
STRATIFIED INFERENCE OF INFORMATION IN CYBER-PHYSICAL
SYSTEMS BASED ON PHYSICS

A Dissertation
Presented to

The Academic Faculty

By

Qinchen Gu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2020

Copyright © Qinchen Gu 2020

STRATIFIED INFERENCE OF INFORMATION IN CYBER-PHYSICAL
SYSTEMS BASED ON PHYSICS

Approved by:

Dr. Raheem Beyah, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Brendan Saltaformaggio
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Eric Feron
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. Lee Lerner
Center for Development and Ap-
plication of Internet of Things
Technologies
Georgia Tech Research Institute

Dr. Nagi Gebraeel
H. Milton Stewart School of Indus-
trial and Systems Engineering
Georgia Institute of Technology

Date Approved: August 18, 2020

To my wife, son, parents and friends

ACKNOWLEDGEMENTS

I would first like to express my gratefulness to Dr. Raheem Beyah for his ongoing

support and valuable guidance during my Ph.D studies. Dr. Beyah always provided me with

insightful and constructive suggestions when I encountered research problems. Without his

help, I would not have been able to finish this work.

Besides my advisor, I would like to thank my dissertation committee members, Dr.

Brendan Saltaformaggio, Dr. Eric Feron, Dr. Lee Lerner and Dr. Angelos Keromytis, for

their insights and input in the development of this dissertation.

I would also like to thank my previous and current lab members, Dr. Ji, Dr. Liao, Dr.

Formby, Weiqing Li, Shukun Yang, Sizhuang Liang, Tohid Shekari, Celine Irvene, Anni

Zhou and Binbin Zhao for their help with my research and all of the good times I had with

them.

Finally, I would not be where I am today without the love and support of my family

and friends. I would like to especially thank my wife and my parents for their continuous

support and encouragement during my Ph.D studies.

This work has been funded by the Department of Energy, under the following award:

DE-OE0000877.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Research Motivation . 1

1.2 Research Scope . 3

1.3 Background . 4

1.3.1 Overview of CPSs . 4

1.3.2 Physics-based Defense Techniques in CPSs 5

1.3.3 PLC Programming . 7

Chapter 2: Literature Review . 9

2.1 Software- and Physics-Based CPS Security Research 9

2.2 Static and Dynamic Analysis of Programs 11

2.2.1 Traditional Computer Programs 11

2.2.2 PLC Programs . 15

2.3 Side-Channel Analysis of CPS . 17

v

Chapter 3: Fingerprinting Individual Devices Based on Their Operation Time . 18

3.1 Identifying Threats in Cyber Physical Systems 20

3.2 Formulating the Device Physics-Based Approach 21

3.2.1 Existing CPS Security Research 21

3.2.2 Device Physics-based Fingerprinting Approach 23

3.3 Demonstration Scenario . 25

3.3.1 Experiment Setup . 29

3.3.2 Extracting Features by Modeling the Physics of Device 30

3.3.3 Classifying Different Devices Based on Their Fingerprints 33

3.3.4 Effect of Network Delay . 34

3.3.5 Resistance to False Modeling Attacks 39

3.4 Conclusion . 41

Chapter 4: Device Physics Aware Mimicry Attacks 43

4.1 Introduction . 43

4.1.1 Observation . 46

4.1.2 Challenges . 47

4.1.3 Contributions . 48

4.1.4 Attacks in CPS . 48

4.2 Problem Description . 49

4.2.1 Attack Model . 51

4.2.2 Formal Definition of the Device Response Mimicry Attack Problem 52

4.3 Methodology . 53

vi

4.3.1 Device Physics Modeling . 53

4.3.2 Characterization . 58

4.3.3 Device Model and Configuration Inference 58

4.3.4 Device Response Packets Synthesis 64

4.4 Experiments . 65

4.4.1 Timestamps and Protocols . 67

4.4.2 Electric Motor . 68

4.4.3 Relay . 68

4.4.4 Valve . 70

4.4.5 Implementing Timestamped Forged Response Packets 71

4.4.6 Results . 72

4.5 Discussion . 81

4.5.1 Applicability to Other Field Protocols 81

4.5.2 Applicability to Other Device Types 81

4.5.3 Defending Against CPS Mimicry Attacks 82

4.5.4 Limitations . 85

4.6 Conclusion . 86

Chapter 5: Identifying the process from its control programs 87

5.1 Introduction . 87

5.2 Application Scenario . 90

5.3 Building the Structure of PLC Program Binary 92

5.3.1 Understanding the Binary Structure 93

vii

5.3.2 Input, Output and Internal Variables 100

5.3.3 Function Blocks . 101

5.4 Building the Automaton . 103

5.4.1 Binary Execution Emulation . 103

5.4.2 Timers and Counters . 104

5.4.3 Fuzzing . 105

5.5 Data Collection . 107

5.6 Evaluation . 111

5.6.1 Classifier . 111

5.6.2 Detector . 121

5.6.3 Summary . 126

5.7 Discussion . 126

5.7.1 Generalization . 126

5.7.2 Limitations . 127

5.8 Conclusion . 131

Chapter 6: Identifying the process parameters using side-channel information . 132

6.1 Introduction . 133

6.1.1 Audio Side Channel in CPSs . 133

6.1.2 Analyzing Audio with Deep Learning 134

6.1.3 Attack Scenario . 136

6.2 Audio Side Channel in Electric Motors . 138

6.3 Pilot Study: Water Loop Testbed . 139

viii

6.4 Case Study: Water Treatment Testbed . 142

6.5 Results . 145

6.6 Discussion . 147

6.7 Conclusion . 147

Chapter 7: Conclusion . 148

Appendix A: JTAG . 150

Appendix B: State Definition of the Standard Function Blocks 154

B.1 Realistic Physical Systems . 154

B.1.1 Tank Balancer . 154

B.1.2 Stirring System . 159

B.1.3 Robot Path . 160

B.1.4 Traffic Light . 160

Appendix C: Secure Water Treatment (SWaT) 162

ix

LIST OF TABLES

4.1 List of CPS devices and their physical properties 53

4.2 Experiment Settings of the Electric Motor Testbed 68

4.3 Key Parameters of the Relays Taken from Their Specifications 69

4.4 Key Parameters of the Valves Taken from Their Specifications 70

5.1 Stateful standard function blocks . 102

5.2 Number of automata in the four categories 111

5.3 The average of Number of States, Average Degree, Degree Variance and
Triggers in all categories of data. 113

5.4 Results of classification. Training Time contains both feature generating
and training. Predict Time is the average time spent on reading and predict-
ing one single sample. 121

5.5 Result of detection. Training Time contains both feature generating and
training; Predict Time is the average time spent on reading and predicting
one single sample. 124

5.6 Precesion and recall of detection methods, where precesion is TP/(TP +
FP), and recall is TP/(TP + FN). 126

5.7 Time to generate the automaton. n is the total number of states. p is the
number of inputs. σ is the time to perform a single cycle scan. 127

B.1 State definition of the standard function blocks 155

x

LIST OF FIGURES

1.1 Interconnections among different elements in a CPS. 4

1.2 Structure of a PLC software and hardware stack. 7

3.1 Interconnection between different elements in CPS. 19

3.2 Motor device showing sensor positions and load adjustment. 24

3.3 Plot of angular velocity over time under two different settings. MOI stands
for moment of inertia and the numbers are in units of kg·m2. 26

3.4 Network packet timing diagram of the experiment setup. 27

3.5 Industrial mixer device that the model emulates. 28

3.6 Precision, recall and accuracy scores of classification on the fingerprints
when varying only power input to the motor. 35

3.7 Precision, recall and accuracy scores of classification on the fingerprints
when varying only the load connected to the motor. 36

3.8 Precision, recall and accuracy scores of classification on the fingerprints
when varying both power and load of the motor. 37

4.1 Attack model used in this chapter, where the attacker injects a false com-
mand to the PLC and a forged response to the supervisory host. The at-
tacker needs to first observe the legitimate traffic to infer the actual devices’
models and configurations before spoofing the response. 50

4.2 Physical construction and abstract model of permanent magnet DC motor. . 55

4.3 An example showing the model and simulation results of an industrial robot
using Wolfram SystemModeler. 61

xi

4.4 Modelica models for a PMDC motor. Code used from Modelica Standard
Library is not shown. 63

4.5 Block diagram of Testbed 1 setup. The valve and relay are of specific in-
terest in this study. 65

4.6 Block diagram of Testbed 2 setup. The motor and relay are of specific
interest in this study. 66

4.7 Heat map plot of the electric motor’s operation curves from different mod-
els and under various run-time configurations. Each curve is aggregated
over 100 runs. 73

4.8 Performance of the run-time configuration inference of the electric motor.
The estimation error tolerance is the allowed distance between the esti-
mated value and the attacker’s assumed value. 74

4.9 Comparison of the authentic and spoofed responses from an electric motor. . 75

4.10 Classification performance using relays’ operation time. 76

4.11 Histogram of the valves’ operation time. Dashed lines indicates the speci-
fication values. 78

4.12 Wearing and aging test of relay and valve. 79

4.13 Challenge-response framework to defend against device physics mimicry
attacks. 84

5.1 Overall system diagram of LogicFuzzer, which fuzzes the PLC program
binary and generates the automaton. 91

5.2 Typical structure of a PLC project. 93

5.3 Program with value assignment . 95

5.4 Program with value assignment and logical NOT 95

5.5 Binary diff between value assignment and logical NOT operation. 96

5.6 Program with value assignment and logical AND 97

5.7 Program with value assignment and logical OR 97

xii

5.8 Binary diff showing AND and OR logical operations. 98

5.9 Structure of the disassembly of the PLC program 99

5.10 Flow chart of the fuzzer which generates the automaton 108

5.11 Process and PLC simulator architecture. 110

5.12 States versus transitions. 112

5.13 Visualization of some automata. There are various types of vertices in
a graph. E.g., in Stirring System’s automata, there are more pivot-nodes
while in Traffic Light’s automata there are more pass-nodes. The propor-
tion of different types of vertices can be a effective feature to distinguish
graphs. 118

5.14 Similarity score of between each program and the reference programs. . . . 123

5.15 Number of states: normal versus attack. The number of states in the attack
version is usually no less than that in normal version. 125

5.16 Mixture level of the tank in the Stirring System controlled with the mali-
cious program, compared with the original requirements. 130

6.1 Waveform and spectrogram representation of the single channel audio sig-
nal. The horizontal axis of the spectrogram is in units of “windows”. 135

6.2 Spectrogram of the audio collected from an operating water loop system. . . 141

6.3 Top view of the microphone array placement at different angle along the
arc with device at the center. 143

6.4 Front view of the microphone array placement matrix showing different
angle and horizontal levels relative to the device. 144

6.5 Top view of the microphone array placement at different distance to the
device. 144

6.6 CNN’s prediction accuracy of the devices’ operation status in stage 1 of
SWaT under different training size ratio. 145

6.7 CNN’s loss versus number of training iterations. 146

xiii

A.1 PCB of Schneider M241 PLC with JTAG debugging port 151

A.2 Using J-Link debugger to step through the program and accessing the reg-
isters and memory of the PLC . 152

A.3 Sample program to demonstrate the input, output and internal variable rep-
resentations. 153

B.1 Scenarios with different physical systems controlled by PLCs 158

C.1 Human-machine interface (HMI) of the SWaT testbed showing its engi-
neering schematics. 163

C.2 Floor plan of the SWaT testbed showing its physical dimensions. 164

xiv

SUMMARY

The field of CPSs is growing rapidly. In recent years, a variety of CPS applications

in different domains have flourished. Meanwhile, there have also been more frequent at-

tacks on CPSs. The problem becomes more aggravated as the number of attacks against

critical infrastructures increases rapidly. Thus, it is important to develop novel solutions to

secure these critical CPSs. This research studies different techniques to infer the critical

information of a Cyber-Physical System (CPS) at different levels, leveraging the physics

of the CPS. One way of verifying the authenticity and integrity of an operating CPS is to

check the fingerprints generated by the static structure and the dynamic operation of the

CPS in the “cyber” domain, e.g., network traffic and control programs, or in a side channel,

e.g., vibration and sound. A CPS can be physically characterized at three layers, namely,

device model and configuration (device), process model (process), and process parameters

(parameter) from the lowest to the highest layer. In this research, the correlation between

the physics attributes of each layer and its fingerprints in the cyber domains and side chan-

nels is studied. Then methodologies to infer critical information of the CPSs from such

correlation are studied and evaluated. The outcome from this research can be interpreted as

both offensive and defensive techniques. On the one hand, attackers may leverage the de-

vice/process/parameter inference techniques to obtain sensitive information about critical

infrastructures. Understanding the effectiveness of the inference techniques is a crucial step

in discovering the vulnerabilities in these critical infrastructures. On the other hand, for de-

fenders, such inference techniques can also be used to verify the correct operation of the

CPS by checking the observed fingerprints against the expected values. These techniques

can be used as a basis to develop novel solutions to secure the CPSs.

xv

CHAPTER 1

INTRODUCTION

1.1 Research Motivation

The field of Cyber-Physical Systems, or CPSs, is growing rapidly. In recent years, a va-

riety of CPS applications in different domains have flourished. For example, 80 million

smart home devices were delivered worldwide in 2016, a 64 percent increase from 2015

[1]. The global industrial control system (ICS) market, one of the most important areas in

CPSs, was valued at 58 billion US dollars in 2014 and expected to be worth 81 billion US

dollars by 2021, growing at an annual rate of 4.9% [2]. Meanwhile, attacks targeting CPSs

have become more frequent as well. The most well-known attack is Stuxnet, which is a

malicious worm targeting the Supervisory Control And Data Acquisition (SCADA) sys-

tems, specifically infecting and reprogramming Programmable Logic Controllers (PLCs).

It was responsible for causing tremendous damage to Iran’s nuclear program, by driving

the fast-spinning centrifuges in Iran’s nuclear facilities to a break-down. Noticeably, a

dossier published by Symantec suggested that the attackers were most likely to have con-

ducted a significant amount of reconnaissance [3]. In March 2000, a former contractor

of Maroochy Water Services took control of 150 sewage pumping stations using a laptop

computer and a radio transmitter. This was not discovered until an engineer examined ev-

ery signal passing through the system, by which time one million liters of untreated sewage

had been released into a stormwater drain [4]. More recently, malware specially crafted to

attack the Ukrainian electric utility caused a blackout in a portion of its capital equivalent

to a fifth of its total power capacity [5]. The most significant concern regarding attacks tar-

geting CPSs on which we depend is that they pose a threat not only to the equipment in the

CPSs themselves, but also to the physical world in which we live. This very threat calls for

1

innovative and effective techniques to be developed. This very threat calls for innovative

and effective techniques to be developed.

With the growing number of threats in this space, it is clear that novel solutions are

required. While there have been a plethora of studies and mature techniques in defending

attacks against traditional IT systems, the CPS domain is still suffering from lack of ade-

quate attention. The key difference between the attacks on CPSs and those on traditional

IT systems lies in the physical nature of CPSs. While the goal of attackers in traditional

IT systems may be stealing users’ private information, those who target CPSs can cause

serious damage to the real world. An attack on critical infrastructures may directly threaten

people’s daily lives, leaving millions of dollars and even human lives at risk. Another

unique aspect of the attacks against CPSs is that while some attacks are wide-spread simi-

lar to computer malware that aims for better coverage, the most devastating attacks tend to

be targeted. As each CPS is configured in a unique manner, attackers would first need the

schematics of the ICS [6]. The attackers would then need to know details of the individual

device’s physical behavior in order to maximize the damage in the following targeted at-

tack. For example, Stuxnet checks a Profibus identification number corresponding to two

different models of variable frequency drive (VFD) 1, which are used to control the motors.

Two different attack sequences are chosen depending on the type of VFD found.

Many traditional studies in securing the CPSs focus on the network domain knowledge.

For example, applying mature techniques adapted from traditional information technology

(IT) domains (i.e., firewalls, VPNs, encryption), building an intrusion detection system

(IDS) to examine the network traffic and find anomalies in the packets. These techniques

are problematic in practice due to their lack of consideration for securing the physical

aspects of the CPSs. As shown in numerous real life attacks [4, 7, 5], an insider who

has the access to the CPS and some critical information about it cannot be stopped by

the network domain defenses. Meanwhile, due to the compatibility with legacy devices

1Part number KFC750V3 manufactured by Fararo Paya in Tehran, Iran. Vacon NX VFD manufactured
by Vacon in Finland.

2

and limited computational power and memory space in CPS devices, not all traditional

IT security methods can be applied. Therefore, it is critical to study the physics-oriented

techniques which can be used to probe and monitor the structural, operational and status

information of the CPSs. Such techniques can be used to detect attacks and better secure

the CPSs.

1.2 Research Scope

This research aims to study novel techniques which tightly integrate with the physical as-

pects of the CPSs in order to better secure them. The goal is to leverage these techniques to

correlate the knowledge of CPSs with their physical attributes. There are two opposite as-

pects of applications for such techniques: verifying the correct operation of the CPSs (from

the system administrators’ perspective) and inferring the knowledge of the CPSs (from the

attackers’ perspective). The first aspect intends to extract the features of both the static and

dynamic information about CPSs from both the cyber domain and the physical domain.

These features are then used as a ground truth to check against during the run-time. The

second aspect of the goal is to be able to infer the knowledge of the CPSs in terms of

individual devices’ models and configurations, process structures and process parameters.

Therefore, this goal can be stratified into three layers. Starting from the bottom layer,

the first step is to fingerprint individual devices based on their operation time determined

by the physical models and configurations. Then, the second step is to identify the process

structural information using both static and dynamic analysis of the process control pro-

grams. Finally, on the top layer, the third step is to identify the process parameters using

side-channel information such as sound and vibrations.

3

Command

Response

Sense

Sensor

(camera)

Controller

(PLC)

Actuator (stepper motor)

Plant/Process

(robotic arm)

Supervisory
Host

Supervisory
Host

Report
Network

Actuate

Figure 1.1: Interconnections among different elements in a CPS.

1.3 Background

1.3.1 Overview of CPSs

A CPS is composed of four major types of components, plants (also known as processes),

controllers, actuators, and sensors. Figure 1.1 shows the interaction among these com-

ponents in the simplest form of CPS, using the control of a robotic arm as an example.

In reality, a CPS can be a cascaded structure, where one or more control loops may be

embedded in the plant of a higher level loop.

The plant is a physical process that often entails the primary objective of the CPS, such

as a room where the temperature must be maintained within a certain range, or a robotic

arm that needs to be moved through space in certain sequences. The plant is a combinatorial

result of the control commands and the laws of physics.

The controller functions as the center of computation in a CPS, and also generates

the control commands. Historically, the controller has evolved from mechanical switches

4

and valves manually operated by human operators, to simple circuits that are hard-wired

to follow a routine, and finally digital hardware that are controlled by software, such as

a PLC, Remote Terminal Units (RTU), or other microprocessor based embedded systems

typically found in a household environment. These controllers are capable of performing

network communication and thus may be connected to a computer network for the ease of

centralized management. In particular, the PLC as shown in Figure 1.1 can take commands

from a host device (e.g., supervisory computers in a SCADA system) and translate the

commands embedded in the network packets into electrical signals that drive the actuator.

It can also act upon its local information, such as data read by the sensors to maintain the

control objective of the plant.

The actuator implements the control commands sent from the controller to the plant.

For the software controlled controller, the actuator bridges the gap between the controller in

the cyber domain and the plant in the physical domain. There are various forms of actuators

including motor, valve, relay, pump, etc. Unlike the speed of information propagation in a

computer network, which is predominantly determined by the processing power of the de-

vices and the speed of light, actuators are physical devices bounded by the laws of physics.

Thus, there is usually a delay in the control action carried out by the actuators, given the

command from the controller. Many actuators are equipped with feedback mechanisms

that report back their real-time status to the controller.

The sensor is a one-way interface which converts the physical quantities into electrical

signals that can be read by the controller.

1.3.2 Physics-based Defense Techniques in CPSs

There are two types of physics-based defense techniques in CPSs: 1) one that uses models

of the physics of the process (system); and 2) one that uses models of the device physics.

System-Modeling. This type of CPS defense technique attempt to model the behavior

of the physical system in a CPS, usually composed of multiple devices (sensors, actuators,

5

etc.) and processes. Such models usually leverage the knowledge about the system speci-

fications and system and control theory to seek the detection of potential hazardous states

[8, 9, 10]. For example, Cárdenas et al. proposed to use linear system models to detect

attacks on networked control systems [11, 12]. They were able to detect stealthy attacks

on these systems with linear system models. Urbina et al. studied if physics-based attack

detection can limit the impact of stealthy attacks in the ICS and showed that the impact

of such attacks can be mitigated by the proper combination and configuration of detection

schemes, including a stateful model of the physical system [10]. More recently, McPar-

land et al. proposed a framework to monitor physical constraint violations by leveraging

specification-based intrusion detection [9].

Device-Modeling. While system-modeling based techniques focus on the system-level

behavior on a CPS, device-modeling techniques can become quite useful in characterizing

benign versus malicious operations inside CPSs as well. Such techniques focus on the

correct operation of individual devices in a CPS. Similar to a physical system composed

of various actuators, controllers, sensors and processes, each device in this system can also

be modeled using deterministic equations, per the laws of physics. For example, Formby

et al. proposed to tackle the false data injection issued during control command requests

to the field devices [13]. The idea was to help ensure the authenticity of the responses by

analyzing the observed response against the fingerprints developed by the operation time

associated with each device in an ICS, which is a large division in CPS. They claimed

to achieve an accuracy as high as 99% using this fingerprinting technique to differentiate

authentic mechanical relays from spoofed ones. The authors also showed that it would

require a highly knowledgeable and skilled adversary to perform a forgery attack on the

fingerprinting technique.

6

IEC 61131-3 Program

Firmware (OS)

Hardware

Software

Storage

Network

CPU

I/O

RAM

Power

LD SFCFBD ST IL

Figure 1.2: Structure of a PLC software and hardware stack.

1.3.3 PLC Programming

A PLC is a device which has been fortified for the harsh environment in industrial pro-

cesses, such as water treatment facility or power plant. Computationally, it is no different

from any other embedded device based on the Von Neumann architecture. However, since it

is specifically designed to provide reliability as well as ease of use for process engineers, it

has a few notable characteristics. As can be seen in Figure 1.2, the bottom layer in the soft-

ware stack is a customized firmware which handles memory and storage access, physical

I/O update, and network communication, etc. This firmware is usually a real-time operat-

ing system (RTOS), rather than the prevalent Linux or Windows OS. Hence it is unlikely

to install or run additional applications other than the control logic written by the user. Un-

like the general embedded development tools which uses assembly, C/C++ or other high

level programming languages, the control logic program is written in the five languages

defined in the IEC 61131-3 standard [14], among which three are graphical (i.e., Ladder

diagram (LD), Function block diagram (FBD) and Sequential function chart (SFC)) and

7

two other are textual (i.e., Structured text (ST) and Instruction list (IL)). These languages

are commonly used in the PLC because they have a tight association with the elements in

the industrial process. For example, contact and coil in the LD corresponds to a relay’s

input and output, respectively. In fact, LD was invented to document the interconnection

between relay racks even before the PLC.

Another important difference lies in the execution of the PLC program. The control

logic program is written in a way which processes the input readings and performs com-

putations before updating the outputs. Overall, the firmware handles reading the physical

inputs (usually connected to sensors) and passing the values to the control program. Then

it runs the program and translates the updated output values into the physical state of the

outputs (usually connected to actuators). This process is called a scan cycle. During the

lifetime of a PLC’s operation, it performs the scan cycle repeatedly.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Software- and Physics-Based CPS Security Research

Many existing solutions for protecting CPSs can be divided into two categories: examining

the network traffic in order to look for abnormal packets similar to what a traditional intru-

sion detection system (IDS) does [15]; and modeling the system behavior and comparing

the values output from the model’s sensors with those from the real-world sensors, which

leverages the knowledge about the system specifications, thus seeking to detect potential

hazardous states [8, 9, 10].

For the first category, it is possible to provide a level of security of the control system’s

network, by treating it as an instance of IT networks and applying mature secure access

technologies (e.g., virtual private network (VPN), Firewall, etc.). C. Neilson proposed to

secure the control system from cyber attacks with traditional IT solutions such as VPN

[15]. Although the author listed pros and cons of each solution, none of them took the

physical system being controlled into account. This means that standard access control

solutions are inadequate because they are not able to stop insiders (attackers) from sending

commands that can drive the CPSs into dangerous states, since they have already been

granted access to the system. He et al. designed a novel access control and authentication

scheme for the home IoT devices, which focuses on device capabilities instead of a per-

device granularity [16]. According to the authors, such scheme may provide finer control

over the authorization of the IoT devices. Similarly, Schuster et al. applied the situational

access control approach used in smartphone frameworks to the IoT domain, and claimed to

reduce over-privileging issue which may be used in an attack [17]. These network-based

type of solutions only considers the cyber domain of the CPSs, while ignoring the unique

9

physical attributes. They may overlook important information about the physical state of

the system. Such approaches may be the easiest to deploy and is generally agnostic to

the specific communication protocols or details of the physical system [15]. However, the

amount of protection added by such technologies would be very limited in the industrial

control system (ICS) environment, which is one of the biggest subgroups of CPSs. A high

cost of deployment, poor support for legacy equipment and rare software patching further

aggravate the problem [18]. Moreover, these solutions which only focus on the IT domain

may fail to defend against attacks in a CPS, where an attack originated from inside the

network (e.g., an insider, malicious device firmware) can hardly be detected.

Fortunately, many researchers realized that there is also a significant component in CPS

which falls into the operation technology (OT) domain, and proposed the second category

of solutions which take the physical attributes of the system into consideration. Earlier

work in the second category focused on modeling the system behavior and comparing

the values output from the model’s sensors with those from the real-world sensors. Such

approach leverages the knowledge about the system specifications, thus seeking to detect

potential hazardous states [8, 9, 10]. Solutions in the this category (e.g., modeling of the

system physics) attempt to incorporate knowledge specific to the CPSs. Some researchers

propose to leverage physics of the system in order to solve this issue. A. Cárdenas et

al. identified several challenges for the CPS security research community including new

vulnerabilities, threats and consequences of potential attacks on networked control systems,

and proposed to use linear system models to detect such attacks [11, 12]. The authors

showed that they were able to detect stealthy attacks that change the physical behavior of

the targeted control system by incorporating knowledge of the physical system. D. Urbina

et al. studied if physics-based attack detection can limit the impact of stealthy attacks in

ICS and showed that the impact of such attacks can be mitigated by the proper combination

and configuration of detection schemes, including a stateful model of the physical system

[10]. More recently, Formby et al. focused on individual devices rather than the entire

10

system behavior of CPS, and found that CPS devices can be fingerprinted due to their

unique physical compositions [13]. Later, Gu et al. studied the feasibility of inferring

the device models in CPSs [19]. They claimed that such fingerprint can be overlooked by

an average attacker, and can be difficult to mimic due to the limited timing accuracy of

embedded devices.

Another recent work proposed a framework to monitor for physical constraint viola-

tions by leveraging specification-based intrusion detection. McParland et al. were able to

leverage the model of the physical plant and check the model against its corresponding

physical limitations in [9]. In their paper, the authors demonstrated their approach with

several scenarios, including a boiler with a heater to heat or cool the water depending on

the on/off status of the heater. They created scripts to passively monitor the communication

and track boiler behavior to alert upon out-of-range conditions. They did so by leveraging

control theory to infer the transition states of the system model given the actions defined

in the captured packets. This modeling process may require an understanding of the en-

tire physical interactions between all actuators and the plant, as well as between the plant

and all the sensors in advance. Compared to the solutions which try to secure the Cyber-

Physical Systems (CPSs) by securing the network access to the system, process-modeling

based solutions target the underlying physical process, thus increasing the likelihood of

detecting an “insider” attack.

2.2 Static and Dynamic Analysis of Programs

2.2.1 Traditional Computer Programs

Program analysis is the process of automatically analyzing the behavior of computer pro-

grams regarding a property such as correctness, robustness, safety and liveness. The anal-

ysis can be performed without executing the program (static program analysis), during

run-time (dynamic program analysis) or in a combination of both. Many tools exist to au-

tomatically or semi-automatically process the source code or the compiled (binary) code of

11

programs to find the vulnerabilities, or analyze the behavior of malicious code.

Static analysis can be performed either on the source or the binary code. The advantages

of static analysis include free of danger of executing the destructive payload, and discovery

of behaviors hidden during the run-time. On the other hand, it also presents significant

challenges in dealing with payload encryption/packing (e.g., program that runs in a custom

virtual machine), and the complexity of managing the state of the program (e.g., stack and

registers). Moreover, compilers may obfuscate the high level language structures, making

the disassembled binary code difficult to understand to a human researcher. Regardless,

static analysis can be useful in extracting information that would otherwise be lost during

compilation and execution. There are three components of source code analysis: the parser,

the internal representation, and the analysis of this representation. The parser converts the

source code into an abstract syntax. Most parsers are compiler-based and process the entire

language [20, 21]. The internal representations abstract a particular aspect of the program

into a form more suitable for automated analysis. Examples of internal representations

include the control-flow graph (CFG), the call graph, and the abstract syntax tree (AST)

[22]. Other more popular internal representations include static single-assignment (SSA)

form, which modifies the control-flow graph such that every variable is assigned exactly

once [23, 24]. SSA form simplifies and improves the precision of a variety of data-flow

analyses. The value dependence graph (VDG) improves on the results obtained using SSA

form. The VDG represents control flow as data flow and thus simplifies analysis [25].

Recent work have also sought to apply source code analysis techniques to the field of

CPS. Tian et al. proposed a technique to mine the security and privacy related operations

performed by Internet of Things (IoT) app, and attempted to bridge the gap between the

app’s actual behavior and the user’s awareness of such [26]. More specifically, they per-

formed static analysis on the collected IoT app’s source code and used natural language

processing (NLP) techniques on code annotations and API documents. They parsed the

code of each app to create an AST, extracting key components of method names, variable

12

names and scope. For code annotations such as comments and text strings, they applied

Stanford Part-of-speech (POS) Tagging [27] and analyzed the nouns to determine the re-

lated contexts. Similarly, Wang et al. instrumented source code of a program on IoT

platforms to track data flow and method invocations to capture data provenance such as

data creations and derivations [28]. Their approach also started by generating an AST

and a call graph from the source code, then performed control flow analysis and data flow

analysis over the AST in order to identify all relationships between all data objects. They

benchmarked the efficacy of their approach against a corpus of 26 IoT attacks, and achieved

promising results (full coverage) of the attack. While both studies have demonstrated effec-

tiveness of using static analysis of the program to discover unintended functionality, and

potentially opened up the CPS security field to a large number of mature static analysis

tools, such techniques may not be feasible on more generalized CPSs. As a majority of

the industrial devices rely on either low level programming languages (e.g., C) which are

not object-oriented, or specialized ones such as ladder logic diagram or structured text for

PLC, their programs some inherent code structures to be used for extracting contextual in-

formation. For example, ladder logic diagrams have no branches and are executed linearly.

On the other hand, common elements still exist, such as human-readable comments and

text strings. Therefore, NLP techniques may be applied towards extracting the contextual

information from the source code of CPS programs.

Dynamic analysis relies on inspection of the software execution. Compared to static

analysis techniques, it is agnostic to the complexity of the branching structure in the pro-

gram, including encryption/packing/obfuscation, and only follows a linear execution path.

The users are also exempt from maintaining the states external to the programs. Hence it

is more suitable for analyzing large scale programs. Consequently, the downside of dy-

namic analysis is the localized view of the program’s behavior, because the execution path

is only limited to the scenarios that are exercised during the analysis [29]. Among var-

ious purposes of dynamic analysis of programs, program comprehension has attracted a

13

large research body. Since comprehension of a program is necessary before making any

assumption of the intentions of any program, this domain aligns with one of the purposes

of this proposal, i.e., correlate the physical process of a CPS with its corresponding control

program.

One of the first papers studying the problem of the program comprehension through

dynamic analysis can be dated back to 1972, when Biermann and Feldman synthesized

finite-state machines from execution traces [30]. Kelyn and Gingrich proposed structural

and behavioral views of object-oriented programs using a tool called TraceGraph, which

traced information to animate views of program structures [31]. De Pauw et al. [32, 33, 34]

proposed novel visualization views that include matrix visualizations, and used the "exe-

cution pattern" notations to visualize traces with scalability in mind. Their work was able

to reconstruct interaction diagrams [35] from running programs. Walker et al. [36] pre-

sented a tool called AVID, which visualizes dynamic information at the architectural level.

It abstracts the number of run-time objects and their interactions in terms of a user-defined,

high-level architectural view. Bell [37] introduced an innovative concept of frequency spec-

trum analysis into the dynamic analysis of program. He demonstrated how the analysis of

frequencies of program entities in execution traces can be used to decompose programs and

identify related computations. Such techniques are also suitable to characterize programs

in the CPS domain, as most of them exhibit statistical pattern in input/output data manip-

ulations. The development of visualization techniques were bifurcated into several other

domains. One of the relevant fields is the design and architectural recovery. Heuzeroth et

al. [38, 39] combined static and dynamic analyzes to detect design patterns in legacy code.

DiscoTect, a tool by Schmerl et al. [40, 41] constructed state machines from event traces

in order to generate architectural views. Others studied the behavioral aspects of programs.

For example, Heuzeroth et al. analyzed running software by studying interaction patterns.

Furthermore, Koskinen et al. [42] used behavioral profiles to illustrate architecturally sig-

nificant behavioral rules.

14

2.2.2 PLC Programs

Compared with the traditonal computer programs, analysis of the PLC program has at-

tracted far less attention and much later in the academia. The study of verifying the cor-

rectness of a PLC program began as early as the 1990s, though the purpose was far from the

idea of computer security. In 1998, Hassapis, Kotini and Doulgeri proposed to use the Hy-

brid Automata System (HAS) to validate the specifications of the control software written

in the Sequential Function Chart (SFC) [43]. Many others [44, 45, 46, 47, 48] used dif-

ferent methods to reinterpret the PLC programs written in five IEC 61131-3 programming

languages into Petri Nets[44], Condition/Event (C/E)-systems[46], etc. However, most of

these work aimed at verification and validation (V&V) of the PLC programs to ensure

the correct behavior of the programs written by the legitimate users, rather than defending

against the malicious programs written by the attackers. As a result, none of their work can

be applied to a PLC program for which only the binary is available.

Ever since the discovery of Stuxnet in 2010 [49], there have been an increasing number

of work in studying techniques in both attacking and defending PLC-based systems. The

majority of the work focusing on the PLC programs rely on the source code of the program.

For example, McLaunghlin and Patrick explored the problem of designing PLC malware

that can generate dynamic payload without having a priori knowledge of the target phys-

ical process [50, 51]. They proposed to leverage the analysis of the PLC programs taken

from inside the control system to infer the structure of the physical plant and use this in-

formation to construct a dynamic payload. In their work, the attacker is assumed to use the

source code of the PLC’s original program to search for specific logic structures to carry

out an attack. Their work was also limited to using the Instruction List (IL), one of the five

programming languages defined by IEC 61131-3. Some researchers have explored using

methods which are popular in the traditional software binary analysis domain, such as sym-

bolic and concolic execution, control flow graph (CFG) and data dependency graph to test

the correctness of the program [52, 53, 54, 55, 56, 57], which also rely on the source code.

15

Such methods may only be useful when the objective is V&V, and would fail when facing

the problem of analyzing malicious program binaries generated by the attackers. Addition-

ally, these tools may often require certain minimum hardware and software configurations

to run, such as a powerful CPU, large RAM and specific platform[55, 56], which are rarely

available in most PLCs.

On the other hand, some studies did not rely on the source code of the program.

Prähofer, Wirth and Berger presented an approach to extract high-level patterns from traces

of PLC programs recorded in real-time when the application interacts with the physical

system being controlled[58]. The application is then replayed in the offline mode to reveal

its reactive behavior and assist in finding recurring high-level execution patterns in the long

run. A similar work done by Prähofer, Schatz and Grimmer augmented the approach with

timing information[59]. Although their method does not require the source code, there

were a few other drawbacks in their approach such as the cost and lack of flexibility as-

sociated with operating the physical system, as well as using a software simulation rather

than a real PLC in the implementation. A recent work by Kalle et al. proposed to attack

the control logic with first decompiling the binary into the source code, then executing in a

virtual PLC[60] built based on the Schneider M221 PLC. Their work inspired us to take a

different approach in processing the program binary. Instead of translating the binary back

into the source program as done in [60], this work leverages the execution of the binary

to discover the behavioral model of the original program. Such behavioral model can be

more useful and comprehensive in discovering hidden malicious logic, and more intuitive

for humans to understand how a sequence of actions can be carried out.

Several other studies explored the feasibility of replacing the original firmware of the

PLC with a malicious variant, without changing the user program running on top of it.

Schuett et al. exploited the inherent trust which PLCs place in the firmware verification pro-

cess, which relies on a cyclic redundancy check (CRC) and a checksum as a validity mech-

anism[61]. They successfully tested their firmware attack on the Controllogix 1756-L61

16

PLC and mounted several attacks including a remotely triggered denial-of-service (DoS)

attack. Similarly, Garcia et al. proposed a physical model aware attack against the PLC

firmware and tested on the Allen Bradley 1769-L18ER-BB1B CompactLogix 5370 L1 Rev.

B PLC. Both studies leverage access to the JTAG port on the PLC’s printed circuit board

(PCB) to download the malicious firmware. Although their work attempts to attack the

PLC, the use of JTAG is more applicable for a defender, as it requires physical access to

the device.

2.3 Side-Channel Analysis of CPS

Side channels have been used extensively in CPS security research community. Due to the

rich physics involved, various side channels can be leveraged to reveal useful information

about a CPS, such as power, electro-magnetic (EM) and acoustics. O’Flynn and Chen

demonstrated an attack on a secure bootloader of an embedded device, where the firmware

files were encrypted with AES-256-CBC [62]. They designed experiment to show that

it was feasible to determine the key, the initialization vector (IV), and the secret 4-byte

signature added before each encrypted block. Park and Tyagi. used power clues to hack

IoT devices [63]. They discovered that the assembly-level program execution within a

device can be reconstructed only through power side-channel observations, and were able to

identify an instruction with over 80% accuracy through the power side channel. Using AES

as an example, Longo et al. leveraged EM side-channel leakage to perform analysis of a

system-on-chip (SoC) and software executing on it [64]. This allows a non-invasive means

to acquire information from the system. Acoustic side-channel analysis is another attractive

direction of the research community, especially for additive manufacturing systems, such

as 3D printing. For example, Faruque et al. proposed a novel attack method consisting of

audio signal processing, machine learning algorithms, and context-based post-processing

to improve the accuracy of object reconstruction [65].

17

CHAPTER 3

FINGERPRINTING INDIVIDUAL DEVICES BASED ON THEIR OPERATION

TIME

Due to the rapid growth in the field of Cyber-Physical Systems, or CPSs, a variety of CPS

applications in different domains have flourished recently. For example, 80 million smart

home devices were delivered worldwide in 2016, a 64 percent increase from 2015 [1]. The

global industrial control system (ICS) market, one of the most important areas in CPSs,

was valued at 58 billion US dollars in 2014 and expected to be worth 81 billion US dollars

by 2021, growing at an annual rate of 4.9% [2]. Meanwhile, attacks targeting CPSs have

become more frequent as well. In March 2000, a former contractor of Maroochy Water

Services took control of 150 sewage pumping stations using a laptop computer and a ra-

dio transmitter. This was not discovered until an engineer examined every signal passing

through the system, by which time one million liters of untreated sewage had been re-

leased into a stormwater drain [4]. More recently, malware specially crafted to attack the

Ukrainian electric utility caused a blackout in a portion of its capital equivalent to a fifth of

its total power capacity [5]. The most significant concern regarding attacks targeting CPSs

on which we depend is that they pose a threat not only to the equipment in the CPSs them-

selves, but also to the physical world in which we live. This very threat calls for innovative

and effective techniques to be developed. With the growing number of threats in the space,

it is clear that novel solutions are required. One clear approach to improving the security

of CPSs is to rely on the process physics as a defensive side-channel. In fact, the authors of

[9] make the case for the need to leverage process physics to secure CPSs. While process

physics should be used to secure CPSs, physics of the devices also matters. For the rest of

this chapter, “device” refers to the “actuator” in the CPSs.

18

Plant/Process (house)

Sensor
(temperature

sensor)

Controller (thermostat)

Actuator (cooler/heater)

Command

Respond

Actuate

Sense

Report

Figure 3.1: Interconnection between different elements in CPS.

19

3.1 Identifying Threats in Cyber Physical Systems

Common components in CPSs are the process, actuator(s), sensor(s) and controller(s). Fig-

ure 3.1 shows the interconnections between these elements using an air conditioning system

as an example. Despite various attack vectors to penetrate the system and take control of

one or more components, it would be a fair assumption that a potential goal for an attacker

is to drive the physical plant to an unsafe state, i.e., attacking either the actuator(s), sen-

sor(s) or controller(s) serves to achieve this goal. One way to do this is spoofing control

commands to the actuators or sending incorrect sensor values to the controller. Since de-

fending against direct physical access to the plant falls outside the realm of the cyber world,

the scope of the discussion in this chapter is limited to securing the other three components.

The most well-known attack that targeted the controller is Stuxnet [3]. By reprogram-

ming the programmable logic controllers (PLCs), Stuxnet was able to operate the PLCs

according to the attacker’s intention. More specifically, Stuxnet spreads itself using tra-

ditional network infrastructure as well as removable storage media to reach the targeted

computer. It then modifies the code on the PLC, causing it to send out commands that

drive the centrifuges fast enough to tear themselves apart. It is worth noting that the cost

of such an attack is high: four zero-day flaws were exploited and two digital certificates

were compromised. Additionally, part of the path Stuxnet took was through air-gapped

networks, since the key computer was unlikely to have outbound Internet access. Clearly,

many defensive techniques used in the traditional computer network domain should also

be used in such environments where security is highly demanded. However, as will be

explained later, not all network security tools (e.g., virtual private network (VPN), encryp-

tion) can be easily applied in the CPS environment, due to the insufficient computational

and memory capabilities of a large portion of legacy devices present in CPSs. Also, note

that as illustrated in the Stuxnet example, even though air gapping physically isolates a

protected network from insecure networks, it does not ensure 100% security, as attackers

20

may use flash storage and other media to circumvent this. In fact, attackers may come from

the inside, which renders any defensive means against outside attackers useless.

Compared to the controllers, actuators and sensors are more tightly coupled with phys-

ical plants, as they serve as the direct inputs and outputs, respectively, of the physical

process. Attacking sensor devices can be carried out in two ways: integrity attacks and

Denial-of-Service (DoS) attacks [8]. In the former case, the attacker can inject any sensor

value so the controller receives false non-zero values, performing a false data injection at-

tack. In the latter case, the attacker simply cuts off the communication link between the

sensor and the controller. Attacking the actuators may be carried out by compromising the

actuator and impersonating it so the attacker can send out false reports back to the controller

(e.g., the breaker or valve has opened). Since the actions of an actuator apply directly to

the underlying plant and thus may potentially cause the fastest and most effective damage,

it is clearly a critical point to defend in a control system. Thus, this work aims to secure

the Cyber-Physical Systems (CPS) at the individual actuator level, by leveraging the fin-

gerprints generated by the physical devices. The fingerprints can be used to authenticate

the actuators, ensuring that these responses are not spoofed by attackers.

To summarize the problem, assume the global set of all devices in CPSs consisting of

devices of various models and configurations. Given a finite-time observation of any device

in a network, the goal of the device physics-based fingerprint method is to identify which

model and configuration the observation corresponds to.

3.2 Formulating the Device Physics-Based Approach

3.2.1 Existing CPS Security Research

Many existing solutions for protecting CPSs can be divided into two categories: examining

the network traffic in order to look for abnormal packets similar to what a traditional intru-

sion detection system (IDS) does [15]; and modeling the system behavior and comparing

the values output from the model’s sensors with those from the real-world sensors, which

21

leverages the knowledge about the system specifications, thus seeking to detect potential

hazardous states [8, 9, 10].

For the first category, it is possible to provide a level of security of the control system’s

network, by treating it as an instance of IT networks and applying mature secure access

technologies (e.g., virtual private network (VPN), Firewall, etc.). C. Neilson proposed to

secure the control system from cyber attacks with traditional IT solutions such as VPN [15].

Although the author listed pros and cons of each solution, none of them took the physical

system being controlled into account. This means that standard access control solutions are

inadequate because they are not able to stop insiders (attackers) from sending commands

that can drive the CPSs into dangerous states, since they have already been granted access

to the system. This network-based type of solution only considers the cyber domain but

ignores the unique physical attributes, which may overlook important information about

the physical state of the system. Such an approach may be the easiest to deploy and is

generally agnostic to the specific communication protocols or details of the physical system

[15]. However, the amount of protection added by such technologies would be very limited

in the industrial control system (ICS) environment, which is one of the biggest subgroups

of CPSs. A high cost of deployment, poor support for legacy equipment and rare software

patching further aggravate the problem [18].

Solutions in the second category (e.g., modeling of the system physics) attempt to in-

corporate knowledge specific to the CPSs. Some researchers propose to leverage physics

of the system in order to solve this issue. A. Cárdenas et al. identified several challenges

for the CPS security research community including new vulnerabilities, threats and con-

sequences of potential attacks on networked control systems, and proposed to use linear

system models to detect such attacks [11, 12]. The authors showed that they were able to

detect stealthy attacks that change the physical behavior of the targeted control system by

incorporating knowledge of the physical system. D. Urbina et al. studied if physics-based

attack detection can limit the impact of stealthy attacks in ICS and showed that the impact

22

of such attacks can be mitigated by the proper combination and configuration of detection

schemes, including a stateful model of the physical system [10].

A more recent work proposed a framework to monitor for physical constraint violations

by leveraging specification-based intrusion detection. McParland et al. were able to lever-

age the model of the physical plant and check the model against its corresponding physical

limitations in [9]. In their paper, the authors demonstrated their approach with several sce-

narios, including a boiler with a heater to heat or cool the water depending on the on/off

status of the heater. They created scripts to passively monitor the communication and track

boiler behavior to alert upon out-of-range conditions. They did so by leveraging control

theory to infer the transition states of the system model given the actions defined in the

captured packets. This modeling process may require an understanding of the entire phys-

ical interactions between all actuators and the plant, as well as between the plant and all

the sensors in advance. Compared to the solutions which try to secure the Cyber-Physical

Systems (CPSs) by securing the network access to the system, process-modeling based so-

lutions target the underlying physical process, thus increasing the likelihood of detecting

an “insider” attack.

3.2.2 Device Physics-based Fingerprinting Approach

In [13], Formby et al. proposed to fingerprint CPS devices by measuring the network level

actuator response time, which in turn is determined by the physical properties inherent

to each individual device. More specifically, for an actuator as shown in Figure 3.2, they

monitor the time it takes between the event that a command from the controller is being sent

to the actuator (e.g., a TCP packet containing the command to open a valve) and the event

that the corresponding response is received by the controller (e.g., a TCP packet containing

the response from the actuator that confirms the valve is open). In this chapter, it is shown

that this time difference, called the “operation time”, is tightly coupled with the physical

characteristics of the device and experiments are performed to validate this hypothesis. The

23

Figure 3.2: Motor device showing sensor positions and load adjustment.

24

operation time for a certain actuator is one method to fingerprint the device. In contrast to

the concept in the general network domain, where the fingerprint of a device is mostly

related to hardware and software components and configurations, that of a CPS device

can be additionally affected by the unique physical composition of the device (i.e., device

physics). Thus, timing features of the messages returned by an actuator related to the

operation it performs can be used as the main attributes for fingerprinting the device.

Device-modeling techniques can be used in conjunction with the technique proposed in

[9] (process-modeling techniques) to better secure CPSs. While the work in [9] examines

and monitors the physical system as a whole (i.e., the physical process), this work combines

the information from both “cyber” and “physical” domains and monitors the signatures at

the individual device level. Because the behavior of an individual device is largely depen-

dent on its own state and attributes, this approach requires less knowledge from the overall

system dynamics, and thus is still useful when the system gets complicated and difficult to

model. Furthermore, by combining information at the individual device level with that at

the system level, it becomes much more difficult for an attacker to exploit vulnerabilities

when device physics is also used to detect attacks. Because, in addition to having to monitor

and model the dynamics of the process, the attacker would need to forge actuator response

times with strict timing and value constraints for each device in order to circumvent the

detection mechanism.

3.3 Demonstration Scenario

In this chapter, the technique in [13] is generalized to understand more about why the

technique worked, and it will be concluded that device physics can also be widely applied

to CPS security. Specifically, an experiment is designed with several controllable variables

to test the robustness of the device physics-based fingerprinting technique. A high-level

network diagram can be seen in Figure 3.4, as a PC acts as a host device sending out

commands to a PLC as well as receiving responses from the programmable logic controller

25

(a) 5 power input settings with fixed load.

(b) 16 load settings with fixed power.

Figure 3.3: Plot of angular velocity over time under two different settings. MOI stands for
moment of inertia and the numbers are in units of kg·m2.

26

t1
t2

t3
t4

t5

Figure 3.4: Network packet timing diagram of the experiment setup.

(PLC) regarding the status of the physical devices. The PLC then connects to actuators

and sensors and executes the command on the corresponding devices. For the actuator, a

motor is picked as it is an extensively used device in the industrial control system (ICS)

environment. It is also a high-valued target for attackers since a motor usually outputs a

much higher power than many other actuators such as valves and relays, thus may deal

more damage to the surrounding equipment and personnel when being sabotaged. An

example of such sabotage is faking the response of a request to reduce the revolutions per

minute (RPM) of a motor, leading to a potentially unsafe scenario for individuals in the

plant or the plant in general. The experiment emulates the use case of a motor as in an

industrial mixer shown in Figure 3.5, as such equipment is widely used and usually comes

in many variants. For example, a series of six heavy duty electric mixers can be found from

a company named INDCO [66], with horsepower ranging from 1/3 HP to 3HP. The various

horsepower ratings represent different possible options when choosing a motor at a specific

point within a CPS, and may generate different fingerprints. At the end of the mixing shaft

of the mixer is a blade which can propel the fluid being stirred. The fluid exerts a drag

27

Figure 3.5: Industrial mixer device that the model emulates.

28

force on the blade which slows it down. When the mixer is in use, the fluid being stirred

usually consists of the same material, while the viscosity of the fluid can vary depending on

its concentration and density (e.g., different concentrations of maple syrup solution). Such

differences also make a difference in the fingerprints generated by the mixer in response to

control commands sent from the host. To emulate the mixer and quantify the behavior of the

device from both the cyber and physical domains, a device model as shown in Figure 3.2 is

leveraged. Five different levels of power input are set to a single electric motor used in the

experiment (to emulate variants with different horsepower), and 16 different load levels on

the motor output (to emulate various fluid viscosity), giving a total of 80 different operating

configurations for the motor. Each configuration generates a fingerprint that is later used to

classify the corresponding configuration. In an industrial environment, the total number of

configurations may vary. Thus, a discussion will follow later about the effect of a different

number of configurations on the performance of this fingerprinting method. The goal of the

experiments is to show that a remotely observable fingerprint can be generated according

to the physical attributes of an actuator to effectively identify the different configurations

of the device (which naturally extends to identifying different devices).

3.3.1 Experiment Setup

For the communication protocol between the host PC and PLC, Modbus is chosen as it

is an open standard protocol widely used in ICSs, and is easier to implement compared

to DNP3. The Modbus protocol does not inherently contain timestamp information in its

packet, therefore this issue is addressed with a modification in the PLC ladder logic pro-

gram and the PLC is utilized to timestamp the command and response packets to achieve

real-time accuracy. The PLC acts as a Modbus slave and waits for read and write requests

from the host PC running a Python script which acts as a Modbus master. The host sends

commands to the PLC to set the operating speed of the motor and receives a series of re-

sponse packets from the PLC containing the measurement of the angular velocity of the

29

rotating load along with timestamps at which the measurement is taken, as depicted in Fig-

ure 3.4. Note that the timestamps are measured in reference to the time when the PLC

received the corresponding command. The operating speed can be adjusted in a range of

values by changing the pulse-width modulation (PWM) output of the motor driver con-

nected in between the PLC and the motor. The motor spins a load that can be adjusted by

adding or removing weights on it as shown in Figure 3.2. The base of the load is a uniform

light-weight wood bar with eight mounting holes positioned vertically at proportional dis-

tance to the center of spinning axis. The mounting holes are symmetrical to the spinning

axis to keep the center of mass aligned with the center of rotation, thus minimizing the ro-

tating imbalance and the wobbling movement of rotating structures. A bolt and a coupling

nut of known masses are mounted at each hole to adjust the moment of inertia of the overall

rotating load. Two Hall effect sensors are placed near the circular track of the tips of the

rotating bar that produce signals when either of the two magnets attached to the tips of

the load passes by. These signals are then picked up by the programmable logic controller

(PLC) connecting to the sensors, and used to send responses back to the host.

3.3.2 Extracting Features by Modeling the Physics of Device

To classify the fingerprints generated by the mixer under different configurations, features

must be extracted from the raw sensor readings. Because each configuration differs only in

its physical attributes, a straight-forward source of features to be used for classification is

the mathematical model which corresponds to the dynamics of the device. Thus, derive a

simple mathematical model of the device is derived, starting with Newton’s second law for

rotation,

τ − τ̂ = Iα (3.1)

where τ is the torque exerted by the motor to the load, τ̂ is the frictional torque assumed to

be constant relative to the angular velocity of the load, I is the overall moment of inertia of

the load, and α is the angular acceleration of the load. For a DC motor like the one used in

30

the experiment, the relationship between the torque it generates and the input voltage can

be derived from equations,

i =
Es − Eo

R
(3.2)

P = Eoi (3.3)

Eo = ZnF/60 (3.4)

where i is the current through the armature in the motor,Es is the source DC voltage andEo

is the induced voltage in the armature conductors as they cut the magnetic field produced

by the permanent magnet inside the motor, P is the mechanical power of the motor, n

is the rotation speed in revolutions per minute (RPM), and R, Z and F are the armature

resistance, winding coefficient, and flux per pole respectively, and are constant regarding

the specific motor build. Turning attention to the torque, it is known that the mechanical

power P is given by the expression

P = τn× 2π

60
(3.5)

Thus, the equation becomes

τ =
ZF (Es − ZnF/60)

2πR
(3.6)

Now consider the case where the load is initially at rest and accelerated by applying a

time-invariant voltage Es onto the motor. The angular velocity ω satisfies the equation

ω(t) =

∫
αdt =

∫
ZF (Es − ZnF/60)

2πRI
dt−

∫
τ̂

I
dt (3.7)

31

under the boundary condition that ω(0) = 0. By solving the differential equation and

substituting n = 30
π
ω, an exponential decay equation is obtained

ω = −Ae−t/B + A (3.8)

whereA = (ZF
2πR

Es−τ̂) 4π2R
Z2F 2 andB = 4π2R

Z2F 2 I . In the experiment, all timestamped velocities

are measured at the time when a magnet passed by a sensor and the instantaneous velocity

is calculated based on the inverse of the time it takes since the last time a magnet passed by.

Therefore, during an acceleration process such calculated velocity is slightly lower than the

actual value at the timestamp. Thus, a delay variable td is introduced into the equation

ω = −Ae
t−td
B + A (3.9)

Recall that the only two variables in the equation are the moment of inertia I and the sup-

ply voltage Es which determine how the angular velocity ω changes over time. It will

later be shown that the configuration of the mixer device consisting of these two variables

can be inferred from the features extracted from the raw sensor readings in the response

packets (i.e., corresponding timestamps and angular velocity measurements). Because of

the asymptotic nature of the curve described by Equation (3.9) and the noise introduced

in actual measurements as can be seen in Figure 3.3, it becomes infeasible to define an

exact operation time as it has been done in [13]. Instead of using a single event to mark

the completion of an operation, the timestamps are characterized in reference to the an-

gular velocity measurements and a trend of “operation times” is obtained by the series of

timestamps generated in response to a command. Thus, by fitting Equation (3.9) to the

measured timestamps and angular velocity values from the experiments, various features

can be generated on which to classify, consisting of the coefficients in the equation.

32

3.3.3 Classifying Different Devices Based on Their Fingerprints

There are two stages in the aforementioned approach, namely a training stage and a clas-

sification stage for fingerprinting each actuator. During the first stage, a number of the

operation time is generated and stored in a database. In the classification stage, a series

of measurements of the operation times are taken from the devices in the control system

and compared against the database generated during the training stage. From the test re-

sults, conclusions can be drawn about whether the actuator as seen from network traffic

corresponds to the actual configuration of the device or one of its variants.

To collect data needed for training and testing, both the input power to the motor as well

as the load driven by the motor are altered and timestamped angular velocity measurement

response are taken under a total of 80 different configurations formed by the combination

of the two variables. Recall that the various input power emulates variants of the same

model of mixer with different horsepower, and various loads corresponding to different

viscosity (i.e., concentrations) of fluid being stirred by the motor-drive mixer. For each

configuration, 50 runs of measurement are performed by accelerating the load from rest

to a stable angular velocity. In this case, the capture time for each run is heuristically set

to 30 seconds. Each measurement run generates a fingerprint associated with the physical

characteristics dependent on the two variables. To get some intuition on the separability of

these fingerprints generated by different configurations, one out of the 50 runs is randomly

picked for each configuration, and the angular velocity measurements are plotted against

corresponding timestamps in Figure 3.3. For clarity, the measurements under two set of

configurations are shown, namely varying power with fixed load, denoted as Spower; and

varying load with fixed power, denoted as Sload. This shows that the same configuration

can generate stable fingerprints distinguishable from different configurations.

As a next step, a classifier is built to quantitatively measure how well these fingerprints

can be used to identify the configuration of a device (or, as a natural extension, a number of

different devices). The features used by the classifier are extracted by fitting Equation 3.9

33

to the selected angular velocity/time measurements in each run (i.e., the first 20 seconds of

data after the command was sent) and taking the coefficients generated after the fitting (i.e.,

A, B and td). The entire measurement dataset is split into training and testing sets using

stratified K-fold method, with K set to 10. For the aforementioned experiments, three basic

supervised machine learning classification methods are chosen, namely decision tree, naive

Bayes and k-nearest neighbors (KNN) implemented in the Python scikit-learn machine

learning library. These classification algorithms generated highly accurate classification

results. For example, the naive Bayes classifier achieves both 1.0 precision and recall

scores when varying only the power input to the motor, and 0.98 precision and 0.97 recall

scores when varying only the load connected to the motor. All classifiers have a slight

performance drop when classifying fingerprints generated by all 80 configurations when

combining the two variables, namely the input power and load. For example, the decision

tree classifier achieves a 0.89 precision score and 0.89 recall score. This difference can be

taken as a deficiency in the aforementioned approach. Hence it becomes a challenge when

the device has so many possible configurations that they have similar signatures. However,

this does not become an unsolvable problem in an industrial environment, as the number

of different design configurations of a device (thus the fingerprints) is small. Furthermore,

a device is usually expected to operate within a reasonable range of states, which allows

slight deviations from its theoretical operating state. Such deviations can sometimes cause

the fingerprints to be difficult to differentiate from those generated by a slightly different

device configuration.

3.3.4 Effect of Network Delay

As timestamps play a significant role in the fingerprinting technique, their integrity is criti-

cal to the success of the proposed technique. Generally, there are three options for obtaining

the actuator timing values in Cyber-Physical Systems (CPSs): 1. If the protocol natively

supports timestamps (e.g., distributed network protocol (DNP3)), the operation time can

34

Figure 3.6: Precision, recall and accuracy scores of classification on the fingerprints when
varying only power input to the motor.

35

Figure 3.7: Precision, recall and accuracy scores of classification on the fingerprints when
varying only the load connected to the motor.

36

Figure 3.8: Precision, recall and accuracy scores of classification on the fingerprints when
varying both power and load of the motor.

37

simply be sent as part of the packet. 2. Protocols that do not have native support for times-

tamps (e.g., Modbus as used in the experiment) can have programmable logic controllers

(PLCs) store such information as values in their registers, and later send these values back

to the host. 3. Neither of the above two methods are available. For the first two options,

a timestamp is taken by the PLC in real time and is relatively accurate (the results above

illustrate this scenario). In the last option, the operation time is taken using a tapping point

which monitors the packets flowing in the network. In such case, network delay can add to

the measurement of operation time and thus impact the accuracy of the timestamps.

Recall that the results thus far represent scenarios (1) and (2) above where the scheme is

impervious to network perturbations. This is because the actuation time is placed as a value

inside the packet. Here, the time can be inferred from the timing of the request/response

packets received/sent from/to the actuator. Thus, network delay would affect the technique.

This method would have to be used if the hardware and protocol used in the CPS do not

support the ability to transmit timestamps in the packet, the timestamp in the packet is

not trustworthy, or the timestamp is not available (e.g., encrypted). In this scenario, a

network traffic monitoring device would be used to timestamp the packets locally. To better

understand the effect of network delay on the performance of the fingerprinting technique,

a statistical model fitted to real data [67] is used to generate network delay time values

without having to perform an enormous amount of experiments. Thus, physical devices

may receive the command from the controller earlier or later than in the previous scenario

due to the network perturbations.

The network delay values generated through the statistical model are taken and added

to the collected timestamps to simulate the data collected by the traffic monitoring device

(tapping point) under the influence of network congestion and delay. The shape parameter

k is tweaked in the gamma distribution function used in the model while keeping the scale

parameter θ at default value 1.0. The mean is thus kθ = k and variance is kθ2 = k, with

the unit of time in ms. Note that jitter can be modeled by the variance as its definition is

38

the variation in the delay of received packets. The classification tasks are repeated under

different network delay distributions determined by k as well as under three different set of

configurations, Spower, Sload and Sboth, which denotes varying only power input with fixed

load, varying only load with fixed power, and varying both, respectively. The classifica-

tion result is plotted in Figure 3.6, Figure 3.7 and Figure 3.8. Note, that a larger k value

corresponds to more severe network delay and 0 simply means no delay. The performance

of almost all classifiers degrades as k increases, however both Decision Tree classifier and

KNN classifier remain at > 0.8 precision and recall, and > 80% accuracy even under a

large network delay and jitter. The result suggests that the fingerprinting technique can be

robust under the influence of network delay and jitter up to a reasonable level (approxi-

mately 500ms).

3.3.5 Resistance to False Modeling Attacks

As illustrated above, physics-based device fingerprinting can be used to authenticate ac-

tuators. Accordingly, it is important to understand the efficacy of such an approach when

under attack. Thus, the concept of a false modeling attack is introduced here. In a false

modeling attack, it is assumed that an attacker launches the attack on a CPS either inside

or outside of the CPS network, and his objective is to sabotage the physical system (i.e.,

the process) by spoofing commands to the actuators and sending emulated response to the

controllers in the Cyber-Physical System (CPS). It can be further assumed that the attacker

has some, but not complete knowledge of the physical components in the system. Such

an assumption is usually reasonable in most cases, as even a system administrator may not

have all details about the underlying physical system, such as the exact model of every

device. In order to achieve his objective, the attacker would need to deceive the detection

mechanism with network response packets as long as possible, so that he could perform

a long enough attack to cause significant damage to the system. As the attacker does not

hold every detail of the system, he needs to make assumptions about the missing details in

39

order to generate the response packets. Without complete knowledge of the exact model of

a device missing, the attacker has to randomly guess the model and generate the response

packets based on the potentially incorrect model, e.g., assuming a motor of unknown model

to be a 24V, 2 horsepower model driving a load equivalent of 0.2kg ·m2. Hence, this attack

is deemed a false modeling attack.

The proposed device physics-based fingerprinting technique can be used to defend

against false modeling attacks. Specifically, a two-phased approach is used. During the

first phase, a classifier is trained with the fingerprint of each device that is of interest. Such

fingerprints could be generated experimentally (black box model), or could be generated

by an accurate modeling of the device (white box model) [13]. A more general method

could be a mix of both (gray box model). Because the attacker may have limited details

of the detection method and actual models of the devices used in a CPS, it is very likely

that he will assume a device model different from the one actually being used. Under

ideal conditions, the possibility Pdiff of the attacker guessing the wrong device model is

Pdiff = 1 − 1/Nmodel, where Nmodel is the number of models a device can have. Note

that the aforementioned technique may fail to detect the spoofed response packets if the

attacker picks the correct device model or a similar one with the fingerprints in the packets

close enough to the expected response generated by the actual device.

A simulated test is performed to experimentally measure the performance of the afore-

mentioned technique against false modeling attacks. Using the same classifiers trained in

Section 3.3.3, the classifiers are tested with the fingerprints generated by randomly cho-

sen configurations of the motor. These test data represent the fingerprints generated by an

attacker who does not know which model of the motor is used in the actual CPS. The exper-

iment is again performed under three different device configuration combinations, Spower,

Sload and Sboth. Under each combination, the attacker correspondingly chooses a device

model among the configurations. The results show that the detection rate is very close

to the ideal value. For example, when varying only power input (5 different values), the

40

naive Bayes classifier correctly identifies 79.1% of the attacks on average. When varying

only the load (16 different values), 93.7% of the attacks can be correctly identified. The

number gets even higher to 98.9% when varying both parameters and all 80 configurations

are available. Apparently, with an increasing number of models and configurations for a

device, the device physics-based fingerprinting technique has an increasing success rate at

detecting false modeling attacks. Clearly, as the recall in some cases is not equal to 1.0,

false alarm will occur. However, this problem can be mitigated by: 1) adjusting the toler-

ance of the difference between the inferred configuration and the true configuration, thus

taking a trade-off between precision and recall depending on the specific application, and

2) incorporating the device physics method with other ones, e.g., process physics methods

as mentioned at the beginning of this chapter. In reality, if there is a high cost associated

with the actions taken in the case of false alarms, a less aggressive defense can be taken at

first to minimize the loss due to the shutdown, such as checking network logs to determine

if there has been an intrusion.

3.4 Conclusion

Device-modeling is an effective way to improve the security of CPSs. Further, it naturally

synergizes with the process modeling technique described in [9] to enhance the security of

CPSs. The proposed technique is suitable to be used in a CPS environment as it takes into

account both network-side information and the unique physical attributes of the actuators

in a CPS, unlike traditional methods which only consider the network aspect of the system.

The method is evaluated using experiments involving an emulated device commonly used

in an industrial control system (ICS) environment. Its robustness is also evaluated against

network delay and jitter, as well as under false modeling attacks.

In the future, the physics-based model extraction process can be automated. Another

important consideration for this work is the effect of wear and tear on the devices’ operat-

ing times which can potentially compromise the effectiveness of the technique over time.

41

Since the fingerprints are tightly associated with the physical operation of the device, they

are subject to change gradually as the device inevitably degrades. Taking this factor into

account might not only help to reduce false alarms as device fingerprints deviate from the

time they were first collected and stored for reference, but also increases the difficulty for

the attacker to spoof the device.

42

CHAPTER 4

DEVICE PHYSICS AWARE MIMICRY ATTACKS

Chapter 3 proposed to improve the security of CPSs by authenticating the CPS devices

through the device operation times in the response packets from the devices, due to the

strong correlation between the timing fingerprints and the physics of the devices. Although

such a technique may be effective in defending against naive attackers, an advanced attacker

may monitor the operation of the CPS before launching a device physics aware mimicry

attack. In this chapter, it is shown how the spoofed response packets can be crafted by

an attacker to deceive the CPS device authentication method based on the device opera-

tion times. Specifically, the timing and physical measurements embedded in the packets

are used to reconstruct the devices in the physical system, which can be used to spoof re-

sponse packets corresponding to the actual model and configuration of the devices in the

CPS. The performance of this technique is demonstrated on realistic testbeds with real de-

vices. Finally, an upgraded defense mechanism is proposed which may be used against

such mimicry attacks.

4.1 Introduction

With the increased proliferation of Cyber-Physical Systems (CPSs), there have also been

more frequent attacks on CPSs. While some attacks are wide-spread similar to computer

malware that aims for better coverage, the most devastating attacks tend to be targeted. The

most well-known such attack on a CPS is Stuxnet, which is a malicious worm targeting the

Supervisory Control And Data Acquisition (SCADA) systems, specifically infecting and

reprogramming Programmable Logic Controllers (PLCs). It was responsible for causing

tremendous damage to Iran’s nuclear program, by driving the fast-spinning centrifuges in

Iran’s nuclear facilities to a failed state. Although there have been no official conclusion

43

as to who is responsible for this attack, the size and sophistication of the worm have led

researchers to believe that at least one nation-state was involved [68]. Noticeably, a dossier

published by Symantec suggested that the attackers were most likely to have conducted a

significant amount of reconnaissance [3]. As each PLC is configured in a unique manner,

the attackers would first need the schematics of the industrial control system (ICS) [6]. An

attacker would then need to know details of the individual device’s physical behavior in or-

der to maximize the damage in the following targeted attack. For example, Stuxnet checks a

Profibus identification number corresponding to two different models of variable frequency

drive (VFD) 1, which are used to control the motors. Two different attack sequences are

chosen depending on the type of VFD found. A similar incident where attackers retrieved

information about the target system before mounting the actual attack occurred in Decem-

ber 2015. A piece of malware specially crafted to attack a Ukrainian electric utility caused

a blackout in a portion of its capital equivalent to a fifth of its total power capacity [5]. It

even sabotaged power distribution equipment, complicating the restoration of power [7]. A

critical step in this attack was to seize control of the SCADA system and to remotely shut

down substations. The attack was found to be a premeditated multi-level invasion. The at-

tackers were thought to have hidden in the IT network of a utility company for six months,

collecting data to figure out the inner-workings of the system before performing the

actual attacks.

The key difference between the attacks on CPSs and those on traditional IT systems is

the physical nature of CPSs. While the goal of attackers in traditional IT systems may be

stealing users’ private information, those who target CPSs can cause serious damage to the

real world. An attack on critical infrastructures may directly threaten people’s daily lives,

leaving millions of dollars and even human lives at risk. However, the physical nature of

CPSs can be a double-edged sword. For example, many studies have proposed to leverage

the physical domain as a channel to secure CPSs [8, 9, 10, 12, 69, 13]. Specifically in [13],

1Part number KFC750V3 manufactured by Fararo Paya in Tehran, Iran. Vacon NX VFD manufactured
by Vacon in Finland.

44

Formby et al. modeled the physics of ICS devices and demonstrated that the operation

times of these devices can be used to generate fingerprints, which are capable of verify-

ing the integrity of the devices’ response packets subject to a false data/response injection

attack. Their technique uses a high fidelity intrusion detection system (IDS) to detect the

minute differences between the network packets sent by authenticated devices and those

spoofed by the attacker. Although such a technique may detect naive attackers who are

unaware of the physics-related response packets or lack proper equipment to craft accu-

rately timed packets, this chapter shows that an advanced attacker may bypass the defense

by launching a mimicry attack via a compromised PLC. Existing work have demonstrated

the vulnerability of the PLC. For example, Garcia et al. showed that a PLC rootkit can

be implemented to launch a stealthy attack in CPS [70]. Such exploits provide a basis for

attackers to directly access and manipulate the commands for actuators and sensory data,

as well as means to produce packets with accurate timing. Hence, the defense proposed

in [13] may be defeated under such circumstances.

This work intends to study how an advanced attacker who is aware of the detection sys-

tem can spoof packets that correspond to the actual device model and configuration (DMC)

to avoid being detected by the techniques as described in [13]. More specifically, in this

chapter, it is illustrated that an advanced attacker who can perform reconnaissance when

attacking a targeted system and obtain the DMC in the CPSs can better evade detection,

and hence calls for a more in-depth defense. Note that for the rest of this chapter, “device”

refers to the “actuator” in the CPSs. To give a brief description of the method presented in

this chapter, it starts with modeling different types of devices based on their construction

and the physical process in their operation. Mathematical equations are derived to describe

the operation of the devices and used to characterize the devices in the network domain.

Using real testbeds that are built, it is demonstrated the process of inferring the models and

configurations of the devices from their response traffic, which in turn are used to forge

the responses of the same devices. With the results from the testbeds, it is shown that the

45

forged responses are much more difficult to be detected using device physics fingerprinting

methods.

4.1.1 Observation

In CPSs, physical devices either take commands from the cyber side of the CPS and op-

erate objects in the physical world (i.e., actuators), or provide digitized information of the

physical objects to the controller or monitoring system (i.e., sensors). In [13], Formby et al.

discussed how the actuators have to obey the laws of physics when executing commands

sent by the controllers. During the experiments, it is found that these actuators exhibit dif-

ferent temporal features which are correlated with the device physics when carrying out the

actions.

For example, two motors given the same command of set to full speed may take a

different amount of time to accelerate to full speed, depending on the torque generated by

the motor and the magnitude of its load. Likewise, a valve given a command of close or

open can take an interval of time defined by its specification set according to the mechanical

and electrical properties, which include the physical composition of the valve (e.g., torque

characteristics of the motor, power rating, gear ratio, size of the fluid passage, etc.). In

some cases, such responses may be recorded and used as replay attack. However, there are

two problems that must be addressed for such an attack to succeed. First, the responses for

certain types of devices are not constant over time, and may be a function of the run-time

condition of the devices. Second, the accuracy required to reproduce such responses may

exceed the capability of many embedded devices as shown in [13].

It can also be noticed that an actuator can generate feedback information during the

execution or after the completion of a command, either actively or passively. The feedback

signal carries the information about the actuator’s physical attributes, which can then be

used to infer the model and configuration of the device. Taking the valve again as an

example, all valves used in the experiment are capable of outputting signals to indicate its

46

real-time status, such as open/closed or the percentage of opening. The response can be

used as a fingerprint that uniquely identifies the device.

In this chapter, the device responses are leveraged to infer the knowledge of the devices

in the CPS. Without loss of generality, a typical set of devices that adequately represent the

common types of actuators in CPS are considered. It is found that the response packets

contain useful information that reflects the model and configurations of the device. Finally,

the obtained information is applied to forge response packets corresponding to the actual

devices.

4.1.2 Challenges

As a relatively less studied area in security research, CPS security research poses several

challenges, some of which are common to the other areas of in security research, while

others are inherent to the multidisciplinary nature of the topic itself.

CPS research often involves knowledge in both the network security domain and other

fields, such as process control, actuation technologies, sensor networks, physics modeling,

etc. This requires researchers to understand and incorporate many technical fields that were

not previously associated.

Unlike other data-driven research, such as network traffic analysis, web security, or so-

cial network privacy analysis, it is extremely difficult to obtain sufficiently large amount of

data to analyze in CPS research. This is partially due to the fact that CPSs have not been

nearly as popular as other information systems. Another reason is that for many CPSs, the

critical nature of these systems means that their data has traditionally been kept private. Ex-

tensive research based on the data collected on these systems could be prohibitively costly,

if not impossible, due to the system stability concerns, remote locations, and the sensitive

information involved. Furthermore, real attack data is rare and even emulated attacks are

rarely feasible on real systems, because such experiments could be cost prohibitive and

even life threatening.

47

Using testbeds as substitutes for the real physical systems is a common practice in CPS

research [71, 8, 9, 10]. However, small testbeds or software simulated models may have

large differences compared to the real system in an industrial environment, while large

testbeds can be very expensive and take a long time to build and collect data. A trade-off

between the complexity of the system and the authenticity of data needs to be made in order

to achieve a balance between the validity and practicability of CPS research.

4.1.3 Contributions

The contributions made in this chapter are summarized as follows:

• This work incorporates the physical domain of the CPSs, and extends the idea of

reconnaissance in an attack down to the physical level of CPSs.

• The timing-based fingerprinting techniques are exploited to infer the models and

configurations of the devices in CPSs. The method not only can defeat the device-

physics based defenses (e.g., [13]), but also provides the information for the attacker

to launch more targeted attacks against the physical processes.

• Testbeds are built to emulate common industrial systems and collect data from mul-

tiple types of real CPS devices to verify the effectiveness of the model and config-

uration inference technique. The results are promising and show that both the de-

vices’ models and configurations can be inferred through the response packets, and

responses can be forged using the inferred values.

• Several possible defenses are discussed and a challenge-response based defense mech-

anism is proposed for the device physics aware response-spoofing attacks.

4.1.4 Attacks in CPS

Despite various attack vectors to penetrate the CPS and take control of one or more com-

ponents, it would be a fair assumption that a potential goal for an attacker is to drive the

48

physical plant to an unsafe state, i.e., attacking either the actuator(s), sensor(s) or con-

troller(s) serves to achieve this goal. One way to do this is spoofing control commands

to the actuators or sending incorrect sensor values to the controller. For example, Gu et

al. [19] demonstrated using real testbeds that such attack can be stopped by checking

the timestamped responses (i.e., device fingerprint) from the actuator (that may have been

given a tampered command) against previously known fingerprint of the authentic device.

It may also be possible to sabotage the controller and execute malicious routines to send

false commands to the actuator. Physical attacks against the plant is certainly another op-

tion. However, defending against direct physical access to the plant falls outside the realm

of the cyber world and hence the discussion of this chapter.

4.2 Problem Description

This work can be motivated with a realistic attack scenario as depicted in Figure 4.1, where

a centrifuge (the plant) and a small part of the SCADA system are shown. The objective of

the system is to set the power of the centrifuge and monitor its safe operation from the su-

pervisory host. The control command is sent from the supervisory host over the local area

network (e.g., Ethernet) using industrial standard communication protocols, such as Mod-

bus or Ethernet/IP. The PLC starts the motor which drives the centrifuge upon receiving the

command from the host (e.g., set the centrifuge to run at 25% power). In the meantime, the

motor sends back its real-time speeds which are timestamped and encapsulated by the PLC

to the supervisory host. The PLC also receives various measurements (e.g., temperature,

vibration, etc.) from the sensors connected to the centrifuge and adjusts the control output

accordingly.

To bound the problem, this chapter focuses on attacking the system by spoofing the

falsified commands to control the devices, while sending back responses to the original

commands that can deceive the device fingerprint detection mechanism. The attacker’s

objectives are two-fold: a. to obtain the models and configurations of the devices (e.g.,

49

Set centrifuge to 25% power

Speed steadily rises to 75%

Set centrifuge
to 75% power

Response: Speed steadily
rises to 25%

S
ta

rt S
peed

Accelerate to 75%

S
en

se

Report

Accelerate to 25%

Response: Speed steadily
rises to 25%

Sensors

Centrifuge
(Model XYZ)

PLC

Supervisory
Host

Motor A

Motor A
Centrifuge

(Model XYZ)

Attacker

Infer devices based
on observations

Device Physics
Model

Analyze

Forge device’s
response under

original command

Figure 4.1: Attack model used in this chapter, where the attacker injects a false command to
the PLC and a forged response to the supervisory host. The attacker needs to first observe
the legitimate traffic to infer the actual devices’ models and configurations before spoofing
the response.

50

details related to the motors or centrifuges such as their weight and capacity); b. to forge

responses based on such information. It is worthy noting that the information related to

their physical properties is not explicitly transmitted in the network. Thus, the attacker can

only learn such information through passive observation of the network traffic in order to

minimize disturbance to the system before mounting the actual attack.

4.2.1 Attack Model

In this work, an attacker is assumed to have gained access to the corporate network and can

spoof the control command sent by the PLC to the actuators. He can modify the network

traffic between the PLC and the supervisory host by compromising the PLC firmware/pro-

gram, but does not have access to the supervisory host. Such an assumption is reasonable,

as the PLCs are usually not protected with mature defense mechanisms, while the supervi-

sory host is usually a relatively powerful computer system that is equipped with modernized

defense techniques. The attacker is also assumed to have only network access but no phys-

ical access to the target CPS, hence can only observe and modify the PLC firmware and

the network traffic. Such network traffic does not include direct information of the mod-

els (e.g., manufacturer’s name, model number) and configurations (e.g., load percentage)

of the sensors and actuators, as these devices are controlled with electrical signals by the

PLC, and do not directly transmit data/packets on the network. The attacker can carry out

reconnaissance first to collect data on the general system architecture, but does not have in-

formation on the specific model and configuration of each device. For example, an attacker

who targets a critical infrastructure such as a thermal power plant may be able to get infor-

mation on its commission date and capacity [72]. Finally, the attacker also has access to

the specifications for all models of the target device types, and can acquire specific models

of the devices to perform experiment and build a catalog of their signatures.

The attacker’s objective is to sabotage the physical process of the CPS by injecting a

false command to the PLC. However, the attacker is also required to deceive the IDS by

51

injecting the forged response corresponding to the original command, as the IDS ensures

the system is intact and normally operating by checking the response from the PLC against

the expected response from the underlying physical devices. Note that a naive replay attack

may result in a failure as mentioned in Section 4.1.1. Because of the imperfection in the

timing of the replay attack, the threshold for mounting a successful replay attack is high

[13]. Hence he must achieve enough precise timing control of the spoofed packets, whether

the spoofed packets were pre-recorded or dynamically generated.

4.2.2 Formal Definition of the Device Response Mimicry Attack Problem

The primary goal of this work is to infer the models and configurations of the devices in

CPSs. The assumptions used in this study include:

1. There exist N product models Di (i ∈ [1,N]) for a given device type. Each Di has

M configurations Di,j (j ∈ [1,M]).

2. The attacker initially does not have knowledge of the value for i and j. By observing

the legitimate responses Ri,j sent by a device D, the attacker classifies D into ia ∈

[1,N] and ja ∈ [1,M].

3. The attacker injects false command Ca to alter the original command C sent to the the

device Di,j , while spoofing the finite-time response Ria,ja of the device Dia,ja under

command C.

The problem can be formally defined as a two parts. The first part is a classification

task, where the product model ia and configuration ja needs to be determined based on the

observation ofRi,j and C. The second part is an attack on the binary classifier trained with

Ri,j , where goal is for the spoofed responseRia,ja to be classified as legitimate.

52

Table 4.1: List of CPS devices and their physical properties

Device Type Load Dependent Input Type Output Type Motion Type

Relay No Binary Binary N/A
Valve Slightly Binary/Analog Binary/Analog Linear
Pump Yes Binary Analog N/A

Stepper Motor Yes Analog Analog Rotary
Solenoid No Binary Binary Linear

Electric Motor Yes Analog Analog Rotary
Hydraulic Cylinder Yes Analog Analog Linear

4.3 Methodology

As stated in Section 4.2, the proposed method focuses on inferring the information of a

device in a CPS in two aspects: which specific product model a certain device corresponds

to, and what run-time configuration it runs in. For example: a motor in the schematic of

a CPS (e.g., a conveyor system in a factory controlled with SCADA) can be implemented

with the product selected from various brands and model numbers. The specific product

model number used during the construction of the system can be chosen from a variety

of available products, as long as it satisfies the required constraints. The parameters of

each model may also vary within a reasonable range, e.g., power rating at 500W versus

600W . The run-time configuration refers to the configurable states with which the device

directly interfaces in the CPS, e.g., the speed setting of the motor, and the load attached to

the motor’s output shaft.

4.3.1 Device Physics Modeling

To have an understanding of how the DMC inference technique can be applied among

different devices, it is necessary to first build the physical models of various devices. In

this section, the model of one device is built as an illustration, namely the electric motor.

Table 4.1 lists the comparison of seven common devices in a CPS and their physical prop-

erties. Load Dependent refers to whether the output behavior of the device depends on

53

its load. Input/Output Type means whether the device takes/generates binary (e.g., on/off,

closed/open) or analog (e.g., continuously variable speed) signal/states. Note that some de-

vices such as valves can have both binary and analog types of input/output, depending on

its model and application. Without loss of generality, three types of devices are leveraged

which cover the most variations in each property dimension to demonstrate the proposed

method, namely electric motor, relay, and valve. The electric motor is taken as a running

example and begin with the mathematical modeling of its device physics. The processes

for building three other types of devices can be found in the appendix.

There are mainly two types of motors, namely direct current (DC) motor and alternating

current (AC) motor. Each type is powered by its corresponding source of electricity. The

motors can be further classified by the internal construction, application, type of motion

output, and so on. For the purpose of modeling the physics of an electric motor, a specific

type named permanent magnet DC (PMDC) motor is chosen.

A PMDC motor is like similar to other motors, which consists of a stator and a rotor, as

shown in Figure 4.2a. In the case of a PMDC motor, the rotor is also the armature, which

carries current in the coils winding on it. The rotor has an integral part, called a com-

mutator, which can change the direction of current flowing in the coils. The commutator

ensures that the magnetic field generated by the rotor coils always produces a “repelling”

force which drives the rotor in the same direction. In contrast, the stator is the field and

produces a constant magnetic field that interacts with the rotor’s. The physical connection

of voltage to the armature is done through brushes, via the metal plates on the commutator

[74].

A physical model connecting the electrical domain to the mechanical domain is illus-

trated in Figure 4.2b. A circuit loop is formed between the positive and negative leads (i.e.,

brushes) connected by the rotor coils, where Es is the source DC voltage, iemf is the arma-

ture current,R is the armature resistance, andEo is the induced counter-electromotive force

(CEMF), as its polarity always acts against Es. Eo is generated on the abstract component

54

(a) Construction of a PMDC motor. The brushes are connected to the positive and negative voltages
[73].

(b) Model of the PMDC motor connecting the electrical and mechanical domains.

Figure 4.2: Physical construction and abstract model of permanent magnet DC motor.

55

EMF, which produces a torque τ on the shaft connected to the load through a bearing. The

load element models the total moment of inertia (MOI) Iload of the rotor itself and the ex-

ternal object driven by the motor. In practice, a bearing is used to support the rotor while

exerting a friction τ̂ on it, in the reversed direction of τ .

Using Ohm’s Law,

iemf =
Es − Eo

R
. (4.1)

The power P produced by EMF is defined as

P = Eoiemf . (4.2)

Eo is induced in the armature conductors as they cut the magnetic field produced by the

permanent magnets with winding coefficient Z and flux per pole F , given by the equation

Eo = ZnF/60, (4.3)

where n is the rotor’s rotation speed in revolutions per minute (RPM). Using Newton’s sec-

ond law for rotation, the torques τ and τ̂ , inertia Iload of the load and angular acceleration

α of the rotor can be expressed as τ − τ̂ = Iloadα. The mechanical power P is given by the

expression

P = τn× 2π

60
. (4.4)

Combine Equations 4.2 and 4.4 and plug in Equations 4.1 and 4.3,

A physical model connecting the electrical domain to the mechanical domain is illus-

trated in Figure 4.2b. A circuit loop is formed between the positive and negative leads (i.e.,

brushes) connected by the rotor coils, where Es is the source DC voltage, iemf is the arma-

ture current,R is the armature resistance, andEo is the induced counter-electromotive force

(CEMF), as its polarity always acts against Es. Eo is generated on the abstract component

EMF, which produces a torque τ on the shaft connected to the load through a bearing and

56

can be expressed as

Eo = ZnF/60, (4.5)

where Z is the winding coefficient, n is the rotor’s rotation speed, and F is the flux per

pole. Using Ohm’s Law and Newton’s second law for rotation, the equation which governs

the dynamics of the motor is thus

τ =
ZF (Es − ZnF/60)

2πR
. (4.6)

Consider the case where the load is initially at reset and accelerated by applying a constant

voltage Es to the motor. The angular velocity ω over time t satisfies the equation

ω(t) =

∫
αdt =

∫
ZF (Es − ZnF/60)

2πRIload
dt−

∫
τ̂

Iload
dt, (4.7)

under the boundary condition ω(0) = 0. Solving the differential Equation 4.7 and substi-

tuting n = 30
π
ω, an exponential decay function is obtained

ω(t) = −Ae−t/B + A, (4.8)

where A = (ZF
2πR

Es − τ̂) 4π2R
Z2F 2 and B = 4π2R

Z2F 2 Iload. Recall that Z, F , R are constants de-

termined by the specific construction of a motor, hence are product model related. τ̂ is

independent of ω and can be assumed to be constant too. Therefore, A is linearly corre-

lated to the source voltage Es and B is proportional to Iload. A is product model related

parameter, while B is a configuration related parameter given a fixed product model.

Recall that in Figure 1.1, the controller sends a command to the actuator and receives

response when the actuator executes the command. In this case, the command can be

start motor, and the response is the timestamped rotation speed of the motor. As network

packets containing the timestamps and speed values are sent back from the controller to the

other host(s), a time series can be extracted from the packets that correspond to Equation

57

4.8. Such time series satisfy the equation when the proper device physics parameters are

plugged in.

4.3.2 Characterization

The output type of each device in Table 4.1 is classified as either binary or analog. Com-

bining this with the physics models of each device, it can be found that each device has a

deterministic response which can be observed and measured. Two types of response from

a CPS device are defined as follows.

Operation Curve. For those that have an analog output, e.g., speed of a motor, position

of a modulating valve, a time series data can be obtained by continuously sampling the

output value with a timestamp. This type of data is referred to as the operation curve.

Operation Time. Devices with binary output, such as the open/closed states of a relay

or a two-position valve can be characterized based on the time difference between the

applied signal and the desired state change. This time difference is called the operation

time

The operation curve is a direct result of the signal given to the device, as well as the

specific physical construction of the device itself. Similar to the principle behind the oper-

ation curve, the operation time is also dependent on the physics process inside the device.

Therefore, both the operation curve and the operation time are a function of the device

physics, defined by its governing equations and the parameters. Whether the reverse is also

true is the key to infer the device physics from its observable output, and will be discussed

in the following sections.

4.3.3 Device Model and Configuration Inference

There are two methods to infer the DMC in CPS, namely forward model inference and

backward model inference. The forward model inference method takes as input the math-

ematical equations relating the device’s product model and run-time configuration to its

58

operation curve or operation time. It then simulate the model under all parameter combina-

tions and compare the output with the observed response to find the closest one. The back-

ward model inference method takes the same equations as well as the observed response

as input, and reverse the process to compute the product model and run-time configuration

related parameters.

Forward Model Inference

To classify the device feedback into the specific product and configuration, one way is to

simulate the device’s operation using the mathematical models derived in Section 4.3.1.

A software specifically designed for this purpose called Wolfram SystemModeler [75] is

used. Figure 4.3 shows an example an industrial robot simulation using the software. The

system is modeled using a language called Modelica, which is an object-oriented, equation

based language to conveniently model complex physical systems. Modelica can be used

to model many CPS related domains, including mechanical, electrical, hydraulic, thermal,

control, electric power or process-oriented sub-components. More importantly, the open

source Modelica Standard Library contains thousands of model components and functions

[76] which can be easily extended to model the devices in CPS.

For each type of device, a Modelica modelM(P ,O) is constructed, which contains the

equations of the physics process of the device. P is a vector containing all the parameters

related to the product model and run-time configuration, and O is the observable output

of the device. There are a total of np set of combinations of the values in P . Figure 4.4

shows the Modelica modelMPMDC of the PMDC motor based on the equations in Section

4.3.1, where PPMDC includes R, Z and F of the motor, as well as Iload and Eo from its

configuration. The output O is a time series value ω(t).

A simulation ofM(P ,O) is then performed using Wolfram SystemModeler for each

set of combination of the values Pi and a corresponding outputOi is generated. A mapping

N exists between each Pi and Oi, where i ∈ [1, np]. Finally, a distance disti between the

59

(a) Graphical representation.

(b) 3D rendering showing the path of each component.

60

(c) Plot of the angular velocities for each axis.

Figure 4.3: An example showing the model and simulation results of an industrial robot
using Wolfram SystemModeler.

observed device responseOattack and eachOi is calculated using the appropriate metric. In

this work a number of different metrics are used to compare their performance, including

Euclidean, Chebychev, Manhattan and cosine distance. Finally, all distances disti, i ∈

[1, np] are ranked in the ascending order. The Oj with the top k distance distj, j ∈ [1, k]

are thus the closely matched set of device responses, and a simple lookup in the mapping

N gives the k most likely set of DMCs Pj .

Backward Model Inference

Another method which used to achieve the same goal, i.e., identify the device product

model and configuration from its response is using non-linear least squares method. It is

a form of least squares analysis used to fit a set of m observations with a model that is

non-linear in n unknown parameters (m > n).

Consider device’s response to be a set of m data points, (t1,V1), (t2,V2), ..., (tm,Vm).

Without loss of generality, Vi is a vector of all the values in the response at time ti, where i ∈

[1,m]. Assume that the function mapping all the product model and run-time configuration

61

model DCMotorEMF " E l e c t r o m o t o r i c f o r c e (e l e c t r i c / mechanic
t r a n s f o r m e r) o f a pe rmanen t magnet DC motor "

parameter Boolean u s e S u p p o r t = f a l s e "= t r u e , i f s u p p o r t
f l a n g e e n a b l e d , o t h e r w i s e i m p l i c i t l y grounded " ;

parameter M o d e l i c a . S I u n i t s . E l e c t r i c a l T o r q u e C o n s t a n t k "
T r a n s f o r m a t i o n c o e f f i c i e n t " ;

M o d e l i c a . S I u n i t s . V o l t a g e E0 (s t a r t = 0) " Induced v o l t a g e " ;
M o d e l i c a . S I u n i t s . C u r r e n t i " C u r r e n t f l o w i n g from p o s i t i v e t o

n e g a t i v e p i n " ;
M o d e l i c a . S I u n i t s . A n g l e p h i " Angle o f s h a f t f l a n g e wi th r e s p e c t

t o s u p p o r t (= f l a n g e . p h i − s u p p o r t . p h i) " ;
M o d e l i c a . S I u n i t s . A n g u l a r V e l o c i t y w " Angula r v e l o c i t y o f f l a n g e

r e l a t i v e t o s u p p o r t " ;
M o d e l i c a . E l e c t r i c a l . A n a l o g . I n t e r f a c e s . P o s i t i v e P i n p ;
M o d e l i c a . E l e c t r i c a l . A n a l o g . I n t e r f a c e s . N e g a t i v e P i n n ;
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . I n t e r f a c e s . F l a n g e _ b f l a n g e ;
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . I n t e r f a c e s . S u p p o r t s u p p o r t i f

u s e S u p p o r t " S u p p o r t / h o u s i n g of emf s h a f t " ;
equat ion

p h i = f l a n g e . p h i − i n t e r n a l S u p p o r t . p h i ;
w = der (p h i) ;
E0 = p . v − n . v ;
E0 = k * w / (2 * M o d e l i c a . C o n s t a n t s . p i) ;
0 = p . i + n . i ;
i = p . i ;
f l a n g e . t a u = −k * i / (2 * M o d e l i c a . C o n s t a n t s . p i) ;
connect (i n t e r n a l S u p p o r t . f l a n g e , s u p p o r t) ;
connect (i n t e r n a l S u p p o r t . f l a n g e , f i x e d . f l a n g e) ;

p r o t e c t e d
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . C o m p o n e n t s . F i x e d f i x e d i f not

u s e S u p p o r t ;
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . I n t e r f a c e s . I n t e r n a l S u p p o r t

i n t e r n a l S u p p o r t (t a u = −f l a n g e . t a u) ;
end DCMotorEMF ;

(a) EMF component of a PMDC motor.

62

model DCMotorFr i c t i on "DC Motor wi th b e a r i n g f r i c t i o n "
parameter Real R ;
parameter Real J ;
parameter Real EMFk ;
parameter Real f r i c t i o n ;
M o d e l i c a . E l e c t r i c a l . A n a l o g . I n t e r f a c e s . P o s i t i v e P i n p in_p ;
M o d e l i c a . E l e c t r i c a l . A n a l o g . I n t e r f a c e s . N e g a t i v e P i n p in_n ;
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . I n t e r f a c e s . F l a n g e _ b f l a n g e _ b ;
M o d e l i c a . E l e c t r i c a l . A n a l o g . B a s i c . R e s i s t o r r e s i s t o r (R = R) ;
M o d e l i c a . E l e c t r i c a l . A n a l o g . B a s i c . G r o u n d ground ;
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . C o m p o n e n t s . I n e r t i a i n e r t i a (J = J

) ;
CPS.DCMotorEMF dCMotorEMF (k = EMFk) ;
M o d e l i c a . M e c h a n i c s . R o t a t i o n a l . C o m p o n e n t s . B e a r i n g F r i c t i o n

b e a r i n g F r i c t i o n (t a u _ p o s = [0 , f r i c t i o n ; 1 , f r i c t i o n] , peak
= 1) ;

equat ion
connect (p i n _ p , r e s i s t o r . p) ;
connect (g r o u n d . p , p in_n) ;
connect (r e s i s t o r . n , dCMotorEMF.p) ;
connect (dCMotorEMF.n, p in_n) ;
connect (dCMotorEMF.f lange , b e a r i n g F r i c t i o n . f l a n g e _ a) ;
connect (b e a r i n g F r i c t i o n . f l a n g e _ b , i n e r t i a . f l a n g e _ a) ;
connect (i n e r t i a . f l a n g e _ b , f l a n g e _ b) ;

end DCMotorFr i c t i on ;

(b) A PMDC motor with bearing friction and MOI.

Figure 4.4: Modelica models for a PMDC motor. Code used from Modelica Standard
Library is not shown.

63

related parameters P to V is V = f(t,P), where P = (P1, P2, ..., Pn) (m > n). The goal

is to find the vector P such that the curve best fits the given data in the sense of the least

sum of squares, i.e.,

S =
m∑
i=1

Ri ·Ri (4.9)

is minimized, where the residualsRi are given by

Ri = V − f(t,P). (4.10)

The Gauss-Newton algorithm can be used to solve this optimization problem. Given an

initial value of P0, an iterative search updates the parameters by

Pk+1 = Pk +4P , (4.11)

where k is the iteration number. The best-fitting P is found when the algorithm converges.

The final step is to map the values in P to the device’s product model and run-time

configuration. While the latter can be interpreted numerically, the former one can be found

using the specification sheets of a set of candidate devices commonly found in CPSs.

The advantage of this method is that it does not require the assumption of a previously

known device list, because it guarantees to find a set of parameters that makes the model

output best fit the observed response.

4.3.4 Device Response Packets Synthesis

The last step is to synthesize the device response packets containing the timestamped mea-

surements. The most straightforward method is to plug the parameter values found in

Section 4.3.3 back into the device physics modeling equations in Section 4.3.1 using the

values corresponding to the device models and configurations. However, the parameter

values obtained using the non-linear least square method can vary across different observa-

64

tions of the device’s responses, even when the DMC is constant. This may arise either due

to the measurement errors or slight change in these device parameters themselves (e.g., the

resistance varies when the temperature changes). Therefore, a sampling process is added

to randomly choose an observed value for each parameter before plugging in.

4.4 Experiments

PLC

Supervisory

Host

Relay

Command

Response

Close/Open

Valve

Pump
Higher

Reservoir

Lower

Reservoir

Shut/
Open

On/Off

Figure 4.5: Block diagram of Testbed 1 setup. The valve and relay are of specific interest
in this study.

It comes with extreme difficulty to obtain real data in CPS due to the cost associated

with interfering the normal operation of a potentially valuable system. To address it, two

testbeds are set up using real industrial standard devices that simulate corresponding sys-

tems that have realistic objectives, such as balancing the liquid level in a container or stir-

ring materials during a chemical reaction in a chemical factory. Each of the testbeds could

be a potentially valuable target for the attacker.

65

PLC

Supervisory

Host

Relay

Command

Response

Close/Open

On/Off Control
Power

Motor
Controller

SenseReport

Hall
Sensor Actuate

Set Speed

Figure 4.6: Block diagram of Testbed 2 setup. The motor and relay are of specific interest
in this study.

Among the devices used to build the testbeds, three types of devices are focused on to

infer the DMC of each of the devices, namely electric motor, relay, and valve. Leveraging

the three types of devices, two physical testbeds were constructed that appropriately mir-

ror a real-world CPS environment, as shown in Figure 4.5 and 4.6. In this section, how

each type of chosen device operates in the testbed is explained, as well as the experiment

procedures and parameter settings.

In general, the responses of each type of device are collected, and the operation curves

or operation times of each device labeled with the actual model i ∈ [1,N] and configuration

settings j ∈ [1,M] are extracted. These operation curves and operation times are then used

as the input to the classifiers to generate the predicted model ia ∈ [1,N] and configuration

ja ∈ [1,M].

In this section, the common setup across each testbed is first explained. Then the

methodology used to attack each of the three types of devices used in the testbeds are

discussed, namely electric motors, relays and valves, followed by explaining the technique

used to craft precisely timed response packets. Finally, the results of attacking the three

types of devices are presented and interpreted.

66

4.4.1 Timestamps and Protocols

As can be seen in Figure 3.4, a supervisory host sends high-level command to the controller,

and the controller processes the command in the form of network packets and directly

controls the field device (motor in this case) to perform the action. This setup corresponds

to the Level 0 to 2 in a SCADA architecture. To closely mimic an industrial environment,

a PLC is chosen as the controller among other available options (e.g., a PC or embedded

platform). In addition to adding authenticity to the testbed, the PLC also comes with an

important feature that may be absent from other controllers, i.e., a high precision clock that

is used to timestamp the events. The PLC used is an Allen-Bradley Micrologix 1400 series.

It has a 32-bit high speed clock which provides a timing resolution of 9.92063492µs. Due

to the simple program flow and predictable program scan cycles of a PLC, the timing for

an event at the PLC can almost always occur immediately after it. In comparison, neither a

PC nor an embedded controller such as a Raspberry Pi is able to achieve a constant timing

resolution like a PLC, because of their non-real time operating system or much slower clock

frequency. The timestamps can either be embedded natively in the packet if supported by

the protocol (e.g., distributed network protocol (DNP3)), or taken by the program running

on a PLC, if the protocol does not have native support for timestamps (e.g., Modbus).

Without loss of generality, the latter method is chosen in all experiments. Note that the

timestamps are transmitted to the supervisory host as network packets.

For the command and response sent between the supervisory host and the PLC, Modbus

is used as the communication protocol, as it has become a de facto standard communication

protocol and is now a commonly available means of connecting industrial devices [77]. The

supervisory host runs a Python script leveraging the modbus-tk library and acts as an HMI

running on the engineering workstation. It is responsible for initiating the communication

and sending command to the PLC acting as a Modbus slave, as well as constantly checking

for new responses. Each response contains an event, such as a new speed reading in the

case of the motor testbed. The event is always accompanied with a timestamp taken by the

67

high speed clock on the PLC.

4.4.2 Electric Motor

The testbed setup of the electric motor can be seen in Figure 4.6. Note that although the

command sent from the host contained both the power setting and a start command, only

the power setting is applied at the motor controller as different power output, which is set

prior to the start of the motor. This is intended to emulate the scenario where the motor is of

a certain model that operates under the given power ratings. Thus, the power setting would

be obscured from an attacker who can only observe the network traffic. The shaft of the

motor is connected to a load with variable MOI as shown in Figure 3.2. Two hall sensors are

placed to enable the PLC to calculate the angular speed of the load. A timestamp relative to

the command received from the host is taken and read by the host together with the angular

speed of the motor, which forms an operation curve.

Table 4.2: Experiment Settings of the Electric Motor Testbed

Parameter Type Range

EMF constant Product model Constant
Armature resistance Product model Constant

Power rating Product model 5 values
Load MOI Run-time configuration 16 values

Both the product model and the run-time configuration related parameters are variable

in this testbed. For each start command sent from the host, the responses from the motor

is collected while varying its product model and run-time configurations. In summary, 100

trials are performed for each of the 80 experiment settings, and all 8, 000 sets of data are

collected. The experiment settings are shown in Table 4.2.

4.4.3 Relay

The relay testbed setup shared a similar structure as that of the electric motor, except that

the focus is on different models of the relay and hence are swapped with the motors in

68

Table 4.3: Key Parameters of the Relays Taken from Their Specifications

Model Close Time Open Time

Schneider 785XBXCD-24D 20ms 20ms
Omron G2RV-SR500 DC24 20ms 20ms

TE K10P-11D15-24 10ms 13ms
TE KUEP-11D15-24 10ms 15ms
TE KUIP-14D15-24 15ms 20ms
TE KUL-11D15D-24 25ms 25ms
TE KUP-14D15-24 15ms 20ms

Omron MKS3PI DC24 20ms 30ms
TE MT221024 10ms 15ms

Schneider RSLZVA1 5ms 12ms

the testbed. Because the operation of the relay is hardly affected by the load it controls

(i.e., run-time configuration), therefore no load was connected as was in the electric motor

testbed.

In reality, the selection of the specific relay model at a single point in a system depends

on the application requirements, e.g., the control circuit voltage, socket type, rated operat-

ing voltage and current, etc. To set up a realistic experiment, the set of relays are selected

using common industrial settings, i.e., 24V DC control voltage and DIN rail mounted re-

lays. A total of 10 different relays are found as listed in Table 4.3. The supervisory host sent

either a close or open command to the PLC depending on the last status of the relay. The

PLC records the time when the command is received, and either energizes or de-energizes

the coil of the relay accordingly. It then polls its input pin connected to one of the contacts

of the relay output, while the other contact is connected to a logic high voltage. When the

PLC first detects a signal level change, it again records the command completion time. The

difference of the two timestamps are calculated and stored with a flag, which can be read

by the host as the operation time. For each relay, the close/open cycle is collected for 1, 000

operations.

69

Table 4.4: Key Parameters of the Valves Taken from Their Specifications

Model Type Open/Close Time

Dwyer WE01-CTD01-A Two-Position 4s
Dwyer WE01-CMD01-A Modulating 10s
Dwyer WE01-GTD02-A Two-Position 20s

4.4.4 Valve

Similar to the relay testbed, the components from the supervisory host to the PLC are kept,

while replacing the field device with three different valve models listed in Table 4.4.

This setup studies the correlation between the operation of each valve and its specifica-

tion sheet. In each experiment, only a single valve is connected to the PLC, and different

models are swapped. Without loss of generality, two types of valves are used in the ex-

periment, namely the two-position valve and the modulating valve. The two-position valve

operates in a binary manner, i.e., the PLC outputs a binary signal to fully close or open

input to the valve. When the valve finished executing the action, a limit switch in the valve

would be triggered, and thus the event could be detected by the PLC. A time difference is

calculated between the reception of the command and detection of the completion, and is

read by the host as an operation time. The modulating valve operates in an analog manner,

i.e., the PLC outputs a 4−20mA current loop to the valve that linearly translates to a valve

position. The valve compares the current loop input with its current position, and executes

accordingly to adjust for the difference. Meanwhile, its physical position is continuously

translated to another 4−20mA current loop, which can be read by the PLC. The PLC keeps

polling the readings and stores in its memory with timestamps, which in turn is read by the

host as an operation curve. To compare this operation curve of the valve with its open/close

time listed in Table 4.4, the operation curve is converted to an operation time by defining

a cutoff position that the valve reaches at the end of each actuation, and the difference be-

tween the command time and the time of the cutoff position is computed. Another reason

which calls for the conversion is that the modulating valves are changing their positions at

70

a constant speed, unlike the electric motor. Hence converting their operation curve to the

operation time resulted in negligible loss of information.

A second testbed is also built to study the impact of load on the valve. The load is

defined as the the minimal subset of the process that directly interacts with the device.

For a valve, its load is the fluid that it controls, which may be of various viscosity. A

testbed is constructed with a pump, a valve and a reservoir, and are connected using tubes

to form a closed sealing loop. Different types of fluids are poured into the reservoir in

each experiment, including olive oil, canola oil and honey, sorted in ascending order of

their viscosity. The pump is used to provide an adequate amount of pressure to keep the

fluid flowing when the valve is open. For each fluid used in the loop, the same experiment

procedure used for the two-position valve is carried out to measure the operation time of

the same valve under different load.

4.4.5 Implementing Timestamped Forged Response Packets

As mentioned in 4.1.1, an attacker with the forged response packets faces the challenge

of sending them with accurate timing. In [13], the authors mentioned that an attacker

who has a device with limited capability can be detected due to low clock precision and

clock drifting. To overcome this issue, the PLC’s real-time program execution feature is

leveraged. During the experiment, the timestamps and measurement values in the generated

responses are stored in the PLC’s memory table and loaded by the ladder logic diagram

sequentially. The algorithm can be seen in Algorithm 1. Specifically, starting from the

first stored timestamp/measurement value pair in the table, the time t since a command

has been received is taken using the high-speed clock’s value in the PLC. A pointer index

p is initialized to 0 following each command. The elapsed time is compared with the

timestamp tp stored in the table ti. If t ≥ ti, the pth measurement value (if the device has

an operation curve) or the flag value (if the device has an operation time) is copied to the

Modbus memory for the supervisory host to read, and p is incremented by 1. The spoofing

71

process ends when all responses are sent.

4.4.6 Results

This section shows the results of inferring each device’s product model and configurations,

as well as the attacker’s forged responses. The performance of the inferring technique is

measured with three standard metrics in classification tasks, namely accuracy, precision

and recall. Let TP , TN , FP and FN be true positive, true negative, false positive and

false negative, respectively. Accuracy is defined as TP+TN
TP+TN+FP+FN

. Precision is defined

as TP
TP+FP

. Recall is defined as TP
TP+FN

. Another metric is also introduced, namely estima-

tion error tolerance, when evaluating the performance of device model and configuration

inference. The estimation error tolerance is defined as the number of values between the es-

timated and the correct values, when all possible values for the given parameter are sorted.

Electric motor. The authentic responses from the electric motor were gathered by

varying both its models and run-time configurations, namely the power ratings and the MOI

of the load. For better visibility, the aggregated operation curves are shown as heat maps in

Figure 4.7. Each heat map was generated by plotting the density of the 100 operation curves

for every model or configuration setting. It can be seen that the operation curves are clearly

distinguishable and are highly correlated with the parameter values. In the experiment,

5 different power ratings are used (to emulate five different models of electric motors,

corresponding to the product model related parameter A from Section 4.3.1) as well as 16

different load settings (corresponding to the configuration related parameterB from Section

4.3.1). Thus there are 80 different combinations and 8, 000 operation curves in total. Each

operation curve is taken as a response from this device and its model and configuration are

inferred. The result is shown in Figure 4.8, which shows that the aforementioned method

is able to correctly infer 98.6% of the power ratings (device model) within a tolerance of

1 value, and 99.9% of the load values (device configuration) within 3 values. The non-

zero error tolerance values exist because the operation of physical devices could not be

72

0 5000 10000 15000 20000

time (ms)

600

500

400

300

200

100

0

sp
ee

d
(R

P
M

)

10

20

30

40

50

60

70

80

90

100

da
ta

 d
en

si
ty

(a) 5 Different Power Ratings.

0 2500 5000 7500 10000

time (ms)

700

600

500

400

300

200

100

0

sp
ee

d
(R

P
M

)

10

20

30

40

50

60

70

80

90

100

da
ta

 d
en

si
ty

(b) 16 Different Load MOI.

Figure 4.7: Heat map plot of the electric motor’s operation curves from different models
and under various run-time configurations. Each curve is aggregated over 100 runs.

73

0 0.5 1 1.5 2 2.5 3 3.5 4

Estimation Error Tolerance

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n/
Re

ca
ll

accuracy
precision
recall

(a) Accuracy, Precision and Recall of Power Rating Inference.

0 5 10 15

Estimation Error Tolerance

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n/
Re

ca
ll

accuracy
precision
recall

(b) Accuracy, Precision and Recall of Load MOI Inference.

Figure 4.8: Performance of the run-time configuration inference of the electric motor. The
estimation error tolerance is the allowed distance between the estimated value and the at-
tacker’s assumed value.

74

Figure 4.9: Comparison of the authentic and spoofed responses from an electric motor.

perfectly modeled with the equations. For example, there is always energy loss in the form

of heat or vibration, which causes the inferred power ratings to be lower than the actual

power consumed. Also note that under the same estimation error tolerance, an increase

in the number of possible values for a parameter may adversely affect the performance

of the inference results. This is expected from the method used, as a larger number of

possible values for a parameter typically means these values are more densely distributed

over a range. Nevertheless, the differences between the inferred values and the actual

ones corresponding to the DMC are found to be systematic errors, which can trivially be

calculated either by knowing at least one actual values or a prior experiment conducted by

the attacker using testbeds. Moreover, when using these DMC parameter values to generate

the forged responses, the difference with the authentic responses is negligible, as shown in

Figure 4.9. The DMC inference method is applied to the forged responses and all of the

responses correspond to the actual DMC are found. Hence the device physics fingerprinting

75

method in [13] cannot detect the forgery attack.

0 100 200 300 400 500 600 700 800 900 1000

Sample size

74

76

78

80

82

84

86

88

A
cc

ur
ac

y
(%

)

0.65

0.7

0.75

0.8

0.85

0.9

Pr
ec

is
io

n/
Re

ca
ll

accuracy
precision
recall

Figure 4.10: Classification performance using relays’ operation time.

Relay. Similarly, the authentic responses of relays were collected first. Each relay

model exhibited a densely distributed closing/opening time around a mean value, with some

overlap among several models. Because the operation time of each relay has been explicitly

noted in its specifications (which is an important factor in choosing the right relay for any

time-critical application for safety), the logical next step was to test the correlation between

the relays’ specified operation time values with their experimental values. However, only

0.54 and 0.58 correlation coefficients are found for closing and opening time, respectively,

using product-moment correlation coefficient (PPMCC). Thus, each model is focused on

and ranked according to the distance between its experimental operation time and the spec-

ification values of all 10 models. Since the operation time is a 2-dimensional vector, a

number of distancing metrics are used, including Euclidean, Chebychev and Manhattan. It

is found that the Euclidean metric performs the best among all. In summary, when using

76

the Euclidean distance metric, six relays rank top 3, which means that when inferring the

model of the relays, the attacker is guaranteed to find the correct model within three trials

(which can be compared with the estimation error tolerance in the electric motor’s results).

However, if the reference operation time of each candidate relay model can be experimen-

tally measured (the attacker may acquire every model of a device) instead of being taken

from their specifications, the classification performance can be greatly improved as shown

in Figure 4.10. Because the cost of data collection increases with the number of times the

measurements are taken, the sample size is varied from 10 to 1, 000 to show the relation-

ship between the classification performance and the resourcefulness of the attackers. The

classification is carried out by training a Nearest Neighbor classifier in 10-Fold under each

sample size. Because the forged responses are crafted based on the inferred model of relay,

the accuracy of classifying them into the DMC (a correct classification means a successful

attack) is not shown as it followed a similar curve as the accuracy curve in Figure 4.10.

Valve. In contrary to the relays, the valves’ actual operation time values were very

close to their specification values, and thus can all be correctly inferred without separate

measurements. As shown in Figure 4.11, the distribution of the closing and opening time of

each valve was adjacent to the corresponding values listed in Table 4.4. The only misalign-

ment is the modulating valve, with model number WE01-CMD01-A, which has a slightly

larger operation time than expected. Since it did not have a binary output as the other two

valves did, it was not obvious to define an exact position of the valve as fully closed or

open. As explained in Section 4.4.4, heuristic values were used to derive the operation time

from the its operation curves, which lead to the minor offset. Nevertheless, this does not

influence the performance of the proposed inference method, as all three valves’ operation

time was clearly distinguishable. For all three valves used in the experiment, the accuracy

of inference is 100% and both precision and recall remain 1.0. All of the forged responses

were also identified as the intended model of valve by the device physics fingerprinting

method in [13].

77

(a) Closing Operation Time.

(b) Opening Operation Time.

Figure 4.11: Histogram of the valves’ operation time. Dashed lines indicates the specifica-
tion values.

78

(a) Relay’s operation time over 50, 000 operations.

(b) Valve’s operation time over 50, 000 operations.

Figure 4.12: Wearing and aging test of relay and valve.

79

Wearing and Aging. The physical nature of the devices means that they may suffer

from wearing and aging effects in the long term, especially in an industrial environment

where the devices are used frequently. In such case, the parameters of the device physics

model could deviate from its ideal values. For example, the operation time of a mechanical

relay depends partially on the electromagnetic force generated and the force in its spring.

As the number of operations increases, the spring may suffer from fatigue, which causes the

deviation of the relay’s operation time. Similarly, a operation time of a valve may deviate as

it keeps operating throughout its lifetime. To have a brief understanding of how this affects

the aforementioned technique, extended tests are performed with both testbeds used in the

experiments, and different changes in their operation curves or operation time are observed.

Briefly, only the valve shows a deviation in its operation time. For example, Figure 4.12a

shows the operation time recorded over 50, 000 times of open/close operation of a relay

(Omron MKS3PI DC24), which is rated to be operated at 18, 000ops./hour and with a

mechanical endurance of 5×106 operations. As it is challenging to perform measurements

over its entire lifetime, its maximum operating frequency is used to accelerate the wearing

and aging effects. Moving average is used as the metric, with the window size set to 50.

However, no evidence is found that shows the operation time changing during the test. On

the other hand, the valve used in the wearing and aging test (Dwyer WE01-CTD01-A)

does exhibit a gradual increase in its operation times as shown in Figure 4.12b. Namely,

the moving average of its closing time increases from 3883ms to 3943ms, and that of its

opening time increase from 3814ms to 3860ms. The increase over the 50, 000 operations

is 1.5% and 1.2%, respectively. At this rate, it would take approximately 3×106 operations

before its operation time becomes indistinguishable from the other models used in the

experiments. The experiments show that within reasonable amount of device operation

frequency, the device physics maintains relatively constant. Hence, as a first look, the

performance of the proposed DMC inference technique is insignificantly affected by the

effect of wearing and aging of devices. More extensive experiments are planned to find out

80

the long-term impact on the performance of the aforementioned technique in future works.

4.5 Discussion

4.5.1 Applicability to Other Field Protocols

In the experiment,Modbus is employed as the communication protocol used between the

PLC and the host. In reality, other protocols may be used depending on the specific ap-

plication, such as DNP3, Common Industrial Protocol (CIP), BACNet, or ProfiNET. Most

of the protocols are designed without security features and transmit application layer data

(e.g., the timestamped values sent by the actuators) in clear text. However, some protocols

have now been modified or designed with security in mind (albeit rarely used in practice),

and use encryption to protect data privacy and data integrity, such as secure DNP3. In such

cases, the system still may not be exempt from an attacker who has access to the PLC’s

firmware or program. As have been discussed in Section 4.4.6, the application layer data

is decrypted in the PLC if 1) the protocol natively supports timestamping or 2) timestamp-

ing function is added to the PLC program. In the last case where timestamps can only be

obtained at the tapping point, an extra step need to be employed to correlate the timestamp

information at the tapping point with the value-only data decrypted at the PLC, in order to

produce the accurate time series values generate by the actuators. The attack’s performance

can be affected if the attacker’s source of time is different from the one used at the tapping

point.

4.5.2 Applicability to Other Device Types

Although the methodology is only demonstrated using three types of CPS devices, it can

be generalized to many other devices that share similar properties. Because the majority

of actuators in CPSs are made of mechanical or electro-mechanical components that obey

the laws of physics, and rarely include programmable components, their operations can be

very stable in every actuation. Additionally, given a specific command of actuation, these

81

actuators’ response signals in the temporal domain are tightly correlated with their models

and configurations. The motion of most actuators (such as electric motor, relay, valve,

solenoid, and stepper motor, etc.) can be described with first- or second-order differential

equations, which enables the mathematical model inversion that leads to the inference of the

DMC. The method can be applied as long as these devices can be modeled with equations,

which are fitted with the operation curves or operation time of the devices. Depending

on the type of device, the aforementioned method may be able to infer either its model,

configuration or both. The cost associated with the method comes mostly from modeling

the devices. However, some device types may take more effort to model, such as the turbine

in a thermal power plant, due to the complicated computations involved with thermal and

fluid dynamics.

4.5.3 Defending Against CPS Mimicry Attacks

Most of the existing defenses against mimicry attacks [78] focus on the IT domain. For

example, some researchers proposed to use system call trace to enforce the correct pro-

gram execution [79, 80]. Another paper used control-flow integrity (CFI) checks to prevent

attacks from arbitrarily controlling program behavior [81]. However, such solutions can

hardly be applied in the CPS environment, due to the difficulty of instrumenting code ex-

ecution in the PLC. Moreover, the attack can be implemented on the PLC program level,

which does not change the control flow of the firmware. A related work [55] attempted

to design a PLC-compatible CFI mechanism. However, the authors mentioned that their

framework could not be implemented on a real PLC and used an open source software

instead. Therefore, a new defense technique is proposed.

It is worth noting that although Modbus - a communication protocol with no encryption

- has been used in this experiment, however, even when using a protocol which supports

encryption, the proposed mimicry attack will still be successful. This is because the en-

cryption only exists between the PLC and the supervisory host, and the data has to be plain

82

text in PLC’s memory. An attacker who compromises the PLC’s firmware or program can

access the PLC’s memory regardless of the encryption used in the communication protocol.

An intuitive countermeasure is to inject noise into the operation curve or operation time

when sending the response packets from the PLC, or at the sensor which is measuring the

physical signal. While this may prevent an attacker from obtaining an accurate DMC and

hence generate the correct response, there are two drawbacks of this approach. First, the

control algorithm of certain types of devices may leverage these sensory signal inputs, then

adjust the output signal to the actuator to achieve optimal operation of the device. Noise

in the sensory input may interfere with such control algorithm and degrade the safe and

smooth operation of the CPS. Second, the noise-injected responses may interfere with the

device fingerprint based defense system, and inadvertently increase the false positive rate.

Therefore, adding noise is not a feasible option.

Based on the observation in this study, it can be found that in order for the responses

to be generated and spoofed in time when a command is received, the attacker needs to

pre-compute the timestamps and measurements of a device and store the data in PLC’s

memory for fast access. Storing such data over another network device may not meet

the real-time performance requirement of sending the responses. Also, unlike a computer

program which uses the stack and heap which are dynamic in memory, a PLC program

accesses its memory via assigned blocks arranged in table files, which almost always uses

a known amount of memory in fixed locations. Therefore, a challenge-response defense

framework is proposed as shown in Figure 4.13. The steps are described as follows:

1. In the initial setup, the (potentially large) unused memory in a PLC is filled with

pseudo-random data known to the supervisory host. Essentially, the supervisory host

keeps a copy of all unused memory of every PLC in its network. Typically, the user

memory in PLC is less than 100MB (e.g., [82, 83], which leaves even less space after

the control program has been loaded.

2. During normal operation, the supervisory host periodically sends a request to the

83

Random
Data

0100

0000010

1101110

...

Random
Data

0100

0000010

1101110

...

Supervisory Host PLC

Program Unused Memory Space

①

②

③

Compute: V=F(start_addr,

end_addr)

Verify

Figure 4.13: Challenge-response framework to defend against device physics mimicry at-
tacks.

84

PLC to apply a function F over the data in a randomly chosen region of its unused

memory [start_addr, end_addr]. Such function can be XOR, hash, etc.

3. The PLC computes and sends the result V = F (start_addr, end_addr) back to the

supervisory host. If there is a mismatch or a certain time threshold is exceeded, an

alarm can be raised.

The attacker may choose to minimize memory usage and dynamically generate the re-

sponses from a few parameters instead of storing a large amount of pre-computed data in

the PLC’s memory. However, this will add a substantial amount of delay to the response

packets.

4.5.4 Limitations

In this section, several limitations of this work and their influences are discussed.

Modeling Accuracy. Because the accuracy of the proposed DMC inference technique

is highly dependent on the estimation of the parameters in the physics model of the device,

such estimation can be less accurate when there is a mismatch between the speculated

model and the real device. Thus, a comprehensive analysis may be required to understand

the anatomy of the device. The model (and parameters) may also deviate from its original

values due to wearing and aging of the physical components in the long term, although the

extent to which this may affect the performance of the proposed technique varies among

different types of devices. In such case, the operation time/curve may be re-collected and

machine learning models need to be re-trained.

Signal Availability. The proposed method assumes that the device must be able to

send either corresponding responses upon certain events (e.g., completion of a command),

or contain observable state variables to recover the state of the device. Such assumption

may often be valid because a closed control is often used in an industrial environment to

ensure stability.

85

System level information. In this chapter, inferring the information of the devices in

CPSs are being focused on. An advanced attacker may step up and attempt to infer the

system level information of CPSs. This problem and the corresponding defense technique

study is intended to be left as a future work.

4.6 Conclusion

In this chapter, the problem of launching a device response spoofing attack in Cyber-

Physical Systems is studied. A novel technique is proposed which bridges the gap between

the physics of the CPS devices and the responses from the devices. Several testbeds are

built and used to benchmark the methodology with real devices used in CPSs, and high ac-

curacy is achieved in inferring the device model and configuration information, as well as

forging responses that are indistinguishable from the authentic devices’ responses in most

cases. Then the impact on the performance of the method stemmed from various factors

is discussed, including the amount of available data and chronological wearing of the CPS

devices. Finally, it is also proposed to use a challenge-response method to defend against

such attacks.

86

CHAPTER 5

IDENTIFYING THE PROCESS FROM ITS CONTROL PROGRAMS

When facing potentially malicious programs in programmable logic controllers (PLCs),

existing methods for securing PLC-based systems mostly fall into two categories: run-time

monitoring of the system dynamics, or statically analyzing the source code of the PLC pro-

gram. However, none of the existing methods is effective against a malicious PLC program

if the attacker hides the malicious behavior (e.g., using logic bomb). The major challenge

in analyzing a PLC program comes from combining the universal applicability without

relying on the source code, and circumventing the intentional hiding of the attack. In this

chapter, the aim is to address these shortcomings by providing a framework for fuzzing PLC

program binaries to obtain the complete behavioral model of the program. A framework

called LogicFuzzer is proposed, which consists of two stages: the first stage determines

whether a suspicious control program is written for a given physical process (e.g., nuclear

power plant, automatic production line, etc.). The second stage searches for malicious

states that the program can run into, and finds the conditions to trigger such states (e.g., a

counter with very large preset value). Through extensive evaluation on a large corpus of

real PLC programs, it is shown that 99.1% accuracy can be achieved for classifying the

program into the corresponding process, and 98.9% accuracy can be achieved for detecting

whether the program is malicious. It is also shown that LogicFuzzer is agnostic to large

timer or counter values set by the attacker to hide the malicious code segment, and can be

used even as the complexity of the program grows.

5.1 Introduction

Threats against cyber-physical systems (CPSs) are increasingly prominent, especially in

critical infrastructures. Targeted attacks which can damage the physical processes have

87

become more frequent due to the high value of these systems. Meanwhile, their control

systems, known as industrial control system (ICSs) are still vulnerable. Compared to the

versatile defensive techniques in the traditional information technology (IT) domain, the

ICS, which falls in the operational technology (OT) domain, lack proper control software

analysis tools [11].

Studies in the past few years have proposed various methods for securing systems based

on programmable logic controllers (PLCs), which are predominantly used as the controller

in the ICS. These studies can be divided into two categories. The first category focuses

on the dynamics of the system physics to ensure that they do not deviate from the control

objective[58, 59]. The second category analyzes the control software, i.e., PLC program, to

ensure the code conforms to certain rules[50, 51]. However, the existing methods have their

deficiencies in protecting the systems. The monitoring techniques are passive defenses.

They can only be deployed within and tailored to certain systems, waiting for the anomalies

to appear. In an orchestrated attack, the malicious code which causes the anomalies may be

buried deep in the form of a logic bomb, which will only be set off when certain conditions

are met. In theory, the conditions can be designed as difficult to meet as the attacker desires.

Even a simple timer that takes long enough (e.g., six months) to trigger the malicious piece

of code can convince the system administrator that the system is normal during a lengthy

(e.g., three months) test stage.

Although the second type of techniques which examine the source code of the PLC

program may detect the injected malicious code, in most situations, the source code is

almost always unavailable for analysis. Such techniques work the best during an insider

attack, where the source code can be cross referenced with the program running on the PLC.

A sophisticated attacker can pre-compile the source code into binary files before sending

them as payload to the target (e.g., Stuxnet[49]), rendering the source code-based analysis

methods ineffective. As a result, these binary files found during propagation can be hard to

analyze, especially because it is impossible to define what should be considered malicious

88

without knowing which physical process the program is intended for.

To address the aforementioned issues, a proactive framework called LogicFuzzer is pro-

posed to protect the PLC-based systems. The goal of this framework is to scan a binary

PLC program found “in the wild” and perform the analysis without using the source code.

In fact, the analysis of computer program binaries running on popular OSs (e.g., Windows

or Linux) have been studied for a long time and already commercialized into well-known

software or services such as VirusTotal. However, there is no method or service for scan-

ning PLC program binaries to check for malicious behavior. The main challenge comes

from the lack of a universally applicable method to extract the complete behavioral model

of the PLC program binary. Hence, LogicFuzzer is designed to meet this goal. Similar to

VirusTotal, users can upload suspicious PLC programs to LogicFuzzer and provide mini-

mal contextual information about the physical process before commencing automated anal-

ysis of the program’s behavior. Note that while VirusTotal looks for malicious signatures of

illegitimate code which exploits the IT-domain vulnerabilities (e.g., buffer overflow), Log-

icFuzzer checks the behavior of the program which can cause damage in the OT domain,

such as driving the motor to a dangerously high speed or overflowing the tank. Compared

to the existing methods, LogicFuzzer has the advantage that it is agnostic to the length of

wait time to trigger the malicious logic in the program. Moreover, it can be used even as

the complexity of the program grows, as it does not have the path explosion problem which

is typically encountered in symbolic execution methods.

This work is based on the scenario that is likely to be encountered by a system admin-

istrator (SA) in an ICS environment. In the likely event that a PLC program is captured, or

a suspicious program is found in the PLC, the system administrator would be interested to

know the answers to the following two questions about the program:

1. Is this control program written for the SA’s ICS?

2. Is this program potentially dangerous? In other words, can this program cause the

corresponding physical process to run into unsafe states?

89

These questions can be answered with LogicFuzzer, combining binary analysis, fuzzing,

as well as automaton theory. As shown in Figure 5.1, LogicFuzzer first parses the binary

PLC program and extracts the elements required for the next stage of analysis. The parser

translates the binary into the high-level data structure, and functions as an emulator for the

code execution environment. Next, the fuzzer generates a complete behavioral model of the

PLC program in the form of an automaton, leveraging the parser as an interface. Finally,

a classifier predicts which process the automaton corresponds to, and a detector checks

the automaton for unsafe states as well as the path leading to these states. To validate

the proposed framework, 650 PLC programs are collected, which are the publicly known

largest dataset, written for four ICS scenarios designed according to the real settings in

an industrial environment. The result shows that LogicFuzzer can accurately classify the

binary programs into the corresponding processes, and detect whether it is malicious with

the triggering conditions.

The rest of this chapter is structured as follows. First, Section 5.2 explains the sce-

nario where LogicFuzzer is used with several assumptions. Then, Section 5.3 performs an

anatomy of the PLC program binary to help understand its structure. Based on the knowl-

edge in Section 5.3, Section 5.4 walks through the methods used in building the automaton

from the binary program. Subsequently, in Section 5.5, the methods used to collect PLC

programs are explained in details which can evaluate the framework in Section 5.6. Finally,

a discussion of this work is provided in Section 5.7 and Section 5.8 concludes this chapter.

5.2 Application Scenario

This work is based on a scenario where the system administrator of an ICS is interested

in analyzing a suspicious PLC program, which is a compiled binary either captured in

network traffic or found inside a PLC. The system administrator has the knowledge about

the physical process of the ICS. He/she knows a set of rules which define the expected

behavior of the process, and what states the process should be in under certain sensor inputs.

90

PLC binary

Binary Parser

Variable & Function Block
Mapping

Local Variable,
Timer

Counter
Output,

Function Block,
...

Fuzzer

Automaton

Process
Classifier

Detector
Malicious?

Process 1
Process 2
Process 3

...

①

②

③

④

⑤

⑥

⑦

Figure 5.1: Overall system diagram of LogicFuzzer, which fuzzes the PLC program binary
and generates the automaton.

91

The set of rules can either be given directly by the system administrator, or synthesized

from a reference program which is originally used to control the ICS. Such rules are used

for two purposes: 1) to classify whether the PLC program being analyzed is written for the

underlying process; 2) to determine which states and transitions are valid. For example,

the program may intend to target an assembly line, while the process owned by the system

administrator is a water treatment plant.

To establish the ground for this work in analyzing the PLC program binaries, it is as-

sumed that the model of the PLC which the program is written for is known or given by the

system administrator. To make LogicFuzzer more applicable to realistic situations, only

the compiled binary of the PLC program will be available, i.e., no source code is used

throughout the analysis.

5.3 Building the Structure of PLC Program Binary

Before analyzing the PLC program binary, it is first need to understand its structure and

parse it. As shown in Figure 5.1, the PLC binary is parsed with the binary parser module

before the fuzzer can interact with it. The ARM926EJ-S based Schneider Modicon M241

PLC is used as an example in walking through the anatomy of the PLC program binary.

As the reverse engineering of different other PLCs has been studied, such as Schneider

Modicon M221[60], WAGO PLCs[56, 55], and Allen Bradley PLCs[70, 84, 61], It would

be the most beneficial to the research community if the reverse engineering work is based

on a less studied PLC model. Note that LogicFuzzer is agnostic to the specific PLC model

which the program is written for. In this section, it is shown how to recover the essential

information of the PLC program structure from bottom to top, i.e., from the binary to the

subroutine, and eventually to the variables and function blocks.

92

5.3.1 Understanding the Binary Structure

As each PLC model is manufactured with various CPU architectures and runs different

firmware, the PLC program written in the same high-level IEC 61131-3 representation can

be compiled into the binary very differently as well. Unlike the x86-based platform, there

is no standard format such as the Executable and Linkable Format (ELF) and hence no

tool is readily available to parse the PLC program binary. Therefore, preliminary work is

performed in order to understand the general structure of the binary used in the M241.

Figure 5.2: Typical structure of a PLC project.

As shown in Figure 5.2 A PLC program is usually generated from a complex-structured

project consisting of many types of elements, such as PLC hardware configuration, com-

munication interface, task schedule, Program Organization Unit (POU) etc. Because the

93

purpose of the work is to study the behavioral model of the program, this work focuses on

recovering the POU from the binary. To do so, a batch of “empty” projects are created,

which only contained the minimal project files and replaced the main POU with simple

Structured Text (ST) instructions. Then these projects are compiled into binaries and diff

the binaries to find how the differences in their source code translate into the differences

in their binaries. To mitigate the noise introduced due to the metadata, such as time infor-

mation that is added to the binary, the same project is compiled 10 times and XORed all

of them to find the locations of bytes that change over each compilation, i.e., irrelevant to

the actual program logic. These irrelevant bytes were then used as a mask that is ORed

(using AND is equivalent) with each binary, which allowed us to better find the differences

between binaries due to the program logic.

A Python library called Capstone[85] is used to disassemble the binaries. In the case of

ST code in Figure 5.3a and Figure 5.4a, the major difference was found to be an insertion

of a single exclusive or instruction eor in the ARM instruction set architecture (ISA), as

shown in Figure 5.5. The disassemblies of the complete program in each ST code are shown

in Figure 5.3b and Figure 5.4b. Similarly, AND and OR logical operations in the ST code

can find their counterparts in the disassembly as well, as shown in Figure 5.8. The ST code

and disassembly of the program that each contain logical AND and OR operations are

shown in Figure 5.6 and 5.7.

One challenge in disassembling the binary is that the code sections and data sections

are mixed together. While reversing engineering the binary, it is found that the program

section is actually wrapped inside a set of subroutine entry and exit instructions, just as

every other subroutine in the disassembly does. Each subroutine begins with push {sl, lr},

mov sl, sp and push {r4, r5, ...} which pushes a list of registers that used in this subroutine

to the stack. At the end of the subroutine is pop {r4, r5, ...} which pops the same list of

registers that were pushed into the stack at the beginning of the subroutine, followed by

pop {sl, pc}, which restores the value of register sl but loads the value of lr into pc. lr is a

94

PROGRAM PLC_PRG
VAR

I_1 : BOOL;
O_1 : BOOL;

END_VAR

O_1 := I_1

(a) ST code

00002000 e5db4000 ldrb r4 , [fp] ; l o a d I_1
00002004 e5cb4001 s t r b r4 , [fp , #1] ; s t o r e O_1

(b) Disassembly

Figure 5.3: Program with value assignment

PROGRAM PLC_PRG
VAR

I_1 : BOOL;
O_1 : BOOL;

END_VAR

O_1 := NOT(I_1)

(a) ST code

00002000 e5db4000 ldrb r4 , [fp] ; l o a d I_1
00002004 e2244001 eor r4 , r4 , #1 ; NOT(I_1)
00002008 e5cb4001 s t r b r4 , [fp , #1] ; s t o r e O_1

(b) Disassembly

Figure 5.4: Program with value assignment and logical NOT

95

(a) The headers only have minor difference caused by different length and con-
tent of the logical expressions.

(b) The addition of NOT corresponds to an insertion of a single instruction.

Figure 5.5: Binary diff between value assignment and logical NOT operation.

96

PROGRAM PLC_PRG
VAR

I_1 : BOOL;
I_2 : BOOL;
O_1 : BOOL;

END_VAR

O_1 := I_1 AND I_2

(a) ST code

00002000 e5db4000 ldrb r4 , [fp] ; l o a d I_1
00002004 e5db5001 ldrb r5 , [fp , #1] ; l o a d I_2
00002008 e0044005 and r4 , r4 , r5 ; I_1 AND I_2
0000200C e5cb43dc s t r b r4 , [fp , #0 x3dc] ; s t o r e O_1

(b) Disassembly

Figure 5.6: Program with value assignment and logical AND

PROGRAM PLC_PRG
VAR

I_1 : BOOL;
I_2 : BOOL;
O_1 : BOOL;

END_VAR

O_1 := I_1 OR I_2

(a) ST code

00002000 e5db4000 ldrb r4 , [fp] ; l o a d I_1
00002004 e5db5001 ldrb r5 , [fp , #1] ; l o a d I_2
00002008 e1844005 orr r4 , r4 , r5 ; I_1 OR I_2
0000200C e5cb43dc s t r b r4 , [fp , #0 x3dc] ; s t o r e O_1

(b) Disassembly

Figure 5.7: Program with value assignment and logical OR

97

(a) The AND logical operation in Figure 5.6 differs by reading of a second input
variable and performing logical AND, compared to the program in Figure 5.3.

(b) The OR logical operation in Figure 5.7 differs only by performing OR in-
stead of AND logical operation, compared to the program in Figure 5.6.

Figure 5.8: Binary diff showing AND and OR logical operations.

98

special-purpose register in ARM called the link register, which holds the address to return

to when a function call completes. Hence the subroutine returns to its caller. By tracing

all the memory accessing instructions such as ldr and str, it is further discovered that most

directly accessed addresses from the subroutine are immediately after the code section of

the subroutine. After excluding all the code and data sections found with this technique,

the binary is left with a 20 byte header before the code section of each subroutine, as well

as some meta data at the beginning and end of the binary.

The general structure of the disassembly can be seen in Figure 5.9, where the program

subroutine is one of the subroutines contained in the binary, followed immediately by the

function block subroutines that are called in the program, which will be further explained

in Section 5.3.3. The initialization subroutine initializes all the constants and default value

of the variables used in the program, including the output. The jumping table subroutine

builds a jumping table that maps the referenced address used by a caller to the actual address

where the callee subroutine is loaded into the memory.

Header

Subroutine 0

Subroutine 1

…

Program Subroutine

Function Block 1 Subroutine

Function Block 2 Subroutine

…

Initialization Subroutine

…

Jumping Table Subroutine

Other information

Subroutine Header

Code Section

Data Section

Additional Code Section (optional)

Additional Data Section (optional)

Bytes Description

0-3 Unknown

4-7 0x00040621 (magic number)

8-11 Loading address of the subroutine

12-15 Unknown

16-19 Total length of the subroutine
Branch

push {sl, lr}
mov sl, sp
push {r4, r5, …}
…
…
…
pop {r4, r5, …}
pop {sl, pc}

Figure 5.9: Structure of the disassembly of the PLC program

99

5.3.2 Input, Output and Internal Variables

To record the program’s state, it is needed to identify the input, output and the internal

variables used in the programs and track their values. The input and output (I/O) variables

are directly mapped to the physical inputs and outputs on the PLC. During each scan cycle,

the input variables are first updated by scanning the physical inputs. At the end of the scan

cycle when all the program logic has been evaluated and the output variables have been

updated, the circuit in the PLC drives the physical outputs to the states corresponding to

the output variables. The internal variables are used to store temporary computation results

and only reside in the memory. Although they are not mapped to any physical pin on the

PLC, the values of the internal variables are usually persistent through the scan cycle.

Manual tracing of the execution of a few programs was performed, as well as comparing

the disassemblies with the source code to understand how the input, output and internal

variables are represented in the binary. For example, in the program snippet shown in

Figure A.3a in the Appendix, two input variables (LevelHigh and LevelEmpty), one

output variable (InV alve2) and two internal variables (NOT3_OUT and AND34_OUT)

are defined. The disassembly has been matched with the corresponding ST code in Figure

A.3b. Note that the value of pc in ARM is 8 bytes larger than the current instruction’s

address. By tracing the memory access through fp, the frame pointer register, the address

stored in the data section can be matched with the variable. The disassembly of every

assignment instructions in the ST program ends with a store instruction, such as strb.

Each internal variable is stored in a unique address, while the input and output variables

are referenced with their index (e.g., 0 in %QX0). This creates a confusion between the I/O

variables as both %QX0 and %IX0 are accessed with 0x00000000. To solve this issue, the

entire code section of the program subroutine can be scanned, as well as whether the I/O

index stored in an address is used for read/write or both. Because it is not allowed to write

to an input, any write to the index stored in an address means that the address is holding

the index of an output variable. Hence, the rest of the indices that are only read from

100

belong to the input variables. Although it is syntactically legal to only read from an output

throughout the entire program without once writing to it, it is meaningless and unlikely to

appear in a PLC program.

5.3.3 Function Blocks

In addition to the logical operations involving I/O and internal variables, PLC programs

also have a special programming element called the function blocks (FBs). A function

block is similar to a function, except that it may contain internal states which causes it to

behave differently when being invoked multiple times with the same input. Some FBs are

stateless such as MOV . However, there are nine standard FBs defined in the IEC 61131-3

standard[14] that are stateful. For example, SR3 is a Set/Reset (SR) function block in the

sample program shown in Figure A.3, which shows a sample PLC program disassembly.

The names and description of the nine standard FBs are shown in Table 5.1.

In the program subroutine disassembly, each function block starts with sub sp, sp, #4

and ends with add sp, sp, #4, because the parameters inside the parenthesis of the FB

need to be stored in a contiguous data structure, whose address is pushed into the stack.

The program then calls the subroutine corresponding to the FB with move pc, r4, which

performs the operation on the data structure and returns to the main program. All internal

values and results are contained in the same data structure, residing in the same region of

memory as other variables.

The key to recovering the information of FBs is to match the address of the subroutine

being called with the type of FB. This can be done in two steps. First, the address being

called needs to be converted to the actual memory address according to the jumping table.

In the second step, the memory address is traced to one of the subroutines following the

main program by checking their headers. As mentioned in Section 5.3.1, these subroutines

are the FBs used in the program. 20 programs collected in Section 5.5 is sampled, which

cover all the standard FBs and manually compared the code section of all the subroutines

101

Table 5.1: Stateful standard function blocks

Name Description
R_TRIG Rising edge detector. It will activate the Q output when a rising edge is

detected on the CLK input.
F_TRIG Falling edge detector. It will activate the Q output when a falling edge is

detected on the CLK input.
SR Set/Reset flip flop. A leading edge on the S1 input activates the Q output. A

leading edge on the R input deactivates the Q output. S1 has priority over R.
RS Reset/Set flip flop. A leading edge on the S input activates the Q output. A

leading edge on the R1 input deactivates the Q output. R1 has priority over
S.

TP A pulse timer that enables the Q output for a preset PT amount of time after
the IN input is enabled.

TON ON delay timer that enables the Q output after the IN input is enabled for a
preset PT amount of time.

TOF OFF delay timer that disables the Q output after the IN input is disabled for
a preset PT amount of time.

CTU Up counter. It increments the CV value by one on each rising edge of the CU
input. When the CV reaches the preset value PV, the output Q is enabled. A
rising edge is on the R input resets CV to 0.

CTD Down counter. It decrements the CV value by one on each rising edge of the
CD input. When the CV reaches the preset value PV, the output Q is enabled.
A rising edge is on the LD input loads PV to CV.

102

corresponding to the same FB. The result showed that every FB has a subroutine with

constant code section. The data section can differ due to the changing memory allocation in

each program. Hence, these subroutines are collected as signatures of FBs and a mapping

is created between the them. Therefore, the type of each FB for the subroutine calling

encountered in the program is recovered.

5.4 Building the Automaton

With sufficient understanding of the binary program being executed by the PLC, it is only

needed to find a way to interact with the I/O of the program and monitor its state. Normally,

the PLC running the program is a black-box: only the input and output can be accessed via

the physical I/O of the PLC, while the internal variables and FBs are inaccessible to the

user. Two methods are designed to address this issue. The first method is based on the

direct connection to the JTAG port, a debugging interface on the PCB of the PLC. The

second one is based on the offline execution of the binary using a customized emulator that

can simulate the execution of the assembly. Both methods can be used as an interface to the

PLC program and facilitate the fuzzing process which generates the automaton representing

of the program’s behavioral model. In this section, the method of using the offline execution

method to generate automaton is discussed, which corresponds to the fuzzer in Figure 5.1.

The JTAG-based method will be explained in Appendix A.

5.4.1 Binary Execution Emulation

One way to interact with the PLC program is to emulate the execution of the binary. Ob-

taining the binary file can be done via an interception of malicious payload, or extraction

from the PLC itself. Depending on the model of the PLC, the latter may be implemented

differently. The Schneider M241 PLC used in the experiment supports copying the entire

content of the flash memory including the binary program to an external SD card. A more

generic alternative is to dump the flash memory data via its digital interface such as SPI.

103

The next step is to execute the binary in a software emulator. Despite that there

have been several software for emulating the CPU execution, such as QEMU[86] or Uni-

corn[87], they were not designed for executing PLC programs. For example, every ldr and

str instruction requires the corresponding memory address to be accessible. This could be

difficult to handle when the confusion rises due to the I/O variable addressing problem de-

scribed in Section 5.3.2. Hence it is better to implement a novel and more adaptive frame-

work to facilitate access to the register and memory, which can result in a better control

over the program’s execution. This emulation framework addresses this issue by tracking

the memory access history and label the address of the I/O index stored in the data section

with the corresponding variable type. Another advantage of this emulation framework is

dynamically recognizing the FB structure and FB subroutine invocation using the signa-

tures collected in Section 5.3.3. Hence, special procedures can be carried out to handle

temporal-related FBs, which will be explained in Section 5.4.2.

5.4.2 Timers and Counters

Timer and counter FBs are treated differently from their original behavior for optimization.

Originally, timers depend on temporal changes. However, this is not only difficult to im-

plement, but also unnecessarily costly as temporal values have no minimum unit (i.e., it is a

continuous value) and can theoretically take an infinite number of values. It is worth noting

that the essence of a timer lies in whether it is not activated, running or has expired (i.e.,

reached the PT). In other words, as long as less than PT time has passed since a timer

is activated, the output of the timer would remain unchanged, hence the state of the entire

program remains unchanged despite the increasing timer value. Therefore, the automaton

can be simplified by discretizing the timers: if a timer is activated and starts running, its PT

is recorded as the transition and the timer forced to expire in the next scan cycle, simulating

PT amount of time has passed.

Although a counter takes discrete values, it would still be unnecessary to test all values

104

as the output of the counter does not change until it reaches the preset value. Therefore,

similar to the timers, a counter can be simplified and discretized into three states: not

counting, counting, and expired (i.e., reached the PV for CTU , or 0 for CTD). Whenever

a counter is triggered and starts counting, it is forced to expire in the next scan cycle,

simulating that PV times have been counted. The PV will be recorded as the transition.

With the aforementioned optimizations, the automaton can be properly generated, in-

cluding the temporal information. It can also reduce the space and time complexity in

certain conditions, e.g., a counter with extremely large PV to trigger a deeply buried logic

bomb.

5.4.3 Fuzzing

With either JTAG or binary execution emulation as an interface to interact with the program,

fuzzing can be used to build the automaton representation of the PLC program. A PLC

program essentially defines a set of rules which update its output based on its current state

and the input given. As random numbers are rarely useful in the control system involving

PLC, the input variables defined by the program almost always become the only source of

input to the program. Additionally, a PLC program operates on the input deterministically

with logic expressions and FBs, and can only have limited number of storage elements,

which means that it can be represented as a deterministic finite-state machine (FSM), also

known as the deterministic finite-state automaton (DFSA). Without loss of generality, the

automatonA for a program P is formally defined as a quintuple (S,∆, T , s0,F), consisting

of

1. a finite set of states S,

2. a finite set of input ∆,

3. a transition function T : S ×∆→ S,

4. an initial state or start state s0 ∈ S,

105

5. a set of accept states F ⊆ S.

State. Each state s ∈ S can be a combination of the output variables (e.g., %QX0),

denoted as O, the internal variables V and the FBs’ states F . The state of each of the nine

FBs in Section 5.3.3 is defined such that the output (Q) of the FB is dependent and only

dependent on the input to the FB and its state. The definition of the state of each FB is

summarized in Table B.1 in Appendix B.

Input. Each input i ∈ ∆ can be a combination of the input variables (e.g., %IX0),

denoted as I , the timers T and the counters C. Because in each scan cycle of the PLC

program, the input values are always updated, any input δ ∈ ∆ must at least contain I .

Imax is also defined based on the number of inputs in the program, e.g., a 12-bit input

means Imax = 0xFFF. T and C are optional depending on whether any timer or counter

FB is activated.

The fuzzing process is depicted as a flow chart in Figure 5.10. The algorithm begins

with the following initialization (1):

• reset all input variables

• deactivate all timers and counters, reset all timers’ elapsed time (ET) and counters’

accumulator (Acc)

• initialize all internal variables and output variables to the values specified in the ini-

tialization subroutine

The fuzzing algorithm in general is carried out similar to the execution of PLC pro-

grams, i.e., a loop of actions consisting of reading the input, executing scan cycle, and

updating the output. The initial state s0 is referred to as the current state, sα (2). After a

transition τ ∈ T is applied (4 and 7), as will be explained in this section, a single scan

cycle is executed on the PLC program (9), updating all its internal variables, FBs, output

variables, etc. The new state is referred to as the next state, sβ (10). This process iterates

until the entire automaton is generated (18).

106

The automaton that will be generated is equivalent to a directed multigraph, with each

state in the automaton as the node, and each transition as the edge. Starting from s0, the

maximum Ip that has been tested on each state si is recorded in a mappingM : si → Ip,

where si ∈ S and 0 ≤ Ip ≤ Imax. If no timer or counter is activated in the current state, the

fuzzing is in normal mode (3), otherwise it is in timer/counter mode (5).

Normal mode. In normal mode, the objective is to traverses through the entire au-

tomaton with depth-first search (DFS), by enumerating every Ip value in every state si,

while updating the mapping M with si → Ip + 1. If a new state sj is discovered (11),

M is updated with sj → 0. Otherwise the algorithm goes into the next iteration (13). If

M(si) > Imax (14), the DFS reaches a node with no more outwards edge which has not

been traversed. In this case, the automaton needs to be restored to a state sk (if there is any)

for whichM(sk) ≤ Imax (15). Otherwise the algorithm goes into the next iteration (16).

For any input Ix that causes the state of the automaton change from sα to sβ , a transition τ

will be recorded iff sα 6= sβ (12).

Timer/counter mode. In timer/counter mode, at least one timer or counter is activated

in the current state. Since this is a transient state, the objective is to reach a stable state (i.e.,

no timer or counter) and resume normal mode. Hence the input will be kept unchanged

from the last transition (6). During this mode, new states will not be added to M. All

transitions will be recorded in the automaton. However, if a loop of states is detected in

the timer/counter mode (8), the automaton needs to be restored to a state sk for which

M(sk) ≤ Imax before going into the next iteration (17).

The fuzzing completes whenM(si) > Imax,∀si ∈ S.

5.5 Data Collection

Unlike traditional computer programs and software, PLC programs are much harder to col-

lect in a large scale. Because most PLC programs are written for specific physical systems,

it is unlikely that more than one implementation will be available for each system. More-

107

Initialize

Timer/
counter?

Single scan cycle

Record current
state

Keep input

State
change?

Apply input
Loop

detected?
Yes

Record
transition

Input > max
input?

Any
incomplete

states?

End

Restore state

No

No

Yes

No

Yes

①

②

③

④

⑤

⑥

⑦

⑧

⑨

⑩ ⑪ ⑫

⑬

Normal Mode

Next State

No

Yes

Yes

No

⑭

⑮⑯

⑰

⑱Timer/Counter
Mode

Figure 5.10: Flow chart of the fuzzer which generates the automaton

108

over, programs written for existing ICS may not be willingly shared, as it may interrupt

the normal operation of the system and leak the confidential information. This may lead

to economic loss or even cause targeted attacks. To make data collection even more diffi-

cult, various models of PLCs may be used in the industrial environment. Hence it either

requires more effort in reverse engineering or collecting more data to increase the number

of programs for a specific PLC.

To address these issues, a highly-rated cyber security class taken by graduate students

in the author’s university was leveraged. Four realistic scenarios were designed, namely

TankBalancer, StirringSystem, RobotPath and TrafficLight. Each scenario has a physical

system controlled by a PLC. Then the scenarios were distributed as project assignment to

the students in the class, which were well trained with the knowledge background in ICS

security and PLC programming. They were asked to write PLC programs that satisfy the

requirements in each scenario. For two of the scenarios, the students were also asked to

implement an attack version of the program, which contains a hidden “logic bomb” that is

only activated after certain conditions are met. To accommodate the size of the class and

facilitate the students’ implementation, OpenPLC[88] was used as the PLC device in each

scenario. As shown in Figure 5.11, the Object Linking and Embedding (OLE) for Process

Control (OPC) protocol[89], more specifically OPC Unified Architecture (OPC UA) was

added to the original OpenPLC design. It can exchange I/O data with a process simula-

tor program and a human-machine interface (HMI) software. The students can leverage

the OpenPLC editor to write and test the PLC program in any IEC 61131-3 programming

language, which is similar to the experience in writing a program for physical PLCs. To

expand the size of the data and make the programs more generalized, the submissions from

the students were collected across multiple semesters. After the students’ submissions

were graded, those which satisfied all the requirements and earned full credits in each sce-

nario were collected. After being anonymized, these collected programs were converted to

project files for a real PLC, i.e., Schneider M241, before being compiled to binaries. In

109

total, 650 PLC programs have been collected. The details of each scenario and its require-

ments are described in Appendix B.1.

Process simulator
(OPC client)

OPC
server

I/O

OpenPLC

Visualization/HMI
(OPC client)

OPC UA

OPC UA

Figure 5.11: Process and PLC simulator architecture.

Ethics. As data was being collected from human subjects which may involve personal

data, cautious procedures were taken and the IRB in the author’s institute was consulted

with. After detailing the research plan to the IRB, the author was told that IRB review was

not required as no personal data about the students would be used. The programs have also

been anonymized so that no data can be identified to the individual student.

Data Validation. To ensure the data is valid and representative, several measures are

adopted throughout the each stage in the data collection process. The class was only offered

to skillful graduate students, who have solid understanding of the design principle in PLC

programming. The aforementioned scenarios were designed to implement critical func-

tionalities in real ICSs (e.g., water treatment plant), in addition to providing educational

values. The students were also provided with graphical HMI software (which is a common

practice in industrial environment) specifically designed to help them better understand

each process in an immersive environment. After collecting the students’ submissions, the

PLC programs written by the students are manually checked and ensured that they fully

110

Table 5.2: Number of automata in the four categories

Category Number of automata

TankBalancer 224
TankBalancer_Attack 117

StirringSystem_v1 54
StirringSystem_v2 113

StirringSystem_attack 33
RobotPath 58

TrafficLight 51

met each process’s requirements. The data collected for each process is shown in Table

5.2. These programs are open-sourced to help future studies in this domain.

5.6 Evaluation

LogicFuzzer consists of two stages: classifier, which determines whether a suspicious

control program is written for a given physical process; and detector, which searches for

malicious states that the program can run into and finds the conditions to trigger such states.

As introduced in Section 5.4 and Section 5.5, the dataset consists of the automata extracted

from PLC programs. These automata are then used as the input to the classifier and the

detector.

This work is evaluated by answering the following questions:

• Q1. Can the classifier correctly predict which process an automaton corresponds to?

• Q2. Can the detector determine whether a program is malicious reliably?

5.6.1 Classifier

Features

To classify these PLC programs efficiently, several features that can be extracted from their

corresponding automata are analyzed:

111

100 101 102 103 104

Number of states

100

101

102

103

104

105

106

107

N
um

be
ro

ft
ra

ns
iti

on
s

TankBalancer
TankBalancer_attack
StirringSystem
StirringSystem_attack
RobotPath
TrafficLight

Figure 5.12: States versus transitions.

112

Ta
bl

e
5.

3:
T

he
av

er
ag

e
of

N
um

be
r

of
St

at
es

,A
ve

ra
ge

D
eg

re
e,

D
eg

re
e

Va
ri

an
ce

an
d

Tr
ig

ge
rs

in
al

lc
at

eg
or

ie
s

of
da

ta
.

C
at

eg
or

y
N

um
be

ro
fS

ta
te

s
A

ve
ra

ge
D

eg
re

e
D

eg
re

e
V

ar
ia

nc
e

N
um

be
ro

fT
ri

gg
er

s

St
ir

ri
ng

Sy
st

em
_v

1
10

8.
80

0
9.

53
9

5.
78

1
5.

29
6

St
ir

ri
ng

Sy
st

em
_v

2
63

.5
31

9.
91

3
7.

08
2

4.
92

9
St

ir
ri

ng
Sy

st
em

_a
tta

ck
61

.3
93

6.
07

2
4.

69
7

8.
42

4
Tr

af
fic

L
ig

ht
12

.6
86

2.
55

1
2.

58
6

6.
47

1
Ta

nk
B

al
an

ce
r

54
.9

82
37

49
.7

99
28

89
.7

23
0.

50
9

Ta
nk

B
al

an
ce

r_
at

ta
ck

15
2.

92
2

21
79

.1
56

14
83

.3
43

2.
03

4
R

ob
ot

Pa
th

37
82

.1
72

40
74

.5
86

38
5.

38
5

0.
03

4

113

• Number of States. The number of an automaton’s states is a very basic feature.

Based on the different approaches of implementation, the number of states of PLC

programs which corresponds to the same process may vary greatly. However, it can

be observed that the number of states of programs that correspond to the same process

is within a range. The number of states is used instead of that of transitions because

it is usually more representative of the process.

• Average Degree. In graph theory, the degree of a node indicates the number of edges

which end with or start from it. One edge in a graph is associated with two types of

degrees, one for the start vertex and one for the target. Therefore, the average de-

gree can be calculated by num_edges/num_nodes. The average degree of different

programs is compared and it is found to be highly correlated with the type of the

process the program is associated with. Figure 5.12 shows the comparison between

the number of transitions versus the number of states of all the processes. It is ob-

served that the scattered plot corresponding to each process approximates a straight

line, indicating a strong correlation between the number of transitions and the num-

ber of states. Additionally, different processes can be visually separated in the plot,

suggesting that the average degree can be an important feature in the classification.

• Degree Variance. Figure 5.13 shows the visualization of four automata, two of

which are from Stirring System programs and the other two from Traffic Light pro-

grams. It can be observed that there are many differences among the nodes. Hence,

three types of nodes are defined: border-node, pass-node and pivot-node. Border-

node refers to the node with a relatively small degree, and most of its edges are point-

ing to instead of starting from it; pass-node refers to the node with only one edge in

and one edge out; pivot-node refers to the node with a relatively larger degree com-

pared to the average. These types of vertices are usually sufficient to describe a PLC

automaton. For instance, the implementation of a function can be made of a sequence

114

of states, and there are many functions of which the states can only transform from

the previous to the next, i.e, if a function is made of n states s1, s2, ..., sn, then si is

only linked to si+1. That means each vertex in this graph has one in-degree and one

out-degree, which is outlined as pass-node.

Instead of directly using the proportion of these three types of nodes as a feature, the

variance of degree is considered a better choice. With a larger variance of degree,

a graph is usually much more complicated, with more types of nodes in addition to

border-node, pass-node and pivot-node. Meanwhile, with a smaller variance, a graph

tends to be simpler.

• Triggers. As introduced in Section 5.3, a PLC program may contain several function

blocks such as F_TRIG or TON. These triggers are designed to implement specific

functionalities. Therefore, the types of triggers and the number of triggers a program

has used can be useful information to infer which category of process the program

belongs to.

Note that if both Number of States and Average Degree are chosen as features, it implies

that the number of transitions is also considered. The average values of concluded features

(Number of States, Average Degree, Degree Variance and Triggers) are shown in Table 5.3.

Feature Generalization

Four features are chosen to classify PLC programs’ automata. Number of States and

Triggers are fundamental elements that are associated with the function of a PLC program.

Here it is discussed how the other two features can be generally used in PLC program

classification.

Average Degree. Programs which implement the same functionality can have differ-

ent automata. Starting with the minimal version, a variant of the most minimal automaton

could be thought as new transitions which transform the original states to redundant states,

115

denoted as s→ r(s). Thus there should also be new transitions r(si)→ r(sj) correspond-

ing to the original transitions si → sj . Suppose the origin graph has n nodes and m edges.

In the extended graph, there are n + n = 2n nodes and m + n + m edges. Further, there

would be k ∗ n nodes and k ∗ m + (k − 1) ∗ n edges with k redundant extensions. The

ratio of edges and nodes is m/n + (k − 1)/k, which is very close to m/n. Therefore, it is

sufficient to use average degree as a feature.

Degree Variance. As described earlier, summarized three types of nodes are sum-

marized, namely border-node, pass-node and pivot-node. However, there are much more

different varieties of nodes in other PLC processes. Hence the best way to use this kind

of feature is using the proportions of summarized special nodes if the classifier knows the

samples in advance. However, in many cases the classifier has no idea what processes the

PLC programs are from. To address this issue, the feature Degree Variance is used, which

to some extent implies the proportions of different types of nodes. The experiments have

shown that this feature contributes greatly.

SVM-based Classification

A classification method is implemented based on support vector machine (SVM). There are

already four features introduced earlier: Number of States, Average Degree, Degree Vari-

ance and Triggers. Therefore, these features can be directly used to test the effectiveness.

In addition, the features are adjusted to make it more specific based on SVM. The Triggers

feature is further divided into four specific features: (1) R_TRIG and F_TRIG; (2) SR and

RS; (3) TP, TON and TOF; (4) CTU and CTD, based on their functionalities. For example,

CTU and CTD are both counters. The data is split into training set (2/3) and testing set

(1/3). With the SVM classification method, LogicFuzzer achieved an average accuracy of

98.9%.

116

(a) Stirring System a.

(b) Stirring System b.

117

(c) Traffic Light a.

(d) Traffic Light b.

Figure 5.13: Visualization of some automata. There are various types of vertices in a
graph. E.g., in Stirring System’s automata, there are more pivot-nodes while in Traffic
Light’s automata there are more pass-nodes. The proportion of different types of vertices
can be a effective feature to distinguish graphs.

118

Rule-based Classification

When used in real scenarios, LogicFuzzer usually faces a binary classification problem

rather than a multi-class one, i.e., the output will be whether the target program is associated

with a certain physical process. In this case, training a machine learning model is infeasible

due to lack of large samples of data. Hence the rule-based method can be used. The rule-

based method classifies programs based on rules decided by administrators.

By observing the features given in Figure 5.3, it can be found that based on Average

Degree, programs can be divided into two classes: 1. StirringSystem and TrafficLight,

which have small degrees; 2. TankBalancer and RobotPath, which have quite large av-

erage degrees (more than one thousand). Furthermore, StirringSystem programs can be

distinguished from TrafficLight programs, or TankBalancer programs from RobotPath by

checking their Number of States and Degree Variance. The rules are applied in the follow-

ing two steps: in the first step, the programs are classified into which of the two big classes

they belong to by their Average Degree; in the second step, a variant of the sigmoid function

is used to calculate the similarity between the program and the other two categories.

Finally, the rule-based classification reached an accuracy of 95.2%. Among those pro-

grams which are mis-classified, more than 50% are attack version programs. Therefore, the

attack version of a program does have difference with the normal version programs, which

can help us using detector to detect whether a program is malicious.

Similarity-based Classification

In the situations where manually providing rules for classification is infeasible or incon-

venient, an alternative method can be used by LogicFuzzer. The user may provide the

original control program written for the physical process for reference, and compare the

similarity between the target program and the reference program. The similarity compar-

ison is based on the graph structure of the automata generated from the two programs.

Intuitively, this can be computed by counting the number of states and transitions that are

119

common in both automata, then divided by the size of the automata (i.e., total number of

states and transitions) to normalize the result. However, there are several challenges that

make this process difficult to implement. Recall that the state is defined as a combination

of the output variables, the internal variables and the FBs’ states. While the use of output

variables are constrained by the connections to the physical output of the PLC, the use of

the internal variables and FBs are less restrictive as long as the program’s behavior (i.e.,

output) meets the requirement. In some cases, unused output may even be mapped to the

internal variables to further complicate the situation. Hence the states in two automata

cannot be directly compared for equality check. Similarly, transitions cannot be directly

compared because the use of timers and counters is at each programmer’s discretion. To

address these issues, the automata are processed with the following steps.

1. Sanitize the state by masking the output, leaving only the connected output in the

PLC.

2. Group the adjacent states which become the same from the sanitization into a “super

node”.

3. Remove the transitions inside the “super node” from the automaton.

After the processing, the similarity score can be obtained by computing the maximum

ratio of connected graph in the reference automaton which is also contained in the target

automaton. Four standard programs are used as the reference programs. The standard pro-

grams were written by the course developer as example programs. As shown in Figure 5.14,

each program collected in the four categories is tested with all four reference programs. The

target program leads to a high similarity score when it is in the same category as the ref-

erence program. Meanwhile, the similarity score is close to 0 if the category is different.

More interestingly, as can be seen in Figure 5.14a and Figure 5.14b, programs written for

the same physical process but with different control objectives show slightly lower simi-

larity, which is still much higher compared to the programs written for different processes.

120

Moreover, the attack version of a program also shows a slightly lower similarity, as can

be seen in Figure 5.14c and Figure 5.14d. This result indicates that the similarity-based

classification is effective in measuring the likelihood which the target program belongs to

a given category of physical process.

Summary

Q1 is answered in this subsection. The classification result is summarized in Table 5.4.

The SVM based classification has a higher accuracy while it needs more time to extract

features from data and train on them. The rule-based method can be a sufficient choice if

the time for training is too costly or when there is a lack of sufficient samples to train with.

Additionally, the similarity-based technique can provide a convenient method for the user

as an alternative.

Table 5.4: Results of classification. Training Time contains both feature generating and
training. Predict Time is the average time spent on reading and predicting one single sam-
ple.

Method Training Time(s) Predict Time(s) Accuracy

Rule - 11.1 95.2%
SVM 8111 12.5 98.9%

Similarity - 29.5 96.7%

5.6.2 Detector

As shown in Table 5.3, in the attack version of the programs, there is always an increase

for Triggers and a decrease for Average Degree. Increased usage of triggers is easy to

understand: attackers usually need a timer or a counter for a conditional execution of the

malicious logic. Figure 5.15 shows the distribution of Number of States in both benign

and malicious programs. The Number of States in the attack version is usually no less

than that in the normal version, which indicates that there are fewer transitions detected in

the attack version of the programs. The programs and their automata are analyzed and it

121

Program index

0
10

20
30

40
50

S
im

ila
ri

ty

0.0

0.2

0.4

0.6

0.8

1.0

StirringSystem v1

StirringSystem v2

TankBalancer

TrafficLight

(a) StirringSystem_v1.

Program index

0
20

40
60

80
100

S
im

ila
ri

ty

0.0

0.2

0.4

0.6

0.8

1.0

StirringSystem v1

StirringSystem v2

TankBalancer

TrafficLight

(b) StirringSystem_v2.

122

Program index

0
50

100
150

200

S
im

ila
ri

ty

0.0

0.2

0.4

0.6

0.8

1.0

StirringSystem v1

StirringSystem v2

TankBalancer

TrafficLight

(c) TankBalancer.

Program index

0
20

40
60

80
100

120

S
im

ila
ri

ty

0.0

0.2

0.4

0.6

0.8

1.0

StirringSystem v1

StirringSystem v2

TankBalancer

TrafficLight

(d) TankBalancer_attack.

Figure 5.14: Similarity score of between each program and the reference programs.

123

Table 5.5: Result of detection. Training Time contains both feature generating and training;
Predict Time is the average time spent on reading and predicting one single sample.

Method Training Time(s) Predict Time(s) Accuracy

SVM 479 1.5 83.8%
Rule - 0.3 98.9%

is found that malicious programs would hijack the control flow of a benign program and

lead it to run the malicious logic, which bypassed some normal states and introduced the

unsafe states. Besides, the malicious logic is usually simple and not as complicated as

the intended functionality, which explains the decrease in the Average Degree and Degree

Variance. Therefore, it is feasible to determine whether a program is malicious or not based

on the result obtained by a classifier.

In addition, determining whether a program is malicious can rely on the rules formu-

lated by system administrators. As explained earlier, an intention of a malicious logic is to

lead the program to the unsafe states. These unsafe states can either be obtained from the

system administrator or by monitoring the legitimate process. For instance, in Tank Bal-

ancer System as described in Appendix B.1.1, the attack version programs will cause Tank

2 to overflow after 60 seconds, which means after 60 seconds, the output value of Tank 2’s

“OUT” will always be False. Thus, the administrator can make a rule such as “Any tank’s

‘OUT’ should change periodically.”. The detector can check the automaton for whether the

program would go into a loop where some of the tank’s “OUT” is always the same.

Q2 is answered in Table 5.5. The SVM based detector resulted in an accuracy of around

85%, which is not satisfactory. However, the rule-based detector achieved the accuracy of

98.9% with higher efficiency. The precision and recall of both methods are also listed in

Table 5.6. Therefore, using the rule-based malicious detector is more efficient and accurate.

124

0 10 20 30 40 50 60
Programs

0

100

200

300

400

N
um

be
ro

fs
ta

te
s

Normal
Attack

Figure 5.15: Number of states: normal versus attack. The number of states in the attack
version is usually no less than that in normal version.

125

Table 5.6: Precesion and recall of detection methods, where precesion is TP/(TP +FP),
and recall is TP/(TP + FN).

Method Precesion Recall

SVM 94.2% 88.0%
Rule 99.6% 99.2%

5.6.3 Summary

In this section, the fuzzer, classifier and detector are evaluated. The fuzzer can obtain

automata from PLC programs within a reasonable amount of time. For the classifier, SVM

performs slightly better because it has a higher accuracy, and does not cost significantly

more time than the rule-based method. The detector based on rules which are formulated

by administrators has an accuracy close to the SVM method and immediate response.

5.7 Discussion

In this section, how LogicFuzzer can be generalized and the limitations of this work are

discussed.

5.7.1 Generalization

A common question that should be asked in every solution to a security-related problem

is how well it can be extended to a broader scale. As a framework designed based on the

characteristics of the PLC, LogicFuzzer is agnostic to the large timer or counter values

set by the attacker to hide the malicious code segment from regular checking. Whenever

it detects the activation of such FBs, it will directly read the preset time/value from the

data structure and override the FB to trigger the event being hidden. A useful application

that can further extend LogicFuzzer is that it not only detects the malicious states, but also

shows the attack path which the program takes to enter the malicious state. This can be

done by a search for all paths between two states in the automaton. The first state can

be the initial/reset state of the program, and the second state is the malicious state. For

126

Table 5.7: Time to generate the automaton. n is the total number of states. p is the number
of inputs. σ is the time to perform a single cycle scan.

Process Average n p σ (ms) Average time (s)

TrafficLight 13 2 3.5 1.9
StirringSystem 109 4 2.7 2.8
TankBalancer 55 12 1.2 148.9

RobotPath 3782 12 2.3 18122.6

example, such path is found in 28 out of the 33 programs in the StirringSystem_attack

category. The path contains the information required to reproduce the malicious behavior

in a physical PLC in ICS, such as the inputs and time to wait for.

Another important feature of LogicFuzzer is that it is free of the path explosion problem

which is often encountered in symbolic execution techniques. This is because LogicFuzzer

does not rely on analyzing the feasible paths a program can take, which would result in

infinite number of paths in case of programs with unbounded loop iterations. Instead, it

runs the program and traverses through the automaton of the program based on concrete

observation of the path which the program actually takes. As a result, the time it takes for

LogicFuzzer to generate the automaton of a program is largely dependent on the size of the

automaton. Because LogicFuzzer performs an exhaustive search of all possible inputs on

each state, the time complexity would be O(n ∗ 2p ∗ s), where n is the number of states, p

is the number of inputs and σ is the time to perform a single cycle scan. Although there is

an exponential term 2p in the big O notation, in reality, p is usually limited by the number

of physical inputs on the PLC. The time it takes to generate the automaton is measured and

it is found that the experimental results agree with the analysis as shown in Table 5.7. This

means that LogicFuzzer performs well even as the complexity of the program grows.

5.7.2 Limitations

One limitation of LogicFuzzer is in the binary parsing stage of the system, which requires

understanding of the ISA and the file structure for the specific model of the PLC. Re-

127

searchers not affiliated with the manufacturer of a PLC may be left with the time-consuming

option of reverse engineering, although it is only one-time effort for each PLC model.

The other limitation is the cost associated with the generation of the automaton. As

discussed in Section 5.7.1, the time complexity of the automaton generation largely depend

on the number of states and the number of inputs (the time to perform a single cycle scan

is directly proportional to the length of the program). Although the number of inputs is

limited by the physical PLC, the number of states can vary greatly due to the change in

the program. How this can affect the effectiveness of LogicFuzzer is discussed. Moreover,

how to handle the situation where an attacker has advanced knowledge of LogicFuzzer is

also discussed.

Currently, LogicFuzzer is designed to exhaustively search for the entire state space

of the program to discover all its behaviors, due to the well defined input in the PLC. In

contrast, the fuzzer for a general computer program needs to “guess” which input values can

be most likely used to trigger a program’s certain behavior, since most computer programs

can in theory take infinite number of inputs (e.g., a string input can be arbitrarily long).

However, this may not always work well for LogicFuzzer. As the state is composed of

the outputs, the internal variables and the FBs’ states, the number of total states in the

automaton of the program grows exponentially with respect to the sum of the number of

these elements. Similarly, the search space for transitions, consisting of inputs, also grows

exponentially to the number of inputs. In a normal program, variables are usually used

when necessary. Moreover, from the observation of the collected programs, many variables

are dependent on each other. For example, a program may have three variables to denote

the state of the mixing blade at different places in the Stirring System process. When being

fuzzed, these three variables will always have the same value and hence does not multiply

the total number of states of the program by 23.

However, if an attacker has advanced knowledge of LogicFuzzer, he may try to find a

relatively easy way to add dummy variables into the program to significantly increase the

128

search space of LogicFuzzer. He may then exploit such asymmetry in order to make it

more difficult to analyze the malicious program. Assume the existing variables are labeled

v1, v2, ..., etc. Generally, there are three ways to add dummy variables:

1. Dummy variables only appear on the left hand side (LHS) of the instructions, e.g.,

vd1 = v1, vd2 = v2 AND v3

2. In addition to 1), dummy variables only appear on the right hand side (RHS) of the

instructions with dummy variables on the LHS, e.g., vd1 = v1 XOR vd1

3. In addition to 2), dummy variables appear on the RHS of the instructions with exist-

ing variables on the LHS, e.g., vd1 = NOT (v1), v2 = vd1

For 1), the state space of the program does not increase as mentioned previously. For

2), the dummy variables can be found and excluded from the state with a data dependency

analysis. Because the no instruction with existing variables on the LHS is changed, the

values of the added dummy variables do not affect the outputs of the program. For 3),

although data dependency analysis cannot rule out the dummy variables, adding dummy

variables to the RHS of the instructions with existing variables on the LHS means the

functionality of the program will be changed. For example, only a TON and a state variable

are added into the Stirring System program so that the instruction with outlet valve on the

LHS now has the added TON on the RHS. Upon simulating the execution of the program,

it is found that the mixture level changed differently compared to the requirements as shown

in Figure 5.16. This would cause a premature exposure of the malicious intention of the

program and result in an immediate discovery by the system administrator in the initial

testing stage. Hence, the attacker needs to trade-off the increase in the state space of the

program with the stealthiness of the attack.

129

0 20 40 60 80 100 120 140
Time (s)

Empty

Low

Medium

High

Requirement
Attack

Figure 5.16: Mixture level of the tank in the Stirring System controlled with the malicious
program, compared with the original requirements.

130

5.8 Conclusion

In this chapter, a framework called LogicFuzzer is presented, which generates the behav-

ioral model of PLC program binary via fuzzing. Automaton representation is used to model

the program’s behavior and developed analysis methods based on the automaton to classify

the program into specific physical process and detect whether the program is malicious.

Program data is collected to validate this framework and achieved high accuracy in both

the classification and detection. Overall, LogicFuzzer can be considered as an effective

framework which can be used to secure the PLC-based systems.

131

CHAPTER 6

IDENTIFYING THE PROCESS PARAMETERS USING SIDE-CHANNEL

INFORMATION

When securing a cyber-physical system (CPS), the most commonly used methods focus

CPS itself, including both the information technology (IT) and operation technology (OT)

domains. While such domains are most tightly associated with the underlying systems

and thus can block most of the active and passive attack vectors, physical side channel

has inevitably become an important source of information leakage, which can be a form

of passive attack or even a pre-sequel of an active and orchestrated attack. The use of

physical side channels to infer information about a (presumably secure) system has been

demonstrated to be effective in many areas, such as reconstructing the object being printed

with 3D printers through the sound emitted [90], or detect the leaking information about

the underlying cryptographic computation in a CMOS from its electromagnetic emanations

[91]. In this research, audio channel information is leveraged as side channel information

of an operating CPS to study the feasibility of identifying the process parameters using the

side channel information. More specifically, the types of devices, their operation status and

their locations in space are inferred from the audio recorded using microphones. Convo-

lutional neural network (CNN) is employed to learn and predict these parameters based

on the transformed audio data. The result demonstrates that with only small amount of

training data, the CNN can correctly predict the operation status of individual devices in a

realistic water treatment testbed with approximately 100% accuracy.

132

6.1 Introduction

6.1.1 Audio Side Channel in CPSs

The use of audio side channel as sources of information to a physical system has been

widely studied in the past few years. For example, researchers have reconstructed the ob-

jects being printed by additive manufacturing systems, also known as 3D printers, using

the information carried by the sound emitted while the objects is being created [92]. The

correlation between the audio emitted and the object being printed is established beginning

with the G-code, a commonly used computer numerical control programming language

generated from the model file of the object. The G-code instructions are translated to

the actuation of stepping motors which control the movement of the printer’s nozzle (or

equivalently the printing platform), including their speeds and directions. As pulse width

modulated (PWM) signals are fed to the stepper motors, high frequency sounds are gen-

erated. Therefore the audio carries information of the speed and axis information of each

stepper motor, which can be used to recover the movement of nozzle in the space as well

as filament extrusion speed.

Similarly, in industrial control systems (ICSs), the audio side channel can carry signif-

icant amount of information about the operation status of the ICSs. The most commonly

used actuators in ICSs include motors (ranging from synchronous/asynchronous motors, to

stepper motors), pumps, relays, etc. Most of these devices produce audible sounds when

operating. Furthermore, the frequency of the sounds produced is often correlated to the op-

erating parameters of the device. For example, as the rotation speed of a motor increases,

it produces higher pitch sound. Such correlation means the operating parameters of the

devices can be inferred based on audio side channel emitted by these ICS devices. If such

parameters can be accurately inferred, it could bring significant implications for CPS se-

curity applications. For system administrators whose main objectives include ensuring the

safety and integrity of the CPSs, the audio side channel can provide an additional layer of

133

assurance for the underlying physical system by comparing the parameters inferred from

the audio side channel with the expected values. On the other hand, attackers may use such

information to steal confidential and sensitive intellectual property information about the

CPSs, such as process control design information in chemical engineering sectors which

are often trade secrets. More sophisticated attackers may even steal such information as a

prior espionage step for launching a more stealthy and damaging attack.

6.1.2 Analyzing Audio with Deep Learning

As the deep learning methods advance in the past few decades, they have been applied in

many domains in the research academia, and achieved astonishing results. Most modern

deep learning models are based on artificial neural networks, specifically, convolutional

neural networks (CNNs). Other deep learning methods include multilayer perceptron, re-

current neural networks (RNNs), modular neural network etc. CNNs have been been most

widely and successfully applied in the field of computer vision, such as facial recognition,

autonomous vehicles, etc. CNNs are used for image classification and recognition because

of its high accuracy. It was proposed by computer scientist Yann LeCun[93] in the late

90s, when he was inspired from the human visual perception of recognizing things. CNNs

leverage spatial information, and they are therefore well suited for classifying images.

Traditionally, audio processing tasks such as audio event detection (AED) have been

addressed with features such as mel frequency cepstral coefficients (MFCCs), and classi-

fiers based on Gaussian mixture models (GMMs) [94], hidden Markov models (HMMs)

[95, 94, 96], non-negative matrix factorization (NMF) [97], or support vector machines

(SVMs) [94, 96]. However, more recently, researchers have also started to explore the

use of CNN in analyzing audio data [98, 99, 100]. This can be achieved by first con-

vert the one-dimensional (1-D) raw data (i.e., timestamped sampling of audio signals) to

the two-dimensional (2-D) features using a technique called spectrogram, which performs

Fourier transform on the windowed raw data. As shown in Figure 6.1, the horizontal axis

134

is timestamps, while the vertical axis is the frequency, both of which are discrete rather

than continuous. Each coordinate has a value which represents the intensity of the audio

signal at the specific frequency during the specific time interval. Then the 2-D spectrogram

features can be transformed to be more suitable for deep learning. This method enables the

processing of the audio signal using CNNs by essentially converting it to an image.

0 2500 5000 7500 10000 12500 15000 17500
0.15

0.10

0.05

0.00

0.05

0.10

Waveform Channel 0

(a) Waveform

0 100 200 300 400 500 600 700 800
0

2000

4000

6000

8000

10000

12000
Spectrogram Channel 0

(b) Spectrogram

Figure 6.1: Waveform and spectrogram representation of the single channel audio signal.
The horizontal axis of the spectrogram is in units of “windows”.

Although it is possible to process audio signals with CNNs, the results may not be

nearly as satisfying as they have been for visual images [101]. One major difference be-

tween the visual images and the spectrograms generated from audio signals is the composi-

tion of different “objects” in the images. Most visual objects are opaque and usually do not

overlap with each other in computer vision tasks. This makes classification of individual

objects easier due to fewer sources of noises. On the other hand, the spectrograms gener-

ated from audio signals can be said to be “transparent”, as sounds generated from different

objects (likely far from each other in space) can overlap and superimpose in the image, as

long as they overlap in the time domain. An immediate implication is that a pixel of certain

color in a visual image can often be attributed to a single object. Meanwhile, the color of a

single pixel in the spectrograms does not necessarily correspond to the frequency of sound

generated by a single object, but can also be produced by multiple accumulated sound

sources or even by complex interactions between sound waves such as phase cancellation.

135

This “transparent” nature of audio spectrograms makes it difficult to separate simultaneous

sounds using CNNs.

Another major difficulty arises from from the fact that the two axes in spectrograms

carry different meanings, contrary to that in visual images. An object in visual images can

be translated in either horizontal or vertical direction, or even rotated, without changing

its ontology. While the spectrogram generated by a certain sound can move along the

horizontal (time) axis without changing its meaning, the same cannot be said if it moves

along the vertical axis. For example, an adult’s voice moved upwards in the spectrogram

can become very similar to the voice of a child. The translation invariance property in

CNNs may become a problem in this case.

There are many other challenges involved in analyzing audios with CNNs such as the

more temporal property of sound waves makes them harder to be scanned multiple times

for analysis. However, they are not relevant in the context of this study and hence are not

further discussed.

6.1.3 Attack Scenario

Although the techniques described in this study can be applied by both system adminis-

trators (referred to as defenders) and attackers, the former would have far better access

to the side channel information as well as the computational resources. In addition, un-

derstanding how much information an attacker can extract from CPSs through audio side

channel has rarely been studied before. Hence, this section describes the attack scenario

used throughout this chapter.

The basic assumption for the attacker is being stealthy and passive in order to capture

as much information as possible without interfering the operation of the CPSs or being

detected. One key aspect of the attack is the placement of the sensory devices (e.g., micro-

phones) around the physical systems. One option would be to place miniature embedded

sensors directly on or near the devices being monitored, with the apparent benefit of high

136

signal-to-noise (SNR) ratio. However, this method also has the following downsides:

1. It is difficult to place and setup such devices in hidden locations, which usually re-

quires human intervention on site, e.g., collusion with an insider. The same problem

may arise when the espionage operation is terminated and the attackers may want to

eliminate physical evidence of such attack.

2. The data captured may be in large amount and few communication channels exist that

can transmit the data outside of the target facility. Common methods either require a

transceiver near the location of the embedded sensors (e.g., outside the facility) as a

relay, or a cellular modem. However, the antenna and communication modules can

often be large relative to the size of the sensors themselves. This is against the stealth

requirement in the basic assumption.

3. The sensors can almost never have access to reliable power sources to support suffi-

ciently long term operations.

Another viable option for the attacker to achieve the goal under the aforementioned

constraints is to leverage the already widely used smart phone devices. They are usually

equipped with high quality microphones, with more phones nowadays having multiple mi-

crophones (or microphone arrays) for better calling quality. They are constantly upgraded

with state of the art communication protocols (e.g., Wi-Fi or 4G LTE) that support high

speed data transfer, and increasingly larger local storage to cache data even when network

is temporarily unavailable. Meanwhile, power sources are almost never an issue for smart

phones. The attack can even be carried out with minimal human intervention due to the

fact that most people carry their smart phones with them throughout the day, therefore the

smart phone of any legitimate personnel near the target CPSs can be a potential target to

exploit through the apps installed on them. The variety of sensors on board a smart phone

also provides even more information for the attacker to collect data with rich context. For

example, by collecting geo-location, accelerometer, gyroscope and magnetic sensors’ data,

137

the phone’s location and orientation can be accurately determined. Such information can

be combined with the audio signals collected by the microphone arrays to locate the source

of the sound from individual devices, and even map the devices in the 3D space.

6.2 Audio Side Channel in Electric Motors

To understand how the sound generated by a device can be used to infer the knowledge

of the operation status of the device, it can be useful to understand how such sound is

generated when the device is operating. In this section, electric motors are used as an

example of such device due to their prevalence in the CPSs, joining the cyber domain with

physical domain through electromagnetic forces.

Electric motors generally have three noise sources [102, 103, 104]:

1. airflow (e.g., ventilating fans);

2. electromagnetic sources;

3. mechanical (e.g., bearings).

The noise from ventilating system commonly comes from the airflow produced by the

fans, which can generate several frequencies of noises due to siren type effects associated

with the blades. Frequency analysis of such noise shows that it has a broad band spectrum

[103]. The discrete spectrum noise is created from turbulent airflow near fan blade and the

airway entrance, as well as the tip of the blades, while the continuous spectrum noise arises

from the siren effect. The airflow noise can become significant when the rotation speed of

the motor is high.

The magnetic noise is generated due to the rotating magnetic field. Resonance can

occur when one of the various exciting frequencies in induction motors coincides with the

natural frequency of either the stator teeth or core, with the double-line frequency (e.g.,

120Hz in United States) being always present. The noise is generated due to the vibration

138

of motor body or other parts of the machine under the electromagnetic forces (EMF). As

a result, the frequency of the noise is proportional to the frequency of the supply power,

which is in turn proportional to the rotation speed of the motor [103].

Rolling element bearings, ball or sleeve bearings which are worn or overheated can all

produce noises when the motor is operating. The imbalance, eccentricity, misalignment

and tolerance of motor structure during manufacturing or usage can all contribute to the

mechanical noises [104].

The exact contribution of each noise source varies depending on the type of motors.

For example, the electromagnetic circuit in 6- and greater pole motors are usually more

significant than that in 2- and 4-pole motors [102]. It also depends upon the design of the

motors. For example, motors which use water cooling instead of air ventilation, and sleeve

bearings to minimize noise can attribute most of its noises to magnetic noise.

It is worth noting that although the noise of electric motor can be reduced by enclosing

it in sound absorbent materials, this is usually not done in practice due to the stronger

thermal dissipation requirement than the need to reduce noise in CPS environment.

6.3 Pilot Study: Water Loop Testbed

During the study, a water loop is used to setup the experiment to perform the pilot study,

consisting of a pump and a binary valve individually controlled by a PLC. Mono-channel

directional microphone is used to collect the audio data from the process when the actuators

are operating. Figure 6.2 shows the spectrogram of the audio signals under three different

sets of operations: pump on/off, valve close/open, and valve close/open when pump is

turned on. Note that the pump is set to maintain a certain water pressure. Therefore when

the pump is left turned on and valve shuts off after the outlet of the pump, the pressure

in the pipe will build up and eventually reach the preset value, causing the pump to stop

operating.

In each case, the two opposite commands are given to the actuators, and it can be seen

139

1 2 3 4 5 6 7 8 9

Time (secs)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

q
u

e
n
c
y
 (

k
H

z
)

-140

-120

-100

-80

-60

-40

-20

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

(a) Pump on/off.

1 2 3 4 5 6 7 8 9

Time (secs)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

q
u
e
n
c
y
 (

k
H

z
)

-140

-120

-100

-80

-60

-40

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

(b) Valve close/open.

140

1 2 3 4 5 6 7 8 9

Time (secs)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

q
u
e
n
c
y
 (

k
H

z
)

-140

-120

-100

-80

-60

-40

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

(c) Valve and pump.

Figure 6.2: Spectrogram of the audio collected from an operating water loop system.

141

that stable frequencies are generated during each command execution. Specifically, Figure

6.2c shows that even when multiple devices are operating simultaneously, their individual

operation status are still recoverable given the fingerprints of their standalone operation.

Because the pump automatically shuts off when reaching a preset pressure, i.e., when the

valve is about to close and when it just opens, the pump generates a gradually decreas-

ing and gradually increasing chirp sound, respectively. Such phenomenon can be used to

determine even the detailed pressure value inside the water loop.

6.4 Case Study: Water Treatment Testbed

In order to make the experiment as close to the industrial environment as possible, a testbed

called Secure Water Treatment (SWaT) at Singapore University of Technology and Design

is leveraged as the target CPS. SWaT consists of a modern six-stage process [105]. The

process begins by taking in raw water, adding necessary chemicals to it, filtering it via an

Ultrafiltration (UF) system, de-chlorinating it using UV lamps, and then feeding it to a Re-

verse Osmosis (RO) system. A backwash process cleans the membranes in UF using the

water produced by RO. The cyber portion of SWaT consists of a layered communications

network, Programmable Logic Controllers (PLCs), Human Machine Interfaces (HMIs),

Supervisory Control and Data Acquisition (SCADA) workstation, and a Historian. Data

from sensors is available to the SCADA system and recorded by the Historian for subse-

quent analysis. The engineering schematics of SWaT can be seen from its human-machine

interface (HMI) in Figure C.1 in Appendix C. The physical dimensions of the testbed is

shown in Figure C.2 in Appendix C.

The sound recording device used in the experiment are two AKG P170 small-diaphragm

condenser microphones. They are placed on a tripod fixed with the adapters to ensure con-

stant relative angle and distance between the two microphones. This setup is a generic

representation for most smart phone’s microphone array setup.

There are three variables to be adjusted in the experiment, namely 1) the angle between

142

the microphone’s direction and the sound-generating device; 2) the horizontal-level differ-

ence between the microphone and the device; and 3) the distance between the microphone

and the device. Each variable is adjusted as described below.

Motor (3D)

Microphone Array

0

10

20

30

40

50

60
70

80 90 100
110

120
130

140

150

160

170

180

Figure 6.3: Top view of the microphone array placement at different angle along the arc
with device at the center.

Angle. The sound-generating device is placed at different angles to the direction of the

microphone(s). The audio is recorded from 0 to 180 degrees, increasing at 10 degrees. The

other two variables are maintained during the angle change, resulting in the microphone(s)

being moved along an arc with the device at the center as shown in Figure 6.3.

Horizontal Levels. The microphone array is placed on different horizontal levels rel-

ative to the sound-generating device. Starting at the same level, the microphone is moved

upwards and downwards respectively, 10cm at a time for up to 20cm. This results in a

matrix of measurement points combined with the varied angles as shown in Figure 6.4.

Distance. The distance between the microphone array and the sound-generating device

is first set at a minimum distance, in this case 50cm. Then the distance is multiplied integer

times (e.g., 1×, 2×, 3× ...). This results in a tensor of measurement points in the space as

shown in Figure 6.5.

143

90 100 110 120807060

0 cm

+10 cm

+20 cm

-10 cm

-20 cm

Figure 6.4: Front view of the microphone array placement matrix showing different angle
and horizontal levels relative to the device.

0

10

20

30

40

50

60
70

80 90 100
110

120
130

140

150

160

170

180

50 cm100 cm150 cm

Figure 6.5: Top view of the microphone array placement at different distance to the device.

144

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Training ratio

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Figure 6.6: CNN’s prediction accuracy of the devices’ operation status in stage 1 of SWaT
under different training size ratio.

6.5 Results

The audio collected from the first stage of the SWaT testbed is used as the dataset for study.

The dataset is labeled with the operation status of each device involved every second (i.e.,

pump on/off). It is split into training and testing dataset using 10− fold cross-validation to

ensure the result is generalized. The CNN is implemented using PyTorch framework [106].

The spectrogram is pre-processed to be suitable for input to the CNN. First, it is clipped

to upper frequency of 800 Hz, as a balance between the information preserved and the

computational complexity. The number is derived from the observation in the pilot study in

Section 6.3, due to negligible sound power present in the spectrogram above this frequency.

Then the spectrogram is segmented into 200 windows per frame. The primary rationale for

segmenting the spectrogram is to normalize the input data to the CNN, while maintaining

a proper level of computational complexity. Finally, the 800 × 200 matrix is flattened to a

1-D feature vector due to efficiency in the computation.

145

The CNN is designed with three layers, two of which are the hidden layer. Each layer

uses a max pooling and downsamples the features, eventually into 1, 568 neurons that are

mapped to the number of classes, which can be the number of states the device being

analyzed can be in, or the types of devices. The cross entropy loss function is used with

stochastic gradient descent (SGD) optimizer.

20 40 60 80 100
Training iterations

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training ratio: 0.1
Training ratio: 0.2
Training ratio: 0.3
Training ratio: 0.4
Training ratio: 0.5
Training ratio: 0.6
Training ratio: 0.7
Training ratio: 0.8
Training ratio: 0.9
Training ratio: 1.0

Figure 6.7: CNN’s loss versus number of training iterations.

As shown in Figure 6.7, the accuracy of CNN’s prediction of the devices’ operation

status is high even when few training data is used. As the training size increases, the

accuracy approaches 100%. The output loss of the CNN decreases rapidly and stabilizes

within 100 training iterations under most training ratio, as shown in Figure 6.7.

146

6.6 Discussion

As shown in Section 6.5, the operation status of the individual devices in the CPSs can be

accurately recovered using audio side channel information collected by the microphones.

In a real attack, the attacker can leverage the smart phone near the physical process in-

side the target facility, then record the sound for either an online analysis (running on the

phone) or offline analysis (uploading to the attacker’s remote server) using CNN. With the

dual (or even triple) microphone array becoming available in more recent smart phones,

the direction of the source of these sounds can be identified using an effect called the Bin-

aural hearing, which is based on the difference of the audio’s timing, loudness, phase and

frequency response received at two (or more) receivers (e.g., ears, microphones). Such

information can be further combined with the rich location and microelectromechanical

systems (MEMS) attitude sensors onboard the smart phones, such as accelerometer, gyro-

scope and magnetometer (also known as digital compass), to reconstruct a map of the audio

sources (i.e., CPS devices) in the space. The resulting information is an essential artifact to

the reverse engineering of the process control information, which can often be confidential

and/or trade secrets.

6.7 Conclusion

In this chapter, audio side-channel is used to infer the process parameter information (i.e.,

devices’ operation status) in CPSs. The methodology is experimentally demonstrated using

a realistic water treatment testbed, which shows high accuracy in the results predicted by

the CNN.

147

CHAPTER 7

CONCLUSION

The traditional IT-based techniques are problematic in practice due to their lack of consid-

eration for securing the physical aspects of the CPSs. In this research, novel techniques are

studied which tightly integrate with the physical domain of the CPSs to better secure them.

This research is stratified into three layers. Starting from the bottom layer, the individual

devices are fingerprinted based on their operation time determined by the physical mod-

els and configurations. In the second layer, the process structural information is identified

using both static and dynamic analysis of the process control programs. Finally, on the

top layer, the process parameters are identified using the physical side-channel information

(e.g., sound). Overall, the methodologies used in this research provide an insight for the

CPS security research community to leverage the physical nature of the CPSs in order to

better secure them.

148

Appendices

149

APPENDIX A

JTAG

The JTAG interface, named after the Joint Test Action Group which codified it, is an indus-

try standard for debugging, verifying designs and testing PCBs after manufacture. Several

studies have leveraged the JTAG as an attack vector to the PLC[61, 70] by reading from

and writing to the flash memory containing the firmware. We discovered that the JTAG

port can also be used to control the program execution using its debugging capability.

The JTAG port can often be found by examining the PCB with the CPU inside the PLC.

The pin configuration can then be identified using deductive reasoning[107], or commercial

off-the-shelf (COTS) tools such as the JTAGulator[108]. For example, the JTAG port of

the Schneider M241 PLC used in our study can be seen in Figure A.1, with each JTAG pin

identified and labeled. Then a debugger is attached to the JTAG port on the PLC, providing

an interface between the host PC and target device. We used a COTS product called the

J-Link Pro from Segger[109] as the debugger. Alternative solutions such as the Open On-

Chip (OpenOCD) debugger are also available. Figure A.2 shows that we were able to step

through individual instructions and control the program execution. We were also able to set

the PC to arbitrary value, as well as access and modify the registers and RAM of the PLC

as the program executes. This allows us to interact with the PLC program, perform fuzzing

and build the automaton of the program.

150

Figure A.1: PCB of Schneider M241 PLC with JTAG debugging port

151

Figure A.2: Using J-Link debugger to step through the program and accessing the registers
and memory of the PLC

PROGRAM PLC_PRG
VAR

LevelHigh AT %IX1 . 3 : BOOL;
LevelEmpty AT %IX1 . 0 : BOOL;
InVa lve2 AT %QX0. 1 : BOOL;
NOT3_OUT : BOOL;
AND34_OUT : BOOL;
SR3 : SR ;
. . .

END_VAR

NOT3_OUT := NOT(LevelEmpty) ;
SR3 (SET1 := LevelHigh , RESET := NOT3_OUT) ;
InVa lve2 := AND34_OUT ;
. . .

(a) ST code

152

; code s e c t i o n
; NOT3_OUT := NOT(LevelEmpty) ;
00001FA8 bcb49fe5 l d r fp , [pc , #0 x4bc]
00001FAC 0040 dbe5 ldrb r4 , [fp]
00001FB0 014004 e2 and r4 , r4 , #1
00001FB4 014024 e2 eor r4 , r4 , #1
00001FB8 a8b49fe5 l d r fp , [pc , #0 x4a8]
00001FBC 0040 cbe5 s t r b r4 , [fp]
; SR3 (SET1 := LevelHigh , RESET := NOT3_OUT) ;
00001FC0 04 d04de2 sub sp , sp , #4
00001FC4 a0b49fe5 l d r fp , [pc , #0 x4a0]
00001FC8 0040 dbe5 ldrb r4 , [fp]
00001FCC 084004 e2 and r4 , r4 , #8
00001FD0 a441a0e1 l s r r4 , r4 , #3
00001FD4 88 b49fe5 l d r fp , [pc , #0 x488]
00001FD8 0040 cbe5 s t r b r4 , [fp]
00001FDC 7440 dbe5 ldrb r4 , [fp , #0 x74]
00001FE0 0140 cbe5 s t r b r4 , [fp , #1]
00001FE4 74549 f e 5 l d r r5 , [pc , #0 x474]
00001FE8 05408 be0 add r4 , fp , r5
00001FEC 00408 de5 s t r r4 , [sp]
00001 FF0 64 b49fe5 l d r fp , [pc , #0 x464]
00001 FF4 00409 be5 l d r r4 , [fp]
00001 FF8 0 f e 0 a 0 e 1 mov l r , pc
00001FFC 04 f 0a 0 e1 mov pc , r4
00002000 04 d08de2 add sp , sp , #4
. . .
; InVa lve2 := AND34_OUT ;
00002348 b4b09fe5 l d r fp , [pc , #0 xb4]
0000234C 0040 dbe5 ldrb r4 , [fp]
00002350 b0b09fe5 l d r fp , [pc , #0 xb0]
00002354 0050 dbe5 ldrb r5 , [fp]
00002358 000054 e3 cmp r4 , #0
0000235C 0100000 a beq #0 x2368
00002360 025085 e3 orr r5 , r5 , #2
00002364 000000 ea b #0 x236c
00002368 0250 c5e3 b i c r5 , r5 , #2
0000236C 94 b09fe5 l d r fp , [pc , #0 x94]
00002370 0050 cbe5 s t r b r5 , [fp]
. . .
; d a t a s e c t i o n
00002404 0 x00000163 ; AND34_OUT
00002408 0 x00000000 ;%QX0
. . .
00002468 0 x00000158 ; NOT3_OUT
0000246C 0 x00000001 ;%IX1

(b) Disassembly

Figure A.3: Sample program to demonstrate the input, output and internal variable repre-
sentations. 153

APPENDIX B

STATE DEFINITION OF THE STANDARD FUNCTION BLOCKS

The state of each function block (FB) is defined such that the output of the FB is dependent

and only dependent on the input to the FB and its state. The definition is shown in Table

B.1.

B.1 Realistic Physical Systems

In this section, we describe the settings and requirements of each scenario containing phys-

ical systems controlled by PLCs.

B.1.1 Tank Balancer

Description. The tank balancer process is a system consisting of four tanks, as shown in

Figure B.1a. Each tank has one water inlet and one water outlet, as well as three water

level sensors. The outlet of Tank 1, 2 and 3 are sequentially connected to the next tank’s

inlet. Water flowing out of tank 4’s outlet is discarded. Additionally, each tank’s inlet is

also connected to an independent water source, which provides random water flow into

the corresponding tank. The water sources are not controlled by the PLC. Three water

level sensors on each tank are activated when the water level in the tank is above certain

thresholds (i.e., low, medium, high).

Requirements. Write a program which takes the 12 sensor readings as inputs, and

outputs control signals to the actuators of the 4 tanks’ outlet valves. The goal is to maintain

the water level in each tank between “low” and “high” levels exclusively by adjusting the

water flow among the tanks.

Attack. In the attack version, the goal of the program is to remain stealth during the

beginning “test run” of the program and only start the sabotage afterwards. Between 60 and

154

Table B.1: State definition of the standard function blocks

Name State Function
R_TRIG last CLK Q = ¬state ∧ CLK
F_TRIG last CLK Q = state ∧ ¬CLK
SR last Q Q = S1 ∨ state ∧ ¬R
RS last Q Q = (S1 ∨ state) ∧ ¬R
TP (last IN,

last Q)
Q = ¬state[0] ∧ IN

TON (last IN,
last Q)

Q =


True if IN ∧ state[0]

False if ¬IN
unchanged otherwise

TOF (last IN,
last Q)

Q =


True if IN
False if ¬IN ∧ ¬state[0]

unchanged otherwise

CTU last Q

Q =


False if R
True if ¬state[0] ∧ CU
unchanged otherwise

CTD last Q

Q =


False if R
True if ¬state[0] ∧ CD
unchanged otherwise

155

Ta
nk
_1

Ta
nk
_2

Ta
nk
_3

Ta
nk
_4

un
ifo
rm
N
oi
se

0.
1	
s1 0

un
ifo
rm
N
oi
se
1

0.
1	
s1 0

un
ifo
rm
N
oi
se
2

0.
1	
s1 0

un
ifo
rm
N
oi
se
3

0.
1	
s1 0

su
m
1

su
m
1

su
m
2

su
m
2

su
m
3

su
m
3

(a
)T

an
k

B
al

an
ce

r.

156

BA C

MixtureEmpty

Low

Medium

High

(b) Stirring System.

157

(c) Robot Path.

(d) Traffic Light.

Figure B.1: Scenarios with different physical systems controlled by PLCs

158

90 seconds, only tank 2 will start to overflow. All other tanks should remain the originally

benign behavior.

B.1.2 Stirring System

Description. The mixing and stirring system is a single tank with three inlets for different

materials (A, B, and C, respectively), a mixing blade for stirring the mixture, and an outlet

for exhausting the mixture, as shown in Figure B.1b. This tank also has four level sensors,

namely the empty, low, medium, and high sensors, installed at different heights inside the

tank. Each sensor will be activated when the mixture level is above it.

Requirements. Write a program which takes the four level sensors as inputs, and

controls the valves for the three inlets, the mixing blade, and the valve for the outlet. It

should follow this specific sequence in order to properly mix the materials:

1. The tank starts in an empty state. All inlet and outlet valves are closed, and mixing

blade is turned off.

2. Only open the valves for inlet 1 to add A into the tank, until the “low” level sensor is

activated. Turn off the valve for inlet 1.

3. Repeat step 2 for inlet 2 and 3, with “medium” and “high” level sensors being used

as the stopping point.

4. Turn on the mixing blade. After the mixing blade has run for 5 seconds, open the

outlet valve to drain the mixture and keep the mixing blade running.

5. As soon as all mixture has been drained, turn off the mixing blade. Wait for 3 seconds

before closing the outlet valve.

6. Start over from step 1.

Variant. A variant of the Stirring System program was collected with slight modifica-

tion to the requirements. In the original version (denoted as StirringSystem_v1, the valves

159

of inlet 1, 2 and 3 are opened sequentially. However, in StirringSystem_v2, inlet 2 stays

open during the entire filling process. The purpose of the variant is to examine how well

the classifier can resist the noise introduced by a benign change in the program behavior.

Attack. In the attack version, the goal of the program is to remain stealthy during the

beginning “test run” of the malicious program and only start the sabotage afterwards. After

looping through the process three times, it will invert the behavior of the mixing blade. In

other words, the mixing blade needs to be turned off in step 5 and on during the other time.

B.1.3 Robot Path

Description. The robot path process models a robot (shown as a black solid circle in Figure

B.1c) looking for its path on an 8 × 8 grid. The robot can only travel along the wires and

stop at the intersections. It starts at the lowest and leftmost position in the grid, denoted as

(0, 0). The horizontal direction is the x-axis, and the vertical direction is the y-axis. The

maximum coordinates in this grid is (7, 7). The hollow circle is the target position.

Requirements. Write a program that takes the current position and the target position

of the robot, and controls the direction of the robot so that it will arrive at the target. The

robot can take only one direction at a time. Any viable path can be chosen, as long as it

always gets closer to the target after each move. The position and target coordinates are

encoded in the binary form, mapped to the sensors in the little-endian format.

B.1.4 Traffic Light

Description. The traffic light process models a traffic light system at a pedestrian crossing,

as shown in Figure B.1d. There are vehicles traveling easterly and westerly on the road,

and pedestrians who wish to cross the road. A red/yellow/green traffic light is used for

the vehicles. A red/green traffic light is used for the pedestrians. Normally, red light is

displayed to the pedestrians and green light is displayed to the vehicles.

Requirements. A vehicle congestion sensor is used to detect the amount of traffic. If

160

the traffic becomes congested, the sensor will be activated, and vice versa. A button is

available for the pedestrian to indicate that they request to cross the road. The request shall

be granted immediately if the vehicle congestion sensor is not active (i.e., no traffic jam).

Write a program that executes the following sequence:

1. Switch off the vehicle green light and switch on the vehicle yellow light for 3 seconds.

2. After the yellow light is on for 3 seconds, switch vehicle yellow light off, vehicle red

light on, pedestrian red light off, pedestrian green light on.

3. Let the pedestrian green light be on for 15 seconds. Then switch pedestrian green

light off, pedestrian red light on.

4. After 1 second, switch vehicle red light off, vehicle green light on.

If there is a traffic jam (vehicle sensor activated) while the pedestrian’s button is pressed,

the above sequence shall not be executed until the traffic jam is cleared. If the button is

pressed again before the above sequence finishes, it should be ignored.

161

APPENDIX C

SECURE WATER TREATMENT (SWAT)

This appendix includes relevant figures of the SWaT testbed at Singapore University of

Technology and Design, used to collect audio side channel data.

162

Fi
gu

re
C

.1
:H

um
an

-m
ac

hi
ne

in
te

rf
ac

e
(H

M
I)

of
th

e
SW

aT
te

st
be

d
sh

ow
in

g
its

en
gi

ne
er

in
g

sc
he

m
at

ic
s.

163

Fi
gu

re
C

.2
:F

lo
or

pl
an

of
th

e
SW

aT
te

st
be

d
sh

ow
in

g
its

ph
ys

ic
al

di
m

en
si

on
s.

164

REFERENCES

[1] Why 2017 will finally be the year of the smart home: Consumers figure it out, 2018.

[2] Global Industrial Controls System Market to Grow at CAGR of 4.9% from 2015 to
2021, 2018.

[3] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” Symantec-Security
Response, no. February 2011, pp. 1–69, 2011.

[4] J. Slay and M. Miller, Lessons learned from the Marchoory Water Breach. Springer,
2008, pp. 73–82, ISBN: 978-0-387-75462-8.

[5] Crash Override Malware Took Down Ukraine’s Power Grid Last December | WIRED,
2018.

[6] D. Albright and F. Pabian, “It Fits! Qom Site Layout,” Tech. Rep., 2018.

[7] Ukraine’s power outage was a cyber attack: Ukrenergo, 2018.

[8] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry,
“Attacks against process control systems: Risk Assessment, Detection, and Re-
sponse,” in ASIACCS, New York, New York, USA: ACM Press, 2011, p. 355, ISBN:
9781450305648.

[9] C. McParland, S. Peisert, and A. Scaglione, “Monitoring Security of Networked
Control Systems: It’s the Physics,” IEEE Security & Privacy, vol. 12, no. 6, pp. 32–
39, Nov. 2014.

[10] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Valente, M.
Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting the Impact of Stealthy
Attacks on Industrial Control Systems,” in CCS, New York, New York, USA: ACM
Press, 2016, pp. 1092–1105, ISBN: 9781450341394.

[11] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the security of
control systems,” Proceeding HOTSEC’08 Proceedings of the 3rd conference on
Hot topics in securit, p. 6, 2008.

[12] A. A. Cardenas, S. Amin, and S. Sastry, “Secure Control: Towards Survivable
Cyber-Physical Systems,” in 2008 The 28th International Conference on Distributed
Computing Systems Workshops, IEEE, Jun. 2008, pp. 495–500.

165

[13] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah, “Who’s in Control
of Your Control System? Device Fingerprinting for Cyber-Physical Systems,” in
NDSS, San Diego, CA, USA: Internet Society, 2016.

[14] Standard function blocks, https://www.fernhillsoftware.com/help/
iec- 61131/common- elements/standard- function- blocks/
index.html, Accessed: 2019-11-07.

[15] C. Neilson, “Securing a Control Systems Network,” ASHRAE, 2013.

[16] W. He, M. Golla, R.-u. Bochum, R. Padhi, J. Ofek, M. Dürmuth, W. He, M. Golla,
R. Padhi, J. Ofek, and D Markus, “Rethinking Access Control and Authentication
for the Home Internet of Things (IoT),” Proceedings of the 27th USENIX Confer-
ence on Security Symposium, pp. 255–272, 2018.

[17] R. Schuster, V. Shmatikov, and E. Tromer, “Situational Access Control in the In-
ternet of Things,” Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security - CCS ’18, pp. 1056–1073, 2018.

[18] A. A. Cárdenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry, “Chal-
lenges for Securing Cyber Physical Systems,” in Workshop on Future Directions in
Cyber-physical Systems Security, DHS, 2009.

[19] Q. Gu, D. Formby, S. Ji, H. C. Cam, and R. Beyah, “Fingerprinting for Cyber
Physical System Security: Device Physics Matters Too,” IEEE Security & Privacy,
2018.

[20] J. Cordy, T. Dean, A. Malton, and K. Schneider, “Source transformation in soft-
ware engineering using the TXL transformation system,” Information and Software
Technology, vol. 44, no. 13, pp. 827–837, 2002.

[21] The C++ Front End, 2006.

[22] C. Fischer and R. Leblanc. Ben- jamin/Cummings Publishing Company, 1988.

[23] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, “Efficiently com-
puting static single assignment form and the control dependence graph,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 13, no. 4,
pp. 451–490, 2002.

[24] R. Gupta, M. Harrold, and M. Soffa, “An Approach to Regression Testing using
Slicing,” Proceedings Conference on Software Maintenance, 1992.

166

https://www.fernhillsoftware.com/help/iec-61131/common-elements/standard-function-blocks/index.html
https://www.fernhillsoftware.com/help/iec-61131/common-elements/standard-function-blocks/index.html
https://www.fernhillsoftware.com/help/iec-61131/common-elements/standard-function-blocks/index.html

[25] D. Weise, R. Crew, M. Ernst, and B. Steensgaard, “Value dependence graphs: repre-
sentation without taxation,” Proceedings of the 21st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 297–310, 1994.

[26] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague, “Smar-
tAuth: User-Centered Authorization for the Internet of Things,” Usenix, pp. 361–
378, 2017.

[27] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky, “The
Stanford CoreNLP Natural Language Processing Toolkit,” in Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, Stroudsburg, PA, USA: Association for Computational Linguistics, 2014,
pp. 55–60. arXiv: arXiv:1011.1669v3.

[28] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and Logging in the Inter-
net of Things,” Proceedings 2018 Network and Distributed System Security Sym-
posium, no. February, 2018.

[29] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A
Systematic Survey of Program Comprehension through Dynamic Analysis,” IEEE
Transactions on Software Engineering, vol. 35, no. 5, pp. 684–702, 2009.

[30] A. W. Biermann, “On the inference of Turing machines from sample computa-
tions,” Artificial Intelligence, vol. 3, no. C, pp. 181–198, 1972.

[31] M. F. Kleyn and P. C. Gingrich, “GraphTrace—understanding object-oriented sys-
tems using concurrently animated views,” ACM SIGPLAN Notices, vol. 23, no. 11,
pp. 191–205, 1988.

[32] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides, “Visualizing the behavior
of object-oriented systems,” ACM SIGPLAN Notices, vol. 28, no. 10, pp. 326–337,
1993.

[33] W. De Pauw, D. Kimelman, and J. Vlissides, “Modeling object-oriented program
execution,” in Object-Oriented Programming, vol. 821, Springer, Berlin, Heidel-
berg, 1994, pp. 163–182.

[34] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman, “Execution Patterns in
Object-Oriented Visualization,” 1980.

[35] I. Jacobson, P. Jonsson, and G. Övergaard, Object-Oriented Software Engineer-
ing: A Use Case Driven Approach. Addison-Wesley Pub, 1992, p. 54 435, ISBN:
0201544350.

167

https://arxiv.org/abs/arXiv:1011.1669v3

[36] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson, and J.
Isaak, “Visualizing dynamic software system information through high-level mod-
els,” ACM SIGPLAN Notices, vol. 33, no. 10, pp. 271–283, 1998.

[37] T. Bell, “The concept of dynamic analysis,” ACM SIGSOFT Software Engineering
Notes, vol. 24, no. 6, pp. 216–234, 1999.

[38] D. Heuzeroth, T. Holl, and W. Lowe, “Combining Static and Dynamic Analyses to
Detect Interaction Patterns,”

[39] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, “Automatic design pattern de-
tection,” MHS2003. Proceedings of 2003 International Symposium on Micromecha-
tronics and Human Science (IEEE Cat. No.03TH8717), pp. 94–103, 2003.

[40] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan, “Discovering architec-
tures from running systems,” IEEE Transactions on Software Engineering, vol. 32,
no. 7, pp. 454–466, 2006.

[41] H. Y. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “DiscoTect: a
system for discovering architectures from running systems,” Proceedings. 26th In-
ternational Conference on Software Engineering, no. May, pp. 470–479, 2004.

[42] J. Koskinen, M. Kettunen, and T. Syst?? “Profile-based approach to support com-
prehension of software behavior,” IEEE International Conference on Program Com-
prehension, vol. 2006, pp. 212–221, 2006.

[43] G. Hassapis, I. Kotini, and Z. Doulgeri, “Validation of a SFC Software Specification
by Using Hybrid Automata,” IFAC Proceedings Volumes, vol. 31, no. 15, pp. 107–
112, Jun. 1998.

[44] T. Mertke and T. Menzel, “Methods and tools to the verification of safety-related
control software,” in Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, vol. 4, IEEE, 2000, pp. 2455–2457.

[45] G. Canet, S. Couffin, J. J. Lesage, A. Petit, and P. Schnoebelen, “Towards the auto-
matic verification of PLC programs written in Instruction List,” Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 2449–
2454, 2000.

[46] S. Kowalewski and J. Preuβig, “Verification of Sequential Controllers with Tim-
ing Functions for Chemical Processes,” IFAC Proceedings Volumes, vol. 29, no. 1,
pp. 4843–4848, Jun. 1996.

168

[47] N. Völker and B. J. Krämer, “Modular Verification of Function Block Based In-
dustrial Control Systems,” IFAC Proceedings Volumes, vol. 32, no. 1, pp. 159–164,
May 1999.

[48] F. Jiménez-Fraustro and É Rutten, “A synchronous model of IEC 61131 PLC lan-
guages in SIGNAL,” in Proceedings - Euromicro Conference on Real-Time Sys-
tems, 2001, pp. 135–142, ISBN: 0769512216.

[49] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” Symantec-Security
Response, no. February 2011, pp. 1–69, 2011.

[50] S. McLaughlin, “On dynamic malware payloads aimed at programmable logic con-
trollers,” Proceedings of the 6th USENIX conference on Hot topics in security. Hot-
Sec, vol. 11, p. 10, 2011.

[51] S. Mclaughlin and P. Mcdaniel, “SABOT : Specification-based Payload Generation
for Programmable Logic Controllers,” in Proceedings of the 2012 ACM confer-
ence on Computer and communications security, ACM, 2012, pp. 439–449, ISBN:
9781450316514.

[52] D. Bohlender, H. Simon, N. Friedrich, S. Kowalewski, and S. Hauck-Stattelmann,
“Concolic test generation for PLC programs using coverage metrics,” in 2016 13th
International Workshop on Discrete Event Systems, WODES 2016, IEEE, May
2016, pp. 432–437, ISBN: 9781509041909.

[53] S. Guo, M. Wu, and C. Wang, “Symbolic execution of programmable logic con-
troller code,” 2017, pp. 326–336, ISBN: 9781450351058.

[54] L. Cheng, K. Tian, and D. Yao, “Orpheus : Enforcing Cyber-Physical Execution
Semantics to Defend Against Data-Oriented Attacks,” ACSAC - Annual Computer
Security Applications Conference, pp. 315–326, 2017.

[55] A. Abbasi, T. Holz, S. Etalle, and E. Zambon, “ECFI: Asynchronous Control Flow
Integrity for Programmable Logic Con-trollers,” vol. 12, 2017.

[56] A. Keliris and M. Maniatakos, “ICSREF: A Framework for Automated Reverse En-
gineering of Industrial Control Systems Binaries,” in NDSS, 2019, ISBN: 189156255X.
arXiv: 1812.03478.

[57] M. Zhang, C.-y. Chen, B.-c. Kao, Y. Qamsane, Y. Shao, and Y. Lin, “Towards Au-
tomated Safety Vetting of PLC Code in Real-World Plants,” in IEEE Security &
Privacy, 2019, pp. 560–576.

[58] H. Prähofer, R. Schatz, and C. Wirth, “Detection of high-level execution patterns
in reactive behavior of control programs,” 2010, pp. 14–19, ISBN: 4373224687132.

169

https://arxiv.org/abs/1812.03478

[59] H. Prahofer, R. Schatz, and A. Grimmer, “Behavioral model synthesis of PLC pro-
grams from execution traces,” in Proceedings of the 2014 IEEE Emerging Technol-
ogy and Factory Automation (ETFA), IEEE, Sep. 2014, pp. 1–5, ISBN: 978-1-4799-
4845-1.

[60] S. Kalle, N. Ameen, H. Yoo, and I. Ahmed, “CLIK on PLCs! Attacking Control
Logic with Decompilation and Virtual PLC,” Workshop on Binary Analysis Re-
search (BAR) 2019 NDSS 19, no. March, 2019.

[61] C. Schuett, J. Butts, and S. Dunlap, “An evaluation of modification attacks on pro-
grammable logic controllers,” International Journal of Critical Infrastructure Pro-
tection, vol. 7, no. 1, pp. 61–68, 2014.

[62] C. O’Flynn and Z. Chen, “Side Channel Power Analysis of an AES-256 Boot-
loader,” in CCECE, 2015.

[63] J. Park and A. Tyagi, “Using Power Clues to Hack IoT Devices: The power side
channel provides for instruction-level disassembly.,” IEEE Consumer Electronics
Magazine, vol. 6, no. 3, pp. 92–102, 2017.

[64] J. Longo, E. Mulder, D. Page, and M. Tunstall, “SoC It to EM: ElectroMagnetic
Side-Channel Attacks on a Complex System-on-Chip,” in Proceedings of the 17th
International Workshop on Cryptographic Hardware and Embedded Systems, 2015,
pp. 620–640.

[65] M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan, “Acoustic Side-Channel
Attacks on Additive Manufacturing Systems,” in 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS), IEEE, 2016, pp. 1–10.

[66] Mixing Equipment - Industrial Equipment - Shopping Cart by INDCO, New Albany,
Indiana.

[67] T. Holleczek, V. Venus, and S. Naegele-Jackson, “Statistical Analysis of IP Delay
Measurements as a Basis for Network Alert Systems,” in 2009 IEEE International
Conference on Communications, IEEE, Jun. 2009, pp. 1–6.

[68] D. Kushner, “The real story of stuxnet,” vol. 50, no. 3, 48–53, 2013.

[69] P Srinivasan, “Fingerprinting Cyber Physical Systems: A Physics-Based Approach,”
Master’s thesis, 2015.

[70] L. A. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed, and S. A.
Zonouz, “Hey, My Malware Knows Physics! Attacking PLCs with Physical Model
Aware Rootkit,” NDSS, no. March 2017, 2017.

170

[71] P. Liu, W. Zang, and M. Yu, “Incentive-based modeling and inference of attacker
intent, objectives, and strategies,” ACM Transactions on Information and System
Security, vol. 8, no. 1, pp. 78–118, 2005.

[72] Hacking Critical Infrastructure | OSINT Soup, 2018.

[73] Permanent Magnet DC Motor or PMDC Motor | Working Principle Construction,
2018.

[74] D. Polka, Motor and Drive Control. ISA, 2006, pp. 133–152, ISBN: 978-1-55617-
984-6.

[75] Wolfram SystemModeler: Modeling, Simulation & Analysis, 2018.

[76] Modelica Libraries — Modelica Association, 2018.

[77] B. Drury, Interfaces, communications and PC tools. Institution of Engineering and
Technology, 2010, pp. 485–531, ISBN: 978-1-84919-013-8.

[78] D. Wagner and P. Soto, “Mimicry Attacks on Host-Based Intrusion Detection Sys-
tems *,” Tech. Rep., 2002.

[79] N. Provos, “Improving host security with system call policies,” in Proceedings of
the 12th Conference on USENIX Security Symposium - Volume 12, ser. SSYM’03,
Washington, DC: USENIX Association, 2003, pp. 18–18.

[80] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and Weibo Gong, “Anomaly detec-
tion using call stack information,” in Proceedings 19th International Conference
on Data Engineering (Cat. No.03CH37405), IEEE Comput. Soc, pp. 62–75, ISBN:
0-7695-1940-7.

[81] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow Integrity Princi-
ples, Implementations, and Applications,” in 12th ACM Conference on Computer
and Communication Security, 2005.

[82] S. Electric, “Modicon M241 Logic Controller - Hardware Guide - 04/2014,” Tech.
Rep., 2014.

[83] ControlLogix 5570 Controllers.

[84] C. D. Schuett, “Programmable Logic Controller Modification Attacks for use in
Detection Analysis,” p. 118, 2014.

[85] Programming with python language - capstone, https://www.capstone-
engine.org/lang_python.html, Accessed: 2019-11-10.

171

https://www.capstone-engine.org/lang_python.html
https://www.capstone-engine.org/lang_python.html

[86] Qemu, https://www.qemu.org/, Accessed: 2019-11-10.

[87] Unicorn - the ultimate cpu emulator, https://www.unicorn-engine.
org/, Accessed: 2019-11-10.

[88] T. R. Alves, M. Buratto, F. M. De Souza, and T. V. Rodrigues, “OpenPLC: An open
source alternative to automation,” in Proceedings of the 4th IEEE Global Humani-
tarian Technology Conference, GHTC 2014, Institute of Electrical and Electronics
Engineers Inc., Dec. 2014, pp. 585–589, ISBN: 9781479971930.

[89] Opc foundation, https://opcfoundation.org/, Accessed: 2019-11-10.

[90] M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan, “Acoustic side-channel
attacks on additive manufacturing systems,” in 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS), 2016, pp. 1–10.

[91] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel(s),”
in Cryptographic Hardware and Embedded Systems - CHES 2002, B. S. Kaliski,
ç. K. Koç, and C. Paar, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 29–45, ISBN: 978-3-540-36400-9.

[92] S. Chhetri and M. A. Al Faruque, “Poster: Attacks on Confidentiality of Additive
Manufacturing Systems using Acoustic Side-Channel,” International Conference
on Micro-manufacturing (ICOMM), 2016.

[93] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Nov. 1998.

[94] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang, “Real-world
acoustic event detection,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1543–
1551, Sep. 2010.

[95] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event detection in
real life recordings,” in 2010 18th European Signal Processing Conference, 2010,
pp. 1267–1271.

[96] A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and M. Omologo, “Clear
evaluation of acoustic event detection and classification systems,” in Multimodal
Technologies for Perception of Humans, R. Stiefelhagen and J. Garofolo, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 311–322, ISBN: 978-
3-540-69568-4.

172

https://www.qemu.org/
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://opcfoundation.org/

[97] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste, and H. Van hamme, “An
exemplar-based nmf approach to audio event detection,” in 2013 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, 2013, pp. 1–4.

[98] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore,
M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K.
Wilson, “CNN architectures for large-scale audio classification,” ICASSP, IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing - Proceedings,
pp. 131–135, 2017. arXiv: 1609.09430.

[99] Y. Sakashita and M. Aono, “Acoustic Scene Classification by Ensemble of Spec-
trograms based on Adaptive Temporal Divisions,” Tech. Rep. 1, Mar. 2018, pp. 29–
29.

[100] J. Pons and X. Serra, “Randomly Weighted CNNs for (Music) Audio Classifica-
tion,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, 2019, pp. 336–340, ISBN: 9781538646588.

[101] L. Wyse, “Audio Spectrogram Representations for Processing with Convolutional
Neural Networks,” 2017. arXiv: 1706.09559.

[102] “Acoustic noise in induction motors: causes and solutions,” in Record of Confer-
ence Papers - Annual Petroleum and Chemical Industry Conference, 2000, pp. 253–
260.

[103] Y. Javadzadeh and S. Hamedeyaz, “Noise of Induction Machines,” Trends in Heli-
cobacter pylori Infection, vol. i, no. tourism, p. 13, 2014.

[104] T. Bertolini and T. Fuchs, Vibrations and Noises in Small Electric Motors. 2012,
ISBN: 9783862360352.

[105] A. P. Mathur and N. O. Tippenhauer, “Swat: A water treatment testbed for research
and training on ics security,” in 2016 International Workshop on Cyber-physical
Systems for Smart Water Networks (CySWater), 2016, pp. 31–36.

[106] PyTorch.

[107] T. Weber, HAXPO: Reverse Engineering Custom ASICs by Exploiting Potential
Supply-Chain Leaks, 2019.

[108] Jtagulator, http://www.grandideastudio.com/jtagulator/, Ac-
cessed: 2019-11-10.

[109] J-link pro | segger, https://www.segger.com/products/debug-
probes/j-link/models/j-link-pro/, Accessed: 2019-11-10.

173

https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1706.09559
http://www.grandideastudio.com/jtagulator/
https://www.segger.com/products/debug-probes/j-link/models/j-link-pro/
https://www.segger.com/products/debug-probes/j-link/models/j-link-pro/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Motivation
	Research Scope
	Background
	Overview of CPSs
	Physics-based Defense Techniques in CPSs
	PLC Programming

	Literature Review
	Software- and Physics-Based CPS Security Research
	Static and Dynamic Analysis of Programs
	Traditional Computer Programs
	PLC Programs

	Side-Channel Analysis of CPS

	Fingerprinting Individual Devices Based on Their Operation Time
	Identifying Threats in Cyber Physical Systems
	Formulating the Device Physics-Based Approach
	Existing CPS Security Research
	Device Physics-based Fingerprinting Approach

	Demonstration Scenario
	Experiment Setup
	Extracting Features by Modeling the Physics of Device
	Classifying Different Devices Based on Their Fingerprints
	Effect of Network Delay
	Resistance to False Modeling Attacks

	Conclusion

	Device Physics Aware Mimicry Attacks
	Introduction
	Observation
	Challenges
	Contributions
	Attacks in CPS

	Problem Description
	Attack Model
	Formal Definition of the Device Response Mimicry Attack Problem

	Methodology
	Device Physics Modeling
	Characterization
	Device Model and Configuration Inference
	Device Response Packets Synthesis

	Experiments
	Timestamps and Protocols
	Electric Motor
	Relay
	Valve
	Implementing Timestamped Forged Response Packets
	Results

	Discussion
	Applicability to Other Field Protocols
	Applicability to Other Device Types
	Defending Against CPS Mimicry Attacks
	Limitations

	Conclusion

	Identifying the process from its control programs
	Introduction
	Application Scenario
	Building the Structure of PLC Program Binary
	Understanding the Binary Structure
	Input, Output and Internal Variables
	Function Blocks

	Building the Automaton
	Binary Execution Emulation
	Timers and Counters
	Fuzzing

	Data Collection
	Evaluation
	Classifier
	Detector
	Summary

	Discussion
	Generalization
	Limitations

	Conclusion

	Identifying the process parameters using side-channel information
	Introduction
	Audio Side Channel in CPSs
	Analyzing Audio with Deep Learning
	Attack Scenario

	Audio Side Channel in Electric Motors
	Pilot Study: Water Loop Testbed
	Case Study: Water Treatment Testbed
	Results
	Discussion
	Conclusion

	Conclusion
	JTAG
	State Definition of the Standard Function Blocks
	Realistic Physical Systems
	Tank Balancer
	Stirring System
	Robot Path
	Traffic Light

	Secure Water Treatment (SWaT)

