
Lattice-Based Encryption Schemes and its Applications to

Homomorphic Encryption

Ahmad Faris Durrani Bin Ahmad Shahrir, Leyan Pan, Kevin Hutto, Dr. Vincent Mooney

VIP Secure Hardware Spring 2020

Dec. 07, 2020

1

Contents

1 Introduction 3

2 Terminology 3

3 Basic Lattice Concepts and Problems 5
3.1 Lattice Concepts . 5
3.2 Computational Problems Related to Lattices . 8

4 The GGH Encryption Scheme 11
4.1 Solving The CVP Problem . 12
4.2 Key Generation . 13
4.3 Encryption . 13
4.4 Decryption . 14
4.5 Example of a GGH encryption scheme . 14

5 The NTRU Public Key Cryptosystem 15
5.1 NTRUEncrypt . 15
5.2 NTRUEncrypt Security . 21

6 Gentry’s Somewhat Fully Homomorphic Encryption Scheme based on Lattices 24
6.1 Polynomial Rings as Euclidean Space . 25
6.2 Ideal Lattices . 25
6.3 Key Generation . 26
6.4 Encryption . 26
6.5 Decryption . 27
6.6 Homomorphic Operations . 27
6.7 Example of Gentry’s S/F Homomorphic encryption scheme 28

7 Further Step Proposed by Gentry to make the scheme Fully Homomorphic 28
7.1 The Recrypt Algorithm . 29

8 Observations 30
8.1 Low Efficiency . 30
8.2 Homomorphism in NTRU . 31

9 Future Work 31

2

1 Introduction

Homomorphic encryption is a type of encryption that allows performing operation on the cipher-
text without having access to the plaintext. While the algorithm are still not efficient enough for
practical applications, homomorphic encryption has potential in many areas such as voting, storage
of sensitive personal information and analyzing demo-graphical data. In 2009, Gentry proposed
the first plausible algorithm for fully homomorphic encryption [4] and various improvements have
been built upon this result, significantly increasing the efficiency of homomorphic encryption. In
Gentry’s original implementation, lattice-based cryptography is used as a basis of the Homomorphic
encryption scheme. Lattice-based cryptography still lies at the heart of many fully homomorphic
encryption schemes. In this report, we build on previous VIP works of [14] [12] and illustrates
various lattice-based encryption schemes and briefly describes how Gentry used lattice-based cryp-
tography to construct the first fully homomorphic encryption scheme. In addition, this sub-team
hopes the incoming VIP sub-teams would make use of this report and expand upon our research
into homomorphic encryption.

2 Terminology

R The set of all real numbers: {· · · ,−1, 1.12, 0, π, 99× 1099, · · · }

Z The set of all integers (whole numbers): {· · · ,−2,−1, 0, 1, 2, · · ·}

∀ For any

∃ There exists

Vector Space A vector space V is a subset of Rn with the property that α1v1 + α1v2 + · · · +
αmvn ∈ V for given vectors v1,v2, · · · ,vm ∈ V and scalar factors α1, α2, · · · , αm ∈ R, where
m < n [11]

Linear Combination α1v1+α1v2+· · ·+αmvn ∈ V is a linear combination of v1,v2, · · · ,vm ∈ V

Euclidean distance Let v = (x1, x2, · · · , xn) ∈ V , the Euclidean norm “distance” or vector
length is

||v|| =
√
x21 + x22 + · · ·+ x2n

Orthogonality Two Euclidean vectors u,v ∈ V are orthogonal if they are perpendicular, i.e.,
they form a right angle: u · v = 0 [7]

Ring A set of elements equipped with the + (addition) and ∗ (multiplication) operators; ev-
ery two elements in the ring must produce a third element in the ring when added or multiplied [11]

Lattice The points in a Euclidean vector space that can be reached with an integer linear com-
bination of a set of basis vectors usually of integer entries [15]

3

SVP The shortest vector problem in a lattice; to find the shortest non-zero vector in the lat-
tice [15]

CVP The closest vector problem in a lattice; to find the shortest point that is part of a given
lattice space to a given target point [15]

Polynomial An expression which is a linear combination of the powers of a variable. The great-
est power is called the degree of the polynomial. E.g., 1 + 2x2 + x3 is a polynomial of degree 3

Z[n] The collection of all polynomials with coefficients taken from Z forms a ring Z[n] under the
usual operations of polynomial addition and multiplication [7]

Z[n] = {a0 + a1x+ a2x
2 + · · ·+ anx

n|a0, a1, · · · , an ∈ Z}.

Encryption The process of encoding a message or information in such a way that only autho-
rized parties can access it

Homomorphic Encryption A kind of encryption scheme which allows a (untrusted) third
party (e.g., cloud, service provider) to perform certain computable functions on the encrypted data
while preserving the features of the function and format of the encrypted data [12]

Partially Homomorphic Encryption A homomorphic encryption scheme that can only per-
form one type of homomorphic operation on the plaintext (usually either addition or multiplication)
any number of times [12]

Fully Homomorphic Encryption A homomorphic encryption scheme that can perform arbi-
trary homomorphic operation on ciphertexts (encrypted plaintexts) any number of times [12]

Somewhat Fully Homomorphic Encryption A homomorphic encryption scheme that can
perform both addition and multiplication but can only do so for a limited number of time [12]

Leveled Fully Homomorphic Encryption A Somewhat Fully Homomorphic Encryption
Scheme that can unlimitedly increase the number of homomorphic operations allowed by increasing
its key size and/or bit size [12]

Symmetric Encryption A kind of encryption that involves only one secret key to cipher and
decipher information. The main disadvantage of the symmetric key encryption is that all parties
involved have to exchange the key used to encrypt the data before they can decrypt it which can
be obtained by an adversary

Asymmetric Encryption/Public Key Encryption A kind of encryption that uses two keys
– one to encrypt a plaintext (public key) and the other to decrypt a ciphertext (private key)

Cryptosystem/Encryption Scheme A suite of cryptographic algorithms needed to implement
a particular security service. Typically, it comprises at least 3 algorithms – one for key generation,
one for encryption and one for decryption

4

Probabilistic Encryption Probabilistic encryption is the use of randomness in an encryption
algorithm, so that when encrypting the same message several times it will, in general, yield different
ciphertexts

Ciphertext Data that was the encrypted value of some encryption scheme

Plaintext Opposing term to ciphertext which refers to data that was not encrypted

Lattice Mathematical structure that represents linear integer combinations of a vectors of an
integer basis of n-dimensional space. More information in later sections

Bootstrapping Homomorphically decrypting a doubly encrypted ciphertext in order to reduce
the noise parameter. More information in later sections

KDM Security A encryption scheme is KDM secure if providing the encrypted information of
the secret key does not comprehend security

Modular Arithmetic A integer arithmetic system where all numbers are represented as their
remainder when divided by a common integer. All numbers with the same remainder under then
common positive integer is viewed as equivalent to each other under this modular arithmetic system.
The notion “under modulo m” or “mod m” represents a modular arithmetic system with the
common positive integer m

Modular Multiplicative Inverse The modular multiplicative inverse of x under modulo m is
an positive integer x−1 less than m that satisfies x× x−1 = 1 mod m

3 Basic Lattice Concepts and Problems

3.1 Lattice Concepts

Introduction

Given n linearly independent vectors b1, b2, · · · , bn ∈ Rm, the lattice generated by them is defined
as

L(b1, b2, · · · , bn) = {x1b1, x2b2, · · · , xnbn|x1, x2, · · · , xn ∈ Z} .

We refer to b1, b2, · · · , bn as a basis of the lattice. Equivalently, if we define B as the m×n matrix
whose columns are b1, b2, · · · , bn, then the latice generated by B is

L(B) = L(b1, b2, · · · , bn) = {Bx|x ∈ Zn}.

Note that we can also represent a lattice space in a matrix form where each of its basis vectors
constitute its rows.

We say that the rank of the lattice is n and its dimension is m. If n = m, the lattice is called
a full-rank lattice. In this paper, all lattices are full-rank lattices unless specified otherwise. The

5

more general case is not substantially different.

An example of a lattice is one generated by basis {(1, 0), (0, 1)}. This basis produces the lattice Z2,
the lattice of all integer points which is also a lattice space in R2. (see below) [15]

Figure 1: Examples of lattice spaces with different bases. Source: [15]

As seen in Figure 1 (a) and (b), the same lattice space can be produced with more than one dis-
tinct basis. In this case, the lattice space Z2 can be induced with both the bases {(0, 1), (1, 0)}
and {(1, 1), (2, 1)}. Figure 1 (c) shows the basis {(1, 1), (2, 0)} does not induce the lattice space Z2

since some points in the Z2 like (1, 0) and (0, 1) are not included. Figure 1 (d) shows a basis (2, 1)
with dimension 2 and rank 1 in the R2 space induces a non-full rank lattice space.

Additionally, the shaded ares are called the fundamental parallelpiped or fundamental domain of
the lattice space. The reader may read more about fundamental domains in [7].

A lattice has multiple bases

Like all lattice spaces, their bases are not unique. For example, (1, 1) and (2, 1) generate Z2.
Yet another basis of Z2 is given by {(2005, 1), (2006, 1)}. On the other hand, {(1, 1)T , (2, 0)T } is
not a basis of Z2 – instead, it generates the lattice of all integer points whose coordinates sum to
an even number. The lattice Z = L((1)) is a one-dimensional full-rank lattice.

Consequently, for any lattice spaces, there can be some ’good’ bases and some ’bad’ bases. A

6

’good’ basis is one with nearly orthogonal and relatively short vectors by Euclidean norms. A good
basis is almost always preferred when solving lattice problems like the SVP and CVP since they
require less time and complexity to compute.

As an example, basis A1 and basis A2 below both produce the same lattice space but basis A1

is considerably shorter and therefore better to use in solving problems like the SVP than basis A2.
Recall that each row of the matrix represent a basis vector.

A1 =

449857 1731 72769
224936 870 36380
224927 861 36390

A2 =

6 0 1
1 3 1
7 3 −5

Any two bases for a lattice L are related by a matrix having integer coefficients and determinant
equal to ±1.

A matrix U ∈ Zn×n is called unimodular if the determinant of U is ±1.

For example, the matrix (
1 2
0 1

)
is unimodular as its determinant is 1.

Two bases B1, B2 ∈ Rm×n are equivalent if and only if B2 = B1U for some unimodular ma-
trix U .

Proof1: First assume that L(B1) = L(B2). Then for each of the n columns bi of B2, bi ∈ L(B1).
This implies that there exists an integer matrix U ∈ Zn×n for which B2 = B1U. Similarly, there
exists a V ∈ Zn×n such that B1 = B2V . Hence B2 = B1U = B2V U , and we get

BT
2 B2 = (V U)TBT

2 B2(V U).

Taking determinants, we obtain that det(BT
2 B2) = (det(V U))2 det(BT

2 B2)) and hance det(V) det(U) =
±1. Since V,U are both integer matrices, this means that det(U) = ±1, as required.

For the other direction, assume that B2 = B1U for some unimodular matrix U . Therefore each
column of B2 is contained in L(B1) and we get L(B2) ⊆ L(B1). In addition, B1 = B2U

−1, and
since U−1 is unimodular, we similarly get that L(B1) ⊆ L(B2). We conclude that L(B1) = L(B2)
as required.

1Source: Oded Regev. “Lecture 1: introduction.” Lattices in Computer Science. Tel Aviv University. Fall 2004.
NYU [15]

7

Example

As an example, the two bases of the lattice space Z2 discussed earlier are related by a unimodular
matrix described below:

B1 × U = B2(
1 0
0 1

)
×
(

1 2
1 1

)
=

(
1 2
1 1

)

where the unimodular matrix

(
1 2
1 1

)
has determinant −1.

3.2 Computational Problems Related to Lattices

The fundamental computational problems associated to a lattice are those of finding a shortest
nonzero vector in the lattice and of finding a vector in the lattice that is closest to a given non-
lattice vector. We begin with a description of two fundamental lattice problems.

Shortest Vector Problem (SVP): Find a shortest nonzero vector in a lattice L of dimension n,
i.e. find a nonzero vector vshortest ∈ L that minimizes the Euclidean norm ||vshortest||.

Example

Given a lattice Z2 with basis (0, 1) and (1, 0), as shown in Figure 2. Expand a uniform circle from
the origin until the circle first touches a lattice point which in this case can include, among others,
(1, 0). The distance between the origin and (0, 1) which we denote as λ1 is equal to ||vshortest||. In
other words, 1 =

√
02 + 12 is the shortest vector distance in the lattice Z2.

Figure 2: Finding the SVP in lattice Z2

A similar technique could be used to calculate the SVP in the lattice Z3 with basis {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
in Figure 3. Expand a uniform ball from the origin until the first instance the surface touches a
lattice point, which can include (0, 0, 1) with a distance of 1 from the origin. It is not hard to

8

Figure 3: Finding the SVP in lattice Z3 (not to scale).2

see the higher the dimensions of the lattice is, the harder it is to calculate the SVP. In modern
lattice-based cryptosystems, the dimension of a lattice can approach hundreds.

Closest Vector Problem (CVP): Given a vector w ∈ Rn that is not in L, find a vector v ∈ L
that is closest to t, i.e., find a vector v ∈ L that minimizes the Euclidean norm ||t− v||.

Example

Using lattice Z2 in Figure 2 and target point t (1.1, 1.1), it is trivial to see the closest vector in the
lattice to t is (1, 1). We can again use the expanding circle method with center at t.

Remark. Note that there may be more than one shortest nonzero vector in a lattice. For example,
in Z2, all four of the vectors (0,±1) and (±1, 0) are solutions to SVP. This is why SVP asks for
“a” shortest nonzero vector and not “the” shortest vector. A similar remark applies to CVP.

There are many important variants of SVP and CVP that arise both in theory and in practice. We
describe a few of them here.

Approximate Shortest Vector Problem (apprSVP)

Let the scalar approximation factor γ(n) ≥ 1 be a function of n. In a lattice L of dimension n, find
a nonzero vector that is no more than γ(n) times longer than a shortest nonzero vector. In other
words, if vshortest is a shortest nonzero vector in L, find a nonzero vector v ∈ L satisfying

||v|| ≤ γ(n) · ||vshortest||.

Each choice of function γ(n) gives a different apprSVP. As specific examples, one might ask for an
algorithm that finds a nonzero v ∈ L satisfying

||v|| ≤ 3
√
n||vshortest|| or ||v|| ≤ 2n/2||vshortest||.

2Figure adapted from https://www.physicstomato.com/crystal-lattice/.

9

Clearly an algorithm that solves the former is much stronger than one that solves the latter, but
even the latter may be useful if the dimension is not too large.

Example

Take the lattice L given in Figure 4. And let the approximation factor γ(n) be 2. Thus, we are
looking a lattice point in L whose distance is 2λ1(L) or twice the shortest length of ||vshortest||. If
λ1(L) = 1, then 2λ1(L) = 2. As a side note, λ2(L) represents the second shortest vector in L.

Figure 4: Finding the apprSVP in lattice L. Adapted from [15]

Approximate Closest Vector Problem (apprCVP)

This is the same as apprSVP, but now we are looking for a vector that is an approximate solution
to CVP, instead of an approximate solution to SVP.

Example

Again, take lattice Z2 with t = (2.6, 1.6) as shown in Figure 5. The actual closest vector would be

the lattice point v = (3, 2). Hence (dist)(L, t) =
√

0.42 + 0.42 = 2
√
2

5 . By constructing a circle of
radius γ(n) · dist(L, t), we can find a number of lattice points that satisfy our problem restrictions
to find an approximate closest vector to t with scalar factor γ(n).
Hardness of Problems

Both SVP and CVP are profound problems, and both become computationally difficult as the
dimension n of the lattice grows. On the other hand, even approximate solutions to SVP and CVP
turn out to have surprisingly many applications in different fields of pure and applied mathematics.
In full generality, CVP is known to be NP-hard and SVP is NP-hard under a certain “randomized
reduction hypothesis.” See [9] for more detials.

In full generality, both SVP and CVP are considered to be extremely hard problems, but in practice
it is difficult to achieve this idealized “full generality”. In read world scenarios, cyrptosystems based

10

Figure 5: Finding the apprCVP in lattice Z2.

on NP-hard or NP-complete problems tend to rely on a particular subclass of problems, either to
achieve efficiency or to allow the creation of a trapdoor. When this is done, there is always the
possibility that some special property of the chosen subclass of problems makes them easier to solve
than the general case.

Though there is yet a general algorithm that would solve both problems with precision, there are
approximation algorithms. For instance, the Lenstra-Lenstra-Lovász (LLL) Algorithm is an ap-
proximation algorithm of the shorest vector problem, which runs in polynomial time and finds an
approximation within an exponential factor of the correct answer. It is practical for solving in-
teger linear programming, factorizing polynomials over integers, and breaking cryptosystems with
enough accuracy.

Here, it is important to note that a lattice can have “good” bases and “bad” bases, which can
affect the level of difficulty in solving these computational problems. The following figure shows
two different bases for the same lattice. The first basis is “good” in the sense that the vectors are
fairly orthogonal and consists of relatively short Euclidean length vectors; the second basis is “bad”
because the angle between the basis vectors is small and it consists of relatively long Euclidean
length vectors.

For instance, using Babai’s Algorithm [7][pp. 403] to solve CVP on a lattice will return outputs
with different distance to the target vector depending on the lattice’s basis. When the method is
executed using a good basis, it works effectively for returning a lattice vector that is located close
to the target vector. On the contrary, Babai’s may return a lattice vector that is located far from
the target vector on a bad basis.

4 The GGH Encryption Scheme

The first encryption scheme that will be introduced is the the GGH Encryption Scheme. The GGH
(Goldreich–Goldwasser–Halevi) encryption scheme is a relatively simple lattice-based encryption
scheme whose security is based upon the CVP (Cloest Vector Problem). The subsection below
illustrates the difference between a good and bad basis in solving the CVP problem.

11

4.1 Solving The CVP Problem

The CVP Problem is defined as follows:

Definition 1 Given an integer lattice, represented by a basis B, and a target vector c, find a lattice
point Bx that minimizes the distance ||Bx− c||, where ||x|| denotes the Euclidean length of vector
x.

Note that if the target vector t is in the lattice, then the problem becomes trivial as the solution
is t itself. The difficulty of solving the CVP is strongly dependent on the “quality” of the given
lattice. As an example, consider the following “good” basis for lattice B:

B =

7 0 0
0 23 0
0 0 99

 (1)

The lattice contains all vectors of the form x = (7a, 23b, 99c)a, b, c ∈ Z . The basis B is “good”
because the basis vectors (7, 0, 0), (0, 23, 0), (0, 0, 29) are othogonal to each other. In this case, the
closest lattice vector to the vector c = (1,−1, 1), for example, can be obtained by the formula
[cB−1]B = (0, 0, 0), where [x] denotes rounding of each entry of x to the nearest integer. To dissect
this formula, cB−1 computes the real (not necessarily integers as for a lattice vector) coefficients of
the basis vectors to form the vector c. [cB−1] rounds the coefficients to the nearest integer to form
the coefficients that would result in a lattice vector. [cB−1]B computes the nearest of the lattice
points that would forms the region that contains c. If the vectors of B are “relatively orthogonal”,
this vector would be the same as the closest vector to c.

Now, instead of the good basis B, consider the following basis B′:

B′ =

 7 69 −990
56 575 −8514
−77 −644 8019

 (2)

which still contains represents the same lattice as B, i.e. x = (7a, 23b, 99c)a, b, c ∈ Z. If we try to use
the same method to solve the CVP, we would get a wrong result: [cB′−1]B′ = (−56,−529, 7227).
This is because, with a bad basis, even a small change with the given point (c) will create a large
change in the coefficients of the basis vectors. The following image gives a illustration of attempting
to solve the CVP problem using a bad basis:

12

Figure 6: A good basis and a bad basis4

4 The algorithm would attempt to find the closest vertex that encloses the lattice cell containing
the vertex as described by the given basis. However, as shown in the image, the closest vertex is not
necessarily the same as the closest lattice point. In fact, the more relatively orthogonal (”good”)
the basis are, and the smaller the error vector, the more likely that the closest vertex and the closest
lattice point will be the same.

4.2 Key Generation

In order to define a GGH instance, we need to first define a lattice L of dimension n by giving
a n × n (”good”) basis matrix B with relatively orthogonal row vectors, where n is a parameter
that is decided based on the required security level. The higher the value n is, the more difficult
it is to break the cryptosystem and also the more time it takes to perform the encryption and
decryption operations. For a secure GGH encryption scheme instance, it is generally recommended
that n > 400 for attacks that uses the LLL [10] algorithm unfeasible.

Now that we have the “good” basis, we will create a bad basis B′ by generating a random large
unimodular matrix U and computing B′ = UB [7]. Note that a upper or lower triangular matrix
with diagonal entries 1 is always unimodular, and the product of two unimodular matrix is also
unimodular. One way to generate a large unimodular matrix is by generating a upper triangular
and a lower triangular with random entries in the non-zero region and multiplying them together
(will be illustrated in the exmaple).

After generating the matrices as stated above, the public key will be B′ and the private key will
be the tuple (B,U).

4.3 Encryption

The plaintext space of a GGH instance is a n dimensional integer vector in the fundamental region
of the “good” basis. However, if it is desired to encrypt other types of data like a string, they can
be converted into a vector that carries the same amount of information (A vector that contains n
character’s ASCII code in the string, for example). Suppose the target plaintext vector is m, the
encryption algorithm is as follows:

First, generate a random small vector e. Usually, each entry in e is selected to have absolute value
smaller than or equal to 3. The ciphertext is computed as c = mB′ + e. Note that this vector is
not in the lattice and thus we can apply the CVP algorithm using B but not B′ to find the closest
lattice point. e needs to be small because mB′ must be the closest lattice point to mB′+ e for the
decryption to work as expected. If we ignore the error vector e, mB′ is a lattice point with the
entries of m as coefficients of the (“bad”) basis vectors in B′.

4From slide by Silverman, http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf

13

4.4 Decryption

The decryption is a partial application of the CVP algorithm described previously. First, the
“good” basis B is used to compute the coefficients of the closest vector to c by computing [cB−1],
where [x] as usual denotes the rounding operation of each entry in a vector. However, note that
this is the coefficient of the closest lattice point, or mB′ during encryption, stated in terms of the
basis vectors in B. However, in order to obtain m, we need to state the coefficients in terms of
B′, the “bad” basis, and therefore a translation between the two coefficient is needed. Luckily,
the translation can be simply achieved by multiplying the inverse uni-modular matrix, U−1 (recall
that B′ = UB, therefore mB′ = mUB, and if xB = mUB then m = xU−1). Therefore, the final
decryption formula would be m = [cB−1]U−1.

4.5 Example of a GGH encryption scheme

To put the GGH encryption scheme together, the scheme can be described as follows:

• Secret Key: B ∈ Zn×n, uni-modular U ∈ Zn×n

• Public Key: B′ = UB

• Plaintext: m ∈ FB, where FB is the fundamental region of basis B. FB ⊂ Zn

• Encryption: c = mB′ + e, where e ∈ Zn is small random vector.

• Decryption: m = [cB−1]U−1,where [x] denotes rounding of each entry.

As an example, we will use the following “good” lattice basis B with dimension n = 3 (Note that
GGH with such small n is very inefficient and we’re using this small)the same as the basis used in
the CVP to define the lattice used in the GGH encryption instance:

B =

7 0 0
0 23 0
0 0 99

 (3)

In order to generate a uni-modular matrix U , create a upper triangular matrix and a lower triangular
matrix and set U to be their matrix multiplication product:

U =

 1 0 0
8 1 0
−11 5 1

1 3 −10
0 1 −6
0 0 1

 =

 1 3 −10
8 25 −86
−11 −28 81

 (4)

Now, compute B′ = UB

B′ = UB =

 1 3 −10
8 25 −86
−11 −28 81

7 0 0
0 23 0
0 0 99

 =

 7 69 −990
56 575 −8514
−77 −644 8019

 (5)

14

The public key is B′ and the secret/private key is U and B. Suppose that we are encrypting
the message m = (2,−1, 3). First, we must generate a small random vector e. Let e = (−1, 1, 1)
for this example. The encryption would be

c = mB′ =
(
2 −1 3

) 7 69 −990
56 575 −8514
−77 −644 8019

+
(
−1 1 1

)
=
(
−274 −2368 30592

)
(6)

In order to decrypt the encrypted message we just generated, we need to use the public secret keys
U and B to partially solve the CVP problem:

c = [cB−1]U−1

= round

(−274 −2368 30592
)7 0 0

0 23 0
0 0 99

−1

 1 3 −10

8 25 −86
−11 −28 81

−1

=
(
−39 −103 309

) 1 3 −10
8 25 −86
−11 −28 81

−1

=
(
2 −1 3

)
Note that if we simply try to decrypt c using B′ by calculating [cB′−1], we would get the vector
(70,−8, 4), which is fairly far away from the correct answer. In fact, the large n becomes, the less
information the “bad” basis gives.

5 The NTRU Public Key Cryptosystem

In this section, we will talk about NTRUEncrpt, the NTRU (pronounced en-trū) public key cryp-
tosystem presented in 1996 by Hoffstein, Pipher, and Silverman. [6] [7] A post-quantum cryp-
tosystem, NTRUEncrypt is most naturally described using convolution polynomial rings, but the
underlying hard mathematical problem can also be interpreted as a SVP in a lattice.

5.1 NTRUEncrypt

NTRU stands for n-th degree truncated polynomial. Truncated here means that the highest degree
of the polynomial is restricted to a highest power. We first fix a prime N and define a few terms.

Convolution Polynomial Rings

Let R be the convolution polynomial ring:

R =
Z[x]

xN − 1
,

where R is the polynomial β(x) ∈ Z[x] reduced modulo xN − 1.

15

As a result, a(x) ∈ R is a polynomial with integer coefficients and degree strictly less than N . We
may view a polynomial β(x) of degree equal to or greater than N as an element of R by simply
replacing each instance of xN with 1. [13] The following example attempts to explain why is this
the case when β(x) is divided by xN − 1.

Example of a Convolution Polynomial Ring

Say we have a0(x) = x4 + 3x3 + 2x2 + 2x+ 1 ∈ Z[x]. And suppose we are in a ring

R0 =
Z[x]

x3 − 1
.

Doing long division between a0(x) over x3 − 1, we get:

a0(x)

x3 − 1
=

x4 + 3x3 + 2x2 + 2x+ 1

x3 − 1

=
(x+ 3)(x3 − 1) + 2x2 + 3x+ 4

x3 − 1

= x+ 3 +
2x2 + 3x+ 4

x3 − 1

where R0 is the remainder of the long division:

R0 = 2x2 + 3x+ 4

which is exactly what we get when replacing all instances of x3 with 1 in a0(x) :

a0(x) = x4 + 3x3 + 2x2 + 2x+ 1

= x3(x) + x3(3) + 2x2 + 2x+ 1

R0 = 1(x) + 1(3) + 2x2 + 2x+ 1

= 2x2 + 3x+ 4.

The coefficients in the ring may be further reduced modulo various integers p and q.

Note that each polynomial in R can be treated as a vector by extracting the coefficients. For
example:

F (x) = x2 + 2x+ 3 = (3, 2, 1).

G(x) = x+ 5 = (5, 1, 0).

F (x)×G(x) = (3, 2, 1)× (5, 1, 0) = x3 + 7x2 + 13x+ 15

= 7x2 + 13x+ 16 mod (x3 − 1)

= (16, 13, 7).

16

Convolution multiplication

Let

a(X) = a0 + a1X + a2X
2 + · · ·+ aN−1X

N−1 ∈ R
b(X) = b0 + b1X + b2X

2 + · · ·+ bN−1X
N−1 ∈ R.

It should be trivial to see that when the two polynomials a(X), b(X) multiply each other, the
highest degree of the coefficient of the product a(X)× b(X) = c(X) may be bigger than N which
means we have to reduce modulo the product by xN − 1 to stay within in the ring R. A shorter
method which does not require us to reduce modulo c(X) involves setting the coefficients of c(X) =
c0 + c1X + c2X

2 + · · ·+ cN−1X
N−1 be:

ck = a0bk + a1bk−1 + · · ·+ aN−1bk+1

where bk = bN+k if k < 0. In other words, bk+1 = bk−N+1.

Note that c(X) is equivalent to a(X)×b(X) mod (XN−1) using normal polynomial multiplication.

Inverse of a polynomial in R mod q

The inverse of a polynomial a(X) ∈ R mod q is a polynomial a(X)−1 ∈ R satisfying

a(X)× a(X)−1 = 1 mod q.

As an example, given a(x) = 3x4 + 10x3 + 7x2 − 1 ∈ Z[x]
x5−1 mod 16, we find:

(3x4 + 10x3 + 7x2 − 1)−1 = 5x4 + 3x3 + 13x2 + 8x+ 14 mod 16

Ternary Polynomials

For any positive integers d1, d2, we let:

T (d1, d2) = a(x) ∈ R

such that a(x) has d1 coefficients equal to 1, d2 coefficients equal to −1, and all other coefficients
equal to 0.

Polynomials in T (d1, d2) are called ternary or trinary polynomials. They are analagous to binary
polynomials which have 0 and 1 coefficients only.

Center-lifiting

Let a(x) ∈ R mod q. The center-lift of a(x) to R is the unique polynomial a′(x) ∈ R satisfying:

a′(x) mod q = a(x)

whose coefficients are chosen in the interval

−q
2
< a′i ≤

q

2
.

17

For instance, if q = 2, the resulting center-lift of a(x) will be a binary polynomial.

As an example [7][pp. 415], let N = 5 and q = 7, and consider the polynomial

a(x) = 5 + 3x− 6x2 + 2x3 + 4x4 ∈ R mod 7.

The coefficients of the resulting a′(x) are chosen from {−3,−2, · · · , 2, 3}, so

Center-lift of a(x) = a′(x) = −2 + 3x+ x2 + 2x3 − 3x4 ∈ R.

Similarly, the lift of b(x) = 3 + 5x2 − 6x3 + 3x4 is 3− 2x2 + x3 + 3x4. Notice that

(Lift of a(x)) × (Lift of b(x)) = 20x+ 10x2 − 11x3 − 14x4

and

(Lift of a× b) = −x+ 3x2 + 3x3

are not equal to one another, although they are both congruent modulo 7.

NTRUEncrypt: Public Parameters

We are now ready to describe NTRUEncrypt. Alice the sender and Bob the receiver takes some
public parameters (N, p, q, d) pre-determined by a trusted authority satisfying these guidelines:

1. Integer N ≥ 1 and N is prime.

2. gcd(N, q) = gcd(p, q) = 1.

3. q > (6d+ 1)p.

Most commonly, N > 100, p = 3, and q is a multiple of 2. Additionally, for best security as
explained in [7] [pp. 424], d ≈ N/3.

NTRUEncrypt: Key Generations

Alice’s private key consists of two randomly chosen polynomials

f(x) = T (d+ 1, d) and g(x) = T (d, d).

Alice computes the inverses

Fq(x) = f(x)−1 in R mod q and Fp(x) = f(x)−1 in R mod p.

If there are no inverses of f(x) within either rings, then Alice shall discard this f(x) and pick
another random polynomial in T (d+ 1, d).

Next, Alice computes

h(x) = Fq(x)× g(x) in R mod q.

18

The polynomial h(x) shall be Alice’s public key that she shares publicly. Her private key is the
pair (f(x),Fp(x)). Or more succinctly, only f(x) since Alice can calculate Fp(x) with the public
parameter p.

Notice that although the coefficients of f(x) are small, the coefficients of its inverse Fq(x) will look
random which is a characteristic that defines its security.

NTRUEncrypt: Encryption

Bob’s plaintext is a polynomial m(x) ∈ R whose coefficients satisfy

−1

2
p < mi <

1

2
p

i.e. the plaintext m(x) is a polynomial in R that is the center-lift of a polynomial in R mod p.
Bob chooses a random polynomial r(x) ∈ T (d, d) and computes the ciphertext

e(x) ≡ ph(x)× r(x) + m(x) (mod q).

As a result, Bob’s ciphertext e(x) is in the ring R mod q.

NTRUEncrypt: Decryption

On receiving Bob’s ciphertext, Alice starts the decryption process. She computes

a(x) ≡ f(x)× e(x) (mod q).

She then center-lifts a(x) to an element of R and does a mod p computation:

b(x) ≡ Fp(x)× a(x) (mod p).

Assuming that the parameters have been chosen properly, we now verify the polynomial b(x) is
equal to the plaintext m(x).

NTRUEncrypt: Proof b(x) = m(x)

If the NTRUEncrypt parameters are chosen to satisfy q > (6d + 1)p, then the polynomial b(x)
computed by Alice is equal to Bob’s plaintext m(x).

Going through the calculation of a(x) :

a(x) ≡ f(x)× e(x) (mod p) (7)

≡ f(x)× (ph(x)× r(x) + m(x)) (mod p) (8)

≡ pf(x)× Fq(x)× g(x)× r(x) + f(x)×m(x) (mod q) (9)

≡ pg(x)× r(x) + f(x)×m(x) (mod q). (10)

Consider the resulting polynomial

pg(x)× r(x) + f(x)×m(x), (11)

19

computed exactly in R, rather than modulo q. We need to bound the largest possible coefficient.
The polynomials g(x) and r(x) are in T (d, d), so if in the convolution product g(x) × r(x), all of
their 1’s match up and all of their −1’s match up, the largest possible coefficient of g(x) × r(x)
is 2d. Similarly, f(x) ∈ T (d + 1, d) and the coefficients of m(x) are between −1

2 and −1
2 , so the

largest possible coefficient of f(x)×m(x) is (2d+ 1) · 12p.

So even if the largest coefficient of g(x) × r(x) happens to coincide with the largest coefficient of
r(x)×m(x),the largest coefficient of pg(x)× r(x) + f(x)×m(x) has magnitude at most

p · 2d+ (2d+ 1) · 1

2
p =

(
3d+

1

2

)
p.

Thus our assumption that q > (6d + 1)p ensures that every coefficinet of the polynomial has
magnitude strictly smaller than 1

2q. Hence when Alice computes a(x) modulo q (i.e. in Rq) and
then lifts it to R, she recovers the exact value of the polynomial. In other words,

a(x) = pg(x)× r(x) + f(x)×m(x)

is exactly in R, not merely modulo q.

Alice then simply multiplies a(x) by the inverse of f(x) mod p i.e. Fp(x), and reduces the result
modulo p to obtain

b(x) ≡ Fp(x)× a(x) (mod p)

≡ Fp(x)× (pg(x)× r(x) + f(x)×m(x)) (mod p)

≡ Fp(x)× f(x)×m(x) (mod p) reducing mod p

≡ m(x) (mod p).

Hence, b(x) and m(x) are the same modulo p.

20

Example (from [7] [pp. 421])

In the table below, Rq represents R mod q and Rp represents R mod p.

Public Paramaters

A trusted entity chooses values (N, p, q, d) = (7, 3, 41, 2). Notice that N and p are prime,
gcd(p, q) = gcd(N, q) = 1, and q > (6d+ 1)p.

Alice Bob

• Choose f(x) = x6−x4 +x3 +x2−1 ∈ T (3, 2).
• Choose g(x) = x6 + x4 − x2 − x ∈ T (2, 2).
• Compute Fq = 8x6 + 26x5 + 31x4 + 21x3 +
40x2 + 2x+ 37 ∈ Rq.
• Compute Fp(x) = x6 + 2x5 +x3 +x2 +x+ 1 ∈
Rp. • Alice stores (f(x),Fp(x)) as her private
key.
• Compute h(x) = Fq(x)×g(x) = 20x6+40x5+
2x4 + 38x3 + 8x2 + 26x+ 30 ∈ Rq.
• Alice publishes h(x) as her public key.

Encryption

• Choose message to send m(x) = −x5 + x3 +
x2 − x+ 1.
• Choose random element r(x) = x6−x5+x−1.
• Compute e(x) ≡ pr(x)×h(x)+m(x) ≡ 31x6+
19x5 + 4x4 + 2x3 + 40x2 + 3x+ 25 (mod q).
• Send e(x) to Alice.

Decryption

• Compute f(x) × e(x) ≡ x6 + 10x5 + 33x4 +
40x3 + 40x2 + x+ 40 (mod q).
• Center-lift f(x) × e(x) modulo q to obtain
a(x) = x6 + 10x5 − 8x4 − x3 − x2 + x− 1 ∈ R.
• Reduce a(x) modulo p and compute Fp(x) ×
a(x) ≡ 2x5 + x3 + x2 + 2x+ 1 (mod p).
• Center-lifting the previous result modulo p to
retrieve Bob’s plaintext m(x) = −x5+x3+x2−
x+ 1.

5.2 NTRUEncrypt Security

The coefficients of the public key h(x) appear to be random integers modulo q, but there is a hidden
relationship

f(x)× h(x) ≡ g(x)(mod q), (12)

where the coefficients of f(x) and g(x) are very small as they are ternary polynomials. Thus
breaking NTRUEncrypt by finding the private key comes down to solving the following problem:

21

The NTRU Key Recovery Problem
Given h(x), find ternary polynomials f(x) and g(x) satisfying

f(x)× h(x) ≡ g(x) (mod q).

Take note that the solution to the NTRU key recovery problem is not unique, as for any integer
0 ≤ k < N , the rotations of f(x) and g(x) i.e. (xk×f(x), xk×g(x)) are also valid solutions. More
details can be found in [7] [pp. 422].

One way to view how to find a solution is by reqording the problem as a lattice problem. To find
the private keys f(x), g(x), let

h(x) = h = h0 + h1x+ h2x
2 · · ·+ hN−1x

N−1

be the public key. Thus, the NTRU lattice Lh associated to h is the 2N -dimensional lattice space
spanned by the rows of the matrix:

Mh =

1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q

where the top-left quadrant is the Identity matrix, the top-right quadrant is the cyclical permuta-
tions of the coefficients of h(x), the bottom-left quadrant is the zero matrix, and the bottom-right
is the Identity matrix multiplied by q.

A shorter way to present Mh is:

Mh =

(
I h
0 qI

)
.

We are going to identify each pair of polynomials

a(x) = a0 + a1x+ · · ·+ aN−1x
N−1

and

b(x) = b0 + b1x+ · · ·+ bN−1x
N−1

in R as a 2N−dimensional vector

(a, b) = (a0, a1, · · · , aN−1, b0, b1, · · · , bN−1) ∈ Z2N .

Now, assuming the proposition f(x) × g(x) ≡ g(x) (mod q) is true, we can have a polynomial
u(x) ∈ R such that:

f(x)× g(x) = g(x)× u(x).

22

This is true since u(x) is the quotient of f(x)× g(x) modulo q.
Then it must be true that

(f ,−u)Mh = (f , g).

Proof

It is clear that the first N coordinates of (f ,h)M are f . To understand why, take the first column
of the product first. The value of the first column of the product is equal to the value of the dot
product between the first row of (f , g) and the first column of Mh which will be:

f0 · 1 + f1 · 0 + f2 · 0 + · · ·+ gN · 0 = f0.

Next, consider what happens when we multiply the next N columns of Mh which have hk coefficient
values at the top with the vector (f ,−u). We get the quantity:

hkf0 + hk−1f1 + · · ·+ hk+1fN−1 − quk,

which is the kth entry of the vector f(x)× g(x)− qu(x), which is equal to g(x). Hence, the second
N coordinates of the product will be the coefficients of g(x). We can say that the vector (f , g) is
derived from a linear combination of the rows of Mh. Hence, (f , g) ∈ Lh, shown by the succint
computation:

(f ,−u)

(
1 h
0 qI

)
= (f ,f × h− qu) = (f , g).

In other words, to get the vector (f , g), we only need to multiply the first row of Mh with f0, added
to the product of the second row with f1, added to the product of the third row with f2, and so
on.

Recall that the matrix Mh is public and the hidden vector (f , g) is our private key. The basis
vectors which make up Mh may be long and complex but if an adversary is able to obtain the short
and good basis of (f , g), they will have theoretically broken NTRUEcrypt. (f , g) is a short vector
comprising of only the coefficients from the trinary {0,−1, 1}, hence (f , g) is also a short basis in
Lh. In other words, solving the approximate SVP for lattice Lh is one way an adversary can break
NTRUEncrypt.

Briefly Quantifying NTRU’s Security

The proposition above says that an adversary can determine Alice’s private key if they can find
an approximate shortest vector in Lh. Thus, the security of NTRUEncrypt depends at least on
the difficulty of solving Lh in Lh. More generally, if the adversary can solve apprSVP to within
a factor of approximately N ε for sone ε < 1

2 , then the short vector that the adversary finds will
probably serve as a decryption key. For more details, please refer to [7][pp. 427].

Though there is no known algorithm that can solve SVP in polynomial time, there are certain
lattice reduction algorithms that can solve apprSVP to within a certain factor. One of the most

23

well-known, the Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) runs in polyno-
mial time and solves apprSVP to within a factor of 2N , but if N is large, LLL does not find very
small vectors in Lh. A generalization of the LLL algorithm, the BKZ-LLL algorithm is able to
solve apprSVP to within a factor of β2N/β, where β is a blocksize parameter that the algorithm
takes in. However, its running time is exponential in β.

Unfortunately, the characteristics of such lattice basis reduction algorithms are still not as well
understood, which makes it difficult to predict theoretically the performance of such algorithms
on any class of lattices and hence, how fast can one apprSVP be solved. Thus, the security of a
lattice-based cryptosystem such as NTRUEncrypt is currently estimated experimentally by taking
in a sequence of parameters (N, q, d) and modifying values of the paramters while holding certain
ratios approximately constant.

For each set of parameters, one runs experiments using the BKZ-LLL algorithm using different
block sizes β until the algorithm finds a short vector in Lh. Then one plots the logarithm of the
average running time against N and computes the best-fitting line

log(Running Time) = AN +B.

According to Hoffstein et. al. (2014) [7][pp. 428], such experiments suggest the values of N in the
range from 250 to 1000 yield security levels comparable to RSA, Elgamal, and ECC. Experiments
done by Hoffstein in 1996 [17] estimate the time needed to find a target vector for NTRU with
N = 167 and N = 263 gives the values in the table below:

N T (seconds) T (MIPS-years)

167 1.638 · 1011 2.077 · 106

263 3.634 · 1019 4.607 · 1014

Table 1: Estimated Breaking Times for NTRU 167 and NTRU 263

Here, a MIPS-year is a “standard” measure of computational effort in cryptography: It refers to
the amount of work performed, in one year, by a computer operating at the rate of one million
operations per second (1 MIPS). [8]

This shows at least some versions of NTRUEcnrypt has a security level comparable to other cur-
rently used cryptosystems such as the ones mentioned above.

6 Gentry’s Somewhat Fully Homomorphic Encryption Scheme
based on Lattices

In 2009, Gentry developed in his Phd thesis the first plausible fully Homomorphic Encryption
Scheme based on lattice-based encryption. [4] Initially, a somewhat fully homomorphic encryption
scheme is developed based on polynomial rings similar to those used in NTRU. Several tweaks
are then introduced to the scheme and bootstrapping is applied to allow the scheme to become
fully homomorphic. This section will focus on the initial somewhat fully homomorphic encryption
scheme that Gentry proposed in chapter 5 and 7 in his thesis.

24

6.1 Polynomial Rings as Euclidean Space

Consider the polynomial ring Z[x]
xn−1 as described in the previous section. Note that this contains

all the polynomials with degree less than or equal to n − 1. In other words, the ring contains all
polynomials of the form {a0 + a1x+ a2x

2 + · · ·+ an−1|a0 . . . an−1 ∈ Z}. Importantly, observe that
each element in the ring can not only be viewed as a polynomial. Each element can also be viewed
as vector in the Euclidean Space by viewing the coefficient within polynomial as entries in the
vector. The polynomial a0 + a1x+ a2x

2 + · · ·+ an−1 within the space of Z[x]
xn−1 can also be viewed

as the vector (a0, a1, . . . an−1) within Zn.

This gives us several interesting properties. By defining the polynomial ring and viewing the
ring as an Euclidean space, the “+” operation can be viewed as simple vector addition. But
the benefit is the convolution multiplication, which multiplies two polynomials within Z[x]

xn−1 and

produces a product of these polynomials that is also in Z[x]
xn−1 . Translated to the Euclidean Space

Zn, the multiplication takes two n dimensional integer vectors and the product would also be a n
dimensional integer vector. (This type of multiplication is not generally well-defined in a normal
Euclidean space. The dot product, for example, produces a number instead of vector and the cross
product is only applicable to Z3) In fact, the Euclidean space Zn, which is not intuitively an ring
under the usual definition, now has the properties of a ring, permitting several additional operations
with n-dimensional vectors, including “ideal lattices” as described as follows.

6.2 Ideal Lattices

Gentry’s scheme made use of an important concept of “Ideal Lattices”. An ideal is a mathematical
structure within a ring informally defined as follows3:

Definition 2 An ideal I within an ring R is a subset of R that satisfies the following properties:

• ∀a, b ∈ I, a+ b ∈ I, ab ∈ I

• ∀a ∈ R, i ∈ I, ai ∈ I

A simple example of an ideal within the ring of Z is the set of all numbers that are multiples of 3
(or n, where n is any positive integer). Note that the sum and product of two numbers that are
multiples of three is also a multiple of 3. More importantly, the product of any integer (within the
ring R, which in this case is the set of all integers) with a multiple of three is still a multiple of
three regardless of whether the first element is with the ideal or not. This satisfies the first and
second condition of the definition of an ideal respectively and therefore the set of all integers that
are multiples of 3 is an ideal.

A lattice, under previous definitions, does not provide a multiplication between two vectors in the
lattice. In order to allow the lattice to become an ideal within the ring of the Zn, there must be an
appropriate multiplication between two vectors in a lattice that would produce a third element in
the lattice. Fortunately, the polynomial multiplication defined in the Ring Z[x]

xN−1 converted to the
corresponding vectors would provide a multiplication that satisfy the property of the multiplication
that would allow a lattice to become an ideal. An lattice that also has the structure of an ideal is
called an ideal lattice.

3https://mathworld.wolfram.com/Ideal.html

25

6.3 Key Generation

Similar to the NTRU [6] encryption scheme, Gentry’s initial scheme operates on the polynomial

ring Z[x]
f(x) , where f(x) is a polynomial of degree N . For simplicify, XN − 1 will be used for f(x)

as in NTRU in this survey although other more complex function has been used to improve security.

In order to generate an instance of the encryption scheme, we need to generate two lattices I and
J within and Z[x]

f(x) produce a “good” basis for I, BI , and a good and bad basis pair for J , named

Bsk
J and Bpk

J respectively. The lattice I and J must be relatively prime such that, for any vector
v in the Euclidean space ZN , there must be a vector i ∈ I and j ∈ J such that i + j = v. The
term “relatively prime” is similar to the definition of relatively prime on integers, as only relatively
prime integers can linearly combine to form all integers. If both integers are multiples of 2, for
example, then the corresponding linear combination cannot form any integer that is not a multiple
of 2. The public key for the encryption scheme would be Bpk

J and BI and the secret key would be
Bsk
J and BI .

6.4 Encryption

The plaintext for Gentry’s S/F Homomorphic encryption scheme is a integer vector m ∈ Zn within
the fundamental region of BI . Recall that the fundamental region consist of all the vectors within
the parallelogram formed by the basis vectors. A vector in the fundamental region is usually not a
vector in the lattice and therefore can be considered as a error vector. The first step of encryption
is to pick a random vector in the Lattice I and add m to the lattice vector. This can be achieved
by picking a random vector v in Zn and computing BIv +m. Note that BIv uses the entries in v
as coefficients of basis vectors in B. Let ψ′ = BIv + m. There is an additional requirement that
ψ′ must be within the fundamental region of Bsk

J . While the encryption must not have access the
exact value of Bsk

J because it is a secret key, this restriction can be achieved by having a restriction
on the minimum size of the fundamental region of Bsk

J during key generation such that all vectors
within a threshold would be within the fundamental region of Bsk

J regardless of the exact value of
Bsk
J .

The ciphertext value for gentry’s S/F scheme is computed as ψ = ψ′ mod Bpk
J = (BIv + m)

mod Bpk
J .

The result of a mod operation of a vector with respect to a basis, v mod B, is a vector v′ in the
fundamental region of B such that v − v′ is in the lattice produced by B. This can be interpreted
as an extension of the mod operation within integers as a mod b can be interpreted as finding
a integer i < b such that a − i is a multiple of b. In our case here, the mod operation is finding a
vector v′ within the fundamental region of Bpk

j such that BIv+m− v is within the lattice J . Note
that a different basis always produce a different fundamental region even though they may produce
the same lattice. Therefore, performing the mod operation on different basis of the same lattice
with the same vector would produce different results.

26

6.5 Decryption

Given a encrypted ciphertext ψ and the secret key Bsk
J and BI , the decryption algorithm works as

follows: First, compute the value of ψ′ = ψ mod Bsk
J . Note that this value is always equal to ψ′

during the encryption process. This is because ψ = ψ′ mod Bpk
J = ψ′ + v where v ∈ J according

to the definition of the mod operation, and also ψ′ is within the fundamental region of Bsk
J . Then,

compute ψ′ mod BI , which would give back the value of m because ψ′ = BIv+m and m is in the
fundamental region of BI .

Therefore, the decryption algorithm can be simply described as m = (ψ mod Bsk
J) mod BI .

6.6 Homomorphic Operations

The defining feature of a S/F Homomorphic Encryption scheme is its ability to perform homo-
morphic operations (operations on the ciphertext that correspond to a specific operations on the
plaintext without needing to decrypt). In this Gentry’s S/F Homomorphic Encryption, the plain-
text operations of interest are vector addition and multiplication within the fundamental region BI
(i.e. mod BI). Note that vectors in the scheme are also polynomials in the polynomial ring Z[x]

f(x) ,

thus vector multiplication is equivalent to (convolution) polynomial multiplication as described in
5.1. The homomorphic operations equivalent to addition and multiplication of plaintext vectors
are simply the corresponding operations on the ciphertext. Therefore, if two ciphertext vectors ψ1

and ψ2 correspond to plaintext vectors m1 and m2, then ψ1 + ψ2 (using simple vector addition)
would decrypt to m1 + m2, and ψ1 × ψ2 (using polynomial multiplication in the polynomial ring,
i.e. convolution) would decrypt to m1 ×m2.

The following formula is a justification for the homomorphic evaluation of the addition operation

Decrypt(ψ1 + ψ2) = Decrypt((BIv1 +m1) mod Bpk
J + (BIv2 +m2) mod Bpk

J) (13)

= (((BIv1 +m1) mod Bpk
J + (BIv2 +m2) mod Bpk

J) mod Bsk
J) mod BI

(14)

= (BIv1 +BIv2 +m1 +m2) mod BI (15)

= m1 +m2 mod BI (16)

Note that the equivalence between step (13) and (14) is only true when ψ′1 + ψ′2 = BI(v1 +
v2) + (m1 + m2) is still within the fundamental region of Bsk

J . Therefore, the scheme is not yet
fully homomorphic as there is not guarantee that BI(v1 + v2) + (m1 + m2) is still within the
fundamental region of Bsk

J after multiple such homomorphic evaluations. A similar justification

exist for homomorphic multiplication, but it is required that (((BIv1+m1) mod Bpk
J ×(BIv2+m2)

mod Bpk
J)) is in Bsk

J . Note that even if we narrow down the possible range of BIv+m during so that
multiple homomorphic evaluations can be performed while guaranteeing decryption correctness,
the value of ψ′ will always exceed the range of the fundamental region of Bsk

J after numerous
homomorphic evaluations and therefore cause the decryption to fail. In some literature, the value
of ψ′, or whatever variable that would cause decryption to fail if exceeded a certain range, is referred
to as noise of the S/F Homomorphic Encryption Scheme(e.g. [4]).

27

6.7 Example of Gentry’s S/F Homomorphic encryption scheme

To put Gentry’s S/F Homomorphic encryption scheme together, the scheme can be described as
follows:

• Secret Key: BI ∈ Zn×n, good basis Bsk
J ∈ Zn×n

• Public Key: BI ∈ Zn×n, bad basis Bpk
J ∈ Zn×n

• Plaintext: m ∈ FBI
, where FBI

is the fundamental region of basis BI . FBI
⊂ Zn

• Encryption: ψ = ψ′ mod Bpk
J = (BIv +m) mod Bpk

J , where v ∈ Zn and ψ′ ∈ FBsk
J

• Decryption: m = (ψ mod Bsk
J) mod BI

For our example, we would use n = 3 as the lattice dimension. The basis matrices are as follows:

BI =

4 0 0
0 4 0
0 0 4

Bsk
J =

21 0 0
0 23 0
0 0 99

Bpk
J =

 21 69 −990
168 575 −8514
−231 −644 8019

The plaintext we’ll use for now is m = (1, 0, 2). Note that m is within the fundamental region BI ,
which includes all vectors with entries less than 4. For Encryption, we would need to generate a
random vector v = (1, 1, 0) such that BIv + m is within the fundamental region of Bsk

J . Then,

ψ′ = BIv +m = (5, 4, 2) and ψ = ψ′ mod Bpk
J = (89, 326,−5047).

Now, suppose we have ψ = (89, 326,−5047) and would like to decrypt the message. First compute
ψ′ = (89, 326,−5047) mod Bsk

J = (5, 4, 2). Note that this is exactly the same as ψ′ during encryp-
tion. Then compute m = ψ′ mod BI = (5, 4, 2) mod BI = (1, 0, 2), which is the message that we
originally encrypted.

In order to demonstrate homomorphic operations, we’ll need another ciphertext to perform the
add and muliply operations, suppose that the previously demonstrated plaintext and ciphertext
are m1 and ψ1 respectively, and let m2 = (1, 1, 1). The encrypted value of m2 is (−16, 5,−692).
Addition operation: ψsum = ψ1 + ψ2 = (73, 331,−5739). Then we apply the decryption algorithm:
msum = (ψsum mod Bsk

J) mod BI = (10, 9, 3) mod BI = (2, 1, 3), which is correctly equal to
m1 +m2. For multiplication, a larger lattice dimension and larger basis entry is needed and is not
suitable as an example in this report.

7 Further Step Proposed by Gentry to make the scheme Fully
Homomorphic

The S/F Homomorphic Encryption scheme introduced in the previous section is an intermediate
step in Gentry’s Proposal of the first plausible Fully Homomorphic Encryption Scheme. To create
a Fully Homomorphic Encryption Scheme from a S/F Homomorphic Encryption scheme, Gentry
proposed the method of bootstrapping, which is still used in almost every fully homomorphic
encryption scheme to date. The idea of bootstrapping is briefly introduced in [], but as we have
described the initial S/F Homomorphic Encryption scheme by Gentry Bootstrapping may make
more sense with this new knowledge.

28

7.1 The Recrypt Algorithm

In order for a ciphertext of a homomorphic encryption scheme to decryption correctly, the “noise” of
the ciphertext (ψ′ = BIv+m in the previous section) must be within a particular range. Repeated
homomorphic evaluations will eventually exceed the range of allowed noise values. However, note
that a plaintext value does not have any “noise”, and thus the process of decryption removes all
noise from the ciphertext as long as it is decrypted correctly. However, it is impossible to actually
decrypt the ciphertext during homomorphic evaluations because homomorphic evaluators must not
have access to the private key.

Therefore, Gentry introduces the Recrypt algorithm. Instead of having direct access to the secret
key, the evaluator will have a copy of the encrypted version of the secret key. Note that it is not
guaranteed that security will not be compromised if other entities have access of the encrypted
version of the secret key, and encryption schemes that allow such access is called “KDM Secure”
encryption schemes. Therefore, in order for Bootstrapping to work, the S/F Homomorphic En-
cryption Scheme must be KDM secure.

The Recrypt algorithm works as follows: Take a ciphertext with high noise, encrypt the cipher-
text again using the encryption algorithm to obtain a doubly encrypted ciphertext. Then, use
the encrypted secret key to execute the decryption circuit homomorphically. This will produce a
ciphertext with the same plaintext value as the input ciphertext.

A graphical illustration of the Recrypt algorithm is as follows:

Figure 7: Recrypt algorithm illustration [14]

The Recrypt algorithm is basically a decryption of a doubly encrypted ciphertext, which removes
all the noise (Here, noise can be viewed as the possibility of the noise exceeding the allowed range)
within the original ciphertext. Therefore, the noise remaining in the recrypted ciphertext are
those produced in the homomorphic evaluation process of the decryption circuit. Therefore, if the
decryption circuit can be executed without the noise exceeding the allowed range and also produce

29

less noise than the original ciphertext, then the Recrypt algorithm effectively reduces the noise of
the original ciphertext. Now, we introduce the definition of bootstrappable:

Definition 3 A somewhat fully homomorphic encryption scheme is bootstrappable if it can homo-
morphically evaluate its own decryption circuit (and one extra homomorphic operation) without
exceeding the noise parameter limit and is KDM secure.

If a S/F Homomorphic Encryption Scheme is bootstrappable, then the following algorithm can be
used to evaluate a circuit of any depth and thus transform the scheme into a fully homomorphic
encryption scheme:

1. Start with original ciphertexts and encryption of the secretkey, Enc(sk)

2. Perform one (maybe more, depending on how many evaluations can be performed before
homomorphically evaluating the decryption circuit) homomorphic operation required in the
circuit.

3. Perform the Recrypt algorithm to reduce the noise of the ciphertexts.

4. Repeat steps 2 and 3 until the circuit is fully evaluated.

In order to construct a bootstrappable scheme, the scheme’s decryption circuit depth must be re-
duced while maximizing the evaluation depth. However, the current S/F Homomorphic Encryption
scheme as proposed by Gentry is not yet bootstrappable due to its large decryption circuit size.
Therefore, Gentry would further introduce several tweaks of the scheme to decrease its decryption
circuit depth and finally allow the scheme to become fully homomorphic. However, these tweaks
would not be covered in this report.

8 Observations

This section consist of our current observations on the topics of homomorphic encryption and
lattice-based cryptography. They have not been seriously verified and only serves as tentative
information for future VIP students researching on the topic.

8.1 Low Efficiency

Currently, fully homomorphic encryption schemes are very inefficient in both time and space and
thus lack known practical applications. In fact, the original fully homomorphic encryption scheme
proposed by Gentry [4] requires 30 minutes per basic bit operation. Many generations of fully ho-
momorphic encryption have been proposed, and one of the most popular implementation of Fully
homomorphic encryption, the TFHE (Fast Fully Homomorphic Encryption Over the Torus) [3]
requires 13 milliseconds single-core time to evaluate the bit operation and require 2KB for a single
encrypted bit [14]. Despite several magnitude of improvement from the first Fully homomorphic
encryption scheme, the homomorphic evaluation of TFHE is still too much slower than plaintext
operations and require too much space to be suitable for practical use.

Several reasons may be attributed to this lack of efficiency. Firstly, Lattice-based encryption
schemes, used by many homomorphic encryption schemes, generally require a good and bad basis

30

pair of the same lattice to be effective. However, algorithms such as the LLL lattice basis reduction
algorithm [10] are effective at obtaining a good basis from a bad one, and a lattice dimension of
400 is generally required to prevent feasible attack by simply obtaining the good basis using LLL.
Each vector is usually used to only encrypt a single bit to guarantee semantic security 4 (security
even when a very small range of plaintext is possible). This results in very large ciphertext size
and inefficient computation of homomorphic bit operations. Moreover, a large lattice dimention is
also requires to increase the evaluation depth so that the decryption circuit can fit in the range of
allowed circuits.

Another important reason for inefficiency lies in the nature of bootstrapping. Note that the Recrypt
algorithm is performed after only very few homomorphic operations of the actual circuit being eval-
uated. Despite the fact that the depth of decryption circuit is minimized, homomorphic decryption
still takes much more time than the allowed homomorphic evaluations of the actually evaluated
circuit. Therefore, a large portion of the computation during homomorphic evaluations is spent on
the Recrypt algorithm, causing fully homomorphic evaluations to be much slower than their S/F
Fully homomorphic counterparts.

8.2 Homomorphism in NTRU

Recent advances in research about homomorphic encryption have produced many different fully
homomorphic encryption schemes based upon different types of S/F Homomorphic schemes (boot-
strapping is used to convert them to fully homomorphic ones). While we generally introduced
NTRU as a example lattice-based encryption scheme, recent research have [2] already turned a
enhanced version of NTRU into a fully homomorphic scheme. In fact, another research [16] claims
that “the NTRU utilizes low memory use and generates key at a rapid rate. One main advantage of
the NTRU over the DGHV is slower growth of noise than DGHV”, which would theoretically cause
more efficient fully homomorphic evaluations due to less frequent and more efficient bootstrapping.

9 Future Work

Several topics are available for future VIP researchers to investigate further into the topic. Firstly,
we have not yet able to create, either theoretical or implementations level, a homomorphic algo-
rithm that uses S/FHE or PHE to solve the Obtention Scenario [14] (In short, the scenario ask
to homomorphically evaluate whether |a− b| > d). In particular, the comparison operations is on
main focus/concern as most homomorphic encryption schemes only considers addition and multi-
plication. In the previous VIP semester, comparison and also operations including addition and
multiplication is implemented using homomorphic bit-wise operations, which is inefficient compared
to the simplicity of the original formula. Therefore, an efficient homomorphic comparison may be
a key to solving the Obtension Scenario.

Another direction is to investigate other lattice-based cryptographic schemes. Lattice-based cryp-
tography, on its own, is a very robust candidate for post-quantum cryptography. No know algo-
rithms, including quantum ones, have been discovered to efficiently solve lattice problems. Also, as
we mentioned in section 8, more lattice-based encryption schemes [5] have been discovered to have

4For better definition see https://doi.org/10.1007/978-1-4419-5906-5 23

31

homomorphic properties and are potential candidates for efficient fully homomorphic encryption.
Therefore, further understanding lattice-based encryption schemes is a great direction for better
understanding of homomorphic encrytion.

Recent advances in homomorphic encryption have also created many different schemes without the
use of lattices (TFHE [3] for example). Many of these scheme have significant improvements in effi-
ciency in both space and time. We believe that the following papers are great potential candidates
for investigation into this direction for their simplicity in concept and easy of understanding:

1. Fully Homomorphic Encryption Over the Integers [18]

2. Leveled Fully Homomorphic Encryption Without Bootstrapping [1]

These suggestions of directions are only tentative and future VIP students may investigate other
Homomorphic Encryption Schemes as well.

32

References

[1] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homomorphic
Encryption without Bootstrapping. ACM Trans. Comput. Theory, 6(3), jul 2014.

[2] X Che, T Zhou, N Li, H Zhou, Z Chen, and X Yang. Modified multi-key fully homomor-
phic encryption based on NTRU cryptosystem without key-switching. Tsinghua Science and
Technology, 25(5):564–578, oct 2020.

[3] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast Fully
Homomorphic Encryption Library, aug 2016.

[4] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[5] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. pages 469–477, 06 2015.

[6] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. ”NTRU: A ring-based public key
cryptosystem”. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

[7] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. An Introduction to Mathematical
Cryptography. Springer Science+Business Media, 2014.

[8] Burt Kaliski. MIPS-Year, page 383. Springer US, Boston, MA, 2005.

[9] Subhash Khot. Hardness of Approximating the Shortest Vector Problem in Lattices. J. ACM,
52(5):789–808, sep 2005.

[10] A K Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[11] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 2001.

[12] Peyan Pan and Dr. Vincent Mooney. Lattice-Based Cryptography in Homomorphic Encryp-
tion. Technical report, Georgia Institute of Technology, Atlanta, 2019.

[13] Jill Pipher. Mathematical Ideas in Lattice Based Cryptography, may 2018.
https://youtu.be/msPrqDwLhi8.

[14] Vignesh Raman and Dr. Vincent Mooney. Security for Public Infrastructure Security for Public
Infrastructure using Homomorphic Encryption. Georgia Institute of Technology, 2019.

[15] Oded Regev. Lecture 1: Introduction. Lattices in Computer Science, 2004. New York Univer-
sity.

[16] B Santhiya and K Anitha Kumari. Analysis on DGHV and NTRU Fully Homomorphic Encryp-
tion Schemes. In L Ashok Kumar, L S Jayashree, and R Manimegalai, editors, Proceedings of
International Conference on Artificial Intelligence, Smart Grid and Smart City Applications,
pages 669–678, Cham, 2020. Springer International Publishing.

33

[17] Joseph H Silverman. NTRU Cyrptosystems Technical Report. Technical report, mar 1999.
NTRU.

[18] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully Homomorphic
Encryption over the Integers. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, pages 24–43, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

34

	Introduction
	Terminology
	Basic Lattice Concepts and Problems
	Lattice Concepts
	Computational Problems Related to Lattices

	The GGH Encryption Scheme
	Solving The CVP Problem
	Key Generation
	Encryption
	Decryption
	Example of a GGH encryption scheme

	The NTRU Public Key Cryptosystem
	NTRUEncrypt
	NTRUEncrypt Security

	Gentry’s Somewhat Fully Homomorphic Encryption Scheme based on Lattices
	Polynomial Rings as Euclidean Space
	Ideal Lattices
	Key Generation
	Encryption
	Decryption
	Homomorphic Operations
	Example of Gentry's S/F Homomorphic encryption scheme

	Further Step Proposed by Gentry to make the scheme Fully Homomorphic
	The Recrypt Algorithm

	Observations
	Low Efficiency
	Homomorphism in NTRU

	Future Work

