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ABSTRACT

Mechanisms responsible for fume deposition on kraft recovery furnaces were

studied. The main reason for determining the mechanisms is to understand the

controlling parameters, thereby obtaining the ability to affect the deposition rate by

changing these parameters. The following mechanisms were reviewed and

examined as possible fume deposition mechanisms: molecular diffusion, Brownian

motion, turbulent diffusion, particle impaction, thermophoresis, and vapor

diffusion/crystallization.

Thermophoresis was found to be the main deposition mechanism for fume

particles under the following experimental conditions:

1. Fume particle sizes from 0.1 gm to 1 am in diameter.

2. Flue gas temperatures from 2500C to 5800C.

3. Reynolds numbers less than 3 (based on cooled tube diameter).

The following equation was derived:

Dep. rate (g/min/cm2) = 0.036 aT dp C T

where:

(aT = thermal diffusion factor, dimensionless

dp = particle diameter, gm

C = fume concentration in flue gas, g/L

Te = bulk flue gas temperature, absolute

Tw = tube surface temperature, absolute
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This equation applies to Na2CO3, Na2 SO4, NaC1, and simultaneous Na2SO 4/NaCl

fume deposition and is similar in form to thermophoretic equations derived by

other authors.

These results are directly applicable to fume deposition in the generating bank

and the economizer section in recovery boilers, where flue gas temperatures range

from 2000C to 7000C. The Reynolds number in a boiler bank is between 3000 and

5000; the heat transfer coefficient is a function of Reynolds number and the

deposition rate is proportional to the heat transfer coefficient. If the difference in

flow rate between the experimental system and the recovery boiler is taken into

account, the experimental results show close agreement with actual recovery boiler

data.

The presence of water vapor in the incoming gas streams to the reactor

affected the fume composition; fume contained less Na2CO3 and more Na2SO4

when water vapor was present during fume formation.
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INTRODUCTION

One of the products of black liquor combustion is fume. Fume consists of

very small particles, approximately 0.25 glm to 1 gm in diameter; it is mainly

composed of sodium sulfate, sodium carbonate, sodium chloride, and potassium

salts.

Chemical fume formation is of interest because fume is partly responsible for

the fireside deposits formed on the cooled surfaces in the superheater section,

generating banks, and economizer region of the recovery boiler. These deposits

provide an additional resistance to heat transfer, which then affects the heat transfer

rate between the flue gas outside the tubes and the steam inside the tubes. Fume

plugs gas passages and therefore influences the gas flow rate and flow resistance.

Fume and other deposits on recovery boiler surfaces may accelerate corrosion.

Fume in the upper sections of a recovery boiler is also enriched in chloride and

potassium which lower the sticky temperature of the fume and increase the

hardness of the deposit. Na 2CO3 fume, however, does have the advantage of

reacting with sulfur gases and thereby forming sulfur-containing particles that are

collected by the precipitator.

Because fume deposits have various detrimental effects on the recovery

boiler and its operation, the paper industry would benefit from knowledge

concerning the mechanisms responsible for deposition and these mechanisms'

controlling parameters. Recovery boiler operators would then have the ability to

change the deposition rate by varying these parameters. Conversely, it may be

determined that changing the controlling parameters for fume deposition would

not be beneficial to recovery boiler operation as a whole.
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RECOVERY BOILER CONDITIONS

In order to determine the possible mechanisms for fume deposition in a

recovery boiler, boiler conditions must be known. Average values of these

conditions were obtained from an actual recovery boiler1 . According to this data,

the tubes in the boiler bank are 2 1/2" in diameter (on the average); they vary

between 2" and 3" in diameter. There is a 4 3/4" spacing between the tubes.

Gas temperatures in the mid-section of the boiler bank range from an

incoming temperature of 7000C to an outgoing temperature of 4300C. Average

temperatures in the economizer section are between 2000C and 400°C. Gas velocities

in the boiler bank are approximately 20 ft/sec, which corresponds to a Reynolds

number of 4800 at a temperature of 540°C. The Reynolds number in this region of

the boiler varies from 3000 to 5000. For fluids flowing normal to a bank of

cylindrical tubes, Re<100 is considered laminar flow. Fully developed turbulent

flow does not exist until Re>10,000; the transition region therefore covers a wide

range of Reynolds numbers - 100<Re<10,000. Flue gas flowing in the boiler bank is

in this transition region.

RECOVERY BOILER FUME

Fume has a high specific surface area due to its submicron size. This makes it

very reactive in the flue gas; most of its alkali compounds are converted to sulfates.

The chemical composition of fume in the generating banks, economizer, and

precipitator is influenced by sulfidity, the chemical composition of the black liquor,

and the bed temperature.

Higher bed temperatures result in more Na2CO3 fume formation and less

sulfur in the flue gas. This in turn decreases the Na2SO4 content of the fume2. High

bed temperatures also cause more chloride and potassium salts to vaporize from the
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smelt, which enriches the fume with these compounds. Lower sulfidity liquor

produces less sulfur gases3 ; this results in a lower Na 2SO 4 content in the fume.

Reeve et. al.4, 5, Tran et. al.6,7,8, 9, and Isaak10 have obtained data from deposits

in a recovery boiler. They have defined two mechanisms by which deposits can

form:

1. "Carryover" - smelt and/or partially burned black liquor particles physically

entrained in the flue gas.

2. "Condensation" - fume forming either by condensation directly on cooled

surfaces, or indirectly in the flue gas stream (these particles are then transferred to

the cool surfaces).

These authors inserted a probe into the furnace and found that in the lower

superheater, carryover is dominant. Deposits on the upstream side were black, hard,

and thick and consisted mostly of black liquor particles that were entrained in the

flue gas. Deposits on the downstream side were white and thinner, which the

authors assumed to be fume deposits.

Deposition at higher elevations in the superheaters was slightly different. A

layer of white powder, which became thicker with time, was formed on both the

upstream and downstream side of the probe. The deposit thickness was greater on

the upstream side than on the downstream side.

No deposition data was obtained by probe insertion into the upper regions of

the recovery furnace, such as in the generating bank, economizer region, and

precipitator. However, the chemical composition of the deposits in these sections

has been determined. Tran 3 found that the chemical composition of the deposits in

the boiler bank, economizer, and precipitator are very similar to each other, but

different from the composition of superheater deposits. Superheater deposits
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consisted of approximately 2% carbon, 45% Na2SO 4, 47% Na2C0 3, and 6% chloride

and potassium salts. Deposits in the upper boiler sections consisted of 80% Na2SO 4,

5% Na2CO3, and 15% chloride and potassium salts. This shows that deposits in the

generating bank, economizer, and precipitator are enriched in chloride and

potassium and depleted in Na 2CO3 , which is indicative of fume particles and not

carryover particles. Fume, therefore, is the major constituent of deposits in these

areas.

Bosch et. al. 11 have measured particle size distributions in the electrostatic

precipitator. They found particle sizes ranging from less than 0.6 jIm to greater than

20 am. Most of the particles were smaller than 1.4 jlm, with 50% of the collected

weight being composed of particles under 1 jm. Particles at the precipitator outlet

were smaller than at the precipitator inlet.

The authors contributed the wide particle size range to two independent

aerosols being collected: carryover and fume. Carryover particles were assumed to

be the larger particles, but the authors did not state what the carryover particle size

range was. No data were obtained for particle size distributions in the generating

bank and economizer. The fume particle sizes in these regions may be different

than in the precipitator.

Na2CO3 , Na2SO 4, NaCl fume, and combinations thereof can all be generated

under ideal conditions on a laboratory scale. The fume composition in the

laboratory can be controlled and varied; however, the fume particle size is, with

current knowledge, impossible to vary. Laboratory fume particles, therefore, may

not be the same size as that found in upper sections of the recovery boiler. The

laboratory fume particle size, for a given fume composition, is constant;

experiments, therefore, at least yield consistent results in terms of particle size.
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SODIUM CARBONATE FUME

Na2CO3 fume generation occurs when sodium sulfide in a Na2S/Na 2CO3

melt is oxidized by air2 ,12' 13; sodium carbonate fume is then produced. Recent work

at The Institute of Paper Chemistry 2' 12 has shown that Na2CO 3 fume is formed by a

liquid phase reaction followed by a gas phase reaction:

4 Na 2 CO 3 + Na2S <--> Na2SO 4 + 4 CO 2 + 8 Na (1)

2 02 + 4 C02 + 8 Na <--> 4 Na2CO3 (2)

All equations in this thesis are stoichiometric equations which do not necessarily

describe the reaction mechanisms.

SODIUM SULFATE FUME

In a recovery boiler, typical fume deposits consist mostly of Na2 SO 4, some

chloride and potassium salts, and only a small amount of sodium carbonate3. Tran 3

has shown that the Na2CO 3 /Na 2SO 4 ratio in deposits decreased as the gases traveled

up the furnace. Tran also states that Na2 CO 3 can react with SO2 and 02 to form

sodium sulfate by the following reaction 2:

2 Na2 CO3 + 2 SO 2 + 02 -> 2 Na2SO4 + 2C0 2 (3)

These results indicate that, in a recovery boiler, sulfate fume may be formed from

the reaction of sodium carbonate, sulfur dioxide, and oxygen.

SODIUM CHLORIDE FUME

NaCl fume is formed by the vaporization of NaCl from the smelt bed. If

vaporization of sodium chloride is an equilibrium controlled process, the

vaporization rate may be calculated using Raoult's law and assuming that the gas
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stream is saturated in NaC1. Raoult's law states (see Appendix I for symbol

definitions) 14 :

PNaCIT) = P*NaCI(TXNaCI (4)

The vaporization rate, hence the NaCI fume generation rate, can then be calculated

by the following equation:

vaporization rate = molar gas flow rate * pNaCI(T) (5)

At 9500C, the vapor pressure of pure NaCI is approximately 4.5 mm Hg.

PARTICLE DEPOSITION MECHANISMS

There are six principal mechanisms by which particles can be deposited from

a high temperature gas stream to a cooler surface 15,1 6 . These mechanisms are

functions of the gas flow and the particle size. They are:

1. Molecular diffusion.

2. Brownian motion.

3. Turbulent diffusion.

4. Particle impaction.

5. Thermophoresis.

6. Vapor diffusion/crystallization.

Flow conditions near the deposition surface are different from those in the

bulk of the moving gas; boundary layers may be laminar while bulk flow is

turbulent. These flow conditions affect the motion of particles approaching the

surface and therefore affect the rate of deposition as well as change the mechanism

of deposition.
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On cylindrical surfaces immersed at right angles to the flowing gas, the

thickness of the boundary layer is less on the upstream side and more on the

downstream side 17, as shown in Fig. 1. The thickness of the boundary layer, which

is dependent on such variables as the gas velocity and the cylinder diameter, is an

important parameter in the rate of deposition. The mechanism of deposition may

also be determined by the pattern of the boundary layer, because different

mechanisms are dominant for different boundary layer conditions. The different

deposition mechanisms are discussed below.

Molecular Diffusion

For solid particles in the size range up to 0.1 ltm, particles behave similarly to

gas molecules. The gas laws based on kinetic theory control the motion of the

particles in much the same way as with gas molecules. Deposition by molecular

diffusion decreases with increasing particle size. Gas velocity has no appreciable

effect on deposition by molecular diffusion because of the particles being on the

molecular size level. As particle size increases, Brownian motion becomes the

controlling mechanism for deposition.

Brownian Motion

Particles in the size range of 1 tlm diameter or larger behave as discrete pieces

of matter. Particles in the range of 0.1 l[m to about 1 A.m undergo Brownian motion,

where collisions with gas molecules establish a "random-walk" path. The flow

pattern of these particles depends mainly on the path of the bulk gas stream. Particle

displacement by Brownian motion can be described by the equationl:

2kmT |
x2 = )t (6)II c j (6)
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Figure 1. Boundary layer thickness for cylindrical surfaces.

Deposition by Brownian motion increases as the particle size increases, but

turbulent diffusion or impaction becomes the dominant mechanism for particles

above 1 alm in diameter. The exact point that turbulent diffusion becomes the

controlling mechanism over Brownian motion is dependent on the flow system; as

the flow rate increases, turbulent diffusion becomes dominant at smaller particle

sizes. Brownian motion also becomes dominant over molecular diffusion at

smaller particle sizes for greater flow rates. Deposition by Brownian motion can also

be influenced by external forces, such as the presence of an electrostatic field or

gravity18 .

Turbulent Diffusion

In turbulent diffusion, particles larger than approximately 1 lum enter the

turbulent region directly over a solid surface (between the laminar sublayer and the

bulk gas stream). These particles then move through the laminar part of the

boundary layer to the surface. One method of this transport is explained by Owen;

another method is proposed by Davies and by Friedlander and Johnstone.
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Owen1 9 has found that turbulent bursts sporadically erupt from the laminar

layer. He has therefore proposed that particles are convected to the wall in

downward sweeps. However, Davies 20 and Friedlander and Johnstone2 1 state that

in turbulent diffusion particles pick up kinetic energy from gas eddies present in the

turbulent boundary layer. These particles are then propelled through the laminar

sublayer and onto the surface.

By using particles between 0.8 gm and 2.63 gim, Friedlander and Johnstone2 1

studied the deposition of particles by turbulent diffusion. Brownian motion was

made negligible by using this particle size range and by using high stream velocities.

The experimental apparatus consisted of a circular tube with the gas and particles

flowing through the center, and Reynolds numbers varying between 8000 and

50,000. Deposition took place on the sides of the tube, and the authors determined

the deposition rates as a function of distance from the inlet; in this way they could

follow the development of the turbulent boundary layer. Their results show that

deposition occurs only in fully developed turbulent flow. Deposition by turbulent

diffusion is a function of both Reynolds number and particle size; deposition

increases as both the Reynolds number and particle size increase. Deposition by

turbulent diffusion overlaps with deposition by particle impaction; the point at

which impaction becomes dominant is a function of system parameters such as flow

rate and particle size.

Particle Impaction

Larger particles, on the order of tens of microns in diameter, receive sufficient

kinetic energy from the main gas stream for the particles to follow a different path

from the propelling gas stream. Particles receiving this kinetic energy are then
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relatively unaffected by minor changes in gas direction. Inertial impaction is

influenced by gas velocity and the diameter of the collector.

The efficiency of collection of particles due to impaction has been studied by

many authors. Fuchs 18 states that in the case of purely inertial deposition on a

cylinder the collection efficiency depends only on the Stokes number:

21.
Stk D (7)

where the stop distance, li, is defined as:

2
Voodppp

i- 18g ~~1,8CL~~~~~ =·~~~~~~~~ ~(8)

The Stokes number, when related to efficiency of inertial deposition on a

cylinder, yields results shown in Fig. 2. Theoretical collection efficiency is defined as

the fraction of particles in the gas volume swept by the cylinder which will impinge

and stick on the cylinder. At large values of Stk, the collection efficiency is close to 1;

at values less than 0.2, the efficiency approaches zero. For recovery boiler fume (flue

gas velocity=20 ft/sec, d=0.5 gm, pp=2*10 6 g/m 3), Stk=10-4; efficiency for inertial

deposition of fume is very close to 0. Efficiency will increase as velocity, particle

size, or particle density increases.

Thermophoresis

The movement of aerosol particles due to non-uniform heating of these

particles is caused by radiometric forces. Radiometric forces may be caused either by

illumination of particles from one side (photophoresis) or by a temperature gradient

(thermophoresis) 18. Photophoresis is due to the gas molecules rebounding from the

hotter, illuminated side of the particle with greater velocities than from
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Figure 2. Efficiency for inertial deposition on a cylinder.

the unilluminated side. Particles therefore move away from illuminated, hotter

surfaces.

Thermophoresis is the result of gas molecules impinging on the particle from

opposite sides with different mean velocities. The molecular bombardment of the

particles is more energetic on the hot side than on the cold side, which causes the

particles to migrate toward the cooled regions 20, 22,2 3, 24. This will cause particles to

be deposited on surfaces that are colder than the gas phase.

Temperature gradients are present around all tube surfaces in the generating

bank and economizer regions, with the tubes being cooler than the bulk flue gas.

Therefore, if a radiometric force causes fume deposition in the upper sections of a

recovery boiler, deposition would be caused by thermophoresis and not by

photophoresis.

Wood 2 2 states that particles which reach the edge of a thermal boundary layer

by other mechanisms, such as Brownian diffusion or turbulent diffusion, are

subjected to thermophoretic effects because of the large temperature gradient
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existing in the boundary layer. Wood's work, and work by others2 5, 26, 27,2 8, has

shown that deposition by thermophoresis is most important for particles between

0.1 gm and 10 gm. In this size range, thermophoresis is dominant over Brownian

motion and the particle size is too small for impaction to be a major mechanism.

The total mass flux for a molecular species is given by the equation 2 9,30, 31:

j = D, (Voi + aTVlnT) (9)

where the first term is due to Brownian diffusion through a concentration gradient

and the second term is due to thermophoresis. This equation applies to particle

sizes ranging from vapor molecules up to the size threshold for inertial

effects 2 9,32, 33 . For mass flux of fume particles at the cooled tube surface, this

equation can be rewritten as:

f(&o f51nT
w = pw ,w 5y rw(w 8yi=P Lt W / w [ / (10)

Gokoglu and Rosner2 9 attempted to solve this equation mathematically by

asymptotic analysis, which uses a boundary condition of ow=O. This boundary

condition, however, would cause elimination of the thermophoretic flux term (the

second term in brackets). Therefore, they instead visualized the mass transfer

boundary layer to consist of two regions: an exterior region where the mass

transport mechanisms are convection and thermophoresis, and an interior region

(Brownian diffusion sublayer) where Brownian diffusion becomes important. The

Brownian diffusion sublayer thickness is very small and the mass flux to the wall

was calculated to be approximately the same as the mass flux through the Brownian

diffusion sublayer. Equation 10 can therefore be written as the mass flux through
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the Brownian diffusion boundary layer (subscript m) instead of as the mass flux at

the wall (subscript w). Equation 11 can now be mathematically solved:

w = PmDm T J (11)

i"m= PmDm+rmtkm (Y by 
m'T v/ ^," 8J(12)

jw = PmVTm M(13)

where the thermophoretic velocity, VT, is defined as:

lnT 
VT = -D^vO 8 y ) (14)

Many authors have published equations, either empirical or theoretical, for

thermal velocity. Table 1 lists these authors and their equations. Most

authors 28, 35 ,36,3 7,38 simply state that:

vT T y (15)^'T 8l J(15)

where K is a function of particle size, particle thermal conductivity, pressure and

molecular mean free path2 8, 35, 36,3 7, 38 . Homsy et. al. 36 theoretically calculated that

the particle flux to the wall is independent of the nature of the flow; the particle

flux depends only upon the physical properties of the gas and particles, and the

temperatures of the gas and collector surface.

Both Gokoglu and Rosner 29 and Smith26 have derived expressions, not

containing the temperature gradient form, for thermophoresic velocity. These lead

to the following two expressions for particle flux:
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Table 1. Thermophoretic Velocity Equations.

VT

Rosenblatt and LaMer 3 8 , 1946

Smith 2 6, 1952

Derjaguin et. al. 3 7, 1976

K dT
T dy

DpPX °dp |(D )1(Te-Tw)

-K Tgrad T

-KO -grad T
Goren3 5 , 1977

Walker et. a128 , 1979

Vermes3 4, 1979

Homsy et. al.3 6, 1981

Gokoglu and Rosner 2 9, 1986

-K grad T
T

1 dT

T1/2 dy

-K grad T

- [ lnT v
- D l Sy

Authors
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G&R: w = Pm T S) (16)
G&R: (16)

Jw=D f pox ldp (NU.(T 1

Smith: Jw = m(m 24 )D- (17) Smith: ) w p m 'I 24 ) Dj^ Jt (17)

It is seen that many parameters affect the deposition rate. Some of these

factors and their effects will now be discussed.

Particle Concentration (o)

Both equations agree that the deposition rate is proportional to particle

concentration in the gas. The deposition rate will double when the particle

concentration is doubled. Obviously, no deposition will occur when the

concentration of particles in the gas mixture equals zero.

Particle Diameter (dp)

Smith's equation predicts that the deposition rate is proportional to particle

diameter for all particle sizes. Gokoglu and Rosner's equation also predicts that the

deposition rate will increase with increasing diameter; however, this fact is hidden

in the Prandtl, Schmidt, and Stanton numbers. Gokoglu and Rosner show that the

net result is, for particle sizes between 0.1 am and 1 aim, the rate of deposition is

proportional to particle diameter.

Gas Flow Rate (V)

Smith's equation shows no effect of gas flow on the deposition rate; Gokoglu

and Rosner's equation shows a linear relationship (0<Re<10,000, based on tube

diameter). Gokoglu and Rosner's equation, however, is a function of the Stanton

number. The Stanton number is inversely proportional to flow rate. The result is
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that the gas flow rate should have no significant effect on the rate of deposition by

thermophoresis.

Temperature (T)

Gokoglu and Rosner's equation shows a deposition rate proportional to

(Te-Tw)/Tw. This is consistent with the definition of VT, which most authors define

to be proportional to 8lnT/6y. Smith's equation, however, predicts a deposition rate

proportional to the temperature difference.

Thermal Diffusion Factor (aT)

The thermal diffusion factor of a particle is a property that will result in

different compounds depositing at different rates. It is a dimensionless number and

is a function of a particle's molecular properties such as M (molecular weight), o

(Lennard-Jones molecular size parameter), E (Lennard-Jones molecular interaction

energy parameter), and local temperature 39 . The magnitude of this number for

most fume compounds range from 0.01 to 1. Gokoglu and Rosner's equation shows

that the deposition rate is linear with respect to aCT. Smith's equation shows no

dependence; it is unknown how Smith deals with differences between compounds.

Vapor Diffusion/Crystallization

When vapor species are present in the gas phase, these constituents are

transported across the thermal boundary layer to the tube surface. The mass transfer

of volatilized species to a cooled target is due to the difference in partial pressures of

the vapor in the bulk gas and that at the deposit surface. If the vapor pressure of the

vapor species in the boundary layer gas equals or is greater than the equilibrium

vapor pressure at the surface temperature, condensation occurs32 .

Sodium sulfate is one such compound that can deposit by crystallization.

Brown 15, Kohl et. a132, Rosner and Liang40, Raask41, and Bishop42 studied this
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deposition and their results indicate the existence of a "dew point" - the surface

temperature above which the deposition rate decreases.

Similar results were obtained with other vapor species. Kohl et. al.32 , Rosner

and Liang40, and Raask41 studied alkali sulfate vapors other than sodium sulfate

(such as CaS0 4 and K 2S0 4). Bishop et. al.42,43 studied the deposition of NaCl, and

Seshadri and Rosner44 studied B 20 3 deposition. All these authors' results show the

existence of a dew point, dictated by thermodynamic factors and strongly influenced

by transport and kinetic restrictions. If the gas phase temperature is below the dew

point, liquid droplets or solid particles will form in the gas. Particles will then be

transported to the cooled tube surface by thermal forces and not by vapor diffusion.

Authors disagree on the effects of surface temperature on deposition rate

when the temperature is below the dew point. Kohl et. al. 32 and Seshadri and

Rosner4 4 show that the deposition rate increases linearly with decreasing collector

temperature, as shown in Fig. 3. Brown 15, Rosner and Liang 40, Raask 41, and Bishop

et. al.42,43,45 show that the rate of deposition is constant for most temperatures

below the dew point, which is depicted in Fig. 4. The important conclusion from all

these studies, however, is the realization that a dew point temperature exists. If no

deposition occurs above a certain temperature but does occur below this

temperature, then vapor diffusion/crystallization is a possible and probable

mechanism.

AEROSOL PARTICLE SHAPE AND MORPHOLOGY

It has been found that the shape of deposited particles differs with the particle

formation method. Brown 15, Kohl et. al. 32, and Bishop et. al.42,43 ,45 have shown in

their studies that deposition by vapor diffusion results in crystalline deposits. This
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Figure 3. Deposition due to vapor diffusion/crystallization, #1.

Tw

Figure 4. Deposition due to vapor diffusion/crystallization, #2.

was determined by electron microscopy. Depending on the surface temperature,

these crystals were dendritic crystals or elongate square-ended crystals.

Ulrich et. al.46 ,47, 48, 49 and Medalia and Heckman50 have studied the growth

of submicron particles in the gas phase. Their results show that particles, already

solid in the gas phase, formed deposits that consisted of aggregates of spherical

particles. Particle shape was determined by electron microscopy.
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These results show that the structure of the deposited particles is an

indication of how the particles were formed.

POSSIBLE FUME DEPOSITION MECHANISMS

Sodium Carbonate Deposition

Previous studies2 ,12 indicate that solid sodium carbonate fume particles are

formed in the gas phase over the smelt bed by the stoichiometric reaction:

02 + 2 CO2 + 4 Na <--> 2 Na2 CO3 (18)

Weaver et. al.51 has stated that Na2CO3 is unstable as a vapor and exists only

as a solid and liquid; Motzfeldt5 2 states that there should be no chance for

significant dissociation at any temperature below 8000C. Recovery boiler smelt is

mainly Na2CO3, which is another indication that very little sodium carbonate

decomposes; otherwise, the smelt would contain smaller amounts of Na2CO 3. If

dissociation did occur, it would be according to the reactions 52,53:

2 Na2CO3 (1) <--> 2 Na2 O ( 1) + 2 CO2 (g) (19)

2Na 2O(1 ) <--> 4 Na(g) + 2(g) (20)

The incoming gas temperature to the boiler bank is below 8000C, and the

melting point of sodium carbonate is 851oC. At 8510C, the partial pressure of CO 2

due to Na2CO3 decomposition is 10-6 atm, and the partial pressure of Na2O is

10- 3 atm. This indicates that if 02, CO 2, and Na were all present in the gas phase,

Na2 CO 3 would be present as solid particles as the flue gas entered the boiler banks

and economizers. This makes vapor diffusion/crystallization an unlikely

mechanism for Na2CO3 fume deposition.
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As mentioned earlier, Na2CO 3 fume particles have been found to be

approximately 0.5 gm in diameter. Deposition by molecular diffusion can therefore

be eliminated as a possible mechanism, because fume particles are too large.

It was also mentioned earlier that the Reynolds number in the boiler bank is

between 3000 and 5000, which is considered to be in the transition region between

laminar and turbulent flow. Friedlander and Johnstone 21 reported that deposition

by turbulent diffusion only occurred in fully developed turbulent flow. Vermes'

calculations3 4 for deposits on cooled turbine blades, at Reynolds numbers between

15,000 and 20,000 (based on blade length), show that thermophoresis is much more

significant in causing deposition than turbulent diffusion. If this is true for these

high Reynolds numbers, then thermophoresis must be dominant over turbulent

diffusion at lower Reynolds numbers; deposition by turbulent diffusion decreases as

the Reynolds number decreases while deposition by thermophoresis remains

relatively unaffected. Turbulent diffusion, therefore, can also be eliminated as a

possible mechanism for sodium carbonate deposition.

Deposition by inertial impaction has been found to be important only for

particles greater than 10 gpm in diameter 34,39,54, 55; the exact particle size that

impaction becomes dominant is dependent on gas velocity. This mechanism will

not contribute to deposition of Na2CO 3 fume particles in the recovery boiler unless

Na2CO3 fume particles agglomerate to form clusters 10 plm in diameter or larger.

Thermophoresis has been shown to be a large contributer to deposition in the

particular size range of fume particles. Brownian movement may account for

deposition of some fume particles, but deposition by this mechanism compared to

thermophoresis is small 56 . Gokuglu and Rosner 2 9 show that thermophoresis causes

a marked increase in deposition compared to deposition by Brownian motion alone.
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This increase can be as much as 1000-fold for 1 gm particles 30, 34, 54, 55. All these

results indicate that deposition by Brownian motion is negligible for deposition on

cooled tubes.

The main mechanism for Na2CO 3 fume deposition, therefore, is likely to be

thermophoresis. All other mechanisms will play only a minor role, if any, in

deposition.

Sodium Sulfate Deposition

Sodium sulfate's dew point is its melting point (8820C) at 0.15 mm Hg; it rises

to 13710C at 1 mm Hg. If 70% of the fume in the recovery furnace was present as

Na 2SO4 vapor, the vapor pressure would be 0.5 mm Hg and its dew point would be

approximately 12000C. This temperature is hotter than generally found in a

recovery boiler, which explains the presence of Na2SO4 particles even in the lower

sections of the recovery boiler. Therefore, thermophoresis is the likely mechanism

for sodium sulfate deposition in all sections of the recovery boiler unless large

amounts of agglomeration occur and cause deposition by impaction.

Maule 57 has shown that carbonate conversion to sulfate is dependent on SO2

concentration, time, and temperature. He also found that sintering of the solid

particles, which causes small particles to fuse into larger agglomerates, occurs during

the reaction. It has already been stated that particle size affects the deposition rate; if

the particles agglomerate, the deposition mechanism as well as the rate might

change.

Sodium Chloride Deposition

Sodium chloride fume has a melting point of 8010C and is initially present in

the boiler as a vapor. Temperatures in the superheater section are above the NaC1

melting point; Sodium chloride should deposit in this area by crystallization or not
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at all. Temperatures in the upper sections of a furnace generally are below the

melting point of NaCl. NaCl fume should condense from vapor while still in the

flue gas; it should then be transported to the cooled surfaces in the boiler bank and

economizer sections by the same mechanism as sodium carbonate and sodium

sulfate deposition.

RESEARCH APPROACH AND OBJECTIVES

The objective of this research is to develop a model for fume deposition in

the boiler banks and economizer. This required the following experiments:

1. Determine if solid particles are present in the gas phase above the smelt surface.

This was accomplished by placing a filter directly above the smelt bed. If no

particles are present, deposition by thermophoresis or any other solid particle

mechanism is impossible.

2. Determine fume generation rate for Na2 CO3 , Na 2SO4, and NaCl under a range of

experimental conditions. The rate of fume deposition can then be related to gas

phase fume concentration.

3. Determine what mechanisms are responsible for Na2CO3, Na2SO 4, and NaCl

deposition in the upper sections of a recovery boiler and develop a mathemetical

model.

Thermophoresis seems the likely mechanism for fume deposition; its

controlling parameters are flue gas temperature, tube surface temperature, particle

composition and size, particle concentration, and possibly gas flow rate. The

experimental study was set up to determine the effect of these variables on

deposition rate and therefore to ascertain whether thermophoresis is the actual

controlling mechanism.
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There are limitations to the experimental system. First, the flue gas flow rate

through the experimental system was very limited. Only a Reynolds number of less

than 3 (based on cooled tube diameter) could be obtained because of the method of

fume generation that was chosen. Gas was bubbled through the smelt to generate

fume, and this gas flow was limited because higher flow rates through the melt

caused excessive bubbling and splashing of the smelt. The apparatus could not be

necked down to a small enough diameter to create turbulent flow; an apparatus

diameter of 0.01 inches would have been required. This method of fume generation

was chosen, however, because of the excellent control over fume composition and

fume purity at these low gas flow rates. Flow differences between the experimental

system and an actual recovery boiler may result in differences between calculated

and actual deposition rates. Gas velocity was still studied as a variable, but only

within the range that the apparatus could handle.

Second, the experimental particle size could be measured but not varied.

Particles in the recovery boiler may be agglomerating which will once again cause

differences between experimental results and recovery boiler data.

Particle composition was varied by studying Na2CO 3, Na2SO4, NaC1, and

simultaneous Na 2SO 4/NaCl fume deposition. Flue gas temperature and tube

surface temperature dependence was determined for all four types of fume

deposition.

Fume concentration dependence was determined for Na2CO3 and NaCl fume.

Both deposition rates were found to have the same concentration dependency;

Na2SO4 and Na2SO4/NaCl fume deposition was assumed to follow this dependency

as well.



-24-

The dependence of fume deposition on gas flow rate was also determined for

only Na2 CO3 and NaCl fume. Once again, it was assumed that Na2 SO4 and

Na 2SO 4/NaCl fume deposition would have the same dependency.
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EXPERIMENTAL METHODS

EXPERIMENTAL SYSTEM

The experimental system used to generate fume particles is shown in Fig. 5.

Ceramic alumina crucibles (4 5/16" i.d., 4 1/2" o.d., 15" height) were used to contain

the molten smelt. These crucibles could withstand exposure to molten salts over

the experimental temperature range and were not reactive with the smelt. The

crucible was contained in a stainless steel retort (5 3/8" i.d., 5 1/2" o.d., 27" height)

which was then placed inside a tubular furnace. Exact specifications of this furnace

and retort are listed in Appendix II. A small clearance was present between the

crucible and retort and between the retort and furnace, which allowed nitrogen to be

purged through these areas. Figure 6 is a schematic of the crucible-retort-furnace

design.

All gases were obtained from pressurized gas cylinders, and the volumetric

flow rates of these gases into the reactor were determined by dry-gas meters. Two

mercury manometers, one connected to the N 2 line and one to the CO 2 line, were

used as safety valves. The N 2 and air streams were mixed before reaching the

reactor. This gas mixture then flowed into the crucible by means of a ceramic purge

tube (18" long, 3/16" i.d., 1/4" o.d.) which extended into the molten salts and caused

mixing of the reactants. The CO 2 could be introduced into the reactor in two ways:

either into the N2/air stream so the CO 2 would flow into the crucible below the

melt, or above the melt so the CO 2 would be mixed with the flue gas in the reactor.

A K-type thermocouple (1/8" diameter), good for a temperature range of up to

1400oC, monitored the molten salt temperature. The thermocouple was contained

in a ceramic tube (18" long, 1/4" i.d., 3/4" o.d., closed at one end) which extended into
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the smelt. Generated fume and flue gas was vented to the hood after leaving the

reactor.

CHEMICALS

The following chemicals were used:

1. Na2CO3, anhydrous, granular, reagent grade.

2. Na 2S, reagent grade.

Sodium sulfide was purchased as Na2 S-9H20; the water must be removed

before placing the Na2S in the furnace. Water was removed by drying the sodium

sulfide in a vacuum oven with a nitrogen purge. The oven was brought to a drying

temperature of 190°C within a span of approximately six hours and was kept at

1900C for 24 hours. The long heat-up time prevented excess splashing of the water

in the sulfide. The resulting chemical was dry Na2S, which was then coarsely

ground with a mortar and pestel in a glove box.

In this thesis, all flow rates listed as L/min are standard liters per minute.

EXPERIMENTAL PROCEDURE

In most runs, 2200 g (20.8 moles) of sodium carbonate were placed in the

crucible. The crucible, contained in the electric furnace, was brought to the reaction

temperature within a span of ten to twelve hours to decrease the chance of the

crucible cracking. During the heat-up period nitrogen was continuously purged

through the inlet tube under the Na 2CO 3 surface at a rate of 0.2 L/min, thus

preventing inlet tube plugging. A nitrogen purge was also present both inside and

outside the retort, preventing excess corrosion of the retort.

After the crucible temperature was stabilized at the reaction temperature,

approximately 200 g (2.6 moles) of dry Na2S were added, through a 2" diameter hole
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in the retort cover, to the molten Na2 CO3. The N 2, air, and CO 2 flow rates were

then brought to the levels to be used during the experiments.

Once the system reached steady state with these new flow rates, experimental

data were taken. The run was continued until all the Na2S had reacted with the

incoming air; another 200 g Na2S was then added and the run continued. Na2S was

added to the smelt as many times as necessary so a complete set of data could be

obtained. Cameron's work 2 has shown that the level of sulfide and sulfate in the

melt has no significant effect on the rate of fume generation. Therefore, the

addition of Na 2S during the course of the experiment did not change the fume

generation rate.

RADIANT ENERGY EFFECTS

Radiant energy from smelt beds or smelt pools have been found to affect gas

phase thermocouple readings. An unshielded thermocouple would be expected to

measure a higher temperature than a shielded thermocouple. This is especially true

at higher temperatures and in close proximity to the smelt bed. Therefore, the effect

of radiant energy on the experimental gas phase thermocouple must be determined.

In order to determine the radiant energy effects on a gas phase thermocouple,

an aspirated thermocouple was constructed. The thermocouple, shown in Fig. 7,

was surrounded by a stainless steel tube (3/16" i.d., 1/4" o.d.) with small holes drilled

into the bottom of the tube. Suction was placed on the top end of the tube, so the

flue gas was drawn through the bottom of the tube and forced into contact with the

thermocouple end. The tube shielded the thermocouple from radiation effects.

This shielded thermocouple was placed directly into the furnace at different levels

above the melt.
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Figure 7. Aspirated thermocouple design.

The temperatures obtained from the aspirated thermocouple were compared

to the values obtained from an unshielded thermocouple placed in the reactor in

the same manner as the aspirated thermocouple. The difference in the measured

temperatures from the two thermocouples would be due to this radiation. The

thermocouples were documented to be accurate to 0.75%, or 60C at a temperature of

800°C.

No fume was generated for this experiment, but N 2 was continually purged

into the smelt at a flow rate of 3 L/min. Nitrogen flow was used so there would be

I
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an upward flow of gases past the thermocouple. The rate of suction was 8 L/min

which produced a Reynolds number, past the thermocouple end, of 450,000. This

insured that the gas phase temperature was actually being measured.

Radiant energy was found to have a minimal effect on the gas phase

thermocouple reading, as shown in Fig. 8. If thermocouple accuracy is taken into

account, the difference between the two thermocouple readings can be considered

negligible below a temperature of 800°C. At 6000C, the thermocouple accuracy is

4.5°C; Fig. 8 shows a measured temperature difference, between the two

thermocouples, of less than 4.5°C. Gas temperatures above 600°C were never

encountered during fume deposition for this thesis; therefore, a shielded

thermocouple was not required.

FUME GENERATION

The objective of these experiments was to model the fume generation rate in

terms of gas flow rates, melt composition, and melt temperature. This model could

then be used to determine deposition rates as a function of fume concentration. The

experimental furnace used to generate fume is shown in Fig. 9. The fume was

caught on a 3" diameter glass microfiber filter, which could easily be disconnected

from the system. This filtering system, shown in Figure 10, consisted of poly-flo

tubing leading from the reactor to the filter, and a "filter holder" which held the

filter in place. The fume generation rate was calculated by weighing the fume that

was collected in a given time span.

The tube leading from the reactor to the filter tended to plug with fume. For

this reason, a 2" hole in the retort cover was used as a "relief hole" with a metal

weight placed over the hole. When the outlet tube become plugged, the metal
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weight shifted and allowed gases to escape through the relief hole. The outlet tube

was then cleaned and the experiment continued.

The fume that plugged the outlet tube built up over the course of about an

hour. The amount of fume needed to plug the tube was on the order of the amount

collected on the filter for one data point, with the potential for obtaining 50 data

points per hour. The fume caught in the line can therefore be considered negligible.

Using this approach, fume generation rates were measured for Na2 CO3 ,

Na 2SO 4 , and NaCl generation under different experimental conditions and for

simultaneous Na 2SO 4 /NaCl generation under one specific set of conditions.
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Figure 9. Furnace for fume generation.
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It was assumed that very little fume collects on the sides of the reactor

compared to the amount of fume that is collected on the filter. This amount was

not measured but it was noticed that, once the apparatus was dissassembled after a

complete experimental run (about three hours of fume generation), very little fume

had deposited on the reactor sides. The amount of fume collected is therefore

considered equal to the amount of fume generated.

Na2CO3 Generation

For Na2CO3 generation, the following range of variables was used:

1. 2.02-6.18 L/min N 2 under melt surface.

2. 0.19-0.87 L/min 02 under melt surface.

3. 900-10300C melt temperature

The following equation was developed:

Fume gen. (g/min) = 20.19 * 020.218 * N 2
0. 9 15 * e -15690/RT (21)

The flow rates are in liters/minute and the temperature is in °K.

The rate of fume generation was also found to decrease with increasing CO 2

concentration. A comparison of this equation to that obtained by Cameron 2 at The

Institute of Paper Chemistry, and the error limits associated with these equations

will be discussed later.

Various analyses were performed on the generated fume. An x-ray

diffraction pattern showed that Na2CO 3 fume molecules were crystalline in nature,

not amorphous. A scanning electron micrograph showed that the fume particles

were approximately 0.5 gm in diameter, and ranged from 0.25 agm to 1 gm in

diameter (see Fig. 11). The particles were smooth and round, which implied that
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Figure 11. Generated Na2CO3 fume.

individual particles froze from a liquid phase. The particle size, found by image

analysis, was 0.30 pum with a variance of 0.0051.

Na2SO4 Generation

For Na2SO 4 generation, SO 2 was added above the melt surface. The objective

was to determine a set of conditions where the majority of sodium carbonate would

be converted to sodium sulfate within the first minute. It would therefore be

known that the conversion took place in the gas phase and not on the deposition

tube. The range of variables studied was:

1. 1.79-5.37 L/min N 2 under melt surface.

2. 0.21-0.63 L/min 02 under melt surface.

3. 0.0023-0.0320 L/min SO 2 above melt surface.

4. 0.50-7.07 L/min N 2 above melt surface.

5. 950°C melt temperature.
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The SO 2 and N 2 above the melt surface was from a N 2 /SO2 gas cylinder,

0.45% SO 2. It was found that, in the time it took for the fume particles to reach the

filter (approximately 15 seconds), over 70% of the Na2CO 3 had reacted to form

Na 2 SO 4 under the following conditions:

1. 1.79 L/min N 2 under melt surface.

2. 0.21 L/min 02 under melt surface.

3. 0.02 L/min S02 above melt surface.

4. 3.98 L/min N 2 above melt surface.

5. 9500C melt temperature.

This set of conditions was used later during the experiments concerning

Na2 SO 4 deposition. These conditions also produced the same flow rate and fume

concentration as used during Na2 CO3 deposition.

Electron micrographs of Na 2SO4 fume, collected from the flue gas, showed

particles very similar to Na2 CO3 fume. The particles were smooth and spherical,

and ranged from about 0.25 am to 1 am in diameter (see Fig. 12). The particle size

was 0.29 am with a variance of 0.0061.

NaCl Generation

For NaCl generation without sodium carbonate or sodium sulfate generation,

all Na2 S present in the melt was first converted to Na 2SO4 . NaCl was then added to

the melt. Nitrogen was purged through the system and NaCl vaporized into this N2

stream; the flue gas cooled as it travelled up the apparatus which caused the sodium

chloride to condense. Condensed NaCl was then collected on a filter in the same

manner that Na2 CO3 and Na2SO 4 were collected.
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Figure 12. Generated Na2S04 fume.

The range of variables was:

1. 200 & 1000 g (13 & 42 mole %) NaC1 in melt.

2. 2.00-8.00 L/min N 2 below melt surface.

3. 0-4.00 L/min N 2 above melt surface.

4. 950°C melt temperature.

The predicted fuming rate, using Raoult's law and assuming that the

concentration of NaCl in the gas phase is in equilibrium with the concentration in

the melt, was different than the actual fuming rate. If the total N 2 flow is used in

the calculation, the predicted fuming rate is approximately 45% higher than actual;

if only N 2 flow below the melt is used in the calculation, the predicted rate is

approximately 50% lower than observed. This suggests that the gas phase is not in

equilibrium with the melt due to nitrogen being added above the melt surface.
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Although no electron micrographs were taken of generated NaCl fume, other

work at IPC58 has shown that NaCl fume consists of spherical particles

approximately 0.25 lgm to 1 gm in diameter. This result is the same as that for

Na2CO3 and Na2SO 4 fume generation; Na2CO 3 and Na2SO 4 fume particles were

spherical and 0.25 gm to 1 pm in diameter.

NaS04/NaCl Generation

For simultaneous Na2SO 4 and NaCl generation, the melt consisted of

Na2CO3 , Na2S, and NaCl. Nitrogen and air were bubbled through the melt to

generate both Na2CO3 fume and NaCl fume; SO2 was added above the melt surface

to convert Na2CO3 to Na 2SO 4. The set of variables was:

1. 1000 g (42 mole %) NaCl in melt.

2. 1.79 L/min N 2 below melt surface.

3. 0.21 L/min 02 below melt surface.

4. 0.0018 L/min S02 above melt surface.

5. 4.00 L/min N 2 above melt surface.

6. 9500C melt temperature.

The large mole % NaCl was used to produce a large enough generation rate

for accurate measurement. This amount produced a NaCl generation rate one-third

that of the Na2SO 4 generation rate.

It was determined that Na 2SO4 fume generation and NaCl fume generation

are independent reactions; the fume generation rates were found to be additive

within 1% error. The generation rate of sodium sulfate fume (in a system with no

sodium chloride fume generation) plus the generation rate of sodium chloride

fume (in a system with no sodium sulfate fume generation) was the same as the

total generation rate when both Na2SO4 fume and NaCl fume were being produced.
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An electron micrograph of combined Na2SO 4/NaCl fume is shown in Fig. 13.

These particles looked very similar to Na 2SO4 fume; particles were smooth and

spherical with a size range of 0.25 gm to 1 gm in diameter. Each fume particle was

found, by energy dispersive spectrometry, to contain both NaCl and Na 2SO 4. No

particle was pure NaCl or pure Na 2SO4. It is unknown, however, if these two

compounds are randomly placed throughout the particle or if one compound

formed over the other compound.

FUME COLLECTION DIRECTLY ABOVE MELT

In order for fume to deposit by thermophoresis, solid particles must be

present in the gas phase above the smelt bed. These solid particles could be caught

by a filter placed directly in the furnace. Solid particles, if any are present in the flue

gas at these elevated temperatures, would become entrapped on the filter; the flue

gas and any vapor would pass through.

This set of experiments was therefore designed to capture fume particles at

the elevated temperatures directly above the melt. Fume was collected by placing

the filter in the furnace and drawing a suction through the 1" diameter filtering

device shown in Fig. 14. The filtering material, its properties, and the reasons for

choosing this material are given in Appendix III.

The filter could only be lowered to approximately three inches above the

melt - the smelt from the bed otherwise splashed onto the filter. This splashing

occasionally caused the filter to fall out of the filter holder. It was found that the

amount of fume collected per volume of suctioned gas was constant, therefore, if

the suction flow rate changed, the total amount of collected fume also changed. The

suction flow rate could fluctuate as much as 25%; therefore, the flow rate was

closely monitored.
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Figure 13. Generated Na2S0 4 /NaCI fume.

Fume was collected at different heights from the smelt bed. All of the data

were taken under these conditions:

1. 5.37 L/min N 2 under melt surface.

2. 0.63 L/min 02 under melt surface.

3. 9700C melt temperature.

4. 8.0 L/min suction.

5. 30 second collection time.

Table 2 lists the results from these experiments. It also lists the amount of

fume that should have been collected in each case, calculated by knowing gas flow

rates through the filter and fume generation rate. These data show that fume

particles were formed within three inches of the smelt bed, and that the amount of

fume present has no correlation to the distance from the smelt surface. This
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Figure 14. Fume filtering device for directly above smelt surface.

indicates that neither gas temperature nor time in the gas phase has any relation to

fume generation. A distance of three inches above the smelt bed corresponded to a

gas temperature of approximately 8700C; a time of about four seconds was needed

for the gas to travel three inches.

SEM pictures were taken of the fume collected at all heights and all fume

generation rates. These pictures showed particles ranging in size from 0.25 gm to

over 3 gum, which is a much broader size range than that previously observed.
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Table 2. Fume collection from above smelt.

fume, g/30 sec
Height above
smelt, inches Predicted Collected St. dev.

3 0.0755 0.0757 0.0162

6 0.0755 0.0659 0.0069

9 0.0755 0.0666 0.0083

9 0.0157 0.0153 0.0022

9 0.0171 0.0158 0.0017

9 0.0183 0.0199 0.0016

These new pictures were taken of fume particles captured in the gas stream with gas

temperatures of 7000C to 8700C; previous pictures were taken of particles filtered

from a much cooler flue gas, outside of the furnace. It will be shown later that these

large fume particles must have grown to this size after being captured on the filter -

not by small particles colliding with each other in the gas phase.

EXPERIMENTAL SYSTEM FOR FUME DEPOSITION

A schematic of the system used to study fume deposition on a cooled tube is

shown in Fig. 15. The lower half of this apparatus was the same as that previously

used. The upper half, made of stainless steel and 24" long, clamped onto the lower

retort and increased the vertical distance in which the gas travelled before leaving

the apparatus. The K-type thermocouple (1/8" diameter) extended downward from

the top, and the purge tube and melt thermocouple entered the crucible at an angle

from the side of the retort. Carbon dioxide or sulfur dioxide entered from the side of

the upper half.
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Figure 15. Schematic of fume deposition apparatus.
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Electric heaters, one set below the cooled tube and one set above the tube,

were added so the gas phase temperature could be varied. This is shown in Fig. 16.

Each set of heaters was connected to its own rheostat. These heaters reached

temperatures as high as 7000C, which produced a flue gas temperature of 5600C in

the area of the cooled tube; the heaters allowed a flue gas temperature range of

2800C to 560°C. Exact specifications for the heaters are listed in Appendix IV.

Fume was collected on the surface of the tube placed in the upper part of the

apparatus. The tube was 7/8" o.d. 304L stainless steel tubing with a wall thickness of

0.035", and was held in place on each side of the apparatus by a flange and set screw

(see Fig. 17). This tube was 23 inches above the melt surface; approximately 30

seconds was required for the flue gas to travel from the melt to the tube surface.

This corresponds to a Reynolds number of 3 based on cooled tube diameter.

The surface temperature of the tube was determined by inserting a

thermocouple through the tube to the surface. A chromel-alumel thermocouple

with glass insulation was brought through the inside of the tube and then through

small holes in the metal (the two wires were brought through separate holes). The

wires were then twisted together and peened in place on the surface. The surface

temperature was controlled by air flowing inside the tube. As the coolant flow rate

increased, the surface temperature decreased. An increase in the coolant flow from

2 ft3 /min to 8 ft3 /min produced a surface temperature decrease in the range of 30%

to 60%; the exact decrease depended on flue gas temperature.

PRELIMINARY RESULTS

A preliminary experiment was performed in order to determine the presence

or absence of a temperature difference between the upstream (bottom) side and

downstream (top) side of the tube. The average encountered temperature difference
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Figure 16. Apparatus for fume deposition.

was 150C. All surface temperature readings in this thesis, unless specified, are

reported as the temperature on the top side of the tube.

Another experiment was performed to determine the extent of a horizontal

temperature gradient across the cooled tube. This gradient would be caused by the

coolant increasing in temperature as it travels through the tube, or from an entrance

length effect. For these experiments, three thermocouples were positioned on the

tube: one close to the coolant entrance, one close to the coolant exit, and one in the

middle. It was found that, at the most extreme conditions used (high flue gas
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Figure 17. Schematic of cooled deposition tube.

temperature, low coolant flow), the horizontal temperature difference was 94oC.

Under all conditions, however, the surface temperature reading of the middle

thermocouple was found to be approximately the same (slightly lower) as the

reading close to the exit. It was assumed that most of the tube surface was at the

temperature close to the middle temperature reading; this reading was therefore

used as the average tube surface temperature for all experiments in this thesis. At

the most extreme conditions (high flue gas temperature, low coolant flow), if the

first 1/4 of the tube is assumed to rise linearly in temperature and the last 3/4 is

assumed to be a constant temperature, the error in fume weight by assuming a

constant temperature is 16%.

FUME DEPOSITION EXPERIMENTS

The deposition of pure Na2CO3 was studied first. CO2 was added to the gas

phase to insure complete conversion of all sodium vapors to sodium carbonate.

Extremely small amounts of water were found to have significant effects on the

fume composition. When water was present, the fume (which should have been

100% Na2CO3) consisted of the following:

7I
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1. Na 2CO3 .

2. Na4 CO3 SO4 .

3. Na6 (C0 3 )2 S0 4 .

4. Na6CO3 (S04 )2 .

5. Na2SO4.

Generation of Na 2CO3 fume required a Na2CO3 /Na 2S melt; the sulfide in

these fume compounds therefore came from the smelt bed. The reactions forming

these compounds occurred very quickly and were found not to be affected by

temperature (gas or surface), CO 2 partial pressure, or time. With H 20 present, this

fume mixture was approximately 10% Na 2CO3, 80% double salts, and 10% Na2SO 4

under all experimental conditions, which suggests that fume composition in a

recovery furnace should be mostly sulfur containing compounds..

Water vapor can react with many compounds in the experimental apparatus.

The following stoichiometric reactions are possible:

2 SO 2 + 02 <--> 2 S0 3 (22)

H 20 + CO <--> H2 + C 2 (23)

H 2 + Na 2S <--> H 2S + 2 Na (24)

Na2 CO3 + H 20 <--> 2 NaOH (25)

Na2CO3 + CO 2 + H 20 <--> 2 NaHCO3 (26)

Na2O + H 2 0 <--> 2 NaOH (27)

Na2O + SO 3 + H 2 0 <--> Na2SO4 + H20 (28)

Na2 O + 2 S0 3 + H 20 <--> 2 NaHSO4 (29)



-48-

2 Na + 2 H 20 <-> H2 + 2 NaOH (30)

Na 2S + 4 H 20 <--> Na2SO4 + 4 H 2 (31)

Sodium hydroxide then react with sulfur gases to form Na 2SO4. The presence

of intermediates, such as NaHSO4, in the reaction sequence could also explain the

presence of the double salts in the experimental flue gas.

These reactions can be occurring in a recovery boiler in addition to occurring

in this experimental apparatus. The reaction of sodium compounds in the gas

phase, particularly Na 2CO3 fume with water vapor, may be one reason that fume

consists of mostly sodium sulfate and very little sodium carbonate. The amount of

water vapor in a recovery furnace (15% by volume) is 100 times the amount of water

needed to convert all Na2CO 3 fume to other compounds. If all Na2 CO 3 fume in the

recovery boiler reacted with H 2 0, no sodium carbonate fume would be present.

Na2 CO3, however, is present in a recovery boiler, which shows that not all Na2CO3

reacts with water vapor. These results show that Na2SO4 fume could also be

forming by direct reactions with smelt in addition to being formed by conversion of

Na2CO 3 fume.

These double salts and Na2SO 4 in the experimental flue gas could be

eliminated by eliminating the water in the system. This was accomplished by

adding a tube filled with Drierite to the gas lines coming from the air cylinder and

the CO 2 cylinder.

The effects of the following variables on Na2CO 3 deposition were then

determined (see Appendix V for tabulations of experimental data):

1. Gas flow rate: varied by adding N 2 above the melt and increasing 02

partial pressure to keep flue gas fume concentration the same.
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2. Fume concentration: changed by varying the C02 concentration in the

gas phase while keeping the total flow rate constant.

3. Tube surface temperature: varied by increasing or decreasing the

amount of air coolant flowing through the cylinder.

4. Flue gas temperature: changed by varying the rheostat settings on the

electric heaters.

Na2SO4 deposition was studied next. The effects of the following variables

were determined (see Appendix VI for experimental data tables):

1. Tube surface temperature.

2. Flue gas temperature.

Third, NaCl deposition was studied. These experimental parameters were

varied (see Appendix VII for data):

1. Fume concentration: varied by adding different amounts of NaCl to

the melt.

2. Tube surface temperature.

3. Flue gas temperature.

Finally, the deposition of Na2SO4 and NaCl was combined. The effects of tube

surface temperature and flue gas temperature on the rate and mechanism of this

simultaneous deposition were studied. This group of data is tabulated in Appendix

VIII.

Electron micrographs of all fume deposits were taken, which determined

particle size and shape (spherical or needle-like). Image analysis was then used to

determine particle size distribution. The amount of fume on the tube was

determined gravimetrically by fume being scraped off the tube and into a weighing

dish; the fume was then weighed to the nearest 0.0001 g on an analytical balance.
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Some fume samples were washed off the cooled tube with water instead of

being scraped off the tube with the water being evaporated before weighing the

fume. This method produced the same results as the "scraping" method, but was

more time-consuming. It also changed the original size and shape of the deposited

fume particles. Therefore, the scraping method was used.
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THEORETICAL ANALYSIS

FUME GENERATION RATE

Fume generation can be modelled either theoretically or empirically. In

theory, the fume generation rate should be proportional to ln(K 2*0 2 flow)59 . It

should also be proportional to the N 2 flow. It was assumed that there is an

Arrhenius temperature dependence on the rate of fume generation. This gives rise

to the following rate equation14:

Fume generation rate = K 1 * ln(K2*02) * N 2 * e- E/RT (32)

Another possible way of calculating fume generation rate is by using an

empirical model. The following empirical equation has been found to fit fume

generation data of Cameron12 and was therefore was chosen as the empirical model

for this thesis:

Fume generation rate = K3 * O2X * N 2Y * e- E/RT (33)

Here it was assumed that 02 and N 2 raised to some power would describe the fume

generation rate. It was once again assumed that there is an Arrhenius temperature

dependence.

The constants in these two equations were determined by using a nonlinear

regression analysis program 60. The final equations for fume generated in the

electric furnace (the apparatus used in this thesis) are:
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Fume gen. (g/min) = 20.19 * 020-218 *N20915 e-15690/ RT

Parameter, value

K3 = 20.19

x = 0.218

y = 0.915

AE = 15690 cal/gmole

Std. dev.

4.52

0.042

0.111

1350 cal/gmole

Fume gen. (g/min) = 3.33 * ln(194*0 2 ) * N 2 *e -15695/RT

Parameter, value

K 1 = 3.33

K 2 = 194

AE = 15695 cal/gmole

Std. dev.

0.72

29

1290 cal/gmole

The flow rates are in liters/minute and the temperature is in °K.

Seventeen data points were used in the regression program to determine the

constants; the residual between the calculated point and the actual data point was

found for all seventeen points. The sum of squares of the residuals from Eq. 34 was

7.4,10-4 and from Eq. 35 was 7.2*10-4; both equations fit the experimental data

equally well. Equation 34 was used for this thesis because this form of equation was

used succussfully in previous work by Cameron. The equation derived for fume

generation by Cameron 2 is:

Fume gen. (g/min) = 161 * 020.274 * N 20.907 * e - 20540/RT (36)

These flow rates are also in liters/minute and the temperature is in °K.

Equation 36 was derived for fume generation in a 5" high induction furnace,

not a 24" high electric furnace (see Eq. 34). Equation 34 and Eq. 36, however, yield

(34)

(35)
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the same results (within 5% of each other) in the temperature range of this study.

This shows that the oxidative fuming rate is not highly dependent on the reaction

system.

GAS TEMPERATURE VS. FUME TEMPERATURE

One concern with fume flowing in a gas phase is whether the fume is at the

same temperature as the gas. The melting point of sodium carbonate is 850°C, so

sodium carbonate should be a solid below this temperature. By the time the sodium

carbonate fume gets to the cooled tube, the gas will be below this temperature. This

should also be true for sodium sulfide fume and sodium chloride fume.

The heat flux from a fume particle is given by:

Q = Eo (Td4 - Tw4) + hc (Td - Te) (37)

Appendix IX gives a sample calculation using this equation. From this

calculation, it can be concluded that the temperature of the fume particle is the same

as the gas phase temperature and that a 1 atm fume particle should solidify in

approximately 10-5 seconds after the gas temperature falls below the particle melting

point.

PARTICLE GROWTH

Electron micrographs of fume collected from directly above the melt showed

fume particles on the filter as large as 5 prm. The question was raised as to whether

these particles grew to that size in the gas phase or whether small fume particles

deposited on the filter and then fused together to form these larger particles.

Ulrich4 8 derived the following formula for the number of particles in a given

volume:
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N=
6/5

Co 5 (cAt J (38)

This equation shows that the number of particles decreases with time. Once

"N" is calculated, particle sizes can be determined by knowing particle concentration

(weight/volume) and the density of the particle. If it is assumed that the sticking

coefficient, cs, is 1 and that fume particles are initially of molecular size, then it can

be shown that after three seconds in the gas phase (the time needed for the gas to

reach the filter):

average particle radius = 0.45 gm (39)

This matches the experimental value for the particles leaving the reactor.

If the time in the reactor is increased to 50 seconds (the time needed for the

gas to reach the top of the apparatus):

average particle radius = 1.4 gm (40)

Figure 18 shows the theoretically calulated fume particle size in the furnace

for 0 to 50 seconds, if the particles grow by continuous agglomeration. A large part

of the growth is shown to occur in the first 0.1 seconds; even if the gas phase stayed

hot enough for the particles to stick together and bond for the entire residence time,

the particles should not grow to be 5 gm. The conclusion is that the particles on the

filter must have grown after being captured, or the particles were splashed onto the

filter from the bubbling smelt.
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Figure 18. Theoretical particle growth.

TEMPERATURE GRADIENT THROUGH DEPOSITED FUME

As deposits build up on a cooled surface, the rate of heat transfer between the

tube coolant and flue gas will change. This will increase the surface temperature of

the deposit.

Appendix X shows a sample calculation for the surface temperature increase

due to the build-up of deposits on the cooled tubes used in this apparatus. This

calculation used the greatest deposit thickness that was encountered in order to

determine the maximum temperature difference that would be found. The

example shows that the temperature difference through the deposit should never be

greater than 30C. This is a very small difference and can therefore be neglected.
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RESULTS AND DISCUSSION

EFFECTS OF WATER VAPOR

Water vapor in the experimental system was found to affect fume

composition; the fume was less Na2CO 3 and more Na2SO4 when water vapor was

present. Actual precipitator dust is mostly Na 2SO4 and depleted in Na 2CO 3
3 , which

is similar to the experimental results when water vapor is present in the system.

Na2SO4 could be formed by conversion of Na2CO3 fume by SO2 and 02, or by direct

reactions with smelt. Therefore, in actual recovery boilers where water vapor is

always present, more Na 2SO4 fume than Na 2CO3 fume will be found.

FUME DEPOSITION

An initial set of experiments determined the total deposition of fume as a

function of time. The results from this set of data showed that the total amount of

deposited fume is directly proportional to the length of time the tube was in the

apparatus. This indicates that the accumulation of collected fume does not

influence the deposition rate.

Another set of experiments determined fume deposition as a function of

position on the cylinder, at a constant fume generation rate. Na2CO3 fume was

scraped off the cylinder into two piles corresponding to that collected on the

upstream side of the cylinder and that collected on the downstream side (bottom

and top, respectively). It was found that the same amount of fume deposited on

both the upstream and downstream sides of the tube; examples of this are listed in

Table 3. This is one indication that the deposition mechanism could be

thermophoresis; deposition by thermophoresis is independent of location at the

Reynolds numbers used in this study. Deposition by impaction would produce

more deposits on the leading edge.
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Table 3. Deposition as a function of location on cylinder.

Gas temperature = 3100C

Fume,g
Data point Upstream Downstream

1 0.0053 0.0057

2 0.0165 0.0193

3 0.0215 0.0239

4 0.0229 0.0195

5 0.0207 0.0195

Particle size distributions were obtained for Na2CO 3, Na 2SO 4, NaCl, and

Na 2SO4/NaCl deposited fume. These distributions were compared to the

distributions of the generated fume. It was found that, for Na2CO 3 fume, the

generated fume particles and the deposited fume particles had the same size

distribution and the same average size. The same was true for Na2 SO4 fume

particles. No electron micrographs were taken for NaCl generated fume so no

comparisons between generated and deposited fume particle sizes could be made.

NaCl generated fume particles and deposited fume particles, like Na 2CO3 and

Na2SO4 fume, should have the same particle size distribution and the same average

particle size.

Na2CO3 DEPOSITION

The rate of Na2CO 3 deposition was found to be proportional to fume

concentration (all other variables held constant) and unaffected by gas flow rate (all
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other variables held constant). These results are shown in Fig. 19 and Fig. 20,

respectively, and match those predicted by thermophoretic theory. The slope of

Fig. 20 is 0.0020+0.0025 g min/L, which statistically shows that flow rate has little

effect on fume deposition.

Figure 21 shows the dependence of sodium carbonate fume deposition on

tube temperature and bulk gas temperature, at a gas flow rate of 5.9 L/min. DEL T is

the temperature difference between the bulk flue gas and the surface of the tube;

TUBE T is the cooled tube surface temperature. These data points were taken at

three different flue gas temperatures: 2530C, 396°C, and 527°C. A straight line

through the origin is predicted by thermophoretic theory.

The equation for Fig. 21 is:

(AT)
Na2CO3 dep. (g) = 0.0959 TJ 1 

~, tw ) (41)

Dep. time = 15 minutes

Dep. area = 97 cm 2

Fume concentration = 0.0150 g/L

The constant in this equation (0.0959) was calculated by forcing the line

through the origin. It can be shown, by statistical methods, that this is valid at 95%

confidence (see Appendix XI for the calculation); the intercept is 0.00407+0.00698 g.

It can also be shown that, at AT/Tw=0.5, a 95% confidence interval for total fume

deposited is 0.0479+0.0045 g, which is 9.4% above and below the calculated value of

0.0479 g. This calculation is also shown in Appendix XI.
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Figure 19. Effect of fume concentration on Na2C03 deposition.

The total model for sodium carbonate deposition is therefore:

Na2CO3 dep. rate (g/min/cm2 ) = 0.00440 C T~(42)

where:

C [=] concentration in g/L

T [=] °K

An electron micrograph of deposited Na2CO3 fume is shown in Fig. 22.

Particles are smooth and spherical, with no sintering between the particles.
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Figure 20. Effect of gas flow on Na2CO3 deposition.

Na2SO4 DEPOSITION

Figure 23 shows the results of Na2SO4 deposition on the cooled tube, at a gas

flow rate of 5.8 L/min; data points were taken at two different flue gas temperatures:

2380C and 501oC. This demonstrates that Na2SO 4 , like Na2 C03, deposits by

thermophoresis. The equation for Fig. 23 is:

f AT
Na2SO 4 dep. (g) = 0.0964 1 - 1

( [W) (43)
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Figure 21. Effect of temperature on Na2CO3 deposition.

Dep. time = 15 minutes

Dep. area = 97 cm 2

Fume concentration = 0.0158 g/L

As with Na2CO 3 deposition, the constant (0.0964) was calculated by forcing the

line through the origin. This is valid at 95% confidence in this case as well; the

intercept is 0.00145+0.00587 g. At AT/Tw=0.5 the total fume deposited is

0.0482+0.0037 g at a 95% confidence interval, which corresponds to 7.7% above and

below the calculated value of 0.0482 g.
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Figure 22. Deposited Na2CO3 fume.

Na2 SO4 particles were produced from Na2CO3 fume and look like Na2CO3

fume (see Fig. 24). The particles again are smooth and spherical, and no sintering is

observed. It was therefore assumed that they act like Na2CO 3 fume; the deposition

rate was assumed to be independent of gas flow rate and proportional to fume

concentration. The final equation for Na2 SO 4 deposition is:

Na2SO4 dep. rate (g/min/cm2 ) = 0.00419 C (44)

where:

C [=]g/L

T [=] °K
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Figure 23. Effect of temperature on Na2SO4 deposition.

NaCl DEPOSITION

The NaC1 deposition rate was found to be proportional to fume

concentration, as shown in Fig. 25; the deposition rate at a fume concentration of

0.00471 g/L is 3.5 times greater than at 0.00133 g/L. This result was also observed for

Na2CO3 deposition, and is predicted by thermophoretic theory.

Figure 26 shows that NaCI, like sodium carbonate and sodium sulfate,

deposits by thermophoresis but at a much slower rate. These data points were taken

at a gas flow rate of 6.0 L/min and at three different flue gas temperatures: 2530C,

369oC, and 520°C. It is assumed that, like Na2CO3 and Na2SO4 deposition, there is

no relation between deposition rate and gas flow rate.



- 64-

Figure 24. Deposited Na2S0 4 fume.

The equation for Fig. 26 is:

(ATI
NaCl dep. (g) = 0.0201 T I

t w) (45)

Dep. time = 30 minutes

Dep. area = 97 cm 2

Fume concentration = 0.00471 g/L

It is once again valid to force the line through the origin; the intercept is

0.000613+0.00233 g at 95% confidence. At AT/Tw=0.5, a 95% confidence interval for

the amount of fume deposited is 0.0100+0.0013 g, which is 13.0% above and below

the calculated value of 0.0100 g.
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Figure 25. Effect of fume concentration on NaCI deposition.

The final equation, therefore, is:

(AT)
NaCl dep. rate (g/min/cm2 ) = 0.00146 C T (46)

(46)

where:

C[=]g/L

T [=] °K

An electron micrograph of NaCI deposited fume is shown in Fig. 27. This

micrograph shows fume particles approximately the same size as Na2CO3 fume;

however, the NaCl particles show signs of sintering. Sintering was not encountered

in either Na2CO3 or Na2SO4 fume deposition.
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Figure 26. Effect of temperature on NaCI deposition.

Na2SO4/NaCl DEPOSITION

Simultaneous Na2SO4 fume and NaCI fume deposition results are shown in

Fig. 28, with flue gas temperatures of 2480C, 3740C, and 5240C. The equation for this

graph is:

AT I

Na 2SO 4 /NaCl dep. (g) = 0.0824 (47)
24 y ^ [ ^j (47)

Dep. time = 15 minutes

Dep. area = 97 cm2

Fume concentration = 0.0205 g/L
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/ '

Figure 27. Deposited NaCI fume.

The line was forced through the origin; once again this can be shown to be

valid. At 95% confidence, the intercept is 0.00506+0.00722 g. The total fume

deposited at AT/Tw=0.5 is 0.0412+0.0044 g at a 95% confidence interval, which is a

spread of 10.7% around the calculated value of 0.0412 g.

It was assumed that the deposition rate is proportional to fume concentration

and is independent of flue gas flow rate. The final equation is:

Na2SO4/NaC dep. rate (g/min/cm) = 0.00279 C T(48)

where:

C [=]g/L

T [=] °K
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Figure 28. Effect of temperature on Na2S04 /NaCI deposition.

An electron micrograph of Na2SO 4 /NaCl deposited fume is shown in Fig. 29.

Na 2SO 4 /NaCl fume particles are approximately the same size as other fume

particles. Some sintering occurred, but not to the extent that pure NaC1 fume

sintering did.

DEPOSITION RATE COMPARISONS

Table 4 lists all developed rate equations. Rate equations for Na2CO 3, Na2SO4,

NaCl, and Na 2SO4/NaCl deposition by thermophoresis are all of the same form:

IAT)
Dep. rate = KC I T I

t w ) (49)
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Na2CO 3 fume and Na2SO 4 fume, however, deposit at a rate approximately

three times faster than NaC1 and approximately 1.5 times faster than Na 2SO4/NaCl

fume. The reasons for this are discussed below.

Particle Diameter (dp)

It was discussed earlier that, in the particle size range of 0.1 gtm to 1 gm, the

rate of deposition is proportional to diameter. The average deposited particle size

for the four fume species, and their variances, are listed in Table 5. These numbers

show that Na2CO3 fume particles and Na 2SO 4 fume particles are larger than NaCl

and Na2SO4/NaCl particles and therefore should deposit at a faster rate.
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Table 4. Deposition rates by thermophoresis.

Na2CO3 dep. rate (g/min/cm2 ) = 0.00440 C AT J
Na2 SO4 dep. rate (g/min/cm) = 0.00419 C Tw

2 fAT-l
NaCL dep. rate (g/min/cm) = 0.0146 C 

Na2 SO4/NaCI dep. rate (g/min/cm2) = 0.00279 C \~

Table 5. Deposited fume particle sizes.

Species

Na2CO3

Na 2SO4

NaC1

Na 2S0 4 / NaCl

Number

avg. diam., urm

0.32

0.29

0.21

0.24

Mass
95% confidence avg. 

+0.18

+0.20

+0.13

+0.15

diam., um

0.40

0.42

0.27

0.36
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Particle Diffusion Factor (aT

It was discussed earlier that the deposition rate in Gokoglu and Rosner's

equation is proportional to aT. Rosner's equations for Na2 SO4 and NaC1 diffusion

factors are3 9:

aTNaS358
,Na s =4 0.78 T (50)

147
oaNaCl = 0 35 - (aTNaCI = u

* T (51)

where temperature is in °K.

At 5000C,

,Na2O4 =0.33 (52)
*' ̂  (52)

,Na = 0.17(53) (53)

The thermal diffusion factor equations for Na2CO3 and Na2SO4/NaCl were

not listed in Rosner's article3 9. However, the thermal diffusion factors for Na2SO4

and NaCl show that Na2SO4 should deposit faster than NaCl when the particle sizes

are the same. This agrees with experimental results.

If aT and dp are now separated from the constant in the deposition rate

equations (for Na2SO4 and NaCl):

Na2SO4 dep. rate (g/min/cm2) = 0.034 dp C iT (54

NaCl dep. rate (g/)min/cm 2) =0.037 o. dp C ~ (55)

NaC1 dep. rate (g/min/cm2) = 0.037 otT dp C AP p I w ) (55)
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The mass average diameter, not the number average diameter, was used to

determine these new equations. These two equations are now almost identical. It

can be assumed that Na2CO3 deposition and Na2SO4/NaC1 deposition behave

similarly. The equations show that the main factors affecting the fume deposition

rate are aT, dp, C, and AT/Tw, and that all fume deposition in the experimental

apparatus can be written as:

Dep. rate (g/min/cm2) = 0.036 oa dp C ( (56)1 p{ w ) (56)

where:

dp [=] Lm

C [=]g/L

T [=] OK

EXTRAPOLATION TO RECOVERY BOILER CONDITIONS

An equation derived by Gokoglu and Rosner 2 9 for thermophoretically

augmented mass transfer across laminar boundary layers (0<Re<10,000) is:

Dep. rate = Pm V ( J Sth (TW (

The Stanton number, Sth, can be written as:

St - h

pVp (58)

and the ratio of Prandtl to Schmidt numbers is:

- Le
Sc (59)
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This simplifies Gokoglu and Rosner's equation to:

Dep. rate = ih (a(Le)T (0
CP w (60)

and shows that the deposition rate is proportional to the heat transfer coefficient.

For air flowing past a single cylinder 6 1:

hD 0.52= 0.35 + 0.56(Re)
k (62)

For the experimental apparatus, the Reynolds number is 2.5, gas conductivity is

1.4,10-4 cal/cm sec °K, and tube diameter is 2.2 cm. The heat transfer coefficient is

calculated to be 7.9*10-5 cal/cm 2 min °K (Pr=l), leading to the following equation

derived from Eq. 56:

Dep. rate (g/min/cm2 ) = 452 h ca dp C (63)
\ p/ I w )(63)

where:

h [=] cal/cm2 min °K

For air flowing normal to a bank of tubes, a simplified heat transfer equation is62:

hD 0.3 (Re)
k (61)

and boundary layer separation 63 occurs at 1100. For actual recovery boilers, the

Reynolds number is approximately 5000, and tube diameter is 6.4 cm. The heat

transfer coefficient is calculated to be 1.1*10 -3 cal/cm 2 min OK.
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Suppose fume deposited equally on the entire surface of the recovery boiler

bank tube with the following conditions:

1. Na2SO4 fume.

2. aT = 0.41.

3. dp = 0.42 gm.

4. C = 0.05 g/L.

5. Te = 700C.

6. Tw = 180°C.

The amount of fume that should be deposited, calculated by Eq. 63, is:

Dep. rate = 1.0.10 -3 g/min/cm 2 (62)

The actual temperature gradient pattern on the downstream side of the tube,

however, is unknown because of boundary layer separation. Therefore, suppose

fume only deposits on the upstream side of the tube, when 0<110° (see Fig. 1); fume

will then deposit on 220° of the tube or 61 % of the tube surface. The fume

deposition rate would be 61% of Eq. 62, or:

Dep. rate = 6.1,10 -4 g/min/cm 2 (63)

These two numbers bound the fume deposition rate by thermophoresis:

6.110-4 < Dep. rate < 1.0.10-3 g/min/cm 2 (64)

An actual fume deposition rate at the boiler bank inlet 1 under similar conditions is:

Dep. rate = 6.7*10-4 g/min/cm2 (65)



-75-

which is within the calculated bounds for fume deposition by thermophoresis. This

shows that thermophoresis is a main mechanism of fume deposition in a recovery

boiler.

If some fume particles in a recovery boiler agglomerate to sizes as great or

greater than 10 ptm, deposition by particle impaction is still possible. Agreement

between caclulated thermophoretic deposition rates and actual deposition rates,

however, show that this is unlikely.

RECOVERY BOILER DESIGN IMPLICATIONS

There is one main reason for determining the mechanisms responsible for

fume deposition in a recovery boiler: know the controlling parameters and

therefore have the ability to affect the deposition rate by changing these parameters.

Thermophoresis is the main mechanism for fume deposition in recovery

boilers; its controlling parameters are flue gas temperature, tube surface

temperature, particle composition and size, particle concentration, and (to some

extent) gas flow rate. It is impossible to change any one variable without affecting

other boiler operating conditions. For instance, increasing the tube temperature will

result in less fume deposition but the flue gas will be cooled less. Knowledge gained

from these experimental results may be difficult to impliment in an existing

recovery boiler; it would best be used in the design of new furnaces.
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CONCLUSIONS

This thesis has shown that thermophoresis is the main deposition

mechanism for fume particles under the following experimental conditions:

1. Fume particle sizes from 0.1 g.m to 1 pm in diameter.

2. Flue gas temperatures from 2500C to 5800C.

3. Reynolds numbers less than 3 (based on cooled tube diameter).

The following equations were derived:

Na2CO 3 dep. rate (g/min/cm ) = 0.00440 C Tw (66)

2 ATw)(66)

Na2SO4 dep. rate (g/min/cm2) = 0.00419 C IT (67)

2AT
NaCl dep. rate (g/min/cm2) = 0.0146 C T(68)

W) J(68)

AT
Na 2SO4/NaCl dep. rate (g/min/cm2 ) = 0.00279 C T(6

2 ~~4 T^~~~W6 l(69)

where:

C [=] g/l

T [=] °K

It was also found that, during simultaneous Na2SO4/NaCl generation, the

generation of Na 2SO 4 and the generation of NaCl were additive and independent.

The simultaneous deposition of the two compounds, however, were not

independent of each other.
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The general equation for fume deposition in this thesis is:

I AT
Dep. rate = K aT dp C T(70)

T pI w] (70)

which closely resembles Gokoglu and Rosner's equation:

Dep. rate = - (T Le) (71)

The following conditions were used to obtain the experimental result:

1. Fume particle sizes from 0.1 stm to 1 Im.

2. Flue gas temperatures from 250 0C to 580°C.

3. Reynolds numbers less than 3, based on cooled tube diameter.

Other important results are:

1. Gas flow rate has little effect on the deposition rate.

2. The fume deposition rate is the same on the upstream and downstream side of

the cooled cylinder.

3. No fume deposition occurs when no temperature gradient is present.

4. The accumulation of collected fume does not influence the deposition rate.

These results are directly applicable to fume deposition in the generating bank

and the economizer section in recovery boilers, where flue gas temperatures range

from 2000C to 700°C. The Reynolds number in a boiler bank is between 3000 and

5000; the heat transfer coefficient is a function of Reynolds number and the

deposition rate is proportional to the heat transfer coefficient. If the difference in

flow rate between the experimental system and the recovery boiler is taken into

account, the experimental results show close agreement with actual recovery boiler

data.
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If some fume particles in a recovery boiler agglomerate to sizes as great or

greater than 10 gm, deposition by particle impaction is still possible. Agreement

between caclulated thermophoretic deposition rates and actual deposition rates,

however, show that this is unlikely.

Water vapor in the system was found to affect the fume composition; fume

composition was less Na2CO3 and more Na2SO4 when water vapor was present.
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RECOMMENDATIONS

Two future research possibilities arise from this thesis. First, determine, in

greater detail, the reactions of water vapor and fume. This is important because the

composition of the fume has an effect on the deposition rate.

Second, repeat the experiments at a Reynolds number closer to that found in

a recovery boiler (approximately 5000). This will experimentally determine the

effects of boundary layer regimes. Changes would have to be made to the apparatus,

because the present construction of this apparatus limits the gas flow rates. Changes

may be difficult to accomplish. Adding fans above the melt but below the cooled

tube would increase the gas flow rate but would drastically decrease the fume

concentration; increasing the gas flow through the melt would result in much

bubbling and splashing from the smelt.
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APPENDIX I. SYMBOL DEFINITIONS

A = collision constant

c = constant depending on particle size and shape

cs = sticking coefficient

C = concentration of fume in flue gas

Co = number of molecules/cm 3

dp= particle diameter

D = cylinder diameter

Dv = Brownian diffusion coefficient

AE = activation energy

h = heat transfer coefficient

j" = diffusional mass flux of small particles

k = thermal conductivity

km = gas constant for one molecule

K = constant

1i = stop distance of particle

N = number of particles/cm 3

Nu = Nusselt number

PNaCI(T) = equilibrium partial pressure of NaCl at temperature T

P*NaCI(T) = vapor pressure of NaCl and temperature T

Pr = Prandtl number

Q = heat flux

R = gas constant

Sc = Schmidt number

Sth = Stanton number for heat transfer

Stk = Stokes number



-87-

t = time

T = absolute temperature

VT = thermophoretic velocity

V = velocity parallel to wall

x = displacement in time t

XNaCI = mole-fraction of NaCl in the melt

y = direction perpendicular to the wall

OCT = thermal diffusion factor

e = emissivity

Xo = molecular mean free path

g = viscosity of gas

u = kinematic viscosity

p = density

o = Stefan-Boltzmann constant

)o = mass fraction of particles in mixture

SUBSCRIPTS

e = mainstream

m = outer edge of the Brownian diffusion boundary layer

o = normal temperature and pressure

p = particle

w = wall
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APPENDIX II. FURNACE SPECIFICATIONS

ATS, Inc.

Series 3110, Tube Type Laboratory Furnace

6" i.d., 14" o.d., 24" heated length, 28" outside length

1 zone

8400 Watts

230 Volts

Kanthal AL embedded elements for service to 12040C

Type K thermocouples
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APPENDIX III. FILTERING MATERIAL

Gaskets, Inc.

G/I-83 Ceramic Paper

For use up to 1260°C

0.040" thick, 6% binder

It was noticed that, when the paper with binder was introduced into a high

temperature environment, the paper would burst into flames and the organic

binder would burn. The volatilization of the binder also changed the weight of the

paper. For this reason, the paper was heated in a muffle furnace at 9500C for 10

minutes. This eliminated the binder before the paper was used in the experimental

apparatus as a filtering material. Lack of binder did not noticeably affect the strength

of the paper.



-90 -

APPENDIX IV. ELECTRIC HEATER SPECIFICATIONS

Watlow Electric Manufacturing Company

Ceramic Fiber Heaters, Semi-cylindrical, Unit number VS406J06S, Style A

For use up to 10930C

6 1/2" i.d., 10 1/2" o.d., 6" length

750 Watts

120 Volts
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APPENDIX V. Na2CO3 DATA

TEMPERATURE EFFECTS

Melt temperature = 950°C

Deposition time = 15 minutes

Fume concentration = 0.0150 g/L

N 2 +C02 flow rate = 5.9 L/min

Tube T, _K

325

381

388

348

526

533

435

380

669

629

545

562

384

721

818

AT/Tw

0.618

0.381

0.356

0.511

0

0.255

0.538

0.761

0

0.253

0.446

0.456

1.130

0.135

0

Fume wt, g

0.0618

0.0431

0.0367

0.0365

0

0.0347

0.0519

0.0555

0

0.0286

0.0501

0.0472

0.1122

0.0242

0

Gas T, _K

526

526

526

526

526

669

669

669

669

788

788

818

818

818

818
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CONCENTRATION EFFECTS

Melt temperature = 9500C

Deposition time = 15 minutes

N 2 flow rate below melt = 5.37 L/min

AT/Tw = 1.7

N 2 above melt,
L/min

0

0

2

2.5

CO 2 above melt,
L/min

3

3

1

0.5

Fume conc.,
g/L

0.0069

0.0069

0.0115

0.0117

Fume wt,
g

0.0821

0.0578

0.1114

0.1233
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FLOW RATE EFFECTS

Melt temperature = 9500C

Deposition time = 15 minutes

Fume concentration = 0.0150 g/L

N 2 flow rate below melt = 5.37 L/min

AT/Tw = 0.65

N 2 above melt,
L/min

0

0.898

1.45

3.04

3.65

0

CO 2 above melt,
L/min

2.9

2.9

2.9

2.9

2.9

2.9

Total flow,
L/min

8.27

9.12

9.72

11.32

11.92

8.27

Fume wt,

g

0.0608

0.0675

0.0710

0.0707

0.0704

0.0653



-94-

APPENDIX VI. Na 2S0 4 DATA

TEMPERATURE EFFECTS

Melt temperature = 950°C

Deposition time = 15 minutes

Fume concentration = 0.0158 g/L

N 2 +S0 2 flow rate = 5.8 L/min

Tube T, OK

393

364

314

511

654

527

414

403

774

AT/Tw

0.300

0.404

0.627

0

0.183

0.469

0.870

0.921

0

Fume wt, g

0.0262

0.0385

0.0537

0

0.0244

0.0523

0.0853

0.0880

0

Gas T, OK

511

511

511

511

774

774

774

774

774
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APPENDIX VII. NaCl DATA

TEMPERATURE EFFECTS

Melt temperature = 950°C

Deposition time = 30 minutes

Fume concentration = 0.00471 g/L

N 2 flow rate = 6.0 L/min

Gas temp, °K

526

526

526

526

642

642

642

642

793

793

793

793

793

793

793

Tube temp, OK

420

345

329

526

486

409

345

642

536

633

418

593

521

388

793

AT/TN

0.252

0.525

0.599

0

0.321

0.570

0.861

0

0.479

0.252

0.897

0.337

0.522

1.044

0

Fume wt, g

0.0088

0.0114

0.0136

0

0.0081

0.0153

0.0138

0

0.0059

0.0040

0.0152

0.0075

0.0095

0.0235

0
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CONCENTRATION EFFECTS

Melt temperature = 9500C

Deposition time = 30 minutes

Fume conc.,

g/L

0.00133

0.00133

0.00133

0.00133

0.00471

0.00471

0.00471.

0.00471

Gas T,
3K

793

793

793

793

793

793

793

793

Tube T,

OK

593

521

388

793

536

633

418

793

AT/Tw

0.337

0.522

1.044

0

0.579

0.253

0.897

0

Fume wt,

g

0.0015

0.0019

0.0047

0

0.0059

0.0040

0.0152

0
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APPENDIX VIII. Na2SO 4 /NaC1 DATA

TEMPERATURE EFFECTS

Melt temperature = 9500C

Deposition time = 15 minutes

Fume concentration = 0.0205 g/L

(0.0158 g/L Na2 SO4)

(0.00471 g/L NaC1)

N 2 +S0 2 flow rate = 5.79 L/min

Tube T, OK

416

340

331

521

483

408

339

375

647

655

530

419

797

AT/TW

0.252

0.532

0.574

0

0.340

0.586

0.909

0.725

0

0.217

0.504

0.902

0

Fume wt, g

0.0352

0.0445

0.0541

0

0.0408

0.0566

0.0711

0.0560

0

0.0183

0.0392

0.0633

0

Gas T, OK

521

521

521

521

647

647

647

647

647

797

797

797

797
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APPENDIX IX. PARTICLE TEMPERATURE

Calculations to predict the length of time needed for a fume particle to solidify in

the gas phase by heat flux from the particle to the gas.

Q = Eo (Td4 - Tw4) + hc (Td - Te) (72)

E = 0.9 (assumed emmisivity) (73)

o = 1.73,10-9 Btu/hr ft 2 OR (74)

Td = 1910°F (assumed drop temperature) (75)

Tw = 1000°F (assumed tube temperature) (76)

Te = 1550°F (assumed gas temperature) (77)

hc = Nu · (kg/d) (78)

Nu = 2 + 0.51 Re 0 5 (for a spherical particle) (79)

Re = dVp/g (80)

V = settling velocity in Stokes law region

= gd 2p/18g (81)

g = 32.17 ft/sec 2 (82)

d =1 m (particle diameter) (83)

p = 118 lb/ft 3 (gas density) (84)

g = 2.68,10-5 lb/ft sec (gas viscosity) (85)

V = 8.5,10 - 5 ft/sec (86)

Re = 2.1*10 - 7 (87)

Nu = 2.00 (88)
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kg = [cp + (5R/4M)]I. (assume for N 2 at 15500F) (89)

Cp = 7.28 Btu/mole OR (for nitrogen) (90)

R = gas constant (91)

M = molecular weight (for nitrogen) (92)

kg = 3.37*10 -2 Btu/ft hr °R (93)

hc = 2.05*104 Btu/ft 2 hr OR (94)

Q = 7.42-106 Btu/hr ft 2 (95)

Time required to solidify droplet:

t = (mcpAT + mX)/QA (96)

m = 2.42,10-15 lb (mass of drop) (97)

cp = 0.45 Btu/lb °R (specific heat of drop) (98)

AT = 3600F (99)

X = 110 Btu/lb (heat of fusion) (100)

A = 8.5*10 -1 2 ft2 (area of drop) (101)

(102)t = 1.0*10 -8 hr = 3.610-5 sec



-100-

APPENDIX X. TEMPERATURE GRADIENT ACROSS FUME

Calculations to determine the difference in temperature between the tube metal

surface and the fume surface exposed to the flue gas.

T,-T -q oX k (103)

T1 = 111.3°C (wall temperature) (104)

qo = 40,000 Btu/hr ft2 (assumed heat flux) (105)

xo-xl = 9.30.10-4 cm (fume thickness assuming 50% porosity) (106)

F ~)p2/3 +1-p2/3

kcomp = kfumc p2/3 +1p 2/3+p (107)
(107)

kfumc = 0.5 Btu/hr ft OF (108)

v = kair/kfume (109)

kair = 0.0184 Btu/hr ft OF (at 2120F) (110)

p = 0.5 (porosity of fume) (111)

kcomp = 0.22 Btu/hr ft OF (112)

To= 114.40C (113)

This is a temperature change of 3.1°C through the deposited fume.
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APPENDIX XI. STATISTICAL CALCULATIONS

Calculations to determine the validity of forcing lines through the origin.

See Appendix V: Temperature Effects (this data will be used in the following

calculations)

Xi Yj

0.618 0.618

0.381 0.0431

0.356 0.0367

0.511 0.0365

0 0

0.255 0.0347

0.538 0.0519

0.761 0.0555

0 0

0.253 0.0286

0.446 0.0501

0.456 0.0472

1.130 0.1122

0.135 0.0242

0 0
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Using linear regression:

y = 0.004074 + 0.08928x (114)

= 0.389 (115)

SSLo F = j =0.000756 (116)

SSErrr = (Yju Yjf-0 (117)

SSRes = SSLOF + SSError = 0.00756 (118)

DF = 13 (119)

MSRes = SSRes/DF = 5.818,10-5 (120)

S = MSRes = 0.007627 (121)(121)

x ) = 1.34112
(122)

use 95% confidence, (x= 0.05

l E 2
bo = +t0.025,13S - ( )2

OnL,(x3-- -- ) 210(123)

t0.025, 13 = 2.160 (124)

bo = ±0.00698 (125)
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This is larger than the y-intercept of 0.004074. Therefore it is valid to force the line

through the origin.

Spread of data at AT/Tw = Xo = 0.5:

Ys

= 0.00210

Y = Yo t0 0 2513 SA
Yo

(126)

(127)

(128)

y = 0.0479 + 0.0045 [9.4%] (129)


