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ABSTRACT

Mechanisms responsible for fume deposition on kraft recovery furnaces were
studied. The main reason for determining the mechanisms is to understand the
controlling parameters, thereby obtaining the ability to affect the deposition rate by
changing these parameters. The following mechanisms were reviewed and
examined as possible fume deposition mechanisms: molecular diffusion, Brownian
motion, turbulent diffusion, particle impaction, thermophoresis, and vapor

diffusion/crystallization.

Thermophoresis was found to be the main deposition mechanism for fume
particles under the following experimental conditions: |
1. Fume particle sizes from 0.1 pm to 1 um in diameter.
2. Flue gas temperatures from 2500C to 5800C.

3. Reynolds numbers less than 3 (based on cooled tube diameter).

The following equation was derived:

w

T, T
Dep. rate (g/min/cmz) =0.0360.,.d,C ( T J

w

where:

aT = thermal diffusion factor, dimensionless
dp = particle diameter, pm

C = fume concentration in flue gas, g/L

Te = bulk flue gas temperature, absolute

Tw = tube surface temperature, absolute
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This equation applies to NapCO3, Na3SO4, NaCl, and simultaneous NaSO4/NaCl
fume deposition and is similar in form to thermophoretic equations derived by

other authors.

These results are directly applicable to fume deposition in the generating bank
and the economizer section in recovery boilers, where flue gas temperatures range
from 200°C to 700°C. The Reynolds number in a boiler bank is between 3000 and
5000; the heat transfer coefficient is a function of Reynolds number and the
deposition rate is proportional to the heat transfer coefficient. If the difference in
flow rate between the experimental system and the recovery boiler is taken into
account, the experimental results show close agreement with actual recovery boiler

data.

The presence of water vapor in the incoming gas streams to the reactor
affected the fume composition; fume contained less NapCO3 and more Naz504

when water vapor was present during fume formation.



INTRODUCTION

One of the products of black liquor combustion is fume. Fume consists of
very small particles, approximately 0.25 pm to 1 um in diameter; it is mainly
composed of sodium sulfate, sodium carbonate, sodium chloride, and potassium

salts.

Chemical fume formation is of interest because fume is partly responsible for
the fireside deposits formed on the cooled surfaces in the superheater section,
generating banks, and economizer region of the recovery boiler. These deposits
provide an additional resistance to heat transfer, which then affects the heat transfer
rate between the flue gas outside the tubes and the steam inside the tubes. Fume
plugs gas passages and therefore influences the gas flow rate and flow resistance.
Fume and other deposits on recovery boiler surfaces may accelerate corrosion.
Fume in the upper sections of a recovery boiler is also enriched in chloride and
potassium which lower the sticky temperature of the fume and increase the
hardness of the deposit. NaCO3 fume, however, does have the advantage of
reacting with sulfur gases and thereby forming sulfur-containing particles that are

collected by the precipitator.

Because fume deposits have various detrimental effects on the recovery
boiler and its operation, the paper industry would benefit from knowledge
concerning the mechanisms responsible for deposition and these mechanisms'
controlling parameters. Recovery boiler operators would then have the ability to
change the deposition rate by varying these parameters. Conversely, it may be
determined that changing the controlling parameters for fume deposition would

not be beneficial to recovery boiler operation as a whole.



RECOVERY BOILER CONDITIONS _

In order to determine the possible mechanisms for fume deposition in a
recovery boiler, boiler conditions must be known. Average values of these
conditions were obtained from an actual recovery boilerl. According to this data,
the tubes in the boiler bank are 2 1/" in diameter (on the average); they vary

between 2" and 3" in diameter. There is a 4 3/4" spacing between the tubes.

Gas temperatures in the mid-section of the boiler bank range from an
incoming temperature of 700°C to an outgoing temperature of 430°C. Average
temperatures in the economizer section are between 200°C and 400°C. Gas velocities
in the boiler bank are approximately 20 ft/sec, which corresponds to a Reynolds
number of 4800 at a temperature of 540°C. The Reynolds number in this region of
the boiler varies from 3000 to 5000. For fluids flowing normal to a bank of
cylindrical tubes, Re<100 is considered laminar flow. Fully developed turbulent
flow does not exist until Re>10,000; the transition region therefore covers a wide
range of Reynolds numbers - 100<Re<10,000. Flue gas flowing in the boiler bank is

in this transition region.

RECOVERY BOILER FUME

Fume has a high specific surface area due to its submicron size. This makes it
very reactive in the flue gas; most of its alkali compounds are converted to sulfates.
The chemical composition of fume in the generating banks, economizer, and
precipitator is influenced by sulfidity, the chemical composition of the black liquor,

and the bed temperature.

Higher bed temperatures result in more NapCO3 fume formation and less
sulfur in the flue gas. This in turn decreases the NapSOj4 content of the fume2. High

bed temperatures also cause more chloride and potassium salts to vaporize from the



smelt, which enriches the fume with these compounds. Lower sulfidity liquor

- produces less sulfur gases3; this results in a lower Na>SO4 content in the fume.

Reeve ét. al 4>, Tran et. al.67.89, and Isaak10 have obtained data from deposits
in a recovery boiler. They have defined two mechanisms by which deposits can
form:

1. "Carryover” - smelt and/or partially burned black liquor particles physically
entrained in the flue gas.

2. "Condensation" - fume forming either by condensation directly on cooled
surfaces, or indirectly in the flue gas stream (these particles are then transferred to

the cool surfaces).

These authors inserted a probe into the furnace and found that in the lower
superheater, carryover is dominant. Deposits on the upstream side were black, hard,
and thick and consisted mostly of black liquor particles that were entrained in the
flue gas. Deposits on the downstream side were white and thinner, which the

authors assumed to be fume deposits.

Deposition at higher elevations in the superheaters was slightly different. A
layer of white powder, which became thicker with time, was formed on both the
upstream and downstream side of the probe. The deposit thickness was greater on

the upstream side than on the downstream side.

No deposition data was obtained by probe insertion into the upper regions of
the recovery furnace, such as in the generating bank, economizer region, and
precipitator. However, the chemical composition of the deposits in these sections
has been determined. Tran3 found that the chemical composition of the deposits in
the boiler bank, economizer, and precipitator are very similar to each other, but

different from the composition of superheater deposits. Superheater deposits



consisted of approximately 2% carbon, 45% NaySOy, 47% NaCO3, and 6% chloride
and potassium salts. Deposits in the upper boiler sections consisted of 80% Na3SOy,
5% NazCO3, and 15% chloride and potassium salts. This shows that deposits in the
generating bank, economizer, and precipitator are enriched in chloride and
potassium and depleted in NayCO3, which is indicative of fume particles and not
carryover particles. Fume, therefore, is the major constituent of deposits in these

areas.

Bosch et. al.11 have measured particle size distributions in the electrostatic
precipitator. They found particle sizes ranging from less than 0.6 um to greater than
20 pm. Most of the particles were smaller than 1.4 um, with 50% of the collected
weight being composed of particles under 1 pm. Particles at the precipitator outlet

were smaller than at the precipitator inlet.

The authors contributed the wide particle size range to two independent
aerosols being collected: carryover and fume. Carryover particles were assumed to
be the larger particles, but the authors did not state what the carryover particle size
range was. No data were obtained for particle size distributions in the generating
bank and economizer. The fume particle sizes in these regions may be different

than in the precipitator.

NapCOs3, NapSQOy4, NaCl fume, and combinations thereof can all be generated
under ideal conditions on a laboratory scale. The fume composition in the
laboratory can be controlled and varied; however, the fume particle size is, with
éurrent knowledge, impossible to vary. Laboratory fume particles, therefore, may
not be the same size as that found in upper sections of the recovery boiler. The
laboratory fume particle size, for a given fume composition, is constant;

experiments, therefore, at least yield consistent results in terms of particle size.



SODIUM CARBONATE FUME

NayCO3 fume generation occurs when sodium sulfide in a NaS/Nay;CO3
melt is oxidized by air2.12,13; sodium carbonate fume is then produced. Recent work
at The Institute of Paper Chemistry2.12 has shown that NaoCO3 fume is formed by a

liquid phase reaction followed by a gas phase reaction:
4 NapCO3 + NapS <--> NaSO4 + 4 CO7 + 8 Na (1)
207 +4C0Os +8Na <--> 4 NapyCOj3 (2)

All equations in this thesis are stoichiometric equations which do not necessarily

describe the reaction mechanisms.

SODIUM SULFATE FUME

In a recovery boiler, typical fume deposits consist mostly of NaSO4, some
chloride and potassium salts, and only a small amount of sodium carbonate3. Tran3
has shown that the NapCO3/NaSOy4 ratio in deposits decreased as the gases traveled
up the furnace. Tran also states that NapCOj3 can react with SOy and O to form

sodium sulfate by the following reaction?:
2 NayCO3 + 2507 + Oy -> 2NaSO4 + 2C0Oy 3)

These results indicate that, in a recovery boiler, sulfate fume may be formed from

the reaction of sodium carbonate, sulfur dioxide, and oxygen.

SODIUM CHLORIDE FUME
NaCl fume is formed by the vaporization of NaCl from the smelt bed. If
vaporization of sodium chloride is an equilibrium controlled process, the

vaporization rate may be calculated using Raoult's law and assuming that the gas



stream is saturated in NaCl. Raoult's law states (see Appendix I for symbol

definitions)14:

PNaCl(T) = P’ NaCKTXNaCl (4)

The vaporization rate, hence the NaCl fume generation rate, can then be calculated

by the following equation:
vaporization rate = molar gas flow rate »* pNaCI(T) (5)
At 9500C, the vapor pressure of pure NaCl is approximately 4.5 mm Hg.

PARTICLE DEPOSITION MECHANISMS
There are six principal mechanisms by which particles can be deposited from
a high temperature gas stream to a cooler surfacel3.16. These mechanisms are
functions of the gas flow and the particle size. They are:
1. Molecular diffusion.
Brownian motion.
. Turbulent diffusion.

2
3
4. Particle impaction.
5. Thermophoresis.
6

. Vapor diffusion/crystallization.

Flow conditions near the deposition surface are different from those in the
bulk of the moving gas; boundary layers may be laminar while bulk flow is
turbulent. These flow conditions affect the motion of particles approaching the
surface and therefore affect the rate of deposition as well as change the mechanism

of deposition.



On cylindrical surfaces immersed at right angles to the flowing gas, the
thickness of the boundary layer is less on the upstream side and more on the
downstream sidel, as shown in Fig. 1. The thickness of the boundary layer, which
is dependent on such variables as the gas velocity and the cylinder diameter, is an
important parameter in the rate of deposition. The mechanism of deposition may
also be determined by the pattern of the boundary layer, because different
mechanisms are dominant for different boundary layer conditions. The different

deposition mechanisms are discussed below.

Molecular Diffusion

For solid particles in the size range up to 0.1 um, particles behave similarly to
gas molecules. The gas laws based on kinetic theory control the motion of the
particles in much the same way as with gas molecules. Deposition by molecular
diffusion decreases with increasing particle size. Gas velocity has no appreciable
effect on deposition by molecular diffusion because of the particles being on the
molecular size level. As particle size increases, Brownian motion becomes the

controlling mechanism for deposition.

Brownian Motion

Particles in the size range of 1 pm diameter or larger behave as discrete pieces
of matter. Particles in the range of 0.1 um to about 1 um undergo Brownian motion,
where collisiors with gas molecules establish a "random-walk" path. The flow
pattern of these particles depends mainly on the path of the bulk gas stream. Particle

displacement by Brownian motion can be described by the equationl6:
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Figure 1. Boundary layer thickness for cylindrical surfaces.

Deposition by Brownian motion increases as the particle size increases, but

turbulent diffusion or impaction becomes the dominant mechanism for particles
above 1 um in diameter. The exact point that turbulent diffusion becomes the
controlling mechanism over Brownian motion is dependent on the flow system; as
the flow rate increases, turbulent diffusion becomes dominant at smaller particle
sizes. Brownian motion also becomes dominant over molecular diffusion at
smaller particle sizes for greater flow rates. Deposition by Brownian motion can also
be influenced by external forces, such as the presence of an electrostatic field or

gravity18,

Turbulent Diffusion

In turbulent diffusion, particles larger than approximately 1 um enter the
turbulent region directly over a solid surface (between the laminar sublayer and the
bulk gas stream). These particles then move through the laminar part of the
boundary layer to the surface. One method of this transport is explained by Owen;

another method is proposed by Davies and by Friedlander and Johnstone.



Owen1? has found that turbulent bursts sporadically erupt from the laminar
layer. He has therefore proposed that particles are convected to the wall in
downward sweeps. However, Davies20 and Friedlander and Johnstone?! state that
in turbulent diffusion particles pick up kinetic energy from gas eddies present in the
turbulent boundary layer. These particles are then propelled through the laminar

sublayer and onto the surface.

By using particles between 0.8 um and 2.63 pm, Friedlander and johnstone21
studied the deposition of particles by turbulent diffusion. Brownian motion was
made negligible by using this particle size range and by using high stream velocities.
The experimental apparatus consisted of a circular tube with the gas and particles
flowing through the center, and Reynolds numbers varying between 8000 and
50,000. Deposition took place on the sides of the tube, and the authors determined
the deposition rates as a function of distance from the inlet; in this way they could
follow the development of the turbulent boundary layer. Their results show that
deposition occurs only in fully developed turbulent flow. Deposition by turbulent
diffusion is a function of both Reynolds number and particle size; deposition
increases as both the Reynolds number and particle size increase. Deposition by
turbulent diffusion overlaps with deposition by particle impaction; the point at
which impaction becomes dominant is a function of system parameters such as flow

rate and particle size.

Particle Impaction

Larger particles, on the order of tens of microns in diameter, receive sufficient
kinetic energy from the main gas stream for the particles to follow a different path

from the propelling gas stream. Particles receiving this kinetic energy are then
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relatively unaffected by minor changes in gas direction. Inertial impaction is

influenced by gas velocity and the diameter of the collector.

The efficiency of collection of particles due to impaction has been studied by
many authors. Fuchsl18 states that in the case of purely inertial deposition on a
cylinder the collection efficiency depends only on the Stokes number:

21

Stk = —
D (7)

where the stop distance, l;, is defined as:

v d
| = ”Ppp

P18 ~ 8)

The Stokes number, when related to efficiency of inertial deposition on a
cylinder, yields results shown in Fig. 2. Theoretical collection efficiency is defined as
the fraction of particles in the gas volume swept by the cylinder which will impinge
and stick on the cylinder. At large values of Stk, the collection efficiency is close to 1;
at values less than 0.2, the efficiency approaches zero. For recovery boiler fume (flue
gas velocity=20 ft/sec, d=0.5 um, pp=2»106 g/m3), Stk=104; efficiency for inertial
deposition of fume is very close to 0. Efficiency will increase as velocity, particle

size, or particle density increases.

Thermophoresis

The movement of aerosol particles due to non-uniform heating of these
particles is caused by radiometric forces. Radiometric forces may be caused either by
illumination of particles from one side (photophoresis) or by a temperature gradient
(thermophoresis)18. Photophoresis is due to the gas molecules rebounding from the

hotter, illuminated side of the particle with greater velocities than from
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Figure 2. Efficiency for inertial deposition on a cylinder.

the unilluminated side. Particles therefore move away from illuminated, hotter

surfaces.

Thermophoresis is the result of gas molecules impinging on the particle from
opposite sides with different mean velocities. The molecular bombardment of the
particles is more energetic on the hot side than on the cold side, which causes the
particles to migrate toward the cooled regions20,22,23,24. This will cause particles to

be deposited on surfaces that are colder than the gas phase.

Temperature gradients are present around all tube surfaces in the generating
bank and economizer regions, with the tubes being cooler than the bulk flue gas.
Therefore, if a radiometric force causes fume deposition in the upper sections of a
recovery boiler, deposition would be caused by thermophoresis and not by

photophoresis.

Wood?? states that particles which reach the edge of a thermal boundary layer
by other mechanisms, such as Brownian diffusion or turbulent diffusion, are

subjected to thermophoretic effects because of the large temperature gradient
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existing in the boundary layer. Wood's work , and work by others25,26,27,28 has
shown that deposition by thermophoresis is most important for particles between
0.1 um and 10 pm. In this size range, thermophoresis is dominant over Brownian

motion and the particle size is too small for impaction to be a major mechanism.

The total mass flux for a molecular species is given by the equation29.30,31:

j" = DV (V(Dl + (XTVII'IT) (9)
where the first term is due to Brownian diffusion through a concentration gradient
and the second term is due to thermophoresis. This equation applies to particle
sizes ranging from vapor molecules up to the size threshold for inertial
effects29.32,33. For mass flux of fume particles at the cooled tube surface, this

equation can be rewritten as:
) 20} oInT
jw = waw Sy +0T,W(DW 8y
w W,

Gokoglu and Rosner?? attempted to solve this equation mathematically by

(10

asymptotic analysis, which uses a boundary condition of wy=0. This boundary
condition, however, would cause elimination of the thermophoretic flux term (the
second term in brackets). Therefore, they instead visualized the mass transfer
boundary layer to consist of two regions: an exterior region where the mass
transport mechanisms are convection and thermophoresis, and an interior region
(Brownian diffusion sublayer) where Brownian diffusion becomes important. The
Brownian diffusion sublayer thickness is very small and the mass flux to the wall
was calculated to be approximately the same as the mass flux through the Brownian

diffusion sublayer. Equation 10 can therefore be written as the mass flux through
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the Brownian diffusion boundary layer (subscript m) instead of as the mass flux at

the wall (subscript w). Equation 11 can now be mathematically solved:

. S SInT
jw = mem 5}’ + a'r,mmm 8y

(11)
dInT
Jw = memo‘T,m(")m 5}’
m (12)
where the thermophoretic velocity, v, is defined as:
SInT
VT = -DV(XT Sy (1 4)

Many authors have published equations, either empirical or theoretical, for
thermal velocity. Table 1 lists these authors and their equations. Most

authors?8.,35,36,37,38 simply state that:

=
1T 9

|

(15)

where K is a function of particle size, particle thermal conductivity, pressure and
molecular mean free path28,3536,37.38_ - Homsy et. al.36 theoretically calculated that
the particle flux to the wall is independent of the nature of the flow; the particle
flux depends only upon the physical properties of the gas and particles, and the

temperatures of the gas and collector surface.

Both Gokoglu and Rosner2? and Smith26 have derived expressions, not
containing the temperature gradient form, for thermophoresic velocity. These lead

to the following two expressions for particle flux:



Table 1. Thermophoretic Velocity Equations.

Authors

Rosenblatt and LaMer38, 1946

Smith26, 1952
Derjaguin et. al.37, 1976
Goren3>, 1977

Walker et. al28, 1979

Vermes34, 1979

Homsy et. al.36, 1981

Gokoglu and Rosner29, 1986
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(Do)
];v = Pm®m ' , Elg][ ]
Smith: \ 4 JID 17)

It is seen that many parameters affect the deposition rate. Some of these

factors and their effects will now be discussed.

Particle Concentration (w)

Both equations agree that the deposition rate is proportional to particle
concentration in the gas. The deposition rate will double when the particle
concentration is doubled. Obviously, no deposition will occur when the

concentration of particles in the gas mixture equals zero.

Particle Diameter (dp)

Smith's equation predicts that the deposition rate is proportional to particle
diameter for all particle sizes. Gokoglu and Rosner's equation also predicts that the
deposition rate will increase with increasing diameter; however, this fact is hidden
in the Prandtl, Schmidt, and Stanton numbers. Gokoglu and Rosner show that the
net result is, for particle sizes between 0.1 pm and 1 um, the rate of deposition is

proportional to particle diameter.

Gas Flow Rate (V)

Smith's equation shows no effect of gas flow on the deposition rate; Gokoglu
and Rosner's equation shows a linear relationship (0<Re<10,000, based on tube
diameter). Gokoglu and Rosner's equation, however, is a function of the Stanton

number. The Stanton number is inversely proportional to flow rate. The result is
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that the gas flow rate should have no significant effect on the rate of deposition by

thermophoresis.

Temperature (T)

Gokoglu and Rosner's equation shows a deposition rate proportional to
(Te-Tw)/Tw. This is consistent with the definition of v, which most authors define
to be proportional to 6InT/dy. Smith's equation, however, predicts a deposition rate

proportional to the temperature difference.

Thermal Diffusion Factor (o)

The thermal diffusion factor of a particle is a property that will result in
different compounds depositing at different rates. It is a dimensionless number and
is a function of a particle's molecular properties such as M (molecular weight), ¢
(Lennard-Jones molecular size parameter), € (Lennard-Jones molecular interaction
energy paraimeter), and local temperature3?. The magnitude of this number for
most fume compounds range from 0.01 to 1. Gokoglu and Rosner's equation shows
that the deposition rate is linear with respect to ar. Smith's equation shows no

dependence; it is unknown how Smith deals with differences between compounds.

Vapor Diffusion/Crystallization

W1\1en vapor species are present in the gas phase, these constituents are
transported across the thermal boundary layer to the tube surface. The mass transfer
of volatilized species to a cooled target is due to the difference in partial pressures of
the vapor in the bulk gas and that at the deposit surface. If the vapor pressure of the
vapor species in the boundary layer gas equals or is greater than the equilibrium

vapor pressure at the surface temperature, condensation occurs32.

Sodium sulfate is one such compound that can deposit by crystallization.

Brown!15, Kohl et. al32, Rosner and Liang40, Raask41, and Bishop#? studied this
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deposition and their results indicate the existence of a "dew point" - the surface

temperature above which the deposition rate decreases.

Similar results were obtained with other vapor species. Kohl et. al.32, Rosner
and Liang40, and Raask4! studied alkali sulfate vapors other than sodium sulfate
(such as CaSOy4 and KS04). Bishop et. al.4243 studied the deposition of NaCl, and
Seshadri and Rosner44 studied B2O3 deposition. All these authors' results show the
existence of a dew point, dictated by thermodynamic factors and strongly influenced
by transport and kinetic restrictions. If the gas phase temperature is below the dew
point, liquid droplets or solid particles will form in the gas. Particles will then be

transported to the cooled tube surface by thermal forces and not by vapor diffusion.

Authors disagree on the effects of surface temperature on deposition rate
when the temperature is below the dew point. Kohl et. al.32 and Seshadri and
Rosner44 show that the deposition rate increases linearly with decreasing collector
temperature, as shown in Fig. 3. Brown!3, Rosner and Liang40, Raask41, and Bishop
et. al.424345 show that the rate of deposition is constant for most temperatures
below the dew point, which is depicted in Fig. 4. The important conclusion from all
these studies, however, is the realization that a dew point temperature exists. If no
deposition occurs above a certain temperature but does occur below this
temperature, then vapor diffusion/crystallization is a possible and probable

mechanism.

AEROSOL PARTICLE SHAPE AND MORPHOLOGY
It has been found that the shape of deposited particles differs with the particle
formation method. Brownl!5, Kohl et. al.32, and Bishop et. al.4243:45 have shown in

their studies that deposition by vapor diffusion results in crystalline deposits. This
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dep rate

Tw

Figure 3. Deposition due to vapor diffusion/crystallization, #1.

dep rate

Figure 4. Deposition due to vapor diffusion/crystallization, #2.

was determined by electron microscopy. Depending on the surface temperature,

these crystals were dendritic crystals or elongate square-ended crystals.

Ulrich et. al.46,47,48,49 and Medalia and Heckman®0 have studied the growth
of submicron particles in the gas phase. Their results show that particles, already
solid in the gas phase, formed deposits that consisted of aggregates of spherical

particles. Particle shape was determined by electron microscopy.
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These results show that the structure of the deposited particles is an
indication of how the particles were formed.

POSSIBLE FUME DEPOSITION MECHANISMS

Sodium Carbonate Deposition

Previous studies?.12 indicate that solid sodium carbonate fume particles are

formed in the gas phase over the smelt bed by the stoichiometric reaction:
072 +2C0O2 +4Na <--> 2NayCO3 (18)

Weaver et. al.51 has stated that NapCOj3 is unstable as a vapor and exists only
as a solid and liquid; Motzfeldt>2 states that there should be no chance for
significant dissociation at any temperature below 800°C. Recovery boiler smelt is
mainly NapCO3, which is another indication that very little sodium carbonate
decomposes; otherwise, the smelt would contain smaller amounts of NapCO3. If

dissociation did occur, it would be according to the reactions>2.53;
2 NapCO3( <--> 2 NapOl) + 2 CO,(®) (19)
2N a0l <--> 4 Na(® +O,(8) (20)

. The incoming gas temperature to the boiler bank is below 800°C, and the
melting point of sodium carbonate is 851°C. At 851°C, the partial pressure of CO;
due to NapCO3 decomposition is 106 atm, and the partial pressure of NayO is
10-3 atm. This indicates that if Oy, COj, and Na were all present in the gas phase,
NapCO3 would be present as solid particles as the flue gas entered the boiler banks
and economizers. This makes vapor diffusion/crystallization an unlikely

mechanism for NapCOj3 fume deposition.
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As mentioned earlier, NapCO3 fume particles have been found to be
approximately 0.5 um in diameter. Deposition by molecular diffusion can therefore

be eliminated as a possible mechanism, because fume particles are too large.

It was also mentioned earlier that the Reynolds number in the boiler bank is
between 3000 and 5000, which is considered to be in the transition region between
laminar and turbulent flow. Friedlander and Johnstone2! reported that deposition
by turbulent diffusion only occurred in fully developed turbulent flow. Vermes'
calculations34 for deposits on cooled turbine blades, at Reynolds numbers between
15,000 and 20,000 (based on blade length), show that thermophoresis is much more
significant in causing deposition than turbulent diffusion. If this is true for these
high Reynolds numbers, then thermophoresis must be dominant over turbulent
diffusion at lower Reynolds numbers; deposition by turbulent diffusion decreases as
the Reynolds number decreases while deposition by thermophoresis remains
relatively unaffected. Turbulent diffusion, therefore, can also be eliminated as a

possible mechanism for sodium carbonate deposition.

Deposition by inertial impaction has been found to be important only for
particles greater than 10 pm in diameter34.39,54.55; the exact particle size that
impaction becomes dominant is dependent on gas velocity. This mechanism will
not contribute to deposition of NapCOj3 fume particles in the recovery boiler unless

Na>COg3 fume particles agglomerate to form clusters 10 pm in diameter or larger.

Thermophoresis has been shown to be a large contributer to deposition in the
particular size range of fume particles. Brownian movement may account for
deposition of some fume particles, but deposition by this mechanism compared to
thermophoresis is small>6. Gokuglu and Rosner2? show that thermophoresis causes

a marked increase in deposition compared to deposition by Brownian motion alone.
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This increase can be as much as 1000-fold for 1 um particles30,34,54,55, All these
results indicate that deposition by Brownian motion is negligible for deposition on

cooled tubes.

The main mechanism for Na,CO3 fume deposition, therefore, is likely to be
thermophoresis. All other mechanisms will play only a minor role, if any, in

deposition.

Sodium Sulfate Deposition

Sodium sulfate's dew point is its melting point (882°C) at 0.15 mm Hg; it rises
to 1371°C at 1 mm Hg. If 70% of the fume in the recovery furnace was present as
NaySO4 vapor, the vapor pressure would be 0.5 mm Hg and its dew point would be
approximately 1200°C. This temperature is hotter than generally found in a
recovery boiler, which explains the presence of NaSOy4 particles even in the lower
sections of the recovery boiler. Therefore, thermophoresis is the likely mechanism
for sodium sulfate deposition in all sections of the recovery boiler unless large

amounts of agglomeration occur and cause deposition by impaction.

Maule57 has shown that carbonate conversion to sulfate is dependent on SO
concentration, time, and temperature. He also found that sintering of the solid
particles, which causes small particles to fuse into larger agglomerates, occurs during
the reaction. It has already been stated that particle size affects the deposition rate; if
the particles agglomerate, the deposition mechanism as well as the rate might

change.

Sodium Chloride Deposition

Sodium chloride fume has a melting point of 801°C and is initially présent in
the boiler as a vapor. Temperatures in the superheater section are above the NaCl

melting point; Sodium chloride should deposit in this area by crystallization or not



at all. Temperatures in the upper sections of a furnace generally are below the
melting point of NaCl. NaCl fume should condense from vapor while still in the
flue gas; it should then be transported to the cooled surfaces in the boiler bank and
economizer sections by the same mechanism as sodium carbonate and sodium

sulfate deposition.

RESEARCH APPROACH AND OBJECTIVES
The objective of this research is to develop a model for fume deposition in
the boiler banks and economizer. This required the following experiments:

1. Determine if solid particles are present in the gas phase above the smelt surface.
This was accomplished by placing a filter directly above the smelt bed. If no
particles are present, deposition by thermophoresis or any other solid particle
mechanism is impossible.

2. Determine fume generation rate for NapCOj3, NaSO4, and NaCl under a range of
experimental conditions. The rate of fume deposition can then be related to gas
phase fume concentration.

3. Determine what mechanisms are responsible for NapCO3, NaSO4, and NaCl
deposition in the upper sections of a recovery boiler and develop a mathemetical

model.

Thermophoresis seems the likely mechanism for fume deposition; its
controlling parameters are flue gas temperature, tube surface temperature, particle
composition and size, particle concentration, and possibly gas flow rate. The
experimental study was set up to determine the effect of these variables on
deposition rate and therefore to ascertain whether thermophoresis is the actual

controlling mechanism.
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There are limitations to the experimental system. First, the flue gas flow rate
through the experimental system was very limited. Only a Reynolds number of less
than 3 (based on cooled tube diameter) could be obtained because of the method of
fume generation that was chosen. Gas was bubbled through the smelt to generate
fume, and this gas flow was limited because higher flow rates through the melt
caused excessive bubbling and splashing of the smelt. The apparatus could not be
necked down to a small enough diameter to create turbulent flow; an apparatus
diameter of 0.01 inches would have been required. This method of fume generation
was chosen, however, because of the excellent control over fume composition and
fume purity at these low gas flow rates. Flow differences between the experimental
system and an actual recovery boiler may result in differences between calculated
and actual deposition rates. Gas velocity was still studied as a variable, but only

within the range that the apparatus could handle.

Second, the experimental particle size could be measured but not varied.
Particles in the recovery boiler may be agglomerating which will once again cause

differences between experimental results and recovery boiler data.

Particle composition was varied by studying NapyCO3, Na5SOy4, NaCl, and
simultaneous Na504/NaCl fume deposition. Flue gas temperature and tube
surface temperature dependence was determined for all four types of fume

deposition.

Fume concentration dependence was determined for Na2CO3 and NaCl fume.
Both deposition rates were found to have the same concentration dependency;
NapSO4 and NaSO4/NaCl fume deposition was assumed to follow this dependency

as well.
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The dependence of fume deposition on gas flow rate was also determined for
only NaCO3 and NaCl fume. Once again, it was assumed that Na;SO4 and

NaS04/NaCl fume deposition would have the same dependency.



EXPERIMENTAL METHODS

EXPERIMENTAL SYSTEM

The experimental system used to generate fume particles is shown in Fig. 5.
Ceramic alumina crucibles (4 5/1¢"i.d., 4 1/2" 0.d., 15" height) were used to contain
the molten smelt. These crucibles could withstand exposure to molten salts over
the experimental temperature range and were not reactive with the smelt. The
crucible was contained in a stainless steel retort (53/g"i.d., 51/2" 0.d., 27" height)
which was then placed inside a tubular furnace. Exact specifications of this furnace
and retort are listed in Appendix II. A small clearance was present between the
crucible and retort and between the retort and furnace, which allowed nitrogen to be
purged through these areas. Figure 6 is a schematic of the crucible-retort-furnace

design.

All gases were obtained from pressurized gas cylinders, and the volumetric
flow rates of these gases into the reactor were determined by dry-gas meters. Two
mercury manometers, one connected to the N7 line and one to the CO; line, were
used as safety valves. The N3 and air streams were mixed before reaching the
reactor. This gas mixture then flowed into the crucible by means of a ceramic purge
tube (18" long, 3/1¢" i.d., 1/4" 0.d.) which extended into the molten salts and caused
mixing of the reactants. The CO; could be introduced into the reactor in two ways:
either into the N»y/air stream so the CO; would flow into the crucible below the

melt, or above the melt so the CO; would be mixed with the flue gas in the reactor.

A K-type thermocouple (1/g" diameter), good for a temperature range of up to
1400°C, monitored the molten salt temperature. The thermocouple was contained

in a ceramic tube (18" long, 1/4"i.d., 3/4" 0.d., closed at one end) which extended into



-26-

a|qIonIo

-— owesd)

- 19AS7 1B

yojey

-
[EEHS

-pooH o1

18pullho
apIXoiq uoqien

X

JapuyjAo
Iy

=
X

Js1swouepy b6

19putjho
uabosN

slialaN
MO|4 SSBN

‘Figure 5. Fume generation system.
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Figure 6. Crucible-retort-furnace schematic.
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the smelt. Generated fume and flue gas was vented to the hood after leaving the

reactor.

CHEMICALS
The following chemicals were used:
1. NapyCOgs, anhydrous, granular, reagent grade.

2. NajS5, reagent grade.

Sodium sulfide was purchased as NayS-9H0O; the water must be removed
before placing the NayS in the furnace. Water was removed by drying the sodium
sulfide in a vacuum oven with a nitrogen purge. The oven was brought to a drying
temperature of 190°C within a span of approximately six hours and was kept at
190°C for 24 hours. The long heat-up time prevented excess splashing of the water
in the sulfide. The resulting chemical was dry NajS, which was then coarsely

ground with a mortar and pestel in a glove box.
In this thesis, all flow rates listed as L/min are standard liters per minute.

EXPERIMENTAL PROCEDURE

In most runs, 2200 g (20.8 moles) of sodium carbonate were placed in the
crucible. The crucible, contained in the electric furnace, was brought to the reaction
temperature within a span of ten to twelve hours to decrease the chance of the
crucible cracking. During the heat-up period nitrogen was continuously purged
through the inlet tube under the NayCO3 surface at a rate of 0.2 L/min, thus
preventing inlet tube plugging. A nitrogen purge was also present both inside and

outside the retort, preventing excess corrosion of the retort.

After the crucible temperature was stabilized at the reaction temperature,

approximately 200 g (2.6 moles) of dry NajS were added, through a 2" diameter hole
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in the retort cover, to the molten NapCO3. The Ny, air, and CO; flow rates were

then brought to the levels to be used during the experiments.

Once the system reached steady state with these new flow rates, experimental
data were taken. The run was continued until all the NasS had reacted with the
incoming air; another 200 g NajS was then added and the run continued. NasS was
added to the smelt as many times as necessary so a complete set of data could be
obtained. Cameron's work?2 has shown that the level of sulfide and sulfate in the
melt has no significant effect on the rate of fume generation. Therefore, the
addition of NayS during the course of the experiment did not change the fume

generation rate.

RADIANT ENERGY EFFECTS

Radiant energy from smelt beds or smelt pools have been found to affect gas
phase thermocouple readings. An unshielded thermocouple would be expected to
measure a higher temperature than a shielded thermocouple. This is especially true
at higher temperatures and in close proximity to the smelt bed. Therefore, the effect

of radiant energy on the experimental gas phase thermocouple must be determined.

In order to determine the radiant energy effects on a gas phase thermocouple,
an aspirated thermocouple was constructed. The thermocouple, shown in Fig. 7,
was surrounded by a stainless steel tube (3/14" i.d., 1/4" 0.d.) with small holes drilled
into the bottom of the tube. Suction was placed on the top end of the tube, so the
flue gas was drawn through the bottom of the tube and forced into contact with the
thermocouple end. The tube shielded the thermocouple from radiation effects.
This shielded thermocouple was placed directly into the furnace at different levels

above the melt.
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Thermocouple

-
Suction

}——— Radiation Shield

Reactor Gas

Figure 7. Aspirated thermocouple design.

The temperatures obtained from the aspirated thermocouple were compared
to the values obtained from an unshielded thermocouple placed in the reactor in
the same manner as the aspirated thermocouple. The difference in the measured
temperatures from the two thermocouples would be due to this radiation. The
thermocouples were documented to be accurate to 0.75%, or 6°C at a temperature of

8000C.

No fume was generated for this experiment, but N, was continually purged

into the smelt at a flow rate of 3 L/min. Nitrogen flow was used so there would be
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an upward flow of gases past the thermocouple. The rate of suction was 8 L/min
which produced a Reynolds number, past the thermocouple end, of 450,000. This

insured that the gas phase temperature was actually being measured.

Radiant energy was found to have a minimal effect on the gas phase
thermocouple reading, as shown in Fig. 8. If thermocouple accuracy is taken into
account, the difference between the two thermocouple readings can be considered
negligible below a temperature of 800°C. At 600°C, the thermocouple accuracy is
4.50C; Fig. 8 shows a measured temperature difference, between the two
thermocouples, of less than 4.50C. Gas temperatures above 600°C were never
encountered during fume deposition for this thesis; therefore, a shielded

thermocouple was not required.

FUME GENERATION

The objective of these experiments was to model the fume generation rate in
terms of gas flow rates, melt composition, and melt temperature. This model could
then be used to determine deposition rates as a function of fume concentration. The
experimental furnace used to generate fume is shown in Fig. 9. The fume was
caught on a 3" diameter glass microfiber filter, which could easily be disconnected
from the system. This filtering system, shown in Figure 10, consisted of poly-flo
tubing leading from the reactor to the filter, and a "filter holder" which held the
filter in place. The fume generation rate was calculated by weighing the fume that

was collected in a given time span.

[N

The tube leading from the reactor to the filter tended to plug with fume. For
this reason, a 2" hole in the retort cover was used as a "relief hole" with a metal

weight placed over the hole. When the outlet tube become plugged, the metal
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Figure 8. Effect of radiation shielding.

weight shifted and allowed gases to escape through the relief hole. The outlet tube

was then cleaned and the experiment continued.

The fume that plugged the outlet tube built up over the course of about an
hour. The amount of fume needed to plug the tube was on the order of the amount
collected on the filter for one data point, with the potential for obtaining 50 data

points per hour. The fume caught in the line can therefore be considered negligible.

Using this approach, fume generation rates were measured for Na;CO3,
NajSO04, and NaCl generation under different experimental conditions and for

simultaneous NaSO4/NaCl generation under one specific set of conditions.
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Figure 9. Furnace for fume generation.

Filter

To Hood

b

From Reactor

Figure 10. Schematic of fume filter.



It was assumed that very little fume collects on the sides of the reactor
compared to the amount of fume that is collected on the filter. This amount was
not measured but it was noticed that, once the apparatus was dissassembled after a
complete experimental run (about three hours of fume generation), very little fume
had deposited on the reactor sides. The amount of fume collected is therefore

considered equal to the amount of fume generated.

Na2C03 Generation

For NayCOj3 generation, the following range of variables was used:
1. 2.02-6.18 L/min N7 under melt surface.
2. 0.19-0.87 L/min Oz under melt surface.
3. 900-1030°C melt temperature

The following equation was developed:
Fume gen. (g/min) = 20.19 » 020-218 » N0.915 « ¢-15690/RT (21)
The flow rates are in liters/minute and the temperature is in °K.

The rate of fume generation was also found to decrease with increasing CO»
concentration. A comparison of this equation to that obtained by Cameron? at The
Institute of Paper Chemistry, and the error limits associated with these equations

will be discussed later.

Various analyses were performed on the generated fume. An x-ray
diffraction pattern showed that NapCO3 fume molecules were crystalline in nature,
not amorphous. A scanning electron micrograph showed that the fume particles
were approximately 0.5 um in diameter, and ranged from 0.25 um to 1 um in

diameter (see Fig. 11). The particles were smooth and round, which implied that



-35-

Figure 11. Generated NapCO3 fume.

individual particles froze from a liquid phase. The particle size, found by image

analysis, was 0.30 pm with a variance of 0.0051.

NaSO4 _Generation

For NaySO4 generation, SO; was added above the melt surface. The objective
was to determine a set of conditions where the majority of sodium carbonate would
be converted to sodium sulfate within the first minute. It would therefore be
known that the conversion took place in the gas phase and not on the deposition
tube. The range of variables studied was:
1. 1.79-5.37 L/min N3 under melt surface.
2. 0.21-0.63 L/min O under melt surface.
3. 0.0023-0.0320 L/min SO above melt surface.
4. 0.50-7.07 L/min N7 above melt surface.

5. 950°C melt temperature.
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The SO and N3 above the melt surface was from a N/SO; gas cylinder,
0.45% SO3. It was found that, in the time it took for the fume particles to reach the
filter (approximately 15 seconds), over 70% of the NapCO3 had reacted to form
Na3504 under the following conditions:
1. 1.79 L/min N7 under melt surface.
2. 0.21 L/min O under melt surface.
3. 0.02 L/min SO above melt surface.
4. 3.98 L/min N above melt surface.

5. 950°C melt temperature.

This set of conditions was used later during the experiments concerning
NazSO4 deposition. These conditions also produced the same flow rate and fume

concentration as used during Na;CO3 deposition.

Electron micrographs of NaSO4 fume, collected from the flue gas, showed
particles very similar to NapCO3 fume. The particles were smooth and spherical,
and ranged from about 0.25 um to 1 um in diameter (see Fig. 12). The particle size

was 0.29 um with a variance of 0.0061.

NaCl Generation

For NaCl generation without sodium carbonate or sodium sulfate generation,
all NazS present in the melt was first converted to NaSO4. NaCl was then added to
the melt. Nitrogen was purged through the system and NaCl vaporized into this N>
stream; the flue gas cooled as it travelled up the apparatus which caused the sodium
chloride to condense. Condensed NaCl was then collected on a filter in the same

manner that Na)CO3 and NaySO4 were collected.
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Figure 12. Generated NaSO4 fume.

The range of variables was:
200 & 1000 g (13 & 42 mole %) NaCl in melt.
2.00-8.00 L/min N> below melt surface.
. 0-4.00 L/min N7 above melt surface.

. 9500C melt temperature.

The predicted fuming rate, using Raoult's law and assuming that the

concentration of NaCl in the gas phase is in equilibrium with the concentration in

the melt, was different than the actual fuming rate. If the total N2 flow is used in

the calculation, the predicted fuming rate is approximately 45% higher than actual;

if only N flow below the melt is used in the calculation, the predicted rate is

approximately 50% lower than observed. This suggests that the gas phase is not in

equilibrium with the melt due to nitrogen being added above the melt surface.
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Although no electron micrographs were taken of generated NaCl fume, other
work at IPC58 has shown that NaCl fume consists of spherical particles
approximately 0.25 pm to 1 pm in diameter. This result is the same as that for
NapCO3 and NaSO4 fume generation; NaCO3 and NaSO4 fume particles were

spherical and 0.25 pm to 1 pm in diameter.

NaySO4 /NaCl Generation

For simultaneous NaSO4 and NaCl generation, the melt consisted of
NapCOs3, NajS5, and NaCl. Nitrogen and air were bubbled through the melt to
generate both NapCOj3 fume and NaCl fume; SO, was added above the melt surface
to convert NapCO3 to NapSOy4. The set of variables was:

1. 1000 g (42 mole %) NaCl in melt.

1.79 L/min N7 below melf surface.
0.21 L/ min O> below melt surface.
0.0018 L/min SO, above melt surface.

4.00 L/ min Ny above melt surface.

A S

950°C melt temperature.

The large mole % NaCl was used to produce a large enough generation rate
for accurate measurement. This amount produced a NaCl generation rate one-third

that of the Na;SO4 generation rate.

It was determined that NaSO4 fume generation and NaCl fume generation
are independent reactions; the fume generation rates were found to be additive
within 1% error. The generation rate of sodium sulfate fume (in a system with no
sodium chloride fume generation) plus the generation rate of sodium chloride
fume (in a system with no sodium sulfate fume generation) was the same as the

total generation rate when both NaSO4 fume and NaCl fume were being produced.
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An electron micrograph of combined Na3;SO4/NaCl fume is shown in Fig. 13.
These particles looked very similar to NapSO4 fume; particles were smooth and
spherical with a size range of 0.25 um to 1 pm in diameter. Each fume particle was
found, by energy dispersive spectrometry, to contain both NaCl and Na>SO4. No
particle was pure NaCl or pure NaySOjy. It is unknown, however, if these two
compounds are randomly placed throughout the particle or if one compound

formed over the other compound.

FUME COLLECTION DIRECTLY ABOVE MELT

In order for fume to deposit by thermophoresis, solid particles must be
present in the gas phase above the smelt bed. These solid particles could be caught
by a filter placed directly in the furnace. Solid particles, if any are present in the flue
gas at these elevated temperatures, would become entrapped on the filter; the flue

gas and any vapor would pass through.

This set of experiments was therefore designed to capture fume particles at
the elevated temperatures directly above the melt. Fume was collected by placing
the filter in the furnace and drawing a suction through the 1" diameter filtering
device shown in Fig. 14. The filtering material, its properties, and the reasons for

choosing this material are given in Appendix III

The filter could only be lowered to approximately three inches above the
melt - the smelt from the bed otherwise splashed onto the filter. This splashing
occasionally caused the filter to fall out of the filter holder. It was found that the
amount of fume collected per volume of suctioned gas was constant, therefore, if
the suction flow rate changed, the total amount of collected fume also changed. The
suction flow rate could fluctuate as much as 25%; therefore, the flow rate was

closely monitored.
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Figure 13. Generated Nap504/NaCl fume.

Fume was collected at different heights from the smelt bed. All of the data
were taken under these conditions:
1. 5.37 L/min N> under melt surface.
2. 0.63 L/min Oy under melt surface.
3. 970°C melt temperature.
4. 8.0 L/min suction.

5. -30 second collection time.

Table 2 lists the results from these experiments. It also lists the amount of
fume that should have been collected in each case, calculated by knowing gas flow
rates through the filter and fume generation rate. These data show that fume
particles were formed within three inches of the smelt bed, and that the amount of

fume present has no correlation to the distance from the smelt surface. This
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Figure 14. Fume filtering device for directly above smelt surface.

indicates that neither gas temperature nor time in the gas phase has any relation to
fume generation. A distance of three inches above the smelt bed corresponded to a
gas temperature of approximately 870°C; a time of about four seconds was needed

for the gas to travel three inches.

SEM pictures were taken of the fume collected at all heights and all fume
generation rates. These pictures showed particles ranging in size from 0.25 um to

over 3 um, which is a much broader size range than that previously observed.
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Table 2. Fume collection from above smelt.

fume, g/30 sec

Height above

smelt, inches Predicted Collected St. dev.
3 0.0755 0.0757 0.0162
6 0.0755 0.0659 0.0069
9 0.0755 0.0666 0.0083
9 0.0157 0.0153 0.0022
9 0.0171 0.0158 0.0017
9 0.0183 0.0199  0.0016

These new pictures were taken of fume particles captured in the gas stream with gas
temperatures of 700°C to 870°C; previous pictures were taken of particles filtered

from a much cooler flue gas, outside of the furnace. 'It will be shown later that these
large fume particles must have grown to this size after being captured on the filter -

not by small particles colliding with each other in the gas phase.

EXPERIMENTAL SYSTEM FOR FUME DEPOSITION

A schematic of the system used to study fume deposition on a cooled tube is
shownrin Fig. 15. The lower half of this apparatus was the same as that previously
used. The upper half, made of stainless steel and 24" long, clamped onto the lower
retort and increased the vertical distance in which the gas travelled before leaving
the apparatus. The K-type thermocouple (1/g" diameter) extended downward from
the top, and the purge tube and melt thermocouple entered the crucible at an angle
from the side of the retort. Carbon dioxide or sulfur dioxide entered from the side of

the upper half.
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Figure 15. Schematic of fume deposition apparatus.
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Electric heaters, one set below the céoled tube and one set above the tube,
were added so the gas phase temperature could be varied. This is shown in Fig. 16.
Each set of heaters was connected to its own rheostat. These heaters reached
temperatures as high as 700°C, which produced a flue gas temperature of 560°C in
the area of the cooled tube; the heaters allowed a flue gas temperature range of

2800C to 560°C. Exact specifications for the heaters are listed in Appendix IV.

Fume was collected on the surface of the tube placed in the upper part of the
apparatus. The tube was 7/g" 0.d. 304L stainless steel tubing with a wall thickness of
0.035", and was held in place on each side of the apparatus by a flange and set screw
(see Fig. 17). This tube was 23 inches above the melt surface; approximately 30
seconds was required for the flue gas to travel from the melt to the tube surface.

This corresponds to a Reynolds number of 3 based on cooled tube diameter.

The surface temperature of the tube was determined by inserting a
thermocouple through the tube to the surface. A chromel-alumel thermocouple
with glass insulation was brought through the inside of the tube and then through
small holes in the metal (the two wires were brought through separate holes). The
wires were then twisted together and peened in place on the surface. The surface
temperature was controlled by air flowing inside the tube. As the coolant flow rate
increased, the surface temperature decreased. An increase in the coolant flow from
2 ft3/min to 8 ft3/min produced a surface temperature decrease in the range of 30%

to 60%; the exact decrease depended on flue gas temperature.

PRELIMINARY. RESULTS
A preliminary experiment was performed in order to determine the presence
or absence of a temperature difference between the upstream (bottom) side and

downstream (top) side of the tube. The average encountered temperature difference
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Figure 16. Apparatus for fume deposition.

was 150C. All surface temperature readings in this thesis, unless specified, are

reported as the temperature on the top side of the tube.

Another experiment was performed to determine the extent of a horizontal
temperature gradient across the cooled tube. This gradient would be caused by the
coolant ihcreasing in temperature as it travels through the tube, or from an entrance
length effect. For these experiments, three thermocouples were positioned on the
tube: one close to the coolant entrance, one close to the coolant exit, and one in the

middle. It was found that, at the most extreme conditions used (high flue gas
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Figure 17. Schematic of cooled deposition tube.

temperature, low coolant flow), the horizontal temperature difference was 94°C.
Under all conditions, however, the surface temperature reading of the middle
thermocouple was found to be approximately the same (slightly lower) as the
reading close to the exit. It was assumed that most of the tube surface was at the
temperature close to the middle temperature reading; this reading was therefore
used as the average tube surface temperature for all experiments in this thesis. At
the most extreme conditions (high flue gas temperature, low coolant flow), if the
first 1/4 of the tube is assumed to rise linearly in temperature and the last 3/4 is
assumed to be a constant temperature, the error in fume weight by assuming a

constant temperature is 16%.

FUME DEPOSITION EXPERIMENTS

The deposition of pure NayCO3 was studied first. CO2 was added to the gas
phase to insure complete conversion of all sodium vapors to sodium carbonate.
Extremely small amounts of water were found to have significant effects on the
fume composition. When water was present, the fume (which should have been

100% NapCO3) consisted of the following:
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. NayCOs.

2. NagCO350;.

. Nag(CO3)7504.
. NagCO3(SO4)2.
5. NaySO;.

- W

Generation of NaCO3 fume required a Na2CO3/Na3S melt; the sulfide in
these fume compounds therefore came from the smelt bed. The reactions forming
these compounds occurred very quickly and were found not to be affected by
temperature (gas or surface), CO; partial pressure, or time. With HyO present, this
fume mixture was approximately 10% Na;CO3, 80% double salts, and 10% Na2SO4
under all experimental conditions, which suggests that fume composition in a

recovery furnace should be mostly sulfur containing compounds..

Water vapor can react with many compounds in the experimental apparatus.

The following stoichiometric reactions are possible:

2507 + O <-->2 S0O3 (22)
H>0 + CO <--> Hjp + COp (23)
H> + NajS <--> HpS + 2 Na (24)
Na>COs3 + H;O <--> 2NaOH | (25)
Na;CO3 + CO; + H)O <--> 2 NaHCO3 (26)
NayO + HyO <--> 2 NaOH (27)
NasO + SO3 + HyO <--> NaySO4 + HO (28)

NaO + 2 S03 + HO <--> 2 NaHSO4 (29)



2 Na +2 HO <--> Hj + 2 NaOH (30)
NasS + 4 HyO <--> NaSO4 + 4 H»p (31)

Sodium hydroxide then react with sulfur gases to form Na;SO4. The presence
of intermediates, such as NaHSOy, in the reaction sequence could also explain the

presence of the double salts in the experimental flue gas.

These reactions can be occurring in a recovery boiler in addition to occurring
in this experimental apparatus. The reaction of sodium compounds in the gas
phase, particularly Na;COj3 fume with water vapor, may be one reason that fume
consists of mostly sodium sulfate and very little sodium carbonate. The amount of
water vapor in a recovery furnace (15% by volume) is 100 times the amount of water
needed to convert all Na;CO3 fume to other compounds. If all NaCOj3 fume in the
recovery boiler reacted with HyO, no sodium carbonate fume would be present.
NazCOj3, however, is present in a recovery boiler, which shows that not all Na;CO3
reacts with water vapor. These results show that NaSO4 fume could also be
forming by direct reactions with smelt in addition to being formed by conversion of

NayCO3 fume.

These double salts and NaSOj4 in the experimental flue gas could be
eliminated by eliminating the water in the system. This was accomplished by
adding a tube filled with Drierite to the gas lines coming from the air cylinder and

the CO3 cylinder.

The effects of the following variables on NapCOj3 deposition were then
determined (see Appendix V for tabulations of experimental data):
1. Gas flow rate: varied by adding N7 above the melt and increasing O

partial pressure to keep flue gas fume concentration the same.
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2. Fume concentration: changed by varying the CO; concentration in the
gas phase while keeping the total flow rate constant.

3. Tube surface temperature: varied by increasing or decreasing the
amount of air coolant flowing through the cylinder.

4. Flue gas temperature: changed by varying the rheostat settings on the

electric heaters.

NapSO4 deposition was studied next. The effects of the following variables
were determined (see Appendix VI for experimental data tables):
1. Tube surface temperature.

2. Flue gas temperature.

Third, NaCl deposition was studied. These experimental parameters were
varied (see Appendix VII for data):
1. Fume concentration: varied by adding different amounts of NaCl to
the melt.
2. Tube surface temperature.

3. Flue gas temperature.

Finally, the deposition of Na2SO4 and NaCl was combined. The effects of tube
surface temperature and flue gas temperature on the rate and mechanism of this
simultaneous deposition were studied. This group of data is tabulated in Appendix

VIII.

Electron micrographs of all fume deposits were taken, which determined
particle size and shape (spherical or needle-like). Image analysis was then used to
determine particle size distribution. The amount of fume on the tube was
determined gravimetrically by fume being scraped off the tube and into a weighing

dish; the fume was then weighed to the nearest 0.0001 g on an analytical balance.
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Some fume samples were washed off the cooled tube with water instead of
being scraped off the tube with the water being evaporated before weighing the
fume. This method produced the same results as the "scraping” method, but was
more time-consuming. It also changed the original size and shape of the deposited

fume particles. Therefore, the scraping method was used.
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THEORETICAL ANALYSIS

FUME GENERATION RATE

Fume generation can be modelled either theoretically or empirically. In
theory, the fume generation rate should be proportional to In(K2+O3 flow)>?. It
should also be proportional to the N3 flow. It was assumed that there is an
Arrhenius temperature dependence on the rate of fume generation. This gives rise

to the following rate equationl4:
Fume generation rate = K1 » In(K2#Op) » Np » e"AE/RT (32)

Another possible way of calculating fume generation rate is by using an
empirical model. The following empirical equation has been found to fit fume
generation data of Cameronl? and was therefore was chosen as the empirical model

for this thesis:
Fume generation rate = K3» 02X+ NpY » eAE/RT (33)

Here it was assumed that O and N raised to some power would describe the fume
generation rate. It was once again assumed that there is an Arrhenius témperature

dependence.

The constants in these two equations were determined by using a nonlinear
regression analysis program60. The final equations for fume generated in the

electric furnace (the apparatus used in this thesis) are:
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Fume gen. (g/min) = 20.19 » 030218 N0.915 4 ¢-15690/RT (34)
Parameter, value Std. dev.
K3=20.19 4.52
x =0.218 0.042
y =0915 0.111
AE = 15690 cal/gmole 1350 cal/gmole
Fume gen. (g/min) = 3.33 +In(194+0;) » Nj » e-15695/RT (35)
Parameter, value Std. dev.
K1=3.33 0.72
Ky =194 29
AE = 15695 cal/gmole 1290 cal/gmole

The flow rates are in liters/minute and the temperature is in °K.

Seventeen data points were used in the regression program to determine the
constants; the residual between the calculated point and the actual data point was
found for all seventeen points. The sum of squares of the residuals from Eq. 34 was
7.4+10-4 and from Eq. 35 was 7.2+10-4; both equations fit the experimental data
equally well. Equation 34 was used for this thesis because this form of equation was
used succussfully in previous work by Cameron. The equation derived for fume

generation by Cameron? is:
Fume gen. (g/min) = 161 » 030-274 + N0.907 » ¢-20540/RT (36)
These flow rates are also in liters/minute and the temperature is in °K.

Equation 36 was derived for fume generation in a 5" high induction furnace,

not a 24" high electric furnace (see Eq. 34). Equation 34 and Eq. 36, however, yield
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the same results (within 5% of each other) in the temperature range of this study.
This shows that the oxidative fuming rate is not highly dependent on the reaction

system.

GAS TEMPERATURE VS. FUME TEMPERATURE

One concern with fume flowing in a gas phase is whether the fume is at the
same temperature as the gas. The melting point of sodium carbonate is 850°C, so
sodium carbonate should be a solid below this temperature. By the time the sodium
carbonate fume gets to the cooled tube, the gas will be below this temperature. This

should also be true for sodium sulfide fume and sodium chloride fume.
The heat flux from a fume particle is given by:
Q=20 (Tg4-Tw4) + he (Tq-Te) (37)

Appendix IX gives a sample calculation using this equation. From this
calculation, it can be concluded that the temperature of the fume particle is the same
as the gas phase temperature and that a 1 um fume particle should solidify in
approximately 10-> seconds after fhe gas temperature falls below the particle melting

point.

PARTICLE GROWTH

Electron micrographs of fume collected from directly above the melt showed
fume particles on the filter as large as 5 pm. The question was raised as to whether
these particles grew to that size in the gas phase or whether small fume particles

deposited on the filter and then fused together to form these larger particles.

Ulrich48 derived the following formula for the number of particles in a given

volume:



_ 1
N = o

Cy A

(38)

This equation shows that the number of particles decreases with time. Once
"N" is calculated, particle sizes can be determined by knowing particle concentration
(weight/volume) and the density of the particle. If it is assumed that the sticking
coefficient, cs, is 1 and that fume particles are initially of molecular size, then it can
be shown that after three seconds in the gas phase (the time needed for the gas to

reach the filter):
average particle radius = 0.45 um (39)
This matches the experimental value for the particles leaving the reactor.

If the time in the reactor is increased to 50 seconds (the time needed for the

gas to reach the top of the apparatus):
average particle radius = 1.4 pym (40)

Figure 18 shows the theoretically calulated fume particle size in the furnace
for 0 to 50 seconds, if the particles grow by continuous agglomeration. A large part
of the growth is shown to occur in the first 0.1 seconds; even if the gas phase stayed
hot enough for the particles to stick together and bond for the entire residence time,
the particles should not grow to be 5 um. The conclusion is that the particles on the
filter must have grown after being captured, or the particles were splashed onto the

filter from the bubbling smelt.
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Figure 18. Theoretical particle growth.

TEMPERATURE GRADIENT THROUGH DEPOSITED FUME
As deposits build up on a cooled surface, the rate of heat transfer between the
tube coolant and flue gas will change. This will increase the surface temperature of

the deposit.

Appendix X shows a sample calculation for the surface temperature increase
due to the build-up of deposits on the cooled tubes used in this apparatus. This
calculation used the greatest deposit thickness that was encountered in order to
determine the maximum temperature difference that would be found. The
example shows that the temperature difference through the deposit should never be

greater than 3°C. This is a very small difference and can therefore be neglected.
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RESULTS AND DISCUSSION

EFFECTS OF WATER VAPOR

Water vapor in the experimental system was found to affect fume
composition; the fume was less NaCO3 and more NaySO4 when water vapor was
present. Actual precipitator dust is mostly NapSO4 and depleted in NapCO33, which
is similar to the experimental results when water vapor is presént in the system.
Na3504 could be formed by conversion of NaoCOj3 fume by SO; and O3, or by direct
reactions with smelt. Therefore, in actual recovery boilers where water vapor is

always present, more NaySO4 fume than NaCO3 fume will be found.

FUME DEPOSITION

An initial set of experiments determined the total deposition of fume as a
function of time. The results from this set of data showed that the total amount of
depositéd fume is directly proportional to the length of time the tube was in the
apparatus. This indicates that the accumulation of collected fume does not

influence the deposition rate.

Another set of experiments determined fume deposition as a function of
position on the cylinder, at a constant fume generation rate. Nap)CO3 fume was
scraped off the cylinder into two piles corresponding to that collected on the
upstream side of the cylinder and that collected on the downstream side (bottom
and top, respectively). It was found that the same amount of fume deposited on
both the upstream and downstream sides of the tube; examples of this are listed in
Table 3. This is one indication that the deposition mechanism could be
thermophoresis; deposition by thermophoresis is independent of location at the
Reynolds numbers used in this study. Deposition by impaction would produce

more deposits on the leading edge.
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Table 3. Deposition as a function of location on cylinder.

Gas temperature = 3100C

Fume,g
Data point Upstream Downstream
1 0.0053 0.0057
2 0.0165 0.0193
3 0.0215 0.0239
4 0.0229 0.0195
5 0.0207 0.0195

Particle size distributions were obtained for NapCOj3, NaSO4, NaCl, and
NaySO4/NaCl deposited fume. These distributions were compared to the
distributions of the generated fume. It was found that, for Na;COj3 fume, the
generated fume particles and the deposited .fume particles had the same size
distribution and the same average size. The same was true for NapSO4 fume
particles. No electron micrographs were taken for NaCl generated fume so no
comparisons between generated and deposited fume particle sizes could be made.
NaCl generated fume particles and deposited fume particles, like NaoCO3 and
NaSO4 fume, should have the same particlé size distribution and thé same average

particle size.

NayCO3 DEPOSITION
The rate of NapCO3 deposition was found to be proportional to fume

concentration (all other variables held constant) and unaffected by gas flow rate (all
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other variables held constant). These results are shown in Fig. 19 and Fig. 20,
respectively, and match those predicted by thermophoretic theory. The slope of
Fig. 20 is 0.0020+0.0025 g min/L, which statistically shows that flow rate has little

effect on fume deposition.

Figure 21 shows the dependence of sodium carbonate fume deposition on
tube temperature and bulk gas temperature, at a gas flow rate of 5.9 L/min. DEL T is
the temperature difference between the bulk flue gas and the surface of the tube;
TUBE T is the cooled tube surface temperature. These data points were taken at
three different flue gas temperatures: 253°C, 396°C, and 527°C. A straight line

through the origin is predicted by thermophoretic theory.

The equation for Fig. 21 is:

| AT
Na,CO, dep. (g) = 0.0959 \ T

w

(41)

Dep. time = 15 minutes
Dep. area = 97 cm?

Fume concentration = 0.0150 g/L

The constant in this equation (0.0959) was calculated by forcing the line
through the origin. It can be shown, by statistical methods, that this is valid at 95%
confidence (see Appendix XI for the calculation); the intercept is 0.00407+0.00698 g.
It can also be shown that, at AT/Tw=0.5, a 95% confidence interval for total fume
deposited is 0.0479+0.0045 g, which is 9.4% above and below the calculated value of
0.0479 g. This calculation is also shown in Appendix XL
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Figure 19. Effect of fume concentration on NaCO3 deposition.

The total model for sodium carbonate deposition is therefore:

T
Na,CO, dep. rate (g/min/cm?) = 0.00440 C (T ]
2 3 p & w (42)
where:
C [=] concentration in g/L

T [=]°K

An electron micrograph of deposited NaCO3 fume is shown in Fig. 22.

Particles are smooth and spherical, with no sintering between the particles.
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Figure 20. Effect of gas flow on Na2CO3 deposition.

Na2SO4 DEPOSITION

Figure 23 shows the results of NaSO4 deposition on the cooled tube, at a gas
flow rate of 5.8 L/min; data points were taken at two different flue gas temperatures:
2380°C and 501°C. This demonstrates that NapSOy4, like NapCOj3, deposits by

thermophoresis. The equation for Fig. 23 is:

an
w)

!
Na. SO dep. (2) = 0.0964 |
2774 P18 \ (43)
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Figure 21. Effect of temperature on Na2COj3 deposition.

Dep. time = 15 minutes
Dep. area = 97 cm2

Fume concentration = 0.0158 g/L

As with NayCO3 deposition, the constant (0.0964) was calculated by forcing the
line through the origin. This is valid at 95% confidence in this case as well; the
intercept is 0.00145+0.00587 g. At AT/Ty=0.5 the total fume deposited is
0.0482+0.0037 g at a 95% confidence interval, which corresponds to 7.7% above and

below the calculated value of 0.0482 g.
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Figure 22. Deposited NapCO3 fume.

NapSOy4 particles were produced from N;12C03 fume and look like NaCOs3
fume (see Fig. 24). The particles again are smooth and spherical, and no sintering is
observed. It was therefore assumed that they act like Na;CO3 fume; the deposition
rate was assumed to be independent of gas flow rate and proportional to fume
concentration. The final equation for NaSO4 deposition is:

el

Na,SO, dep. rate (g/min/cm’) = 0.00419C | T @
where:

Cl=lg/L
T [=]°K
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Figure 23. Effect of temperature on Na2SO4 deposition.

NaCl DEPOSITION

The NaCl deposition rate was found to be proportional to fume
concentration, as shown in Fig. 25; the deposition rate at a fume concentration of
0.00471 g/L is 3.5 times greater than at 0.00133 g/L. This result was also observed for

NayCOj3 deposition, and is predicted by thermophoretic theory.

Figure 26 shows that NaCl, like sodium carbonate and sodium sulfate,
deposits by thermophoresis but at a much slower rate. These data points were taken
at a gas flow rate of 6.0 L/min and at three different flue gas temperatures: 253°C,
369°C, and 5200C. It is assumed that, like NapCO3 and NaySO4 deposition, there is

no relation between deposition rate and gas flow rate.
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Figure 24. Deposited Na5O4 fume.

The equation for Fig. 26 is:

| AT |
NaCl dep. (g) = 0.0201 {f}l
Dep. time = 30 minutes

Dep. area = 97 cm?

Fume concentration = 0.00471 g/L

(45)

It is once again valid to force the line through the origin; the intercept is

0.000613+0.00233 g at 95% confidence. At AT/Ty=0.5, a 95% confidence interval for

the amount of fume deposited is 0.0100+0.0013 g, which is 13.0% above and below

the calculated value of 0.0100 g.
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Figure 25. Effect of fume concentration on NaCl deposition.

The final equation, therefore, is:

AT
NaCl dep. rate (g/min/ cm?) = 0.00146 C [T ]
v - (46)
where:
Cl=lg/L
T [=]°K

An electron micrograph of NaCl deposited fume is shown in Fig. 27. This
micrograph shows fume particles approximately the same size as Na2CO3 fume;
however, the NaCl particles show signs of sintering. Sintering was not encountered

in either Na2CO3 or NapSO4 fume deposition.
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Figure 26. Effect of temperature on NaCl deposition.

Na504/NaCl DEPOSITION

Simultaneous NazSO4 fume and NaCl fume deposition results are shown in
Fig. 28, with flue gas temperatures of 248°C, 374°C, and 524°C. The equation for this
graph is:

AT

[
|
k w

———

Na SO, /NaCl dep. (g) = 0.0824
2774 p-1& (47)

Dep. time = 15 minutes

Dep. area = 97 cm?

Fume concentration = 0.0205 g/L
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Figure 27. Deposited NaCl fume.

The line was forced through the origin; once again this can be shown to be
valid. At 95% confidence, the intercept is 0.00506+0.00722 g. The total fume
deposited at AT/Tw=0.5 is 0.0412+0.0044 g at a 95% confidence interval, which is a
spread of 10.7% around the calculated value of 0.0412 g.

It was assumed that the deposition rate is proportional to fume concentration
and is independent of flue gas flow rate. The final equation is:

T
Na SO, /NaCl dep. rate (g/min/cm?) = 0.00279 C | T
2 4 w (48)

where:
Cl=lg/L
T [=]°K
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Figure 28. Effect of temperature on Na5SO4/NaCl deposition.

An electron micrograph of NaySO4/NaCl deposited fume is shown in Fig. 29.
Naj504/NaCl fume particles are approximately the same size as other fume
particles. Some sintering occurred, but not to the extent that pure NaCl fume

sintering did.

DEPOSITION RATE COMPARISONS _
Table 4 lists all developed rate equations. Rate equations for NapCO3, NazSOy4,

NaCl, and Nap504/NaCl deposition by thermophoresis are all of the same form:

AT

[ AT )
Dep. te=I<C| |
p.Ta \ v (49)
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Figure 29. Deposited Na504/NaCl fume.

NaCOj3 fume and NaSO4 fume, however, deposit at a rate approximately
three times faster than NaCl and approximately 1.5 times faster than NaSO4/NaCl

fume. The reasons for this are discussed below.

Particle Diameter (dp)

It was discussed earlier that, in the particle size range of 0.1 um to 1 um, the
rate of deposition is proportional to diameter. The average deposited particle size
for the four fume species, and their variances, are listed in Table 5. These numbers
show that NapCO3 fume particles and NaSOg4 fume particles are larger than NaCl

and NaSO4/NaCl particles and therefore should deposit at a faster rate.



Species
NayCO3

| NaSO4q

NaCl
NapSO4/NaCl
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Table 4. Deposition rates by thermophoresis.

AT )

Na,CO, dep. rate (g/min/ cm?) = 0.00440 C [Tw

AT

. 2 _
Na SO, dep. rate (g/min/cm®) = 0.00419 C [Tw)

AT
NaCl dep. rate (g/min/cm?) = 0.0146 C [Tf;v_]

-
_

A
Na,S0,/NaCl dep. rate (g/min/ cm?) = 0.00279 C [?w_

Table 5. Deposited fume particle sizes.

Number Mass

avg. diam., ym 95% confidence avg. diam., ym
0.32 +0.18 0.40
0.29 +0.20 0.42
0.21 iO.iB 0.27

0.24 +0.15 0.36
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Particle Diffusion Factor (o)

It was discussed earlier that the deposition rate in Gokoglu and Rosner's
equation is proportional to a. Rosner's equations for Nap5O4 and NaCl diffusion

factors are39:

358
o =078-<=
Na,SO, , T (50)
ae 147
aT,NaCl =0.35 T (51)

where temperature is in °K.

At 500°C,

=0.33 :
1, Na,50, (52)
al',NaCl =0.17 (53)

The thermal diffusion factor equations for Na;CO3 and NaSO4/NaCl were

not listed in Rosner's article39. However, the thermal diffusion factors for NaxSOy

and NaCl show that NapSO4 should deposit faster than NaCl when the particle sizes

are the same. This agrees with experimental results.

If ar and dp are now separated from the constant in the deposition rate

equations (for Na2SO4 and NaCl):

AT
: 2 w
Na SO, dep. rate (g/min/cm®) = 0.034 o, d  C (TWJ (54)

AT
NaCl dep. rate (g/min/cm?) = 0.037 o, d,C [?—] (55)
. w 55
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The mass average diameter, not the number average diameter, was used to
determine these new equations. These two equations are now almost identical. It
can be assumed that Na;COj3 deposition and NaSO4/NaCl deposition behave
similarly. The equations show that the main factors affecting the fume deposition
rate are o, dp, C, and AT/ Ty, and that all fume deposition in the experimental

apparatus can be written as:

AT
Dep. rate (g/min/cm?) = 0.036 o.d, C [T_] (56)
w 56
where:
dp [=] pm
Cl=lg/L
T [=] °K

EXTRAPOLATION TO RECOVERY BOILER CONDITIONS
An equation derived by Gokoglu and Rosner?? for thermophoretically

augmented mass transfer across laminar boundary layers (0<Re<10,000) is:

Pr AT
Dep. rate = p,, V | %p'g|St, T, | ®m

(57)
The Stanton number, Stj, can be written as:
h
St =
h Ve
PY (58)

and the ratio of Prandtl to Schmidt numbers is:

Pr
——=Le
Sc (59)
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This simplifies Gokoglu and Rosner's equation to:

Dep. rate = L (a.rLe) [%) ®

P (60)

and shows that the deposition rate is proportional to the heat transfer coefficient.

For air flowing past a single cylinder6!:

0.52
hD _ 435+ 0.56(Re)

k (62)

For the experimental apparatus, the Reynolds number is 2.5, gas conductivity is
1.4+10-4 cal/cm sec °K, and tube diameter is 2.2 cm. The heat transfer coeffieient is
calculated to be 7.9+10° cal/cm2 min °K (Pr=1), leading to the following equation

derived from Eq. 56:

AT
Dep. rate (g/min/cm?) =452 h o.d,C [T] (
w 63)

where:
h [=] cal/cm?2 min 0K
For air flowing normal to a bank of tubes, a simplified heat transfer equation is62:

06
hD _ 93 Re)
k (61)
and boundary layer separation®3 occurs at 1100. For actual recovery boilers, the
Reynolds number is approximately 5000, and tube diameter is 6.4 cm. The heat

transfer coefficient is calculated to be 1.1+10-3 cal/cm?2 min °K.
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Suppose fume deposited equally on the entire surface of the recovery boiler
bank tube with the following conditions:
1. NapSO4 fume.
. or=041.
. dp =042 pm.

2

3

4. C=0.05g/L.
5. Te = 700°C.
6

. Ty = 1800C.
The amount of fume that should be deposited, calculated by Eq. 63, is:
Dep. rate = 1.0+103 g/min/cm?2 (62)

The actual temperature gradient pattern on the downstream side of the tube,
however, is unknown because of boundary layer separation. Therefore, suppose
fume only deposits on the upstream side of the tube, when ¢<1100° (see Fig. 1); fume
will then deposit on 220° of the tube or 61% of the tube surface. The fume

deposition rate would be 61% of Eq. 62, or:

Dep. rate = 6.1+104 g/min/cm? (63)
These two numbers bound the fume deposition rate by thermophoresis:

6.1+10-4 < Dep. rate < 1.0+10-3 g/min/cm? (64)
An actual fume deposition rate at the boiler bank inlet! under similar conditions is:

Dep. rate = 6.7+104 g/min/cm? (65)
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which is within the calculated bounds for fume deposition by thermophoresis. This
shows that thermophoresis is a main mechanism of fume deposition in a recovery

boiler.

If some fume particles in a recovery boiler agglomerate to sizes as great or
greater than 10 um, deposition by particle impaction is still possible. Agreement
between caclulated thermophoretic deposition rates and actual deposition rates,

however, show that this is unlikely.

RECOVERY BOILER DESIGN IMPLICATIONS
There is one main reason for determining the mechanisms responsible for
fume deposition in a recovery boiler: know the controlling parameters and

therefore have the ability to affect the deposition rate by changing these parameters.

Thermophoresis is the main mechanism for fume deposition in recovery
boilers; its controlling parameters are flue gas temperature, tube surface
temperature, particle composition and size, particle concentration, and (to some
extent) gas flow rate. It is impossible to change any one variable without affecting
other boiler operating conditions. For instance, increasing the tube temperature will
result in less fume deposition but the flue gas will be cooled less. Knowledge gained
from these experimental results may be difficult to impliment in an existing

recovery boiler; it would best be used in the design of new furnaces.
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CONCLUSIONS

This thesis has shown that thermophoresis is the main deposition
mechanism for fume particles under the following experimental conditions:
1. Fume particle sizes from 0.1 um to 1 um in diameter.

2. Flue gas temperatures from 2500C to 580°C.

3. Reynolds numbers less than 3 (based on cooled tube diameter).

The following equations were derived:

AT
Na, CO, dep. rate (g/min/cm2)=0.00440C T
2 v (66)
Na,50, dep. rate (g/min/cmd = 0.00419.C | T -
a ep. rate (g/min/cm”) = 0.
oY, dep & T, 7
) AT
NaCl dep. rate (g/min/cm®) =0.0146 C | T
v (68)

' AT
Na,S0,/NaCl dep. rate (g/min/ em?) = 0.00279 C [Tw—] 69)
69

where:
Cl=lg/l
T [=] °K

It was also found that, during simultaneous NaSO4/NaCl generation, the
generation of NaSO4 and the generation of NaCl were additive and independent.
The simultaneous deposition of the two compounds, however, were not

independent of each other.



The general equation for fume deposition in this thesis is:

14T
Dep.rate=Ko._d C!7T~
%% Tw) (70)
which closely resembles Gokoglu and Rosner's equation:
AT
Dep. rate = CL (OLT Le) [T_] o
P " (71)

The following conditions were used to obtain the experimental result:
1. Fume particle sizes from 0.1 pm to 1 pm.
2. Flue gas temperatures from 250°C to 580°C.

3. Reynolds numbers less than 3, based on cooled tube diameter.

Other important results are:
1. Gas flow rate has little effect on the deposition rate.
2. The fume deposition rate is the same on the upstream and downstream side of
the cooled cylinder.
3. No fume deposition occurs when no temperature gradient is present.

4. The accumulation of collected fume does not influence the deposition rate.

These results are directly applicable to fume deposition in the generating bank
and the economizer section in recovery boilers, where flue gas temperatures range
from 200°C to 700°C. The Reynolds number in a boiler bank is between 3000 and
5000; the heaf transfer coefficient is a function of Reynolds number and the
deposition rate is proportional to the heat transfer coefficient. If the difference in
flow rate between the experimental system and the recovery boiler is taken into
account, the experimental results show close agreement with actual recovery boiler

data.
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If some fume particles in a recovery boiler agglomerate to sizes as great or
greater than 10 um, deposition by particle impaction is still possible. Agreement
between caclulated thermophoretic deposition rates and actual deposition rates,

however, show that this is unlikely.

Water vapor in the system was found to affect the fume composition; fume

composition was less NapCO3 and more NaSO4 when water vapor was present.
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RECOMMENDATIONS

Two future research possibilities arise from this thesis. First, determine, in
greater detail, the reactions of water vapor and fume. This is important because the
composition of the fume has an effect on the deposition rate.

Second, repeat the experiments at a Reynolds number closer to that found in
a recovery boiler (approximately 5000). This will experimentally determine the
effects of boundary layer regimes. Changes would have to be made to the apparatus,
because the present construction of this apparatus limits the gas flow rates. Changes
may be difficult to accomplish. Adding fans above the melt but below the cooled
tube would increase the gas flow rate but would drastically decrease the fume
concentratioh; increasing the gas flow through the melt would result in much

bubbling and splashing from the smelt.
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APPENDIX I. SYMBOL DEFINITIONS

A = collision constant

¢ = constant depending on particle size and shape
cs = sticking coefficient

C = concentration of fume in flue gas

C, = number of molecules/cm3

dp = particle diameter

D = cylinder diameter

D, = Brownian diffusion coefficient

AE = activation energy

h = heat transfer coefficient

j* = diffusional mass flux of small particles

k = thermal conductivity

km = gas constant for one molecule

K = constant

li = stop distance of particle

N = number of particles/cm3

Nu = Nusselt number

PNaCl(T) = equilibrium partial pressure of NaCl at temperature T
P"NacCi(T) = vapor pressure of NaCl and temperature T
Pr = Prandtl number

Q = heat flux

R = gas constant

Sc = Schmidt number

Sth = Stanton number for heat transfer

Stk = Stokes number
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t = time

T = absolute temperature

vt = thermophoretic velocity

V = velocity parallel to wall

X = displacement in time t

XNac1 = mole fraction of NaCl in the melt
y = direction perpendicular to the wall
a1 = thermal diffusion factor

€ = emissivity

Ao = molecular mean free path

1 = viscosity of gas

v = kinematic viscosity

p = density

o = Stefan-Boltzmann constant

® = mass fraction of particles in mixture

SUBSCRIPTS

e = mainstream

m = outer edge of the Brownian diffusion boundary layer
o = normal temperature and pressure

p = particle

w = wall
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APPENDIX II. FURNACE SPECIFICATIONS

ATS, Inc.

Series 3110, Tube Type Laboratory Furnace

6"i.d., 14" o.d., 24" heated length, 28" outsidé length
1 zone

8400 Watts

230 Volts

Kanthal AL embedded elements for service to 1204°C

Type K thermocouples
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APPENDIX III. FILTERING MATERIAL

Gaskets, Inc.
G/1-83 Ceramic Paper
For use up to 12600C
0.040" thick, 6% binder

It was noticed that, when the paper with binder was introduced into a high
temperature environment, the paper would burst into flames and the organic
binder would burn. The volatilization of the binder also changed the weight of the
paper. For this reason, the paper was heated in a muffle furnace at 950°C for 10
minutes. This eliminated the binder before the paper was used in the experimental
apparatus as a filtering material. Lack of binder did not noticeably affect the strength

of the paper.
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APPENDIX IV. ELECTRIC HEATER SPECIFICATIONS

Watlow Electric Manufacturing Company

Ceramic Fiber Heaters, Semi-cylindrical, Unit number V5406]J06S, Style A
For use up to 1093°C

61/5"id., 101/2" 0.d., 6" length

750 Watts

120 Volts
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APPENDIX V. NayCO3 DATA

TEMPERATURE EFFECTS

Melt temperature = 9500C
Deposition time = 15 minutes
Fume concentration = 0.0150 g/L
N»+CO; flow rate = 5.9 L/min

Gas T, oK Tube T, 2K AT/Tw
526 325 0.618
526 381 0.381
526 388 0.356
526 348 0.511
526 526 0
669 533 0.255
669 435 0.538
669 380 0.761
669 669 0
788 629 0.253
788 545 - 0.446
818 562 0.456
818 384 1.130
818 : 721 0.135

818 818 0

Fume wt, g
0.0618

0.0431
0.0367
0.0365

0.0347
0.0519
0.0555

0.0286
0.0501
0.0472
0.1122
0.0242
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CONCENTRATION EFFECTS

Melt temperature = 9500C

Deposition time = 15 minutes

N> flow rate below melt = 5.37 L/min
AT/Tw =17

N> above melt, CO; above melt, Fume conc.,

L/min L/min g/L
0 3 0.0069
0 3 0.0069
2 1 0.0115
25 05 0.0117

Fume wt,

0.0821
0.0578
0.1114
0.1233
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FLOW RATE EFFECTS

Melt temperature = 9500C

Deposition time = 15 minutes

Fume concentration = 0.0150 g/L

N, flow rate below melt = 5.37 L/min

AT/ Ty =0.65

N> above melt, CO7 above melt, Total flow,
i min

L/min A L/min L
0 29
0.898 29
1.45 29
3.04 29
3.65 29

0 29

8.27
9.12
9.72
11.32
11.92
8.27

Fume wt,

0.0608
0.0675
0.0710
0.0707
0.0704
0.0653



-94-

APPENDIX VI. NaSO4 DATA

TEMPERATURE EFFECTS

Melt temperature = 9500C
Deposition time = 15 minutes
Fume concentration = 0.0158 g/L

N>+SO3 flow rate = 5.8 L/min

Gas T, oK Tube T, 6K AT/Tw
511 393 0.300
511 364 0.404
511 314 0.627
511 511 0
774 654 0.183
774 527 0.469
774 414 0.870
774 403 0.921

774 774 0

Fume wt, g
0.0262

0.0385
0.0537

0.0244
0.0523
0.0853
0.0880
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APPENDIX VII. NaCl DATA

TEMPERATURE EFFECTS

Melt temperature = 9500C
Deposition time = 30 minutes
Fume concentration = 0.00471 g/L

N> flow rate = 6.0 L/min

Gas temp, 9K Tube temp, 9K AT/Tw

526 420 0.252
526 345 0.525
526 329 0.599
526 526 0

642 486 0.321
642 409 0.570
642 345 0.861
642 642 0

793 536 0.479
793 633 0.‘252
793 418 0.897
793 593 0.337
793 521 0.522
793 388 1.044

793 793 0

Fume wt, g
0.0088

0.0114
0.0136

0.0081
0.0153
0.0138

0.0059
0.0040
0.0152
0.0075
0.0095
0.0235
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CONCENTRATION EFFECTS
Melt temperature = 9500C

Deposition time = 30 minutes

Fume conc,, Gas T, Tube T, Fume wt,
g/L oK oK AT/Tw g
0.00133 793 593 0.337 0.0015
0.00133 793 521 0.522 0.0019
0.00133 793 388 1.044 0.0047
0.00133 793 793 0 0

0.00471 793 536 0.579 0.0059
0.00471 793 633 0.253 0.0040
0.00471 793 418 | 0.897 0.0152

0.00471 793 793 0 0
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APPENDIX VIII. NaSO4/NaCl DATA

TEMPERATURE EFFECTS

Melt temperature = 9500C

Deposition time = 15 minutes

Fume concentration = 0.0205 g/L
(0.0158 g/L NapSOy4)
(0.00471 g/L NaCl)

N7+S0, flow rate = 5.79 L/min

Gas T, °K Tube T, °K
521 416
521 340
521 331
521 521
647 483
647 408
647 339
647 375
647 647
797 655
797 ' 530
797 419

797 797

AT/Tyw

0.252
0.532
0.574

0.340
0.586
0.909
0.725

0.217
0.504
0.902

Fume wt, g
0.0352

0.0445
0.0541

0.0408
0.0566
0.0711
0.0560

0.0183
0.0392
0.0633
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APPENDIX IX. PARTICLE TEMPERATURE

Calculations to predict the length of time needed for a fume particle to solidify in

the gas phase by heat flux from the particle to the gas.
Q=¢0 (Td4 - Tw4) +he (Tq - Te)

€ = 0.9 (assumed emmisivity)

¢ = 1.73+10-% Btu/hr ft2 °R

T4 = 1910°F (assumed drop temperature)
Ty = 1000°F (assumed tube temperature)
Te = 15500F (assumed gas temperature)

Nu = 2 + 0.51 Re05 (for a spherical particle)
Re =dVp/u

V = settling velocity in Stokes law region

= gd2p/18u

g = 32.17 ft/sec?

d =1 um (particle diameter)

p =118 Ib/ft3 (gas density)

I =2.68+10" Ib/ft sec (gas viscosity)

V = 8.5+10-5 ft/sec
Re = 2.1+10-7

Nu = 2.00

(72)

(73)
(74)
(75)
(76)
77)
(78)

(79)

(80)

(81)

(82)
(83)
(84)
(85)

(86)
(87)

(88)
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kg = [cp + (5R/4M)]u (assume for N3 at 15500F)

cp = 7.28 Btu/mole °R (for nitrogen)
R = gas constant

M = molecular weight (for nitrogen)
kg = 3.37+10-2 Btu/ft hr °R
he = 2.05+104 Btu/ft2 hr °R
Q = 7.42+106 Btu/hr ft2

Time required to solidify droplet:
t = (mcpAT + mA)/QA

m = 2.42+10°15 1b (mass of drop)

cp = 0.45 Btu/Ib ©R (specific heat of drop)
AT = 360CF

A = 110 Btu/1b (heat of fusion)

A = 8.5:10-12 ft2 (area of drop)

t = 1.0+108 hr = 3.6+10-5 sec

(89)

(90)
(91)
(92)

(93)

(94)

(95)

(96)

(97)
(98)
(99)
(100)
(101)

(102)
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APPENDIX X. TEMPERATURE GRADIENT ACROSS FUME

Calculations to determine the difference in temperature between the tube metal

surface and the fume surface exposed to the flue gas.

(xo-xl]

T.-T, =-

S Tl U (103)
Tq1 = 111.3°C (wall temperature) (104)
o = 40,000 Btu/hr ft? (assumed heat flux) (105)
Xo-X1 = 9.30+10-4 cm (fume thickness assuming 50% porosity) (106)

Dp2/3+1-p2/3

Keomp = Keume U(pz/a_p} 1pH 4 o

Kfume = 0.5 Btu/hr ft OF ‘ (108)

v = Kair/Kfume (109)

kair = 0.0184 Btu/hr ft OF (at 212°F) (110)

- p = 0.5 (porosity of fume) (111)

kcomp = 0.22 Btu/hr ft OF (112)

To = 114.40C (113)

This is a temperature change of 3.1°C through the deposited fume.
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APPENDIX XI. STATISTICAL CALCULATIONS
Calculations to determine the validity of forcing lines through the origin.

See Appendix V: Temperature Effects (this data will be used in the following

calculations)

Xj Y
0.618 0.618
0.381 0.0431
0.356 0.0367
0.511 0.0365
0 0
0.255 0.0347
0.538 0.0519
0.761 0.0555
0 0
0.253 0.0286
0.446 0.0501
0.456 0.0472
1.130 0.1122
0135 0.0242
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Using linear regression:

y = 0.004074 + 0.08928x (114)

x =0.389 - (115)

2
_ 9.-9.) _
ssLOF_Z( Y| = 0.000756 116)

= y u - yT =
SSError 2[ y ) 0 (117)

DF =13 (119)
MSRGS = SSRcs/DF = 5818*1 0’5 (120)
= = 0.007
S /MSRes 0.007627 (121)
Yx® =134
i (122)

use 95% confidence, o= 0.05

(123)

t0.025,13 = 2.160 | (124)

be = +0.00698 (125)
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This is larger than the y-intercept of 0.004074. Therefore it is valid to force the line

through the origin.

Spread of data at AT/Tw = xo = 0.5:

s
X_-X)
5, =5 [+l L
Yo <
209 (126)
= 0.00210 (127)
y=J,+t S,
°= 0025137y (128)

y = 0.0479 + 0.0045 [9.4%] (129)



