quantitatively for carbon dioxide, mannose and galactose. This may lead to a better interpretation of reaction mechanics.
table II
A SUMART OF CONVERTIUG CONDItIONS AND PROPGRTIES OF THE CONVERTED MUCILAGES

TABLE III

A SUMMARY OF CONVERSION CONDITIONS AND PROPERTIES OF CONVERTED LOCUST

$$
\cdot 9 \zeta \zeta-8 L 0 \text { of } 9 \zeta \zeta-z L 0 \text { sumo uread }
$$

Project No. 849
Report No. 9
Page 10
The Hffect of the Protein Content of the Kucilage on the Conversion Reaction.
The gas evolved during the initial part of the conversion of products G72-556 to G78-556 was collected by water displacement. About 750 ml . were obtained. Tests upon the gas indicated that a mere trace of CO_{2} was present and that the remainder was nitrogen. Presumably this resulted from the oxidation of protein material in the mucilage. However, this is unusual because ammonia, an aldenyde and carbon dioxide are usually obtained by oxidation of protein.

Several experiments were made to determine the possible influence of the nitrogen or protein content of the mucilage on the chlorine consumption. Two two-stage conversions were made, one with locust bean gum and the other wh guar G4-2. The conversions were started with li\% of available chlorine and at 105 minutes an additional 11% of chlorine was added. The rate of chlorine consumption was determined by titration of available chlorine at various intervals. The conversions were labelled G90-556 for G4-2 and G114-556 for locust bean gum. These experiments were followed by converting products which hed been first extracted with a solution of borax and sodium cerbonate to remove some of the protein. The data are given in Table IV and are plotied in $\bar{z} \ddagger 5$

The curves of Fig. 3 indicate that the conversion reaction is quite dependent upon the amount of protein present in the raw mucilage. It required about 13\% of chiorine to change the rate of oxdation of locust bean gum but about 20% for the Glt 2 mucilage which had a somewhat higher protein content and considereble seed coat material. For protein multiply nitrogen $x 6.25$). When the raw gums were previously extracted with alkali to remove some of the protein a mach different curve resulted. Only about 5% of chlorine was then required to change the rate of oxdiation. It is believed that the reaction of sodium hypochlorite with protein is much more rapid than with mannogalactan. Thus, when the reaction begins both protein and mannogalactan are oxidized but the reaction with protein is so much more rapid that as long as a significant amount of protein remains, the gum, relatively speaking, is only slightiy attacked. Only after the protein has been oxddized does the attack take place principally upon the gum. Therefore, it appears that impurities in the raw mucilages will certainly play a significant role in conversion and it would seem to be advantageous to remove as much of the protein as possible. Since the present $6+2$ mucilage varies considerably in protein content from batch to batch (See Table ∇) and contains nearly 20% of inert seed coat material, which no doubt consumes chlorine too, auch of the work thus far has been done with locust bean gum. Recently, however, General Mills Inc. has produced a fairly undform guar glit mucilage essentially free from seed coat. Several trial conversions of this macilage have been quite successful.

Project No. 849
Report No. 9
Page 11

TABLE IV

COMPARATIVE DATA ON THE RATE OF CHLORINE CONSUMPTION UNDER VARIOUS EXPGRIMENTAL CONDITIONS

G90-556 Guar Not Alkaline Extracted Nitrogen $=1.16 \%$	
Conversion Time in Minutes	Total grams Chlorine present
0	5.5
15	0.75
45	0.63
90	0.53
$\begin{array}{r} 105 \text { added more } \\ \mathrm{NaOOl} \end{array}$	6.03
110	1.62
115	1.42
135	0.90
150	0.78
180	0.68

G120-556 Locust Sean Gum

 Alkalaine firtracted Nitrogen $=0.56 \%$Conversion Time in Minutes

Total grams

0

0	5.55
10	3.62
20	3.04
45	2.60
120	2.08
330	1.50

G114-556. Locust Bean Gum
Not Alkaline Bxtracted Nitrogen $=1.07 \%$

Conversion Tlme	
in Minutes	Total grams
Chlorine present	

0	5.6
5	2.1
25	1.05
60	
95	0.75
105 added more	6.10
NaOCl	

$115 \quad 5.14$
$120 \quad 5.00$
$135 \quad 4.60$ $190 \quad 4.11$ $360 \quad 2.70$

G125-556 Iocust Bean Gum Alkeline Bxtractec

Conversion Tlme Total grams in Minutes Chlorine present

Project No. 949
Report No. 9
Page 12
TABLE IV (continued)
COMPARATIVE DATA ON THE RATE OF GRLORINE CONSUMPTION UNDER VARIOUS EXPRRIMENTAL CONDITIONS

$\text { G1 } 31-5$ Alkaline	56 Locust Bean Gum tracted (Reaction in 3N NaOR)	G17-573 Locust Bean Gum Alikaline Extracted (Reaction at	
Conversion Time in Minutes	Total grams Chlorine present	Conversion Time in Minutes	Total grams Chlorine present
0	5.66	0	5.6
10	3.12	3	3.36
25	2.51	14	2.28
60	2.11	30	1.74
120	1.82	60	1.22
200	1.52	120	0.84
330	1.23		
G55-573 Guar Gi-2			
Alkaline Rxtracted Gl0-573 Locust Bean Gum			
ritrogen $=0.37 \%$		Alkaline Ext	racted (Reaction at $\mathrm{pH}=7.2)$
Conversion Time	Total grams	Conversion Thme in Minutes	Total grams Chlorine present
		0	5.6
20	2.8	12	1.94
60	2.43	24	1.48
180	1.77	120	0.53
330	1.28		
390	1.11		
		G63-573 Guar G44	
		Alkaline	Extracted
Reaction at $\mathrm{pH}=7.5$		Eeaction at $\mathrm{pH}=12$	
Conversion Time in minutes	Total grams Chlorine present	Convergion Time in Minutes	Total grams Chlorine present
0	5.5	0	5.5
30	1.37	15	2.67
		60	2.01
		100	1.55
		180	1.22
		300	0.57
		360	0.40

Project УO. 849
Report No. 9
Page 13

Extraction of Proteln

The best method of extracting the protein material from the muctlage has not as jet been devised. Several methods have been tried using the residual nitrogen content as a measure of effectiveness. Locust bean gum which had-been extracted for one hour with a 3 分 borax solution hed a higher nitrogen content than when it had been extracted with a solution 2.5% in borax and 40 in sodium carbonate. Therefore, in most cases the latter procedure was used for protein removal prior to conversion.

TABLI: 7

PROTHIN CONTENY OF VARIOUS MUCILAGES

*Nitrogen on O.D. basis and where data are available it is also on ash free basis.

Project Vo. 849
Zeport No. 9
Page 14

Subsequent to the experiments of this report a better extraction procedure was devised and has been used in recent conversions. It was found that extraction of the mucilage for 0.5 hour in 3 盾 borax solution at $50^{\circ} \mathrm{C}$. yielded a product of lower nitrogen content than the above preferred method. It should be mentioned that this metiod still removes only about 65:万 of the protein. Further experiments will no doubt result in procedures giving more complete removal. On the other hand, it is possible that a certain amount of residual protein may be desirable during the conversion to bear the strongly degradative effects which are present during the first part of the reaction when the hypochlorite is more concentrated. It mist be mentioned, however, that the lower the protein content prior to conversion the less chlorine will be required to convert the mannogalactan to a desired viscosity. Interestingly enough, even the converted products contain appreciable amounts of nitrogen (0.1-0.2\%). This may or may not be proteinaceous in character. It is belleved that this nitrogen may be present in the skin substance which surrounds each mucilage cell. A further study of this. substance has been planned.

The Effect of Alkali Concentration and DH on the Rate of Conversion.
Several conversions of both guar and locust bean gum have been carried out at different $p H$ to investigate, in a prelifminary way, the effect on the rapidity of the reaction. It has been found that the oxidation is greatly affected by tie pH or alkali concentration. The data on rate of chlorine consumption are given in Table IV. They are also plotted in Figures 4 and 5 where the rates of chlortne reaction are plotted against time. The shapes of the curves indicate that pi must be a significant factor in the rate of reaction. Thus, using as a basis the time necessary for locust bean gum (Fig. 4) to utilize 3.5 g . or 64% of the available chiorine present, it may be seen that at $\mathrm{pH}=12$ about 160 minutes were required while in 3 N NaOH 70 minutes were necessary. The most rapid reactions took place at $\mathrm{pH}=7.7$ (22 minutes), and $\mathrm{pI}=7.2$ (12 minutes). Similar reaction times were observed for two cases of guar mucilage (Fig. 5). A guar Gly oxidation (G63-573) proceeded more rapidly at $\mathrm{pH}=12$ than did G4-2. At present this can not be explained adequately. However it shouid be mentioned that the differences in the two curves are not the results of experimental error. Surves of any one mucilage can be reproduced quite closely.

A thorough interpretation of the reaction mechanics involved at different $p H$ must walt until we have obtained more conclusive data. However, a logical interpretation can be made by analogy from information available upon the sodium hypochlorite oxidation of cellulose. This will give us somewhat of a vorking hypothesis upon which to plan further experiments. It is well known that bleaching of cellulose taxes place most rapidly in a neutral medium and that as the pi increases so does the necessary reaction time. The greater reactivity near the neutral point is explained on the knowledge that two types of oxidant - hypochlorite ion and hypochlorous acid - are present under these conditions. As the pl increases less hypochlorous acti is present

and oxidation becomes slower. This same interpretation should hold true With oxddation of mannogalactans and an additional factor - that of swelling near a neutral pa - should enable better penetration of the oridizing agent and promote the reaction. Again referring to cellulose, as the alkalintty is further increased to the range of very strong alkali, i.s. 3 N NaOH , very rapid oxidation occurrs. This is explained by the mercerizing action of the alkali on the cellulose which enables the oxidizing agent to penetrate the structure more easily. A similar interpretation might be made for the more rapid oxidation of mannogalactan in 3 Na NaOH . (See G131-556 in F1g. 4).

Due care must be exercised during reactions carried out at lower pH values. The mannogalactan mast, of course, remain insoluble in the conversion medium and therefore the pH must not be allowed to come too close to the neutral point for there, solubilization begins immediately. Boric acid has no insolubilizing action on the macilage. Since sodium hypochlorite solutions characteristically produce $E C l$ during their reaction, the alkalinity decreases and if an insufficient quantity is present the pH will fall rapidly toward the neutral point. Therefore, when carrying out oxidations at pB close to the neutral point the mixture must be watched very closely and eition a strongly buffered medium must be used or occasional adiltions of alkali must be made. High alkali concentrations, insofar as we have investigated, do not cause an appreciable solubilization above that taking place at mildy alkaline pH .

It is possible that the optimum type of conversion would be one in which the initial p il is high enough so that the finel pH would end at about 7.5. This would enable the first part of the reaction to proceed rapidly unier alkaline conditions because of the high concentration of sodium hypochlorite. The latter part of the reaction would also proceed rapidly because of low pl and the swelling of the mannogalactan. This would give the shortest time of conversion and highest economy of chlorine.

The Evaluation of the Converted Mucilages as Tubsize Adhesives.
Several of the converted locust bean and goer gums were used as tubsize adhesives at one per cent concentration and $50^{\circ} \mathrm{C}$. on a 100 per cent rag stocis. The tubsize solutions were made up by cooking the converted gums in water containing enough acid to oring the pH to about 5.5. The amount of acid necessary varied with the ash content of the converted gum. Some variations in temperature and percentage of application were also made. The low concentration of tubsize solution was used for two reasons (a) some of the products were too viscous to be used at higher concentrations and (b) it was believed that outstanding adhesive characteristics would be more evident.

The converted locust bean gum products appear to be particularly outstanding tubsize adhesives. (See Table VI). At one per cent concentration the optimal converted gums gave burst increases of $30-35$, and fold increases of $50-80 \%$. Of course, the most viscous mucilages in several cases gave somewhat lover strength increases but this may be attributed to less penetration of the sheet during tubsizing. Strength increases of the above

Project No. 849
Report No. 9
Page 16
magnitude are realized with starches only at much higher concentrations. Typical data for two starches, Superfilm No. 4 at 3 , and Satin Hercules at 5% concentration are given in Table VI.

Tubsizing with a one percent solution of the mucilage does not show the maximum strength-qualities attainable-because insufficient-mucilage is picked up or absorbed to form a continuous film on the fibers of the sheet. Measurement of the amount of mucilage piciked up during tubbing was made by weighing the paper before and after entering the tub. The concentration of solution being known (if), the mucilage remaining in the sheet could be calculated from the weight of the wet sheet. By this method it was found that only 0.4% of mucilage was applied to the sheet. An experiment was made to show the effect of a more continuous filn coverage of the fiber. One sheet was tubsized with a solution contalning one per cent of a converted starch and a second sheet was tubsized with a 3 per cent solution of the same starch. The former solution gave a 39.4% increase in burst and the latter a 26.7% increase. An experiment at higher concentration of mucilage alone was made with gum G5l-556. Although this product was not particularly outstanding when used as a one per cent tubsize, at 3.5 in $^{\circ}$ it gave a 45.6% increase in burst and a 140% increase in both directions of folding endurance. These values are scarcely attainable with starch at any concentration or temperature of application on this sheet conditioned at 50% relative humidity and $73^{\circ} \mathrm{F}$.

The converted guar mucilages (Table VII) dia not show tubsize characteristics as good as the locust bean gums. This was primarily due to the large amount oifmurities present, principally seed coat. Therefore the actual concentration of mucilage was about 0.3% rather than one per cent a difference sufficient to account for the lower strength values. No doubt if the solutions had been made up on the basis of mannogalactan present they would have equalled locust bean gram products.

An Evaluation of Some of the Converted Products as Cold Nater Soluble Beater Adhesives.

One of the ultimate goals of tie application of macilages to the paper industry is to make a product which is cold water soluble. This means a product that can be added to a beater in the form of a dry powder and be expected to fully disperse during the pertod of beating. During some experiments it appeared that the oxidized mucilages dissolved rather easily in cold acidified water and might possibly serve the purpose as a dry addition beater adhesive.

File No.	$\text { Code Ho. } \stackrel{\frac{\mathrm{Pad}}{\mathrm{Cog}} \mathrm{Sol}}{ }$	$\begin{aligned} & \text { Tubsiz } \\ & \text { ondit } \\ & \frac{\text { cent }}{11 d s} \end{aligned}$					Caliper - 1nch	Fursting Strength		?er cent incrense in Burst	$\frac{\text { I: I T Fold }}{\text { In icrogi }}$		Per cent Incrense $\frac{1 n \text { Fold }}{\text { In Acrofa }}$		Gurley Poronity Sec/100 cc.	Mmendorf Tear $\frac{\text { E./ sheet }}{\text { In Aeroas }}$		Schopper Tenalle$\frac{1 b}{\text { In } \cdot / \frac{1 \pi c h}{\text { Acrosa }}}$	
	Avorage Blank	--	--		--	18.7	0.0033	29.9	160	--	217	57	--	--	225	92	102	26.0	13.0
112070	c18-556	1.0	50		222.	19.9	0.0039	39.9	201	25.6	347	100	60.0	75.4	302	102	107	--	--
112071	619-556	1.0	50		261.	19.7	0.0038	40.4	205	28.1	297	98	36.9	72.0	294	100	111	--	--
112012	617-556	1.0	61		261.	19.7	0.0039	40.6	206	28.5	285	123	32.3	116.	300	99	113	--	\rightarrow
112135	G30-556	1.0	50		5.9	18.8	0.0039	38.0	202	26.2	321	90	52.6	57.9	188	94	108	--	--
112137	$631-556$	1.0	50		296.8	19.0	0.0039	37.2	196	22.5	321	90	52.6	57.9	230	93	111	--	--
112139	632-556	1.0	50		232	19.2	0.0039	39.9	208	30.0	395	83	77.4	45.6	230	98	110	\rightarrow	--
112198	651-556	1.0	50	1	5.2	19.6	0.0039	38.4	196	22.5	290	80	33.6	40.4	197	95	116	--	-
112 c 00	651-556	3.5	50		26.0 (28)	19.5	0.0039	45.5	233	45.6	526	1421	142.	149.	332	92	105	--	--
112540	665-596	1.0	50		91.8	19.2	0.0039	42.1	214	33.8	421	82	94.1	43.8	2314	90	103	--	--
122514	672-556	1.0	60		195.0	19.3	0.0039	39.5	205	28.1	409	86	88.5	50.9	257	92	106	--	-
1125 ${ }^{14} 3$	677-556	1.9	60		152.0	19.3	0.0038	40.0	207	29.4	407	98	87.6	72.0	256	95	109	--	--
112544	67x-556	1.0	60		143.0	19.3	0.0038	110.3	209	30.6	369	96	70.1	68.4	238	93	110	--	--
112766	611th-8-556	1.0	50		1.68	19.3	0.0038	36.3	188	17.5	324	72	49.4	26.4	171	93	105	27.5	13.6
112767	61:0-556	1.0	50		15.7	19.0	0.0038	40.8	215	34.4	354	88	63.2	54.4	207	92	103	29.2	14.2
119769	0125-556	1.0	50		23.8	19.1	0.0038	38.9	204	27.5	366	88	68.7	54.4	221	90	101	29.4	14.0
112812	6131-556	1.0	50		3.9	18.9	0.0037	40.1	215	34.4	395	81	82.1	42.1	188	92	103	29.0	14.2
113079	617-573	1.0	50		6.B	19.0	0.0040	39.7	209	30.6	113	93	90.3	63.2	193	94	106	--	--
112815 $1 \% 630-556+051-556$ +2 Suporfilm				,															
	No. 4	3.0	50		8.85	19.0	0.0038	42.3	223	39.4	397	86	83.0	50.9	206	83	104	30.1	
212816	Superfila No. 4	3.0	50		1.63 (23)) 19.1	0.0038	38.7	203	26.0	379	83	74.7	45.6	174	92	100	28.7	
111614	Sntin Herculen	5.0	50		1.60 (2\%)) 20.7	0.0041	42.14	205	28.1	$4{ }^{4} 9$	122	97.8	114.0	249	97	107	31.7	14.6

Note: All sheeti conditioned at 50% Relative Humidity and $73^{\circ} \mathrm{F}$.

Proiect No. 849
Report No. 9
Page 18

Several divergent types of converted macilage were evaluated in this way. One per cent of the converted guns (O. D. and ash free) were added to the beater early in the beating cycle along with $2, \%$ of rosin and $4.5, \%$ of alum. For comparison the same mucileges were also cooked and added to the pulp.

The data are in Table VIII. It appears that two of the earliest converted products ($G 19-556$ and G30-556) are fairly good cold water beater adhesives but, the remainder of the products do not disperse very well under these conditions. The reason for the $G 19$ and $G 30$ products dispersing more completely is not at present explainable. Certain differences in conversion procedure may account for it. These products were the only ones of the group which were not alkaline extracted to remove the protein prior to conversion and they were washed with borax solution following their conversion. It was unfortunate that not enough sample of G30-556 was avallable to evaluate it after cooking. However, the strength values, particularly the burst, are sufficiently high to commend the product without this comparison.

Raw locust bean gum, which had been treated with strong alkali, has the property of dispersing quite readily in cold acidulated water. It was believed that this method might possibly be a better way of making a cold water soluble macilage. The gum (G27-573 Table VIII) was made by treating locust bean gum with 50% sodum hydroxde for 5 hours at room temperature. It is evident from the data that this product was not readily solvble in the white water of the beater. However, it dissolves readily when a water suspension 18 acidified with hydrochloric or acetic acids. It is possible thet the alum may have interferec with the beater dispersion. This same factor may have influenced the results obtained with the oxddized mucilages.

TAPLE VII
TUBSI 2E CRAPACTERISTICS OF GHL? GURS CHLORINATED IN A bORAX MEDIUM

File No..	Tubalye Conditione Per cont Temp-			Relative Vinconity at $18.30^{\circ} \mathrm{C}$.	Bate Weight $17 \times 22 / 500$	Calipar - inch	$\frac{\text { Bursting }}{\text { Points }}$	$\frac{\text { Strength }}{\text { Pt. } / 1004}$	Por cent Increase in Burst	MIT Fold		Per cent Increase in Fold		Gurley Poronity Sec. $/ 100 \mathrm{ce}$.	Elmendor Tear G. /Sheet		Achopper Tensile 1b/inch	
	Average Blank	c	-- .	--	18.7	0.0033	29.9	160	--	217	57	--	--	225	92	102	26.0	13.0
112355	658-556	1	50	9.26	19.3	0.0040	38.4	199	24.4	230	62	6.0	8.8	181	95	107	--	--
112353	659-556	1	50	64.6	19.2	0.0040	37.8	197	23.1	327	56	50.7	--	194	95	108	--	
112762	G90-556	1	50	25.7	19.0	0.0038	36.8	194	21.2	252	67	16.1	17.5	199	93	104	28.3	13.4
112763	G111-1-556	1	50	54.3	19.2	0.0038	35.3	184	15.0	267	58	23.0	1.7	195	102	106	27.3	13.2
112764	6111-i-556	1	50	50.7	19.3	0.0038	36.8	191	19.4	234	61	7.8	7.0	189	94	115	27.6	13.0

Project No, 849 Report No. 9 Page 20

TABLE VIII

beater mialuation of some of the convertad locust bran gums

One Per cent Addition - Freeness 720 Ropin B1ze $2 \%^{\prime}$; Alum 4.5%.

Note: All shoets wore 'conditioned at $50, \mathrm{~B}$ Relative Fumldity and $73^{\circ} \mathrm{F}$.

Project :1:0. 849
Report No.
Fage 21

The Froblem of Cold Water Solubility

Microscopic examinations of the behavior of muctlages in the presence of acids and alkalis have been made. It was ooserved that strong alkali has no apparent swelling or dispersive action on the macilage cells but strong acids cause instantaneous dispersion of the mucilage. Apparently the membrane surrounding each mucilage cell is of a selective type and is permeable to acids but impermeable to alkalis. This phenomenon should be further investigated. It may possibiy be a type of anomalous osmosis or a Domnan equilibrium in which the mucilage is acting as a group of negatively charged micelles within the cell wall which is impermeable to the micelles but permeable to the ions of the acid on the outside.

It is now belfeved that the problem of cold water solubility is not one of making the arucilage soluble, it is one of making the cell wall easily ruptured or soluble in cold water.

A Discussion of Possible Limitations of the Conversion Method.
Conversion of mannogalactans in borax solution at room temperature perhaps cannot be carried out to give products of extremely low viscosity such as might be required for high solids coating work. There seems to be a general trend that the greater the degree of conversion the higher the concentration of borax necessary for formation of the insoluble gel. It seems reasonable to expect that at any definfte borax concentration there would be a degree of conversion beyond which the ft eld would decrease ratidiy because of solubilization. This has been noted at low borax concentrations ($0.5-1.0 \%$) with products witich have been converted only to a medium extent. The use of a saturated solution of borax at room temperature (3.5\%) will of course maze more highly converted products possible. But even at 3.5; concentration a limit should be expected. ait this point it might be adivantageous to convert at a higher temperature where a more concentrated solution of borax may be obtained: for example, 10.5% at $50^{\circ} 0$. This would be an advantage only on the condition that the increased borax concentration and a greater effect on insolubilization then the higher temperature had on solubilization, Conversions of this type would have to be made at a fairly high pH since it is believed that lowering the of of conversion is equivalent to decreasing the effective borax concentration. This should be wore fully investigated. Fossibly, reactions at higher temperatures would be more rapid but they right also give a more heterogeneous type of conversion.

The subject of the residual ash content of the converted mucilages may be important in certain applications such as coating. It would be a definite advantage to remove the ash entirely from the finished product but no feasible method of doing so is known at the present time. A considerable amount of the ash can be extracted from the mucilage by suspending for a time
in water and following by filtration. The asi on one product was lowered from 9.1% to 2.6% by this method without any loss in mannogalactan. This product was not higily converted and it is to be expected that a signifin cant loss of carbonydrate would occurr with products of low viscosity. Further work should be done upon this suoject. One of the noticeable results of lowering the ash content is that the products dry to an-extremely hard material which is powdered with difficulty. These materials do not disperse quite as well in cold acidulated water as do those which dry to easily powdered gums.

The Economtcs of the Conversion.
The present metiod of converting the mucilage probably is not the optimam. Much work remains to be done and without doubt this will improve the procedure from both an economical angle and a more desirable final product. However, the following rough approximation of the cost of the materials for the present conversion will be made.

For a 1000 pound conversion the following chemicals woula be necessary.

200 lbs. chlorine per $\$ 0.0175=$
300 lbs. borax per $\$ 0.021$
260 lbs. caustic soda per $\$ 0.023=\$ 6.30$ (Use at least 3 times) $=\begin{aligned} & \$ 3.50 \\ & \end{aligned} \quad \begin{aligned} & \text { Total per } 1000 \text { lbs. }=\end{aligned} \quad \begin{aligned} & 5.98\end{aligned} \quad \$ 11.58$
Labor and power facilities wouli depend largely upon tie plant conditions. The borar extraction solution can be used at least three times, perhaps more, and when the protein content has been built up it can be recovered by acidification. It is probable that the final cost of conversion would be under two cents per pound.

It should be mentioned that the above quantity of chlorine represents 20 per cent on the weight of the mucilage. In making up the sodium nypochlorite solution one half of the chlorine always forms inert ciloride ions and is therefore wasted. From this it is apparent that whatever can be ane to reduce the available chlorine necessary for conversion would in reality mean a saving of twice that quantity of chlorine.

Suggestions for Furthar Work.
The following investigations should be undertaken with gara Gly mucilage.

1. Optimum method for extraction of protein. These variebles should be noted:
a. Borax concentration
b. Temperature
c. Tlme of extraction
d. Addition of sodium carbonate

Froject 849
3eport 9
Page 23
e. Tield of muctlage
f. Fase of filtration
2. The behavior of mucilage in various concentrations of borax at room temperature. (This has been done for locust bean gum). Then extend the study to higher temperatures.
3. The behavior of mucilage in various concentrations of borax at different pH . (Compare with 2.)
4. Study the conversion of mucilege with sodium hypochlorite at various pH both at room temperature and then elevated temperatures.
5. Study possibilities of converting over a definite p H range such as might occur in a normal conversion reaction.
6. Fraluate the suitable products as tubsizes at concentrations from 3-8 per cent. Also as coating adhesives.
7. Conversion of larger batches (25 lbs .) by the optimum procedure for mill trials as tubsize and coating adhesives.
8. Study the effect of conversion upon the mucilage cell membrane.
9. Study the effects of awelling agents such as acids and salts on mucilage cell membrane.
10. Study the products recovered from the filtrate of conversion mixture.
11. A study of other alkaline converting agents should be made inciuding sodiun peroxide, sodium perborate, hydrogen peroxide, potassium permangenate etc.
12. Further attempts should be made to study enzyme conversion of mucilages.

Summary

1. It has been found that aqueous solutions of borax give suftable media for sodium hypochlorite conversion of mannogalactans.
2. The behavior of mucilages in various concentrations of borax was studed. It was found that pronounced swelling took place in the lower concentrations of borax. ($0.17-1.75$, but the yleld decreased appreciably only below 0.34% borax. The ash content increased steadily with borax concentration.

Project No. 849
Report No. 9
Fage 24
3. Freliminary conversions in 2. 3 b borax solution indicated that certain impurtities were present which interfered with the conversion of the carbohydrate. The principal impurity was found to be protein.
4. The effect of the protein content of the mucilage on the conversion reaction was studied and it was found that the protein utilized the avallable chlorine at a more rapia rate than did the mucilage. Decreasing the protein content by alkaline extraction of the mucilege gave more efficient conversions.
5. The optimun method of extraction of protein has not thias far been determined but extraction with 2.5% borax and 4% sodium carbonate removed more protein than 30 borax alone.
б. The protein content of guar G4-2 varied considerably from sample to sample so most of the subsequent work was done with locust bean gum.
7. The effect of the alcali concentration and pH during conversion was investigated to a limited extent. It was found that the reaction proceeded much more raptdly at lower pH (7.2-7.7) than at $\mathrm{pH}=12$. Very strong alkali (3 N NaOH) also increased the rate of reaction.
8. The converted locust bean gum mucilages were used as tubsizes and found to be several times superior to converted starches.
9. Some of the macilages were evaluated as cold water soluble beater adhesives. Two of the earlier products were good in this respect but later products were only mediocre.
10. It is believed that the problem of maxing the mucilages cold water soluble is not one of mering the carbohydrate soluble but one of maiking the cell membrane easily ruptured or soluble in cold water.
11. It has been found that strong alkalis do not cause appreciable awelling of the mucilages cells but strong acids cause instantaneous dispersion.
12. The possible limitations of the method of converting were discussed. The degree of conversion may be limited by the solubility of the converted products in borax solutions of definite concentration.
13. It $1 s$ believed that the converted product could be made by the present method at a cost under two cents per pound.
14. An outiine of further work was presented. COOPERATOR Institute
REPORT NO.
Copies to: Files
Mr. Steele
Dr. Lewis
Dr. Rowland
Dr. Wise

DATE Apri] 21,1944
\qquad
NOTE BOOK 488
 L. E. Wise

REPORT ON THE MUCILAGE FROM LES MANANa
(Al so termed Oles Ills; "Holland al etc.)

A sample of the crude ample marked Eollandia "high viscosity" was obtained from the colloid group. The ground powder was sifted into boiling water, the mixture heated for $10-15$ minutes, cooled, and centrifuged. The nearly colorless, aqueous dispersion was decanted sharply from the residue and precipitated by means of ethanol. The "fibrous" precipitate was triturate successively with ethanol, acetone, and finally with ether. It was drained off on mercerized broadcloth after each trituration and squeezed free from solvent. The material was finally air-dried. At the same time smaller amounts of a "flocculent" mucilage were obtained. This could best be vasined in the centrifuge, and this was also washed successively with the above mentioned solvents. The mixture of fibrous and flocculent material was used in orienting experiments. Later, a somewhat larger sample of purified (fibrous) files mucilage was isolated by a similar procedure, the only variant being omission of the acetone trituration. Only alcohol and ether were used in the dehydration in this case.

The mucilage evidently gives the same type of borax-gel test as that given by the mannogalactars (egg. locust bean gum). Physically it also resembled the latter. However, it is chemically very different. The cold suspension of files mucilege in water gives a deep blue coloration with iodine solution. This is not given by the mannogalactans.

Hydrolysis of the air-dried mucilage with 14 sulfuric acid showed (from a study of the hydrolysis-time curve) that the hydrolysis was virtually complete in $12 \mathrm{l} / 2$ hours. Thus, 150 mg . of air-dried mucilage (139.7 mg . oven dry) yielded (by the Munson-Walker Method) 141 me. reducing sugars (calculated as glucose) after $121 / 2$ hours.

The neutralized hydrolyzate contained mannose (identified as the phenyliydrazone, mop. 194.5-195.5 ${ }^{\circ}$ uncork.). The filtrate from a quantitative mannose determination on heating, yielded a voluminous precipitate of phenylglucosazone, m 207-208 ${ }^{\circ}$ uncork.). When hydrolyzed for very brief periods with ELl, the les mucilage failed to respond to the Seliwanoff test for d-fructose, whereas under identical conditions inulin gave a characteristic deep red pigment, soluble in amyl alcohol. Evidently fructosans are absent from the files gum.

Project 849
Auril 21, 1944
Page 2

Another 500 mg . sample of the iles mucilaze was hydrolyzed with ZNO_{3} for several hours, and then carried through the macic acid determination for galactose. At the end of two days in the refrigerator, the ENO_{3} acid solution showed only a faint cloudiness, out no weighable precipitate was obtained. This indicates the absence of galactose and gelacturonic acid in more than traces. The abgence of galactose was confirmed by quantitative differential fermentations of the neutralized iles ($\mathrm{H}_{2} \mathrm{SO}_{4}$) hydrolyzate. When the hydrolyzate corresponding to 100 mg . of air-dried mucilage was fermented by organism (N.R.R.L.) No. 379, the Munson-Walker reducing value was 36.2 me . CupO. When fermented with organibm (N.R.R.L.) No. 966 in a parellel experiment, the final reducing value was 35.8 mg . Cupo. These values are identical (within the experimental error), and clearly inaicate the absence of galactose.

A proximate summative enalysis of the mucilage (o.d.) follows:

entydromennose	41\%
3 anindroglucose (calculated from MunsonWalker reducing values)	48.58
\% uronic anhydride	3.6\%
\% pentosans (uncorrected for hexosans or uronic anhydride)	1.76
3 ash	0.53

The above values for aningoroglucose and pentosans ere given with reservations, but it is apperent that the mucilage contains largely mannose and glucose groups. How these exist in the mucilage is problematical. The glucose may emanate from starch or from a true mannoglucan or, possibly, from a mixture of either type of polymer.

lew/acj

PROJECT REPORT FORM

CONVERSION OF kANO GAIACTANS DURING TER COOKING PROCEDURE BY
MEANS OF EYPOCHLORITE SOLUTIONS

INTRODUCTION

The ultimate goal in conversion of manno galactan mucilage is to make a marketable product which has been converted to the desired degree before shipment. Progress along this line is being made but the variables have not been sufficiently worked out to permit large-scale conversions. In the meantime, the cooperating payer mills are receiving G $4-2$ mucilage in order to evaluate it prior to the time of the new planting of Guar seed. Some of these mills will perhaps want to evaluate the G4-2 in coating colors and as a tuo-sizing adhesive. Therefore, these experiments were made to investigate the possibility of converting small amounts in the paper mill for experimental purposes. Several experimental variables were investigated. Inasmuch as a commercial Gli-2 wis not available when these experiments were initiated, two other manno galactans were used to study the essential features of the method of conversion, these. Were locust bean gum and honey locust bean gum.

Attempts were made to study another point in connection with conversion. It should be recalled that under certain conditions, conversions in which certain other substances are concomitantly oxidized with the orincipal carbohydrate give a superior type of converted adhesive. This was mentioned in Report 5 where a dichromate converted locust bean gum made in the presence of oxalic acid gave much higher strength qualities then other types of conversions. Some experiments of this type were attempted with hypochlorite oxidation.

EXPERIITMTAL

GENERAL CONVERSION PROCEDURE

20 g . Kano galactan gum
83.4 ml . of 2.5% El each 11 quo

297 ml . of water

The water and bleach liquor were mixed in a three neck flask fitted with a steam injector, stirrer, and thermometer. The gum was then

```
Project 849
Perort $
Page 2
```

added carefully with stirring and the mixture heated with steam to $50^{\circ} \mathrm{C}$. in 5 minutes and held at this temperature for $30-35$ minutes. The mixture became very thick and grodually tinned out. The converted product mas then cooked by raising the temperature to $90^{\circ} \mathrm{C}$. during 20 minutes and holding there for 5 minutes. It as then diluted to 2% gum solids, the relative viscosity determined at $30^{\circ} \cdot \mathrm{C}$. and-if found to-be suiteble it was used as a tubsize at $50^{\circ} \mathrm{C}$.

Lesser quantities of bleach liquor were used for some experiments. In these cases the volume of liouid medium mes maintained constant by variation of the volume of pater added. There were also variations in the acidity and alkalinity during conversion. These characteristics were brought about by the addition of verious quantities of acid or allali.

Several experiments were made with sodium hypochlorite solution in place of bleach liouor. The procedure in this case was essentially the same.

RESULTS AND DISCUSSION

The conversion variables and resultent viscosities are summerized in Taile I. The tub-size characteristics are in Table II and handsineet deta of $697-530$, G99-530, and G100-1-530 are in Teble III.

The honey locust bean conversions mith calcium hyeochlorite solution may be summerized by saying that it aptears that the lower the degree of conversion, the better the strength properties. Any alteration in procedure which gave a lower relative viscosity seemed to give a product of Lower strength. On the other hand, it appears that perhaps the converting agent itself wes to bieme. It is evident that the locust bean conversion made rith calcium hypochlorite also gave low strength vilues es tui sizes. Honey locust bean gum corverted more easily with calcium hyeochlorite than did locust $0 \hat{0}$ gum. The explanation of this difference may lie in the method of preperation of the mucilaze. The locust bean gum is essentially neutral and contains a considerable amount of protein. The honey locust bean gum was strongly alkaline and it is probable that most of the protein had been extracted under these conditions. It has been found in another sories of experiments that residual protein in mucilages is oxdelzed much more rapidly than the manno galactan. In mucilages which contained considerable amounts of protein, a much greater ouantity of chlorine was necessary to convert to a definite viscosity. A preliminary alkaline extraction of these mucilages markedly decreased the amount of chlorine
necessary to attain a given viscosity. The greater difficulty of conversion of locust bean gum may probably be exclained on this basis. The eddition of enough acid to bring the oH to aboit $5-6$ geve a more efficient conversion of locust bean gum but the product did not possess very good strength quelity.

The addition of methyl alcohol to the chlorination mi रture as a product undergoing concomitant ord dation gave a product of poor strength quallty but oxalic acid under these condtions incressed the strength of product somemat.

The use of sodium hyoochlorite instead of calcium hypochlorite gave products possessing better strengti qualities on the whole. Neutral media made by adjusting with hydrochloric and oxalic acids gave more ravid and more efficient conversions as shorin by viscosity data. Conversions of locust bean gum with sodium hypochlorite at room temperature gave products which compered well with those made at $50^{\circ} \mathrm{C}$.

In conclusion, it axpers that a reasonably fluid converted locust bean gum can be made by converting with lo: of available ckiorine in the form of sodum hypochlorite in a medium made about neutral with hydrociloric or oxalic acid.
jws/hnf
TABI，I
SUMMARY OF CONVERSION VARIAMLES AND RMLATIVE VISCOSITIES OF THE CONVERTED GUNS

多 Convert－ ing Agent	Remark	Relative Viscosity 20 and $30^{\circ} \mathrm{C}$ ．
10		2.96
8		5.86
5		45.0
5	Conversion made at $90^{\circ} \mathrm{C}$ ． ingtead of $50^{\circ} \mathrm{C}$ ．	73.9
10		3.28
10	Added 2.5 ml ． N NaOH	40.2
10	Nade neutral with HCl	2.28
10		3.72
10		3.22
10	Lumped up，diacarded	－
20	Added 108 superfilm No． 4	2.80
10	Added 12 ml .0 .958 NHCl $\mathrm{pH}=4-5$	－

Locust Bean Gum

 Calcium Hypochlorite $\quad 10$ $\begin{array}{ll}\text { Calcfum Hypochlorite } & 10 \\ \text { Calcfum Hypochlorite } & 10\end{array}$ Calcium Hypochlorite 10 Calcium Hypochlorite $\quad 10$ $\begin{array}{ll}\text { Calcium Hypochlorite } & 7.4\end{array}$ Sodium Hypochlorite $\quad 7.4$ Sodium Hypochlorite $\quad 30$ ． Sorium Hypochlorite 10 | c |
| :--- |
| |
| 0 |

Sodium Hypochlorite $\quad 10$

$$
\text { a } 7 \text { Fxoiyood } \mathrm{H}_{\mathrm{H}} \text { unfpos }
$$

$$
\text { Converted at Room Temperature }\left(26.0-28^{\circ} \mathrm{C}\right. \text {.) }
$$

$0 ¢ 8$		Ot	
$20^{\circ} \mathrm{G}$		OT	otr．10lyoudif untyos

Gum Used
 Converting
Aqent

Calcium Hypochlorite
Calcium Hypochiorite
Calcium Hypochlorite
Calclum Hypochlorite
Calcium Hypochlorite
Calclum Hypochlorite Cade No．
G97－530
G99－530
G100－1－530
G100－2－530
G104－530
G106－530
G107－1－530
G107－2－530
G108－530
G109－530
G110－530
G129－530
Locust Bean Gum
 Locust Eean Gum
Locust Gean Gum Locust Been Gum

 G）15－2－530 Iocust Bean Gum

 ดยG－£とโつ

 －115－1－530

	No．avaz
\leq ¢rovorojay，	

管苟	
言家	

Relative
V1acnalty
？8 and $30^{\circ} \mathrm{C}$.
-
2.06
5.26
45.0
3.28
40.2
2.28
7.72
3.22
2.8

$\begin{aligned} & \text { isle } \\ & \text { No. } \end{aligned}$	Cade Ho
－	
Avarage	Elank
lilatis	607－500
111263	¢09－530
111265	（10n－1－F30）
111300	9104－530
111316	9106－5，30
111302	－107－1－530
221304	6107－2－530
121305	G108－530
111307	Gllo－530
111515	6129－530
111515	（1）31－5，30
211518	113P－530
111519	6133－530
111318	9111－53n
111319	G112－530
111354	6115－2－530
111356	6117－1－530
111359	0117－2－530
111399	6119－530
111065	653－530
111079	655－530
Llinst	157－530

TABLE III
HANDSHEET CHARACTERISTICS OF THREE CONVFRTYD HONEY LOCUST BEAN GUS :S
ONE PER CENT ADDITION TABLE III
HANDSHEET CHARACTERISTICS OF THREE CONVFRTYD HONEY LOCUST BEAN GUS :S
ONE PER CENT ADDITION
 near g./
 Basis

Gum Used
Blank
G97-530
G99-530
G100-1-530

PROJECT REPORT FORM

Copies to: Files
Steele
Rowland
Swanson

CONVERSION OF LOCUST BEAN GUM BY MEANS OF HYPOCHLORITE SOLUTIONS

Introduction
The conversion of mannogalactans must be accomplished in a somewhat different manner than that used for starch since the mucilage are soluble in cold water and hydrate much more rapidly. It is necessary to use a conversion medium in which hydration of the mucilage will be held at a definite minimum. Certain alcohols, ether and other organic solvents may serve as suitable conversion media but a further requirement-non-reactivity with the converting agent-must be recognized. This factor eliminates tine possible use of many of the alcohols, esters and ketones since they react with hypochlorites. Tertiary alcohols, etiers and certain chlorinated solvents might be found suitable. The experiments of this report were conducted in tertiary butyl alcohol and butyl ether. These substances are, relatively speaking, non-reactive with hypochlorite solutions and served quite well as reaction media. Subsequent to these and other experiments to be reported, it has been found that hypochlorite conversion of mannogalactans can be carried out in aqueous borax solutions. These experiments will be reported in the near future.

FTP FRIMMRTAL:

Conversion of the G119-506 Series of Locust Bean Gums
Ten grams of locust bean gum were placed in a 250 ml . glass stoptered flask and a mixture of $10-45 \mathrm{ml}$. of a comerciel sodium hypochlorite solution ($5-22 \%$ available chlorine on gtm) and 65 ml . of t-butyl alcohol were added with vigorous shaking. The flasks were stoppered and allowed to stand at room temperature for twenty-two hours. The gums were then filtered off, washed with absolute alcohol and air dried. Those samples containing larger amounts of sodium hypochlorite were somewhat more highly hydrated because of the increase in aqueous phase. All samples possessed some unused available chlorine.

Project No．849．
Reこうこt No．？
Fage 2

Conversion of tine G $132-506$ Series of iocust Bear Gums

This series of gums was converted with calcium base bleach liquor possessing 5.8% available chlorine．Twenty grams of locust bean gum were placed in four flasizs and then temporary emulsions of 130 ml ．of t－butyl alcohol and $10-40 \mathrm{ml}$ ．of bleach liquor and water were added with vigorous shaking．The afount of water mixed with the bleach liauor depended upon the quantity of available chlorine desired in the somple．Thus，the first sample contained 40 mil of bleach liouor and no adidtional water，the second contained 30 ml ．of bleach liguor and 10 ml ．of water，the third sample 20 ml ．of bleach and 20 ml ． of water，etc．，thereby keeping the total amount of aqueous phase and tims tine degree of hydration the same in eacin case．After mixing the flasks were stoppered and allowed to stand at room temperature for 16 hours．Considerajle swelling took place in all samples and a yellow color was present which increased with cilorine content．The butyl alcohol was decanted off on a funnel end sun mixed witi 950_{0}° ethyl alconol，filtered，washec with alconol and air iried．

Conversion of G 154－506 Series of Locust Bean Gums

Twenty grams of locust bean gum were piaced in a flask and then an emulaion of 20 or 10 ml ．of soijum hypochlorite（ 5.3 avail－ able chlorine）and 130 ml ．of butyl ether was poured onto the gum with shaking．The emision was stabilized to some extert，temporerily，by two drops of soap solution．After 16 hours the products were filtered off and washed with ether．The one containing low mio soivm hrpo－ chlorite was more highly 3 wollen and it was necessary to partially dehydrate it with 95% alconol before air drying．

Conversion of $G 80-530$ Series of Locust Been Gums

Tins series of gams combined some of the better parts of previous procedures and a more complete study was made of the products． The chlorine content was held constant in this series and the degree of alicalinity of the sodium hypochlorite solution was varied．

G 80－1－530
Forty grams of locust bean gum were aded to a mixture of 53．3ml．of NaOCl （7．6\％ Cl_{2} and 3.4 N in NaOH ）， 62.2 ml ．of water and 250 ml ．of outyl ether．After vigorous stirring the mixture was allowed to stend at room temperature．

This product was similar to the acove with the exception that 31.1 ml . Df water and 31.1 ml. of 0.958 NHCl were used to reiuce the alkalinity. In this case one-half of tre excess NaOH was neutraliged." Other reagents were the same.

G 81-3-530

Ingrodients for this conversion differed oniy in that 62.2 ml. of 0.958 N HCl were acded instead of water. This amour.t of acid neutralized all NaOH in excess of tice ratio necessary for stabilization of the NaCCl. This product was white whereas the previous products. were a distinct orange color.

After standing overnight at room temperature the products were filtered off, debjerated with a small arount of alcoiol and eir dried.

The relative colid water solubility of the traree converted gums above was determined as follows:

One gram gamples of the air dried gims were stirred ger.tly in a beaker with 100 ml . of distilled water for exactly 10 minutes. The undissolved part was then centrigued off and an aliquot of the supernatant liquor weighed out and evanorated to Eryness. The resliks are given in Table I.

Determinations of other properties of the converted cums were mede ncconding to proceiures exioined in previous reports. The Reducing Falue was determinet by the metiod of Farley ari zixon, "Ina. me. Cher. Anal. Ec.", 13, 616 (19:1).

Results and Discussion

The converted gums were evalugted both in the beater by ary adcition and as tubsizes at one per cent concentration and $50^{\circ} \mathrm{C}$. The relative viscosities, moistures and reducing values were determined for most of the gums. The data are presented in Tables I, II, and III.

Project No. 849
Report No. 7
Page 4 .

TABLE I
A SUMMARY OF CONVERTING CONDI'CIONS AND PROPERTIES OF THE CONVERTED GUMS

Code No.	Converting Arent	Fer Cent Chlorine on pum	Converting Medium	```Time Of Conversion Hours```	Moisture $\%$	$\begin{gathered} \text { Ash } \\ \text { if } \end{gathered}$	$\begin{aligned} & \text { Reducing } \\ & \text { Value } \\ & \text { mecu/g } \end{aligned}$	Relative Viscosity at $1, \%$ and $30^{\circ} \mathrm{C}$.	Relative Solubility in water at $22^{\circ} \mathrm{C}$.
G 119-1-506	Conmercial		t-butyl						
	$\mathrm{HaOCl}^{\text {a }}$	5.0	alcohol	22	16.5	-	-	54.4	
G 119-2-506	"	10.0		22	18.1	-	-	5.14	
G 119-3-506	"	15.0	"	22	18.4	-	-	2.6	
G 119-1-506	"	22.0	"	22	18.1	-	-	1.67	-
G 132-1-506	Calcium Bleach liauor	11.6	"	16				84.0	
G 132-2-506	,	8.7	"	16		-	10.7	84.0	-
G 132-3-506	11	5.8	"	16	15.9	-	8.92 8.65	63.9 68.9	-
G 132-4-506	"	2.9	"	16	15.9 14.5	-	8.65 12.0	$68 . ?$ 145.0	-
G 154-1-506	NaOCl	10.5	Butyl	16		-			
G 154-2-506	"	5.2	etper	16		-	28.3	8.04	
G 30-1-530	Strong alkaline MaOCl	10.0	"	16	8.4	10.7	78.8	2.14	75.2
G 81-2-530	Mild.y alka- line NaOCl	10.9	"	16	8.4	8.7	59.2	2.75	68.3
G 81-3-530	$\begin{aligned} & \text { Neutral } \\ & \mathrm{NaOCl} \end{aligned}$	10.0	"	16	8.8	7.85	43.2	2.75 33.1	68.3 55.7

Froject Ilo. 84y Heport kio. 7
FAge 3

TABLE II
1
handshret characteristics cf the hypochlorits coiverted gums at is dry additici to brater PULP CONSISTENGY DURING BEANING AGOUT 1.6\%; FRRENESS 700

File No.	Converted Gent Used	Relative Per Appearance Ch of Stoined Un Sheet Co	Per Cent Chlorine uned in Converting	Basic Neteht $25 \times 40 / 501$	$\begin{aligned} & \text { Caliper } \\ & \text { Inch } \end{aligned}$	Apparent Density		$\begin{aligned} & \operatorname{lng} \\ & g t h \\ & \text { mn) } \\ & \text { ts/ } / 100 \end{aligned}$	Per Cent Increase In burat	$\begin{aligned} & \text { MIT } \\ & \text { Fold } \end{aligned}$	Fer Cent Increase in Fold	Thwing. Formation		Oet ty 100 cc.	Elmendorf Tear g. /sheet	Tear Pactor	Tensile 1b./inch
110974	Blank	no specks	-	47.9	0.0044	11.0	23.7	57	-	43	-	47.1		11	85	1.73	15.0
110975	c 119-1-506	trany specks	5	47.6	0.0043	- 11.0	39.1	82	43.8	183	326	47.5	,	12	65	1.37	17.9
110976	G 119-2-506	a few specks	10	47.8	0.0043	11.0	31.7	79	38.6	233	442	49.4		12	67	1.100	29.1
110977	G 119-3-506	ver. few specks	15	4×6	0.0014	11.0	30.2	79	36.6	230	435	47.9		14	68	1.10	18.2
110978	G 119-4,506	no speck	22	47.6	$0.001+2$	11.5	35. 2	74	29.8	137	216	46.2		14	69	1.15	$2 \% .5$
11092 ${ }^{\text {+ }}$	G 154-1-506	no mpeck	10.5	48.3	$0.00{ }^{2}$	12.0	31.7	66	$1 \because 6$	74	72.	47.8		7	76	1.7	13.4
110925	G 154-2-506	a few njecks	5.5	47.9	- 0.0012	11.5	33.1	04	:'1.l	145	- 237	49.1		11	74	1.31	16.4
110904	Elant	no specks		47.6	0.0043	11.0	29.8	63	-	80	-	44.7		10	77	1.06	16.1
110905	6-132-1-506	a fow speck:	11.6	41.5	0.00143	11.0	34.8	82	30.2	364	355	49.0		10	71	1.ay	19.7
110906	$6132-2-506$	e few apeck	8.7	48.2	0.0044	11.0	38.8	80	21.0	241	209	48.5		12	75	1:56	18.4
110901	$6132-3-506$	meny apecks	5.9	47.5	0.0042	11.5	37.1	78	23.8	196	115	$46 . ?$;	11	76	1.10	18.1
110908	6 132-4 506	very many specks	B 2.9	47.1	0.0043	11.0	32.7	69	4.7	175	118	49.0		9	75	1.59	10.14
211226	Blank	no speetis	-	48.2	0.0043	11.0	26.1	54	-	62	-	50.0	:	7	$9 ?$	1.41	14.7
111227	6 80-1-530	very fow specks	10.0	50.7	0.0046	11.0	35.8	71	31.5	150	142	49.8	1	11	80	1.53	20.8
111228	G 81-2-530	very few speckes	10.0	47.6	0.0042	11.5	35.3	74	37.0	218	2.52	50.0		8	72	1.51	17.2
111229	(81-3-530	many specks	10.0	48.2	0.00143	12.0	37.8	78	1.4 .4	297	380	50.3		8	68	1.1i	$1 \% .1$

Project No. fils
Report Ho. 7
Page 6

TUBSIZE Charactriristics of thy hypoctority $100 \% \mathrm{RA}$

III
colverted gums at 1% conoentration and $50^{\circ} \mathrm{C}$. stock

Plie No.	Converted Oum Used	Chlorine Conc. $\%$ on Gum	Relative Viscoesty $30^{\frac{18}{3 \%}} \mathrm{c} .$	$\begin{gathered} \text { Beasc } \\ \text { We1 } \mathrm{Ght} \\ 17 \times 2 \% / 500 \end{gathered}$	Caliper -inch	$\begin{array}{r} \text { Mure } \\ \text { Stre } \\ \text { Potnte } \end{array}$	$\begin{aligned} & \text { int } \\ & \text { gth } \\ & \text { fots/loo\# } \end{aligned}$	Fer Cent Increane 1n Burst
Average	Blank	-	-	18.9	0.0031	30.6	162	-
111068	G 119-1-506	5.0	54.4	19.1	0.0040			
111069	G 119-2-506	10.0	6.14	19.1	0.0030	39.1	205	26.5
111070	G 119-3-506	15.0	2.61	19.1	0.0039	38.5	218	30.9 24.1
111071	G 119-4-506	22.0	1.67	19.1	0.0040	36.8	193	24.3
111058	G 132-1-506	11.6	84.0	19.2	0.0040			
111059	0 132-2-506	8.7	63.9	19.1	0.0040	37.9	197	31.6
111060	(132-3-506	5.8	65.2	19.0	0.0040	36.4	191	17.9
111061	$6132-4506$	2.9	145.0	19.0	0.0040	36.8	194	19.1
111056	Q 154-1-506	10.5	2.51					
211055	$0154-2-506$	5.2	8.04	19.0	0.0040	37.9	$\begin{aligned} & 197 \\ & 203 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 25.3 \end{aligned}$
111201	G 80-1-530	10.0	2.14	19.4	0.0038	37.3	192	18.5
111203	G 81-2-530	10.0	2.75					
111205	0 81-3-530	10.0	33.1	19.2	0.0039	38.3	199 199	22.8 2.8

Porosity sec/100ec. ec,

	T. Fold	Per Cent Increase Fold		$\underset{\text { Penetration }}{\text { Ink }}$		$\begin{aligned} & \text { Pick, } \\ & \text { Test } . \end{aligned}$		Elmendor Tear e. / eheet		Tenalle 1b/Anch		Stretch 方		Porosity wectinoes.
in	Across	In	Acrobe	hire	$\mathrm{Felt}^{\text {t }}$	Wire	Felt	In	Acrose	(n -	Acroen	$\mathrm{In}^{\text {n }}$	Across	
35	66	-	-	22	24	$16 A$	IÚA	90	100	26.0	12.0	2.8	6.8	240
-107	83	56.2	25.8	22	24	18A	164	89	102	29.4	13.8	3.6	9.0	C45
424	91	80.5	37.9	21	20	201	$16^{\circ}{ }^{\circ}$	88	100	29.0	13.7	3.6	8.3	310
305	95	29.8	44.0	19	20	16A	164	92	102	28.2	13.6	3.7	4.6	190
240	92	23.4	39.4	20	24	26 A	16A	94	107	28.2	13.4	3.6	8.7	176
433	90	84.4	36.4	17	23	$16 A$	13A	yl	107	29.1	13.2	3.6	R.!	204
306	77	30.2	16.7	23	25	16 A	$1^{\text {l }}$ + ${ }^{\prime}$	97	104	28.3	12.9	3.5	3.3	29
332	82	42.3	2h. 2	23	25	$16 \wedge$	1 IA	92	103	28.9	13.0	3.5	K. 5	234
401	86	70.8	30.3	15	18	16A	14π	98	105	28.0	12.8	3.5	8.1	245
328	100	41.3	51.5	19	20	164	148	93	97	29.?	13.2	3.0	R. 1	104
355	109	52.1	65.2	21	24	18A	144.	90	100	29.0	13.1	3.6	6. 3	P13
289	89	23.0	34.9	29	43	18A	$24+$	96	106	28.4	13.2	3.9	8.2	186
416	108	77.1	63.7	27	40	$18 / 8$	16A	97	102	29.0	13.2	3.6	8.0	193
23) 4	94	8.1	42.4	46	51	164	16a'	93	103	29.0	13.8	3.8	8.8	235

Froject No. 819
2epart צo. 7
Fage 7

Conversion Conaitions

It appears from the data of Table I that sodium and calcium njpochlorite quite readily attack the carbohydrate chains and cause conversion. The sodium hypochlortte gave a freater degree of conversion per amount of availeble chlorine than dic calcium hyochlorite. This is shown the relative viscosity and reducing values under the two conditions. It should be pointed out however that the degree of hydration varied in tie $G \quad 119-506$ series of gums since the amount of aqueous phase was increased with increasing amounts of chlorine. In tine $G 132-506$ series the amount of aqueous phase was held constant. In the last eeries ($G 30-530$ to $G 81-530$) the aqueous phase and auount of chlorine were held the same and the alialinity oi the mixture wes varied by addition of definite amounts of acid. These experiments showed that strongly alkaline sodium hypocilorite was more efficient as a converting agent than weakly alcaline or neutral hrochlorite. This is shown by the reducing velues and reletive viscosities of the products and, more significantly, by the relative cold water solubility. The latter property showed that as the degree of alkalinity increased the cold water solujility increased. Thus, the most higily alkaline medium arve a vroduct 75.2% soluble in ten manutes, whereas, the neutral medium gave e product only 55.7% soluble in the same time.

Eveluation of the Converted Products in the Beater

The products-were adied to the beater as a dry porder and thus strength ingrovements were dependent upon two fectors (1) the actual amount of the gum which dissolved duriñ the reating procedure and (2) the intrinsic adtestve strengti of the dissolved gum. Tre first factor was measured relatively by staining the handsheet to determine the amount of unidspersed gum. The second factor was measured $b y$ the sirength characteristice of the hancsheet. Tie data of Tacle II ajpear to support the following statements:

Project No. 849
Report No. 7
Fабе 8
i. The use of sodium apoochlorite as the converting agent gave series of gums (G 119-506, G 154-506 and G 80-31-530) which showed the best strength characteristics with the products of lowest degree of conversion in spite of the fact that these gums were not dispersed to-as great an extent as the more hifinly converted products of the series.
2. The use of calctum hrpochlorite as the converting agent geve products (Series G 132-506) which showed increased evidence of strength with the increase in degree of contersion.

The apparent contrasts betafen the two converting egents cannot be fully expleined at present but it shoula be pointec out that the series of exims converted with celcium hyoochlorite siow much iess civergence of chemical and phyical oroperties then do the sodiun hypocilorite converted gums (See Table I).

Evaluation $0:$ the Converted Products as Mrosizes

Trenis, similar to those mentiored above inder beater evaluation, are also noticeable when tie products rere usez ag tubsiees. However, there seems to be less contrast between the tro convertine agents.

The strength values principally burst and foli, are not particularly bigh in tife sense of the uitimate strength winch can be achieved with a loof rag stock. But, when it is realized tiat only a 1% tubsize solution was used with a very high roll-nip pressure these values may ayoerr to be rather exceitional especially when compared with starch.

Further Hork:

This work has clearly demonstrated trat locust bean gum cen be converted by means of hipochlorite solutions. The use of organic solvents as reaction media would not be a serious handicap since they could be recovered. However, further work on conversion by this particularmetiod has not been planed for the reer future because a somewhat more promising aqueous method of conversion has been devised.
jws/he

OT LOCUST BEAN GUN.

Introduction:

Paper mills wish now enzyme convert their own starches for tub and calender sizing probably would desire to do the same thine with the mucilage when they become generally available. Therefore, it seemed desirable to have some information on enzyme conversion of monogelactan mucilases. This report is concerned with several attempts to utilize commercial starch converting enzymes for conversion of locust bean gum and the demonstration of the possibility of conversion by means of an enzyme mixture obtained from sprouted Guar seed. The work with the commercial enzymes was done by Mr. Fronmuller and is included in this report in order to give a complete picture of the works to date.

The Literature:

A survey of the literature disclosed that sone work has been zone on the action of enzymes upon certain mucilage of the tannosalactan type. None of this work was cicae with common commercial enzymes jut it gave certain leads which have proved helpful.

Tasliani (4) states that melt extracts and animal "ferments" caused no rapid decomposition of locust jean sui... solutions but pisa standing several days a gradual alteration in r ansenelty was deserved which be believed indicated that a partial activation of a proenaime had taken place.

Parer (2) mentions that the enzyme from Helix Domatie (a species of snail) hydrolyzes the carbohydrate of tine locust bean to mannose and galactose. Also manna splitting enzy...es may be found in aurerous plants such as loc:2st bern gum, the seeds of indigo, Lucerne, Klee, many leguminosae, dates, orchids, and certain molas.

Abderkalden (1) states that the mennogalactens present in numerous plants
serve as reserme materials and are prounced by the enzrmes of these nlants wion are summarized as Seminase. These enzymes may also on found in the mold Sungi (Aspergilus nieger and Aspergillus fuscas) and in barley malt. Kondaz mannan and a mannozalactan containin mucilase froz \#ydrencea paniculata are dissolved and hydrolyzed by gacterium mesentericus vileatis.

Harsman and Davison (5) stete that seminase converts manogelactans to mannose and galactose. The optimal temperature of this enzyme (mixture) is $35-100$, and the optimal reaction takes place in weacly acidic media. It is formed abundantly by various plants such as leguminosae, barley, rye, and orcilds. Also mentioned was a closely reipted enzyme called Caruoinase which dizest the polysaccharide of Ceratonia siliqua (locust bean gum) and produces d-mannose and a small amount of galactose.

Lew and Goztner (3) found that Imulsin and Sallva had no effect upon locust bean gum sols but Takadiastase caused an zopreciable hydrolysis upoz'stending oferaight. The product possessed 87 of the theoretical reducing value but only $1.2 l \%$ of the mannose had been hydrolyzed off. No definite conclusions were made since the constituents of the Tacadiastase were unknown.

Results and Discussion:
Conversion of Locust Bean Gum with Commercial Starch Enzymes.

Attempts to convert locust bean sum with commercial enzymes such as Tacadiastase, Clarase, Enzyme 1275 (Takamine) and Diastafor L were unsuccessful. Mr. Fronmuller stated that he belleved some conversion had taken place with Clarase and Takadiastase under acidic conditions but, in view of the relatively large amounts of HOl oresent (ori = 1-2.0) during the cooking procedure there is little doubt that the recuction in viscosity was primarily the effect of acidic and not enzymic hydrolysis. Furthermore, when a higher pH was present ($\mathrm{pH}=4.5$) very little reduction in viscosity was noted. Therefore, it is believed that the sheets tubsized by Mr. Fronmuller with Clarase and Takadiastase converted locust bean gum (Table I) in reality reoresent sheets tuosized with acid converted products. It appears reasonable to assume from this work that starch saccharifying enzymes do not readily attack mannogalactans under the conditions used in these experiments.

Conversion of Locugt Bean Gum with an Extract of Spronted Guar Seed.

Enzymes mentioned in the literature survey of this report anc. other hemicellulases, cytases etc. were not obtainable from-the. Tazamine Enzyme Laboratories. It was decided, therefore, that perhaps a suitable enzyme mixture could be obtained from sone of the mannogalactan containing seeds. Several spefies of seed were sprouted (Guar Cyamopsis tetragonolola; Flame tree Deloria regia; and Tara Caesalpiaia spinosa. The Guar seed appeared to be the most promising from the standpoint of rapidity of sprouting and these were iried and extracted as explained in the experimental section of this report.

The extract was first shown to contain active erzymes by test tube exneriments with cooked locust bean sum. A comparison at various intervals of the relative viscosities of gum solutions with ond without the extract showed that a very rapid hydrolysis occurred in the presence of the extroct. Following this experiment a larger cuantity of zum was converted with the extrect and used as a tubsize. See wot 0 . 530 in Table 1 . Further exoeriments with the enzme extract have shown that preliminary dispersion of the locust bean gum at $65^{\circ} \%$. and cooling to $35-40^{\circ}$. enables the enzymes to ect upon the macilase much more rapidly. One further product was used as a tubsine and the data are in Teble I. See $975-2-530$. A comparison of the tubsize characteristics of these oroducts shows thet the one with the higher relative viscosity ($501-530$) was better in most respects than the prounct with the lower viscosity.

Attemots to fractionate the extract by alconol precipitation and thereby concentrate the enzymes have so far met with only partial elaccess. A product was obtained which possessed sone enzme activity out the reaction was considerably slower than with the original extract. This procuct redispersed in water only with difficulty which may partially account for the slower action but it is well known that contect with dehyarating agents such es ecetone and glcohol seriously irmairs tio activity of certain tyoes of enzymes. This may well be one of those enzymes.

Further work with this enzyme mixtire migut involve the following:

1. Attempts to concentrate the enzyme by the following methods:
a. Vacuum distillation of the weter
b. Precipitation of the enzyme by salts such as ammonium sulfate followed by redispersion and electrodialysis.
```
c. Adsorption of the enzymes from solution by
    starch or some other apmropriate adsorbant.
```

2. A stuky of the concentrated products including, ootimal concentration of enzyme and of of conversion.
(Table I, See page 5)

Experimental:
Attempted Conversions of Locust 3ean Gum with Tazadiestese.
613-1-530*
200 s. water
10 g . हum
0.1 g. Takadiastase (Fark Davis).

The tucilage and enzyme were rixed and then added to the water with stirring. Stear was thei injected and the tempersture was mainteined at $40^{\circ} \mathrm{C}$. for 30 minutes, and at $60^{\circ} \mathrm{C}$. for 20 minutes. Then the temperature was raised to $95^{\circ} \mathrm{C}$. in 8 minutes and maintained for 3 minutes. At 80° C. some thinning was noticed but it was not sufficient to warrant use of the final mixture as a tubsize.

618-2-530

Tin conversion was similar to $913-1-530$ with the exceotion that 300 ml . of water were used and that after the $? 0$ minute perion at $60^{\circ} \mathrm{C}$., one $=1$. of conc. hurominotc acia wos picien. The temeroture wes then raisec to $95^{\circ} \%$ in 17 minutes ans held for 3 minutes. The relative viscosity was mieasured at 30° v. enc 2.50 concentretton and founc to be 3.3. The adaition of the asij gave a mixture of very low na and it is orobable that this mixture was acia hyarolyzed rather then enzyme hyàrolysed.

619-530

This conversion was similer to the above Glz-2-530 mixture with the exception that one dron of concentrated hydrochioric acid was

[^1]Yrodect; sur
hewort;
pener
Pene
lepore
LOCUST BEAI GIN:S AT 28 conemmeatich and $50^{\circ} \mathrm{C}$.

Projec: 3lo
feport o
Fage ó
aded at the begining. The viscosity did not decrease very raplily and at the end of the 20 minute heating at 60° c. four droys of conc. hydrochleric acid were added. The mixture was then heated to $95^{\circ} \mathrm{C}$. as before. At 2.4% gum concentration the mixture was very viscous and unsuitable for tubsizing purposes.

G34-1-530

25 g . Locust bean gum
475 g . water
0.25 5. Teka diastase

The gum and water were mixed in the cooxer end thg enzyme was added. The temperature was raised to $40^{\circ} \mathrm{C}$. and then to $51^{\circ} \mathrm{C}$. during a 30 minate veriod. After reistag the temperature to 65° during 10 minutes and holding there for 15 minutes no thinning out was noticed. The temperature was then ralsed to $95^{\circ} \mathrm{C}$. and held there for several minutes biat no thinning occurrea.
$634-2-530$

This coaversion was similar to $634-1-5 ; 0$ es to constituents but no immedtate heating was apolied. The cixtare wes stirred for aoout one-half hour and thea allowed to stanc at rom temperature overnight. The temperatiare was raised to $40^{\circ} \mathrm{C}$. and held for 30 minuteg, then to $60^{\circ} \mathrm{c}$. In 15 minutes and held for 15 minutes end then to 90 C . in 13 minutes and beld for 15 minutes. It was then noted that the solntion was very viscous and unsuitable for tubsizing purposes.

An Attennted Conversion of Locust Bean Ann with Clarase ヨnzytie.

O42-530

250 g. water (tan) 10 g . gum 0.1 g . Clarase enzym

The water was adjusted to pF of 4.5 with C1l. HOl and the gum and enzyne mixedin. Then the temperature was maintained at $40^{\circ} \mathrm{C}$. Por

30 minutes, raised to $60^{\circ} \mathrm{O}$. in 10 minutes and heli at 50° \%. for 20 minutes. The acid was then adied and the temperature raised to $90^{\circ} 0$. in 10 minutes and held there for 30 minutes. At $30^{\circ} \mathrm{C}$. a repld eecrease in viscosity was noted and the mixture beca:e ouite fludd. The paing very low was adjusted to 5 with dilute jact and then the mixture was usod as a tubsize at 23 concentration and 50°. ©. on a sulfite bond stock. The results are in fable I. It is believed that this product yas essentially acid converted rather then enzyme converted.

Inzyme Acid Conversion of Locust Bean Gum with Enzyme 1275.

G43-530

250 g. water
10 g. gra
0.1 g. Znzyme 1275 (Macamine)

The a oove constituents were mixed after adjusting the pia of the water to 4.5. No eporeicabie conversion took olace daring 30 minates at $40^{\circ} \mathrm{C}$. and 30 minutes at $60^{\circ} \mathrm{C}$. The gel was then cooled to $40^{\circ} \mathrm{C}$. and 9.9 . of Enzyme 1275 in 25 ml . water were added and the mixture allowed to stand overnight. Then the temperature was raised tc $30^{\circ} \mathrm{o}$., hela for one hour, and then reised to $95^{\circ} 0$. for 20 minutes. A alight cescesse in fiscosity was eviacrt.

An Attempted Conversior of Locust Bean Gum with Diastafor L znzyme.

G43-1-530

Fo conversion took place with tris onzyme in 43 hours at 1:5 earyme soncentretion.
$97-1-530$

An attempt to convert locust been zum and a Guar muellase ol R-22003 with large quantities of precipiteted Taka diastase caused some reduction in the viscosity. The relative viscosities at $2 ;$ pac $30^{\circ} \mathrm{c}$: were 33 and 45 respectively.

```
Froject 54%
Eep%rtó
#nge \
```

Preparation of an Enzyme Mxture from Sprouted jur Seej.
rive fross of Guer seed (byamonsis tetrasonolola) were moistened in a crystellizing dish rit: a wet duls mixture containinz feu drops of toluene. The dish was coverea enc placea in an oven at 40°. C. for troe afos. Eine sprouteo sêts were then air griei unter an eleatric frn rit roon temperature. he dried seeds werf placed in a norter with a small anount of sond and water anc sromid to a ine mixture. More water ves adeed from time to tite ond filtered off on a frittek sless cruciole. The insoluble neterial was heshei theroughly emithe filtrate (30 ml .) wos placed in a test tube. Furtrer batcies of sorouted seed were treatec similarly.

Corversion of Iocust Bean Gum wita the Enzyme tixture Isclated from Giar Seec. (mest tuoe Jxperiment)

A 0.4 descersion 0 locinst jean gum nas made and cooled to room temperature. Jen ml. samples of this solution were adied to each of tw tes: tuoer. To the tirst tube 5 ml . of distilles weter were Pdied; to the second $\overline{z i l}$. Df the enzyme jirture. Inediately 10 ml . of these mixtures we:e placed ia seperate viscozeters and the viscusity ceternined. The Eollowing ralines were ooteined.

 Frja Sprouted Giar Seed.

$001-530$

20 g. 5นะ
355 -1. water
 to cool to $35^{\circ} \%$ with ocassional stirriag. Then 25 ml. of the liouic enzyne mixture from sorouten Guar seed were ajded and trorougly stirred into the mixture. After allowing to stanc with occasionel stirring for four hours at $30-35^{\circ} \mathrm{C}$. stear. was $\mathrm{m}_{2}{ }^{4}$ ected at suah a rate that the

 24 gun concentration and used a.s a tubsize at 50°. on a 100% reg stoci. Ampeciable conversion hed tanen jlace wist this enzme mixture
 Aiter standire ovemicht the viscosity fell to $7 . \bar{y}$ incicating thet outhajs the erzue had rot been conoletely inactiveted oy the heating for 5 minutes at $30-04^{\circ} \mathrm{C}$.

```
Isolotio: of a Erocuct T%ousit to ce an Enzyme from the Extrect
                        of Sprcutec Gidar Seed.
```

 $3 n A$ the filtrate (1 c mi.) collectes. The filtrate vas centrifuged and Aecantaf from the residue. Then 40 m ?. of ajoolnte etiyl alcorol were aciei to the centrifugate, tiae preainitgte ellowed to settle and the supernatatit lä̈er decantet, rine preciritote was whthed with fresh alconol, centrifured out erd vacuan dried at roon tempereture over Encz. The material thus obtained weighed 0.c4lti s. end possessed a gray oolor and srarp peopery ocor.

A 0.4 losuct bean sui. dispersion was made anc 20 ml . Dlaced in each of two test tubes. tho the first tube one ml. of water was ficec ard to the second 1 ml . $2 f$ a solution on the sbove ennyme prederation il ml. $=0.1 \mathrm{~m} .0=0.120$ on the gun). mese mixures were ther placed in viscometers at $50^{\circ} 0$. and the relntive viscosities were cetermined as follows:

1. inater + locust bean 5an

Relative Viscosity
5 minutes j2.6
10 mirutes $\quad 32.6$
I6 hours 27.2
2. 0.126 Enzme + locust bear sum

3 minutes $\quad 25.2$
10 minutes 21.4
Io nours \quad e.cL

Conversion of Locust Bean Gum with tise Alcohol Precioiteted Guar Enayme Erenaration.

G75-530

Fwenty grams of locust bean gam were mixed with 480 ml . of weter and stirrea to a stiff peste. A 0.044 g . (0.22%) sample of the enzyme preparation made from the Guar seeds was dissolved (with difficulty) in 10 ml . of water and adced to the gum mixture. The temperature was raised to $40^{\circ} \mathrm{C}$. and held there for one hour. Jome thinning out occurred but not sufficient to warrent cooving. for tubsizing purposes. The mixture was allowed to stand at room temperature for 43 hours after which it was auite thin. The mixture was discarded because of the long conversion period necessary.

Conversion of Locust Bean Gun with Guar Enzyme Extracted from Five Grams of Seed.

675-1-530

Twenty grams/zum from 5 grams of sprouted guar seed alas added. The temperature was then raised to $35^{\circ} \mathrm{C}$. Por 30 minutes whereupon thinninj out seemed to occur. The temperature was then raised to $93^{\circ} \mathrm{C}$. during 25 minutes end held there for 5 minutes. Heating seemed to cause consiaerable thiciening in this case. At 2,0 and $30^{\circ} \mathrm{C}$. the mixture possessed a relative viscosity of 42.8.

Conversion of Locust Bean Gum after Dispersing at $65^{\circ} 0$.

$676-2-530$

Twenty grams of locust bean gum were mixed with 550 ml . of water and heated with stirring to $55^{\circ} \mathrm{C}$. and then cooled to $30^{\circ} \mathrm{N}$. The enzyme extrect from 5 g . of sprouted Guar seeds was added and the conversion allowed to proceed for 2 hours at $36^{\circ} \mathrm{C}$. Soticeable thinning occurred In one half hour. The temperature was then raised to $93^{\circ} 0$. held for 3
 The relative viscosity at 26 and $30^{\circ} \mathrm{C}$. was 3.73 .

An Attempted Alcohol Fractionation of the Enzyme Mixture of Sprouted Guar Seed.

- Five grams of air dried sprouted जuar seed were ground with
water and sand and filtered throunh a coarse glass filter crucible. The insoluble residue was washed with successive, portions of water and filtered. The filtrate was centrifuged and cecanted from the residue. Volume 134 ml . Successive 30 ml . portions of absolute ethyl alcohol were then added to the centrifugate followed by periods of standing to allow floćculation. Precipitates formed at 47.3% and 74.5% elcohol concentrations, the first being auite dark in color and the second gfay. The precipitated materials were in turn centrifuged off, washed with absolute alcojol and vacuum dried at room temperature.

BIBLIOGBAPEY

(1) Abderhalken, "Biochemisches Handlexixon" pases 55-30.
(2) Karrer, "Polymere Kohlenhvdrate," Akacemische Verlazsgesellschaft, Ieipzig (1925) page 207.
(3) Lew and Gortner, Archives of Biochem. 1, 325(1943)
(4) Tagliani, I. Soc. Dyers and Colourists 45. 344(1929)
(5) Waksman anci Davison, "Enzymes", Williams and Wilkins, Baltimore (1926) p. 150.
jws/jvl

[^0]: * Unoleached control 25.1

[^1]: * The number refers to pese, nosition and notebook rumber.

