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SUMMARY 

 

An electromagnetic launcher (EML) is an apparatus that propels an armature 

between two rails.  This is accomplished when an applied electric current passes through 

the rails resulting in a magnetic field, which with the current creates an electromagnetic 

(EMAG) force capable of accelerating the armature to velocities up to several thousand 

meters per second.  The high sliding velocity, with the electric current density, creates 

extreme thermal conditions at the interface between the rail and the armature, such that 

melting can occur.   

In the operation of an EML, a few highly coupled phenomena are present.  The 

structural, thermal, and electromagnetic components are coupled together to govern the 

motion of the armature.  In this work, because of computational limitations, the coupled 

phenomena are decoupled into the aforementioned individual components and each 

separate effect is studied in detail.  This work is aimed at improving the understanding 

of the armature-to-rail performance and the useful life of an EML by developing a 

computer simulation that can be used as a design tool to acquire conditions for the best 

performance.   

A structural finite element analysis (FEA) is performed to investigate the 
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structural behavior of a lab-scale EML, housed in the Laboratory for Extreme Tribology 

at Georgia Tech.  In order to obtain realistic results, modeling of the structural 

compliance layer (an artificial layer incorporated into the FEA model) is done.  This 

layer mimics any deformation that may be caused from the difference between the ideally 

designed parts and the actually manufactured parts.  Modeling of the compliance layer is 

presented.  The FEA determines the structural deformation, as well as the interface 

contact area, contact pressure, and Von Mises stress that arise due to the initial armature-

to-rail contact.   

A modal analysis of the armature is performed to determine its vibration 

frequencies and vibration mode shapes.  Once the armature is placed between the rails, 

the armature experiences stress due to interference fit.  Modal analysis of both an 

unstressed and pre-stressed armature is performed and results are compared.  Then, the 

material properties and the size of the armature are varied to see the corresponding effects.   

An electromagnetic FEA is performed to determine the EMAG force that results 

from the applied current coupled together with the resulting electromagnetic field.  This 

FEA is performed using a quasi-static 3-D model.  The model assumes a perfect contact 

at the contact interface.  In order to minimize the computational expense in obtaining a 

solution, it consists of a small segment of the rails, the whole armature, and the air (i.e., a 

 xv



space where the electromagnetic field resides) that surrounds the structure.  One set of 

actual electric current input data from lab-scale EML experiments is used as a loading 

condition for this analysis. 

Frictional heating and Joule heating are determined from a 2-D thermal FEA.  

Although both the frictional and the Joule heating occur simultaneously in the operation 

of the actual EML, in this study, both are separately studied because of computational 

limitations.  For the frictional heating, three different values of coefficient of friction 

(COF) and three different values of the heat partition are incorporated in the FEA.  For 

Joule heating, the same set of the electric current input used in the EMAG analysis is 

used with three different values of contact conductance.   

For the Georgia Tech lab-scale EML, with an armature (aluminum)-to-rail 

(copper) interference of 0.1232 mm, the maximum contact pressure, and von Mises stress 

is close to but still lower than the yield strength of the weaker material (aluminum).  

Therefore, the effect of plastic deformation is not considered.  The contact area is 

determined to be 3.32 mm2.  For both an unstressed and pre-stressed armature, the 

current armature design results in a vibration period that is much shorter than the duration 

of the sliding of the armature.  This means many vibrations of the armature legs are 

possible while the armature slides along the rails.  In addition, the results of FEA show, 
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as expected, that the frequency is proportional to ρE , where E is Young’s modulus and 

ρ is the density.  As the size of the armature increases, the vibration period decreases.   

The EMAG analysis predicts the EMAG force that propels the armature in the 

lab-scale EML.  Using Newton’s second law of motion, acceleration is obtained and 

then integrated with respect to time to get the velocity.  The obtained velocity is again 

integrated with respect to time to get the displacement.  The maximum velocity of the 

armature is determined to be consistent with the measured experimental value, 

approximately 2.4 km/s.  Using these results, thermal analysis of both the friction 

heating and the Joule heating shows that immediate melting of the tip of the armature is 

inevitable for the current lab-scale EML.   

 xvii



CHAPTER 1: INTRODUCTION 

 

 An electromagnetic launcher (EML) is an apparatus that propels an armature 

along rails to achieve velocities up to several thousands of meters per second without 

using an explosive propellant.  This is accomplished by converting electric energy into 

kinetic energy.  Figure 1 illustrates a schematic diagram of an electromagnetic launcher 

(the schematic diagram of an electrical power supply is omitted).   

An EML consists of two parallel metal rails that are connected to an electrical 

power supply and an electrically conductive armature.  When this electrically 

conductive armature is inserted between these rails, a closed electric circuit is formed, 

and the EML is ready to be used.  Once voltage is applied by the power supply, electric 

current flows to the bottom rail, across the armature, and back through the top rail as 

shown in Figure 1.  The flow of electric current enables the EML to become a powerful 

electromagnet that creates an electromagnetic (EMAG) field around the rails and the 

armature.  An applied electric current, coupled with the resulting EMAG field, creates 

an EMAG force, which is called the Lorentz force.  This is the driving force that 

accelerates the armature along the rails.  Since the rails also carry an electric current the 

rails also experience EMAG forces.  Figure 1 shows the electric current flow through 
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the two rails.  Electric current flows into the bottom rail in the negative X direction, and 

it flows out from the top rail in the positive X direction.  This different flow direction 

creates an EMAG force on the rails such that the two rails repel each other.   

 

a) 

 
b) 

 
Figure 1: Schematic diagram of an electromagnetic launcher [1]; a) Resulting Velocity; b) 
Resulting EMAG forces 
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It is common to see a C-shape armature being used in an EML as shown in 

Figure 1.  Although the EMAG force can accelerate an armature of different shapes, a 

C-shape armature is typically chosen because the legs of the armature experience force in 

the outward direction (the resulting EMAG force spreads the legs of the armature) such 

that the EMAG force helps in preventing the loss of contact at the interface between the 

armature and the rails.   

Melting at the contact interface is commonly observed in the operation of an 

EML due to the high electric current density and the sliding velocity.  This melting 

typically leads the molten material to be detached, which can cause loss of contact.  The 

resulting EMAG force in the C-shaped armature tends to close the empty space that 

results, helping avoid loss of contact.  Likewise, the molten material helps in the 

lubrication of the contact. 

Its ability to propel an armature to extreme velocities makes an EML a good 

candidate for a next generation weapon.  The high projectile velocities attained by an 

EML allow lighter projectiles to have kinetic energy equal to or superior to that of 

heavier projectiles fired by conventional firearms.  Higher projectile velocities also 

allow an EML to have greater range, less bullet drop, and less wind drift.  In addition, 

the use of an electromagnetic force to propel an armature eliminates the danger of 
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carrying an explosive.  Despite these advantages, the need for significant electrical 

power can be a major disadvantage.  In order to fire an EML, electric current up to 

several mega-amps must be supplied to the EML.  This makes an EML impractical for 

applications such as portable firearms until portable power supplies that can supply the 

aforementioned electric current are developed.   

Another possible application of an EML is a mass driver for space exploration.  

An EML can be used to launch bulk ores into space from low-gravity bodies such as the 

moon and asteroids.  If the required electrical power for the operation of an EML can be 

obtained from solar energy, then the need for consumables such as rocket fuel can be 

eliminated and therefore the pollution created from using such consumables can be 

prevented. 

Although high projectile velocities and the use of EMAG force are attractive and 

desirable characteristics of an EML, these features also act as adverse factors and bring 

complexities to EML research.  For example, the resulting extreme sliding velocity 

makes it difficult to accurately measure and capture what happens at the contact interface.  

The typical velocity obtained ranges from several hundred meters per second to several 

thousand meters per second, which means that complex coupled phenomena occur in a 

couple of milliseconds to a couple of seconds.  As a result, important information for the 
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analysis of the EML performance such as the vibration characteristics of the armature 

legs during sliding, the exact location and time of the melting of the material, and the 

deformation of the armature cannot be measured or captured in many situations. 

In order to improve understanding of the armature-to-rail performance and the 

useful life of an EML, a lab-scale EML has been developed at the Extreme Tribology 

Research Facilities at the Georgia Institute of Technology and several experiments have 

been performed.  Figure 2 shows a picture of the actual lab-scale EML setup.   

 

 

Figure 2: Picture of the lab-scale electromagnetic launcher 
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Figure 3: Schematic diagram of the cross section of the lab-scale EML 

 

Figure 3 shows a schematic diagram of the cross section of the lab-scale EML.  

As shown in Figure 3, the dimensions of this lab-scale EML are approximately 12.5mm 

in width, 12.5mm in height, and 1500mm in length.  Aluminum 6061 T651 is used as a 

material for the armature, and copper UNS C11000 is used as the material for the rails.  

G10 and Mylar (thin sheets) are used as the electrical insulating materials.  The structure 

that holds the rails and the aforementioned layers is made of thin sheets of steel, stacked 

and bolted together.  At the end of the EML, a catch tank is attached for catching the 

high velocity armature.  Although it is not shown in Figure 2 and Figure 3, there is a 

pulse discharge power supply (PDPS) that supplies electric current through coaxial power 

cables.  The PDPS consists of six individually operated power supply modules each 
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with a maximum stored energy of 13.5 kJ.  Each power supply module contains five 210 

μF capacitors with a maximum charge voltage rating of 5.7 kV.  The PDPS can store 

total energy of 81.9 kJ at a peak charge voltage of 5.1 kV.   

A finite-element analysis (FEA) of this lab-scale EML is presented in this work 

in order to improve the understanding of the physical phenomena of an EML.  It is 

decoupled as shown in Figure 4 into structural, modal, electromagnetic and thermal 

analyses.  There are two reasons why this was done.  First, the University version of 

the commercial FEA package, ANSYS, the version used in this study, limits the number 

of nodes that can be used in modeling.  The node limitation does not allow a three-

dimensional lab-scale EML FEA model to be adequately meshed.  The second reason is 

attributed to a computational hardware limitation.  With a coupled model, a solution 

could not be obtained due to insufficient memory. 
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Figure 4: Decoupled FEA components of the lab-scale EML 

 

This FEA provides results of the decoupled physical phenomena through four 

separate analyses, not the coupled physical phenomena.  However, this FEA gives many 

meaningful results.  Structural analysis of the initial contact will not only indicate how 

the armature deforms, but it will also determine factors influencing EML performance, 

such as the actual contact area, the contact pressure, and the maximum stress.  Modal 

analysis of the armature provides the inherent vibration characteristics of the armature 
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legs.  This analysis can provide guidelines for design modifications of the armature 

geometry.  Electromagnetic analysis will determine the EMAG forces created due to the 

applied electric current, which when summed will enable the velocity and the 

displacement of the armature to be calculated as a function of time.  Thermal analysis 

determines the temperature rise of the EML due to Joule and frictional heating.  A 

simulation of the sliding armature is created to investigate the effect of the friction 

heating.  A stationary armature-rail model is used to investigate the effect of Joule 

heating.  These analyses will show that each mode of heating influences the melting of 

material at the contact interface, and will predict where the melting of the material occurs. 

Results from this investigation will not only improve our understanding of an 

EML, but will also provide guidance for achieving the optimum contact condition 

(contact pressure and contact area) that will minimize the adverse thermal and abrasive 

wear of armature and rail.  In addition, modal analysis will provide guidelines for 

selection of a material that will reduce the vibration of the armature legs. 

This work is organized in the following way.  Chapter 2 provides a literature 

review.  Many aspects of previously performed and conducted EML research are 

presented.  Chapter 3 provides the structural analysis for the initial contact.  Important 

factors like contact area, contact pressures, and the maximum von-Mises pressure of the 
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initial configuration of the lab-scale EML are determined.  Chapter 4 provides a detailed 

study of the inherent vibration characteristics of the particular armature geometry used in 

the lab-scale EML.  A pre-stressed armature and a non stressed armature are considered 

in the analysis, and the results are compared.  Chapter 5 presents the electromagnetic 

FEA.  The Lorentz force created due to the applied electric current is determined, and 

using the force results, acceleration, velocity, and the displacement of the armature are 

calculated as a function of time.  Chapter 6 provides the effects of the frictional heating 

and the Joule heating through thermal-electric coupled analysis.  Chapter 7 provides 

conclusions from the present work and recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

 

Due to the highly coupled nature of phenomena that result in operation of an 

EML, thus far there have been no universally accepted principles that provide complete 

understanding of the armature-to-rail performance and the useful bore life of an EML.  

Many attempts to explain what happens during the operation of an EML have been made 

using theoretical and analytical studies, actual experiments, and finite-element analysis.  

In this section, summaries of previous work are presented in three categories.  The first 

category summarizes those works that discuss the effects of an extreme applied electric 

current.  The second category includes summaries of those works that are related to the 

structural characteristics of the EML.  The third category summarizes works that are not 

included in the first two categories. 

 

2.1. Extreme Applied Electric Current 

The magnitude of the applied electric current used in the operation of an EML is 

considerably large.  Typically, it ranges from several hundred kilo-amperes to several 

mega-amperes.  This enormous magnitude of electric current creates astonishing 

effects at the interface between the rails and the armature.  In order to enhance 
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understanding of the effects of an extreme applied electric current at the constricted 

pathway, many studies have been conducted.  Merrill and Stefani [2] developed an 

analytic model of the current melt wave in a one-dimensional stationary conductor to 

gain insight into the complex problem of melt-wave erosion contact wear in EML 

armatures.  Their result suggests that the electrodynamics of the moving melt-wave 

boundary have an insignificant effect on melt-wave erosion in solid armature EML and 

as such can be justifiably neglected.  The electro-thermal behavior of solid armatures 

in an EML has been studied by Angeli and Cardelli [3].  From their model, they found 

that most of the applied electric current flows through primary and secondary current 

paths.  Their model predicted that vaporized, molten, and solid zones would form in 

the trailing contact between rails and armature.  Drobyshevskiî et al. [4] studied the 

effect of the thermoelectrodynamic loss of material by a solid armature in an EML.  

They reported that there is redistribution of the current as a result of Joule diffusion as 

the armature accelerates along the rails.  This decreases the electrical conductivity and 

causes heating in the region where redistribution occurs.  The redistribution of the 

electric current causes an uneven heating at the trailing edge of the armature and 

eventually the detachment of the melted material.  This causes initial shunting arcs 

behind the armature.  They supposed that this is one of the reasons that a loss in 
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expected velocity of the solid EML armature can occur.  Powell and Zielinski [5] 

developed an initial numerical model for solving the equations that predict current and 

heat transport in a series-augmented, solid-armature EML and then they [6] modified 

their initial model to include the solution of coupled Maxwell and heat transport 

equations.  Their results suggest that the velocity skin effect1 is significant at points 

near the rail-armature interface at moderate velocities and that there is significant 

heating where the high current density occurs.  Also they found that the fast rise time 

and decay of the current pulse led to some magnetic energy remaining in the armature 

(and rails) at the termination of the pulse.  Kim et al. [7] developed a three-dimensional 

finite element model for the thermal effect of imperfect electric contact.  A higher 

contact resistance, an effect of an imperfect electric current, results due to the air gaps 

and the constriction between the two surfaces.  Their model shows that an imperfect 

electric current effect dominates at the early launching stage due to a current 

concentration over the outer and trailing edge of the armature.  Comparison shows that, 

at the early launching stage, the local temperature over the imperfect electric current 

interface is higher than that of a perfect contact. 

                                                      
1 Velocity skin effect is an uneven distribution of current in a moving armature and rails 
due to diffusion effects in the rail material.   
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2.2. Structural Characteristics 

 Several experiments demonstrate that one of the important factors that govern the 

maximum velocity of the armature is the metal-to-metal contact at the contact interface 

between the rails and the armature.  For as long as the interface stays in contact, the 

armature experiences a Lorentz force and continuously accelerates.  However, once the 

contact is lost, many unfavorable effects such as arcing and gouging, occur.  Arcing is a 

luminous discharge of current that is formed when a strong current jumps a gap in an 

electric circuit.  Gouging is a groove or hole made on the rail due to sliding of the 

armature.  These phenomena destroy the metal-to-metal contact at the interface.  In 

order to understand the reasons that destroy the metal-to-metal contact at the contact 

interface, many studies have been conducted.  Drobyshevkiî et al. [8] indicated in their 

study that the main factor determining the flow of physical processes on the interface of a 

sliding solid-state contact carrying a current ~0.1-1 MA/cm2 is a sausage-type 

magentohydrodynamic (MHD) pinch instability.  A sausage-type MHD pinch effect is 

an axial expansion of a cube as a result of compressing its side faces by a magnetic force.  

It vertically deforms the armature and leads to gouging on both rails.  They found that 

the effects of the third dimension (transverse relative to the flowing current) are important, 

and must be considered in future studies.  Drobyshevkiî et al. [9] provide more insights 
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about how a solid armature launcher contact transitions into an arc mode.  The term 

transition is defined as the process in which the status of the contact interface changes 

from metal-to-metal contact to arcing.  They found that three-dimensional MHD 

processes develop in the gap between the contact surfaces, where the resistance to shear 

is zero.  They also answered why teardrop-shaped gouging occurs with the same reason 

previously discussed as offered by Drobyshevkiî et al.  James and James [10] provided a 

general solution predicting the transition velocity of a solid armature which is derived 

using a velocity skin-effect current-wave model.  In addition, they proposed in their 

study a concept of a supported armature in order to exert an adequate outward force to 

maintain a contact pressure at the rear contact surface at start-up.  Tzeng [11] developed 

a model to investigate the dynamic response of an electromagnetic launcher, induced by a 

moving magnetic pressure during launch of projectiles.  The derived solution suggests 

that a high magnitude of cyclic stress can occur that might cause damage in the rails, 

might accelerate growth of defects, and might shorten rail life significantly.   

 

2.3. Other Topics 

 Many advantages inherent in lubrication for sliding motion of the armature led 

Kothmann and Stefani [12] to develop a thermal hydraulic model of melt-lubrication for 

 15



the EML armature.  The model was moderately successful at reproducing results of 

experiments that measured high-speed mechanical wear of 7075 aluminum sliding 

against electrolytic tough pitch (ETP) copper for face pressures ranging from 45 to 150 

MPa. 

Another innovative subject was studied by Satapathy and Persad [13].  They 

studied thermal stresses in an actively cooled two-piece rail structure.  The study 

concluded that use of rail overlays and active cooling not only reduces the peak 

temperature, but also affects the overall thermal gradient.  Thin resistive overlays 

minimized thermal stress by affecting a more even temperature distribution.  The active 

cooling system was ineffective for single launchers, but enabled faster heat removal in 

the time between two consecutive launches. 

As the power of computing capability grows, there have been many studies that 

use coupled finite element codes to simulate the operation of the EML.  Hopkins et al. 

[14] performed an analysis of startup behavior in a “C-Shaped” armature using linked 

EMAP3D/DYNA3D finite element codes.  The goal of the analysis was to investigate if 

the EML maintains good solid-to-solid sliding contact during the initial portion of a 

launch.  The simulation determined that a peak displacement transverse to the direction 

of motion was on the order of 0.1mm.  Newill, et al. [15] developed a different coupled 
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finite element code for armature design.  This FEA coupled two-dimensional 

electromagnetic analysis with three-dimensional dynamic structural mechanics analysis.  

The finite element code can be used to calculate the acceleration, velocity, and distance of 

the armature as a function of time.  Also, the temperature of the armature can be 

determined using this FE code.  The advantage of this coupled model is its capability to 

perform rapid assessment of the EML and the armature structure. 

 

2.4. Discussion 

Based on the studies introduced in this chapter, there have been attempts to 

explain the failure modes of the EML.  As mentioned, the principal challenge of the 

EML is to eliminate or delay the transition to arcing contact.  Thus far, there are two 

major mechanisms that explain the reason for the transition of the solid armature in the 

EML.  The first mechanism is broadly known as “wear-induced transition”.  It results 

from uneven or excessive loss of material from the armature at the rail contact interface.  

There have been many studies [16-20] on this transition mechanism.  These studies state 

that the cause of wear is “melt wave erosion” which is intense skin-effect heating at the 

perimeter of the armature that creates a self-sustaining form of molten material.  They 

explain that transition occurs because loss of material from the perimeter of the armature 
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causes the current flow to converge which generates a repulsive force tending to separate 

the contact face of the armature from the rail.  The second mechanism, known as 

“electrodynamic transition”, is associated with a rapid reduction in driving current.  This 

transition mechanism is studied in detail in [21].  They have used 3-D FEA to observe 

the development of localized forces at the edges of the armature as the driving current 

drops rapidly.  They proposed that this behavior could be the reason for molten material 

to be ejected from the armature-rail contact region and causes arcing to occur.   

In this work, using FEA, physical phenomena of the lab-scale EML is 

investigated.  Useful information such as the contact area, the contact pressure, the von 

Mises stress, the vibration characteristics (frequencies and mode shapes), the 

electromagnetic (Lorentz) force, the friction heating, and the Joule heating of the lab-

scale EML are provided.  This information will help provide a better understanding of 

the contact interface between the armature and the rails, of use in predicting the failure 

modes of the solid armature and the rail of the current lab-scale EML.  Prediction will 

provide insight of how the current lab-scale EML operates and ways of improving current 

lab-scale EML design for better performance.   

In the next chapter, the results of a structural FEA are presented, of use in 

understanding the structural deformation of the lab-scale EML for initial contact. 
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CHAPTER 3: STRUCTURAL ANALYSIS 

 

For the lab-scale EML that is investigated in this study, initial armature-to-rail 

contact is established by means of an interference fit as shown in Figure 5. 

 

 

Figure 5: Schematic diagram of the armature and the rails 

 

The armature is tapered; D1 is smaller than D2.  It allows the armature to be 

easily pushed in between the two rails.  The distance between the outer edges of the two 

legs (D2) of the armature is designed to be slightly greater than the distance between the 

inner edges of the two rails (D3); D2 > D3.  Therefore, as the armature is pushed in 

between the two rails, the armature deforms and an initial contact is established at the 

interfaces between the rails and the armature.  In this chapter, a 2-D structural FEA of 
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the lab-scale EML is performed to investigate the effects of the initial contact.  This 

analysis provides an initial contact area, the von Mises stress, the contact pressure, and 

the deformation of the armature given interference set (i.e., full model is ~ 0.25 mm and 

half model is ~ 0.12 mm) for the present lab-scale EML.  It should be noted that since 

the FEA considers the half symmetric model of the lab-scale EML, a half of the actual 

lab-scale EML interference is used in the rest of this chapter.  Once the results are 

discussed, the effect of interference is studied further by examining how the variation in 

interference changes the contact area and the contact pressure.  These results will be 

useful in developing guidelines for armature design.  The initial contact area and the 

contact pressure are useful in determining frictional heating and Joule heating at the 

contact (a detailed discussion will be provided in chapter 6). 

This chapter is organized in the following way.  A FEA model of the 

compliance layer, an artificial layer that takes into account the stiffness of the lab-scale 

EML, is presented in the first section.  Then, using this model, the effect of the initial 

contact is studied in the second section.   
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3.1. Compliance Layer 

The lab-scale EML studied here is designed to have a very small magnitude of 

interference.  The magnitude of the interference applied in the FEA is 0.1232 mm.  

This value is obtained from the CAD drawings of the present lab-scale EML.  Since this 

magnitude is very small, any stiffness that arises from manufacturing or component 

assembly must be taken into account in the FEA model in order to assure accurate results.  

Therefore, a compliance layer, an artificial layer that takes stiffness into account, is 

created.  This section presents a process for determining geometric and material 

properties of the compliance layer.  

 

3.1.1. Geometry, Meshing, Boundary Condition, and Element 

The lab-scale EML is constructed using several materials.  Because electric 

current is used in its operation, the material’s electrical properties are major factors for 

selecting these materials.  In addition, since the structure experiences significant 

electromagnetic force, the structural material properties are also considered.  
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Figure 6: Front view of a quarter of the lab-scale EML 

 

Figure 6 shows how these different materials are put together in the lab-scale 

EML.  In this figure, the compliance layer is not yet added.  Since the geometry is 

symmetric, only a quarter of the front view is shown in Figure 6.  The symmetric planes 

are located along the left edge and the bottom edge.  Table 1 lists the area number in 

Figure 6 and the corresponding materials.  
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Table 1: Area numbers and corresponding materials for Figure 6
Area Number Material

A1 G10 LAYER
A2 COPPER RAIL
A3 G10 LAYER
A4 MYLAR
A5 STEEL CONTAINMENT
A6 MYLAR  

 

Aluminum 6061 T651 and UNS C11000 copper are used for the armature and the 

rail, respectively, because both materials have small electrical resistivity and sufficient 

strength that can withstand the electromagnetic force.  Since the electric current should 

flow only through the rails and the armature, electric insulating materials are placed to 

prevent electric current from flowing to the overall structure.  G102 and Mylar3 are 

selected electric insulating materials.  Thin plates of UNS S30100 stainless steel (full 

hardened) are used in fabricating the massive structure that contains the rails.  The steel 

plates are thin in the X direction (into the page, see Figure 6).  Therefore, many plates 

are stacked and bolted together to make the steel containment. 

 
                                                      
2 G10 is created from electrical alkali-free glass cloth that has been impregnated with an 
epoxy resin under pressure and heat. 

3 Mylar is one of several trade names used in the US and Britain for biaxial-oriented 
polyethylene terephthalate (boPET) polyester film which has high tensile strength, 
chemical and dimensional stability, transparency, gas and aroma barrier properties and 
electrical insulation. 
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A lab-scale EML compliance test was conducted at the Extreme Tribology 

Research Laboratory of the Georgia Institute of Technology.  The purpose of the 

experiment is to investigate how the completely assembled lab-scale EML reacts when 

force is applied to push the rails apart and to obtain the relationship between the applied 

force and the resulting relative displacement of the two rails.  Eleven different 

magnitudes of line force are internally applied in the Y axis direction to both the top and 

the bottom rails equally, and the corresponding displacements were measured at 80 mm 

away from the muzzle (exit) of the lab-scale EML.  Figure 7 shows the results from this 

compliance test.  The linear regression is performed on the results, and the regression 

results are also shown in the Figure 7.  As shown, the R2 value of regression analysis is 

about 0.95.  This means that the regression captures the actual experimental 

measurements well.  The relationship between the applied force and the resulting 

relative displacement is therefore a linear. 
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Results of Compliance Test of the lab-scale EML
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Figure 7: Results of an actual Lab-Scale EML compliance test 

 

In order to adapt this structural compliance characteristic into the FEA model, a 

compliance layer was modeled.  Figure 8 shows the FEA model that was used to 

determine the material properties of the structural compliance layer. 
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Figure 8: Geometry used in modeling the structural compliance layer 

 

Figure 8 is the boxed region shown in Figure 6.  The compliance layer is 

located between the stainless steel structure and the Mylar layer.  The thickness of the 

compliance layer is 0.254 mm (0.01 inch) so that the overall geometry and structural 

characteristics are not greatly altered.  The width (Δx) of the rail and other layers shown 

in Figure 8 is 3.81 mm.  Due to symmetric geometry, only the upper rail and layers are 

modeled.  Along the left edge of the model (A1, A2, A3, A4, and A5), a symmetric 

boundary condition is applied.  The right edge of A1 through A4 is constrained so as not 

to move in the Z direction, but allowed to move freely in the Y direction.  Since the 
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stainless steel case is much stronger than the other materials, then the right edge of A5 is 

constrained so as not to move in both the Y and Z direction where the steel containment is 

cut along that edge.  The bottom edge of A1 is the armature-rail interface.  Table 2 

summarizes the area numbers shown in Figure 8 and the corresponding materials. 

 

Table 2: Area numbers and corresponding materials for Figure 8

Area Number Material
A1 COPPER RAIL
A2 G10 LAYER
A3 MYLAR
A4 COMPLIANCE LAYER
A5 STEEL CONTAINMENT  

 

Figure 9 shows a schematic diagram of the rail.  Since the length of the rail is 

much greater than the width, a plane strain assumption is applied throughout the FEA of 

this section.  

 

 

Figure 9: Schematic diagram of the rail 
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Figure 10 shows the meshed FEA model including the compliance layer.  Since 

the thickness of both the Mylar and the compliance layers is small, a finer mesh density is 

applied in both layers.  Various magnitudes force shown in Figure 7 is applied at the 

bottom surface of the copper rail as a distributed load. 

 

 
Figure 10: Mesh plot of the compliance layer FEA model 

 

Figure 11 shows the schematic diagram of Plane 42, the element that is used in 

this analysis.  Plane 42 is a 2-D structural solid element that can be used either as a 

plane element (plane stress or plane strain) or as an axisymmetric element.  The element 
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is defined by four nodes having two degrees of freedom at each node: translations in the 

local nodal x and y directions, as shown.   

 

 
Figure 11: Schematic diagram of the Plane 42 element [22] 

 

3.1.2. Result and Discussion 

A process of trial and error is employed to determine the material properties (the 

modulus of elasticity (E) and the Poisson’s ratio (υ)) of the structural compliance layer.  

A force is applied at the bottom surface of the rail, and the values of E and υ are varied 

until the displacement result of the FEA matches the experimental measurement.  The 

material properties, E of 20 MPa and υ of 0.3, of the compliance layer yield the 

displacement results that are comparable with the experimental measurements with an 

approximate error of 2-3 %.  Figure 12 shows a typical result of the displacement in the 

Y direction, with an applied force of 672N.  For this particular case, all the layers (the 
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rail, G10, Mylar, and the compliance layer) were displaced in the upward direction 

approximately 24 µm.  Figure 12 clearly shows that the major deformation occurs at the 

compliance layer as anticipated.  A similar trend of deformation (shown in Figure 12) is 

obtained for the remaining applied forces. 
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a) Overall view 

 

b) Close up view 
Figure 12: Displacement along the Y axis of the compliance layer at the load of 672N 
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Holding the value of E of 20 MPa and υ of 0.3 constant, eleven different forces, 

shown in Figure 7, are applied in the FEA.  The corresponding Y displacement results 

are tabulated in Table 3 with the measured Y displacement values.  The measured 

displacements and the FEA results are listed in the second and the third column, 

respectively.  Since only the upper rail and layers are considered in this FEA, the FEA 

results shown in Table 3 is the twice of the actual FEA results.  The FEA results closely 

match the measured values. 

 

Table 3: Comparison of experimental measurements and the FEA results 

FORCE Experimental Results Regression Results FEA Results
(N) (μm) (μm) (μm)
0 0 0.00 0.00
4 3 0.29 0.28
7 5 1 0.48

33 5 2 2
67 10 5 5
168 20 12 12
334 38 24 24
672 66 49 48

1006 81 74 72
1334 91 98 98
1680 114 123 122  

 

In summary, a compliance layer, which is included in the FEA model of the next 

section, has been created.  In order to minimize a change in overall geometry and 

structural characteristics, the thickness of the compliance layer is set to 0.254 mm (0.01 
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inch).  The Young’s modulus and the Poisson’s ratio that yield the Y direction 

displacement values that match closely to the measured values are 20 MPa and 0.3, 

respectively.   

 

3.2. Initial Contact 

With the structural compliance layer having been added to the FEA model, the 

structural deformation and the corresponding effects of the lab-scale EML due to 

armature/rail interference are examined in this section.  The interference of the current 

lab-scale EML (i.e., a value of D3-D2 in Figure 5) is 0.25 mm.  This is the value which is 

obtained from CAD drawings of the lab-scale EML.  Since a half of the lab-scale is 

modeled in the FEA due to a symmetric geometry, the interference is set numerically to 

be at 0.12 mm.  It should be noted that the interference value presented in the 

subsequent section of this chapter is the half of the actual interference, since a half 

symmetric model is used in this analysis.  The results of the X and Y displacement, the 

von Mises stress distribution, the contact pressure, and the contact area due to this 

interference are presented.  Then, the effect of the interference is studied further.  The 

interference is varied continually and the corresponding effects of the aforementioned 

characteristics are investigated. 
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3.2.1. Geometry, Meshing, Boundary Condition, and Element 

As mentioned previously, the armature is pushed in between two rails in order to 

establish the initial contact.  In order to investigate the effect of the initial contact, two 

FEA models are created.  The first model simulates the actual push-in motion.  Initially, 

the armature is located outside of the EML, and slowly it is pushed in between two rails.  

The push-in motion requires many iterative steps for the solution to converge.  The 

simulation typically requires up to six to eight hours on a PC (a Pentium 4 CPU 2.40 GHz, 

2 GB of RAM) to acquire the solution.  In order to obtain the initial contact results 

efficiently, the rails and the other layers are brought in toward each other.  The armature 

is already placed in between the rail and the layers.  This requires significantly fewer 

steps for convergence, and the simulation typically takes less than half an hour to acquire 

the solution.   

Figure 13 shows the geometry of the FEA model.  Parts of the rail and the other 

layers located far away from the actual contact do not experience any effect.  Therefore, 

only a small segment (0.2 m in length) of the rail and the other layers are used in the FEA.  

In addition, due to the symmetric geometry, only half of lab-scale EML is considered in 

the FEA model.  This allows a finer mesh to be used at the interface between the 

armature and the rail where contact is expected.  It should be noted that the compliance 

 34



layer modeled in the previous section is added between the Mylar layer and the steel 

containment in the FEA model.  Figure 13 also shows the coordinate system used in the 

FEA.  The positive X and Y directions are defined to the right and to the top, 

respectively.  This coordinate system is used throughout the analysis presented in this 

chapter. 

 

 
Figure 13: Geometry of the initial contact FEA 
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The left and right edges of the rail and the other layers are constrained so that no 

motion in the X direction is allowed.  Along the bottom surface of the armature, a 

symmetric boundary condition is applied.  At the top surface of the steel structure, a 

downward displacement of -0.1232 mm is applied.  There is a small taper at the outer 

edge (a surface which is adjacent to the rail) of the armature geometry (see Figure 14).  

Therefore, if the rail and other layers are brought down without any constraint on the 

armature, the armature freely slides.  There are two ways to prevent sliding of the 

armature.  The first way is to apply a sufficiently high coefficient of friction at the 

contact interface.  The high friction force at the interface between the rails and the 

armature prevents the armature from sliding.  The second way is to simply apply the 

constraint to the node located at the tip of the trailing edge of the armature, so that the 

node does not move in the X direction while it is free to move in the Y direction.  This 

prevents the armature from freely sliding but allows it to freely deform.  In this analysis, 

the node at the tip of the trailing edge of the armature is constrained, dx = 0 as shown in 

Figure 13. 
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Figure 14: Schematic diagram of the aluminum armature (all dimensions are in inch) 

 

 A schematic diagram of the aluminum armature with dimensions is shown in 

Figure 14.  Aluminum 6061 T651 is used as the material for the aluminum armature as 

mentioned previously.  It should be noted that there is an inclination of 1.04˚ at the outer 

edges of the legs.  This taper makes the interference an important factor in determining 

the contact area. 

 Figure 15 shows the mesh plots of the initial contact FEA model.  The total 

number of elements used in this FEA is 14895.  A finer mesh is applied where the 

contact between the rail and the armature is expected and around the circular section of 
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the armature where the two legs meet.  The size of the finer mesh that is applied at the 

location where the contact is expected is approximately 60 µm by 60 µm. 

 

 
a) Overall view                        b) Close up view 
Figure 15: Mesh plot of the initial contact FEA model 

 

 The element, Plane 42, introduced in the prior section is also used in this FEA.  

Plane 42 provides the plane stress with the specified thickness option.  This option 

allows a user to specify the thickness, even though it is a 2-D element.  This option is 

employed in this FEA with a thickness of 9.22 mm into the page.  This is an actual 

thickness of the lab-scale EML armature.  For the contact element pair shown in Figure 

16, CONTACT 172 and TARGET 169 are used in this FEA. 
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Figure 16: Schematic diagram of the contact and target element [22] 

 

3.2.2. Result and Discussion 

  As anticipated, the simulation of compressing or bringing the rail and the other 

layers down for the initial contact yielded a converged solution.  Although substantial 

number of elements is used in this FEA, the solution converges in approximately 10 

minutes.  The results obtained from compressing or bringing the rails and the other 

layers down is compared with the results obtained from a sliding simulation.  The 

results of both cases match closely.  Therefore, the approach of bringing the rail and the 

other layers down is employed in subsequent analyses. 

Figure 17 shows the resulting displacement in the X and the Y directions for 

interference of 0.1232 mm.  In the X direction, the maximum displacement occurred 

along the inner edge of the armature leg.  A portion of the armature is elongated due to 
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compression, although the magnitude is not significant.  In the Y direction, the 

maximum displacement occurred at the trailing tip of the armature leg, as expected.  

Starting from the trailing tip of the armature, the displacement gradually decreased 

towards the main body section of the armature.  There are investigations which try to 

reduce the adverse effects of friction by means of lubrication [23]. 
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a) In the X direction 

 
b) In the Y direction 

 
Figure 17: Displacement results in the X and the Y directions for interference of 0.1232 
mm 
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a) Overall view 

 

b) Close up view 
 

Figure 18: Results of the von Mises stress for an interference of 0.1232 mm 
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Figure 18 shows the result of the von Mises stress test conducted for the case of 

0.1232 mm interference.  The maximum stress occurs at the tip of the trailing edge and 

at the circular section where two legs meet the armature.  The magnitude of the 

maximum stress is close to but still lower than the yield strength of the materials.  

Therefore, the effect of plastic deformation does not need to be considered for this 

particular interference.  These results so far show that, from a structural point of view, 

the design of the present lab-scale EML is reasonable, since no permanent deformation 

results from the initial contact. 

 Figure 19 shows the results of the contact pressure for an interference of 0.1232 

mm.  A symmetric contact element pair is applied along the bottom surface of the rail 

and the top surface of the armature in order to obtain the contact pressure experienced by 

both the armature and the rail.  The pressure result represented in the upward direction is 

the pressure experienced by the armature.  The pressure result represented in the 

downward direction is the pressure experienced by the rail.  As shown in Figure 19, the 

actual contact is established in a very small area.  The maximum pressure experienced 

by the armature and the rail is approximately 200 MPa.  The magnitude of the contact 

pressure also shows that the effect of plastic deformation does not need to be considered 

at the contact interface for initial contact. 

 43



 

a) Overall view 

 

b) Close up view 
 

Figure 19: Results of the contact pressure for interference of 0.1232 mm 
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 Close examination of the results shows that six elements at the tip of the trailing 

edge of the armature experience the contact pressure.  The length of the side of the 

element used in that area is approximately 60 µm.  Therefore, the total contact length is 

approximately 360 µm.  Since the thickness of the armature is about 9.22 mm, the 

contact area from the initial contact is approximately 3.32 mm2. 

 The effects of interference are investigated further by varying the magnitude.  

Figure 20 shows the results of the von Mises stress measurements obtained for 6 different 

interferences.  As the armature is compressed, initially the von Mises stress forms along 

the inner and the outer edges of the armature leg due to bending, while the maximum von 

Mises stress occurs at the contact interface.  However, as more compression is applied, 

the trends of the von Mises stress distribution changes.  Due to the C-shape of the 

armature geometry, the contact does not occur at the tip of the trailing edge of the 

armature leg anymore.  The contact area moves forward along the outer edge of the 

armature legs.  As shown in Figure 20, at the interference of 0.18 mm, the maximum 

von Mises stress starts to occur at the circular section of the armature, not at the contact 

interface.  Further compression shifts the point of contact forward and reduces the 

inclination angle of the armature leg to close to zero.  This makes the von Mises stress 

increase at the circular section of the armature and in the section of the rail directly above 
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the point of contact. 

 

a) Interference of 0.0616 mm b) Interference of 0.1232 mm 

c) Interference of 0.1848 mm d) Interference of 0.2464 mm 

e) Interference of 0.3080 mm f) Interference of 0.3696 mm 
Figure 20: Results of the von Mises stress for 6 different interferences 
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Figure 21 shows the contact pressure results for 6 different interferences.  The 

shifting of the point of contact discussed earlier is clearly shown in Figure 21. Initially 

the contact pressure is present at the tip of the trailing edge of the armature leg, and as the 

compression progresses, the contact pressure shifts forward with an increase in the 

contact area.  The results of the maximum contact pressures for 30 different 

interferences are shown in Figure 22. The results are non-intuitive due to the C-shape 

armature geometry.  Since the area of contact is small initially, there is a sharp increase 

in the contact pressure as the interference increases.  The maximum contact pressure, 

325 MPa, occurs at interference of 0.05 mm.  Once this point is reached, any increase in 

the interference starts to deform the armature leg.  This deformation causes an increase 

in the contact area, so the contact pressure continuously decreases until the interference 

reaches approximately 0.18 mm.  After this point, as the magnitude of interference 

increases, the contact pressure slowly increases again because the armature cannot 

deform any more. 
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a) Interference of 0.0616 mm b) Interference of 0.1232 mm 

c) Interference of 0.1848 mm d) Interference of 0.2464 mm 

e) Interference of 0.3080 mm f) Interference of 0.3696 mm 
Figure 21: Results of the contact pressure for 6 different interferences 
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Figure 22: Results of the maximum von Mises stress for 30 different interferences of the 
half symmetric lab-scale EML model 

 

Figure 22 shows a maximum von Mises stress of the half lab-scale EML model 

for 30 different interferences.  The yield strengths of the aluminum armature and copper 

rail used in the lab-scale EML are 255 MPa and 305 MPa, respectively.  Initially, the 

von Mises stress increases linearly because interference increases linearly while the 

contact area stays at the same location that is the armature tip.  The von Mises stress 

then linearly decreases because the contact area increases faster with the interference.  

About 0.13 mm, the von Mises stress starts back to increase.  At this point, the 
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maximum von Mises stress does not occur at the armature-to-rail interface, it occurs at 

the circular region of the armature.  Therefore, as interference increases, the von Mises 

stress increases since geometry cannot deform easily anymore.  Figure 22 shows that 

interference values between 0.085 mm and 0.105 mm and greater than 0.165 mm yield a 

maximum von Mises stress which is higher than the yield strength of the weaker material 

(aluminum).  This means that as the armature is pushed in between two rails in actual 

lab-scale EML, the armature can plastically deform.   

The contact length is determined by counting the number of elements that are in 

contact.  The contact area is then calculated by multiplying the contact length by the 

thickness of the armature, 9.22 mm.  The results of the number of elements that are in 

contact and the corresponding contact length and contact area for six different 

interferences are listed in Table 4. 

 

Table 4: Number of elements in contact, contact length, and contact area for six different 
interferences 

Interference (mm) Elements Length (mm) Area (mm^2)
0.0616 2 0.12 1.11
0.1232 6 0.36 3.32
0.1848 43 2.58 23.79
0.2464 76 4.56 42.04
0.3080 105 6.30 58.09
0.3693 126 7.56 69.70  
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The following conclusions summarize the major results obtained from the 

structural analysis for initial armature-to-rail contact.   

 

1. The compliance layer which incorporates any stiffness that arises from 

manufacturing or component assembly is added in the FEA.  With the thickness 

of the compliance layer set at 0.254 mm, the Young’s modulus, and the Poisson’s 

ratio is determined to be 20 MPa and 0.3, respectively. 

2. The interference between 0.085 mm and 0.105 mm and beyond 0.165 mm results 

in the von Mises stress that is higher than the yield strength of the aluminum.  

This means as the armature is pushed in between two rails, it can plastically 

deform, since the interference values than that is used in the current lab-scale 

EML (0.12 mm). 

3. The maximum contact pressure at the interference of 0.12 mm is approximately 

200 MPa. 

4. The contact area results from the initial contact are determined to be 3.32 mm2.  

 

The results provided in this section alone are not of much significance.  

However, using these results, the performance of the EML can be better understood.  
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For example, the friction heating and the Joule heating at the interface strongly depend on 

the contact area and the contact pressure.  Knowing how the contact area and the contact 

pressure vary as a function of the interference is an important information that can be 

used in optimizing the performance of the EML.  In the next chapter, the modal analysis 

of an armature is performed to investigate vibration characteristics, vibration mode shape, 

and vibration frequency.   
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CHAPTER 4: MODAL ANALYSIS OF THE ARMATURE 

 

A modal analysis is a study of the dynamic properties of vibrational excitation.  

It determines the natural frequencies and vibration mode shapes of a structure during free 

vibration and it is capable to also provide a solution to the force response.  In this 

chapter, modal analysis of the lab-scale EML armature is performed.  The scope of this 

study is limited only to eigenvalue problem of the lab-scale EML armature.  The 

vibration of the rails of the EML is studied by Johnson and Moon [24]. 

In the first section, a fundamental mathematical background is provided.  In the 

second section, an actual modal analysis is presented. 

 

4.1. Mathematical Background  

 The purpose of modal analysis in structural mechanics is to find the natural 

frequencies and the mode shapes of a structure during free vibration.  The equations 

used in modal analysis are the equations that are typically seen in eigensystems. 

Eigenvalues and Eigenvectors determined from solving eigensystems represent the 

natural frequencies and the mode shapes of the system, respectively. 

 Equation 4.1 shows the equation in matrix form for the most basic problem 
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involving a linear elastic material which obeys Hooke’s Law. 

 [ ][ ] [ ][ ] [ ][ ] [ ]FUKUCUM =++ &&&  (4.1) 
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 Assuming the system does not consider the damping effect, and no external force 

is applied to the system, then Equation 4.1 becomes 

 [ ] [ ][ ] [ ]0M U K U⎡ ⎤ + =⎣ ⎦
&&  (4.2) 

Further, harmonic motions are typically assumed in the structure mechanics, so 

 is assumed to be equal to U⎡ ⎤⎣ ⎦
&& [ ]Uλ , where λ  is an eigenvalue.  Then Equation 4.2 

becomes 

 [ ][ ] [ ][ ] [ ]0M U K Uλ + =  (4.3-a) 

In ANSYS, the finite element package used in this study, Equation 4.3-b which is 

equivalent to Equation 4.3-a is used to solve the classical eigenvalue problem. 
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 Since the armature does not have a built-in damping mechanism, the vibration 

modes and the vibration frequencies of the armature are determined using Equation 4.3-b. 

 

4.2. Modal Analysis of the Armature 

  There are two motivations that cause to perform modal analysis of the lab-scale 

EML armature.  The study performed by Watt and Fish [25] provides the first 

motivation.  They observed vibration of the armature during experiments conducted in 

1999 at the Institute for Advanced Technology in Austin, TX.  The second motivation 

emerges from the FEA simulation that shows the vibration of the armature legs.  The 

FEA is created to roughly estimate the magnitude of the force required to push the 

armature out of the lab-scale EML.  In this simulation, the legs of the armature are 

flapping up and down as the armature is sliding along the rail in that analysis.  The 
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magnitude of this flapping motion is sufficiently large such that intermittent contact at the 

interface is evident.   

Modal analyses of un-deformed and deformed armatures are performed.  As 

shown in previous chapter, the initial contact can cause the armature to be permanently 

deformed.  Therefore, the vibration characteristics of both the un-deformed and the 

deformed armature are investigated here.  In addition, material properties of the 

armature are varied to investigate corresponding effects on the vibration frequencies and 

mode shapes.  This information will be important in establishing guidelines for selecting 

material and designing the geometry of an armature. 

 

4.2.1. Geometry, Meshing, Boundary Condition, and Element 

Figure 23 shows a 3-D plot of the meshed armature that is used in this analysis.  

No boundary or loading conditions are applied in this FEA, since modal analysis is the 

study of free vibration. 

At total four different armatures (one un-deformed armature and three deformed 

armatures) are used in the analysis.  To create the deformed armature, three different 

magnitudes of forces (400N, 1897.5N, and 3795N) are applied at the tip of the each 

armature leg.   
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Figure 23: Mesh plot of the 3-D armature used in the Modal analysis 

 

Figure 24 shows the schematic diagram of Solid 45.  This element is used in 

creating a 3-D armature.  This element is defined by eight nodes having three degrees of 

freedom at each node: translation in the nodal X, Y, and Z directions.   The total number 

of elements used in this modal analysis was 4004. 
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Figure 24: Schematic diagram of the Solid 45 element [22] 

  

 

4.2.2. Result and Discussion 

As mentioned before, no boundary and loading conditions are applied in this 

analysis.  No boundary and condition yields six rigid body modes first.  Both the un-

deformed and deformed armature results the same six rigid body modes.  The six rigid 

body modes are shown in Figure 25.  The first three modes represent the translation in 

the X, Y, and Z axes, and the next three modes represent the rotation in the X, Y, and Z 

axes.  
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a) 1st Rigid Body Mode b) 2nd Rigid Body Mode 

 
c) 3rd Rigid Body Mode d) 4th Rigid Body Mode 

  
e) 5th Rigid Body Mode f) 6th Rigid Body Mode 

Figure 25: Six rigid body modes 
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a) 1st Vibration Mode Shape b) 2nd Vibration Mode Shape 

c) 3rd Vibration Mode Shape d) 4th Vibration Mode Shape 
Figure 26: First four vibration mode shapes of the un-deformed armature 

 

Figure 26 shows the result of the first four vibration mode shapes of the un-

deformed armature.  There are infinite mode shapes, however only first four mode 

shapes are shown here.  The first vibration mode shape represents the flapping up and 

down motion of armature legs (out of phase motion).   This is the mode shape that was 

mentioned at the beginning of this section.  The up and down bending of the whole 
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armature is shown in the second mode shape (in phase motion).  The opposite directions 

motion of the armature legs (out of phase motion) are shown in the third mode shape.  If 

the top leg moves in the positive transversal direction (out of the page), then the bottom 

leg moves in the opposite direction (into the page), and vice-versa.  The motion of the 

whole armature bending in the positive and the negative transversal direction (in phase 

motion) is shown in the fourth mode shape.  Table 5 summarizes the frequency and the 

period of the first four modes of the un-deformed armature.   

 

Table 5: Frequencies and periods of the first four modes of the un-deformed armature 

MODE FREQ. (Hz) PERIOD (Sec.)
1 19069 5.25E-05
2 26526 3.77E-05
3 26735 3.74E-05
4 31923 3.13E-05  

 

Figures 27 and 28 show the resulting displacement in the X and Y directions for 

the armature that experiences the 400N on each leg, respectively.  Each armature leg 

moved inward about 0.12 mm due to the applied force. 
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Figure 27: Results of the X direction displacement of the deformed armature 
 

 
Figure 28: Results of the Y direction displacement of the deformed armature 
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Figure 29 shows the result of the first four vibration mode shapes of the 

deformed armature that experiences 400 N on the each leg.  These vibration mode 

shapes are the exactly the same as the results of the un-deformed armature.  The 

frequency of each mode is increased slightly.  A summary of the vibration frequency 

and the period of the first four modes of the deformed armature are given in Table 6. 

 

a) 1st Vibration Mode Shape b) 2nd Vibration Mode Shape 

c) 3rd Vibration Mode Shape d) 4th Vibration Mode Shape 
Figure 29: First four vibration mode shapes of the deformed armature that experiences 
400 N on each leg 
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Table 6: Frequencies and periods of the first four modes of the deformed armature that 
experiences 400 N on each leg 

MODE FREQ. (Hz) PERIOD (Sec.)
1 19174 5.22E-05
2 26655 3.75E-05
3 26739 3.74E-05
4 31941 3.13E-05  

 

It should be noted that the first mode vibration period of both the un-deformed 

and the deformed armatures is significantly shorter than the typical sliding duration 

expected in the lab-scale EML.  This means the intermittent contact can occur while the 

armature slides along the rail.  This vibration characteristic should be considered in the 

future design of the armature so the performance of the lab-scale EML is improved. 

 To further study the vibration characteristics of the deformed armature, a higher 

force is applied at the each leg of the armature.  Figure 30 shows a side view of the 

mesh plot of the deformed armature that experiences 1897.5 N on each leg.  The 

armature legs are bent inward towards each other.   
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Figure 30: Mesh plot of the deformed armature that experiences 1897.5 N on each leg 

 

Figure 31 shows the first four vibration mode shapes of the armature that 

experience 1897.5N on each leg.  The second vibration mode shape that is seen in two 

previous analyses is the third vibration mode shape for this analysis, and the third 

vibration mode shape that is seen in two previous analyses is the second vibration mode 

shape for this case.  The frequency of each mode is increased further.  Table 7 lists the 

frequency and the period of the first four modes. 
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a) 1st Vibration Mode Shape b) 2nd Vibration Mode Shape 

c) 3rd Vibration Mode Shape d) 4th Vibration Mode Shape 
Figure 31: First four vibration mode shapes of the deformed armature that experiences 
1897.5 N on each leg 

 

Table 7: Frequencies and periods of the first four modes of the deformed armature that 
experiences 1897.5 N on each leg 

MODE FREQ. (Hz) PERIOD (Sec.)
1 21504 4.65E-05
2 27389 3.65E-05
3 29150 3.43E-05
4 32599 3.07E-05  
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A higher force (3795 N) is applied at the each armature leg.  The deformed 

armature is shown in Figure 32. 

 

 
Figure 32: Mesh plot of the deformed armature that experiences 3795 N on each leg 

 

The vibration mode shapes obtained in this analysis are exactly the same as those 

shown in Figure 31.  A slight increase in the frequency of each mode is observed.  

Table 8 lists the frequency and the period of the first four vibration modes.  
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Table 8: Frequencies and periods of the first four modes of the deformed armature that 
experiences 3795 N on each leg 

MODE FREQ. (Hz) PERIOD (Sec.)
1 25126 3.98E-05
2 28947 3.46E-05
3 32738 3.06E-05
4 34272 2.92E-05  

 

The study of the deformed armature provides two conclusions.   The first 

conclusion is that the higher deformation of the armature legs results in the higher 

vibration frequency.  The second conclusion is that the vibration mode shape depends on 

the deformed geometry of the armature.  The results of the first two analyses where the 

armature legs are not bent indicate the same vibration mode shape, while the last two 

analyses where the armature legs are bent show the same vibration mode shape.   

Further investigation of the vibration characteristics is conducted to improve the 

material selection criteria.  The material properties, the Young’s modulus and the 

density, are varied.  Although there are other material properties, these two are selected 

because modal analysis is one of the structural FEAs.  Therefore, it is logical that 

structural material properties are varied.  Also, the Young’s modulus and the density of 

the material can be easily obtained for most of the materials.   
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The results of FEA show that the frequency is proportional to ρE , where E is 

Young’s modulus and ρ is the density.  The mode shapes do not change, as the material 

properties change. 

The size of the armature is also varied and the corresponding effects are observed.  

The length in the X, Y, and Z directions are increased by factors of 2, 5, and 10.  It is 

found that frequency is inversely proportional to size.  

The following conclusions summarize the major results obtained from the modal 

analysis of the armature.   

 

1. The frequencies of the first vibration mode of the un-deformed and deformed 

armatures currently used in the lab-scale EML are 19069 Hz and 19174 Hz, 

respectively.  These high frequencies can possibly create the on-and-off contact 

at the interface while the armature slides along the rails. 

2. The vibration mode shapes depend on the geometry of the armature.   

3. The vibration mode shape is not affected by Young’s modulus and density.  

However these material properties affect the frequency of each vibration mode.  

A vibration frequency is directly proportional to ρ/E  and the armature size. 
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In the next chapter, an electromagnetic FEA is performed to determine the actual 

electromagnetic force created by the applied electric current coupled with the resulting 

electromagnetic field.   

 70



CHAPTER 5: ELECTROMAGNETIC ANALYSIS 

 

One of the advantages of an EML over conventional launchers is that an EML 

can operate without chemical explosives.  This advantage is achieved by using 

electromagnetic force.  The physics of the electromagnetic force is explained by the 

Lorentz force, which is the force exerted on a charged particle in an electromagnetic field 

as given by Equation 5.1.   

 ( )F q E v B= + ×
ur ur r ur

 (5.1) 

where  is the force,  is the electric field, F
ur

E
ur

B
ur

 is the magnetic field, q is the electric 

charge of the particle, and  is the instantaneous velocity of the particle.   v
r

 When an electric current (charged particles with a drift velocity) flows in the 

conductor, the electric and the magnetic fields are created in the proximity of the 

conductor.  In the EML, an electric current flows from one end of the rail to the 

armature and back to the other end of a second rail.  This creates electric and magnetic 

fields, which when coupled with electric current create an electromagnetic force. 

 

5.1. Electromagnetic Analysis 

In this chapter, an investigation of the electromagnetic force is presented.  A 
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quasi-static 3-D finite element model is created for the electromagnetic FEA.  The 

complex coupled nature of the problem is de-coupled in this study.  A stationary model 

is employed to obtain the pseudo-electromagnetic force results.   

It should be noted that the full version of ANSYS is used here, so there was no 

limit on the number of nodes.  Approximately two million elements were used in this 

analysis.  In addition, a workstation with dual-core CPU (2.6 GHz) and 8GB memory 

was used in this FEA.  With this workstation, the analysis took approximately 10-12 

hours to perform.   

 

5.1.1. Geometry, Meshing, Boundary Condition, and Element 

Figure 33 shows a 3-D model used in this analysis.  A quasi-static 3-D model 

contains the rails, the armature, and the air (space) where the electric and the magnetic 

fields reside.  As shown in Figure 33, throughout the analysis, the positive X, Y, and Z 

coordinates are defined as to the right, to the top, and out of page, respectively.  It 

should be noted that the armature slides towards the left (the negative X direction) in the 

analysis (see Figure 33-b).  Therefore, it is expected that the resulting electromagnetic 

force on the armature should be a negative value. 
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a) 3-D model b) 3-D model without air (space) 

Figure 33: 3-D model used in the electromagnetic FEA  

 

The actual sliding of the armature is not simulated in this analysis.  The 

magnitude of the EMAG forces is calculated using the quasi-static model.  The rails are 

modeled as 0.5 m in length, since the full length of the rails is not necessary.  In addition, 

in order to prevent the solution from being affected by any end effects (possible 

interference due to the armature’s placement close to the end of the rails where the 

current is applied), the armature is placed about 0.25 m away from the inlet.  A perfect 

and continuous contact condition at the interface is assumed in this analysis.  No 

additional resistance is applied at the contact interface (since any additional contact 

resistance normally arises due to the variation in real contact to apparent contact).  In 

this analysis, an electric current flows from the top rail to the bottom rail.  In Figure 33-
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b, the surface where the electric current is applied, and the surface where zero voltage is 

present are indicated.  At the outer surfaces of the air (space), a flux parallel boundary 

condition is applied.  This boundary condition forces the magnetic field flux to be 

parallel along the six surfaces of the air, while the magnetic field flux can be freely 

formed anywhere within the air (space).   

Figure 34 shows the electric current that is used in this analysis.  This electric 

current is one set of actual lab-scale EML experimental data. 
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Figure 34: Plot of the applied electric current 
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Figure 35 shows the meshed plot of the 3-D model.  A finer mesh density is 

created around the contact region of the rails and the armature.  In addition, although it 

is not shown, a finer mesh density is developed to account for the air between the 

armature legs and the rail.  As shown in Figure 13 and Figure 14, the armature legs are 

inclined approximately 1° outward.  This inclination creates a thin space between the 

outer surface of the armature legs and the inner surface of the rails.  Because this space 

is so thin, it necessitates a fine mesh density in this region.  ANSYS provided a warning 

message suggesting that the aspect ratio of less than 1000 of the elements could introduce 

a minor error in the calculation of the electromagnetic force, the effect of which should 

be insignificant [22].  
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a) Meshed 3-D model with the air (space) b) Meshed 3-D rails and armature 
 

c) Meshed 3-D armature  

Figure 35: Mesh plot of the 3-D model used in the electromagnetic FEA  

  

Figure 36 shows the schematic diagram of Solid 97, the element that is used in 

this analysis.  Solid 97 models 3-D magnetic fields.  It also has the thermal capability.  

The element is defined by eight nodes, and has up to five degrees of freedom per node 

(the magnetic vector potential, the time-integrated electric potential, the electric potential, 

the electric current, and the electromotive force).  
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Figure 36: Schematic diagram of the Solid 97 element [22] 

 

5.1.2. Result and Discussion 

 In relation to Figure 35, Table 9 shows the definition of the direction used in this 

section.  In the X direction, negative means forward (left) and positive means backward 

(right).  In the Y direction, negative means downward and positive means upward.  In 

the Z direction, negative means into the page and positive means out of the page.  

 

Table 9: Definition of the coordinate/direction as shown in Figure 35
Direction Negative Positive 

X Forward Backward
Y Downward Upward
Z Into the Page Out of the Page  
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The electric current given in Figure 34 results in an EMAG force acting on the 

armature is summed up and given in Table 10.   As expected, a large EMAG force is 

obtained in the negative X direction.  For the Y and the Z direction, the EMAG force in 

the armature is well balanced and its magnitude is almost negligible compared to the X 

direction EMAG force.  This shows that the resulting EMAG force is going to push the 

armature in the negative X direction towards the outlet of the EML.  Theoretically, 

summation of the resulting EMAG force in the Y direction and the Z direction should be 

zero.  As shown in Figure 13 and Figure 14, there is a thin gap between the armature 

legs and the rails due to the small inclination at the armature legs.  The gap is so thin 

(although a very fine mesh is used to model the air between the armature legs and the 

rails) that the appropriate element aspect ratio can not be achieved.  The detail 

distribution of the EMAG force is shown in Figure 37 through Figure 39.  These results 

occur due to an applied electric current of 125828 ampere. 
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Table 10: Summation of the resulting EMAG force of the armature 

Time Current FMAG_X FMAG_Y FMAG_Z
(ms) (ampre) (N) (N) (N)

0 0 0 0 0
0.025 165988 -2834.11 0.21293 -8.97973
0.050 298098 -17531.6 -19.2978 -46.8886
0.075 364017 -31447.4 -38.2116 -64.6879
0.100 404855 -41293 -44.8651 -80.7321
0.150 423360 -49945 -56.9143 -88.316
0.200 444809 -54653 -65.5495 -98.1229
0.250 406464 -52363.4 -56.5056 -88.5162
0.300 371716 -44090.3 -46.6044 -76.1814
0.350 347224 -38552.9 -39.4061 -58.8042
0.400 316526 -33249.9 -32.4998 -47.8632
0.450 296319 -28819.6 -26.5838 -38.4387
0.500 271350 -24994.3 -23.6404 -30.4982
0.550 252812 -21548.3 -19.4301 -25.0466
0.600 232381 -18635.4 -17.3421 -19.6851
0.650 214269 -15916.7 -14.5126 -16.1998
0.700 200041 -13814.5 -12.93 -12.6928
0.750 186802 -12103.1 -11.2997 -10.5334
0.800 171794 -10440.7 -9.8762 -8.75393
0.900 149369 -8144.23 -8.00703 -6.13986
1.000 125828 -6006.57 -6.01278 -4.03004

ARMATURE

  

 

Figure 37 shows the iso-surface contour plots of the resulting EMAG force on 

the armature in the X direction.  The major portion of the resulting EMAG force resides 

in the legs of the armature.  As expected, the negative EMAG force is distributed along 

the inner edges of the armature legs.  However, the result shows that a thin layer of the 

positive EMAG force is also distributed in the armature.  This layer is located between 

the negative EMAG force layer and the body of the armature.  As mentioned earlier, 

because the magnitude of the negative EMAG force is much greater compared to the 

positive EMAG force, the armature will slide in the negative X direction towards the 

outlet of the EML. 
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a) Overall view 
 

 
b) Side view 

 
Figure 37: Iso-surface contour plots of the resulting X direction EMAG force of the 
armature 
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a) Overall view 
 

 
b) Side view 

 
Figure 38: Iso-surface contour plots of the resulting Y direction EMAG force of the 
armature 
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Similar to the X direction EMAG force, Figure 38 shows that each armature leg 

experiences both a positive and negative EMAG force in the Y direction.  For the upper 

leg, the positive EMAG force (upward) is greater than the negative EMAG force, and this 

will cause the upper armature leg to bend upward.  For the lower leg, the negative 

EMAG force (downward) is greater than the positive EMAG force, and this will cause 

the lower armature leg to bend downward.  This trend matches experimental 

observations.  The asymmetry in the results is believed to be caused by numerical 

round-off (compared to the large magnitude of the force in the X-axis direction) 

As shown in Figure 39, the Z direction EMAG force is distributed such that the 

sides of the armature is pulled outward, therefore a tensile stress is created in the 

armature.  The majority of the force is distributed along the sides and the inner core of 

the armature does not experience any EMAG force. 
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a) Overall view 
 

b) Side view 
 
Figure 39: Iso-surface contour plots of the resulting Z direction EMAG force of the 
armature 
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Table 11 provides the summation of the resulting EMAG forces for the top and 

the bottom rails.  As the theoretical calculation predicts, the top rail experiences positive 

Y direction forces and the bottom rail experiences negative Y direction forces.  The 

magnitudes of these forces in two rails are about the same.  In the X direction, both the 

top and the bottom rails experience essentially the same magnitude of force in the 

positive X direction.  The resulting X direction EMAG force is concentrated near the 

contact interface.  This means that as the armature slides along the rails, the rails 

experience an X direction EMAG force opposite in direction to the armature sliding 

direction.  In the Z direction, although the magnitude is relatively small compared to 

both the X and the Y directions, the top and the bottom rails experience a different 

magnitude of force in the opposite direction.  Since the magnitude is small, it is possibly 

the results of numerical noise.  Since the forces that the rails experience can deflect and 

deform the rails and cause loss of armature contact, these forces must be considered in 

designing an EML. 
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Table 11: Summation of the resulting EMAG force of the top and the bottom rails 

Time Current FMAG_X FMAG_Y FMAG_Z FMAG_X FMAG_Y FMAG_Z
(ms) (ampre) (N) (N) (N) (N) (N) (N)

0.025 165988 38.7836 16105.4 -56.5587 39.0832 -16289.3 20.7522
0.050 298098 459.077 116698 -287.849 453.747 -117526 -101.088
0.075 364017 1109.38 227801 -451.999 1122.2 -228694 -179.592
0.100 404855 1670.17 302533 -535.127 1699.76 -303319 -79.2745
0.150 423360 2363.95 367540 -530.672 2400.98 -368138 3.40728
0.200 444809 2862.63 388968 -469.12 2899.41 -389471 85.6183
0.250 406464 2988.71 363836 -367.497 3018.09 -364218 96.1931
0.300 371716 2710.43 296430 -242.807 2733.06 -296718 109.324
0.350 347224 2487.78 249857 -177.729 2503.62 -250093 74.6235
0.400 316526 2249.21 210540 -131.843 2260.76 -210743 67.72
0.450 296319 2015.29 177818 -97.3366 2025.53 -178001 59.5995
0.500 271350 1800.89 151450 -73.8583 1808.49 -151618 56.6931
0.550 252812 1590.38 128237 -54.2874 1597.27 -128393 54.1544
0.600 232381 1404.72 109298 -40.9552 1410.25 -109442 50.5763
0.650 214269 1222.99 92118.7 -29.4285 1227.68 -92252.4 48.1841
0.700 200041 1078.25 79000.5 -22.5101 1082.54 -79123.8 42.8615
0.750 186802 959.247 68744.1 -17.9392 962.968 -68858.5 39.6791
0.800 171794 839.124 58899.3 -13.3384 842.408 -59004 37.2835
0.900 149369 666.861 45606.5 -8.41872 669.523 -45692.6 31.1351
1.000 125828 501.888 33280.8 -4.57223 503.857 -33349.6 24.9495

TOP RAIL BOTTOM RAIL

 

 

The detailed distribution of the EMAG force in the rails can be seen in Figure 40 

for an applied electric current of 125828 ampere.  As with the case of the armature, each 

rail experiences both positive and negative EMAG forces.  For the top rail, the 

magnitude of the positive Y direction EMAG force is greater than the negative Y 

direction EMAG force.  For the bottom rail, the magnitude of the negative Y direction 

EMAG force is greater than the positive Y direction force.  Therefore, there is a 

repelling force in the Y direction between the top and the bottom rails.  Both rails 

experience an X direction EMAG force near the contact interface between the armature 

and the rails.  For the Z direction, the EMAG force is distributed similar to the case of 
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the armature.  The Z direction EMAG force pulls the sides of the rails and creates a 

tensile stress in the rails.  The inner section of the rail does not experience the Z 

direction EMAG force. 

 

 
a) In the X direction (Rest of Figure 40 are shown in the next page) 
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b) In the Y direction 

 
c) In the Z direction 

Figure 40: Iso-surface contour plots of the resulting EMAG force of the rails in the X, Y, 
and Z directions  
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Newton’s second law of motion states that the time rate of change of a body’s 

momentum is proportional to the resultant force acting on the body and is in the same 

direction.  The time rate of change of momentum can be interpreted as the product of 

the mass of the body and its acceleration.  Therefore, the X direction EMAG force 

results provided in Table 10 are divided by the mass of the armature, and the acceleration 

of the armature is determined as a function of time.  It should be noted that a maximum 

acceleration, ~5.5·106 m/s2, of the armature occurs at ~ 0.2 ms.  Acceleration is then 

integrated in time, resulting in the velocity of the armature.  Once the calculated velocity 

is integrated again in time, the displacement of the armature as a function of time is 

determined.  Figure 41 and Figure 42 show the calculated velocity and the calculated 

displacement of the armature, respectively. 
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Figure 41: Calculated armature velocity as a function of time 
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Figure 42: Calculated armature displacement as a function of time 
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  The velocity result shown in Figure 41 is consistent with the experimental 

velocity.  The electric current shown in Figure 34 was applied in the experiment.  The 

maximum velocity measured in that experiment was approximately 2500 m/s.  This is 

an unexpected result.  Due to following reasons, the maximum velocity that is 

calculated using the FEA results is expected to be higher than the experimental velocity.  

First, the analysis assumes that the armature legs and the rails are in continuous contact 

throughout.  In the actual EML, the contact between the armature legs and the rails is 

not expected to be continuous.  Therefore, the FEA should results a higher velocity 

compared to the experimental measurement.  Second, the complete eddy current effect 

is not considered in the analysis, since the model used in this analysis is a stationary 

model.  An eddy current is an electric phenomenon which is caused when a moving 

magnetic field intersects a conductor, or vice-versa.  The relative motion causes a 

circulating flow of electrons, or current, within the conductor.  These circulating eddies 

of current create electromagnets with magnetic fields that oppose the effect of the applied 

magnetic field.  Since the steel containment is not modeled in the analysis, the FEA 

result should be higher than the experimental measurement.  Lastly, the armature is 

placed in the middle of the rails throughout the analysis.  Therefore, this analysis does 

not consider any possible end effects.  Thus, it is recommended that future work be 
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directed toward obtaining a better understanding of these effects. 

Equation 5.1 indicates that regardless of the direction of current flow, the EMAG 

force must push the armature in the negative X direction (towards the exit of the EML).  

The physics behind Equation 5.1 is shown in Figure 43.  The left diagram represents the 

case in which the electric current flows from the top rail to the bottom rail.  The right 

diagram represents the reverse case.  As the direction of current changes, the direction 

of the magnetic field also changes.  Therefore, regardless of the direction of the electric 

current flow, the EMAG force pushes the armature in one direction.  

 

 

Figure 43: Schematic diagram of resulting EMAG force for different direction current 
flow 
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This fact is checked in the FEA.  A clockwise and counter clockwise directional 

electric current is applied.  Since this is a verification analysis, a simpler model is used 

to save on the computational time.  Figure 44 shows the resulting electric field.  The 

vectors shown in Figure 44 illustrate different directional electric current flow.  In 

Figure 44-a, the vectors show that the electric field starts from the top rail and ends at the 

bottom rail.  In Figure 44-b, the opposite electric current flow is shown.  The 

magnitude of the resulting electric field is the same for both cases.   

Figure 45 shows the resulting X direction EMAG force of the armature for these 

two cases.  The identical X directional force distributions is created in both cases.  

Although it is not shown, the Y and the Z direction EMAG force results are also identical 

for both cases. The summation of the EMAG force of the armature for two cases is shown 

in Table 12. 
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a) Current flows from the rail top to the bottom rail 
 

b) Current flows from the bottom rail to the top rail 
 
Figure 44: Vector plots of the electric field for top-to-bottom and bottom-to-top 
directional electric current 
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a) Current flows from the rail top to the bottom rail 
 

b) Current flows from the bottom rail to the top rail 
 
Figure 45: Comparison of the resulting EMAG force of the armature in the X direction 
for top-to-bottom and bottom-to-top direction electric current flow 
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Table 12: Summation of the EMAG force for top-to-bottom and bottom-to-top directional 
electric current flow 

Current Direction FMAG_X FMAG_Y FMAG_Z
(N) (N) (N)

Top to Bottom -1193.02 0.4463 9.45017
Bottom to Top -1193.02 0.4463 9.45017  

 

This FEA result proves that the resulting EMAG force is always in one direction 

regardless of the direction of the electric current flow. 

The following conclusions summarize the major findings of the electromagnetic 

analysis. 

 

1. An electromagnetic force results from an applied electric current as determined 

from the electromagnetic FEA. 

2. Using Newton’s second law, the acceleration of the armature is determined by 

dividing the force by its mass.  The maximum acceleration, 5465300 m/s2, 

occurs at 0.2 ms.   Velocity of the armature is calculated by integrating the 

acceleration with respect to time.  Displacement of the armature is calculated by 

integrating the velocity with respect to time.   

3. A significant repulsive force between two rails is observed.  The magnitude of 

the force is significant, the deflection and deformation of the rails is possible.   
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4. Regardless of the direction of the applied current, the resulting EMAG force 

accelerates the armature in one direction. 

 

In the next chapter, the thermal analysis of the lab-scale EML is performed.  The 

effect of friction heating and Joule heating will be separately studied.  The armature 

displacement calculated in this chapter and the same applied electric current used in this 

chapter is going to be used as input in the investigation of friction heating and Joule 

heating, respectively. 
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CHAPTER 6: THERMAL ANALYSIS 

  

 The EMAG force is maximized if the metal-to-metal contact at the interfaces is 

preserved while the armature slides along the rail.  However, it is known that keeping 

the metal-to-metal contact throughout the operation is difficult because of the high 

armature velocity and the high electric current density.   

In this chapter, the effects of frictional and Joule heating are examined in two 

separate thermal analyses.  The effects of friction heating are investigated in the first 

section of this chapter, and the second section of the chapter discusses the effects of Joule 

heating.   

 

6.1. Friction Heating 

 As shown in previous chapter, the armature slides along the rails with the 

extreme velocity.  This high sliding velocity generates a significant heat at the contact 

interface.  The generated heat cannot conduct into the body because there is not a 

sufficient time.  In typical setting, the armature exits the lab-scale EML within 1 to 1.5 

ms once it is fired.  In this analysis, the interface temperature rise due to the frictional 

heating is determined.  Therefore, this analysis can predict when and where the melting 
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occurs.  Three different values of the coefficient of friction and the heat partition4 are 

used in this analysis to investigate how these parameters affect the rise in the interface 

temperature. 

 

6.1.1. Geometry, Meshing, Boundary Condition, and Element 

Figure 46 shows the geometry of the FEA model used in this analysis.  This 

model is exactly same as the model used in the structural FEA of initial contact.  The 

length of the rail and other layers is approximately 0.35 meters.  Since melting of the 

material occurs at the early stage of sliding, modeling full 1.5 m long rail and other layers 

is not necessary.   

In order to create the initial contact, the exact same boundary conditions applied 

at the structural FEA of initial contact is used in this analysis.  Once the initial contact is 

established, all the X directional constraints of the armature are removed.  Then, the 

armature is set to move at an assigned velocity which is determined in the previous 

chapter.  The temperature of the FEA model is set to the room temperature initially.   

 

                                                      
4 The weight factor for the distribution of heat conducted between two bodies which are 
in contact 
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Figure 46: Close up geometry of the friction heating FEA model 

 

Figure 47 shows the meshed FEA model.  In order to accurately capture the 

effect of an extreme sliding velocity, a fine mesh density is applied near the contact 

interface.  The contact elements are applied at the interface between the armature leg 

and the rail.   
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a) Close up view b) Overall view 
Figure 47: Mesh plot of the friction heating FEA model 

 

Figure 48 shows the schematic diagram of Plane 13, an element that has a 2-D 

magnetic, thermal, electrical, piezo-electric, and structural field capability with limited 

coupling between the fields.  The element is defined by four nodes with up to four 

degrees of freedom per node.  The total number of elements used in the friction heating 

analysis is 6873. 

 

 
Figure 48: Schematic diagram of the Plane 13 element [22] 
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Three different values of the coefficient of friction (COF), 0.1, 0.2, and 0.3 are 

used in the analysis.  Also, three different values of heat partition (HP), 10%-90%, 50%-

50%, and 90%-10% are used in the analysis.  The first value of the HP represents the 

percentage of the generated heat that goes into the rail, and the second value represents 

the percentage of the generated heat that goes into the armature.  The three values of the 

COF selected here are expected in a typical setting.  However, since the armature slides 

with an extreme velocity, the study by Jaeger [26] is used in estimating the values of HP.  

Jaeger’s analytical solution uses the assumption that the average temperature of two 

surfaces is equal.  The HP values calculated by using Jaeger’s model show that about 

97% of the generated heat goes into the rails and only about 3 % goes into the armature 

for the case of the average velocity of 1000 m/s.  When the velocity of the armature is 

relatively low (below 100 m/s), about 55% of the generated heat goes into the rail and 

45% goes into the armature.  Therefore, the HP of 90%-10% seems to represent the best 

combined low and high speed effects. 

 

6.1.2. Result and Discussion 

 Figures 49 and 50 show results of the interface temperature at 57.5 μs and 62.5 

μs, respectively.  The corresponding maximum temperatures at these times are about 
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580°C and 740°C, respectively, while the melting temperature for the aluminum armature 

is approximately 600 ºC.  This occurs at the very early stage of the sliding.  Since the 

velocity of the armature is low, the HP of 55%-45% is used in the analysis for these 

particular cases.  The COF of 0.2 and the thermal contact conductance (TCC) of 106 J/s-

K-m2 is used in the FEA analysis.  As expected, only the confined section of the 

armature leg near the contact interface is heated up.   Unlike the armature, the rail does 

not experience any significant friction heating effects.  For the rail, the temperature rise 

is insignificant.  Although different parameters such as the COF and the HP result in 

different magnitudes of temperature rise at the contact interface, the trend shown in 

Figure 49 is observed in every case. 
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Figure 49: Temperature results at 57.5 microseconds due to friction heating for a 
coefficient of friction of 0.2, the thermal contact conductance of 106 J/s-K-m2, and 50%-
50% heat partition between the armature leg and the rail 
 

 

Figure 50: Temperature results at 62.5 microseconds due to friction heating for a 
coefficient of friction of 0.2, the thermal contact conductance of 106 J/s-K-m2, and 50%-
50% heat partition between the armature leg and the rail 
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The results shown in Figures 49 and 50 need further investigation.  Intuitively, 

it seems unlikely that the solid aluminum armature legs would start to melt at 62.5 μs 

after the lab-scale EML is fired.  In order to verify the FEA results, the energy balance 

between the generated heat and the stored heat is performed as given by Equation 6.1. 

 ( )p fusionm c T h N v tζ μΔ + = ⋅ ⋅ ⋅ ⋅  (6.1) 

Here m is the mass, cp is the specific heat, hfusion is the heat of fusion, ΔT is the 

temperature change, ς is the heat partition, μ is the coefficient of friction, N is the normal 

force, v is the instantaneous velocity, and t is the time.  Left hand side of Equation 6.1 

represents the stored heat, and the right hand side of Equation 6.1 represents the 

generated heat.  If the problem involves melting of a material, a heat of fusion (the 

amount of energy which must be absorbed for 1 mole of a substance to change states 

from a solid to liquid or vice versa) must be included in the equation.  In Figure 49, 

melting of the armature material has not occurred.  Therefore, in this case, a heat of 

fusion term is not included in Equation 6.1.  In Figure 50, melting of a material has 

occurred.  Therefore, in this case, a heat of fusion term is included in Equation 6.1.  

Close examination of Figure 49 shows that approximately 180 μm by 180 μm is heated 

up to an average temperature of 250°C.  Close examination of Figure 50 shows that 

approximately 180 μm by 180 μm is heated up to an average temperature of 350°C and 
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approximately 15 μm by 15 μm is melted.  Theses heated areas are multiplied by the 

thickness of the armature, 9.22 mm, to calculate the volume that stores the generated heat.  

This information and the material properties of the aluminum are substituted into 

Equation 6.1 to solve for melting time.  It is determined that it takes approximately 55 

μs and 67 μs for these cases shown in Figures 49 and 50, respectively.  This result is 

comparable with the FEA results, 57.5 μs and 62.5 μs.  This proves that, in 62.5 μs, the 

small volume of the solid aluminum armature can melt due to friction heating as shown 

in Figure 50. 

Figure 51 shows the results of the maximum interface temperature of friction 

heating for three different values of the COF where HP is 50%-50%.  As shown in 

Figures 49 and 50, the maximum temperature occurs at the tip of the armature where it is 

in contact with the rail.  The aluminum, a material of the armature, starts to melt around 

600 °C.  For the COFs of 0.1, 0.2, and 0.3, the tip of the armature leg starts to melt 

around 0.075 ms, 0.055 ms, and 0.045 ms after the lab-scale EML is fired, respectively.   
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Figure 51: The maximum temperature results of friction heating for three different values 
of the coefficient of friction (HP 50%-50%) 

 

 Figure 52 shows the maximum temperature results of the friction heating for three 

different values of the HP.  The COF is kept at the constant value of 0.2.  As discussed 

earlier, the heat partition case that 90% of the heat goes into the rail and the other 10% 

goes into the armature appears to be most realistic.  For this HP case, it takes about 0.11 

ms for the armature leg to start melting for the lab-scale EML.  Based on Figure 42, the 

armature has traveled about 2% of the total rail length when melting occurs. 
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Figure 52: The maximum temperature results of friction heating for three different values 
of heat partition 

 

 Results of the friction heating show that immediate melting at the tip of the 

armature is inevitable for the current lab-scale EML.  Although the melting of the tip of 

the armature can be delayed by varying the values of the COF and the HP, the delay is 

small; no meaningful advantage can be achieved. 

 It should be noted that, in this analysis, the resulting EMAG force is not included, 

since it is a decoupled analysis.  However, if the resulting EMAG force is added to this 

analysis, the melting will be even expedited because the contact interface will experience 

a higher contact pressure.   
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 In the next section, the effect of the Joule heating due to applied current is 

investigated. 

 

6.2. Joule Heating 

 The large magnitude of the applied electric current shown in Figure 34 flows 

through the small contact area in the lab-scale EML.  This creates an extremely high 

current density near the contact interface and increases the contact interface temperature 

significantly.  This analysis determines the time and location where the melting starts 

due to Joule heating.   

 

6.2.1. Geometry, Meshing, Boundary Condition, and Element 

 Two different FEA models are used in this analysis.  The first model represents 

the worst case scenario, the minimum contact area configuration.  This is the 

configuration before any melting occurs.  The second model represents the best case 

scenario, the maximum contact area configuration.  In this chapter, it is assumed that 

there is not plastic deformation.  Therefore, while the tip of the armature melts, the 

stress that the armature experienced due to the initial contact continually pushes the 

armature legs into its original geometry until no stress is left in the armature.  This 
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causes an increase in the contact area.  This is the configuration where the armature 

experiences no stress.   

Both FEA models are 2-D quasi-static models.  Similar to the electromagnetic 

analysis, the armature stays still while different magnitudes of electric current are applied.  

Figures 53 and 54 show the meshed geometry of the worst and the best case 

scenarios, respectively.  Since the high temperature is expected near the interface, a very 

fine mesh density is applied around the contact interface  

 

 
Figure 53: Mesh plot of the worst case scenario of the Joule heating FEA model  
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Figure 54: Mesh plot of the best case scenario of the Joule heating FEA model 

 

Contact element pairs are applied at the contact interface for both cases.  

Initially, the room temperature, 15 °C, is applied to the both FEA models.  At the bottom 

surface of the armature, zero volts is applied as the boundary condition.  At the nodes 

located at the right end of the rail, various electric current are applied.  The total number 

of elements used in the worst and the best case scenario are 15500 and 12724, 

respectively. 

Figure 55 shows a schematic diagram of Plane 67, an element that has thermal 
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and electrical conduction capability.  Joule heating generated by the current flow is also 

included in the heat balance.  The element has four nodes with two degrees of freedom, 

temperature and voltage, at each node.   

 

 
Figure 55: Schematic diagram of the Plane 67 element [22] 

 

6.2.2. Result and Discussion 

 As expected, a small contact area with the large magnitude of the applied electric 

current creates a significant heat generation at the contact interface.  At 0.4 

microseconds, an electric current of ~ 25 k-ampere is supplied to the lab-scale EML.  

This is an order of magnitude smaller compared to actual maximum current of 450 k-

ampere as shown in Figure 34.  

Figure 56 shows the temperature results of an applied electric current of ~ 25 k-

amperes.  The electric contact conductance (ECC), 107 Siemens per meter (S-m-1), is 
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used in the analysis.  For the best case scenario, the temperature at the contact interface 

is not reached the melting temperature yet.  It is due to the larger contact area.  For the 

worst case scenario, the contact interface temperature rose beyond the melting 

temperature of the both aluminum and copper.  This result suggests that instantly the 

aluminum armature and the copper rail melt due to Joule heating.  As shown in Figure 

56, although the temperature of the contact interface is reached the melting point, the heat 

could not be conducted away from the interface.  The melting of the contact interface 

for the best case scenario occurs at ~ 0.6 μs. 
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a) Best case scenario 

 
b) Worst case scenario 

Figure 56: Results of the temperature plot for an electric contact conductance of 107 
Siemens per meter (S-m-1) 
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 This quasi-static FEA results of Joule heating suggest that immediate melting of 

the material at the contact interface will occur in this particular lab-scale EML.  Even at 

0.4 μs, the melting of both the aluminum armature and the copper rail is possible due to 

Joule heating.  Melting of the copper rail may not have taken place had a transient 

analysis been performed.  It should be noted that, in this analysis, the resulting EMAG 

force is not included, since it is a decoupled analysis.  However, if the resulting EMAG 

force is added, it is expected to cause increase in the contact area.  This can reduce the 

heat generation due to Joule heating significantly.   

 The results of frictional and Joule heating show that immediate melting of the 

material at the contact interface is inevitable.  Initially, Joule heating dominates 

frictional heating in the current lab-scale EML.  Some studies suggest that there must be 

melting at the contact interface for the armature to promote sliding.  Therefore, initial 

melting at the contact interface may not be an adverse effect.  However, once the 

armature slides, the continuing melting of the material at the contact interface must be 

ontrolled.  In order to control the melting of the material at the contact interface, 1) the 

present armature design should be modified, 2) different armature/rail materials that have 

higher melting temperature should be selected, and/or 3) the EML structure should be 

modified to enable thermal management (for example, cooling passages) [13]. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

 

 In this chapter, the conclusions of the work performed in this thesis and the 

recommendations that identify potential future work are presented.   

 

7.1. Conclusions 

The purpose of this work is to improve the understanding of the armature-to-rail 

contact so that the best performance of the lab-scale EML can be achieved.  This has 

been facilitated by developing a computer design tool.  The computer design tool, FEA 

of physical phenomena of the lab-scale EML, consists of four (structural, modal, 

electromagnetic, and thermal) components.  Conclusions drawn from use of these 

computer codes follow. 

 

7.1.1. Structural Analysis 

The structural analysis is developed to determine contact area, contact pressure, 

von Mises stress, and deformation of an EML due to initial armature-to-rail contact.  In 

order to assure accuracy, a compliance layer, an artificial layer that takes account any 

stiffness present in the EML, is incorporated in the FEA model.  The program accepts 
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interference as a load (input) and provides the aforementioned quantities as output.   

The structural analysis indicates that the maximum contact pressure and von 

Mises stress of the current lab-scale EML is close to but lower than the yield strength of 

the softer material (aluminum armature) at initial contact.  This result suggests that the 

effect of plasticity does not need to be considered.  In addition, it determined the contact 

area of the current lab-scale EML to be 3.32 mm2. 

 

7.1.2. Modal Analysis 

 The purpose of modal analysis is to study the vibration characteristics (i.e., 

vibration frequencies/periods and vibration mode shapes) of the armature.  This program 

can handle both the un-deformed and deformed armatures.  For modal analysis of the 

deformed armature, the force is applied to the armature through a separate structural 

analysis to create a deformed geometry.  This program does not require any input to 

provide the vibration characteristics.   

Modal analysis determined that vibration of the armature legs is expected during 

sliding since the vibration period of both un-deformed and deformed armatures of the 

present lab-scale EML is much shorter that the duration of the sliding.  It also indicated 

that the vibration frequency is proportional to ρE  and inversely proportional to the 
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size of the armature. 

 

7.1.3. Electromagnetic Analysis 

 The electromagnetic analysis determines the electromagnetic force created in the 

EML due to applied current.  It is important that the air (i.e., surrounding space) be 

included in the FEA model, since the electric and the magnetic fields reside in the air.  It 

takes an electric current as a load (input) and provides electromagnetic force as output.   

 The electromagnetic analysis shows that there is a repelling force between two 

rails in the lab-scale EML.  It also shows that a significant X direction force is present 

on the rails near the contact interface.  These results should not be overlooked since rails 

can be deflected and/or deformed.  The acceleration, velocity, and the displacement of 

the armature can be calculated as a function of time.  For the lab-scale EML with a 

given current density, the maximum velocity of the armature is determined to be 

approximately 2400 m/s.  This value matches closely with experimental measurement.  

In addition, the fact that an EML accelerates an armature in one direction regardless of 

the direction of the applied current is shown with this program.   

 

7.1.4. Thermal Analysis 
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 The purpose of the thermal analysis is to determine the temperature at the contact 

interface.  Friction heating and Joule heating are separately considered in two programs.  

For a FEA of friction heating, the displacement of the armature is used as a load (input) 

and the temperature at the contact interface is provided as output.  For a FEA of Joule 

heating, the applied current is entered as a load (input) and the temperature at the contact 

interface is provided as output.   

 For the lab-scale EML, the thermal FEA determined that friction heating will 

cause melting of the armature legs about 0.15 ms (i.e., 2% away from initial position) 

after being fired.  For this analysis, the coefficient of friction was set at 0.2 and the heat 

partition was set at 90 % into rails and 10 % into armature.  Thermal FEA of Joule 

heating determined that at 0.4 microseconds, melting of the armature legs is expected. 

 

7.1.5. Discussion 

This computer program has many powerful capabilities that can assist the 

advance of the lab-scale EML research.  It can analyze, optimize, and aids the 

experimental work.  

First, the technique employed in this computer program can be used in analyzing 

the four decoupled physical phenomena of any electromagnetic launcher.  By updating 
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the geometry, the loading and boundary conditions, and the material properties, the 

structural, the vibrational, the electromagnetic, and the thermal characteristics of any 

electromagnetic launcher can be determined. 

Second, this computer program can be used in optimizing the design of the EML 

and the material selection.  For example, many problems such as the plastic deformation, 

the immediate melting, and the vibration of the armature legs of the lab-scale EML have 

been discovered in this work.  These problems can be improved or even eliminated by 

optimizing armature geometry.  Figure 57 shows the possible optimization criteria of the 

armature geometry.  By varying the parameters shown in Figure 57, an optimum design 

that provides a maximum contact area, a sufficient contact pressure, and optimum 

vibration characteristics can be determined.  Likewise, changing the materials for the 

armature and the rail, the aforementioned problems can be improved.  
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Figure 57: Optimization of the armature geometry 

 

 Lastly, this computer program can aid the experimental work.  It can provide 

information so that the instrument and/or equipment with the adequate capacity can be 

used in the experimental work.  For example, the maximum acceleration of the lab-scale 

EML calculated using the FEA results is approximately 5.5∙106 m/s2.  Therefore, if a 

sensor needs to be installed in the armature, the sensor that can withstand this 

acceleration must to be used.  Therefore, this computer program prevents the wasting of 

unnecessary and expensive equipments and time spent in experimental work. 
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7.2. Recommendations 

 Although the decoupled analyses presented in this work provide meaningful 

results and improve our understanding at the armature-to-rail interface of the lab-scale 

EML, obtaining coupled FEA results are necessary to have comprehensive understanding 

at the contact interface.  Obtaining the coupled solution with one simulation is optimal; 

but if proven to be too difficult, a means to sequentially couple the individual 

components should be considered.    

 Two important parameters (coefficient of friction and heat partition) greatly 

influence the thermal condition at the contact interface.  A means to measure these two 

parameters should be developed.  Without accurate input of these parameters, any FEA 

and/or analytical solution will be only a best estimate. 

 The impact of the EMAG force and the eddy current effects on the steel 

containment and other layers (G10 and Mylar) must be studied.  Deformation of the 

steel containment was evident after many shots were fired.  If the reusability of the EML 

is an important consideration, the investigation of the impact of the EMAG force and the 

eddy current effect on the steel containment and other layers should be further 

investigated. 

 In this study, molten material had not been removed from the model.  This, 
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however, needs to be addressed in future studies while using the “birth and death” 

capability built within the ANSYS program. 
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APPENDIX A 

MATERIAL PROPERTIES 

 

A.1 ALUMINUM ARMATURE 

 
YOUNG'S MODULUS 680 MPa

POISSON'S RATIO 0.33
COEFFICIENT OF FRICTION 0.2

DENSITY 2700 kg/m^3
SPECIFIC HEAT 896 J/kg-K

THERMAL CONDUCTIVITY 180 W/m-K
RESISTIVITY 0.04 μΩ-m

MELTING TEMPERATURE ~ 600°C  

 

A.2 COPPER RAILS 

 
YOUNG'S MODULUS 125 GPa

POISSON'S RATIO 0.33
COEFFICIENT OF FRICTION 0.2

DENSITY 8900 kg/m^3
SPECIFIC HEAT 385 J/kg-K

THERMAL CONDUCTIVITY 365 W/m-K
RESISTIVITY 0.05 μΩ-m

MELTING TEMPERATURE ~ 1000°C  

 

A.3 G10 INSULATOR 

 
YOUNG'S MODULUS 17 GPa

POISSON'S RATIO 0.1
COEFFICIENT OF FRICTION 0.2

DENSITY 1500 kg/m^3
SPECIFIC HEAT N/A

THERMAL CONDUCTIVITY N/A
RESISTIVITY 0.1 Ω-m  
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A.4 MYLAR 

 
YOUNG'S MODULUS 4 GPa

POISSON'S RATIO 0.1
COEFFICIENT OF FRICTION 0.2

DENSITY 1500 kg/m^3
SPECIFIC HEAT N/A

THERMAL CONDUCTIVITY N/A
RESISTIVITY 0.1 Ω-m  

 

A.5 COMPLIANCE LAYER 

 
YOUNG'S MODULUS 20 MPa

POISSON'S RATIO 0.3
COEFFICIENT OF FRICTION N/A

DENSITY N/A
SPECIFIC HEAT N/A

THERMAL CONDUCTIVITY N/A
RESISTIVITY N/A  

 

A.6 STEEL CONTAINMENT 

 
YOUNG'S MODULUS 185 GPa

POISSON'S RATIO 0.25
COEFFICIENT OF FRICTION 0.2

DENSITY 8030 kg/m^3
SPECIFIC HEAT 500 J/kg-K

THERMAL CONDUCTIVITY 16.2 W/m-K
RESISTIVITY 0.72 μΩ-m  
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