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CHAPTER 1. INTRODUCTION

The first exoskeletons began development in the 1890s, but it's only been within the last two

decades that potentially viable designs have emerged. Many studies have been conducted in order to

optimize the functions of these exoskeletons in a way that generates the greatest metabolic benefit

to the user. However, this research is hampered by the traditional methodology of measuring

metabolic cost, indirect calorimetry. This study looks into an alternative method, based not on the

overall gas exchange of the body, but rather the Cumulative Muscle Activation Per unit

Distance(CMAPD).

1.1 Indirect Calorimetry

In order to calculate the metabolic cost of work being done by an individual, indirect

calorimetry looks at the change in gas content between the air the user inhales, and the mixture after

they exhale. This is because of the important role oxygen plays in producing cellular energy via the

mitochondria. For this reason, when aerobic metabolism is occuring there will be a higher

percentage of CO2 in the exhaled air. The magnitude of this increase provides a key insight into the

level of metabolic work being done in the body. As you can see in Figure 1, indirect calorimetry

systems require tethering the participant and funneling the exhaled gasses into a system for

processing. These constraints greatly limit the mobility of the participant during a trial, and largely

requires them to remain in a single spot. However, the primary limitation of indirect calorimetry is

the time it takes to represent changes in metabolic activity. This is due to fundamental properties of

how gas composition reaches steady state slowly as a result of changes in metabolic activity. In a

young healthy population it takes at least 5 min to reach steady state metabolic cost. Additionally,
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while indirect calorimetry is seen as the “gold standard” for measuring metabolic cost, it can only

detect changes in aerobic respiration, despite the body having several pathways of anaerobic energy

generation. While anaerobic processes do make up a much smaller amount of the energy being

generated, depending on the specific case being studied, this distinction may be important.

The primary benefit of indirect calorimetry is the accurate and consistent comparisons it

produces between activities with different levels of metabolic cost. By normalising CO2 to the

participants baseline standing condition and dividing by the speed of travel, the cost of

transport(COT) for each condition can be determined. Furthermore, by dividing by each

participants weight (lbs), the mass balaced COT can be found, which allows for metabolic data to

be compared across the group.

Figure 1 - The PARVO system with required facemask (Left) and the associated cart (Right)

responsible for processing the exhaled gasses
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1.2 Cumulative Muscle Activation Per unit Distance

An action potential is the electrical discharge neurons use in order to pass information around

the body. However, due to the role neurons play in exciting muscle cells, the sum of these action

potentials are also able to be detected whenever a muscle is contracted. For this reason, with

electromyography (EMG) it is possible to not only detect muscle contractions, but also quantify

their intensity by comparing the measured voltage between multiple samples. Furthermore, by

sampling a wide variety of the muscles used during a given activity and looking at changes in these

values across different scenarios, it is possible to quantify changes in the degree of work being done

in each condition. While this does not provide a measurement of metabolic cost compared to

indirect calorimetry, there are several studies such as Blake & Wakeling (2013) which have found

these two measurements to be highly correlated and suggest it could be used as a proxy.

As opposed to indirect calorimetry systems, EMG sensors are much smaller and completely

mobile, as you can see in Figure 2. This allows for the sensors to be easily placed on the

participants body at desired locations to pick up the activity of certain muscle groups. From here

they’re completely free to undergo a wide variety of activities as long as they remain within a

certain area.
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Figure 2 - Delsys Trigno wireless EMG sensor

The size and freedom of EMG sensors opens up a wide range of options which are not

possible due to the static nature of indirect calorimetry systems, but this is not the only advantage.

Additionally, EMG measurements accurately reflect the intensity of each muscle contraction in real

time. This means that instead of spending five or more minutes waiting for changes in gas values,

the measurement reaches steady state in less than a minute, significantly cutting down on the length

of data collections. Furthermore, it was mentioned as a limitation of indirect calorimetry that it can

only detect changes in aerobic respiration, however since EMG values only look at the use of that

energy and not the origin, they can actually represent a greater range of metabolic sources.
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CHAPTER 2. METHODOLOGY

2.1   Data Collection

Three older adults(age = 69.33 ± 0.94 yr, mass = 56.15 ± 4.083 kg, height = 161.6 ± 4.26m)

participated in this study. Data collection took place over multiple days per participant, with one

day to get habituated to the exoskeleton, one day to record EMG, and one day to record motion

capture. Several different data types were collected in the study including indirect calorimetry

(Metabolics), electromyography (EMG), ultrasound, force measurements, and motion capture data

(MOCAP). However, metabolics & EMG are  the primary modalities collected for this data

analysis.

2.2   Data Processing

Walking data was collected on participants both without the exoskeleton as well as with

exoskeleton support at varying spring stiffness levels. In order to analyze the data collected, each

step had to be distinguished. This is done using the data from force sensors embedded in the floor

of the treadmill. By distinguishing each stride and then averaging across the trial, the typical

activity of each muscle can be found. This is important due to the variability in EMG activity,  after

this step the activation levels become fairly consistent as seen in Figure 3. From here the data is

integrated so that a single value for each muscle and condition can be reached. These values are

then divided by the movement speed and normalized to the no exo condition. Once this step has

been reached the different muscle values can be summed in order to reach the Cumulative Muscle

Activation Per unit Distance (CMAPD).
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Figure 3. Average muscle activation of a stride across eight of the primary leg muscle groups.

To find the metabolic cost of transport for each condition, indirect calorimetry data was

collected during every trial using the COSMED metabolic system. By first calculating the

metabolic power using Brockways’ equation(Brockway 1987), dividing by the movement

speed(1.225 m/s)  and then normalizing the values to each participant's resting baseline (found

during the 2nd data collection session) the cost of transport can be reached (seen in Figure 4).
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CHAPTER 3. RESULTS

Figure 4. Metabolic cost of transport for unassisted walking as well as with increasing levels

of exo spring assistance.

3.1 Statistical Analysis

Following data processing, the metabolic cost of transport from the indirect calorimetry data

as well as the cumulative muscle activation per unit distance from the EMG sensors has been

calculated. In order to evaluate the relationship between these two measurements, we chose to use

regression analysis. However, when this test was done, no statistically significant correlation was

able to be found. Originally blaming the test methodology, we looked at a number of alternative

calculations. The first of which was the difference between using the integral of the stride data
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versus the peak in order to calculate CMAPD. As shown in Figure 5 depending on the method used

we do see fairly sizable differences in both individual values and overall trends, but we were still

unable to find any significant correlation.

Figure 5. Individual participant data for the integral method (left) vs peak method (right).

CMAPD - multicolored stacked bars each related to one of the measured muscle groups. COT

- semi translucent black bar

Next we considered the weight each individual muscle should have. Originally each muscle

had an equal contribution to the total CMAPD value, but this does not accurately represent the

biological system as each muscle varies greatly. In order to include this aspect into our data

analysis, we assigned a weight to each muscle group according to the physiological cross sectional

area (PCSA) found in Fukunaga et al. (1992). The PCSA is “proportional to the maximum strength

of the muscle” and is valuable for comparing the properties of each muscle (An et al. 1991). As

seen in Figure 6, including the weight of each muscle group does lead to changes in CMAPD

values & trends, but still there was no statistically significant correlation between CMAPD & COT.
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Figure 6. PCSA adjusted CMAPD vs COT, Integral Method

Running out of alternatives, the final calculation we analyzed was the CMAPD of the soleus

muscleand how that related to the cost of transport because the exoskeleton primarily influences the

soleus muscle. This method  had the lowest P value out of any of the sets listed previously with P =

.0685 for the soleus muscle (seen in Figure 7). Though this value still is not significant it does help

point out a potential explanation for the results we’ve found.
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Figure 7. Soleus CMAPD vs Mass Balanced COT,

3.2 Discussion

While being unable to find any statistically significant correlations does greatly limit any

conclusions this study can make, there’s still much that can be learned from it. The first limitation is

the small sample size. Due to issues with equipment, data from only 3 participants were used.

Second, this data was only collected in older adults. Due to muscle changes with age, this could

explain why we aren’t seeing correlations like those in literature.

Since our study sought to find a relationship between CMAPD and COT as had been seen in

a number of other papers, the particular failure of this situation actually tells us a lot about the

benefits and limitations of CMAPD. In other studies, where a correlation was found the activity was

consistent across the different conditions only with variations in intensity. In our study we had
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expected to mirror this trend, but what we failed to consider was the fundamental ways that the

different exo conditions affected muscle activity. As the exo interacted with the participant some

muscles would be assisted and not have to work as hard, but others may compensate or resist and

actually have to do more work compared to the unassisted walking. This means that depending on

which muscles we were measuring, our CMAPD values may not have been representative of the

activity being conducted. This is further supported by the results we saw when looking at individual

muscles. Some closely follow the trends seen in the cost of transport values, but others differ

greatly. This is why our overall values weren’t significant. Without adequately including all muscles

being affected, and appropriately valuing their contributions, there’s no way the summative value

could be accurate. Before going into the takeaways of this paper, its important to note the small

sample size of this experiment and make clear that future studies following the same methodology,

but with more participants could reach very different conclusions.

3.3 Conclusion

With the data available to us, we’ve actually shown the necessity of indirect calorimetry

over alternative estimations based on electromyography. While EMG may be a proxyt in some

activities, this study should warrant that sufficient validation be taken before any conclusions about

equivalence can be reached.

11



REFERENCES

Aftabi, Hamidreza et al. “Simulation-based biomechanical assessment of unpowered exoskeletons
for running.” Scientific reports vol. 11,1 11846. 4 Jun. 2021, doi:10.1038/s41598-021-89640-3

An, K N et al. “Correlation of physiological cross-sectional areas of muscle and tendon.” Journal of
hand surgery (Edinburgh, Scotland) vol. 16,1 (1991): 66-7. doi:10.1016/0266-7681(91)90130-g

Antonellis, Prokopios, et al. “Modular Footwear That Partially Offsets Downhill or Uphill Grades
Minimizes the Metabolic Cost of Human Walking.” Royal Society Open Science, vol. 7, no. 2,
2020, p. 191527., https://doi.org/10.1098/rsos.191527.

Blake, Ollie M, and James M Wakeling. “Estimating changes in metabolic power from EMG.”
SpringerPlus vol. 2,1 229. 19 May. 2013, doi:10.1186/2193-1801-2-229

Breese, Brynmor C et al. “The effect of baseline metabolic rate on pulmonary O₂ uptake kinetics
during very heavy intensity exercise in boys and men.” Respiratory physiology & neurobiology vol.
180,2-3 (2012): 223-9. doi:10.1016/j.resp.2011.11.013

Brockway J.M. “DERIVATION OF FORMULAE USED TO CALCULATE ENERGY
EXPENDITURE IN MAN” Human Nutrition 41C, 463-473 (1987)

Cheung, Eddy Yu Yeung et al. “Effect of EMG-biofeedback robotic-assisted body weight supported
treadmill training on walking ability and cardiopulmonary function on people with subacute spinal
cord injuries - a randomized controlled trial.” BMC neurology vol. 19,1 140. 24 Jun. 2019,
doi:10.1186/s12883-019-1361-z

Fukunaga, T et al. “Physiological cross-sectional area of human leg muscles based on magnetic
resonance imaging.” Journal of orthopaedic research : official publication of the Orthopaedic
Research Society vol. 10,6 (1992): 928-34. doi:10.1002/jor.1100100623

Ingraham, Kimberly A et al. “Evaluating physiological signal salience for estimating metabolic
energy cost from wearable sensors.” Journal of applied physiology (Bethesda, Md. : 1985) vol.
126,3 (2019): 717-729. doi:10.1152/japplphysiol.00714.2018

Jackson, Rachel W et al. “Muscle-tendon mechanics explain unexpected effects of exoskeleton
assistance on metabolic rate during walking.” The Journal of experimental biology vol. 220,Pt 11
(2017): 2082-2095. doi:10.1242/jeb.150011

12



Malcolm, Philippe et al. “Exoskeleton assistance symmetry matters: unilateral assistance reduces
metabolic cost, but relatively less than bilateral assistance.” Journal of neuroengineering and
rehabilitation vol. 15,1 74. 9 Aug. 2018, doi:10.1186/s12984-018-0381-z

Mohammadzadeh Gonabadi, Arash et al. “Differences between joint-space and musculoskeletal
estimations of metabolic rate time profiles.” PLoS computational biology vol. 16,10 e1008280. 28
Oct. 2020, doi:10.1371/journal.pcbi.1008280

Pethick, Jamie et al. “Relationship between muscle metabolic rate and muscle torque complexity
during fatiguing intermittent isometric contractions in humans.” Physiological reports vol. 7,18
(2019): e14240. doi:10.14814/phy2.14240

Poggensee, Katherine L, and Steven H Collins. “How adaptation, training, and customization
contribute to benefits from exoskeleton assistance.” Science robotics vol. 6,58 (2021): eabf1078.
doi:10.1126/scirobotics.abf1078

Rubini, Alessandro et al. “Body metabolic rate and electromyographic activities of antigravitational
muscles in supine and standing postures.” European journal of applied physiology vol. 112,6
(2012): 2045-50. doi:10.1007/s00421-011-2180-0

Schmalz, Thomas et al. “Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton
for Overhead Work.” International journal of environmental research and public health vol. 16,23
4792. 29 Nov. 2019, doi:10.3390/ijerph16234792

Tikkanen, Olli et al. “EMG, heart rate, and accelerometer as estimators of energy expenditure in
locomotion.” Medicine and science in sports and exercise vol. 46,9 (2014): 1831-9.
doi:10.1249/MSS.0000000000000298

Wilkerson, Daryl P, and Andrew M Jones. “Influence of initial metabolic rate on pulmonary O2
uptake on-kinetics during severe intensity exercise.” Respiratory physiology & neurobiology vol.
152,2 (2006): 204-19. doi:10.1016/j.resp.2005.10.001

13


