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Abstract 

 Robots are increasingly becoming ubiquitous, but are currently limited in their social 

capabilities. For robots to become ubiquitous in social environments they need to have an 

understanding of proxemics. Proxemics is a quickly evolving field in robotics that is rooted in 

anthropology and psychology. Although it initially sought to explain human-human interaction 

zones, it is now deeply influential in robotics research and its applications in human-robot 

interaction problems. This paper examines recent developments in human robot proxemics, how 

it is affected by emerging technologies and key limitations on further research.  

Introduction 

Human robot interaction is near a turning point where robots will start to become 

ubiquitous.  Homes are already being filled by different forms of artificial intelligence (AI), such 

as vacuum cleaners, personal assistants, and toy robots; however they are solely responsive to a 

person’s whims rather than self-motivated to interact with said person. Additionally, other social 

spaces such as hotels, stores, and hospitals are beginning to see the how larger more useful 

robots could improve their functionality. In order for robots to exist in these spaces, they need to 

be able to function respectfully and safely around humans. This is where proxemics, the study of 

human spatial behavior, is needed.  

Robots need to be polite to humans and respect their space, they need not walk through a 

group of people interacting with each other and they need to be able to adapt to people of 

different shapes and sizes. By allowing AI to reason about proxemics, robots will be able to 

navigate social environments more freely, allowing innovation for human robot interaction to 

flourish in spaces where robots work alongside with humans as industrial robots or care for 

humans in the form of companion robots [6, 9]. 



  
 

Current research involving human robot proxemics can be divided into two sections,  

distance focused and navigation focused. Distance focused research extracts empirical values for 

reaction bubbles based on how humans react under different circumstances, such as standing or 

sitting [7, 9, 8, 20]. Navigation focused research works on applications and enhancements  of 

robot navigation using the Social Force Model and in combination with Reaction Bubbles [1, 2, 

3, 4, 5, 11, 18]. Proxemics seeks to ensure not only safety but also the comfort of humans near 

the robot. 

Kruse T. et al in Human-Aware Robot Navigation goes in depth on existing models up 

2013 [24]. They divide navigation approaches into sociability, comfort and naturalness and 

discuss these in depth. In the more recent years, models have been developed to include these 

navigation with more than one of these approaches in mind [4, 12, 14]. However, Kruse T. et al 

discusses the comfort is used very loosely and the most problematic.  

 Recent developments in computer vision and machine learning have bolstered machine 

perception [16, 23, 25,  26]. This has inspired new approaches to human robot proxemics either 

through deep reinforcement learning [21] or deep supervised learning [14]. Unfortunately, these 

new approached are limited by the availability of data. The remaining of this paper will discuss 

proxemics in further detail, current research, how machine learning and cloud computing are 

opening new doors, and how gathering data sets that illustrate human robot interactions should 

be an open and cooperative effort in order to propel human-robot interaction forwards.  

 

 

 

 



  
 

Proxemics Background 

Origin of Reaction Bubbles 

Human special behavior is explained by prior work on anthropology and psychology and 

is now used as the basis of reasoning for human robot proxemics. Edward T Hall is known for 

coining the term proxemics. He defines proxemics as the study of the interpretation, 

manipulation, and dynamics of human spatial behavior in co-present social encounters in The 

Hidden Dimension [18]. Hall also went on to describe reaction bubbles and how people have 

differently sized bubbles based on who and how they are interacting with other people. Figure 1 

below illustrates how there are different psychophysical aspects to each of the zones proposed by 

Hall. Mead et al. developed a Bayesian network to determine if a person was expressing social 

queues based on these psychophysical aspects [11].  

 

 

Figure 1. Mead et al.’s representation of Halls Reaction Bubbles [11].  

  

Other studies have attempted to empirically measure changes on the size of these zones 

as a result of different circumstances. Mumm J. et al measures how a person’s perception of a 



  
 

robot, and maintained gaze affect how distance they maintain between themselves and the robot 

[7]. Walters M. et al. measures how human-robot distances are affected by the robots appearance 

[8], and Dautenhahn K et al examines how the distance is affected by whether a person is sitting 

or standing up.  

These studies develop on ways measuring human robot proxemics providing us with 

usable values while simultaneously revealing their variability. Additionally, they all are based on 

the assumption that either the speaker or the robot is static, thus introducing the Social Force 

Model next.  

 

Social Force Model 

In 1995 D. Helbing et al. published Social Force Model for Pedestrian Dynamics [1]. The 

Social Force Model (SFM) viewed pedestrian crossings and measured how people avoided each 

other. The study concluded that based on a person’s position and velocity, one could model their 

behavior in a crowded environment. This model now serves as the basis of several human robot 

navigation studies as it is a measurable and replicable model [2, 4, 5, 6, 12]. However, the Social 

Force Model also has shortcomings, as it designed with the primary goal to circumvent people 

rather than to interact with them; this is useless if the primary goal of the robot is to interact with 

a human.   



  
 

 

Figure 2. Depiction of the SFM where 𝑓"#	, 𝑓"& represent the forces on pedestrian 𝑖 by pedestrian 

𝑗 and wall 𝑤 respectively. 𝑓"* is the net force, and 𝑣" is the velocity of the pedestrian. 

 

Modern Uses of SFM and Reaction Bubbles 

Hall states that proxemics “remains a hidden component of interpersonal communication 

that is uncovered through observation and strongly influenced by culture.” In the case of robots, 

the reaction bubbles are in fact strongly influenced by culture and thus creating a huge scalability 

and reproducibility problem. The empirical distance seems to range between two to four feet 

[22], and it is affected by both qualities of the robot (i.e humanoid or animal) and qualities of the 

person (i.e age or height). An examples of how such modalities affect human robot distancing 

can be seen on figure 3 below where the distance changes based on whether the person is sitting 

or standing [20]. Current approaches focus on designing these models with assumptions about 

the interaction space rather than creating more generic and adaptive models.  



  
 

 

Figure 3. Example showing the difference of Human-Robot distancing between standing or 

sitting individuals, Torta E. et al [20]. 

  

 Several extensions of the social force model have been developed [2, 4, 6, 12, 19]. These 

models often focus on extending social circles and creating a goal focused model with an 

attractive force. Ferrer G. et al uses a basic form of a social force model in an open environment 

and compares the social work required when using SFM and teleoperated approaches, more 

interestingly is the social work is a measurable and useful metric that can be used to measure the 

success of other approaches as well[3]. G. Ferrer et al also addresses how the social force model 

can be modified to improve robot that work as guides or companions [6].  

 

Truong et al developed what is called a Proactive Social Motion Model (PSMM) in 2017, 

which works very similarly to the social force model, except it takes into account social circles 

where multiple people, moving individuals or groups, and objects people may be using [4, 12]. 

The PSMM is primarily designed to address humans already standing up and creates it is social 



  
 

circles based on overlapping reaction bubbles. This model, although at an early stage, is the state 

of the art in regards of robot navigation in dynamic social environments.  The main limitations of 

the models mentioned is that they are purely deterministic instead of stochastic, and do not treat 

the person as a person but rather and interaction object. In other words, they do not take into 

account gaze, pose, and use a fixed value to represent their reaction bubbles.  Since reaction 

bubbles been proven to be a variable value and exist in a continuous space [8, 9, 11, 20] , they 

could be modeled through machine learning instead.   

 

Figure 4.  Illustration of the PSMM showing the social forces acting on the robot, the social 

groupings detected, and the human-object grouping detected. Truong X. et al. [4]. 

 

The Roles of Machine Learning  and Cloud Computing in Human Robot Proxemics 

The success of today’s AI is largely a result on advancements in machine learning (ML) 

and cloud computing. One simple fact of AI being more and more ubiquitous is that the cost of 

making a capable AI, such as an echo dot, has decreased significantly by off-loading all heavy 



  
 

processing to the cloud. Meanwhile advancements in Computer vision have shown that deep 

convolutional networks can learn hierarchy of features, and the ability for neurons to specialize 

[23]. Recurrent networks have also shown impressive predictive abilities for sequential data [23]. 

Therefore, machines are getting better at extracting data and understanding their environments at 

lower computational costs. 

 

An example using Machine Learning and Cloud Technology  

Suppose a case of robot navigation using pose estimation. The robot needs to identify if a 

person is standing, sitting or facing another direction.  Using OpenPose as the pose detection 

mechanism for this example [16, 26]. OpenPose is a deep learning model that is used for 2D 

pose estimation that is extremely accurate and works in a myriad of scenarios; however in order 

for this to be possible it requires a large amount of computing power. The case for cloud 

computing contains two parts, training and inference.  

Training a model like OpenPose is a process that requires large computational and time 

intensive resources. Therefore, being able to train a model on the cloud through distributed 

computing improves the time requirement and frees a robot for having to perform one more task.  

During inference, cloud computing is key when there are multiple robots that need to use 

a model like OpenPose and they all need to respond quickly. If there was a single robot, this 

robot would simply just have the hardware it needs, an expensive GPU. During inference 

multiple robots can use the same exact network, thus it is more resource efficient to connect 

multiple robots to the same cloud service hosting said network; not to mention this technology 

allows existing robots to expand their perception capabilities as they would only need a software 

update rather than a hardware and software update to acquire a new skill.  That said, it is 



  
 

important to note, that in some cases it is best analyze which solution, cloud or local, is fastest as 

it may place the safety of people at risk.  

Proxemics and Deep Learning 

As of the last year there have been recent developments using deep learning and human 

robot proxemics. Gao Y. et al in “Investigating Deep Learning Approaches for Human-Robot 

Proxemics” [14] uses long shorter term memory networks (LSTM’s), a form of recurrent 

networks,  to predict a person’s stopping distance. Even though their approach takes into account 

information that will not always be readily available to the robot, such as age and gender, it 

performs well.  

Gao Y. et al also explores the uses of deep reinforcement learning in “Social Behavior 

Learning with Realistic Reward Shaping” [21], a key technology that needs to be developed in 

order for robots to learn from their interactions with humans. The primary limitations holding 

these complex models from success is that the simulations cannot accurately depict all human 

scenarios, there is no data set illustrating human-robot interactions or distancing in sufficiently 

diverse scenarios. In fact, most studies that are as data intensive often use very small and biased 

datasets collected in their labs [11, 14]. 

 

Figure 5. Illustration of the Deep Network architecture used by  Gao Y. et al [14].   

 



  
 

Conclusion 

“Proxemics remains a hidden component of interpersonal communication that is 

uncovered through observation and strongly influenced by culture.” – Edward T. Hall 

We have discussed about recent developments in human-robot proxemics in both static 

and dynamic environments. We addressed current problems in the existing models and have 

shown proxemics is particularly difficult as a result of inconsistency. The potential behind deep 

learning for human robot proxemics is endless. Deep learning has the potential to learn about the 

features of the hidden components of human-robot proxemics that are uncovered through 

observation and particularly mapping all different modalities into a continuous space. 

There are other areas that remains untouched such as culture adaptability and how that 

implicates transfer, deep reinforcement, and unsupervised learning. There have been no studies 

on the performance on using transfer learning from one culture to another in a human-machine 

scenario; thus, it is yet unknown if a robot trained on data from one country will be able to 

successfully adapt to another country, begging the question of whether robots will be safe 

enough to be introduced prior to adjusting to the new culture and or should the agent be 

restrained until fully adapted.  

 The data needed to unlock successful human-robot proxemics is not yet readily available 

and its difficulty to gather is best described by: robots need to interact with people in order to get 

the data for robots to learn how to interact with people. Therefore, gathering data sets that 

illustrate human robot interactions should be an open and cooperative effort in order to propel 

human-robot interaction forwards.  
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