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SUMMARY

Initial Orbit Determination (IOD) is a classical problem in astrodynamics. The space

around Earth is crowded by a great many objects whose orbits are unknown, and the number

of space debris is constantly increasing because of break-up events and collisions. Recon-

structing the orbit of a body from observations allows us to create catalogs that are used to

avoid collisions and program missions for debris removal. Also, comparing the observa-

tions of celestial bodies with predictions of their positions made based on our knowledge

of the universe has been in the past, and is still today, one of the most effective means to

make improvements in our cosmological model. In this work, a purely geometric solution

to the angles-only IOD problem is analyzed, and its performance under various scenarios

of observations is tested. The problem formulation is based on a re-parameterization of the

orbit as a disk quadric, and relating the observations to the unknowns leads to a polynomial

system that can be solved using tools from numerical algebraic geometry. This method is

time-free and does not require any type of initialization. This makes it unaffected by the

problems related to the estimate of the time-of-flight, that usually affects the accuracy of the

solution. A similar approach may be used to analyze the performance of the solver when

streaks are used, together with lines of sight, as inputs to the problem. Streaks on digital

images form, together with the camera location, planes that are tangent to the orbit. This

produces two different types of constraints, that can be written as polynomial equations.

The accuracy and the robustness of the solver are decreased by the presence of streaks, but

they remain a valid input when diversity in the observed directions guarantees the departure

from the singular configuration of almost coplanar observations.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Initial Orbit Determination: definition and motivation

Orbit Determination (OD) is the process through which the trajectory of a body in space

is recovered. It is one of the most ancient problems in astrodynamics and has attracted,

over the centuries, the interest of the most famous mathematicians and astronomers. This

problem is as vast as it is complex, and can be stated using many different formulations.

The complete OD process requires many elements, like a sufficiently accurate dynamical

model, a collection of observations of the orbiting object, and algorithms and filters to

analyze these data at increasing levels of depth. We can divide the whole OD process as

happening into two main steps. Assume an object is observed for the first time in space,

and no information is available about its orbit. The first action is to obtain an initial guess

of what the object’s trajectory is. This is the task of Initial Orbit Determination (IOD)

methods. Afterward, Precise Orbit Determination (POD) methods are used to optimally

estimate the orbit through filters that exploit the most in-depth knowledge of the specific

dynamical environment that rules the motion of the body considered. However, the vast

majority of these POD algorithms needs to be initialized, and the first initial guess is, by

definition, given by IOD solutions.

This work will focus on a solution to the IOD problem that is strictly geometric, and for

this reason we will primarily concentrate on IOD characterization. In fact, IOD processes

can vary depending on the assumptions made at the basis of the problem and on the type of

measurements available. However, all the IOD methods are united by the absence of any

kind of a priori information about the orbit. We can then state the problem of Initial Orbit

Determination (IOD) as the process of determining the trajectory followed by a body when
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it is seen for the first time, and no a priori information is available about it.

Classical IOD methods are based on the assumption that the orbit followed by the body

is Keplerian. These are the most basic types of IOD since they do not make any assumption

on the dynamical model except for the presence of a massive body that creates a gravita-

tional attraction as described by Newton’s universal law of gravitation. The categorization

based on the type of measurements used gives rise to the definition of angles-only IOD

methods as those based on line of sight (LOS) observations, where the object is sighted, for

example, by means of a telescope or a camera. This type of observation is ”angles-only”

because the only information that it provides is a direction in space, a line that intersects

the orbit, and is usually described in terms of a pair of angles - right ascension and decli-

nation from a specific observing site. Another big class of IOD methods is populated by

those based on the knowledge of the range information: the whole position vector of the

body is known at certain points along the orbit. Other variants exploit the knowledge of the

velocity vector of the satellite at certain positions [1] [2] or make use of streaks on digital

images [3]. In this work, a solution to the classic angles-only IOD problem will be studied.

In the first part, only LOS measurements will be considered, while in the second part they

will be combined with streak observations.

However, one may wonder what are the motivations behind the study of OD. In the

past, when even the orbits of the planets of our own solar system were unknown, a method

that allowed us to recover the details about their motion was desirable for obvious reasons.

In the XVII century the Ptolemaic model was still widespread and the equations ruling the

dynamics of the celestial bodies were far from being understood. The exactness of the pre-

dictions of the positions of the celestial bodies made by the astronomers using Newton’s

gravitational law, reflecting Kepler’s intuitions, represented a turning point, proving that the

heliocentric model was a more accurate description of the solar system than the geocentric

architecture that many people were still trying to defend. Nowadays, the orbits of the ce-

lestial bodies of our solar system are well known, and their position in the future can be

2



predicted with great precision even taking into account different types of perturbations. But

there is an infinitely high number of celestial bodies whose orbits are unknown: planets,

moons, stars, comets, that may have never been spotted until now. Also, our knowledge of

the universe and its physics is limited. In the currently accepted cosmological model, dark

matter has been introduced to explain phenomena otherwise unexplainable using the law of

gravitation applied to the visible matter [4]. This dark matter contributes to determining the

orbit of the bodies in space, and this consideration makes now clear the role that orbit deter-

mination can have in the study of the dynamics and the physics of our universe: comparing

the observations made with the predictions, as already done in the past, is a means that

allows us to discover discrepancies between our cosmological model and the reality. This

is part of a process that can be summarized as trying to ”match the fitter’s universe with the

real universe”[5][6]. Coming back closer to the Earth, we can identify another undeniable

use for fast, precise OD. The space around the Earth is crowded by a great many objects

whose orbits are unknown, and that represent a danger for every other satellites in orbit

around the Earth or spacecrafts in transit directed to farther destinations [7]. Further, the

number of space debris is increasing because of breakup events and collisions, and an as

vast as possible catalog of the objects residing in space would help in preventing collisions

and planning missions for the removal of debris. This passes through the determination of

the orbits of the sighted objects.

Clearly, the level of accuracy in the estimation of the orbit needed to fulfill the scopes

described above is not given by an IOD algorithm. However, we have already seen how it

is a fundamental step before a more accurate description can be made using POD. Further-

more, POD algorithms are not always guaranteed to converge, especially if the initial guess

given by the IOD is poor. The more precise the initial guess, the higher the performance of

the POD in terms of number of iterations required to converge (and speed of convergence).

This, again, highlights the cardinal role of Initial Orbit Determination in the OD process.

We can therefore state that IOD methods are a field of research as important as ever.

3



1.2 The history of orbit determination

The first traces of Orbit Determination date back to the first half of the XVII century when

Kepler, interpreting the observations made by Tycho Brahe, published the Tabulae Rudol-

phinae [8] in 1627. The study of the accurate measurements made by Brahe has been

the basis for the development of the three laws of planetary motion, used to provide, in

the tables, a means to evaluate the position of thousands of stars and the known planets.

A considerable part of the tables consists in fact of instructions on how to use them and

the logarithmic calculus in order to recover the position of a celestial body in a previous

or future moment in time. The methods described are applied to many examples in the

manuscript itself and were based on the area rule for elliptic orbits (Kepler’s second law).

These tables served for years as the most precise means to evaluate the positions of plan-

ets, stars and comets [9]. Nonetheless, Kepler did not provide any analytical expression to

recover the orbit of a body given some observations of it.

The first author of a solution to the OD problem was Newton who, in the Principia

[10], describes a graphical procedure to recover the parabolic orbit from three observations

on a plane [11]. This procedure was then applied by Halley, leading him to the discovery

of Halley’s comet, but it was difficult to understand and was based on successive graphical

approximations. Still, this was not an analytical solution.

After Newton, many mathematicians and astronomers worked on the problem, such as

Euler, Lambert, Lagrange, Laplace, Gauss and Gibbs, just to name some of the most fa-

mous ones[12]. Euler was the first one to provide an analytical solution to the OD problem.

In his work Theoria motuum planetarum et cometarum [13], he states in different ways

the problem of recovering the orbits given partial knowledge of the orbital elements and

some observations. In 1743, he also derived the expression of the parabola passing through

two positions given the time-of-flight between them. The same problem was independently

solved by Lambert in 1761 for (again) the parabolic case, and in the following decade for
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elliptical and hyperbolic orbits [14]. Mathematical elegance to these results was given by

Lagrange [15]. This type of IOD, formulated with the use of two position vectors and time-

of-flight, is universally referred to as Lambert’s problem. Recalling the subdivision made

in the previous section, all these solutions fall into the class of position-based IODs. The

angles-only IOD was instead solved in the first place by Laplace and Gauss. The observa-

tions consisted of line of sight (LOS) measurements, so only the direction of the orbiting

object’s position vector was known. In 1780, Laplace published his solution [16], followed

by Gauss in 1809 [17]. The method proposed by Laplace was difficult to apply because

of the too heavy computations, and is considered inaccurate for Earth-orbiting satellites

[18]. Still widely used, the Gauss method is more reliable for Earth orbiting satellites, but

only until the observations are not too spread (some authors suggest no more than 60◦ apart

[19]). We complete this brief review of angles-only IOD by mentioning the more recent

solution proposed by Escobal [20] in 1965, namely the Double-R method, which works

well both for spread and close observations.

We finally recall a method that is different from all the previous ones in that it does not

make use of time information to work. It was proposed by Gibbs in 1889 [21] and, starting

from three position vectors, gives as output the velocity of the object at one of the three

positions, uniquely identifying the orbit.

1.3 Some considerations about the existing IOD methods

Since a lot of IOD solutions have been proposed for all the different formulations, the moti-

vation behind a new approach to the angles-only IOD problem must be given. In Table 1.1

a schematic comparison between the inputs required by some of the most common IOD

is shown. Until now, IOD methods have been classified in terms of the type of spatial

measurements used, not considering that temporal measurements are also often needed. In

fact, time appears among the inputs of almost all the IOD solutions presented in the table,

and it has a role in determining the number of measurements necessary to solve the prob-

5



lem. Therefore, we can expect that for the same type of spatial measurements (for example

LOS, or position vector), if time is used then fewer observations will be needed. In the

table, we can see that this occurs when comparing Lambert’s solution, which only needs

two observations, to Gibbs’, which needs three observations. Also, if we want to compare

the quantity of information enclosed in a LOS measurement, it is clear that a LOS contains

less information than that enclosed in a position vector, which additionally contains range

information. Along the same line, we can expect that more measurements will be needed if

LOS are used, and we can verify this by comparing the solution of Lambert with the solu-

tion of Gauss, for example, which uses three observations and time. The aim of this work

is to analyze the capability of a new approach first presented in [22], where the angles-only

IOD problem is solved without the use of time in any way. Following the reasoning made

before, we can therefore expect that this solution, referred to as the homotopy-based so-

lution, requires more observations than the others listed in the table. In fact, it needs five

LOS measurements to provide a finite number of solution orbits.

The importance of angles-only IOD is that bearing (direction) information is more eas-

ily obtainable than other measurements, since a telescope or a camera are sufficient to

gather the observation. Obtaining range information for the determination of the position

vector, on the other hand, is not always simple [23]. In fact, range measurements are strictly

related to the measurement of time. We can distinguish between the range information ob-

tained by measuring the time taken by a signal to travel from the observer to the satellite

and then back to the observer (two-way range), or only using the time taken by the signal to

Table 1.1: Summary of some common IOD formulations

Method
Gauss & Laplace

& Double-R & Gooding
Lambert Gibbs Hodograph This work

Number of observations 3 2 3 3 5

Type of observation angles position position velocity angles

Use of time yes yes no no no
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travel from the observer to the satellite or vice-versa (one-way range). However, both types

of range measurements present complexities. In the one-way range, the target satellite must

have an onboard clock precisely synchronized with a clock at the observer position. When

two bodies have a relative acceleration, relativistic effects cause a difference in the duration

of a second for them [24]. Keeping clocks synchronized, for this reason, is a necessary step

to provide an accurate measurement of the time difference between when the signal leaves

the observer (measured with one clock) and when it reaches the satellite (measured with

the other clock). Another factor that influences the precision of the estimate (both for the

one-way and the two-way range) is related to the finiteness of the light velocity. During

the time taken by the signal to travel from the satellite to the observer, the satellite position

will change, since it will continue to move along its own trajectory, and the observation

made will be associated to the wrong time instant (so to the wrong position, and the wrong

range). A correction can be applied if the distance traveled by the light is known (assuming

to ignore other phenomena that influence the signal velocity, like for example changes of

the medium of propagation or change of properties of this medium - density, humidity, etc).

However, the distance traveled by the light is the range that we are trying to measure, so it

is unknown. In an IOD problem, we also assume that no a priori information is available,

so estimating the error introduced by the light time-of-flight can be non-trivial, leading to

further inaccuracies in the initial orbit estimation process. If the correction is not made, the

farther the object, the higher the error.

Clearly, estimating the light time-of-flight is not specific to the range measurement, but

it is in general something that we have to take into account when we record the time of any

type of observation, including LOS measurements. All the issues listed until now make

an IOD solution that does not make use of time or range information attractive, because

it would not only simplify the pre-processing corrections of the measurements, but would

also significantly decrease the complexity of the instrumentation devoted to the IOD task

(no onboard clocks, no necessity to store time information). This would make the IOD

7



feasible even with the most basic type of instrumentation.

1.4 Organization of the work

The homotopy-based solution analyzed in this work is based on a polynomial reformulation

of the equation of the IOD problem obtained using tools from projective geometry. The

solution of the final polynomial system was found using a homotopy continuation method.

For this reason, the mathematical background for the comprehension of the geometric re-

parameterization of the orbit will be first reviewed. Then, the specific reformulation of [22]

will be developed and novel paths will be studied that will lead to a geometric interpretation

of the constraints imposed to the system.

The further step made in this work is to consider streaks in digital images as inputs to

the problem in combination with LOS observations, taking inspiration from [3], keeping

the assumption made above on the absence of time-of-flight information and any type of

initial guess. Subsequently, a numerical study of the performance of the bearings-only case

will be made, and it will be compared with the results provided by a standard IOD solution.

This will be followed by an analysis of the results provided by a combination of streaks and

LOS measurements. Finally, possible future paths for the development of the work will be

discussed.
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CHAPTER 2

MATHEMATICAL BACKGROUND

In this chapter, the mathematical tools for the development of the process that leads to the

polynomial reformulation of the IOD problem will be given. First, some basic notions of

projective geometry will be introduced and then some geometric results used in the rest of

this work will be discussed.

Since part of this work is based on the projection of geometric features on a plane, some

useful properties of projective geometry of two dimensions will first be presented. From

that, similar properties of the projective space will be deduced by analogy, and this will

give the necessary tools for the development of the relationship between LOS observations

and the orbit as analyzed in the first part of chapter 4. However, the reformulation of the

equations of the problem requires the knowledge of how conics and quadrics are treated in

projective geometry. For this reason part of this chapter is also devoted to their description.

2.1 Projective geometry: homogeneous coordinates

Projective geometry is usually considered born from the work of Girard Desargues in the

XVII century [25], with some notions dating back to the era of Apollonius of Perga [26] (II-

III century B.C.) and Pappus (IV century), but it fell out of use shortly after. The new and

definitive flowering of projective geometry took place in the XIX century with Jean-Victor

Poncelet, the first mathematician who made a systematic study of the subject [27], and

it is now recognized as a powerful tool that allows geometric problems to be approached

elegantly. I will give a summary of the potentiality of this approach to geometry, with a

focus towards the results that have been used to reformulate the IOD problem. For a more

complete and formal introduction to the subject, the reader can refer to books like [28] and

[29].
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Given a vector space Vn+1 of dimension n+1 over a field K, the projective space Pn can

be defined as the set of one-dimensional subspaces of Vn+1 [30]. In other words, we can

associate any point of the projective space of dimension n to a one-dimensional subspace

of a vector space of dimension n + 1. Two elements are equivalent in the projective space

if they belong to the same vector subspace of the space of higher dimension. From a more

practical standpoint, this means that a point in Pn is described by all the non-zero scalar

multiples of a vector with n + 1 coordinates. A point on the projective line (a point in

P1) is associated to all the points of a one-dimensional subspace of a two-dimensional

vector space (a line in the plane - two coordinates). Similarly, points on the projective

plane are described with three coordinates and points in the projective space with four. The

homogeneous coordinates of a point in the projective space Pn can be easily obtained by

appending a 1 to the n-dimensional vector of coordinates of the point in the standard space

Rn, if assume V = R. From now on, when an element is said to be part of the projective

space of any dimension, it is tacit that homogeneous coordinates are used.

The interpretation of this additional coordinate is simple when the geometry of P1 or

P2 is considered, but the principle is the same for the projective geometry of any dimen-

sion. There are multiple advantages brought by it, and they will be in part clarified in the

next subsections, where we will look at features of projective geometry in two and three

dimensions and then at the description of conics and quadrics.

2.2 The projective plane

An extremely intuitive description of projective geometry in two dimensions is given by N.

Wildberger [31], and a consistent part of this section takes inspiration from his lectures.

Consider an orthonormal coordinate system in three dimensions, with axis x, y and z,

and consider the plane z = 1. Also, assume that we fix a coordinate frame for that plane

such that the origin is at the intersection with the z-axis and the axes X and Y are parallel

to the axes x and y of the three-dimensional frame. A representation of this scenario is
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given in Figure 2.1.

Figure 2.1: Points in the projective plane are described in terms of all the one-dimensional
subspaces of the augmented vector space R3.

Now, take a point in the plane and the line through the origin passing through that point.

If the point has coordinates, in the two-dimensional reference frame, given by xT = [X Y ],

its coordinates in the three-dimensional frame will be given by x̄T = [xT 1] and any other

point on the same line will be described by a scalar multiple of x̄. If we decide to map every

point on that line to the point on the plane, then the point on the plane is described by all

the non-zero scalar multiples of the vector x̄. In other words, the homogeneous coordinates

of the point in the projective plane are given by x̄T ∝ [X Y 1] and the coordinates of any

point on the line passing through it are acceptable for the description of the point in the

projective plane: the points on the projective plane are represented through the direction of

the corresponding line in the augmented space.

2.2.1 Points at infinity

Now, imagine to gradually rotate the line through the origin until it lies in the x-y plane,

as in Figure 2.2. The point of intersection between the line and the plane, i.e. the point

on the projective plane, will move far from the origin, approaching the infinity. When the

line completely lies in the x-y plane, the z component of its direction vector becomes zero,
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and this reflects the fact that the X and Y components of the corresponding point tend to

infinity. This point at infinity is therefore characterized by having the last homogeneous

coordinate equal to 0 and it is representative of a direction - the direction of all the lines

parallel to the line in the x-y plane. Since we have an infinite number of directions that do

not intersect the projective plane (all the lines lying in the x-y plane), there is an infinite

number of points at infinity, lying on the so-called line at infinity. The introduction of points

at infinity as representative of directions in the projective plane allows the generalization

of the axiom that two lines in a plane intersect at a point, even if they are parallel. In this

case, the point of intersection will be the common point at infinity associated with their

direction.

Figure 2.2: As the black line approaches the line in the x-y plane, the point in the projective
plane moves to infinity in the direction of the line in the x-y plane.

2.2.2 Duality

Another important consequence of the addition of a coordinate to the world is the notion of

duality. The Cartesian equation of a line in the plane is given, in 2D, by

aX + bY + c = 0
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but using homogeneous coordinates, since X = x/z and Y = y/z, under the condition

that z ̸= 0, we can rewrite the equation as

ax+ by + cz = 0

or

[
a b c

] 
x

y

z

 = 0 (2.1)

This means that every line in the projective plane, even if it doesn’t pass through the origin,

can be described with a homogeneous equation.

Now let x̄T ∝ [x y z] and ℓT ∝ [a b c]. The line can be described directly in terms of

all its points, and dually in terms of the line coordinates ℓ. If we imagine to keep fixed

ℓ, varying x̄ such that Equation 2.1 is satisfied, we obtain all the points lying on the same

line ℓ. If we fix x̄ and vary ℓ, we obtain the coordinates of all the lines of the pencil with

center at x̄. This relation is at the basis of the parallelism between points and lines, which

is formally described in the Principle of Duality [28]:

If a theorem is valid in the projective geometry of the plane, the dual theorem obtained

replacing the word point with the word line, the word collinear with concurrent and the

word join with meet, and viceversa, is still valid.

A simple application of this theorem leads to the conclusion that, since the join of

two points generates a line (direct theorem), the meet of two lines generates a point (dual

theorem). Similarly, we know that if x̄1 and x̄2 are two points in P2, a third collinear point

x̄3 can be obtained as x̄3 ∝ x̄1 + λx̄2, with λ ∈ R. Dually, if two lines are given by ℓ1 and

ℓ2, a line ℓ3 meeting them at their point of intersection has coordinates ℓ3 ∝ ℓ1 + λℓ2.
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2.2.3 Non-singular linear transformation of P2

Another consequence of the duality principle is that if H is a non-singular linear transfor-

mation of points in P2 such that

x̄′ = Hx̄ (2.2)

and ℓ is a line through x̄ (ℓT x̄ = 0), the line ℓ transforms as

ℓ′ = H−Tℓ (2.3)

and the transformed point x̄′ will still lie on the transformed line ℓ′ (ℓ′T x̄′ = 0).

2.2.4 Join and meet in the projective plane

It is worth mentioning that lines also have a physical interpretation in the augmented space.

In fact, the coordinates of a line are the components of a vector normal to the plane passing

through the origin of the three-dimensional space, which intersects the projective plane in

that line. This can be shown easily if we look at the operation of join of two points. The

join of two elements is defined as the smallest subspace containing them. The join of two

points is in general a line, and the join of two non-skew (intersecting) lines is a plane. The

operation of join is easily performed in homogeneous coordinates. The coordinates of the

line passing through two points x̄1 and x̄2 of the projective plane, in fact, are given by their

cross product:

ℓ ∝ x̄1 × x̄2 (2.4)

This can be seen moving to the augmented space, looking at Figure 2.3. The join of the

two lines which represent the points in the projective plane is a plane, passing through the

origin of the augmented space, that also contains the points x̄1 and x̄2. This plane intersects

the plane z = 1 in the line that we want to find. Since its normal vector must be orthogonal

to both the lines, it can be found as the cross product between their direction vectors, which
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are x̄1 and x̄2. Now let ℓi be the component of this normal vector ℓ = x̄1× x̄2. The equation

of the plane will be

ℓ1x+ ℓ2y + ℓ3z = 0 (2.5)

However, the coordinates of any point on that plane are the homogeneous coordinates of a

point on the line in the projective plane. Since they satisfy Equation 2.5, the components

of ℓ must also be the homogeneous coordinates of the line joining the two points.

Figure 2.3: The join of two points x̄1 and x̄2 is given by the cross product ℓ ∝ x̄1 × x̄2.

We can proceed similarly to obtain the expression of the meet of two lines. The meet of

two objects is defined as the smallest subspace contained by them. So, the meet of two lines

in a plane is a point. Given two lines ℓ1 and ℓ2, the coordinates of their point of intersection

x̄ are given by:

x̄ ∝ ℓ1 × ℓ2 (2.6)

This can be demonstrated considering the meet of the two planes of the augmented space

representing the lines ℓ1 and ℓ2. This intersection is a line, whose direction vector must be

orthogonal to their normal vectors, represented again by ℓ1 and ℓ2 as seen above, so it is

given by their cross product. The direction of this line gives the homogeneous coordinates

of the corresponding point in the projective plane. A visualization of the meet is given in

Figure 2.4. In summary, the basic operations of meet and join can both be performed using

the simple cross product.
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Going back and forth from the projective space to the augmented space is particularly

useful to understand how the projection works when using a camera since it allows us to

relate in a straightforward way what we see in the image plane to what is the real world.

Figure 2.4: The meet of two lines ℓ1 and ℓ2 is given by the cross product x̄ ∝ ℓ1 × ℓ2.

2.2.5 The projective space

When dealing with the projective geometry of three dimensions (or, in general, of more

than two dimensions), the meaning of adding a coordinate is not simple to visualize. We

can imagine that the process is a generalization of what was shown before, and looking

at the analytical consequences of it may be more intuitive. A point x̄ ∈ P3 is represented

through four coordinates as x̄T ∝ [X Y Z 1]. Since the equation of any plane in Cartesian

geometry can be given as:

aX + bY + cZ + d = 0

when using homogeneous coordinates, calling t the extra coordinate, being X = x/t,

Y = y/t, Z = z/t, we can rewrite it, under the condition t ̸= 0 as:

ax+ by + cz + dt = 0
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or

[
a b c d

]


x

y

z

t


= 0 (2.7)

Also in this case we can associate to a plane π its coordinates πT ∝ [a b c d] and

establish a duality relationship between points and planes of the projective space. Fixing

the plane π, all the points of that plane must have coordinates x̄T ∝ [x y z t] such that

Equation 2.7 is satisfied. Fixing x̄, all the planes with coordinates π such that Equation 2.7

is satisfied are instead the planes of the star with center at x̄.

2.2.6 Duality and points at infinity

The principle of duality in P3 is analogous to that enunciated in P2, where planes are used

instead of lines. If a theorem is given directly in terms of points, it can be restated dually in

terms of planes, keeping in mind that lines are self-dual in P3. As before, then, if the join

of two points is a line, the meet of two planes is a line. Similarly, given two points on a line

x̄1 and x̄2, a third point x̄3 along the same line can be obtained as a linear combination of

the first two. Dually, given two planes π1 and π2, any third plane π3 meeting the previous

two at the same line can be obtained as π3 ∝ π2 + λπ2 for some λ ∈ R.

Also in this case, when t = 0 we obtain a point at infinity, and all the points at infinity

lie on the plane at infinity π∞ ∝ [0 0 0 1]T . Any two parallel planes always meet in a line

on that plane.

2.2.7 Non-singular linear transformation of P3

As in the projective plane, if H is the matrix associated to a non-singular transformation

of the projective space, i.e. x̄′ ∝ Hx̄, and if πT x̄ = 0, the plane coordinates will be
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transformed accordingly by

π′ = H−Tπ (2.8)

and the transformed plane π′ will contain the transformed point x̄′.

2.2.8 Lines in P3

Since the final objective is to study the geometry of an angles-only IOD problem, which is

closely linked to the geometry of lines and conics in space, it is of interest to address how

lines are represented in the projective space. In P3, a line can be described directly as given

by all its points, or dually as the meet of two planes. If x̄1 and x̄2 are two points in P3 lying

on the line ℓ ∈ P3, all the points on the line lie in the column space of the matrix:

[
x̄1 x̄2

]
(2.9)

Dually, we can describe the line using any 4 × 2 matrix A having as columns two planes

passing through that line. For the matrix A to be a suitable representation, then, the follow-

ing equations must be satisfied

AT

[
x̄1 x̄2

]
= 02×2 (2.10)

This fixes the four degrees of freedom of the line in space. Each column of the matrix A

represents a plane passing through the points x̄1 and x̄2 and each of those equations forces

one plane to pass through one point x̄1 or x̄2. Note that, as described above, any other plane

through that line is given by a linear combination of the columns of A:

π = Ac (2.11)

where c is a 2 × 1 vector. This way of describing any plane of a pencil with fixed axis ℓ

will be particularly important in the development of the constraint relating the orbit to the
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observations.

2.3 Conics and quadrics in projective geometry

We know from Cartesian geometry that a conic in a plane is described by a polynomial

equation of degree two in two variables, with a general equation of the form:

aX2 + bY 2 + 2cX + 2dY + 2eXY + f = 0 (2.12)

Using homogeneous coordinates, if we let x̄T ∝ [X Y 1], the previous equation can be

rewritten in matrix form as:

x̄TCx̄ = 0 (2.13)

where C is the symmetric 3× 3 matrix associated up to a scalar to the conic:

C ∝


a e d

e b c

d c f

 (2.14)

and the proportionality symbol has been used because any multiplication of the matrix C

for a scalar does not change the roots of the equation, and does not change the conic.

Equation 2.13 gives the direct description of the conic, since it is satisfied by all the

points lying on it. In the projective plane, however, the conic can be also described dually.

The dual of a conic is called conic envelope, and it is formed by all the lines that are tangent

to the conic at each point, as represented in Figure 2.5. This dual locus is described by an

homogeneous quadratic equation. To obtain this equation, we start from the expression of a

line tangent to the conic described in terms of a simple product for the matrix C, following

the derivation in [29].

Take the point x̄1 lying on the conic and consider the line ℓ ∝ Cx̄1. If we assume that

this line intersects the conic also in any other point x̄2, the following conditions are valid:
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• x̄2 lies on the line Cx̄1: x̄T
2 Cx̄1 = 0

• x̄2 lies on the conic: x̄T
2 Cx̄2 = 0

• x̄1 lies on the conic: x̄T
1 Cx̄T

1 = 0

A direct consequence is that the following equation must be valid for any k ∈ R:

(x̄T
1 + kx̄T

2 )C(x̄1 + kx̄2) = 0 (2.15)

but since ℓ passes through x̄1 and x̄2, x̄1 + kx̄2 gives another point on ℓ. Equation 2.15

can be then translated into requiring that any point on the line ℓ lies on the conic. This is

impossible, unless the conic is degenerate. For this reason, the only point of intersection

between the line ℓ and the conic must be x̄1, and consequently ℓ is tangent to the conic.

We can now derive the equation of the conic envelope. Given the line ℓ ∝ Cx̄ tangent

to the conic at x̄, we can write x̄ ∝ C−1ℓ and substitute its expression in Equation 2.13:

ℓTC−TCC−1ℓ = 0 (2.16)

Figure 2.5: All the lines tangent to the conic form its conic envelope.
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Recalling the symmetry of C, this provides the equation of the conic envelope

ℓTC∗ℓ = 0 (2.17)

where C∗ ∝ C−1.

2.3.1 Pole and polar

At this point, a reference to the notions of pole and polar must be done. These concepts

date back to the ancient Greeks (II-III century B.C.), when Apollonius of Perga made a

huge work in the study of conics [26]. The pole-polar relationship is an orthogonality

relationship when the metric is defined through the scalar product given by the symmetric

bilinear form associated to the matrix of the considered conic. In other words, we can

define the scalar product between two point x̄1 and x̄2 as given by the symmetric bilinear

form:

Rn+1 × Rn+1 → R

< x̄1 x̄2 >= x̄T
1 Cx̄2

Given a point x̄ in the plane and a conic described by C, its polar line ℓ is the line that

contains all the points orthogonal to x̄ with respect to the conic. Since orthogonality is

satisfied if the scalar product is zero, the polar line has coordinates ℓ ∝ Cx̄. If ℓ is the polar

line of the point x̄, then x̄ is said to be the pole of the line ℓ, defined as the meet of all the

polar lines of the points on ℓ [28]. Given the line ℓ, its pole x̄ will be x̄ ∝ C∗ℓ. Note the

similarity between the expression of the polar line of a point and the tangent line through a

point on the conic. The polar line of a point on the conic is in fact the line tangent to the

conic at that point.

A visualization of the geometric construction of the polar line of a point is given in

Figure 2.6. In this figure we can see how the polar line of a point can be obtained joining
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the intersections between the two tangents drawn from that point and the conic. In fact,

since the orthogonality relationship is commutative, if x̄2 is a point on the polar line ℓ of

x̄1, then x̄1 must be a point of the polar line of x̄2. But if we choose x̄2 on the conic, its

polar is also the tangent to the conic. Since this must be valid for both the points where

the line meets the conic, the two tangents at the intersection points of ℓ with the conic

must meet at x̄1. Now, imagine to move the point x̄1 progressively closer to the conic, as

in Figure 2.7. As the point approaches the conic, the two points of contact of the tangent

line drawn from x̄1 get closer, until they become coincident when x̄1 meets the conic. So,

as a point approaches a conic, we expect its distance from its polar line to decrease. This

fact will be relevant in the geometric interpretation of the algebraic constraint of the IOD

system of equations.

Figure 2.6: The polar line ℓ of a point x̄1 joins the points of tangency of the two tangents
drawn from x̄1.

Now, we can move to the three-dimensional space. As done in two dimensions, we can

give a direct and a dual description of the conic. When working in P3, a homogeneous

quadratic equation produces a quadric surface [28]. A conic can be described directly as

all the points of intersection between a quadric, for example a cone, and a plane. The dual

description is usually easier to treat. It is given by all the planes that are tangent to the conic

at each point. This locus of planes takes the name of disk quadric and it has been sketched
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Figure 2.7: As the point approaches the conic, the distance from its polar line decreases.

in Figure 2.8. All the planes that belong to this locus must satisfy another homogeneous

quadratic equation

πT Q∗π = 0 (2.18)

where Q∗ is a symmetric 4× 4 matrix of rank three, defined up to a scalar. A full rank Q∗

matrix would in fact produce the quadric envelope of a non-degenerate quadric. We can

think to the space conic as a quadric that flattens until it looses one dimension. Note that

there are eight independent coefficients in Equation 2.18. In other words, eight planes in

general position uniquely identify a disk quadric - or a space conic. The Keplerian orbit of

an object in space can therefore be described through a 4×4 matrix defining, up to a scalar,

the associated disk quadric.
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Figure 2.8: All the planes tangent to the space conic define a locus, the disk quadric

24



CHAPTER 3

THE ORBIT IN HOMOGENEOUS COORDINATES

This work is based on the assumption of Keplerian dynamics. For this reason, the dynami-

cal equations of the problem will be first recalled, together with the final expression of the

equation of motion. After that, a link between the classical elements used to describe an

orbit and the corresponding expression of the disk quadric will be made, developing the

reformulation of the orbit already used in [22].

3.1 The dynamical model

Consider two bodies in space only subjected to their mutual attraction, which can be mod-

eled with an inverse-square gravity model. This approximation is valid when the mass of

the two bodies is spherically distributed, or when the two bodies are significantly away one

from the other, so that they produce the gravitational attraction of point-masses placed at

their centers of mass. Let the body with bigger mass M be the main or primary body. The

other body is the secondary body, and has mass m. In any inertial reference frame, letting

r1 and r2 be respectively the position vectors of the main and secondary body, ρ = r2 − r1

the vector going from the first to the second, and G the gravitational constant, we can write

the forces acting on the two bodies as

f1 =
GM m

ρ3
ρ (3.1a)

f2 = −GM m

ρ3
ρ (3.1b)

and their equations of motion as
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r̈1 =
Gm

ρ3
ρ (3.2a)

r̈2 = −GM

ρ3
ρ (3.2b)

The motion of the secondary body with respect to the main one can be obtained subtracting

Equation 3.2b from Equation 3.2a:

r̈2 − r̈1 = ρ̈ = −G (m+M)

ρ3
ρ (3.3)

Now, assume that the mass of the main body is significantly greater than the secondary

one’s (M >> m). This assumption is legitimate for example for a satellite orbiting a

planet. The previous equation takes the form

ρ̈ = − µ

ρ3
ρ (3.4)

where µ = GM is the gravitational parameter of the central body.

The general solution to this second-order differential equation is:

ρ(t) =
p

1 + e cos(ν(t))
(3.5)

where p and e are respectively the semi-latus rectum and the eccentricity of the conic and

ν(t) is the true anomaly angle, localizing the spacecraft on the orbit at a certain time t.

It can be demonstrated that Equation 3.5 is a parametrization of the distance of the

points on a conic from one of its foci [32]. This restricts the possible orbits that can be

traveled in the two body problem to conic sections - ellipse, parabola and hyperbola. Start-

ing from this result, the orbit is a space conic and it can be associated with its disk quadric.
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From now on, the words ”conic” and ”orbit” will be interchangeably used, and it will be

assumed that the orbit is closed - the conic is an ellipse.

3.1.1 The perifocal reference frame

Given an object (say a spacecraft) in orbit around a main body (a planet), the perifocal

reference frame (O, {p,q,w}) can be uniquely defined. This reference frame has origin O

at the center of mass of the planet with p-axis pointing towards the pericenter of the orbit,

w-axis along the angular momentum vector of the spacecraft, and q-axis in the orbital

plane, completing the right-handed triad (see Figure 3.1). This reference frame is fixed and

independent of the position of the spacecraft along the orbit. An important consideration is

that the two vectors of the basis p and q span the orbital plane, but the orbital plane can be

also identified solely by the vector w, although the last provides less information since we

have no clues on the orientation of the orbit in the plane, which is instead given by p or q.

On the other hand, as the orbit becomes more and more circular, the eccentricity e = c/a

tends to zero, and the pericenter of the orbit, defined as the closest point to the focus, is

no longer defined. This is an important problem in the use of the perifocal frame for the

description of the orbit, and will be addressed in detail later in the next section.

Figure 3.1: The perifocal frame.
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3.2 The orbit as a disk quadric

Repeating the steps in [22], the description of the orbit in terms of its disk quadric will

now be given. In the orbital plane defined by the axes p and q, the orbit is completely

described by two parameters that fix the size and shape of the orbit. The parameters usually

considered are the semi-major axis a and the eccentricity e, but other choices can be made.

For example, another option is to use the semi-major axis, the semi-minor axis b and the

focal length c of the conic, recalling that these parameters are interrelated and related to the

eccentricity by the relations:

a2 = b2 + c2 (3.6a)

c = ea (3.6b)

The simplest expression of the ellipse in the perifocal frame is then:

(X + c)2

a2
+

Y 2

b2
= 1 (3.7)

With few manipulations, considering Equation 3.6a, Equation 3.7 can be written in

matrix form, using homogeneous coordinates in P2

s̄TCs̄ = 0 (3.8)

where

C ∝


b2 0 b2c

0 a2 0

b2c 0 −b4

 (3.9)

and s̄T ∝ [X Y 1].

As seen in section 2.3 we can also describe an ellipse in the plane in a dual manner
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through its envelope, and write the following expression for the matrix associated with it

C∗ ∝ C−1 ∝


1 0 c/b2

0 1 0

c/b2 0 −1/b2

 (3.10)

where we recall

ℓTC∗ℓ = 0 (3.11)

However, the conic is in a general position in space, so we need to move from this planar

description to the three-dimensional one. The assumption made is that the center of the

reference frame remains at the focus of the conic. A way to look at this shift is to consider

the transformation matrix that performs the change of coordinates from the perifocal frame

to the inertial frame, considering the three-dimensional orientation of the vectors p and

q. Note that a point s̄ ∈ P2 expressed in the p-q frame is related to its three-dimensional

description x̄P ∈ P3 in the perifocal frame by

x̄P =



1 0 0

0 1 0

0 0 0

0 0 1


s̄ = Γs̄ (3.12)

The matrix that provides the change of coordinates from the perifocal frame to the iner-

tial frame has columns containing the components of the perifocal frame vectors expressed

in the inertial frame. Let H̄ be this matrix

H̄ =

p q w 03×1

0 0 0 1

 (3.13)

where the last column accounts for the zero-translation of the origin and the last row trans-
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forms the directions of p, q and w in R3 to points at infinity of P3. This matrix provides

the transformation

x̄ ∝ H̄ x̄P = H̄Γ s̄ = H s̄ (3.14)

In conclusion, the change of coordinates from the p-q plane (the orbital plane) to the inertial

frame is given by

H =

p q 03×1

0 0 1

 (3.15)

and we have

x̄ ∝ H s̄ (3.16)

This matrix H is the matrix of the direct transformation of points in the projective

space. If we repeat the whole process for the matrix of the dual transformation H̄−T (see

subsection 2.2.7) we can obtaian a relation between a line ℓ in the orbit plane and any plane

π passing through it:

ℓ ∝ HTπ (3.17)

where H is of rank three and π has one degree of freedom.

From the final expression of Equation 3.17 we can infer that this kind of transformation

from P2 to P3 will transform any line tangent to the conic (any line of the conic envelope)

into a pencil of planes with axis that line (the planes of the disk quadric), providing at the

same time a change of coordinates from the perifocal frame to the inertial frame. Substi-

tuting Equation 3.17 into Equation 3.11 we arrive to the final equation of the disk quadric:

πT H C∗ HT π = 0 (3.18)

Finally, the disk quadric is described by the 4× 4 symmetric matrix Q∗ given by:

Q∗ ∝ HC∗HT (3.19)
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3.2.1 Parameterizations of the disk quadric

The substitution of the matrix H in Equation 3.19 gives the following explicit expression

of the disk quadric, first appeared in [3]:

Q∗ ∝

ppT + qqT (c/b2)p

(c/b2)pT −1/b2

 (3.20)

as a function of the perifocal basis vectors p and q, and of the two in-plane parameters

of the ellipse b and c. However, as already noted earlier, this parameterization can cause

issues. In fact, in the case of a circular orbit, the eccentricity of the conic is zero and

the pericenter becomes undefined. Since nearly-circular orbits are frequent, especially for

Earth-orbiting satellites, this problem cannot be ignored. The solution used in [22] was the

following. First, since w = p × q, the following relation holds:

ppT + qqT = I3 − wwT (3.21)

Also, if we rename g = c/b2p, the problem of the undefiniteness is solved. In fact, when

the eccentricity goes to zero, the linear eccentricity e → 0 and the vector g → 03×1 remains

defined. Since we have no more explicit dependency on the vectors p and q of the perifocal

base, this parameterization is always well defined.

In conclusion, the following parameterization of the disk quadric should therefore be

preferred:

Q∗ ∝

I3 − wwT g

gT −1/b2

 (3.22)

The disk quadric has now been expressed as a function of seven unknowns, so seven

equations are needed to solve for it. However, since the vectors w and p are vectors of

the perifocal frame, which is orthonormal, and since g is parallel to p, two equations are
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already given:

wTw − 1 = 0 (3.23a)

wTg = 0 (3.23b)

Five additional equations are needed to solve for the unknowns inside Q∗, and these

equations will come from the LOS observations. Once this polynomial system with seven

equations and seven unknowns is solved, we obtain a description of the orbit as a disk

quadric, in homogeneous coordinates. Given the matrix Q∗, the classical orbital elements

can be easily recovered. Note that since the matrix Q∗ is independent of the sign of w. If

we do not introduce any assumption on the direction of motion, the longitude of the node

Ω and the argument of the pericenter ω will be recovered with an ambiguity of π.
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CHAPTER 4

THE EQUATIONS OF THE BEARINGS-ONLY IOD PROBLEM

The objective of this chapter is to develop the polynomial system of equations of the IOD

problem. This has to be done relating the observations to the unknowns contained in the

disk quadric. When the observations consist of LOS (bearing) measurements, the informa-

tion is usually given in terms of position of the observer and right ascension and declination.

Recovering the unit vector in the inertial frame associated with these angles is a standard

procedure. Assuming that this step has already been done, the setup of the problem can

be expressed in the following way: n lines in general position in space, representing the

lines of sight of n observations, intersect a space conic at unknown distance from the ob-

server - the objective is to recover this conic. This scenario is represented schematically in

Figure 4.1.

Figure 4.1: Lines of sight corresponding to different observations intersect the orbit at
unknown distances from the observers Oi.

There are different ways to approach the problem of expressing this intersection relation

between the LOS and the orbit. I am going to present three of them to show how the same
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problem can be solved and approached from different standpoints, which will finally turn

out to be equivalent. The first approach has already been used in a previous work presented

at the AAS/AIAA Astrodynamics Specialist Conference (Charlotte 2022) [22], and consists

of an algebraic constraint of tangency, while the other two are more ”geometric” in the

sense that they are based on the zeroing of a geometric distance.

4.1 Algebraic constraint

This approach is based on a three-dimensional analysis of the geometry of the problem.

Consider a single observation, with the associated LOS. Even if the position of the inter-

section point with the orbit is unknown, we know that the point of intersection is unique

(unless the observation is coplanar with the orbital plane). This means that we can always

build a plane containing the LOS that is tangent to the orbit - in other words, a plane of the

disk quadric. This plane is spanned by the LOS and the tangent to the orbit in the orbital

plane and it is unique for each observation (see Figure 4.2). This geometric characteristic

can be translated into a polynomial equation using homogeneous coordinates.

Consider a single LOS and let x ∈ R3 be the coordinates of the observer and u ∈ R3

the unit vector parallel to the LOS. In homogeneous coordinates, they correspond to the

points with coordinates:

x̄T =

[
xT 1

]
(4.1)

ūT =

[
uT 0

]
(4.2)

with the second being a point at infinity (see subsection 2.2.6). In subsection 2.2.8 we have

seen that the line joining these two points (the LOS) can be represented in the dual space

through any 4× 2 matrix A such that

AT

[
x̄ ū

]
= 02×2 (4.3)
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Again, we recall that any other plane passing through the LOS can be written as

π = A c (4.4)

where c is a 2× 1 vector. This plane π belongs to the disk quadric if:

cT AT Q∗ A c = 0 (4.5)

which is equivalent to requiring that the 2× 2 matrix ATQ∗A is rank deficient:

det
∣∣ATQ∗A

∣∣ = 0 (4.6)

This equation represents a polynomial constraint that relates the unknowns (inside Q∗)

to the observation (encoded in A). For n observations, we can specify Equation 4.6 for

Figure 4.2: There is a unique plane of the disk quadric that contains the LOS generated by
an observer.
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each of them and obtain n polynomial constraints:

det
∣∣AT

i Q∗Ai

∣∣ = 0 i = 1 ... n (4.7)

that together with Equation 3.23a and Equation 3.23b form a polynomial system of n + 2

equations. Since the unknowns are seven, five observations are needed to obtain a finite

number of solutions for the system.

The choice of A is free as far as its columns are two planes passing through the LOS.

Below, an analytic and a numeric way to obtain this matrix are addressed.

Definition of the A matrix

As already mentioned, there are several ways to build the A matrix, and there are several

ways to relate the observations to the disk quadric. We mention here one of the valid

analytical expressions, and one numeric derivation of it, as in [22]. Let the 2 × 2 matrices

S1 and S2 be defined such that:

[
S1 S2

]
=

x u

1 0

 (4.8)

We can write the A matrix as:

A =

[
A0 −A0S1S−1

2

]
(4.9)

where A0 is any invertible 2 × 2 matrix. A simple choice is A0 = u3I2×2. In this way, we

obtain:

A =



u3 0

0 u3

u1 u2

x1u3 − x3u1 x2u3 − x3u2


(4.10)
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The parameters inside this matrix can be specified for each observation.

The other approach, which has been implemented in the analysis of the results, is nu-

meric and is the following. Since the matrix A must satisfy Equation 4.3, it must also

satisfy the transposed equation x̄T

ūT

A = 02×2 (4.11)

Through the singular value decomposition (SVD) we obtain

x̄T

ūT

 = UΣVT (4.12)

Since

Σ =



σ1 0

0 σ2

0 0

0 0


(4.13)

given that A must lie in the null space of the transposed primal matrix [x̄ ū]T , if we let vi be

the columns of the matrix V, we can evaluate A as

A =

[
v3 v4

]T
(4.14)

4.2 In-plane constraints

With the objective of finding the expression of a quantity that, if minimized, provides some

intuition of the accuracy of the estimation, another way to arrive to the same polynomial

constraint of Equation 4.6 has been found that may provide an interpretation of the polyno-

mial constraint imposed. This reformulation also allows us to easily determine the degree

of that equation.
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The approach is based on the projection of the orbit on n image planes, that correspond

to the image planes of nc ≤ n fictitious or real cameras gathering the observations. For

the moment, consider a camera providing a bearing measurement. Let T be the rotation

matrix representing the attitude of the camera frame with respect to the inertial frame and

let x ∈ R3 be the camera location. If r ∈ R3 is the position of the spacecraft when imaged

by the camera, the direction of observation in the inertial frame is u = r − x. Recalling

the interpretation of points in the projective plane given in section 2.2, we can write the

homogeneous coordinates s̄ of a point in the image plane of the camera, expressed in the

camera frame, as the coordinates of the direction vector of the line along u expressed in the

camera frame:

s̄ ∝ uC = rC − xC = T (r − x) (4.15)

which provides the homogeneous coordinates of the intersection between the image plane

and the line joining the camera with the observed point. So a generic point in space with

inertial coordinates r is transformed to the point s̄ by the transformation:

s̄ ∝ [T − Tx]

r

1

 (4.16)

This projection is represented in Figure 4.3.

The matrix P is called camera projection matrix:

P = T [I3 − x] (4.17)

and provides the mapping P3 → P2 from points in the space (r̄T ∝ [r 1]) to points on the

image plane (̄s):

s̄ ∝ Pr̄ (4.18)

Also points at infinity in P3 (i.e. directions) can be mapped to finite points on the image
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plane (when taking a picture of a landscape, the horizon - line at infinity - is a finite line on

the image). Then if we want to map the point at infinity associated with the direction of the

actual LOS, u, we obtain the corresponding point in the image plane s̄0

s̄0 ∝ uC (4.19)

Note that the coordinates of the point s̄0 are known, since that is the point imaged by

the camera when the satellite is sighted.

Figure 4.3: Visualization of the projection of the position of the satellite on the image
plane of a camera.

If the conic was an actual object in space and the camera imaged all its point at the same

time, the collection of all the lines of sight would create a cone in space, that intersects the

image plane in a conic, as represented in Figure 4.4.

Similarly, the conic envelope in the orbit plane would project to a conic envelope in

the image plane, created by the intersection with the image plane of all the planes of the

disk quadric containing the observer. These planes are also tangent to the cone created by

the LOS, as illustrated in Figure 4.5. The disk quadric projects then on the image plane as

a conic envelope. This projection is ruled by the projection matrix P. Since the relation
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between the imaged line ℓ and the plane of the disk quadric π is

π ∝ PTℓ (4.20)

substituting into the equation of the disk quadric we obtain

ℓT P Q∗ PT ℓ = 0 (4.21)

where we can rename the matrix

C∗
C ∝ PQ∗PT (4.22)

representing the conic envelope in the image plane. After some manipulations we obtain

an expression that will be useful in the study of the degree of the polynomial equation:

C∗
C = [TTT − T w wT TT − Tx(T g)T − T g (Tx)T + Tx (Tx)T/b2] (4.23)

We now have an expression for the projected conic envelope on the image plane as a

function of the unknowns (w, g, b), and the given point s̄0, which must belong to it. Our

objective is to find a polynomial constraint that imposes the passage of the projected conic

through that point.

Figure 4.4: The orbit lies on the surface of a cone with vertex at the observer, that intersect
the image plane in another conic.
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4.2.1 Dual approach

The first possibility is to directly use the dual description of the conic just described. Work-

ing in the image plane, consider the conic envelope described by the matrix C∗
C and the

imaged point s̄0 corresponding to an observation. In the ideal case, this point belongs to the

conic, and a general line through it, say ℓ1, intersects the conic in two points.

If we let

s̄T0 ∝
[
s1 s2 s3

]
(4.24)

a simple choice for ℓ1 can be

ℓT1 ∝
[
s3 0 −s1

]
(4.25)

Now, take the pole of ℓ1:

s̄1 ∝ C∗
Cℓ1 (4.26)

The line ℓ0 joining this point and the point s̄0 must be tangent to the conic (see subsec-

tion 2.3.1), as represented in Figure 4.6. This line can be obtained as:

ℓ0 ∝ s̄0 × s̄1 (4.27)

Finally, let ˆ̄s0 be the pole of this line:

Figure 4.5: The plane of the orbit’s disk quadric that contains the observer projects to a
line of the conic envelope in the image plane.
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Figure 4.6: The tangent to the conic at one point must pass through the pole of any line
passing through that point.

ˆ̄s0 ∝ C∗
Cℓ0 (4.28)

Note that for the commutativity of the pole-polar relationship (see subsection 2.3.1), the

point ˆ̄s0 is constrained to lie on ℓ1 independenlty of the position of s̄0 with respect to the

conic.

If the imaged point lies exactly on the conic ˆ̄s0 and s̄0 coincide. Then:

ˆ̄s0 × s̄0 = 03×1 (4.29)

For a generic choice of the line ℓ1, two of the three equations above are linearly de-

pendent. We can extract a single equation form that condition imposing that the distance

between the points s̄0 and ˆ̄s0 is zero in the image plane:

d2 =

(
s1
s3

− ŝ1
ŝ3

)2

+

(
s2
s3

− ŝ2
ŝ3

)2

(4.30)

If the point s̄0 lies on the conic, this distance is zero for any choice of the line ℓ1. However,

if we choose ℓ1 as in Equation 4.25, since it is a line parallel to the y-axis of the camera

frame, then s1 = ŝ1 and the expression of their distance simplifies to

d =

(
s2
s3

− ŝ2
ŝ3

)
(4.31)
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Setting it to zero, we can write the polynomial constraint as:

(
s2
s3
ŝ3 − ŝ2

)
= 0 (4.32)

This constraint can be proved to be equivalent to that imposed by Equation 4.6. The quan-

tity on the left-hand side, however, no longer represents the distance between the points s̄0

and ˆ̄s0 in the image plane. It is the distance between these points when projected on the

plane z = ŝ3. This plane is different for any position of the camera, for any direction of

observation, and depends on the estimated orbit. Minimizing a cost-function given by the

sum of the quantity on the left-hand side of Equation 4.32 specified for each observation is

therefore not necessarily optimal in terms of finding the best fit conic that minimizes those

distances in the image planes.

Note that when the point s̄0 does not lie on the conic, the three points s̄0, s̄1 and ˆ̄s0 are

the vertices of a self-polar triangle for the conic (see Figure 4.7): each side of the triangle is

on the polar line of the opposite vertex. Since each conic has ∞3 self-polar triangles [28],

a further study of the properties of self-polar triangles may be of interest to understand

whether the expression of the distance can be simplified or it could make sense minimizing

some other geometric quantity. In fact, requiring that the points s̄0 and ˆ̄s0 coincide means

imposing that any self polar triangle with one vertex at s̄0 must be degenerate.

Figure 4.7: When the point s̄0 does not lie on the conic, the distance between the points s̄0
and ˆ̄s0 is non-zero.

Note that the degree of the polynomial constraint cannot be changed by any non-
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singular linear change of coordinates in the image plane. So any attitude represented by the

matrix T, excluding singular configurations, may only lead to a change of the coefficients

of the polynomial. However, the factorization and normalization of the polynomials given

by Equation 4.32 and by Equation 4.6 shows that they are equivalent, so the contribution

of the attitude matrix T can be factored out.

A particular choice of the matrix T, however, is useful to show that the polynomial

constraint is not of degree four, as expected, but it is of degree three. In fact, assume that

the attitude of the camera is such that the z-axis of the camera frame is aligned with the

LOS. Then

s̄T0 ∝
[
0 0 1

]
(4.33)

and a choice for ℓ1 can be the y-axis:

ℓT1 ∝
[
1 0 0

]
(4.34)

If we let

C∗
C =


C11 C12 C13

C12 C22 C23

C13 C23 C33

 (4.35)

we can write the pole of the line ℓ1 as

s̄1 ∝ C∗
Cℓ1 =


C11

C12

C13

 (4.36)

and we can choose the line ℓ0

ℓ0 ∝


−C12

C11

0

 (4.37)
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The guessed point ˆ̄s0 will be

ˆ̄s0 ∝


0

C11C22 − C2
12

C11C23 − C12C13

 (4.38)

Since we want this point to be at the origin of the camera frame, the polynomial of Equa-

tion 4.32 reduces to

C2
12 − C11C22 = 0 (4.39)

Analyzing the expression for C∗
C of Equation 4.23, we see that the higher order terms are

given by the multiplication of terms inside the matrix

M = TwwTTT (4.40)

The product

M11M22 −M2
12 (4.41)

inside Equation 4.39 is the only one that can produce terms of degree four inside Equa-

tion 4.39. The expansion of these terms however shows that we cannot have terms of order

higher than three. In fact:

M11 = T11w1 + T12w2 + T13w3

M22 = (T11w1 + T12w2 + T13w3)(T21w1 + T22w2 + T23w3)

M12 = T21w1 + T22w2 + T23w3

and consequently

M11M22 −M2
12 = 0 (4.42)
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The results obtained can be summarized as follows. First, the polynomial constraint

imposed has been shown being of degree three. Also, the minimization of the algebraic

constraint of Equation 4.6 doesn’t necessarily produce the best fit conic of the points im-

aged by the cameras, with the best estimate defined in terms of the distance between the

imaged point and the pole of line that, in the ideal case, would be tangent to the conic at

the imaged point.

4.2.2 Direct approach

Using the same framework described above, in this section we use the relationship CC ∝

C∗−1
C to obtain the symmetric 3× 3 matrix associated, up to a scalar, to the point equation

of the conic in the image plane. At this point we can directly impose the condition that the

point s̄0 must lie on it:

s̄T0 CC s̄0 = 0 (4.43)

From basic Euclidean geometry of the plane, we know that the distance between a point

with coordinates (Xp, Yp) and a line with equation aX + bY + c = 0 is given by:

d =
aXp + Yp + c

(a2 + b2)1/2
(4.44)

which is proportional to the product of the line and point coordinates in homogeneous

coordinates: d ∝ [xp yp 1][a b c]
T . We can therefore interpret the constraint of Equation 4.43

as setting to zero the distance between the point s̄0, and its polar line CC s̄0. Note that this

approach requires the inversion of the matrix C∗
C , producing a matrix CC with terms at

most of degree 4 in the unknowns. Any other manipultion of the equation in the direct

description would produce a polynomial constraint of the same degree, or higher.
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4.3 Relationship between the different polynomial constraints

The motivation that led to the development of multiple ways to approach the same problem

was to try to give a geometrical interpretation of what the polynomial constraint imposed.

Searching for a geometric quantity to minimize and possibly simplifying the polynomial

constraint was the objective of this section. What has been found is that the three polyno-

mial constraints presented are all equivalent. In fact the complete development and nor-

malization of the equations led to the same polynomial of degree three in the unknowns.

Its terms have been reported in Appendix A. The insight that can be drawn from this result

is that the ellipse found using the algebraic constraint of Equation 4.6 zeroes the distance

between a point and a line that in the ideal case would pass through that point. However,

when noise is introduced and more than five observations are used, we can expect that not

all the imaged points will lie on the projected conics. The polynomial on the left-hand

side of Equation 4.6, is not representative of the distance between the imaged point and

the corresponding line on the image plane. Therefore, finding the ellipse that minimizes

the sum of the squared values of that polynomial for each observation does not give, in

general, the optimal solution. Further studies are in progress to understand how an optimal

cost function can be obtained.
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CHAPTER 5

USE OF STREAKS AND LINES OF SIGHT

When an object is in the field of view of the camera for a short time interval, it produces a

streak on the image. This streak has a direct relationship with the disk quadric and can be

exploited in a straightforward manner. The main realization used has already been pointed

out in [3]: the observer and the streak define a plane which, in the ideal case, is tangent to

the conic, so it belongs to the disk quadric. Consider one observer and a sequence of LOS

close together. The intersections of the lines of sight with the image plane define a curve

which is approximately a segment of line parallel to the velocity vector of the satellite - the

streak (see Figure 5.1). The shorter the observation time, the more the curve approaches a

straight line. Consequently, the surface described in space by the lines of sight approaches

the plane in Figure 4.5, that we can see is a plane of the disk quadric.

Figure 5.1: The lines of sight collected in a short interval of time create a streak on the
image plane.
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So, assume we have multiple points on the image plane and we know the coordinates

of the best fit line ℓ ∈ P2 in that plane. Recalling the considerations of subsection 2.2.5

and the initial part of section 4.2 for the development of the in-plane constraints, the plane

π ∈ P3 containing the streak ℓ and the observer can be obtained as

π ∝ PTℓ (5.1)

Since this is a plane of the disk quadric, it must satisfy

πTQ∗π = 0 (5.2)

or, equivalently,

ℓT C∗
C ℓ = 0 (5.3)

with C∗
C given in Equation 4.22.

However, this is only one of the two ways in which a streak can be used to constrain the

disk quadric. In fact, as done in [3], we can assume that the streak is parallel to the velocity

of the satellite at the midpoint of the streak itself. Certain conditions of observations make

this assumption more inaccurate than others, but for short observations this is expected to

be practically irrelevant, at least in the case of ideal measurements. If we let s̄m be the

midpoint of the streak ℓ, we have

s̄m ∝ C∗
C ℓ (5.4)

From this relation, we can obtain two linearly independent equations. Repeating the

steps made in [3], consider the duplication matrix D such that vec(Q∗)= Dξ, where ξ con-

tains the unique entries of Q∗. The unknown scale factor in Equation 5.4 can be removed

considering that

s̄m × s̄m ∝ s̄m × C∗
C ℓ = 0 (5.5)
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Introducing the Kronecker product ⊗, the previous equation can be re-written as

[̄sm×]
(
ℓTP ⊗ P

)
Dξ = 03×1 (5.6)

where we have omitted the use of the calibration matrix of the camera.

This constraint is linear in the entries of Q∗ (contained in ξ) and produces the two

linearly independent equations we were looking for. However, note that this constraint

is not independent of the previous constraint of Equation 5.3. To understand how much

the assumption of the midpoint being the projection of the point of tangency to the conic

influences the accuracy of the solution, both the line-to-plane constraint of Equation 5.3 and

the point-to-point constraint of Equation 5.6 have been used in the analysis of the results.

5.1 The polynomial system

Let nLOS be the number of LOS observations. Also, assume that nPP is the number of

streaks used to impose the point-to-point constraints and nLP is the number of streaks used

to impose the line-to-plane constraint. The numbers nLOS , nPP and nLP can be varied as

long as nLOS + 2nPP + nLP = 5. Depending on the combination of these three numbers,

the final polynomial system will be different:


det|AT

i Q∗Ai| = 0 for i = 1, .., nLOS

[̄sm,i×]
(
ℓTi Pi

⊗ Pi

)
vec(Q∗) = 03×1 for i = 1, ..., nPP

ℓTi C∗
C,i ℓi = 0 for i = 1, ..., nLP

(5.7)

Note that only two of the three constraints obtained for the point-to-point relationship are

linearly dependent.
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CHAPTER 6

THE POLYNOMIAL SYSTEM OF THE IOD PROBLEM

In the previous chapters various ways to approach the problem of determining the orbit

from line of sight observations and streaks on digital images has been addressed. In this

chapter, a summary of the procedure to follow when these types of inputs are available will

be given, together with a general description of the homotopy used to solve the final system

of equations.

Algorithm 1 Polynomial system
if nLOS > 0 then

for i = 1 to i = nLOS do
Require: ui , xi

evaluate Ai ▷ using Equation 4.10
fi = det(|AT

i Q∗Ai|)
end for

end if
if nPP > 0 then

for i = 1 to i = nPP do
Require: ℓi , xi , Ti , s̄m,i

P = Ti − Txi

C∗ = PQ∗PT

fnLOS+i = [̄sm×](ℓTP × P)vec(Q∗)
end for

end if
if nLP > 0 then

for i = 1 to i = nLP do
Require: ℓi , xi , Ti

P = Ti − Tixi

C∗
C = PQ∗PT

fnLOS+nPP+i = ℓTi C∗
Cℓi

end for
end if

Once the polynomial system F = (f1, ..., fn) has been built, the following step is to

find its solution. To do that, a homotopy continuation method has been used. The rest of
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this chapter is devoted to an overview of the basic principles of the homotopy used.

6.1 The homotopy continuation

A homotopy continuation method is a tool from algebraic geometry particularly convenient

in the resolution of polynomial systems. Although the logic behind the different types of

homotopies is easy to understand, there are several hidden aspects that make its implemen-

tation cumbersome.

Let F = (f1, ..., fn) ∈ C[x]n be a polynomial system with complex coefficients, and

let it be square, i.e. the number of independent variables is equal to the number of poly-

nomial equations: x = (x1, ..., xn). Also, assume that this system is 0-dimensional, so

its variety (set of solutions) has finite dimension. The idea at the basis of any homotopy

continuation method is that we can choose a polynomial system G (the start system), whose

solution set is known, such that it can be smoothly deformed to make it coincide with the

system F , the target system. Tracking the paths of the solutions of G in the process, we

will finally be able to numerically recover the solutions of our target system. In order to

perform this tracking, the introduction of an extra polynomial system is necessary. Let H

be this auxiliary polynomial system:

H(t) = (1− t)G + tF , t ∈ [0, 1] (6.1)

where the real parameter t takes the name of continuation parameter. Note that being

H(0) ≡ G and H(1) ≡ F , the solutions of this parametric system coincide with the

solutions of the start system when t = 0 and with the solutions of the target system when

t = 1. Since the roots of H(0) are known, and we want to study how they evolve as the

parameter t changes, another equation can be obtained differentiating Equation 6.1 with

respect to t:
dH
dt

=
∂H(t)

∂x
∂x
∂t

+
∂H(t)

∂x
= 0 ∀t (6.2)
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The tracking of the solution set x can be made using any predictor-corrector method,

where the predictor step is made numerically integrating Equation 6.2 (a classical choice

is the Runge-Kutta integration method) and the corrector step is made refining the solution

given by the predictor step using a numerical approach like Newton’s method applied to

Equation 6.1. This process is initialized using the known solutions of the G system, and it

is represented in Figure 6.1 for a 1D system. At the end of the tracking, when t = 1, we

obtain an estimate of the solutions of the target system.

Figure 6.1: As the parameters t goes from 0 to 1, the solutions of the start system G are
deformed into the solutions of the target system F .

6.1.1 Different types of homotopies

The choice of the start system is a fundamental step in the implementation of any ho-

motopy continuation method. It is not required at all that the start system physically or

mathematically resembles the target system, and the ideal homotopy would be one whose

start system is sufficiently generic so that the degeneration of the start system to any target

system would be possible [33]. However, the most generic start system can often increase

the computational cost of the tracking, requiring to track many more solutions than the

minimum number required. For a specific class of problems, then, introducing a specific

and tailored start system can improve the performance of the algorithm.
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Total degree homotopy

The first type of homotopy presented is a classical. Let di be the degree of the i-th polyno-

mial in the system. In the total degree homotopy the start system is defined as:

G =


xd1
1 − 1

...

xdn
n − 1

 (6.3)

According to Bézout theorem (see [30], Chap. 18), the number of solutions of such a

system is N =
∏n

i=1 di, and these solutions are given by:

xi = e2πjk/di , k = 1, ..., di, ∀j ∈ [1, n] (6.4)

where j is the imaginary unit.

Even if this start system is sufficiently generic to be applicable to different types of

target system, and even if its solutions are simple to determine, the actual number of solu-

tions that we need to track is in often smaller [34]. In fact, N is the maximum number of

solutions that our target system can have, since we have built the most generic start system

using the maximum degree of each polynomial in the target system. Assume that the total

number of solutions of the target system is known, and let M ≤ N be that number. If we

track all the N solutions of the total degree start system, we will end with N −M diverging

paths, which cannot be identified a priori and are computationally expensive to track. For

this reason, it is sometimes desirable to use a different type of homotopy, with a more con-

venient start system, which has the same number of solutions as the target system. A way

to compute the number M is to use techniques based on Gröbner bases [35].
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Parameter homotopy

A type of homotopy that allows to track the optimal number of paths, equal to the number

M of solutions of the target system F , is the parameter homotopy. The idea is to build

a start system which has the exact same structure of the target system, but depends on

different parameters chosen randomly in the space of complex numbers. In fact, we can

describe a polynomial system in terms of its variables (contained in x) and its coefficient

(depending on a set of parameters contained in P). Making explicit this dependency and

specializing P = P1 for the target system, we can write F = F(x;P1). The start system

can be defined as composed of the same equations of the target system, yet depending on

different coefficients, so different parameters P0:

G = F(x;P0) (6.5)

The new system H of Equation 6.1 can be re-written as

H(x;P, t) = F(x, tP1 + (1− t)P0) (6.6)

If the parameters of the start and target system are sufficiently generic, so singular con-

figurations are discarded, we can state that the parameter homotopy is globally convergent

with probability one [22]. Since the two systems have the same structure and only differ

for their coefficients, they will have the same number of solutions. A random choice of the

parameters P0 makes the start system and its solutions general enough to be reusable for

every other problem of the same family, until the parameters of the target system are suf-

ficiently generic as well. When the start system has been solved once for all, the solutions

of any other problem can be found tracking a number of paths exactly equal to the number

of solutions of the target system.

The solutions of the start system can be obtained using an approach based on mon-
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odromy. This method allows to determine the complex solutions of the initial set tracking

a number of paths that is linear in the number of solutions, with small coefficient [33].

6.1.2 Homotopy applied to the IOD problem

The IOD polynomial system has been solved using the parameter homotopy of Equa-

tion 6.6, where the parameters are the entries of the Ai matrices encoding the observations.

The start parameters are reported in Appendix B. The number of solutions of this system

in terms of solution sets composed of {w, g, b} is 66. This number is obtained removing all

the solutions that are equivalent under sign symmetries that would leave the disk quadric

invariant. The majority of these 66 solutions are complex, but they cannot be discarded a

priori since, in the presence of noise, the right solution may fall in the complex space. The

identification of the right orbit solution can be done with some practical considerations,

both general and specific for the orbit considered, if some information is available. First,

the pericenter of the recovered orbit must be higher than the orbited planet’s radius. Also,

the intersection between the estimated orbit and the LOS must occur in the direction of the

observation, and not in the opposite direction. Another general requirement is that the LOS

must not intersect the planet before meeting the orbit. This condition coincides with the

previous requirement only when the observer is on the surface of the orbited body. Other

considerations can be specific for the case but it is not guaranteed that all these conditions

will remove all the realistic, non true solutions. The most simple way to solve the problem

is to introduce an additional observation, if available, and check the norm of the residuals

of the system when evaluated at this new observation.
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CHAPTER 7

NUMERICAL RESULTS FOR BEARINGS-ONLY OBSERVATIONS

The homotopy-based solution has been applied to multiple scenarios of observation to study

its performance under different geometries of the problem. First, it has been tested on an

highly elliptical orbit, under well-spaced observations, to show the feasibility of the ap-

proach. Then, with the objective of understanding how nearly circular orbits were handled

by the solver, a Low Earth Orbit (LEO) has been used with varying eccentricity, still keep-

ing well-spaced observations so that the exclusive contribution of the eccentricity could be

separated by other possibly challenging factors. This is of interest because of the decreased

accuracy shown by the solver for the nearly circular orbit of the satellite AQUA [36] tested

in [22] with respect to the highly elliptical orbit case. After that, the case of close observa-

tions has been analyzed to understand the sensitivity of the solver to the spacing between

observations. This has been done both for the highly elliptical and the LEO, to gain differ-

ent insights. Finally, the solver has been tested for observations gathered from observers in

space.

The results provided by the method have been compared with those given by an imple-

mentation of the Double-R method. The implementation of the homotopy solver for lines

of sight has been done in the software for algebraic geometry computation Macaulay2 [37]

using the package NAG4M2 by Dr. Duff, one of the authors of the paper of reference of

this work [22]. In all the simulations, the right solution was extracted among the others

choosing the one with the smallest distance from the true, known, disk quadric. In this

process, complex solutions have not been discarded since, with the addition of noise, the

closest solution could be in the complex space.

Before moving to the analysis of the results, it is important to address the choice of the

noise model. Considering exact knowledge of the position of the observer, the bearings
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directions are modified in the following way: if u is the true direction of the satellite, the

measured ũ is on the surface of a cone with vertex at the observer location, axis along

the true direction and opening drawn from a normal distribution with 0 mean and standard

deviation of σ. Given u:

ũ = u + ϵ (7.1)

where ϵ ∼ N (0,R) and R is the 3× 3 matrix defined by:

R = E[ϵϵT ] = σ2(I − uuT ) (7.2)

The matrix R has rank 2 and a null space in the direction of the true direction. This

makes ϵ lie in the plane normal to u and, if it is small, then we can still consider ∥ũ∥ =

1 to the first order. The resulting measured direction lies on the surface of a cone with

axis the true direction and opening sampled from a Gaussian distribution with norm 0 and

covariance σ. This noise model is known with the name of QUEST Measurement Model

(QMM)[38][39] and can be used to account for errors in the pointing accuracy. It has been

used to perform a Monte Carlo simulation for each case analyzed.

7.1 Highly elliptical orbit: noiseless measurements

The first orbit analyzed is that of one of the spacecrafts of the Magnetospheric Multiscale

mission (MMS) [40], assuming ideal observations gathered from three ground stations.

The geometry of the problem is represented in Figure 7.1 and the orbital elements of the

spacecraft are reported in Table 7.1.

Using five measurements, as required by the problem formulation, N =
(
10
5

)
= 252

possible combinations of five observations can be considered. The histograms in Figure 7.2

Table 7.1: Orbital elements of the MMS

a e i Ω ω
83519.02 km 0.9082 28.50° 357.84° 298.22°
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show the errors in the estimation of the disk quadric and the orbital elements for all the 252

sets of observations. It is clear that the method can be used to recovery the orbit accurately,

with errors in the estimation of the disk quadric (L2-norm), of the order of 10−13. Now

that the feasibility of the approach has been shown some other challenging geometries of

observations will be tested.

Figure 7.1: The MMS orbit and ten well-spaced observations.

7.2 Highly elliptical orbit: noisy measurements

The performance of the purely geometric approach has been tested and compared for

several combinations of the 252 available from the noiseless analysis with that given by

Double-R. Using the QMM noise model, a Monte Carlo simulation has been made for

each of the configurations analyzed, using a noise level σ of 1 arcmin. The same perturbed

inputs have been given to both the homotopy and the Double-R solvers, and the errors have

been compared in terms of the estimation of the disk quadric and of the orbital elements.

The Double-R method has been initialized using 3/4 of the true values of the radii of the

position vectors; if, for some observations, this value was lower than the Earth’s radius, the

sum of the Earth’s radius and 1/4 of the true slant range has been used as initial guess. For

each group of five LOS used in the approach described in this work, however, there are ten

59



Figure 7.2: Errors in the estimation of the MMS orbit, ideal measurements, for 252 ge-
ometries of observation analyzed.

possible combinations of LOS that can be used as inputs of the Double-R method, since it

only needs three LOS to work (and, of course, the knowledge of the time). For this reason,

a comment on the general behavior over all the ten combinations should also be made.

The analysis of the results showed that the homotopy solution had a fairly stable ac-

curacy independent of the combination of five observations chosen, while the Double-R

showed a diversified range of behaviors. Making a fair comparison is not easy. On one

hand, we are assuming that all the five observations are available, so we should consider

the best solution provided by Double-R when comparing the performances of the methods.

On the other hand, we are assuming that at least not all the time instants of the observations

are known. In the ten combinations analyzed, however, the Double-R did not provide any
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realistic result in four cases, and in the rest of the cases its performance, when compared

in terms of the disk quadric, was always similar (slightly worse, except for one case where

it was slightly better) to that of the homotopy solver. However, the disk quadric does not

give all the details. In fact, the comparison between the accuracy in the estimation of each

orbital element encloses more information. In most of the cases, the performance was sim-

ilar to that shown on the left of Figure 7.3, where the two methods are competitive under 1

arcmin of noise in the measurements. However, in a couple of scenarios the aspect of the

plots was different, with the Double-R estimating the in-plane features of the orbit (espe-

cially the semi-major axis) much more accurately than the homotopy solver (see Figure 7.3,

right-hand side). This pattern will be met again in the next simulations, where in the most

challenging conditions of observation the homotopy solver will estimate more reasonably

the orbital plane than the size and shape of the ellipse in that plane.

The overall conclusion drawn from this first analysis and similar analyses made on

the whole set of 10 observations is that for well-spaced observations the two methods have

Figure 7.3: The homotopy-based solution is competitive with one of the state of the art
algorithms for IOD. Even if Double-R struggled to converge for most of the configurations
analyzed, it was sometimes better in the estimation of the in-plane parameters. On the
other hand, the homotopy-based solution was usually more accurate in the estimation of
the orbital plane. Note how the maximum relative error in the estimation of the semi-
major axis is less than 2.5% for the homotopy solution. The left and right plot differ in the
three observations, extracted from the five available, used to implement Double-R. Results
obtained under σ = 1 arcmin, for 10000 runs.

.
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similar performance, with Double-R showing a more variable behavior and sometimes fail-

ing the run, and the homotopy solver behaving consistently as the set of observations used

changed. Also, it should be noticed that the Double-R needed an initialization and used

perfect values of the instants of observation. On the other hand we recall that the homotopy

solver was able to produce these results without any use of time-of-flight measurements and

without any initial guess of the orbit. This proves that the homotopy solver is a competitive

tool for the estimation of highly elliptical orbits, for well-spaced observations.

7.3 Nearly circular orbits: noisy observations

In this section, a LEO has been considered and its eccentricity has been gradually de-

creased, keeping fixed all the other orbital elements, to study how nearly circular orbits are

handled by the algorithm. This case is of interest since for a circular orbit the eccentricity

is equal to zero, then c = 0 and g = 0 is no more an unknown of the problem, so n = 3

observation should in theory be sufficient to recover the orbit. Introducing this information

a priori would make the system with five observations over-determined. This approach

was followed in [22], with the introduction of a circular model as opposed to the elliptical

model used until now. When the circular model was used, a bias was introduced in the

results, but this increased the accuracy of the solution, making it comparable with the per-

formance of Double-R. This created the interest in understanding whether nearly circular

orbits were a problematic case for the solver.

The orbital elements of the orbits used are shown in Table 7.2, where the only varying

one is the eccentricity.

Table 7.2: Orbital elements for the LEO.

a e i Ω ω
9000 km 10−1,−2,−3,−4 30.00° 126.232° 66.231°

The results obtained in the ideal case are reported in Table 7.3 and the configuration of

observation is represented in Figure 7.4 for the orbit with e = 10−3. Note that the latitude
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of the pericenter ω is undefined for circular orbit, so its estimate is not of importance and

will be omitted.

Figure 7.4: Observations for the nearly-circular orbit, three ground stations.

Table 7.3: Errors in the estimation of the orbital elements as the orbit is deformed into
circular, ideal measurements. The four cases correspond to the four values of eccentricity
used. The measurements used have been taken at the same instants for each of the four
cases.

orbit ∆|Q| ∆a[km] ∆e ∆i[deg] ∆Ω[deg] ∆ω[deg]
e = 10−1 7.83 10−15 6.00 10−11 3.72 10−15 7.00 10−14 7.63 10−14 2.68 10−12

e = 10−2 6.06 10−14 −7.09 10−11 −1.72 10−15 7.00 10−14 < 10−16 −3.43 10−11

e = 10−3 1.41 10−12 2.24 10−10 1.70 10−14 −4.45 10−14 1.27 10−13 1.07 10−9

e = 10−4 1.00 10−4 −3.64 10−12 −1.00 10−4 −4.45 10−14 5.09 10−14 13.47

The method shows a quite robust behavior under 1 arcmin of noise in the observations.

In Figure 7.5 the errors in the estimation of the orbital elements are represented. For com-

parison, the Double-R has been tested over the same noisy data sets. Only in three of the

40 cases analyzed (combinations of three observations taken from five, for each of the four

orbits), the Double-R method was able to converge, with an initial guess for the radii equal

to 3/4 of the true values. In those three cases, the performance was comparable with that of

the homotopy solution, showing a slightly better estimation of the in-plane parameters, with

the homotopy being better at estimating the orbital plane attitude and orientation. Also in

this scenario, the homotopy-based solution showed to be competitive with one of the state

of the art algorithms for IOD. In particular, it was much more reliable in actually finding a
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solution.

This may seem to contrast with the results obtained in [22], where the testing of the

method over a nearly circular orbit produced results that, in comparison with those pro-

duced by the solver when the orbit was constrained to be circular, were poorer. However,

the results reported in that work were obtained, even if that was not explicitly written, for a

configuration of observations which was not far from the singular condition of coplanar ob-

servations. This addresses the problem presented in [22] about the choice of which model

(elliptical or circular) should be chosen to approach the IOD.

Figure 7.5: Errors in the estimation of the orbital elements for decreasing eccentricity of
the LEO. Note that the errors remain reasonable as the eccentricity decreases. The red
line represents the median value. The blue box encloses the 50% of the results while the
two black markers delimit the minimum and the maximum values. Each red marker ’+’
represents a value considered as an outlier.
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7.4 Close observations

The following objective was to understand the performance of the algorithm when close

observations are used. This has been done both for the MMS and the LEO with e = 0.1.

The reason why two orbits have been analyzed is that the high eccentricity of the MMS

makes the observed points almost collinear in the 3D space and the lines of sight almost

coplanar. For this reason, observations made in correspondence of arcs of orbit with higher

curvature and closer to the observer were desired to decouple the almost coplanarity of the

observations from the closeness of the observed positions along the orbit. Since 1 arcmin of

noise led to completely unreliable results, especially in the estimation of in-plane features

of the orbit, the study has been performed for increasing levels of noise: between 0.1 arcsec

and 10 arcsec, values compatible with the instrumentation available nowadays. Starting

from the MMS, the geometry of the observations, which are gathered by three ground

stations, is represented in Figure 7.6. Note that the total angular separation of the observed

positions was of roughly 7.5 deg in true anomaly.

Figure 7.6: Close observations for the MMS from three ground stations.

The results obtained from a Monte Carlo simulation with 1000 runs are reported in

Figure 7.7 for each level of noise. Note how the performance starts to degrade quickly as

the noise increases above 1 arcsec, especially in the estimate of the semi-major axis.

Interestingly, Double-R was not able to converge even for 0.1 arcsec of noise, for any
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of the ten combinations of observations, when initialized with 3/4 of the true values for the

radii. For this reason, the results have been compared with those provided by an imple-

mentation of Gauss’ method as described in [18]. Also in this case, there are 10 possible

combinations of observations that can be tested. As for Double-R in the previous analysis,

the performance of Gauss was variable depending on the observations provided. In all the

Figure 7.7: Errors in the estimation of the orbital elements for increasing noise, highly
elliptical orbit, close observations. Note how the performance degrades quickly as the
noise increases, especially in the estimate of the in-plane parameters.
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cases, except for one, the results showed a bias, and the biggest errors were in the estimate

of the semi-major axis, while the other parameters were estimated accurately. The best

solution provided by Gauss for 1 arcsec of noise is compared with the solution obtained

with the homotopy-based approach in Figure 7.8. As we can see, in general Gauss behaved

better, being more accurate in the estimate of most of the parameters.

Figure 7.8: Errors in the estimation of the orbit for the MMS, 1 arcsec of noise, close
observations, compared with the results provided by Gauss. Note that the maximum rela-
tive error in the estimate of the semi-major axis is of 6% for the homotopy solution. The
method can handle much less noise when the observations are close, especially if they are
almost coplanar.

After that, close observations on a LEO have been analyzed to understand whether the

almost coplanarity of the observations for the MMS was the cause of the lower tolerance to

the noise. The geometry of the observation is represented in Figure 7.9, where the angular

separation between the two extreme positions along the orbit is of about 9.8 deg in true
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anomaly. Note that the observed positions are much closer than in the MMS case because

their distance from the focus of the conic is smaller.

Figure 7.9: Geometry of the IOD problem for close observations on a LEO.

Differently from above, the observations are not gathered from three ground stations

but from five, to guarantee more diversity in the geometry. This increased the accuracy

of the results, as shown in Figure 7.10, where we can see that the method can handle an

higher amount of noise. Nonetheless, this amount of noise is definitely lower than that

used in the case of well-spaced observations, suggesting that having close observations is

an unfavorable condition for this method for levels of noise which are too high. Note that

the Double-R method, tested over the same inputs, was never able to converge, for 1 arcsec

of noise, when initialized with 4/5 of the true vales. Even when the initialization was made

with the true values, 1 arcsec of noise was enough to make half of the runs fail. On the

other hand, the performance of the best solution obtained with Gauss was better. This is

shown in Figure 7.11 for 1 arcsec of noise, suggesting that for close observations, if time

information is available, Gauss method should probably be the first choice.

7.5 Observations from space

Since no assumption is made on the position in space of the LOS, this method should in

theory continue to provide reasonable results even in case of observers in space. For this
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Figure 7.10: Errors in the estimation of the LEO, close observations. Note how the per-
formance starts to decrease for values of noise higher than those that limited the accuracy
in the estimate of the MMS orbit. Again, the parameters that degrade first are the in-plane
ones.

reason, the estimation of the LEO has also been attempted for a single observer orbiting in

Geosynchronous Equatorial Orbit (GEO). In the noiseless analysis, the solver was able to

estimate the orbit with an error of the order of 10−13 in the disk quadric.

When noise is introduced in the bearing measurements, however, the LOS perfectly

pass through the GEO and do not exactly intersect the LEO. In this case, the estimator

tended to lock into the estimation of the observer’s orbit. Among the 66 solutions obtained

for a run made with 1 arcmin of noise, the solver produced an estimate of the GEO as

precise as reported in Table 7.4. The other solutions produced disk quadrics that were not

69



Figure 7.11: Errors in the estimation of the LEO for close observations and 1 arcsec of
noise compared with the results provided by Gauss method. Under this geometry, where
more diversity in the inclination of the LOS was provided, the homotopy approach could
handle more noise than in the previous case, but it is again outperformed by the solution
obtained with Gauss.

close to the spacecraft’s orbit. However, this result is useful because it shows again that the

estimation of perfectly circular orbits is possible with the solver, and that the elements of g

can go to zero independently exploiting the information enclosed in the five measurements.

It has been also noticed that the main reason of the absence of the true solution orbit

among the others is the almost coplanarity of the observations. Since the radius of the

GEO was almost 5 times the radius of the LEO, the diversity in the inclination of the LOS

was not appreciable. If the observations are gathered from different orbits, or if they are

gathered from a single orbit with smaller radius (which guarantees the departure from the

coplanarity condition in this case), finding a solution becomes again possible, as shown in
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Figure 7.12 for three observers in three circular orbits at different inclinations. Since the

Double-R method is based on the assumption that the observer’s distance from the focus is

smaller than the satellite’s distance, so it cannot be used, the results have been compared

with Gauss’ method. The homotopy solution proved to be by far more accurate than the

Gauss’. A comparison between the error in the estimation of the disk quadric is given in

Figure 7.13.

Table 7.4: Comparison between the estimated, the true and the observer’s orbital parame-
ters for a single observer in GEO

w1 w2 w3 g1 g2 g3 b
Searched orbit 0.4033 0.2955 0.8660 -0.0628 -0.0103 0.0328 8954.89

Observer’s orbit 0 0 1 0 0 0 42164
Estimated orbit 2.0210−14 −1.1410−13 1 0.1510−11 0.0210−11 0 42164.00

Figure 7.12: Errors in the estimation of the LEO for observations made from space, 1
arcmin of noise.
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Figure 7.13: The results obtained with Gauss’ method are much less accurate than those
obtained with the homotopy solution for 1 arcmin of noise. Note that the same perturbed
inputs have been used for the two solvers.
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CHAPTER 8

EXPERIMENTS WITH STREAKS AND LINES OF SIGHT

In this chapter, the performance of the homotopy solver when streaks and LOS are used is

analyzed. This simulation had the main objective of understanding whether the introduc-

tion of streaks could improve the performance of the solver, especially where it was more

defective. Recalling what has been derived in chapter 5, two different types of constraints

can be imposed on streak observations, both linear in the entries of Q∗, depending on the

assumptions made. Recalling that nLOS is the number of LOS observations, nPP is the

number of streaks over which the point-to-point constraint has been imposed and nLP is

the number of line-to-plane constraints, we can freely choose these numbers until

nLOS + 2nPP + nLP = 5 (8.1)

Clearly, the use of point-to-point constraints reduces the number of measurements neces-

sary to solve the problem, with the smallest value obtained with one LOS observation and

two point-to-point constraints. For the whole analysis, the observers are considered fixed

in the inertial space. The exposure time has been varied depending on the satellite tracked

[41]. For the LEO, an exposure time of 1 s has been used, while for the MMS orbit it was

of about 8 s.

8.1 Noiseless results

In the noiseless case, the streaks have been simulated finding the best-fit line through the

points imaged by a camera when observing the position of the satellite for the exposure

time. This process already introduces an error in the algorithm, even for ideal bearing

measurements, since the arc of trajectory projected on the image is in theory elliptical and
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is approximated through a line. However, the observed accuracy in the estimation of the

disk quadric is of the order of 10−9 or less for all the combinations of constraints, so the

observation duration is small enough to make the linear approximation reasonable.

8.2 Noisy results

The noise model used for the LOS was the same used above, with 1 arcsec of standard

deviation. For the streaks, the noise has been sampled from a Gaussian distribution with

zero mean and covariance matrix R = diag(tan(σ2/3)) where, again, σ = 1 arcsec. This

noise has been applied to the endpoints of the streak, producing altogether a rotation, a

stretching, and a translation. The results obtained for the LEO are shown in Figure 8.1.

From the plots we can see that the use of the point-to-point constraint, i.e. the assumption

that the streaks represents the projection of the velocity at the midpoint, is not acceptable in

presence of noise, since it consistently lowers the accuracy and introduces a bias. This has

been confirmed by the analysis of the minimum input configuration, which only requires

one LOS and two streaks (over which the point-to-point constraints must be imposed). In

this case, in fact, the errors obtained in the estimation of the disk quadric were of about the

80%. The use of streaks as simple projection of a tangent plane (line-to-plane constraint),

instead, seems to be a valid replacement for LOS observations. This can be appreciated in

Figure 8.2, where only line-to-plane constraints have been used.

The same experiment has been then repeated for the MMS orbit with close observations,

as in the previous chapter. The introduction of any type of streak constraint make the

solver’s accuracy decrease greatly, converging to the wrong solution in almost all the cases.

This suggests that the use of streaks is not a means to give robustness to the solver when

the singular configuration is approached, but instead makes it more prone to failure.

Summarizing, the assumption that the streak is the projection of a line tangent to the

orbit in the orbital plane seems to be acceptable, providing results which are almost compa-

rable with those provided by LOS only observations, when we are far from the singularity
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Figure 8.1: While the assumption that the streak is contained in a plane of the disk quadric
provides reasonable results, introducing the assumption that the point of tangency of that
plane projects to the the midpoint degrades the accuracy and introduces a bias. A zoom of
the first three results can be found in Figure 8.2.
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condition of almost coplanar observations. On the other hand, assuming that the point of

tangency projects to the streak’s midpoint introduces a bias and degrades the accuracy. It

has been tested that the main source of the error in the point-to-point constraint is the rota-

tion of the streak. In fact, translations of the streaks under 1 arcsec of noise produce data

that are utilizable in the configuration with the minimum number of inputs, yet introducing

a bias. Also, the introduction of streaks doesn’t help in improving the accuracy where the

solver was more defective, in the condition of almost coplanarity of close observations.

Moreover, since the whole study has been performed with stationary observers, it is ex-

pected that in real conditions the performance will degrade, as happened in [3], since the

streaks would be parallel to the relative velocity vector at some point of the orbit and not to

the absolute velocity.
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Figure 8.2: The assumption that the streaks and the observers define planes that are tangent
to the orbit provides results that continue to be plausible, with the accuracy only slightly
decreased by the presence of streaks.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this work, a purely geometric solution of the angles-only IOD problem has been ana-

lyzed. This solution, based on a reformulation of the Keplerian orbit as a disk quadric,

produced a polynomial system that needs five line of sight observations to produce a finite

number of solution orbits. Discerning the true solution among the others is possible when

specific considerations are introduced. For example, associating a sign to the direction of

observation (the satellite is along the LOS in front of the observer, and not behind), reduces

the number of solutions, as well as discarding all those orbits with pericenter lower than

the orbited planet’s surface. Other orbits can be rejected if even a rough knowledge of the

time of flight between the observations is known. Complex solutions cannot always be dis-

carded a priori when noise is introduced, but in all the simulations made the solutions never

fell into the complex space. Also considering all these elements, it is not guaranteed that a

single solution orbit will remain. The more direct way is to use an additional observation

and check the residuals of the system when evaluated for the new measurement.

The method was tested both on well-spaced and close observations, and its performance

over challenging geometries of observation has been assessed. In the tests made, it proved

to be competitive with one of the state of the art algorithms for IOD, the Double-R method.

When well-spaced observations are used, the method showed fairly stable accuracy in the

estimation of the orbit over varying combinations of observations, providing reasonable

results even when the noise in the measurements had a standard deviation as high as 1

arcmin. The performance decreased when close observations were used, especially if they

tended to be coplanar. However, the condition of coplanarity is a singularity condition

common among the angles-only IOD problem, being intrinsic in the nature of the problem

[42]. This problem is in fact encountered in the other classical solutions, among which
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are Gauss and Laplace methods. Still, the homotopy-based approach was able to provide

plausible results where the Double-R method failed completely, showing a more robust

behavior in the unfavorable condition analyzed. When the LOS intersect more than one

orbit, however, as in the case of a single observer in space, a nearly singular configuration of

observations may lead to the locking of the algorithm into the estimation of the observer’s

orbit.

When the conditions of observation are not favorable, the homotopy-based solution

showed to be more reliable in the estimation of the orbital plane than in the estimation of

the in-plane parameters. This has been seen, for example, in the case of close and almost

coplanar observations where, as the noise level increased, the estimate of the in-plane pa-

rameters degraded much more quickly. Unless the closeness to the singular configuration

is extreme, then, the method can be a resource to provide an initial guess of the angular or-

bital elements, that could help in estimating some parameters for the initialization of other

classical IOD solutions. It is also important to emphasize that the method suffered when

using close observations in the test cases analyzed, providing results that were worse than

those obtained with Gauss. Again, a diversity in the inclination of the LOS is a way to

increase the accuracy of the solver. Note that Double-R failed to converge in these cases,

while Gauss failed to converge in the previous cases analyzed of well-spaced observations.

In summary, the homotopy-based solver behaved reasonably for well-spaced observations

and could handle close observations for small amounts of noise (below 5-10 arcsec in the

cases analyzed), continuing to provide a solution, especially when a departure from the

singular configuration is guaranteed.

An additional comment should be made on the estimation of nearly circular orbit. In

contrast with the initial analysis of the data obtained in [22], the nearly circular solution

has not created particular problems in the test cases analyzed. In fact, even if three obser-

vations are sufficient to estimate the circular orbit when introducing the constraint g = 0,

if this constraint is not imposed a priori the elements of the vector g seem to go to zero
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independently. This has been verified when a test has been made to estimate an orbit for

observations gathered from a GEO. Since all the LOS intersected two possible orbits (the

satellite’s and the observer’s), the solver provided the GEO among the other solutions, and

that perfectly circular orbit was recovered without troubles. When the observations tend

to be coplanar, and the estimated orbit is nearly circular, constraining a priori g = 0, i.e.

using the circular model of [22], is a resource that can improve the accuracy of the results,

yet introducing a bias.

Other research in progress showed that the use of more than five observations can in-

crease the accuracy of the solver, where the loss function minimized was the sum of the

algebraic quantity on the left-hand side of Equation 4.6 evaluated for each observation.

The analysis of this constraint made in this work led to the conclusion that the best-fit orbit

obtained in this way is not necessarily the orbit that, once projected, best fits the points

observed on the camera images. Other research is in progress to understand whether a

polynomial constraint can be obtained to optimize the solution in that sense.

Probably, the main distinctive features of this approach are its inputs. The use of LOS,

that can be obtained through simple cameras or telescopes, and the absence of time-of-flight

information, reduce the complexity of the instrumentation devoted to the IOD task. First,

there is no need to worry about clock synchronization necessary to collect, for example,

one-way range information. Also, there is no need to collect the instant of the measure-

ments and to make corrections for the light time-of-flight necessary in the estimation of

the two-way range. The problem of the non-zero light time-of-flight, however, does not

affect only the range estimation, but is something that must be taken into account even

when LOS observations are used if time is considered a known parameter in the algorithm.

Eliminating time from the process, this problem is solved and the pre-processing of the

data is decreased. In fact, for this method to work, it is sufficient that the LOS intersect the

orbit, and this happens even if we are observing a position occupied by the satellite in the

past. The only step where time is needed is in the determination of the observer’s position.
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Another important characteristic is that the solver is global, in the sense that it doesn’t

need to be initialized. The homotopy-based solution, in fact, works without any type of

initial guess. This makes it suitable for situations where the orbiting object is sighted for

the first time.

Two other characteristics have been noticed in the comparison of the performance with

the Double-R method. First, for the Double-R method to work in the case of retrograde

orbits, the direction of motion must be inserted as input to the algorithm. If this is not

done, it provides completely unreliable results. On the other hand, the homotopy solution

worked without requiring such information as input. Finally, the Double-R method has

among its assumptions that the distance of the satellite from the center of the orbited planet

is greater than the observer’s distance. This is usually true, when the observer is on the

Earth’s surface. However, when the observer is in space, this can cause issues. Since

the homotopy-based solution does not make this type of assumptions, it is in theory more

suitable for this type of applications. This has been tested for observers in circular orbits.

As already discussed, using observations gathered from a single orbit will make the solver

produce the observer’s orbit among the others, with that orbit being the only one produced

if the observations are almost coplanar. However, if the observations are gathered in such a

way that the singularity is avoided, or are gathered from different orbits, the solver can be

used to recover the right orbit. A general consideration that is valid for all the cases is that

the more diverse are the LOS observations, the higher is the accuracy obtained.

In conclusion, the homotopy approach proved to be more reliable than the classical

methods which have been used to make a comparison in actually providing a solution.

On one hand, Gauss’s method was not able to provide a reasonable solution when the

observations were too far apart, as expected. On the contrary, the homotopy-based approach

always provided a solution, with the exception of geometries extremely close to the singular

configuration, where both the Gauss and Double-R method failed to converge too.

The partial substitution of LOS observations with streaks was also tested. The results
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showed that the approximations introduced at the basis of the theory caused an error that

is, in general, higher than that produced by bearings-only observations. The substitution

of LOS with streaks is feasible in standard conditions of observation, while the results are

not reliable in the case of almost coplanar data. Also, the most accurate description of the

relationship between the streak and the disk quadric seems to be that the plane defined by

the streak and the observer is tangent to the orbit, leaving the point of tangency being free to

be anywhere. Constraining the midpoint to be the point of tangency, even though it reduces

the number of inputs necessary to solve the problem, introduces a bias in the results and

decreases the accuracy heavily.
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APPENDIX A

POLYNOMIAL CONSTRAINTS

The expansion of the three polynomial constraints proposed in chapter 4, after factorization

and normalization, always led to the same polynomial, whose coefficients are expanded in

the table below. Note that the polynomial is of degree three, as predicted from the analysis

of subsection 4.2.1.
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APPENDIX B

START SYSTEM FOR LOS OBSERVATIONS

The start system used for the homotopy solver was a system with structure equivalent to

that of an IOD problem, with parameters sampled randomly in the complex space. The

parameters that have been used to build the system are the 8 entries of each Ai matrix. For

five observations, the total number of parameters is 40.

86



A1,11 −.19554589539818221− .98069455122016624i
A1,12 −.99320315995912256 + .11639365552818406i
A1,21 .84746698926735253− .53084809701281677i
A1,22 −.524980096821274− .85111450342567052i
A1,31 −.33974371842408813− .94051805181579262i
A1,32 −.89716989946776304− .44168560253760136i
A1,41 −.70890532572927145 + .70530365031855291i
A1,42 −.26370047476472958− .96460461309743706i
A2,11 −.20422524867817432 + .97892392339871737i
A2,12 .55012385063274361− .83508307907956247i
A2,21 .48701168829251434 10−1 + .99881339406050451i
A2,22 .67153436779477971 + .74097340901712905i
A2,31 −.6556966682266403− .75502442296688865i
A2,32 −.9906629251051452 + .13633403398314534i
A2,41 .94618769124965252 + .32361837544807653i
A2,42 −.92997256157571673− .36762893617926712i
A3,11 −.71993815493282887− .69403822162177353i
A3,12 .9102476473261466− .41406427102228338i
A3,21 .37037792095318434 10−1 − .9993138655881364i
A3,22 .85689830118753274− .51548550069029131i
A3,31 −.96084848759534092 + .27707432917133623i
A3,32 .84465300850628211 + .53531420233474702i
A3,41 .9557472403287276− .29418907628262025i
A3,42 −.50996960810970904 + .86019241963901882i
A4,11 .12465589261909474 10−1 − .99992230152365003i
A4,12 −.79735359444034148− .60351242359463264i
A4,21 −.96223219094239298− .27223006945266398i
A4,22 −.95443598913461181− .29841572117540194i
A4,31 .39310122113312518 + .919495203872019i
A4,32 −.97526716110145639 + .22102932944997564i
A4,41 .91690520139072273− .39910506343898744i
A4,42 −.82176111603594681 + .56983214034604535i
A5,11 −.80802824211988533− .58914375150437437i
A5,12 .618733610744305 + .78560086490234649i
A5,21 −.62005116982349695− .78456137223324529i
A5,22 −.19697686571988315 + .9804081366304398i
A5,31 .73391116358911368 + .67924546664609631i
A5,32 .17194444870208295− .98510664730298958i
A5,41 .62821239391458206− .77804189355850883i
A5,42 −.10142870013926006− .99484281109533079i
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[36] C. L. Parkinson, “Aqua: An earth-observing satellite mission to examine water and
other climate variables,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 41, no. 2, pp. 173–183, 2003.

[37] A. Leykin and R. Krone, Macaulay2 software, http : / / www2 . macaulay2 . com /
Macaulay2/.

[38] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from vector obser-
vations,” Journal of Guidance and Control, vol. 4, no. 1, pp. 70–77, 1981.

[39] M. D. Shuster, “Maximum likelihood estimation of spacecraft attitude,” The Journal
of the Astronautical Sciences, vol. 37, no. 1, pp. 79–88, 1989.

[40] S. A. Fuselier et al., “Magnetospheric multiscale science mission profile and opera-
tions,” Space Science Reviews, pp. 77–103, 2014.

[41] A. Petit, T. Antoun, J. Vaubaillon, R. Lucken, F. Delefie, and D. Giolito, “Streak
detection challenges for telescope observations of satellites,” in Proc. 8th European
Conderence on Space Debris, Darmstadt, Germany: ESA Space Debris Office, 2021.

[42] R. M. L. Baker and N. H. Jaboby, “Preliminary orbit-determination method having
no-coplanar singularity,” Celestial Mechanics, vol. 15, pp. 137–160, 1977.

90

https://njwildberger.com/
http://www2.macaulay2.com/Macaulay2/
http://www2.macaulay2.com/Macaulay2/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Motivation
	Initial Orbit Determination: definition and motivation
	The history of orbit determination
	Some considerations about the existing IOD methods
	Organization of the work

	2 | Mathematical background
	Projective geometry: homogeneous coordinates
	The projective plane
	Conics and quadrics in projective geometry

	3 | The orbit in homogeneous coordinates
	The dynamical model
	The orbit as a disk quadric

	4 | The equations of the bearings-only IOD problem
	Algebraic constraint
	In-plane constraints
	Relationship between the different polynomial constraints

	5 | Use of streaks and lines of sight
	The polynomial system

	6 | The polynomial system of the IOD problem
	The homotopy continuation

	7 | Numerical Results for bearings-only observations
	Highly elliptical orbit: noiseless measurements
	Highly elliptical orbit: noisy measurements
	Nearly circular orbits: noisy observations
	Close observations
	Observations from space

	8 | Experiments with streaks and lines of sight
	Noiseless results
	Noisy results

	9 | Conclusions and future work
	Appendices
	A | Polynomial constraints
	B | Start system for LOS observations

	References

