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Summary 

 The purpose of this study was to illustrate how the neuromuscular architecture of 

Blaberus discoidalis cockroaches changes in response to variations in their environment. The 

species Blaberus discoidalis shares the single motor neuron physiology of Periplaneta 

americana, widely used in past research in the field, and thus the extensions of its leg muscles 

were easy to record via electromyography (EMG). By tracking the behavior of the insect’s legs, 

inferences can be made about how the animal’s body and brain compensate for perturbations to 

its running gait. Understanding this control architecture could lead to more robust locomotion 

systems in robotic design. In this experiment, the insects ran over terrain of varying roughness, 

quantified by the standard deviation (cm) of a gaussian distribution of pillars. While they ran, 

EMG electrodes recorded muscle activation in the rear and mid left legs, and a high-speed 

camera recorded a video in the top-down plane. Using mutual information as a metric, a K 

nearest neighbor algorithm derived centralization based on the number and timing of the action 

potentials in each stride. It was hypothesized that the level of centralization exhibited by the 

insects will increase as the roughness of the terrain they run over increases. The results showed a 

near linear increase in centralization as terrain roughness increased, supporting the hypothesis. 

This suggests that greater perturbations in gait causes muscle control architecture to become 

more centrally mediated. Future research should be conducted to confirm these results and 

explore how this response interacts with other stabilizing behaviors. 
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Introduction 

Cockroaches are a widely used model for the study of insect running mechanics. This is 

primarily due to their extremely robust alternating tripod gait and simple motor control 

architecture (3). The insects are able to maintain balance and compensate for perturbations to 

their legs even over extremely rough terrain and at high speed (6, 8). This dynamic stability is of 

great interest to roboticists, who have sought to understand these insects’ muscle control 

architecture and apply it to the creation of more robust walking robots. This research could also 

lead to the development of mathematical behavioral models that could be applied to other 

biological running systems. 

 Work with cockroach models has primarily involved the species Periplaneta americana 

and Blaberus disoidalis. These insects are commonly used because their muscular activity and 

innervation is easy captured via electromyography (6). Such straightforward command structures 

allow scientists to selectively activate the cockroach’s extensor muscles and induce an 

alternating tripod gate without any contact with the ground or feedback from the proprioceptors 

on the insect’s legs (5). This has led to the general view that the coordination of the organism’s 

limbs depends only minimally on sensory feedback about its environment or their relative 

position, and instead operates almost entirely on immutable, top down commands from the 

roach’s central nervous system. Researchers thus infer that the robustness of the insects’ running 

stemmed primarily from mechanical interaction between its legs (6). 

 However, further study about the behavior and relation of the insect’s joints suggests that 

neuronal communication between different limbs may still play a role in their relative 

positioning and response to extreme perturbations (4, 5, 7). During pharmacologically induced 
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walking, patterns have been observed between the muscle behavior and joint position of multiple 

legs and the activation of inter-neurons in the roach’s body (4). This suggests interplay between 

central nervous system (CNS) processing and the kinematic behavior of the insect’s body. 

Multiple studies have been conducted to ascertain the degree to which perturbed running 

conditions influence muscle activation (1 ,2, 4, 5, 10). These experiments look at the control 

signals output by the roach’s central nervous system, and how it changed as the cockroaches 

were subjected to different environmental stimulus. 

 All of these studies deal with the muscular control architecture of the insects. This 

architecture represents how the animal processes sensory information taken from its environment 

and uses it to produce motor responses. These responses are mediated though neurological 

coupling both between individual limbs through the peripheral nervous system, and between the 

limbs and the central nervous system. The way in which these motor control signals are 

processed is theorized to increase the robustness of the cockroach’s running gait (12, 13, 14). 

The architecture itself can be illustrated by measuring the information present in the signals 

being sent by the insect’s motor neurons, and whether the central nervous system or the 

peripheral nervous system is responsible for maintaining balance through the run (12, 13). By 

better understanding the distribution of this control information, scientists can better understand 

how these insects are able to retain such a high degree of stability even over rough terrain.  

Despite several papers exploring information distribution, its relationship to changes in 

the outside environment remains significantly underdefined. While there have been some studies 

that point to a change in muscle behavior over very extreme perturbations (10), the concept is 

still very much up for debate. This project seeks to better delineate how centralization can be 

used as a measurement to model running behavior over rough terrain. Building off the 
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experimental model developed by Sponberg et al, 2008, pillars of random heights chosen from a 

normal distribution were chosen to represent changing terrain roughness. The standard deviation 

was varied to create a different degree of roughness between each distribution of pillars. An 

escape response was induced in the insects causing them to run over the terrain at relatively high 

speed, making it probable that they would run continuously over the entire terrain base. The 

motor neuron action potentials and kinematics of the insects’ legs are recorded as they run over 

the terrain bases via high speed camera and electromyography (EMG). Through comparison of 

the mutual information values calculated with regards to the action potentials in the motor input 

signal, information distribution can be mapped as a function of perturbation intensity (12). Based 

on any emergent patterns, inferences about how these insects mesh their mechanical stability 

with top down motor control can be made. 
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Methods and Materials 

In this experiment, the roughness of the terrain the cockroaches run over was modified to 

assess how their motor control changed as their environment changed. Perturbations were 

induced through variation in the terrain roughness as opposed to forced lateral movement of the 

roach’s legs (7). This procedure allowed for more perturbed strides to be recorded per run, a 

more efficient method than the lateral motion utilized in Revzen et al. 2013. The terrain pieces 

were created in SolidWorks using a Gaussian distribution of heights across a grid pattern, 

mimicking the terrain used in Sponberg et al. 2008. The distribution was constructed of PVA 

plastic as opposed to wood to reduce manufacturing time and increase durability. These heights 

will have a set standard deviation that will be varied between terrain pieces to elicit varying 

degrees of roughness. Once a 3D model has been created, it will be materialized using a U-Print 

3D printer. The piece will then be secured on the bottom of a tank that confines the insects. 

Data was collected by inserting two pairs of EMG electrodes into the coxa of the roach’s 

mid and hind left legs (10, 12, 13). These wires mapped the voltage difference across the 

Figure 1. The three terrain bases after printing and assembly utilized in this experiment. From left to right, the standard 
deviations of their gaussian distributions are 0.5cm, 0.2cm, and 0.1cm respectively. 
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muscles as the roach runs along the test chamber floor. These legs were selected because they 

allowed for one signal to be recorded form each of tripod of legs. The front two legs were not 

implanted with electrodes due to their small size, though kinematics were still collected from 

them. Adhesive glue was used to attach the 0.005in wires to the roach’s exoskeleton, and then to 

the ventral midline of the roach’s abdomen, so that they protruded directly behind the animal 

(10, 12). An escape response was elicited from the insects by applying pressure to their dorsal 

abdomen, causing them to run forward over the terrain base. As the roach ran, a Photron high 

speed camera positioned directly above the tank recorded video at 800fps for the two-

dimensional plane.  

These videos were processed using a series of MATLAB functions to isolate the roach 

and track the relative position of each individual leg (12). As shown in figure 2, the body of the 

roach was centered and isolated in each frame, and the positions of the ends of all six legs were 

mapped. This process was repeated for each successive frame of the video to measure the 

Figure 2. An example frame from the high speed recording of a cockroach running over flat terrain. 
Using a MATALB program, the background is extracted, and the cockroach is centered in each 
frame, allowing the end points of each leg to be tracked throughout the run. The legs are marked 
with positional dots as shown, and their extension is measured relative to the center of the insect. 
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extension of the legs relative to the center of the roach, as well as the timing of each stride the 

roach performed. The global phase of the roach was then determined by analyzing the positions 

of all six legs throughout their run. Every time all six legs completed one full step, beginning and 

returning to the same relative place, one global phase was delineated. Within this global phase, 

each individual leg is subject to its own local phase, or stride. A stride was defined as one leg 

beginning in one position, going through a complete step, and returning to its original relative 

position. Each roach was recorded running over multiple terrain pieces, ensuring in each run that 

the insect did not contact the walls of the tank or stop running at any point during the recording. 

Every global phase and every local phase for each leg was calculated using the video data. 

 The kinematic leg tracking and EMG returns were then analyzed to determine the 

information distribution of the roach. The action potentials experienced by the recorded muscle 

groups, visible as spikes on the EMG returns, were identified, isolated, and compared to the 

global phase of the stride, shown in figure 4.a (10). The local kinematics of all six legs with 

Figure 3. The tracked positions of all legs through one run over flat terrain. The colored lines 
mark the positions of the tip of each associated leg in each frame of the recorded video. 
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respect to time, displayed in figure 4.b, were averaged together using the phaser algorithm 

employed in Revzen et al. 2008 to determine the global phase (12). The global phase, shown in 

figure 4.c, is a representation of the position and behavior all the legs of the roach throughout the 

run (12). Each of the saw tooth waveforms represents one complete stride performed by all six of 

the roach’s legs. These individual strides were partitioned out and compared against the control 

signal, represented as the EMG returns, to determine how indicative the behavior of the motor 

neurons is of the local and global behavior (12). 

Figure 4. The recoded EMG signal from the cockroach’s leg muscles during the run. The timing of the action 
potential spikes have been located and recorded using a MATLAB function. b) The kinematics of all six legs, as 
shown in figure 2, plotted with respect to time. The zero position on the Y axis represents the center point on the 
insect’s body. c) The global phase of the cockroach, created by averaging the positions of all six legs at every point 
in time. Each waveform represents one stride. The timings of the recoded action potentials shown in figure 3 a) are 
superimposed as red and blue dots 



14 
 

Using a K nearest neighbor algorithm, both local and global mutual information with 

respect to different elements of the control signal can be calculated (12, 13). The algorithm uses 

mutual information as a metric to correlate patterns in the EMG spikes to leg behavior, 

mimicking the arithmetic procedures outlined in Kraskov et al, 2004. The patterns chosen for 

analysis were the number of spikes per stride observed in the middle left leg, shown in red in 

figure 4, and the percent phase of the stride in which the spikes were observed. The more highly 

correlated each of these patterns were to the behavior of the leg they were recorded from, the 

greater the local mutual information (12). The more highly correlated they were to the behavior 

of all legs, the greater the global mutual information (12). Centralization was defined as the 

difference in information, measured in bits per stride, between the calculated global and local 

mutual information (12). This analysis was performed on all strides collected over each terrain 

base, with 718, 840, 505, and 114 individual partitioned strides analyzed for the 0, 0.1, 0.2, and 

0.5cm standard deviation terrain respectively. A total of 8 individual cockroaches were recorded 

running over the 0cm terrain, 9 over the 0.1cm, 6 over the 0.2cm, and 3 over the 0.5cm. 
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Results 

Figure 5 shows the global and local mutual information and the resulting centralization 

values for each terrain standard deviation. The global and local information was calculated using 

a K nearest neighbor algorithm correlating the number of action potential EMG spikes recorded 

during each leg extension with leg behavior (16). Centralization was calculated by subtracting 

the local mutual information from the global mutual information for each terrain piece. The 

resulting means of centralization were -0.011, -0.007, and -0.007 bits/stride, with standard 

deviations of 0.027, 0.022, and 0.028 for terrain standard deviations of 0, 0.1, and 0.2 cm 

respectively. Trials over 0.5 cm standard deviation terrain were excluded from this analysis due 

to insufficient quantity of data. A two-tailed t test comparing the centralization values yielded no 

significant difference between the means of the 0 cm and 0.1 cm terrain, no difference between 

Figure 5. The calculated mutual information and centralization through analysis of spike count in 
the control signal across terrain with standard deviations of 0, 0.1, and 0.2 cm. Centralization was 
taken as the numeric difference between the global and local mutual information, with standard 
deviation equal to the upper and lower bounds of the combined standard deviations of the 
respective mutual information statistics. 
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the 0.1 cm and 0.2 cm terrain, and no difference between the 0 cm and 0.2 cm terrain. An alpha 

value of 0.05 was used for all cases. 

Figure 6 shows the global and local mutual information and the resulting centralization 

values calculated for each terrain standard deviation. The local and global information was 

calculated using a K nearest neighbor algorithm correlating the time within each stride the action 

potentials were observed to the local and global behavior of the legs (16). Centralization was 

calculated by subtracting the local information from the global information. The resulting 

degrees of mutual information were 0.004, 0.035, 0.032 bits/stride with standard deviations of 

0.020, 0.021, and 0.019 for terrain standard deviations of 0, 0.1, and 0.2 cm respectively. Trials 

over 0.5 cm standard deviation terrain were excluded from this analysis due to insufficient 

quantity of data. A two-tailed t test comparing the centralization values yielded a significant 

Figure 6. The calculated mutual information and centralization through analysis of spike timing in 
the control signal across terrain with standard deviations of 0, 0.1, and 0.2 cm. Centralization was 
taken as the numeric difference between the global and local mutual information, with standard 
deviation equal to the upper and lower bounds of the combined standard deviations of the 
respective mutual information statistics. 
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difference between the means of the 0 cm and 0.1 cm terrain and between the 0 cm and 0.2 cm 

terrain, but no difference between the 0.1 cm and 0.2 cm terrain. An alpha value of 0.05 was 

used for all cases. 

Figure 7 shows the summation of the data presented in figures 5 and 6. This illustrates the 

overall change in information distribution across all terrain types. The resulting amounts of 

centralization information were -0.016, 0.020, 0.050 bits/stride with standard deviations of 0.034, 

0.030, and 0.034 for terrain standard deviations of 0, 0.1, and 0.2 cm respectively. Trials over 0.5 

cm standard deviation terrain were excluded from this analysis due to insufficient quantity of 

data. A two-tailed t test comparing the centralization values yielded a significant difference 

Figure 7. The summation of the mutual information and centralization shown in figures 4 and 5, 
representing the overall information distribution in the insects across terrain with standard 
deviations of 0, 0.1, and 0.2 cm.  The standard deviations are equal to the upper and lower bounds 
of the combined standard deviations of the respective mutual information and centralization 
statistics. 
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between the means of the 0 cm and 0.1 cm terrain and the 0 cm and 0.2 cm terrain, but no 

difference between the 0.1 cm and 0.2 cm terrain. An alpha value of 0.05 was used for all cases. 

Figure 8 illustrates the distributions of spike count across the 0 cm, 0.1 cm, and 0.2 cm 

terrains. Spike count is defined as the sum of all spikes detected during the phasic analysis 

displayed in figure 4. The number of spikes in each stride was calculated and partitioned into 

groups depending on the terrain roughness over which the stride was collected. In total, 718 

Figure 8. a) The distribution of the number of spikes recorded in each isolated stride of the cockroaches tested over the 0 cm 
standard deviation terrain. All data is was collected from the mid left leg, illustrated in red in figure 4. b) The distribution of the 
number of spikes recorded in each isolated stride of the cockroaches tested over the 0.1 cm standard deviation terrain. All data 
is was collected from the mid left leg, illustrated in red in figure 4. c) The distribution of the number of spikes recorded in each 
isolated stride of the cockroaches tested over the 0.2 cm standard deviation terrain. All data is was collected from the mid left 
leg, illustrated in red in figure 4. 
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strides were recorded over flat terrain (figure 8.a), with a mean of 3 spikes per stride, a median 

of 3 spikes, and a mode of 4 spikes. 840 strides were collected over the 0.1 cm standard 

deviation terrain (figure 8.b), with a mean of 3 spikes per stride, a median of 3 spikes and a 

mode of 2 spikes. 505 strides were collected over the 0.2 cm standard deviation terrain (figure 

8.c), with a mean of 3 spikes, a median of 3 spikes, and a mode of 3 spikes.  

Figure 9. a) The distribution of spikes with respect to the percent of the stride they were recorded in over flat, 0 cm standard 
deviation terrain. All data is was collected from the mid left leg, illustrated in red in figure 3. b) The distribution of spikes with 
respect to the percent of the stride they were recorded in over the 0.1 cm standard deviation terrain. All data is was collected from 
the mid left leg, illustrated in red in figure 3. c) The distribution of spikes with respect to the percent of the stride they were 
recorded in over the 0.2 cm standard deviation terrain. All data is was collected from the mid left leg, illustrated in red in figure 3. 
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Figure 9 illustrates the distribution of spike timing within each stride across the 0 cm, 0.1 

cm, and 0.2 cm terrain. Timing was calculated as the percent of the stride in which the spike 

was recorded. All spikes that were recorded in each individual stride are included in these 

distributions. The spike timings were allocated to the terrain data set over which their 

associated stride was recorded. The 0 cm terrain incorporated a total of 2389 individual spikes, 

with a mean timing of 0.361, or 36.1% of the stride, and a median of 0.328. The 0.1 cm terrain 

included 2660 spikes, with a mean of 0.363 and median of 0.342. The 0.2 cm terrain accounted 

for 1500 spikes and had a mean of 0.333 and a median of 0.319. 
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Discussion 

 The changes in centralization observed in figure 7 seem to indicate a tentative positive 

correlation between terrain roughness and centralization in the insects. The means of each trial 

increased almost linearly, but the high variances in each group yielded p values that suggested no 

statistical difference between neighboring groups. There was however, a discrete difference 

between the centralization observed in the 0 cm trial and the 0.2cm trial. This would suggest a 

definite positive correlation between terrain roughness and centralization, though the exact 

behavior of that trend would require more precise analytical methods to fully illustrate. 

Centralizations values would likely plateau after a certain degree of roughness is reached, as the 

local mutual information statistic approaches zero. This trend can best be seen in figure 7, where 

the both the global and local mutual information decrease generally as roughness increases. 

These decreases appear to occur at different rates, with the local mutual information decreasing 

faster than the global mutual information, which results in the positive trend in centralization 

observed. If this trend continued, the local mutual information would approach zero, after which 

the observed global mutual information would either stop decreasing, resulting in a plateau in 

centralization, or continue to decrease until it too reached zero, causing centralization to begin 

decreasing. More trials should be conducted over terrain of 0.5cm standard deviation or greater 

to better describe this relationship. 

 The observed changes in centralization suggest alterations in the insects muscular control 

architecture (12). As the magnitude of the perturbations felt by the insect increase, motor control 

shift away from passive, mechanically driven stabilization towards more centralized, top down 

coordination. This is illustrated by the near zero value for centralization over flat terrain (figure 

6), suggesting a very decentralized system relying mostly on the mechanical coupling between 
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the legs to retain gait stability (6). As terrain roughness increased, that passive mechanical 

stability was no longer sufficient to retain balance, and the muscle control shifted to be more 

centrally defined. This shift is visible in the proportionately greater value of global mutual 

information to local information over the 0.2cm standard deviation terrain. The control signal 

was more indicative of the behavior of all six legs than it was of the individual leg it was 

collected from, suggesting that the motor input it was receiving was attempting to coordinate all 

the legs in the system, not just continue the motion of that one leg. This sort of behavior has also 

been seen in coupled oscillator models for insect running when they are exposed to 

perturbations, wherein discrete coupling values between neighboring legs produced reproduced 

experimental behavior (14). The work performed by Fuchs et al 2015 suggests that its uniform 

central coupling through neural communication contributes to robustness of gait, and through 

using centralization as a metric, the results described in this study suggest that the degree of 

central coupling increases along with perturbation intensity (12, 14).  

 This increase in centralization may be beneficial for negotiating rough terrain as it allows 

for more sensory feedback to be incorporated into the kinematics of each of the insect’s legs. 

When the control signal becomes more indicative of global behavior relative to local behavior, it 

means that the signal has incorporated more information about the environment into its 

commands. The central nervous system of the cockroach is processing proprioceptive data from 

all of its legs and sensory organs in order to better respond to the perturbations it is suffering, and 

not just relying on local mechanical or short-range neural coupling to stabilize each leg. This 

behavior increases the insect’s ability to maintain its gait across rough terrain as all six legs can 

be coordinated and compensate for much larger variances than if the system remained more 

decentralized. 
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 The implications of this behavior on muscle control architecture are twofold. Firstly, it 

suggests that this architecture is dynamic and can be altered as the animal is exposed to different 

stimulus. Unlike common robotic models, the central nervous system of the insect can actively 

respond to changes in its environment and have a greater or lesser degree of coordination over all 

its limbs depending on the intensity of the perturbations it is facing. The fact that centralization 

remained close to zero over flat terrain, and then increased as terrain roughness increased, 

suggests that the default pattern for this architecture is to minimize centralized input, relying on 

passive mechanical stability as much as possible. To confirm this conjecture, centralization could 

be calculated when the cockroaches were not physically goaded over terrain, and instead allowed 

to move of their own volition. Theoretically, the flight response induced by the prodding also 

generates an increased degree of centralization relative to normal movement over equivalent 

terrain, and if such a relationship could be illustrated, it would serve as evidence towards 

maximization of passive stabilization being the default for these animals’ control architecture.  

Secondly, this trend suggests that the control signal observed becomes less indicative of 

both local and global behavior as terrain roughness increases. Across all terrains, both the local 

and global mutual information statistics decreased or remained equal relative to the previous data 

set. This suggests that the motor control architecture in the insects becomes less definite as larger 

and larger perturbations are felt by the animal. The control signal becomes less and less 

indicative of the kinematics of both the local and global variables, likely due to the increasing 

magnitude of the disruptions in the animal’s gate. Any robotic models attempting to mimic this 

control architecture would likely suffer the same problems as their stabilization systems would 

not be able to fully compensate for all felt perturbations. Such issues may be resolved by 

improved proprioception and computing power within the robot’s control system. If the 
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computer can detect and compensate for perturbations faster than the central nervous system of 

the cockroaches, theoretically the local and global mutual information values would decrease 

less relative to each other. 

 The relatively small number of strides processed in this study may be a significant source 

of error. In total, 719 strides over 0cm standard deviation terrain were included in the 

information analysis, 846 for 0.1cm, and 510 for 0.2cm. Though these numbers are large enough 

for the K nearest neighbor algorithm to work, a larger number would likely have reduced the 

high variances seen in figures 4, 5, and 6, and lowered the associated p values between sets. The 

strides collected from the 0.5cm standard deviation terrain were excluded from the analysis all 

together because they numbered only 114, which was too low for the analysis to be performed 

with an acceptable degree of accuracy. The primary reason for the relatively lesser numbers of 

strides over rougher terrain is that the kinematic processing method was not very effective at 

those magnitudes of perturbation. The leg tip identification process, shown in figure 2, broke 

down when the legs would be moved under the roach’s abdomen for prolonged periods of time. 

This would occur when the insect moved against a relatively tall pillar on the terrain base, and 

cause one or more legs to go untracked for several frames of the video. The result would be an 

irregularity in the local kinematics, illustrated by figure 4.b, that would distort the calculated 

global phase for that stride. Because of this distortion, especially if the untracked leg was one of 

those with the implanted electrodes, that stride could not be successfully analyzed and had to be 

discarded. This was a phenomenon extremely common over the 0.5cm standard deviation terrain, 

and almost not at all over the flat or 0.1cm standard deviation terrain and caused proportionately 

fewer strides to be recorded over the 0.5cm and 0.2 cm terrain. 
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 Other factors that impacted stride processing were noise in the EMG returns that rendered 

the spike patterns unintelligible and instances of the insects changing speed throughout the run. 

In some trials, the implanted electrodes would become detached from the targeted muscle groups 

in one or more locations, leading to a large amount of ambient radiation displaying itself as high 

frequency noise in the signal returns. This would make it impossible for the MATLAB program 

used to isolate and time stamp the action potential spikes to work properly and caused a large 

percentage of strides to be discarded, even if their kinematics were recorded successfully. This 

behavior was observed to occur more frequently in trials over high roughness terrain, as the 

electrode wires were more likely to snag on the relatively tall pillar heights, and likely 

contributed to the paucity of data recoded in those conditions. At random intervals, the animals 

were observed to change speed during their runs over the terrain, causing some of the recorded 

spikes to appear outside their associated global phase. This was because the global phase 

waveform, shown in figure 3.c, was created through averaging the kinematics, with the 

beginning and end of each stride chosen by preset algorithms in the processing code. This means 

that bursts of spikes observed in the EMG may have correlated to the beginning of their 

associated local phase but fall directly on the beginning or end of the global phase. Spikes from 

such a stride would appear in their neighbors, and force that stride to be discarded as it would 

falsely inflate the spike count metric. Such instances also appeared to occur more commonly 

over the rougher terrain, as the very large perturbations experienced in those trials would cause 

dramatic shifts in the insects’ speed. 

 Further anomalies may stem from the distribution of the number of cockroaches tested 

over each terrain. In total, 8 insects were tested over the flat terrain, 9 over the 0.1cm, and 6 over 

the 0.2cm. However, not all these animals contributed the same number of strides to each 
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terrain’s data set. For example, one subject contributed 42 strides to the flat terrain set, 86 to the 

0.1cm set, and 74 to the 0.2cm set. Some subjects contributed to only two data sets and had no 

recoded strides over the third. Because of this, and the relatively small number of individual 

cockroaches used in the trials, if there were any physiological differences between insects, they 

could have a more pronounced effect on some data sets than (Kraskov, Stögbauer, & 

Grassberger, 2004)others. Moreover, if there was one cockroach which behaved irregularly, it 

could be overrepresented in any or all of the data sets due to the small population size.  

Any further research done on this topic should seek to increase the size of the analyzed 

data sets, especially the 0.2cm and 0.5cm standard deviation terrain sets, in order to decrease the 

variance observed in the information calculations and thus solidify the study’s conclusions. A 

more robust method of collecting the kinematic data would likely be the best way to accomplish 

this, as a large number of strides were discarded or unable to be calculated due to the legs being 

hidden from the camera’s view. A new method could also seek to improve the robustness of the 

control signal collection process. Electromyography was successful in representing muscle 

activation in the stride, but the electrode implantation was not extremely secure, and trials would 

often have to be terminated early due to unintentional removal of one electrode by either the 

insect or the terrain. This made the process of data collection extremely temperamental and 

inefficient, and contributed significantly to the small size of the data sets over all terrain types. 

New methods of information analysis could also be implemented, refining the K nearest 

neighbor algorithm to see if variance in mutual information could be reduced.  
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Conclusion 

 In this experiment, the nervous-muscular behavior of Blaberus discoidalis cockroaches 

was tracked while running across terrain of variable roughness. Using 2D body kinematics and 

electromyography, mutual information between a control signal and individual legs was 

calculated using a K nearest neighbor algorithm. As terrain roughness increased, centralization 

was observed to positively increase as well. This suggests that as they are exposed to more 

extreme perturbations during their escape response, the insects maintain their gait by increasing 

cognitive control of their legs, relying less on passive mechanical suspension. Local and global 

mutual information were also observed to decrease with increasing terrain roughness, suggesting 

that the control signal observed in the leg muscles became less indicative of leg behavior as 

perturbation size increased. The high variance seen in the calculated results may be the result of 

insufficient numbers of processed strides, physiological differences between individual insects 

coupled with unequal contribution to each data set, or unknown flaws in the data analysis 

method. Further research should be conducted to supplement the data used in the information 

and find a more robust method for measuring kinematics over extremely rough terrain. 
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