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5 The Cúk converter uses a capacitor as its main energy storage device
as opposed to an inductor like in the Buck, Boost, and Buck-Boost
converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 The Cockcroft-Walton voltage multiplier uses switched capacitors to
step up the voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 4-stage Dickson charge pump circuit. . . . . . . . . . . . . . . . . . . 12

8 Difference between transient and steady-state modes. . . . . . . . . . 14

9 Solution set for f and C. Most Dickson charge pump designs have large f
(∼MHz) and small C (∼nF), because those are the typical sizes available. 21

10 φ and φ̄ can be produced using a 555 timer and complementary inverter,
or ”‘NOT”’ logic gate. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

11 A ring oscillator circuit produces a square wave with period T = 2(K+
1)τdelay. (a) Digital logic symbol representation. (b) Transistor-level
circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12 (a) Dickson charge pump with sinusoidal clock phases. (b) Clock and
stage capacitor voltage and current curves. . . . . . . . . . . . . . . . 26

13 A VCO can provide output voltage regulation. . . . . . . . . . . . . . 27

14 (a)Typical solar cell current and power vs. voltage curves. (b) Typical
solar cell resistance vs. voltage curve. . . . . . . . . . . . . . . . . . . 29

15 Solar cell circuit model used to find the I-V characteristic equation. . 30

16 Rectangular array composed of m · n solar cells arranged in m rows
and n columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17 Knee power vs. (m,n). Knee power is proportional to the number of
cells in the array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



18 Knee resistance vs. (m,n). Solar cell arrays can be designed to power
any kind of resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

19 Graphical addition of the voltage of three, series-connected solar cells. 40

20 Graphical addition of the current of three, parallel-connected solar cells. 43

21 Contour plots of constant number-of-cells, L, and constant knee power,
Pk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

22 Skewed contour plots of constant knee power, Pk. . . . . . . . . . . . 51

23 Array limitation for σJPH
= 0.0028 A

cm2 . The surface appears almost
flat for m > 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

24 Array limitation for σA = 0.02 cm2. The surface appears almost flat
for m > 15, similar to the case where σJPH

= 0.0028 A
cm2 . . . . . . . 58

25 Array limitation for large standard deviations of (a) series resistance,
RS, (b) parallel resistance, RP , (c) ideality factor, n, and (d) reverse
saturation current density, JS. These array limitations appear approx-
imately the same as an ideal array. . . . . . . . . . . . . . . . . . . . 59

26 Minimum load resistance and maximum load power boundaries for
double the default value of photon current density standard deviation. 62

27 Minimum load resistance and maximum load power boundaries for
triple the default value of photon current density standard deviation. 63

28 Minimum load resistance and maximum load power boundaries for the
default value of cell area standard deviation. . . . . . . . . . . . . . . 65

29 Minimum load resistance and maximum load power boundaries for
double the default value of cell area standard deviation. . . . . . . . . 66

30 Minimum load resistance and maximum load power boundaries for
triple the default value of cell area standard deviation. . . . . . . . . 67

31 (a) The maximum power boundary increases with increasing σJPH
and

σA. (b) The minimum resistance boundary decreases with increasing
σJPH

and σA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

32 4-Stage Dickson charge pump operating during (a) φ-phase and (b)
φ̄-phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

33 C1 voltage and current and D1 in steady-state. . . . . . . . . . . . . . 74

ix



SUMMARY

The objective of this research is to determine if it is possible to reduce the number

of organic solar cells required to power a load using a DC to DC converter thereby

reducing the cost of the organic solar array system. An organic solar power system

designer may choose an organic implementation of a DC to DC converter to go along

with the organic solar cell array. Common DC to DC converters include the buck

converter, boost converter, buck/boost converter, and Cúk converter, all of which

are not good candidates for organic implementation due to their use of inductors.

Organic inductors are relatively lossier than organic capacitors. So, an inductor-less

DC to DC converter, such as the Dickson charge pump, would be a better candidate

for organic implementation.

Solar cells connected in an array configuration usually do not perform up to their

full potential due to current and voltage mismatches between solar cells. These mis-

matches can be related to each solar cell’s circuit model parameters such as the photon

current density, diode ideality factor, diode reverse saturation current density, parallel

resistance, and series resistance. This research varies these circuit model parameters

as dependent variables, and observes the loads and power levels that make the Dickson

charge pump a feasible option.

The results show that current mismatch does produce an opportunity to use a

DC to DC converter to save the use of a few solar cells. However, the Dickson charge

pump was found to be infeasible due to an input voltage requirement that could not

be met using the tested organic solar cells.

x



CHAPTER I

INTRODUCTION

The objective of this work is to investigate what organic solar cell random circuit

parameter tolerances, loads, and power are required to make a Dickson charge pump

an economical solution for reducing the number of organic solar cells used in an

organic solar cell array system. Background on common DC to DC converters is

given first to compare the benefits and drawbacks of each. Next, the Dickson charge

pump is analyzed extensively, and an original design methodology is presented. Then

background on the basic solar cell circuit representation, current-voltage (I-V) curves,

power-voltage (P-V) curves, and resistance-voltage (R-V) curves (hereafter called

cell curves) is presented along with a method for finding the array curves. Lastly,

simulation results are given that show how the standard deviation of the random

circuit parameters affect array performance and how they affect the decision to use a

DC to DC converter or Dickson charge pump.

Figure 1: Basic solar cell circuit model.
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1.1 Motivation: Reducing Solar PV Levelized Cost of En-

ergy

Energy is essential for the human way of life. We, as a human society, have been look-

ing for ways to produce more energy at lower cost for all of recorded history. Early

methods of creating energy included burning wood, forced animal labor, and wind-

mills. These forms of energy creation worked well for the time and capacity in which

they were needed. However, populations grew and required cheaper and more power-

ful forms of energy creation. The burning of fossil fuels provided cheap and powerful

energy and helped improve the infrastructures of developed countries. Automobiles,

trains, and expanded manufacturing capabilities enabled developed countries to easily

produce and distribute goods and services to its people.

The benefits of fossil fuel energy are its inexpensiveness, energy density, and porta-

bility while its drawbacks are pollution and limited supply. Renewable energy meth-

ods such as solar, wind, nuclear, hydro, fusion, and geothermal are being developed

as inexpensive and powerful energy sources that do not share these drawbacks. All

of these renewable energy methods would have a limitless supply and create less pol-

lution than fossil fuels. One of the more attractive methods is solar energy because

of wide availability of the sun, solar arrays available for the home, and absence of

moving parts. These benefits for solar energy are a boon for the energy industry, but

the preferred energy production method is still burning fossil fuels.

The reason energy companies use fossil fuels is its inexpensiveness despite its

pollutive effects. On average, fossil fuel power is still less expensive than solar power.

Table 1 shows the Levelized Cost of Energy (LCOE) of various forms of renewable and

conventional energy. LCOE is a basic cost metric energy companies use to determine

which form of energy is the most cost-effective to produce over the long term. It

includes costs such as initial capital investment, expected future fuel costs, expected

operation and maintenance, and expected taxes.
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Table 1: Levelized Cost of Energy for Renewable and Conventional Energy [5]

Method Levelized Cost of

Energy ($/MWh)

Conventional Energy Methods

Coal:

Conventional Coal $60.9

Advanced Coal $63.9

Advanced Coal with CCS $83.8

Natural Gas:

Conventional Combined Cycle $68.1

Advanced Combined Cycle $64.8

Conventional Combustion Turbine $113.4

Advanced Combustion Turbine $100.6

Alternative Energy Methods

Advanced Nuclear $69.7

Geothermal $72.9

Biomass $79.8

Wind $82.5

Solar Thermal $154

Solar Photovoltaics $287.9
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There are two types of solar power listed in the table: solar thermal and solar pho-

tovoltaics (PV). Solar thermal refers to concentrating the sun’s radiation to a point,

which creates a large amount of heat. This heat is converted to electricity through a

number of different methods including spinning a turbine with steam produced from

boiling water [9]. Solar PV refers to converting photons from the sun’s radiation to

electricity. Solar cells made from semiconductors arranged into arrays capture the

sun’s radiation and use the photoelectric effect to convert photons into electricity

[15].

Within solar PV, there are two main classes of solar cells: inorganic and or-

ganic. Inorganic solar cells are most commonly made (>80%) from crystalline sili-

con, but other semiconducting materials such as amorphous silicon have also been

used [21]. The power-conversion efficiency of many common types of silicon solar

cells have been reported between 9.8 and 24.7% [10]. Organic solar cells are distin-

guished from inorganic by their use of carbon-based semiconducting materials such as

Buckminsterfullerine (C60), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and

Zinc-Phthalocyanine (ZnPc) [11]. Organic solar cells have several advantages over

inorganic solar cells. They are lighter in weight, more flexible, cheaper to manufac-

ture, and more material-saving than inorganic solar cells [19] [22]. The disadvantage

of organic solar cells is its poor power-conversion efficiency, which has been reported

between 0.1 and 5.7% [8] [22]. The poor efficiency can be overcome by using more

organic solar cells to meet a power specification, and the entire system may still be

less expensive than an inorganic system. However, neither of these versions of solar

PV has a cheaper LCOE than typical fossil fuel methods.

In order to get power companies to choose solar power more often, the LCOE

of solar power must be driven down. Solar LCOE can be driven down in many

different ways, but the most direct way is improving the amount of Watts generated

per solar cell within a power generation system. The power generation system may

4



not necessarily be a grid-connected power plant designed to power neighborhoods.

It may be a roof system placed on top of a house to power appliances and use net-

metering, a medium-sized panel to power an electric motor, a small panel to power

a streetlight, or a very small panel to illuminate Christmas light LEDs. Whichever

the case, it would be beneficial to devise a way to reduce the number of solar cells

needed to power a load.

One way to reduce the number of solar cells needed in a system is to improve the

power efficiency of each solar cell individually. Another way is to analyze how solar

cells behave when connected in an array together. It will be shown in this research

that the manufacturing tolerances for solar cell parameters heavily affect the array

performance. Some solar cells may be manufactured specifically to work best in a

vertical array (more rows than columns), while others may work best in a horizontal

array (more columns than rows). If a large load requires a large voltage, but the cells

are made to work best in a horizontal array, then the best method of producing the

voltage is to use a DC to DC converter.

The most common way of powering a DC load with inorganic solar cells is bucking

or boosting the array output to the voltage and current needed for the load. A

buck converter is a DC to DC converter that reduces DC voltage, while a boost

converter increases DC voltage. Both of these circuits can be designed with efficiencies

approaching 100% [16]. The reason buck or boost converters are used is because there

are many different types of load applications, and it is more cost-effective for solar

companies to design a few solar arrays and use many different converters to adjust

the voltage and current accordingly.

Organic solar power system designers may decide to follow the same method as the

inorganic designers, which is design a few flagship solar cell arrays and many different

accommodating DC to DC converters. One difference is the organic designer may

decide to build the buck or boost converter using organic components. In this case,
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the organic designer should avoid using inductors, which are present in the buck

and boost converters, because they are extremely lossy. There are other DC to DC

converters that do not use inductors, and one of the most famous is the Dickson

charge pump. The Dickson charge pump consists only of capacitors, diodes, and a

clock, which makes it an excellent candidate for organic implementation.

In a general solar cell array power system, the DC to DC converter can be designed

with an efficiency close to 100%, so it is not a limitation for powering the load. The

solar cells in the solar array and the load are the factors that affect the power efficiency

of the solar array.

This work investigates what solar cell manufacturing tolerances, loads, and power

are required to make the charge pump option more economical than the array option.

A little background on common DC to DC converters, Dickson charge pumps, and

solar cell arrays is given first. Then, simulation results are given that show what

conditions on the solar cell parameter tolerances produce situations that favor the

charge pump option.

1.2 Survey of DC to DC converters

The simplest DC to DC converter is the voltage divider using resistors. However,

there are not many voltage divider circuits in use because the non-load resistor dissi-

pates power, lowering the overall power efficiency. Optimal DC to DC converters use

switching techniques to move charge or current in such a way that creates a larger or

smaller voltage or current on the output.

1.2.1 Buck Converter

The buck converter is used to lower the input voltage. The circuit diagram is shown

in Figure 2. The waveform applied to the low-pass L-C filter, Va is a square wave and

has an average value of DVin, where D is the duty cycle of the switch. The low-pass

filter removes all the high frequency components in Va, and the output becomes just

6



Figure 2: The buck converter uses a switch and low-pass filter to lower input voltage.

the DC component [16],

Vout = V̄a = DVin (1)

The gain equation is linear, so a feedback loop can be used to control or regulate the

output.

1.2.2 Boost Converter

The boost converter is used to raise the input voltage. The circuit diagram is shown

in Figure 3. The inductor is first charged when the switch is closed. When the switch

opens, it discharges into the capacitor, which slowly discharges into the load. The

gain equation is [16]:

Vout =
1

1 − D
Vin (2)

The gain equation is linear, so a feedback loop can also be used to control the output

of the boost converter.

1.2.3 Buck-Boost Converter

The buck-boost converter is used to raise or lower the input voltage. The circuit

diagram is shown in Figure 4. The buck-boost converter can be thought of as a

buck and boost converter cascaded together. The peculiarity is that the output is

inverted. The gain equation is the product of the buck and boost gain equations.

7



Figure 3: The boost converter uses a switched inductor and a ripple capacitor to
raise input voltage.

Figure 4: The buck-boost converter uses a switched inductor and a blocking diode
to control how much power goes to the load.

From equations (1) and (2) [16],

Vout =
D

1 − D
Vin (3)

The gain equation is linear, so a feedback loop can be used to control the output.

1.2.4 Cúk Converter

The Cúk converter is used to raise or lower the input voltage just like the buck-boost

converter. The circuit diagram is shown in Figure 5. This circuit was named after its

inventor, Slobodan Cúk. The gain equation is the same as the buck-boost converter

8



Figure 5: The Cúk converter uses a capacitor as its main energy storage device as
opposed to an inductor like in the Buck, Boost, and Buck-Boost converters.

[16] [6]:

Vout =
D

1 − D
Vin (4)

The gain equation is linear, so a feedback loop can be used to control the output.

1.2.5 Cockcroft-Walton Voltage Multiplier

J. D. Cockcroft and E. T. S. Walton unveiled the predecessor to the Dickson charge

pump in 1932. Their purpose was to accelerate protons to high speeds and conduct

other experiments [4]. To do that, they needed an extremely large DC voltage (800

kV exactly) to create an extremely powerful electric field, which could accelerate

protons from rest. The circuit they devised is shown in Figure 6. The basic idea

behind the circuit was charging the lower-level capacitors on the right-hand column

and then moving the switches up so that the higher left-hand capacitors could be

charged. Then, the switches would be moved again to charge even higher-level right-

hand column capacitors. This process continues until the circuit reaches steady-state,

at which time the output voltage becomes [4]

Vout = NVin (5)

where N is the number of capacitors in the left-hand column. The maximum voltage

across any individual capacitor is Vin. Even though the output voltage may be 800

kV, the individual capacitors do not need to be designed to withstand that much

9



Figure 6: The Cockcroft-Walton voltage multiplier uses switched capacitors to step
up the voltage.

voltage. This characteristic makes the Cockcroft-Walton voltage multiplier better

suited for very high-voltage generation.

This DC to DC converter is different from the previous converters discussed be-

cause it does not use inductors. Thus, it is a reasonable candidate for organic com-

ponent implementation. It would also be a good circuit to use for simulations in

this research, but the Dickson charge pump uses almost half as many components to

accomplish the same goal.

All of these DC to DC converters are used widely in other applications. Each has

their own purpose. The buck, boost, buck-boost, and Cúk converters can have real-

istic power efficiencies above 0.9 [16]. These converters use inductors, which does not

lend itself well to organic design. The Cockcroft-Walton voltage multiplier can have

a power efficiency very close to 1.0 if operating at very high voltage and using large

capacitors (> mF). However, it suffers when stray capacitance becomes comparable

to capacitors shown in the figure.
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The Dickson charge pump overcomes many of the shortcomings of these converters.

First, it does not use inductors. Second, it suffers only half as much from stray

capacitance as does the Cockcroft-Walton voltage multiplier [7]. One downside is its

nonlinear gain, which means a more complex feedback system needs to be designed

in order to control the output.

11



CHAPTER II

DICKSON CHARGE PUMP OPERATION AND DESIGN

A common circuit used for boosting DC input voltage to larger DC output voltage

is the Dickson charge pump [7] [1]. This type of charge pump circuit is a nonlinear,

boosting DC-to-DC converter. The input is a DC voltage source, and the output is

a DC voltage with ripple. It is nonlinear because a change in input voltage does not

produce a proportional change in output voltage. It is a boosting converter because

the circuit is generally used to create an output voltage that is larger than the input

voltage.

The most common use of Dickson charge pumps is on-chip generation of large

voltages for loads like flash memory and LCD displays in a systems-on-a-chip (SOC)

[3]. A Dickson charge pump made with poly-silicon thin-film-transistors (TFTs) was

designed to supply power for an LCD by Yoo and Lee [26]. Other uses include micro-

electro-mechanical systems (MEMS) and high voltage varicap devices in tunable filters

[2]. It can be used for larger power loads as well, but usage in power grid and high

power transmission applications (> 1 MW) is uncommon.

Figure 7: 4-stage Dickson charge pump circuit.
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A circuit diagram of the Dickson charge pump is shown in Figure 7. A stage is

defined as a capacitor connected between the preceding diode’s cathode pin and one

of the two clock sources. The Dickson charge pump in Figure 7 has N = four stages.

The diodes and capacitors in each stage are called stage capacitors and stage diodes,

respectively. Each stage diode and stage capacitor has a subscript describing the stage

to which they belong. Each stage capacitor has the same capacitance (i.e. Ci = Ci−1).

The capacitor labeled Cout is called the output capacitor, and the diode labeled Dout

is called the output diode. The output stage is not connected to a clock source and is

connected in parallel with the load resistor, RL. The clock sources, ϕ and ϕ̄, are two

complementary, non-overlapping, 50% duty cycle clocks with a maximum voltage of

Vin. The clocks are 180 degrees out of phase, so when ϕ is high, ϕ̄ is low and vice

versa. The period of the clocks, T , is related to the clock frequency, f , by

f =
1

T
(6)

2.1 Basic Circuit Operation

The Dickson charge pump operates in two modes: transient mode and steady-state

mode, both of which are shown in Figure 8 [16]. Transient mode occurs when the

charge pump is first turned on. Before being turned on, the stage capacitors and

the output capacitor hold no charge. They must be charged up to reach steady-

state mode. During transient mode, the DC source and clock sources provide much

more current than during steady-state mode. This extra current is used to charge up

the capacitors. Steady-state mode occurs when the capacitors operate under charge

balance, which means the capacitors accumulate zero net charge during one complete

clock cycle.

Pertinent equations such as input/output, power efficiency, input resistance, and

ripple voltage equations are given for the steady-state mode in the following subsec-

tions. Detailed derivations are given in Appendix A.

13



Figure 8: Difference between transient and steady-state modes.
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2.1.1 Input/Output Equation

The most common form of the input/output equation was first presented by John

F. Dickson [7]. For a general N -stage Dickson charge pump with clock voltage Vφ =

Vφ̄ = Vin, this common output equation is

Vout = (N + 1)(Vin − Vt) −
NIout

fC
(7)

This form is derived in detail in appendix section A.1, but is then rearranged to a

simpler form:

Vout =
(N + 1)(Vin − Vt)

1 + N
fCRL

(8)

This equation describes how the output behaves when design parameters are changed.

Output voltage increases as more stages are added, but also loses Vt Volts as each stage

is added. The fractional term in the denominator, N/fCRL, is usually adds a small

amount to the denominator, which means changes in the number of stages, frequency,

capacitance, and load resistance do not affect the output voltage too heavily.

2.1.2 Power Efficiency

Power efficiency is defined as the ratio of power that makes it to the output without

getting dissipated vs. the power supplied. It can be calculated as

η =
Pout

Pin

=
VoutIout

VinIin

(9)

Efficiency η is easily found by substituting expressions for Vout, Iout, Vin, and Iin.

Appendix section A.2 derives these expressions in detail and makes substitutions into

equation (9). Two useful equations for power efficiency were derived. In terms of

input and output voltage, power efficiency is

η =
Vout

Vin(N + 1)
(10)

If only input voltage is known, the efficiency has the following dependencies:

η =
(1 − Vt

Vin
)

1 + N
fCRL

(11)
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These results have been verified through a different derivation technique by Tan-

zawa and Tanaka [23]. Equation (11) shows how the circuit parameters affect power

efficiency. Increasing frequency, stage capacitance, and load resistance all increase

efficiency as well as decreasing the number of stages. Efficiency becomes almost fre-

quency independent for f > N/(CRL). Efficiency depends on input voltage. For

large inputs, the Vt/Vin term is negligible, and efficiency becomes large. For small

inputs, the Vt/Vin term dominates, and efficiency becomes small. This circuit is only

useful for circuits with Vin > Vt.

The diodes are the only circuit components that dissipate power besides the load

resistor, and their threshold voltage is fairly constant for any diode current. Reducing

the current passing through the diodes for any given load resistance will increase

power efficiency. Large loads require less current than small loads for the same output

voltage. Large stage capacitors absorb less charge than small capacitors for constant

frequency. Reducing the number of stages reduces the number of diodes. All of these

things reduce the current through the diodes and increase power efficiency.

2.1.3 Output Ripple Voltage

The input/output equation gives a value for the maximum voltage the output can

be. Output ripple voltage determines how far the output voltage drops from the

final value given in equation (8). The load may require that voltage does not drop

below 95% of its specification. If it does, the load device may turn off, break, or do

something else that is undesired. So, it is important to determine what the output

ripple voltage will be based on circuit parameters.

From appendix section A.2, The expression for output voltage ripple is

∆Vout

Vout

=
1

RLfCout

(12)

Ripple gets larger as load resistance gets smaller. Also, a faster frequency and a

larger output capacitance will suppress ripple. Let the specification for percent ripple
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voltage be called α:

α =
∆Vout

Vout

(13)

And let the ratio between output capacitance and stage capacitance be called β:

β =
Cout

C
(14)

Then, according to the detailed derivation in appendix section A.2 , β and α are

related by

β =
1

RLfCα
(15)

This relationship implies capacitor ratio, β, and the ripple voltage specification, α,

are inversely proportional to each other, which should make sense. Small ripple

implies small α, which implies large β and large output capacitance. A large load

resistance draws less charge from the output capacitor than a small load resistance,

so a small output capacitor would suffice. Increasing frequency decreases β also, so

along with the power efficiency equation (11), the designer can arbitrarily choose a

large frequency to minimize capacitor size and maximize efficiency.

2.1.4 Input Resistance

Input resistance describes the equivalent resistance seen looking into the circuit. It

is the same resistance the input solar cell array would see if connected to the input

of the charge pump. The input resistance determines how large or small the input

array needs to be in order to supply a certain input voltage and current.

Input resistance, Rin, is the resistance a Direct Current (DC) power source would

see if connected to the input of the Dickson charge pump. It is defined as

Rin =
Vin

Iin

(16)

The expression for Iin is derived in appendix A section A.2 as

Iin = (N + 1)Iout (17)
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Substituting this expression into equation (16) and then replacing Iout with Vout/RL,

equation (16) becomes

Rin =
Vin

Iin

=
Vin

(N + 1) Iout

=
VinRL

(N + 1) Vout

(18)

Vin/Vout is the reciprocal of the the voltage gain, which is related simply to the power

efficiency by equation (10):

Vin

Vout

=
1

η (N + 1)
(19)

Substituting equation (19) into equation (18) yields

Rin =
VinRL

(N + 1) Vout

=
RL

η (N + 1)2
(20)

This says input resistance decreases as the number of stages increases. This makes

sense because more stages means more current is drawn at the same voltage. Also,

load resistance determines the output current, which determines the input current as

well.

2.2 Dickson Charge Pump Design

This section will discuss the basic design of a Dickson charge pump, special design

cases, and the clock circuit used to drive the pump.

2.2.1 Basic Design

The common specifications for a DC-DC converter are:

• Output power

• Load resistance

• Input resistance

• Minimum power efficiency

• Percent ripple voltage
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From these specifications, the designer must determine these circuit parameters:

• Stage diodes (threshold voltage)

• Number of stages

• Input power

• Input voltage

• Frequency

• Stage capacitance

• Output capacitance

The first parameter the designer must determine is the type of diode to use in

circuit. There is no equation or method that finds the perfect diode threshold voltage,

Vt, to use for the circuit. However, it will be shown later that low Vt minimizes the

size of the capacitors. So, the designer should choose diodes that are cheap and have

low Vt. Also, advanced techniques such as using body diode connections in silicon-

on-insulator (SOI) MOSFETs can be used. In some cases, this technique increases

power efficiency [12] [13], and it may be transferable to organic transistors as well.

The number of stages, N , is the next parameter to calculate. There are several

ways to estimate N , including designer’s preference; however, the simplest way is to

rearrange the input resistance equation from (20):

Rin =
RL

η (N + 1)2
(21)

Solving for N , this becomes

N =

√

RL

ηRin

− 1 (22)

N may not be an integer depending on the specifications for RL, Rin, and η. N should

be floored to the largest integer less than N (e.g. ⌊5.724⌋ = 5). Flooring N , rather
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than simply rounding N , is beneficial because it reduces the number of components

and helps increase the designed power efficiency (explained later).

Using ⌊N⌋ instead of N , the next step is to recalculate efficiency η from ⌊N⌋.

Solving equation (21) for η results in

ηrecalc =
RL

Rin (⌊N⌋ + 1)2
(23)

From this equation, it can be shown that ηrecalc ≥ η since ⌊N⌋ ≤ N .

The input power, Pin, and the input voltage, Vin, can be found using (23) and the

specifications for output power, Pout, and input resistance, Rin. Pin is

Pin =
Pout

ηrecalc

(24)

And by definition,

Vin =
√

PinRin =

√

Pout

ηrecalc

Rin (25)

The next few design parameters to calculate are stage capacitance, C, output

capacitance, Cout, and frequency, f . In almost every equation derived so far, fre-

quency and stage capacitance have always appeared together as the product (fC).

The exceptions are in equations (6), (93), and (96), but those are not design equa-

tions. Solving for fC from the design equations derived in this chapter produces two

equations:

fC =
1

αβRL

(26)

fC =
⌊N⌋

RL

[

ηrecalc

1 − ηrecalc −
Vt

Vin

]

(27)

This is an under-determined system of equations, which produces infinite solutions

for f and C. The set of solutions for f and C form the graph shown in Figure 9.

Equation (27) will be used to determine the product (fC). Equation (27) contains

variables that were specified or found earlier in the design process, whereas equation

(26) contains β, which has not yet been found.
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Figure 9: Solution set for f and C. Most Dickson charge pump designs have large f
(∼MHz) and small C (∼nF), because those are the typical sizes available.
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The set of infinite solutions, (f ,C), allows the designer the freedom to choose

f and C based on constraints such as component cost and size. Switch rise time

and fall time are factors that affect which frequency should be chosen [14]. Output

capacitance can be found using equation (26) and the equation for β in equation

(119). First β is found using

β =
1

αfCRL

(28)

Then, Cout is found using

Cout = βC (29)

This finishes the basic design of the Dickson charge pump. The charge pump can

be designed for almost any combination of input resistance, power efficiency, load

resistance, and load power.

2.2.2 Special Cases

Sometimes, the constraint for η is too high for the given input resistance, and it is

simply impossible to build. In these situations, a sacrifice of power efficiency should

be made.

A large specification for η will sometimes call for N < 1. This situation occurs

when Rin is specified to be too large (Rin ≥ RL/η according to equation (22)). In

this case, the designer should simply set ⌊N⌋ = 1 in the design equations above.

Every specification can still be met except for the power efficiency: ηrecalc < η since

⌊N⌋ > N .

If the specifications call for a very small input voltage or a very high power ef-

ficiency, then the frequency-capacitance product will be negative (fC < 0). This

produces the inequality

ηrecalc +
Vt

Vin

> 1 (30)

according to (27). The recalculated efficiency, ηrecalc, was recalculated from the speci-

fications, and input voltage, Vin, was found from the specifications. The only freedom
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the designer has at this point is selection of a smaller Vt. If recalculated efficiency,

ηrecalc ≥ 1, then even letting Vt → 0 will not make fC positive. In this case, the de-

signer should take the ceiling of N , which is rounding upward to the smallest integer

greater than N (e.g. ⌈5.724⌉ = 6). Using ⌈N⌉ will allow every specification to be met

except for power efficiency just as before: ηrecalc < η since ⌈N⌉ > N .

2.3 Clock Design

The two clock phases, φ and φ̄, can be designed in a number of ways. This section

discusses square-wave and sinusoidal clock designs.

2.3.1 Square-Wave Clock Design

A 555 timer chip is a circuit that can be configured to act as a 50% duty cycle switch

that flips between Vin and ground. The output pin of the 555 timer would be one phase

of the clock (φ). The other phase would be made using a complementary inverter with

φ as the input and φ̄ as the output. This is a standard complementary inverter, or

“NOT” gate, where a “high” input produces a “low” output and vice-versa. Figure 10

shows this clock circuit.

Another option for the clock signal generator is a ring oscillator, which consists of

a NAND gate followed by an even number of NOT gates [25]. The output of the last

NOT gate is connected to the input of the NAND gate. This is shown in Figure 11.

Each MOSFET stage has a gate delay, τdelay, and the square wave produced has a

50% duty cycle with period T = 2(K + 1)τdelay. The last and next-to-last stages can

be used as φ and φ̄.

The stage capacitors must be designed to withstand the large and fast current

swings and large current amplitudes shown in Figure 33. The expression for that

current curve can be found by

ID(t) = C1

dVC1(t)

dt
=

VL

RD

e
−t

RD(t)C (31)
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Figure 10: φ and φ̄ can be produced using a 555 timer and complementary inverter,
or ”‘NOT”’ logic gate.

Figure 11: A ring oscillator circuit produces a square wave with period T = 2(K +
1)τdelay. (a) Digital logic symbol representation. (b) Transistor-level circuit.
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The maximum diode current is VL/RD. At the beginning of each clock cycle, RD is

very small, so the current spike may be large.

An external clock may be used if the Dickson charge pump is used in a larger

system. The only clock circuitry needed within the Dickson charge pump is a com-

plementary inverter, buffers, and two NOR gates to prevent clock overlap [12].

2.3.2 Sinusoidal Clock Design

If a sinusoidal clock is desired instead of a square-wave clock, the designer could choose

a crystal oscillator or any type of harmonic oscillator (Armstrong, Hartley, Colpitts,

etc.). The circuit connections need to be modified as in Figure 12a. Instead of a

separate φ̄-phase clock source connected to the even-numbered stages, these stages are

simply connected to ground. This method works because charge is transferred from

the even-numbered stages to the odd-numbered stages when the sinusoidal clock signal

goes negative. So, the charge transfer action of the charge pump is still preserved

even with a sinusoidal clock.

There are two benefits from using a sinusoidal clock over a square-wave clock.

First, the sinusoidal clock imposes a gradual voltage change across the capacitors,

which induces softer current transfer between the capacitors. The current no longer

looks like unit-step decaying exponential functions with large current spikes as in

Figure 33. Instead, the current looks like the curve in Figure 12b. In that graph, the

maximum current can be found by comparing IC(t) to a triangular approximation as

in the graph. The areas under IC(t) and the triangle curve must both be equal to

charge transferred, QL:

QL =
1

2
tLImax =

∫

tL

IC(t)dt = CVL (32)

Then, Imax is found as

Imax =
2CVL

tL
(33)
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Figure 12: (a) Dickson charge pump with sinusoidal clock phases. (b) Clock and
stage capacitor voltage and current curves.
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Figure 13: A VCO can provide output voltage regulation.

Making the substitution for VL using (104), this becomes

Imax =
2Iout

ftL
(34)

where

tL ∝
Vin

fVout

(35)

If the designer wishes to have control over the output voltage, a voltage-controlled

oscillator (VCO) could be used. A VCO can be used in a control loop as shown in

Figure 13 to regulate the output voltage in case the input voltage is not outputting

a constant average DC voltage. The plant is the Dickson charge pump, which has a

nonlinear gain with respect to frequency. Addition of a nonlinear control circuit would

then provide voltage regulation. The VCO may be used in either the square-wave

clock case or sinusoidal clock case.

Control over the output is useful when the input source experiences a sudden loss

or gain in power. For solar cell arrays, this means partial shading or unusually high

or low sun radiation, which causes a change in input voltage. The control system

may need to be powered by a separate, more reliable power source to provide reliable

reference voltages.
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CHAPTER III

SOLAR CELL ARRAYS

Photovoltaics or solar cell arrays are collections of solar cells connected in series

and/or parallel to provide DC electric power. The most common method of solar cell

array connection is the rectangular form, where n columns of m series-connected solar

cells are connected in parallel, which make the dimensions m rows by n columns. This

chapter discusses the basic circuit model for both organic and inorganic solar cells,

the effects of combining solar cells, and the effects of solar cell parameter mismatch.

3.1 The Solar Cell

Solar cells are characterized electrically by their current vs. voltage curve, or I-V

curve. A typical I-V curve is shown in Figure 14. ISC is the short-circuit current,

which is the largest current the solar cell can produce. VOC is the open-circuit voltage,

which is the largest voltage the solar cell can produce in the first quadrant (V > 0, I >

0). Pk, Ik, and Vk are the power, current, and voltage the solar cell produces when

operating at the knee, which is the operating point of maximum power production.

The solar cell needs to be connected to the optimal resistance, Rk, in order to operate

at the knee.

3.1.1 Basic Circuit Model for a Solar Cell

The typical solar cell can be represented by the circuit model shown in Figure 15.

The current source, IPH , represents the current produced from electron-hole pair re-

combination due to solar radiation. The diode represents the solar cell’s P-N junction

characteristics. Current will pass through the solar cell just like it would pass through
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Figure 14: (a)Typical solar cell current and power vs. voltage curves. (b) Typical
solar cell resistance vs. voltage curve.
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Figure 15: Solar cell circuit model used to find the I-V characteristic equation.

a diode when voltage is applied or produced across the terminals. The diode is char-

acterized by its ideality factor, n, and its reverse saturation current, IS. RP is the

parallel resistance of the semiconductor materials. RS is the series resistance of the

metals used in the solar cell leads and contacts. Typically, RP >> RS.

Figure 15 can be analyzed to find the I-V characteristic equation. A node equation

will show

I = IPH − ID − IP (36)

IPH is independent of V and I, so it will be left untouched in equation (36). However,

ID and IP are dependent on I and V . The voltage across the diode is

VD = V + IRS (37)

This is substituted into the diode current equation to find ID:

ID = IS

(

e
q(V +IRS)

nkT − 1
)

(38)

The voltage across the parallel resistor, RP is also VD, so the current can be found

using Ohm’s law:

IP =
V + IRS

RP

(39)

These expressions for ID and IP are plugged into equation (36) to get

I = IPH − IS

(

e
q(V +IRS)

nkT − 1
)

−
V + IRS

RP

(40)
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This is the generally accepted version of the current-voltage relationship for the solar

cell model. The I-V equation is not in standard form as a function of voltage alone

(I(V )), but is still practical to use and needs no further simplification. The basic

shape of the I-V curve formed by this equation is the same as Figure 14, and can be

thought of as simply a constant minus the diode curve. Making the solar cell more

sensitive to light will increase IPH and raise the curve to higher currents overall.

Making the P-N junction diode less sensitive to voltage will decrease IS and stretch

the curve to higher voltages overall. The last term in the equation, V +IRS

RP
, is small

compared to the rest of the equation because the parallel resistance is large compared

to voltage and series resistance. However, it is included to get an accurate measure

of ISC and VOC .

3.1.2 Finding Short-Circuit Current and Open-Circuit Voltage

The simple method of finding short-circuit current and open-circuit voltage is to

assume that the series resistance is very small and the parallel resistance is very

large. With these assumptions, the current-voltage relationship for the circuit model

becomes

I ≈ IPH − IS

(

e
qV

nkT − 1
)

(41)

Shorting the terminals forces V = 0, which makes the diode current term drop out,

and the current-voltage equation becomes

ISC ≈ IPH (42)

The total current produced by sunlight radiation is approximately the short-circuit

current.

The open-circuit voltage is found by opening the cell terminals, which forces I = 0.

Then, the current-voltage relationship becomes

0 ≈ IPH − IS

(

e
qVOC
nkT − 1

)

(43)
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Solving this equation for VOC results in

VOC ≈
nkT

q
ln

(

IPH

IS

+ 1

)

(44)

This equation is the voltage produces across the diode when its current is IPH . This

has been verified by Nakayashiki [17]. For a detailed method of finding the short-

circuit current and open-circuit voltage, refer to appendix section.

The fill factor (FF) is defined as the ratio of the knee power (VkIk) to the theo-

retical maximum attainable power (VOCISC), and is related to the solar cell’s power

conversion efficiency (ηcell) by [28]:

FF =
VkIk

VOCISC

=
ηcellAEL

ISCVOC

(45)

where A is the cell area (m2) and IL is the irradiance of the light incident on the solar

cell (W/m2).

3.2 The Solar Cell Array

The solar cell is a power generation device, but it does not produce much power by

itself. Most conventional organic or inorganic solar cells produce power in the range

of 10 nW to 10 mW, depending on semiconductor technology, illumination, and cell

area exposed to light. Most devices that are commonly connected to solar cells, such

as microcontrollers, battery banks, or DC to DC converters, have a wide variety of

input resistances and require much more power than 10mW . A single solar cell by

itself will not be able to power a larger-power device, so designers use a solar cell

array, such as the rectangular array shown in Figure 16. This section derives the I-V,

P-V, and R-V relationships (called the array curves from now on) for a standard,

rectangular solar cell array.

3.2.1 The Ideal Column Array

The array curves are found by first summing the cell curves to find the column curves,

and then summing the column curves to find the array curves. For an ideal solar cell
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Figure 16: Rectangular array composed of m · n solar cells arranged in m rows and
n columns.

array, which consists of m rows and n columns of identical solar cells, the column

curves can be found by linearly scaling the cell curves in Figure 14. Cells connected

in series share the same current, so for any arbitrary column current, Icol, the voltage

across the column is

Vcol(Icol) =
m

∑

j=1

Vcell,j(Icol) = mVcell(Icol) (46)

where j is the jth cell in the column. The summation is replaced with a multiplication

by m because the voltage produced for each ideal cell is exactly the same for any

current. Plugging in Icol = 0 in equation (46), we get the relationship for the column

open circuit voltage, VOC,col:

VOC,col = mVcell(0) = mVOC,cell (47)

Since current is the same through every cell in the column, the short circuit current

for the column must be the same as the short circuit current of each cell:

ISC,col = ISC,cell (48)
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In addition, the knee current for the column, Ik,col, is the same as the knee current of

each cell:

Ik,col = Ik,cell (49)

This can be used in equation (46) to find Vk,col:

Vk,col = Vcol(Ik,col) = mVcell(Ik,cell) = mVk,cell (50)

Equations (49) and (50) show that the knee has moved only in voltage and not in

current. This suggests that the P-V curve has moved with voltage and not current

also.

The power produced by the column is just the column voltage times column

current. Using this relationship and equation (46), we get

Pcol(Vcol) = VcolIcol = mVcellIcell = mPcell (51)

This says the power curve has been scaled by m, which implies the power at the knee

has been scaled by m also. The power at the column’s knee is

Pk,col = mPk,cell (52)

So a column of m identical, series-connected solar cells produces m times the power

of one solar cell.

An array designer usually chooses the load resistance so that the solar cell operates

at the knee. To get the R-V curve for the column, Rcol, we just divide the column

voltage by column current:

Rcol =
Vcol

Icol

=
mVcell

Icell

= mRcell (53)

This means the resistance required to operate at a specific I-V and P-V point is scaled

up by m. So, the knee resistance has been scaled up by m also. In general, solar

cell arrays with much more rows than columns (m >> n), called vertical arrays, can

produce power for large load resistances.
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3.2.2 The Ideal Row Array

The second step in finding the final array curves is summing the curves found from

each individual column. In the ideal array case, where every cell is identical, each set

of column curves is the same. In this section, the column curves can be treated like cell

curves in case the solar cell array you are working with is just a single row. In other

words, the subscripts ‘col’ and ‘A’ can be replaced with ‘cell’ and ‘row’, respectively,

and the algebra would be exactly the same. This section uses the subscripts ‘col’ and

‘A’ to follow suit with the previous section.

The array current is the summation of currents produced by each column. So, for

any arbitrary column voltage,

IA(VA) =
n

∑

j=1

Icol,j(VA) = nIcol(VA) (54)

where j is the jth column in the array. The summation is replaced with a multiplica-

tion by n because the current produced by each ideal cell is exactly the same for any

voltage. The short-circuit current is found by setting VA = 0 in equation (54):

ISC,A = nIcol(0) = nISC,col (55)

Since the voltage across each column in the array is the same, the open circuit voltage

of the array, VOC,A, must be the same as the open circuit voltage of each column:

VOC,A = VOC,col (56)

In addition, the knee voltage for the array, Vk,A is the same as the knee voltage of

each column:

Vk,A = Vk,col (57)

This can be used in equation (54) to find the knee current for the array, Ik,A:

Ik,A = IA(Vk,A) = nIcol(Vk,col) = nIk,col (58)
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The previous two equations show that the knee has moved only with current and

not with voltage. This suggests that the P-V curve has moved with current and not

voltage also.

The power produced by the array is the array voltage times array current. Using

this relationship and equation (54), the power curve is

PA(IA) = VAIA = VcolnIcol = nPcol (59)

This says the power curve has been scaled by n, which implies the power at the knee

has been scaled by n also. The array power at the knee is

Pk,A = Vk,AIk,A = Vk,colnIk,col = nPk,col (60)

So, an array of n identical, parallel-connected columns of solar cells produces n times

the power of one column of solar cells.

An array designer usually chooses the load resistance so that the solar cell operates

at the knee. To get the array resistance curve, RA, the array voltage is divided by

array current:

RA =
VA

IA

=
Vcol

nIcol

=
Rcol

n
(61)

This means the resistance required to operate at a specific I-V and P-V point is scaled

down by n. So, the knee resistance has been scaled down by n also. In general, solar

cell arrays with much more columns than rows (n >> m), called horizontal arrays,

can produce power for small load resistances.

3.2.3 Combining Rows and Columns

Now the results of the previous two sections are combined to get the final array curves.

The I-V curve was scaled by m in the voltage direction and scaled by n in the current

direction. So, the set of I-V pairs, (Icell, Vcell) that made up the solar cell I-V curve

is scaled to make the new set of I-V pairs for the ideal solar cell array:

(IA, VA) = (nIcell, mVcell) (62)

36



This transformation is simple and intuitive. The voltage scales linearly upward with

the number of series connections, and the current scales linearly upward with the

number of parallel connections.

The power curve was scaled quadratically by m (equation (51)) and n (equa-

tion (59)), while voltage remained scaled up by m alone. The new set of P-V pairs,

(PA, VA) is

(PA, VA) = (mnPcell, mVcell)) (63)

This transformation is also intuitive but not so simple. Since both voltage and current

scale linearly, the power scales quadratically. This also says that the power scales

linearly with the number of solar cells in the array. This trend is plotted in Figure 17.

Notice that contour lines have been drawn on the m-n plane and that they follow

constant L lines. This transformation is important in the design of solar cell arrays

because there are many combinations of (m, n) that create the same power. The

designer may design a vertical array to power a large load or a horizontal array to

power a small load both at the same power. So the power available from a solar cell

array is not limited by the size of the load.

The resistance curve was first scaled up by m (equation (53)) and then scaled

down by n (equation (61)), while voltage remained scaled up by m alone. The new

set of R-V pairs, (RA, VA) is

(RA, VA) =
(m

n
Rcell, mVcell

)

(64)

Knee resistance gets large with increasing m and gets small with increasing n. This

shows that RA >> Rcell for vertical arrays (m >> n), and RA << Rcell for horizontal

arrays. This trend is plotted in Figure 18.

In an ideal situation, these transformations hold true. However, it is highly un-

likely that any two solar cells are made exactly alike in reality because the fabrication

process for solar cells is not exact. Fabrication processes such as screen printing,
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Figure 17: Knee power vs. (m,n). Knee power is proportional to the number of
cells in the array.

Figure 18: Knee resistance vs. (m,n). Solar cell arrays can be designed to power
any kind of resistance.
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thermal spraying, and chemical vapor deposition cannot consistently produce the

same substrate thickness, length, and width due to limited precision [24] [20] [22]. In

almost all solar cell arrays, the solar cells’ circuit parameters, such as short-circuit

current and open-circuit voltage, are not identical. The results derived for an ideal

solar cell array are useful only for conceptual understanding and estimates of what a

hypothetical solar cell array will produce. The next two sections discuss how array

performance is changed when current and voltage mismatches are taken into account.

3.2.4 The Realistic Column Array

This section constructs column curves based on the individual cell curves comprising

the column array. The voltage produced across the column is a summation of the

voltages produced across each cell, which is dependent on the column current passing

through the cells:

Vcol(Icol) =
m

∑

j=1

Vcell,j(Icol) (65)

In the ideal array case, the summation is replaced with a multiplication by m. In

the realistic case, the voltages produced across each cell are all different for any given

column current, so the summation cannot be simplified.

The aggregation of these non-ideal voltages is illustrated graphically for three

different I-V curves in Figure 19. To compute the column curve, the cell voltages are

added along the constant current line, and the summation is plotted as a point on

the column curve. This method of adding cell voltages is simple for constant current

less than ISC,1 because all voltages are in the first quadrant (V > 0, I > 0). However,

the short circuit current of the column cannot be found unless the addition carries on

beyond ISC,1. The curves for cells one and two do not have current values in the first

quadrant that go as high as the third cell’s current values. So, information is needed

about the current of cells one and two when large currents greater than their short

circuit currents are forced through the column.
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Figure 19: Graphical addition of the voltage of three, series-connected solar cells.

In fact, when the voltage across a solar cell goes negative, the current increases

beyond its short circuit current. The approximate I-V equation from section 3.1.2 is

I ≈ IPH − IS

(

e
qV

nkT − 1
)

(66)

From this equation, we can see that as V is negative, the exponential term gets smaller

and I increases. So to get I-V values for cells one and two at the current levels of cell

three, curves one and two must be extended into negative voltage.

This negative voltage region of cells one and two is a limitation on the column’s

power producing ability. If every cell in the column were identical to cell three, then

the column would be able to produce more current at any voltage than in the realistic

case. The resultant curve shows that the short circuit current of the column is very

close to the short circuit current of cell two, which means the column current is limited

by cell two for any column voltage.

The entire I-V curve of the random column appears limited in the current direc-

tion when compared to an ideal column’s I-V curve. The random column voltage is

expected to be unchanged from the ideal column voltage because the expected value

of the open-circuit voltage of a random column is mE[Vcell], where E[Vcell] is the ex-

pected value of a random cell’s voltage. The random column current is limited, and

40



can be related to the ideal column’s current with

Icol = κc(m,n)Iideal col (67)

κc(m,n) is a constant less than one and applies for current-limited columns. It is a

function of m and n, but depends mostly on m. This substitution works for every

point on the I-V curve, so the power curve of the realistic column can be written as

Pcol = Vcolκc(m,n)Iideal col (68)

And since E[Vcol] = Videal col and the column current is the same as the cell current,

we can write the power as

Pcol = κc(m,n)mVcellIcell = κc(m,n)mPcell (69)

This statement says that the power at any column voltage is smaller for a realistic

column than for an ideal column.

In general, the weakest solar cell limits the total column current output [28].

However, the column voltage is not limited at all by any particular solar cell because

the cell voltage across one cell does not affect the voltage across any other cell.

So, the power produced by the column is only limited by the weakest cell’s current

capabilities. The converse will be true for the realistic row array. Instead of current

limitations, the realistic row experiences voltage limitations.

3.2.5 The Realistic Row Array

This section finds row curves based on the individual cell curves comprising the row

array. The current produced from the row is a summation of the currents produced

through each cell, which is dependent on the row voltage across the cells:

Irow(Vrow) =
n

∑

j=1

Icell,j(Vrow) (70)
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In the ideal array case, the summation was replaced with a multiplication by n. In

the realistic case, the currents produced through each cell are all different for any

given row voltage, so the summation cannot be simplified.

This summation is illustrated graphically for three different I-V curves in Fig-

ure 20. The cell currents are added along a constant voltage line, and the summation

is plotted as a point on the row curve. This method of adding cell currents is simple

for constant voltage less than the open circuit voltage of the first cell because all

voltages are in the first quadrant (V > 0, I > 0). However, the open circuit voltage

of the row cannot be found unless the addition carries on beyond the open circuit

voltage of cell one. The curves for the first and third cells do not have voltage values

in the first quadrant that go as high as cell two’s voltage values. So, we need to know

what happens to the voltage of the first and third cells when large voltages greater

than their open circuit voltages are forced across the row. In fact, when the current

through a solar cell goes negative, the voltage increases beyond its open circuit volt-

age value. The I-V equation approximation from equation (66) can be rearranged to

solve for V :

V =
nkT

q
ln

(

IPH − I

IS

+ 1

)

(71)

From this equation, the term inside the logarithm gets larger as I goes negative, which

means V gets larger as well. The increase of V for I < 0 is very gradual, and appears

to be almost linear compared to the I-V curvature in the first quadrant. Curves one

and three must be extended into negative current to get I-V values for the first and

third cells at the voltage levels of the second cell.

The random row I-V curve appears limited in the voltage direction, but not the

current direction, when compared to an ideal row’s I-V curve. The random row

current is expected to be unchanged from the ideal row current because its the short-

circuit current expected value of a random row is nE[Icell]. The random row voltage
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Figure 20: Graphical addition of the current of three, parallel-connected solar cells.
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is limited, and can be related to the ideal row’s voltage with

Vrow = κr(m,n)Videal row (72)

κr(m,n) is a constant less than one and applies for voltage-limited rows. It is a

function of m and n, but depends mostly on n. This substitution works for every

point on the I-V curve, so the power curve of the realistic column can be written as

Pcol = Icolκr(m,n)Videal col (73)

And since E[Irow] = Iideal row and the row voltage is the same as the cell voltage, we

can write the power as

Prow = κr(m,n)nVcellIcell = κr(m,n)nPcell (74)

This statement says the power at any row current is smaller for a realistic row than

for an ideal row.

In general, the weakest solar cell limits the row voltage output. However, the row

current is not limited at all by any particular solar cell because the current through

one cell does not affect the current through any other cell. So, the power produced

by the row is only limited by the weakest cell’s voltage capabilities.

3.2.6 Combining Realistic Rows and Columns

Now, the results of the previous two sections are combined to get the total realistic

array curves. In section 3.2.4, we found that the current was limited by the weakest

cell in the column, and the voltage was scaled by κc(m,n)m. In section 3.2.5, we

found that the voltage was limited by the weakest cell in the row, and the current

was scaled by κr(m,n)n. So, the set of I-V pairs, (Icell, Vcell) that made up the solar

cell I-V curve is scaled to make the new set of I-V pairs for the realistic solar cell

array:

(IA, VA) = (κc(m,n)nIcell, κr(m,n)mVcell) (75)
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This transformation is similar to the ideal solar cell array transformation except for

the current and voltage limitations, κc(m,n) and κr(m,n).

The power curve was scaled quadratically by κc(m,n) and m (equation (69)) and

κcol(m,n) and n (equation (69)), while voltage remained scaled up by κc and m alone.

As a result, the new set of P-V pairs, (PA, VA) is

(PA, VA) = (κr(m,n)κc(m,n)mnPcell, κr(m,n)mVcell) (76)

This transformation says that the power is linearly proportional to the number of

cells, mn, but also linearly proportional to the product of column and row limitation

variables, κcol(m,n)κrow(m,n).

The resistance curve is first scaled up by κc(m,n)m and then scaled down by

κr(m,n)n, while voltage remained scaled up by κc(m,n)m alone. The new set of R-V

pairs, (RA, VA) is

(RA, VA) =

(

κr(m,n)m

κc(m,n)n
Rcell, κr(m,n)mVcell

)

(77)

Just like the voltage, current, and power transformations, the resistance transforma-

tion is affected by the array limitation variables.

3.3 Solar Cell Manufacturing

There are not many solar cells that are created equal, and this is due to manufacturing

tolerances. The actual circuit parameters of each cell produced can be characterized

as a normally-distributed random variable with a mean, µ, and standard deviation,

σ.

The circuit parameters that are pertinent to this research are

• Photon Current Density (JPH) = N(µJPH
, σ2

JPH
)

(

A
cm2

)

• Reverse Saturation Current Density (JS) = N(µJS
, σ2

JS
)

(

A
cm2

)

• Cell Area (A) = N(µA, σ2
A) (cm2)
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• Ideality Factor (n) = N(µn, σ2
n)

• Parallel Resistance (RP ) = N(µRP
, σ2

RP
)

(

Ω

cm2

)

• Series Resistance (RS) = N(µRS
, σ2

RS
)

(

Ω

cm2

)

Here, N(µ, σ2) represents the normal distribution function with mean µ and variance

σ2. From these random cell parameters, the short-circuit current and open-circuit

voltage variables can be found using equations (132) and (136) respectively. Short-

circuit current density and open-circuit voltage are functions of random variables.

The means and standard deviations of JSC and VOC are dependent from the means

and standard deviations of the random cell parameters by equations (132) and (136).

These six random variables have an effect on the array limitation variables, κr(m,n)

and κc(m,n). As shown in section 3.2.4, vertical arrays suffer if the short-circuit cur-

rent density of each cell varies wildly. This would make κc(m,n) smaller. So, a large

σJSC
creates a small κc(m,n). Likewise, the same is true of open-circuit voltage and

horizontal arrays: large σVOC
creates a small κr.

The solar cells used in this research are the organic solar cells based on pentacene

and C60 (also known as Buckminsterfullerene) from the paper by Yoo, Domercq, and

Kippelen [27]. Typical values of the random cell parameters for these organic solar

cells are:

• Photon Current Density (JPH) = N(0.015, 0.00142)
(

A
cm2

)

• Reverse Saturation Current Density (JS) = N(54 · 10−6, (8 · 10−6)2)
(

A
cm2

)

• Cell Area (A) = N(0.13, 0.01) (cm2)

• Ideality Factor (n) = N(2.5, 0.0752)

• Parallel Resistance (RP ) = N(328, 102)
(

Ω

cm2

)

• Series Resistance (RS) = N(2.04, 0.042)
(

Ω

cm2

)
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These values were adapted from the paper. These will be the default values for a

random solar cell for the analysis in the subsequent section.
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CHAPTER IV

EXPERIMENTAL DESIGN

The basis for choosing either the array option (AO) or the charge pump option (CPO)

is the number of solar cells required to power the load at the specified power. The

hypothesis is manufacturing processes that result in cells of highly varied short-circuit

current density (large σJSC
) will make the charge pump option more economical for

large DC load resistances.

4.1 Array Option

The specified load resistance, RL, and the specified load power, PL, require a specially-

sized solar cell array that produces knee resistance, Rk, approximately equal to load

resistance and knee power, Pk, approximately equal to load power. The array limita-

tion variables are used to find the dimensions of this array. The two variables are the

array dimensions, m1 and n1. The voltage and current transformations from equation

(75) are the two equations used to find m1 and n1. Adapted from section 3.2.6, the

transformations are

(IL, VL) = (κc(m1, n1)n1Icell, κr(m1, n1)m1Vcell) (78)

The load current, IL, and load voltage, VL, can be solved using load resistance and

load power:

IL =

√

PL

RL

(79)

VL =
√

PLRL (80)

Now, m1 and n1 can be solved rearranging the voltage and current transformations:

m1 =
1

κr(m1, n1)

VL

Vcell

(81)

48



n1 =
1

κc(m1, n1)

IL

Icell

(82)

These two equations show how sensitive m1 and n1 are to the array limitation vari-

ables. A large current mismatch between solar cells makes κc small, and n1 large. So,

an array that produces limited current through its columns requires more columns

to meet a specified load current. The total number of solar cells used in this option

is L1 = m1n1. Comparing this total to the total in the charge pump option will

determine which option to use.

4.2 Charge Pump Option

The same system of equations can be used to find the solar cell array dimensions, m2

by n2 for the charge pump option. The Dickson charge pump has an imperfect power

efficiency (η < 1), so the knee power supplied by its input solar cell array is

Pk = Pin =
PL

η
(83)

This input power is larger than load power since the power efficiency is imperfect. The

knee resistance for the input solar cell array can be found by using the expression for

input resistance in a Dickson charge pump. This equation, adapted from section 2.1.4,

is

Rk = Rin =
RL

η (N + 1)2
(84)

In most cases, input resistance is less than load resistance since power efficiency is

usually greater than 25% and there is at least one stage (N ≥ 1).

Now, input voltage and current to the Dickson charge pump can be found using

these values of knee power and knee resistance:

Iin =

√

Pin

Rin

(85)

Vin =
√

PinRin (86)
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Figure 21: Contour plots of constant number-of-cells, L, and constant knee power,
Pk.

Then, the dimensions m2 and n2 can be found using the same system of equations as

before:

m2 =
1

κr(m2, n2)

Vin

Vcell

(87)

n2 =
1

κc(m2, n2)

Iin

Icell

(88)

The total number of solar cells used in this array is L2 = m2n2. Comparing this total

with L1 will determine which option to choose.

In an ideal array, κr = κc = 1 for all (m,n). So, the comparison of L1 with L2

will look like the graph in Figure 21. Both sets of dimensions lie on constant power

and constant number-of-cells curves, and L2 > L1 in the figure.

However, if a realistic solar cell array is analyzed, then the cell limitation variables,

κr(m,n) and κc(m,n) are included. In this realistic case, the cell limitation variables

may skew the constant power curves to look like Figure 22. In the graph, the constant
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Figure 22: Skewed contour plots of constant knee power, Pk.

PL/η curve dips below the constant L1 curve, and the CPO dimensions are chosen so

that L2 < L1.

The situation in Figure 22 is hypothetical, where horizontal arrays perform better

than vertical arrays. In such a situation, the cell limitation variables are negligible for

small m and large n, but significant for large m and small n. This situation should

occur when the current produced by each solar cell varies significantly more than the

voltage produced by each solar cell. So, solar cells with large σJSC
should benefit by

using the charge pump option.

4.3 Procedure

Simulations of solar cell arrays with random parameters are used to verify this hypoth-

esis in the next chapter. The simulation procedure finds the cell limitation variables

for a large sample of rows and columns, iterates over each dimension point as possible
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AO dimensions, compares the AO dimensions to all corresponding CPO dimension

points, and marks every dimension point that benefits from a Dickson charge pump.

4.3.1 Find the Cell Limitation Variables

The input variables to the simulation are:

• Photon Current Density standard deviation, σJPH

(

A
cm2

)

• Reverse Saturation Current Density standard deviation, σJS

(

A
cm2

)

• Cell Area standard deviation, σA (cm2)

• Ideality Factor standard deviation, σn

• Parallel Resistance standard deviation, σRP

(

Ω

cm2

)

• Series Resistance, σRS

(

Ω

cm2

)

• Dickson charge pump power efficiency, η

The expected values for each random cell parameter correspond to the values

adapted from Yoo et. al. [27] and are coded within the simulation. For this simula-

tion, the sample size of the dimension space, (m,n) is 1 ≤ m ≤ 75 and 1 ≤ n ≤ 75.

The first step in finding the array limitation variables, κr(m,n) and κc(m,n) for a

large sample of (m,n) is finding the curves of an “ideal” solar cell, where the standard

deviation of each random cell parameter is set to zero. The curves are cell current,

Icell, cell power, Pcell, and cell resistance, Rcell, which correspond to a domain of

voltage, Vcell.

The second step is to find the expected values of the array I-V curves for every

possible combination of (m,n). This is accomplished by finding many samples of the

random I-V curves for each (m,n) and taking the average. In this simulation, the

average was taken over 20 samples.
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The final step is calculating the cell limitation variables using the average I-V

curves, which are found using these equations:

κr(m,n) =
1

m

E[Varray]

Vcell

(89)

κc(m,n) =
1

n

E[Iarray]

Icell

(90)

Here, E[ ] denotes expected value. The simulation iterates over all combinations of

(m,n) to find κr(m,n) and κc(m,n).

4.3.2 Compare Array Option to Charge Pump Option

Now, iterate over all combinations of (m,n), and make comparisons of the total

number of cells used in the array option and in the charge pump option. For each

iteration, treat the current dimensions as (m1, n1), the dimensions used in the array

option.

First, find the corresponding load power for this iteration using:

PL = κr(m1, n1)κc(m1, n1)m1n1Pk,cell (91)

where Pk,cell is the knee power of the “ideal” solar cell.

Second, find the corresponding PL/η constant-power curve on which the charge

pump option would operate. The knee power of each array along this constant-power

curve should be at least PL/η and not much larger than PL/η. In this simulation, a

window of 1.0PL/η and 1.05PL/η was used.

Third, find the points along the PL/η constant-power curve that have fewer total

number of cells. If at least one point exists that has fewer than m1n1 cells, then

(m1, n1) is labeled as a DC to DC point. These points represent a load power and

load resistance combination that would benefit from the use of a generic DC to DC

converter, which does not have an input voltage requirement.

Fourth, find the points along the PL/η constant-power curve that have fewer total

number of cells and can realistically power a Dickson charge pump (fC > 0). It
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is sometimes the case that the specifications for power efficiency, input voltage, and

diode threshold voltage force fC < 0, which means a Dickson charge pump cannot

be built. The design equation for the product fC is (from section 2.2.1):

fC =
⌊N⌋

RL

[

ηrecalc

1 − ηrecalc −
Vt

Vin

]

(92)

The denominator term, 1 − ηrecalc −
Vt

Vin
determines the polarity of fC, and it is

critical that Vin is large enough to make fC positive. So, for every point along the

PL/η constant-power curve that has fewer total solar cells, check the polarity of fC,

and only record the points that have positive fC. If at least one of these points exists,

then (m1, n1) is marked as a “CPO point”.

All CPO points represent pairs of load resistances and load powers that could

benefit from a properly designed Dickson charge pump. The hypothesis is that man-

ufacturing processes that result in cells of highly varied short-circuit current density

(large σJSC
) will make the charge pump option more economical for large DC load

resistances (corresponding to vertical arrays).
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CHAPTER V

RESULTS

The data shown in this section show how manufacturing tolerances on all of the solar

cell basic circuit parameters affect the number of cells needed to power a DC load.

In addition, for each case where solar cell savings are possible, the feasibility of the

Dickson charge pump is presented. First, the cell limitation variables are presented for

variances on each circuit parameter, which shows the effectiveness of each parameter

on array power production. Then, the feasibility of designing a Dickson charge pump

is presented for the parameters that significantly affect array power production. The

Dickson charge pump is mostly infeasible for the organic solar cells analyzed in this

research because of the minimum input voltage limitation. However, a generic DC to

DC converter could be used if allowed to have a low input voltage on the order of a

few Volts.

5.1 Array Limitation Variables

Overall, there are only two random circuit parameters that affected the number of

solar cells needed to power a load: photon current density, JPH , and cell area, A.

The other random circuit parameters, series resistance, RS, parallel resistance, RP ,

diode ideality factor, n, and reverse saturation current density, JS, all had a negligible

effect.

The array limitation variables, κr(m,n) and κc(m,n) were found for large stan-

dard deviations of each random circuit parameter while the other random circuit

parameters were held at zero standard deviation. Then, the multiplication of these

two variables, κr(m,n)κc(m,n), are plotted for the domain (1 ≤ m ≤ 50, 1 ≤ n ≤ 50).

Note that small values of κr(m,n)κc(m,n) indicate an m by n sized array is heavily
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limited in its power producing capabilities. Also note that an ideal array will have

κr(m,n)κc(m,n) = 1 for all (m,n).

5.1.1 Array Limitation for Photon Current Density

Figure 23 shows the array limitation across the m-n plane for a standard deviation,

σJPH
= 0.0028 A

cm2 , which is double the default value of σJPH
= 0.0014 A

cm2 . The

array limitation surface in the figure is mostly related to m and unrelated to n.

For horizontal arrays, where m < 5 in the figure, the array is not hindered much by

current mismatch. Arrays in this region perform comparatively well to an ideal array.

However, there is a steep drop-off starting after m = 1, and the surface becomes

more gentle for m > 15. The reason for the steep drop-off is large-row arrays are

more likely to contain a weak-current solar cell, where JPH is small, than small-row

arrays. Large-row arrays are highly likely to have a weak-current solar cell. The array

limitation is approximately the same (0.79) for arrays with m > 15.

Variations on photon current density heavily affect the performance of the array

and may serve as a cell parameter that allows a Dickson charge pump to save the use

of a few cells. A load resistance and load power that places the AO array dimensions

in the large-row region (m > 15) will require more solar cells than a corresponding

CPO array operating in the small-row region.

5.1.2 Array Limitation for Cell Area

Figure 24 shows the array limitation across the m-n plane for a standard deviation,

σA = 0.02 cm2, which is double the default value of σA = 0.01 cm2. The shape of

the array limitation surface is approximately the same as in the previous section for

photon current density because photon current density is linearly dependent on cell

area.

The same observations as in the previous section are made here. Arrays with

m < 5 perform comparatively well to ideal arrays, and arrays with m > 15 are
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Figure 23: Array limitation for σJPH
= 0.0028 A

cm2 . The surface appears almost flat
for m > 15
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Figure 24: Array limitation for σA = 0.02 cm2. The surface appears almost flat for
m > 15, similar to the case where σJPH

= 0.0028 A
cm2

limited by approximately the same amount (0.83). Variations on cell area heavily

affect the performance of the array, so it may be a random cell parameter that allows

a Dickson charge pump to save the use of a few solar cells.

5.1.3 Array Limitation for Other Basic Random Circuit Parameters

Figure 25 shows the array limitation across the m-n plane for standard deviations

σRS
= 0.16 Ω

cm2 , σRP
= 40 Ω

cm2 , σn = 0.3, and σJS
= 32 ·10−6 A

cm2 , which are quadruple

their respective default values. These standard deviations are comparatively wider

than that of photon current density and cell area, but it helps show how unrelated

array performance is to variances these random parameters.

The array limitation surfaces in the figure are approximately the same as an ideal
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Figure 25: Array limitation for large standard deviations of (a) series resistance, RS,
(b) parallel resistance, RP , (c) ideality factor, n, and (d) reverse saturation current
density, JS. These array limitations appear approximately the same as an ideal array.
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array. Ideal arrays can never benefit from the use of a DC to DC converter because

knee power is influenced only by the number of cells in the array and not the array

limitation variables as explained in section 3.2.3. So a large variance on any of these

random parameters would not promote the use of a Dickson charge pump to save the

use of solar cells for powering a DC load.

5.2 DC to DC points and CPO points for Short-Circuit

Current Density and Cell Array

Certain combinations of load resistance and load power coupled with a large standard

deviation of short-circuit current density or cell area benefit from the use of a DC

to DC converter or sometimes a Dickson charge pump. The results in this section

show precisely what load resistance and load power combinations allow the CPO to

be more cell-economical.

The first set of graphs in each sub-section show the load resistance and load power

combinations that can be powered with fewer solar cells with a generic DC to DC

converter at 90% power efficiency, (the DC to DC points). The second set of graphs

in each sub-section show the load resistance and load power combinations that can

be powered using a Dickson charge pump (the CPO points), if they exist. The CPO

points are more restrictive than the generic DC to DC converter points because of

the product fC limitation described in section 4.3.2.

5.2.1 Photon Current Density

Figures 26 and 27 show the DC to DC points for the double-default and triple-default

standard deviation values of photon current density. A simulation for the default value

of photon current density standard deviation was run, but no DC to DC points or

CPO points were recorded. This is due to an insignificant array limitation coefficient,

which has a minimum of 0.92 (92% of an ideal array power) for large-row arrays.

There are no CPO points in any of these simulations because the minimum voltage
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requirement for Dickson charge pumps could not be met.

Figure 26 shows the maximum power boundary is a load power of 91.7 mW, and

the minimum load resistance boundary is 7 Ω for a standard deviation, σJPH
= 0.0028

A
cm2 . The colored region mostly covers the dimensions for vertical arrays, which

supports the hypothesis that large cell-current variability allows a DC to DC converter

to save the use of a few solar cells. The original hypothesis implies the use of the

Dickson charge pump, but the input voltage requirement is too restrictive.

Figure 27 shows the maximum power boundary is a load power of 212 mW, and

the minimum load resistance boundary is 3.4 Ω for a standard deviation, σJPH
=

0.0042 A
cm2 . The region increased in size from the double-default standard deviation

simulation in Figure 26. The drawn boundaries do not closely hug the colored region

on all sides mainly due to the random nature of the simulation.
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Figure 26: Minimum load resistance and maximum load power boundaries for dou-
ble the default value of photon current density standard deviation.
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Figure 27: Minimum load resistance and maximum load power boundaries for triple
the default value of photon current density standard deviation.
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5.2.2 Cell Area

Figures 28 through 30 show the DC to DC points for the default, double-default,

and triple-default standard deviation values of photon current density. Again, the

minimum voltage requirement for the Dickson charge pump could not be met. Thus,

there are no CPO points in these simulations.

The load power and load resistance boundaries for the DC to DC points region

shows a similar outward progression as in the photon current density simulations.

The load resistance boundary progresses from 31.3 Ω to 5.3 Ω, and the load power

boundary progresses from 34.1 mW to 258.5 mW. The colored region again mostly

covers the dimensions for vertical arrays, which supports the original hypothesis that

large cell-current variability allows a DC to DC converter to save the use of a few

solar cells.
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Figure 28: Minimum load resistance and maximum load power boundaries for the
default value of cell area standard deviation.
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Figure 29: Minimum load resistance and maximum load power boundaries for dou-
ble the default value of cell area standard deviation.
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Figure 30: Minimum load resistance and maximum load power boundaries for triple
the default value of cell area standard deviation.
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5.3 Region of Savings vs. Current Mismatch

The results for load power and load resistance boundaries are compiled into two

graphs in Figure 31. The load power and load resistance boundaries were simulated

for intermediate points of photon current density standard deviation and cell area

standard deviation. The trends show that the power boundary increases, and the

resistance boundary decreases making the load conditions more inclusive as current

variation widens. The plots basically imply that as the current mismatches within

a solar cell array get larger, the load power and load resistance boundaries widen as

well.
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Figure 31: (a) The maximum power boundary increases with increasing σJPH
and

σA. (b) The minimum resistance boundary decreases with increasing σJPH
and σA.
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CHAPTER VI

CONCLUSIONS

The results show that the variability of the basic circuit parameters of organic solar

cells presents an opportunity to use fewer solar cells to power a DC load by inserting

a DC to DC converter between the solar cell array and the DC load. The range of

minimum load resistance required to save a few cells is inversely proportional to the

magnitude of the standard deviations of photon current density and cell area. Also,

the range of maximum load power required to save a few cells is directly proportional

to the standard deviations of photon current density and cell area. However, variance

of circuit parameters such as series resistance, parallel resistance, diode ideality factor,

and reverse saturation current density had a negligible effect on the minimum load

resistance and maximum load power.

Organic solar cells based on C60 by Yoo et. al. [27] were used to show the values

of load resistance and load power that would benefit from the use of a DC to DC

converter. Most of the load resistance and load power combinations that allowed cell

savings required a vertical array, and the cell-savings came from using a horizontal

array with a DC to DC converter because current variability is the limiting factor in

these simulations. The converse of this situation should also be true: Large voltage

variability with little current variability should allow vertical arrays coupled with DC

to DC converters to be more cell-saving than horizontal arrays.

Overall, the Dickson charge pump is infeasible even with low-threshold diodes

(Vt < 0.3). The stage diode threshold voltage coupled with a large specified power

efficiency presents a minimum voltage. The specified power efficiency can be reduced

to reduce this minimum voltage, but then the constant PL/η curve moves outward

70



from the constant PL curve. Thus, the trade-off for low minimum input voltage is a

reduced chance that a resized horizontal array will contain fewer solar cells.

6.1 Future Work

The converse of these simulations should be analyzed. Large voltage variability should

produce situations where vertical arrays with DC to DC converters are favorable, but

it has not yet been shown. The DC to DC converter to use in this situation is the

converse of a boosting converter, which is a bucking converter. The two main circuit

parameters that produce large voltages with solar cells are diode ideality factor and

reverse saturation current. Increasing these parameters will increase the open-circuit

voltage but decrease fill factor as well. This trade-off should be analyzed to determine

whether using low-fill factor solar cells with a bucking converter is cheaper than using

high-fill factor solar cells alone.

Research in inductor-less DC to DC converters of the bucking, boosting, or buck-

boosting type is needed. Organic electronic circuits is a new field of research, and

plenty of opportunities exist for more efficient DC to DC converters. Organic DC

to DC converters probably won’t surpass inorganic DC to DC converters in terms of

efficiency and power handling capability, but the cost should be severely reduced for

comparable converters.
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APPENDIX A

DICKSON CHARGE PUMP THEORY

A.1 Input/Output Equation Derivation

The circuit’s operation may be easily understood by analyzing the performance during

steady-state mode. Figure 32 shows the circuit from Figure 7 operating during the

two clock phases, the T/2 period when φ(t) is high and the T/2 period when φ̄(t) is

high. During φ̄, stage capacitor C1 is being charged by the input DC source, Vin. A

voltage loop equation will show that the expression for the voltage across C1 is

VC1 (t) = (Vin − VD1(t)) −
[

(Vin − VD1(t)) − VC1

(

φ̄begin

)]

e
−t

RD1(t)C1 (93)

where VD1(t) is the diode voltage, VC1

(

φ̄begin

)

is the voltage of capacitor C1 at the

beginning of the φ̄-phase, and RD1(t) is the on-resistance of diode D1. VD1(t) is

dependent on the diode current. For this analysis, we will assume that the current

through every diode is within ranges that allow VD1(t) ≈ Vt, where Vt is the diode

threshold voltage. The term VC1

(

φ̄begin

)

is equal to the voltage at the end of the

φ-phase, VC1(φend). It is also true that VC1(φbegin) = VC1

(

φ̄end

)

. These relationships

hold for every capacitor in the circuit. RD1(t) is found by taking the ratio of its

voltage and current.

RD1(t) =
VD1(t)

ID1(t)
≈

Vt

ID1(t)
(94)

This is the same as the reciprocal of the slope to the diode’s IV curve. RD1(t)

changes with current according to the diode equation. During the φ̄-phase, ID1(t) is

decreasing exponentially as shown in Figure 33, and VD1(t) decreases exponentially

with the same time constant but much more slowly. It stays approximately equal to

the threshold voltage of the diode. This implies RD1(t) is increasing almost linearly.
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Figure 32: 4-Stage Dickson charge pump operating during (a) φ-phase and (b)
φ̄-phase.
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Figure 33: C1 voltage and current and D1 in steady-state.

When the φ̄-phase is just beginning, the capacitor draws a large amount of current,

which makes the on-resistance very low. By the end of the φ̄-phase, most of the charge

has been transferred to the capacitor, and the current drops to a low value, which

makes the on-resistance high. Most silicon diodes have on-resistances in the range of

1 and 1000 mΩ [18]. This dynamic resistance behavior is shown in Figure 33.

We will assume that the clock period is long enough to allow the approximation

VC1

(

φ̄end

)

≈ VC1(t → ∞) = Vin − Vt (95)

At the beginning of the next clock phase (shown in Figure 32a), the capacitor voltage

should be continuous so that VC1(φbegin) = VC1(φ̄end). The voltage presented to C2

is the sum of Vin, VC1(φbegin) and −Vt. At this point, VC2 is less than the sum of
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these voltages, which means it begins to draw current (ID in Figure 32a) from the

input source. C1 loses charge as ID flows into C2 and away from C1, which means VC1

decreases and VC2 increases. The amount of charge lost from C1 and gained by C2 is

QL =

∫ φend

φbegin

ID(t)dt = C1VL (96)

where VL is the voltage lost (or transferred) from C1 to C2 and the charge-voltage

relationship Q = CV was used. The integral equation is simply the area under the

ID(t) curve in Figure 33. At the end of the φ-phase, VC1 has decreased to

VC1(φend) = VC1(φbegin) − VL = Vin − Vt − VL (97)

as shown in Figure 33. And since C2 can only charge up to the voltage to which it is

excited, its end-of-stage value is given by

VC2(φend) = Vin + VC1(φend) − Vt = 2(Vin − Vt) − VL (98)

The process of analysis gets repetitive after this point. For the next phase, the

capacitor voltage is continuous so that φ̄, VC2(φ̄begin) = VC2(φend). The circuit is in

steady-state, so the charge gained by C2, which is QL, during the φ-phase must be

lost during the φ̄-phase. So, the same current ID flows away from C2 and into C3,

taking QL away from C2 and into C3. At the end of the φ̄-phase, VC2 has dropped to

VC2(φ̄end) = VC2(φ̄begin) − VL = 2(Vin − Vt) − 2VL (99)

And since C3 can only charge up to the voltage to which it is excited, its end-of-stage

value is given by

VC3(φ̄end) = Vin + VC2(φend) − Vt = 3(Vin − Vt) − 2VL (100)

The same process can be carried out for the kth stage, and in general the voltage

across the kth stage capacitor, Ck, after φ (for even k) or φ̄ (for odd k) is

VCk
(φend or φ̄end) = Vin + VCk−1

(φend or φ̄end) − Vt = k(Vin − Vt) − (k − 1)VL (101)
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This equations shows how the voltage across the stage capacitors increases with the

number of stages. The 4th stage capacitor will have approximately four times the

voltage of the 1st stage capacitor. The designer should choose capacitors that can

withstand this maximum voltage. This characteristic of the Dickson charge pump

makes it difficult to design for extremely high voltages such as 800 kV as in the

Cockcroft-Walton voltage multiplier.

The output capacitor in Figure 32 is charged during the φ̄-phase in the same way

that the other stage capacitors are charged. The final equation for Vout can be found

if Cout is viewed as a 5th stage capacitor.

Vout = VC5(φ̄end) = Vin + VC4(φ̄end) − Vt = 5(Vin − Vt) − 4VL (102)

This expression provides Vout, but the VL term is still present, which will depend on

the load resistance.

The output current can be found by analyzing charge transfer. Capacitor C4 loses

charge QL, which is gained by Cout. The charge gained by Cout during φ̄ will be

discharged into the resistor during φ̄ and φ because the resistor is always drawing

current regardless of the clocks’ phase. Since the circuit is operating in steady-state,

the charge gained by Cout must be discharged before the next clock cycle. This implies

that QL Coulombs is discharged by the load resistor during T seconds. This gives an

expression for output current:

Iout =
QL

T
(103)

By substituting equations (6) and (96), Iout can be expressed as

Iout = fC1VL (104)

Now, equation (102) can be improved by using equation (104) to substitute for VL in

equation (102), which becomes

Vout = 5(Vin − Vt) − 4
Iout

fC1

(105)
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This is the common output equation given for a 4-stage Dickson charge pump [7]

[29], but it is not in proper form because of the Iout term that appears on the right

hand side. If Iout is replaced with Vout/RL and C1 replaced with a common stage

capacitance, C, then equation (105) becomes

Vout = 5(Vin − Vt) − 4
Vout

fCRL

(106)

Then, Vout can be solved as

Vout =
5(Vin − Vt)

1 + 4

fCRL

(107)

This form of the equation is more proper and simpler than equation (105).

For a general N -stage Dickson charge pump with clock voltage Vφ = Vφ̄ = Vin,

the output equation is

Vout =
(N + 1)(Vin − Vt)

1 + N
fCRL

(108)

This equation describes how the output behaves when design parameters are changed.

This form of the output equation will be used in the research.

A.2 Power Efficiency Derivation

Power efficiency is defined as the ratio of output power to input power:

η =
Pout

Pin

=
VoutIout

VinIin

(109)

Efficiency η is found by substituting expressions for Vout, Iout, Vin, and Iin.

The output voltage equation was derived in Section 2.1, equation (108). The

output current equation was derived in Section 2.1, equation (104), and was found to

be

Iout =
QL

T
= fCVL = fCout∆Vout (110)

which has units Coulombs/Second or Amperes as expected.

Figure 32 is helpful in explaining the derivation of steady-state input current to

the charge pump. Figure 33 shows the DC input source five times: once as the DC
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input, and four times as a replacement for the clock sources. The input source supplies

current ID five times during once complete clock cycle. And since QL is defined by

QL =

∫ φend

φbegin

ID(t)dt (111)

it must be true that the total charge supplied by the input source during one complete

clock cycle is

Qin =

∫ φend

φbegin

5ID(t)dt = 5

∫ φend

φbegin

ID(t)dt = 5QL (112)

Equations (111) and (112) were derived for a four-stage Dickson charge pump, so it

makes sense that for an N -stage Dickson charge pump, the charge injected by the

input source is

Qin = (N + 1)QL (113)

Input current Iin can be found using (113) and (110) as

Iin =
Qin

T
= (N + 1)

QL

T
= (N + 1)Iout (114)

Now, Vout, Iout, and Iin are all clearly expressed in terms of Dickson charge pump

circuit parameters. Equation (108) is augmented to formulate the power efficiency, η:

Vout

Vin

=
(N + 1)(1 − Vt

Vin
)

1 + N
fCRL

(115)

Now, multiplying (115) by Iout/Iin gives power efficiency as

η =
Vout

Vin

Iout

Iin

=
Vout

Vin

Iout

(N + 1)Iout

=
Vout

Vin

1

(N + 1)
=

(1 − Vt

Vin
)

1 + N
fCRL

(116)

These two forms of the efficiency equation are useful at different stages of the design

process. If the efficiency is specified, then equation (115) is used to find the input

voltage. Then, equation (116) is used to find other circuit components like frequency,

stage capacitance, or diode threshold voltage.
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A.3 Output Voltage Ripple Derivation

The output capacitor usually has different capacitance than the stage capacitors be-

cause it directly influences the magnitude of the output ripple voltage, ∆Vout, whereas

the stage capacitors directly influence Vout. Stage capacitance does affect ripple volt-

age indirectly. It is primarily chosen control output voltage. Cout is commonly de-

signed to be large in order to reduce output ripple voltage. The difference in capacitor

size affects the voltage gained by Cout during charge transfer. The relationship be-

tween ∆Vout and VL is found by equating charge lost by the last stage capacitor with

capacitance C and charge gained by Cout.

QL = CVL = Cout∆Vout (117)

⇒ ∆Vout =
C

Cout

VL (118)

The ratio of capacitor size is an important design parameter because it affects the size

of the output ripple voltage. The ratio of output capacitance to stage capacitance is

called β, and is defined as

β =
Cout

C
(119)

Also, percent ripple voltage, or ∆Vout/Vout is a common specification for the output

of a DC to DC converter. The percent ripple voltage is called α, and is defined as

α =
∆Vout

Vout

(120)

Equation (118) can be modified using equations (110), (119), and (120) to get a

relationship between the ripple voltage specification, α, and the ratio of capacitance,

β. First, equation (118) is rearranged to be

Cout

C
=

VL

∆Vout

(121)

Then, a substitution for VL is made, resulting in

Cout

C
=

Iout

fC∆Vout

(122)
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Then, using Ohm’s Law to replace Iout, (122) becomes

Cout

C
=

Vout

RLfC∆Vout

(123)

Finally, the substitutions for β and α are made resulting in

β =
1

RLfCα
(124)

Then, the expression for output voltage ripple is

α =
∆Vout

Vout

=
1

RLfCout

(125)
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APPENDIX B

SOLAR CELL THEORY

This accurate method of finding short-circuit current and open-circuit voltage takes

into account the series and parallel resistances. The final equations are more complex

but also more accurate. These methods are used in the simulation for more credible

results.

B.1 Accurately Finding Short-Circuit Current

The short circuit current can be found by setting V = 0 in the I-V equation, which

becomes

ISC = IPH − IS

(

e
qISCRS

nkT − 1
)

− ISC

RS

RP

(126)

The equation can be simplified by combining like terms and moving everything to the

right hand side:

0 = IPH − IS

(

e
qISCRS

nkT − 1
)

− ISC

(

RS

RP

+ 1

)

(127)

The next step is to remove the variable ISC out of the exponential so the equation

can be simplified. We can do this by using the infinite series representation of the

exponential:

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . (128)

In this expansion, let

x =
qRS

nkT
ISC = βiISC (129)

Using this substitution and the exponential series, equation (127) becomes

0 = IPH − IS

(

1 + βiISC +
(βiISC)2

2!
+

(βiISC)3

3!
+ . . . − 1

)

− ISC

(

RS

RP

+ 1

)

(130)
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The pair of ones within the parenthesis on the right hand side cancel each other.

Then, rearranging the right hand side of this equation in terms of powers of ISC , we

get

0 = IPH −

(

ISβi +
RS

RP

+ 1

)

ISC −

(

IS

β2
i

2!

)

I2
SC −

(

IS

β3
i

3!

)

I3
SC − . . . (131)

Then, multiplying by −1, and dividing by IS puts this equation in a standard poly-

nomial form:

0 = −
IPH

IS

+

(

βi +
RS

ISRP

+
1

IS

)

ISC +
β2

i

2!
I2
SC +

β3
i

3!
I3
SC + · · · (132)

With the equation in this form, ISC can be approximated by truncating the infinite-

degree polynomial to a large-, but finite-degree polynomial. Then, a computer pro-

gram such as MATLAB could solve for ISC . From this equation, we can see that ISC

is dependent on IS, IPH , and β, which is dependent on RS, n and temperature, T

(in Kelvin). ISC is also slightly dependent on RP . This makes sense because when

the terminals of the cell are shorted, ISC passes through RS, which creates a voltage

across RP . This typically small voltage forces a current through RP , which takes away

from the short circuit current. This small voltage is also placed across the diode, and

the diode draws some small current.

B.2 Accurately Finding Open-Circuit Voltage

A similar method is used to find the open circuit voltage. The first step is setting I

= 0 in the I-V equation, which becomes

0 = IPH − IS

(

e
qVOC
nkT − 1

)

−
VOC

RP

(133)

Then, we use the exponential expansion from equation (128) and the substitution

x =
q

nkT
VOC = βvVOC (134)

With this substitution, equation (133) becomes

0 = IPH − IS

(

1 + βvVOC +
(βvVOC)2

2!
+

(βvVOC)3

3!
+ . . . − 1

)

−
VOC

RP

(135)
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The pair of ones within the parenthesis cancel, and this equation can be rearranged

in terms of powers of VOC :

0 = IPH −

(

ISβv +
1

RP

)

VOC −

(

IS

β2
v

2!

)

V 2
OC −

(

IS

β3
v

3!

)

V 3
OC − . . . (136)

Then, multiplying by −1 and dividing by IS gives a simpler form of the polynomial

0 = −
IPH

IS

+

(

βv +
1

ISRP

)

VOC +
β2

v

2!
V 2

OC +
β3

v

3!
V 3

OC + . . . (137)

VOC can be approximated by truncating this infinite-degree polynomial to a large, but

finite-degree polynomial just like in the method for solving for ISC . Then, a computer

program like MATLAB can solve the equation quickly. From this equation, we can

see that VOC is dependent on IPH , IS, and βv, which is dependent on ideality factor,

n, and temperature, T . VOC is only slightly dependent on RP .
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