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Summary 

Fast wave ICRF heating experiments were performed on the low density 

(fie  < 0.8 x 10 13  cm') ECH target plasma in the Advanced Toroidal Facility (ATF). 

Various heating regimes were investigated in the frequency ranges between 9.2 MHz 

and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The purposes of 

these experiments was to study the compatibility of ICRF with stellarator geometry 

and characterize RF-induced effects. No bulk heating was observed in any of the low 

density experiments. 

Loading measurements were performed as a function of the frequency, the 

plasma density, the gap between the plasma and the current strap, and the RF 

power. In the hydrogen minority regime, large suprathermal ion tails were observed 

by the neutral particle analyzer (NPA). Data from spectroscopy and the edge RF and 

Langmuir probes was used to characterize the RF-induced effects on the low density 

ATF plasma. 

A 2-D RF heating code and a Fokker-Planck code RFTRANS were used to 

simulate these low-density experiments. The simulations were in good agreement 

with the experimental observations. An analysis was carried out to compare with 

the edge probe measurements and for the confinement of the RF-generated fast ions. 

A power balance analysis was performed using RFTRANS with simple ATF plasma 

and RF heating models. 

The simulations showed that no bulk heating was observed because the an-

tenna design had been optimized for higher densities, so that the ICRII modes excited 

were dominated by edge modes. This led to strong RF/edge interaction, poor pene- 

1 tration to the plasma center, and heating of minority ions on unconfined orbits. 

xiv 



Finally, a prediction of performance for future high-power, higher-density 

experiments in ATF demonstrated good performance in terms of bulk heating and 

fast-ion confinement. It was also demonstrated that minor modifications to the exist-

ing antenna could lead to excitation of centrally penetrating modes at lower densities, 

so that ICRH bulk heating at lower densities might also be possible. 
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CHAPTER I 

INTRODUCTION 

Background  

Toroidal devices are the most advanced option for achieving a demonstration 

of scientific and engineering feasibility of controlled thermonuclear fusion. 

In order to achieve the desired goal of net energy yield from a controlled 

fusion reaction, the plasma must be heated to a sufficient temperature and the con-

finement time (defined as the rate at which energy escapes from the plasma) must be 

large enough. In a tokamak plasma, the ohmically-induced current is normally used 

for providing both a poloidal component of the magnetic field, which is a necessary 

component for a stable equilibrium, and for plasma heating. However, it is known 

that ohmic heating can not provide enough power'. In a high temperature plasma, 

the conductivity of the plasma increases and the efficiency of ohmic heating conse-

quently decreases with increasing temperature. Also the maximum toroidal current 

in a tokamak is limited by the onset of MHD instabilities. Therefore, various forms of 

auxiliary heating have been pursued to obtain ignition temperatures without degra-

dation of plasma confinement. In currentless devices such as the Advanced Toroidal 

'However, there has been a design study for a purely ohmically ignited reactor called IGNITEX 
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Facility (ATF) or Heliotron-E stellarators, auxiliary heating is necessary to increase 

plasma parameters to achieve the designed operational state, which is not provided 

by the plasma initiation method — electron cyclotron heating (ECH) for the ATF 

and the Heliotron-E devices. To maintain an advantage over the tokamak configura-

tion (i.e., steady-state operation) a long-pulse (not necessarily a steady-state) heating 

system is desirable for stellarators. 

The use of electromagnetic waves at the ion cyclotron frequency is attractive 

because the physics has been relatively well explored theoretically, it has shown good 

heating results in several preliminary experiments, and shows great promise to satisfy 

the technical demands for future high power heating systems. The ions in a confined 

magnetic field precess around the field line (the cyclotron motion) at their cyclotron 

frequencies. The basic idea is to heat these ions by exciting electric fields in the 

plasma which are circularly polarized in the same sense as the ion motion, and with 

proper phase and frequency. 

In the late 1950s, ion cyclotron resonance heating (ICRH) was first proposed 

as a plasma heating scheme. The slow wave (ion cyclotron wave) and "magnetic 

beach" concept [2] was proposed. In cold plasma theory two electromagnetic wave 

branches exist which propagate in the ion cyclotron range of frequency: the so-called 

slow and fast wave branches. The slow wave propagates at frequencies below the 

ion cyclotron frequency along the magnetic field line and has a resonance at the 

ion cyclotron frequency. Another characteristic of this branch is that the electric 

field of the slow wave is completely left circularly polarized in the same sense as 

the ion and at the ion cyclotron frequency. In the first attempt to use this branch, 

slow waves were launched in a region of higher magnetic field where the excitation 

frequency was less than the ion cyclotron frequency. Then the wave propagated into 

a "magnetic beach" region where the magnetic field decreased to the point where the 

ion cyclotron frequency was close to the wave frequency. Wave energy was absorbed 
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by the plasma through cyclotron damping. This scheme was also used in Heliotron-E 

ICRH experiments [3] and showed good results. However accessibility was limited to 

low density plasma regions. 

When tokamak geometry appeared as a promising option, the magnetic field 

line configuration of tokamaks required wave propagation across the field lines. In the 

1970s the other propagaing branch, the fast wave, was actively examined in tokamak 

geometry, even though the polarization of its electric field is not in the same sense as 

the ion motion. That is, fundamental cyclotron heating is not effective for the fast 

wave branch. Several other heating schemes were proposed [4,5,6,7,8,9], e.g. second 

harmonic heating, minority heating, and ion-ion hybrid heating. Cyclotron damping 

allowed by relaxed polarization requirements due to thermal effects was supposed to 

be the dominant process for dissipation of the wave energy. 

In the middle of the 1970s as hot plasma effects were actively studied, it was 

found that including thermal effects introduces the so-called mode conversion process 

[10,11,12], in which the wave energy of the fast wave is converted to an electrostatic 

thermal wave (ion Bernstein wave) which is heavily damped via electron Landau 

damping. In the sense that mode conversion is closely related to the existence of a 

minority species and it is very difficult to obtain plasmas with a single ion species, 

mode conversion is always present in ICRH experiments. Generally speaking, hot 

plasma effects have to be understood very precisely to find effective heating regimes 

for ICRH. 

In the 1980s, high power (> 1 MW) ICRH experiments were started in major 

tokamaks [13,14,15] (e.g., TFR600, PLT, JFT-2M ,etc.) and showed good bulk ion 

heating results in various heating regimes. However confinement degradation due to 

ICRH caused great concern over whether it would be possible to achieve ignition. The 

so-called H-mode (high confinement regime) operation found in divertor tokamaks 

with neutral beam injection (NBI) provided a way to overcome this problem. 
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In 1986, the ASDEX team [16] reported promising results: H-mode opera-

tion with ICRH alone was achieved. Moreover, in 1989 the JET team [17] achieved 

Q D 0.8 (effective ratio of fusion power out to fusion power in, if DT fuel were 

used) mainly with ICRH heating. 

Although the scientific feasibility of ICRH was first tested in the stellarator 

geometry, after introduction of the tokamak concept, the study in stellarators was 

limited to a few small machines. ICRH experiments with the stellarator geometry 

were also limited to low power levels and were without variety. Plasma initiation 

by ICRF and also heating experiments were performed in the USSR and the United 

States in the 1970s and the early 1980s. In the mid-1980s, several new stellarators 

were built around the world and extensive ICRH experiments were begun in new 

machines such as Heliotron-E in Japan. These experiments showed good heating 

results, comparable to results from similar-sized tokamaks. 

However, at the present time there are still many unexplained phenomena in 

ICRH experiments and limited agreement with theory. In several small tokamaks, 

bulk ion heating failed and anomalous loading was observed [18]. Strong radiation 

emission and uncertainty about RFfedge interaction have also been concerns. Nonlin-

ear phenomena such as parametric coupling and ponderomotive effects are expected 

to play an important role in coupling [19,20]. In stellarators, RF-induced fast ion 

confinement has not been clearly addressed. Also whether the techniques used in 

tokamaks (such as fast-wave heating) are relevant to the exotic magnetic geometry 

of stellarators has not been fully examined. 

At the present time[21], high power ICRH experiments are being done or will 

be performed on other tokamaks such as JET, TFTR, JT-60, D-IIID, Tore Supra, 

Luip,  C-Mod and on helical devices such as ATF, Heliotron-E, CHS and the future Large 

Helical Device (LHD). Even the Compact Ignition Tokamak (CIT) and the Interna- 

tional Thermonuclear Experimental Reactor (ITER) are being designed with ICRH 
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as the only auxiliary heating system. 

Motivation  

ICRH has been chosen as one of the major heating systems or plasma initia-

tion techniques for stellarators since the 1950s. However, there are still many things 

which are not understood. 

The fast-wave branch must be tested in stellarators because the slow wave is 

not effective in high density plasmas and the antenna for the slow wave would have to 

be located on the high-field side, which causes technical difficulties. The Heliotron-

E stellarator used both wave branches in ICRH experiments with a high-field side 

launch. The ATF experiments presented further on in this document were unique in 

this regard because the antenna was located on the low-field side and only the fast 

wave branch was used. 

The antenna used on ATF, a Resonant Double Loop (RDL), was unique com-

pared to other antennas used in stellarators, even though it was tested and widely 

accepted in such tokamaks as DIII-D, Tore Supra and TFTR. It must be determined 

whether the techniques used for tokamaks are relevant to the exotic magnetic geom-

etry and edge conditions of stellarators. 

The ATF was fully-equipped with state-of-the-art diagnostics and auxiliary 

systems. Hence ATF provided a unique opportunity to characterize RF-induced 

effects with excellent diagnostics. 

Heating efficiency was found to be as good as that in tokamaks and excellent 

bulk heating was demonstrated in Heliotron-E. Theoretical calculations also provided 

fairly good agreement with the experimental results for this device. However, some 

important issues have not been addressed in stellarators: RF-generated fast ion con- 
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finement (i.e., minority heating schemes), RF/edge interactions, and effects of the 

complex magnetic boundary (last closed flux surface and divertor stripe). 

The present study was performed with modest RF power 	200 kW) in a 

relatively low density (fi e  < 0.8 x 10 1 ' cm') regime. This work provides a useful 

database for future high-power ICRH operation. The most important issues consid-

ered in this study were, therefore, the compatibility of ICRH with the ATF magnetic 

configuration, characterization of RF-induced effects, fast ion confinement, and RF 

power balance. 

This work was the first step toward future high-power experiments in high-

density ATF plasmas with a full range of diagnostics. The main emphasis of the 

dissertation was on careful analysis of experimental data, improving numerical mod-

eling by careful comparison to the analyzed data, and predicting the performance of 

future high-power experiments in high-density ATF plasmas. 

Outline  of Thesis 

The material presented following this chapter and its order are as follows. 

ICRH physics is reviewed in Chapter II. The cold plasma wave theory, wave absorp-

tion, and thermalization are presented. The thermal effects of a plasma on wave 

propagation and absorption are studied by means of the hot plasma dielectric tensor. 

Some effects of the helical geometry on the ICRH physics are studied. An example 

of numerical calculations is presented. This is followed by a survey of ICRH exper-

iments from the beginning in the B-65 stellarator at Princeton to the high power 

ICRH experiment on JET in Europe. Changes in the heating scheme are traced and 

the overall results are compared between different schemes. Recent experiments on 

Heliotron-E are described in detail because it showed succesful heating results for the 
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first time in a stellarator geometry. 

Chapter III describes the experimental apparatus starting with a brief in-

troduction to the ATF and its diagnostics. The design features of the RDL-type 

fast-wave antenna and the RF transmitter are outlined, and the operation of the 

whole RF system is described. Details of the RF and Langmuir probes, which were 

specially designed for this study are presented along with their features, electronics 

and calibration results. A description of the ATF data acquisition system and the 

data flow is also provided. 

Experimental data are presented in Chapter IV. The plasma loading was 

examined as a function of the frequency, the plasma density, gap between the last 

closed flux surface (LCFS) and the current strap, and the RF power. Data measured 

by spectrometers during the RF was used to study some RF-induced effects. The 

neutral particle analyzer (NPA) was used extensively in these experiments. It was 

used for the study of RF-induced fast ions and associated topics. The three RF 

probes and a Langmuir probe were used for investigating changes in the edge plasma' 

conditions during the RF. 

In Chapter V, analysis with numerical tools and analysis and discussion of 

the experimental data are provided. The important issues mentioned previously are 

revisited for evaluation of the initial ICRH experiments on ATF. A 2-D RF heating 

code was used for simulation of the low density ICRH experiments. The changes in 

the edge plasma conditions were analyzed from the spectroscopic data and edge probe 

measurements. The directly edge-deposited RF energy was calculated from Langmuir 

probe measurements. A study of fast ions generated by the RF was performed by 

•!II) 	 2Throughout this thesis, the term "edge plasma" refers to the region between the last closed flux 

surface (LCFS) and the wall and the term "plasma edge" refers to the outer region of the confined 

plasma column 
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analyzing the NPA data along with investigations of the time scales of various fast 

ion loss channeles, the loss cone in ATF plasmas, and effects of the RF on the various 

particle orbits. A simple RF power balance analysis was performed using a Fokker-

Planck analysis code, RFTRANS with a simple ATF plasma model. 

A summary of and conclusions drawn from the experiments are given in 

Chapter VI. In addition predictions for future high-power, high-density ICRH exper-

iments are presented. These predictions were made using the 2-D RF heating code 

and RFTRANS Fokker-Planck code, which successfully simulated the low-density 

experiments in ATF. Finally, some suggestions for future work are presented. 

In the Appendix, a derivation of the Fourier representation of the antenna 

spectrum (including side-wall image currents) which was used in the 2-D RF heating 

code is presented. 
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CHAPTER II 

INTRODUCTION TO ICRH 

The expression "Ion Cyclotron Resonance Heating (ICRH)" reflects the physical 

concepts of this process. First of all, "ion heating" implies the consequence of this 

process and "cyclotron resonance" describes the mechanism behind this physical pro-

cess. It also contains the term "cyclotron", which implies that the cyclotron motion of 

a particle in a magnetic field is involved. If another descriptive term "Ion-Cyclotron-

Range-of-Frequency (ICRF) Wave Heating" is used, it is immediately obvious that 

this process involves wave-plasma interaction and energy tranfer between the two. 

Therefore to understand this physical process, the behavior of the wave (electrostatic 

or electromagnetic) in the plasma medium (with strong magnetic field for fusion 

plasmas) should be understood. 

Since there exist many types of wave-plasma interactions in a plasma, reviewing 

all of plasma wave physics would require a tremendous effort and is not justified in 

a report of RF experiments using one or two branches out of all the available wave 

modes. Thus a simple model giving general characteristics applicable to any kind of 

plasma-wave interaction is described and emphasis is given to a specific wave mode 

used in the experiments described in this thesis - the ICRF fast wave. 

In the first section, some basic characteristics of the interaction between a plasma 

and an electrostatic or electromagnetic wave are discussed, then the subsequent sec-

tions are dedicated to detailed explanation of a simple model. Some important re- 
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Figure 2.1: Diagram of the Effect of ICRII on the Confined Plasma System 

laxations of the constraints of the model are attempted. 

In the final section a survey of other ICRH experiments is given to illustrate 

how theoretical predictions were proven in experiments and how these experimental 

results affected the understanding and developments of ICRH physics. 

B ackground  

Even though there are many channels of plasma-wave interactions and varieties 

of wave modes, a few specific branches are emphasized for fusion applications. The 

major branches are the wave modes used for heating and current drive. Since the topic 

of this thesis is RF heating, most other wave-plasma interactions are less emphasized 

or omitted. Figure 2.1 shows a simple diagram of RF wave heating on a confined 

plasma system. A wave generated from an external source is transmitted to the 
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proper type of launcher, and the transmitted wave energy is transferred to the plasma 

medium via coupling, propagation, and absorption processes. Assuming a closed 

system including the launcher and plasma, the external energy flux transmitted into 

the plasma is conserved. The launcher and the medium are connected by the antenna 

spectrum and plasma response function to the externally excited wave, which affects 

the launcher spectrum. Therefore, this closed system should be considered in a 

self-consistent manner, and those two connection links (launcher spectrum, plasma 

response function) should be accurately known to understand the dynamics of the 

system. 

The Maxwell equations for a macroscopic medium are the starting point. 

8B 

at' 

v X = f + 613  at 
V 	= 0, 

V 	= p. 

where E is the electric field intensity, n is the electric displacement vector defined 

as D = cE, B is the magnetic induction and H is the magnetic intensity related 

to B as B = . Here e and it, are scalar dielectric permittivity and the magnetic 

permeability, respectively. Also J is the current density and p is the electrical charge 

density, which are related by the continuity equation as 

	

V • f+ 81) 	o. 	 (2.5) 
at 

Throughout this work, SI units are used and all variables in the above equations are 

functions of space and time. 

Since Eqs.(2.1) through (2.5) are decribed macroscopically, the medium should 

be well understood. If the medium is conductive like a plasma, conductivity o is 

v x f (2.1) 

(2.2) 

(2.3) 

(2.4) 
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defined as 

f = crE. (2. 6) 

If the medium is isotropic, all the quantities which describe the physical properties of 

the medium such as e, µ and c are scalar quantities. But in an anisotropic medium, 

they are all tensor quantities denoted as c, it and a, respectively. If the medium is 

dielectric, 

B=Eof+P 
	

(2.7) 

is defined where P is the electric polarization: 

P= 60X • E, 
	 (2.8) 

where x is the susceptibility of the medium. Therefore 

fo(i + X), 
	 (2.9) 

where I is the unit tensor. Another important characteristic of a medium is disper-

sion. This means that the dielectric property which determines the response of the 

medium to the wave fields are a function of frequency. In other words, the response 

to the wave depends on the time variation of the fields. This is a consequence of 

temporally non-local connection between D and E [1,2], represented by 

t) = 	t) + f G(r)f(i, t — r)dr, 	 (2.10) 

where 

G(r) = 	f :Mu)) — 11e -i"dw. 	 (2.11) 

The plasma medium is conductive and dielectric as well. This property is re-

lated to the current which can be incorporated into the dielectric permittivity. From 

Eq.(2.2), 
, 

= fo.ri — iw = ito )6) (2.12) 
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where the effective dielectric permittivity is defined as 

E = CO - 
	 (2.13) 

0.7  

A similar expression can be obtained for an anisotropic plasma medium in which 

the effective dielectric permittivity is a tensor. Therefore, in a plasma medium, the 

dispersion relation for a certain wave mode can be obtained by using this dielectric 

property (permittivity) of a plasma. This can be done by considering the plasma 

current as a displacement current and incorporating it into the effective dielectric 

tensor. 

Since RF heating is considered a supplemental source for plasma heating, it must 

work very well when the primary source, ohmic heating, loses its efficiency in highly 

conductive plasma conditions. In this case, the Ermode which propagates parallel to 

the magnetic field line is shorted out due to electron mobility along the magnetic field 

line. Thus in a highly conductive plasma the El-mode should be used for efficient 

wave propagation. For this reason, in ICRH the E 1 -mode is used while the Ermode 

is shorted out by a Faraday shield. Since the Ermode does not penetrate into the 

plasma if it is not fully screened out, edge heating close to the Faraday shield might 

occur. This topic is being actively studied in a series of workshops [3]. The E 1 -mode 

(electric field transverse to the magnetic field line) can be either an electrostatic mode 

(E x k = 0) or an electromagnetic mode (E x k 0). Both modes are used for ICRH 

experiments. 

The thermal motion of a plasma also affects RF wave heating. This gives more 

variety to the RF heating physics because it changes the plasma response function in 

a rather complicated way. One example is the Doppler broadening of the resonance 

layer given as 

— 	— 	0, 	 (2.14) 
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where the ion cyclotron frequency is 

= 
z i eB 	

(2.15) 
771i 

This well-known expression describes some important wave damping mechanisms. If 

n = 0, Landau damping and transit-time damping are expected, and n = 1 is the 

condition for fundamental cyclotron damping with 1E + 1 not equal to zero (even in 

a homogeneous medium) due to the extra term, ke n . For n > 2, higher harmonic 

damping could occur. The datails of these effects will be discussed in subsequent 

sections. 

Inhomogeneities of the medium also play a significant role. Mode conversion is a 

good example. As the plasma propagates through density, temperature, or magnetic 

field gradients, it can hit resonances or cutoffs, where mode conversion often occurs. 

Finite boundaries lead to the appearance of discrete eigenmodes. An elementary 

treatment will be presented in later sections. 

Cold Plasma Wave Theory 

In this section the physics behind wave propagation and absorption will be 

approached by examining a simple model which provides supprisingly valuable insight 

into the theory. This is the cold plasma model in which the "cold" means that the 

electrons and ions have no thermal velocities except as they are induced to move by 

the electric and magnetic fields of the wave. The plasma medium is assumed infinite 

and homogeneous. In later sections, these limitations are discussed. A slab geometry 

is used in which the unpertubed magnetic field is in the z-direction and the wave 

only propagates in the x — z plane; therefore k y  = 0. 

To obtain the cold plasma dielectric tensor, K, the plasma current must be 

calculated. If the two-fluid equations are used for the electronic and ionic components 
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of the plasma, then 
dik 

= 	E + vk x flo} dt 	m k  

where ijc, is the DC magnetic field and, 

d a 
dt = t H-("• v) • 

(2.16) 

(2.17) 

The electric field strength E and magnetic field strength f3 of the wave are determined 

from Maxwell equations, 

x 	at' 

vxn = ito ( 6°W 	' 

and f can be represented by 

E qvakvk • 
k 

(2.18) 

(2.19) 

Assuming that in the equilibrium state n e  = ni = no, vk , o  = fo = 0, then Eq.(2.16) 

can be linearized, 

qk 
 at 	mk 	

.7! 
	 = 	+ uki  x  no} (2.20) 

Also assuming first order perturbations in a homogeneous plasma, and that all vari-

able terms are proportional to exp {i(k • F — wt)} (the plane wave monochromatic 

solution), then the fields can be expressed as: 

= 	ilexp[i(k r— wt)], 

= 	exp [i(ic*  • — wt)}, 	 (2.21) 

exp [i(fc • 7' — W0], 

where the subscript 0 indicates an unperturbed quantity and 1 indicates an RF 

induced perturbed quantity. The plane means that the wave fronts (contours of 

constant phase) form a plane perpendicular to the direction of wave propagation, k, 

and the monochromatic means that the field is a singel frequency sinusoidal function of 
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the time. Therefore in a homogeneous plane wave the surfaces of constant amplitude 

are planes perpendicular to the direction of wave propagation. Then from Eq. (2.20) 

qk 
— 	= —

k 
 {E 1  -I- trk,i X  Jo} • 

ni 

The velocity components of the particles of the k-th kind are obtained: 

(2.22) 

11k, = 

 Vky  

(1k(iWEx OkEk) 

  

ink(w 2  — 121) 

qk(iwE y  + 	nkE.) 
mk (co 2  —12 /2,) 

i.Ez O k  

(2.23) 

Vk,z 

 

wBo  

By combining f and the plasma displacement current such that 

J — iwc 0E —iwc 0K • E, 

the expression of the dielectric tensor can be obtained as 

K_L  —iK x  0 

K = afx  K1  0 

0 	0 	Ki1  

where 

„,2 
K1 	s = - E  p,k  

w 2 	/12ic  

2 	. 

I(x 	D = E  -pk-k  
,„ (w 2 _ fiz)  

2 
/fp 	P = 1 — E WP ' k  w 2 

w 2 
S D = - E  pk  

k  W(C4/ + Clic  ) 1  

(.0 2 

S — D = 1 —
w(ca 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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where S, D, P, R and L are the well-known Stix notations, namely Sum, Difference, 

Plasma, Right and Left, respectively, and the plasma frequency of the particle of the 

k-th kind is 

nkgk  

4.1
2 k = 

nIkE0 
(2.30) 

Therefore the cold plasma wave equation obtained from Eq. (2.1) through Eq. (2.5) 

becomes 

VxVxf=kgK• , 	 (2.31) 

where 

resulting in 

(4,2 
kg = (2.32) 

x 	 = 0, 	 (2.33) 

where the index of refraction is defined as 

kc n = 
w 

(2. 34) 

Here, for n 2  > 0, the wave is propagating but for n 2  < 0, the wave is evanescent. 

In the given geometry in which B = 1Bli and kv  = 0, the matrix form of 

Eq.(2.33) is 

k 	k2K 	
\ 

/ kgif i  — ,: 

	

0  X 	 kz k z 	Ez  

—kg,K„ 	kgKi  — k2 — k 2 	0 	Ev  = 0. 	(2.35) 

\ 	kz k z 	0 	kg.KI I — k!)( E z  / 

Requiring that the determinant of the 3 x 3 matrix be zero for non-trivial solutions 

leads to the famous algebraic equation: 

	

Aki + Bki + C = 0, 	 (2.36) 
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where 

A = 

B = 

C = 

Icz2 (K 	— 4( 1(1 + Kx2  

Kil[(k: — Ic(2,1-(1 ) 	14/c2), ]. 

(2.37) 

(2.38) 

(2.39) 

The dispersion relation can be obtained for an arbitrary angle 9 between k and 

Jo  as, 
p(n 2 _ R)(n2 L ) 

2.40 tan2e = — 
(Sn 2  — RL)(n 2  — 	

( 	) 
 

For 9 = 0 	= 0), the R-mode with n 2  = R is a wave with right-hand circular 

polarization and the L-mode with n 2  = L is a wave with left-hand circular polar-

ization. For 9 = 7r/2 (k 11  = 0) the 0-mode with n 2  = P is an ordinary mode and 

X-mode with n2  = -RI' is an extraordinary mode. Here left-hand means the sense 

of the cyclotron motion of a positively charged particle. The dispersion relation for 

the 0-mode is independent of the magnetic field and particles do not experience any 

effect of the magnetic field (this is also the dispersion relation for an unmagnetized 

plasma) while the X-mode has a rather complicated dispersion relation. These four 

modes are described in the CMA (Clemmow-Mullaly-Allis) diagram, which tabulates 

different solutions and their behavior at various angles and frequencies. The full de-

scription of this useful chart can be found in various textbooks [4,5,6]. A description 

of the specific modes used in ICRH experiments is given here. 

The specific modes (which are the main subject of this chapter) for ICRII ex-

periments have frequencies determined by the primary damping mechanism. For ion 

heating, an ion cyclotron frequency or a higher harmonic is usually used. Since the 

CMA diagram was tabulated only for cold plasma wave modes, hot plasma modes 

like the Bernstein wave are not included. The ion cyclotron wave (shear Alfven wave) 

and the magnetosonic wave (compressional Alfven wave) are two typical cold plasma 

modes, both of which were expected to be damped at Il i  until the polarization was 
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examined. In early ICRH experiments using a "magnetic beach" geometry, ion cy-

clotron waves were launched from the high magnetic field side of the torus, parallel to 

the magnetic field. But in the CMA diagram as shown in Fig. 2.2, in region 13 near 

L = oo, it was difficult to tell whether the slow wave mode propagates because of the 

condition originally used for deriving this mode, w < fl ; . In 1957, however, Stix [7] 

found that this mode could propagate at frequencies slightly less than 12 ;  for the slow 

wave mode (L mode) in region 13. Recalling that the slow wave mode is left-handed 

polarized, the slow wave could be launched from the high-field side, which is region 

13 in the vicinity of L oo. The fast mode can propagate either in region 11 or 

13, which would correspond to a low-field-side launch and a high-field-side launch, 

respectively. 

In the ion cyclotron frequency region, w << SZ e , cope , the dispersion relations for 

the two propagating waves at finite n11 can be calculated from Eq.(2.36) as[83], 

(KJ_ - n1) 2  + 
n

2 
1 1 z 	(fast), 	 (2.41) 

Kl  - n 1  

2 f_s -:_ 	(K1 — 7q) 	(slow). 

In this frequency range the ordering of the components of K becomes 

K1  K x  = O(mm---!)K11, 	 (2.42) 

which implies that by expanding Eq.(2.35) in Tne: , EI I = 	)El  since the electrons 

are very mobile and free to move along no . Sometimes E11 = 0 is assumed which is 

called the "zero electron mass" assumption. 

Figure 2.3 shows propagating and evanescent regions for both branches. Cutoffs 

(n1  -> 0) for the fast wave occur at q = K 1  + and fast wave is propagating 

between these cutoffs. This cutoff condition can be expressed as a density condition, 

Ncli t of 1 = 5.2 x 10 3° 1-li  (1 + -1 ) lc& (m -1 ) (cm -3 ), 
z 	w 

(2.43) 
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where A is the atomic number and z is the charge state of the ion. 

In toroidal devices, the gradient along the magnetic field is considerably weaker 

than those across the field owing to the fact that 

Vp = J x B 	 (2.44) 

holds across the transverse plasma cross section. A consequence of this situation 

and Snell's law, the principle of refraction, is that the wave number along the field 

line, 1c11, is approximately constant along the path of wave propagation while the 

perpendicular wave number, k 1i  varies in accordance with the dispersion relation. 

For the case where a minority ion species exists in the plasma, because of the 

contribution to the components of the dielectric tensor from each ion species there is 

another resonance condition, the ion-ion hybrid resonance [8,9,10,11,30] at 

where 

ce2 = 001 2 702 + 772C-2 1  
771 C2 1 + 7722 

(2.45) 

n;  
173 = 

Laj=1,2 n j 

It was recognized that the presence of a dilute ion species changes the electric 

field polarization around the resonance layer (not at the resonance layer in the cold 

plasma wave theory) and enhances the left polarized field, thereby increasing ion 

heating efficiency. This can be enhanced by thermal effects such as Doppler broaden-

ing. Due to the shift of the resonance layer by kllvll,  the resonance layer appears near 

the hybrid resonance layer, where the left-hand circularly polarized field is finite. 

The components of K have singularities at w = 	This means that the present 

model is not valid in the region near the resonance layer. To avoid this singularity, 

collisionality or thermal motion must be included. This singularity is why the cold 

plasma model does not provide cyclotron damping at a fundamental resonance layer in 
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terms of polarization - no left-handed polarized field is permitted. By calculating the 

dispersion relation and polarization for different plasma conditions [12] some insight 

into the cold plasma wave theory in the case of the ion-ion hybrid resonance and the 

second harmonic resonance regime can be obtained. Even in the case where a certain 

amount of a minority ion species exists, the left-hand polarized field strength is zero 

at the fundamental resonance layer. However, at the second harmonic resonance 

layer, both the polarization and k 1  are greatly enhanced. 

Another thing that the cold plasma model does not show is the existence of a 

thermal ion Bernstein wave. In the hot plasma wave theory, this mode appears as a 

consequence of the thermal motion of the plasma particles. 

Effect of the Boundary  

The importance of the boundary effect depends on the strength of the damping. 

In the weak damping regime, power is not absorbed in a single pass making the 

boundary effect important. But in the strong damping case, in which the wave is 

absorbed in a narrow region, the wave fields do not reach the boundary. For this case 

the plasma can be treated as an infinite medium. The principal result of including 

boundary effects is a discrete k spectrum instead of the continuous spectrum of an 

infinite plasma. This occurs in low density, weak damping experiments, which usually 

produce discrete eigenmodes. 

The boundary conditions for a conducting wall are regularity at r 	0 and the 

fact that the tangential electric field, f t  must vanish at the wall. The application of 

this boundary condition is strongly affected by the type of plasma-vacuum interface 

(sharp boundary) or plasma-edge interface (diffuse boundary). Wave propagation also 

depends on the edge model, though the actual edge conditions are often unknown. 
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In the sharp boundary model, a surface wave may propagate in the vacuum region 

between the plasma and the wall with large Ez  value. In the diffuse boundary model, 

a surface wave would be suppressed by the finite edge density. 

Eigenmodes have been studied by many authors [13,14]. As an example, the 

wave field equations are derived in the weak damping limit for a cylindrical plasma 

with a uniform magnetic field in the z direction. The curl equations in Eqs. (2.1) 

and (2.2) can be rewritten in component form using the dielectric tensor, Eq. (2.24), 

and with the wave fields represented as 

They become: 

f( r ) ei(k.z-l-me-wt) .  

im 
Ez  — ik z Ee  = iceBr , 

r 

ik z Er  — —
d 

Ez  = iwB9 , 
dr 
m 1 d 	i 

(rEe ) — E r  = 
r dr 

im 
Bz  — ikzBe =

C
-

2 

icy 
(K x  Er  — iK x  Ea), 

ikz Br 
 — dr Bz 	

--c2 (ilf.Er  KiE8), 

1 d , 	im 	 , D
— - Dr  =

r  r dr 	
8 	

cz II z 

(2.46) 

(2.47) 

where M is azimuthal mode number. This set of equations can be reduced to two 

second order coupled equations for the transverse component in Ez  and Bz . Following 

Swanson [6], 

	

cxG'lEz  - i3V1B z  — iwB z  = 0, 	 (2.48) 

	

(101B z  7V1Ez
iltllEz = 0, 	 (2.49) 

where 

a VI  = V — cz —
az

, 
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(2.50) 



IS 

c 2  k2  Kx  

a = 
w 2 K 2 

c 2 	• ICOK 

w 2 K 2 

	

C2 	kz2Kx 

	

7 = w 2 	+ K1) ,  

C2 	
.1 /c c K 
z w 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

These two coupled equations lead to a fourth order equation in either Ez  or B z  as 

(VI + 	kI 2 )Ez  = 0, 	 (2.55) 

Or 

(VI + kl 1 )(V1 + 1c 212 )Bz  = 0, 	 (2. 56) 

where k1 1  and k12  are the two solutions of the quadratic equation: 

(a2 — 07)ki — 	_ w2
c 2 	

k2 — 
= 0 . W 

(2.57) 

From this qudratic equation in k 1 , the dispersion relation for a cold, uniform and 

bounded plasma is obtained as 

( k2 	2x  K 	
ky. )K11+ (-

1c1 

0
) 2 P-f1 (tc + 	) If! = 0, 	(2.58) 

where 14)  

k2 
At w 	St i , assuming that 	I << 1 and using the ordering in Eq.(2.42), 

Eq.(2.58) simplifies to 
1 (W 2 	2  

IC! 	r) 772  - 
I A 

for the fast wave where VA is the Alfven speed defined as 

(2.59) 

BZ  
VA = 1 ------- 

ADP,. 

 

(2.60) 

and pm  ni m i  is the mass density of the plasma. 
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For the weak damping limit with a plasma, the tokamak may be treated as 

a dielectrically loaded cavity and eigenmodes exist at the frequencies of interest for 

densities high enough to allow the wave to be launched. The azimuthal mode number 

is included explicitly in the expression of the wave field while radial and toroidal wave 

number can be determined by assumptions or other constraints. Usually in a toroidal 

system, if shear is neglected, the parallel wave number is represented as k z  = 7i1 and 

the radial wave number is k,. = 11  where and N are the parallel and radial mode 
a 

numbers, and R and a are the major and minor radii, respectively. Therefore for 

a certain poloidal mode, m, with a given plasma density, the excited eigenmode set 

(n, m, N) can be obtained along with the wave fields. 

In the numerical work [14,15] it was observed that modes with lower m-numbers 

and small n tend to have the shortest radial wavelength and strongest central focusing 

effects, while large m-numbers correspond to modes with fields nearer the plasma 

surface and would not be expected to be as desirable for central power deposition. As 

given in Eq.(2.41), the dependence of the radial wave number on density and magnetic 

field indicates that a density threshold exists for each mode, below which it cannot 

propagate. In a typical large tokamak with a dense and hot plasma, an multitude of 

eigenmodes almost approaches a continuum and strong damping processes preclude 

the formation of toroidal eigenmodes. However, radial eigenmodes have been observed 

in a hot, dense plasma due to the existence of a reflection layer inside the plasma [16]. 

Effect of the Thermal Motion 

In order to properly model the wave-plasma interaction around the resonance 

layer, which includes both cyclotron damping and mode conversion, it is necessary 

to include thermal effects. In this section the hot plasma dielectric tensor is obtained 
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by first deriving the plasma current taking thermal motion into account, and then 

performing a finite-Larmor-orbit expansion. 

The formal derivation of the hot plasma dielectic tensor requires complicated 

mathematical notations which will distract from the physics content. Therefore only 

the important steps and mathematical methods of derivation will be described in this 

section. Several texts [4,6,17] were referenced in obtaining the hot plasma dielectric 

tensor. The technique used for this derivation is called the method of characteristics 

and the idea is to find the perturbation of the distribution function due to the wave 

by integrating along the unperturbed orbits. This orbit is described by 

.1(t) = fitgt), fi(t), 11, 	 (2.61) 

where i(t), ii(t) describe the unperturbed particle orbit. The collisionless Boltzman 

equation along this trajectory is 

df 	Of of di of di; 
dt ^ R —  at + 	+  av dt at 	of q 	of 

  + ti • 	+ —m 17 x Bo 	o. 	 (2.62) 

Assuming first order perturbation for perturbing quatities as was done previously, 

then the zero-order equation is 

dfo , 	q 	a fo  = —v X .00 • —7-, = U, 	 (2.63) dt R  m 	 aV 

and the first order equation is 

dfi 	q - --rn (Ei + x ) • af° 
ag • 

Therefore the equation integrated along R is 

df 	dfo 	dfl  
dt 	dt 	dt 	m + 	= 	+ x 13'0 °of°. 

The integration along R yields 

afo(61 )  , _ q f 	 tV,t1,t) — 	f [E1 (x ,t)+ v x B i (x ,e)]. 	d m tc, 	 avi 
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(2.65) 

(2.66) 
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Here if t o 	—oo, the initial value at this infinitely remote past time will be neglected 

since co should have a positive imaginary part from the Vlasov analysis. Hence the 

initial point is chosen to be t' = —oo and the last term in Eq.(2.66) is neglected. In 

order to integrate Eq.(2.66), the expression of the characteristic trajectory should be 

obtained and substituted into the integral. In Cartesian coordinates, the trajectory 

that reaches = when t' = t is governed by the equation of motion 

dt 
= v X 	 (2.67) 

The solution for a spatially homogenous plasma using cylindrical coordinates is: 

vx  = 

vy  = 

kx  = 

ky  = 

and the relation vi = v: v iii , becomes  

v±  cos 0, 	 (2.68) 

vl  sin 0, 	 (2.69) 

ki  cos 771), 	 (2.70) 

ki  sin V', 	 (2.71) 

v.̀  = vi  cos (0 + ES27), 	 (2.72) 

v±  sin (q + Eflr), 	 (2.73) 

Vz  = Vz , 	 ( 2.74) 

and 

x = x — —c.2 - (

▪  

sin (0 €S2r) + sin 0), 	 (2.75) 

= y 
Ef2  

▪  

(cos (0 + 6.2r) — cos 0), 	 (2.76) 

Z i  = Z - Vz 7- 3 
	 (2.77) 

where c = q/lqi and r = t — t'. Then the phase factor becomes 

i( k • — wt') = 	— cot 

—ib[sin 	— + (fir) — sin (0 — .0)] + jar 	(2.78) 
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where a = (co — lez vz ), b = 	It is important to note that since v 1  and v z  are 

constants of the motion, then fo (vi, vz ) = fo (v± ,vi ). By defining 

ah  
avi  
ah E 
avz  

and calculating 

ah  _ a fo  av±  v x  
avx 	av1  avx  — 171:1-°± ' 
afo 	a fo  at), 	v Y  

— — 

&V I/  — aV 

the remaining factor of the integral can be written as 

(E. + (f • F)k — E (75/ • lc)) a f 0 (in  
at? 

[E2foi 	Ez kz  Ez -c1) 	 )1 
(v ±  cos (4) + dlr.) 	

—kicos 
cioz — 

vz 
 

f0J_) 

f0z) 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

VZ 	)1 
I01 

vl 

	

fol 	 i_ sin 7,b (foz  
+(v± sin (0 + ES-27) 

E 
	

E 
Y 	

k z  — E z
k 

+Ez foz . 

With Eq.(2.78), Eq.(2.83) and using the Bessel identity 

	

e iAsine = 	Ji(A)eile, 
1=—oo 

and 

J1.4. 1 (A)+ J1_ 1 (A) = 

J1 +1 (A)— J1_ 1 (A) 

The result of the integration of Eq.(2.66) over r is 

iq 	j1 (b) e, ( 1 -0(0-0) 

1=-cop=-.0 w PECI — kz vz  
f(lc, v, w) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 
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{ PjPb(b)  {fol 	1(4) (1) foz  — v z foi )1(E, cosi") + Ey  sin Ib) 

+i4(b)[fol  -k-2-w (v i foz  — f od(— Ez  sin itb + 	cos 1,1)) 

+ Jp(b){fo. — 	o z — 11,H—zi f o i)] E z} (2.87) 

The expression for the current density is represented as 

f= 
 f

27r 

	

do f' 	dv x  iif(v ±,vz ), 

	

o 	o 

and the hot plasma dielectric tensor is defined by 

	

K. 	E+  i -f. 
WE0 

For an isotropic Maxwellian distribution 

f0 (v± , vz ) 	1 	e- V 2 IVL 
71-312qh  

the final form of the Dielectric tensor, K is 

	

Kl  + sin 0 2 K0 	K2 — cos V,  sin OK°  cos 1,b1C4  + sin lb Ks  

—K 2  — cos V) sin 7,b1f0 	K 1  + cos 0 2 K0 	sin 1b/f4 — cos 1/1K5 

	

\ cos 'OKI — sin MKS  sin OKI  + cos OKs 	K3 

(2.88) 

(2.89) 

(2.90) 

, 	(2.91) 

2E _ 
cve -Ai 	co 

j udr..zVj n.-co 

_Pie 	A iun_r:i ) z(c„; ), 	(2.92) 

we -Aj co n21 
1 + E  p.7 	 n 

 Z( 
(2.93) 

i colcz vi n=00 Al 	Cni), 

c . w 2 .e -A; 	.0 
V n(in  — ini )Z(Cni), 

\--`  3 P3 	 (2.94 
Wk 

) 
tj d 	z Vj n ,_"-°„„ 

w 2 e -Ai 	c.c. 
1 — E  P3 	incni zig,), 	 (2.95)  

; wkz vi  „=, 

ki.u.e-Al ' min  E 	P3 	—v(cni), 	 (2.96) 
z 3 n=- co 3 2wk CZ • 	A • 

ki  ciwp2i  e -  A 1 c°  
i E 	 E (In —1:Jzi((n.i), 	(2.97) ; 	lokziti n= - co 

K0  

K1 = 

K2 = 

K3 = 

K4 = 

K5 = 
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where ) = 12 1cipl, pL  = wi t h/11 is the Larmor radius and Z(C„;) is the plasma distri-

bution function defined as 

Z(C) = 1  le° e —z   dz 
z 	

, 
- 

co+nOi and the argument Cni  is 	-  .c.vth 

(2.98) 

In obtaining Eq.(2.92) through Eq.(2.97), one uses another Bessel identity 

e A "s nr = E in(A)e innr 
	

(2.99) 

where In  is the modified Bessel function of the first kind. 

The final step in this section is to perform a finite-Larmor-orbit expansion. 

The physics of this phenomena l  is that for any finite k j_ there exists a non-vanishing 

contribution of the wave field to the particle orbits. Since for small Ic i pL, however, the 

interaction is weak, the dielectric tensor elements can be expanded in A ;  = ;k1p2Li . 

If only the first order terms are considered, the resulting components are 

w 2. 
K0  = E 	713  [AZ(C0 )1 i , 	 (2.100) 

Wk z tli 
2. 

K1  = 1+E 
2wk z1 ---

v;  
1.— {[Z(C-1) 	Z(C1)11 1  — A) + A[Z(C_2) Z(6)]}3,( 2 . 101 ) 

LAJ 
K2 = iE 2 

E'; 
 P 

2 
	i; 

 
{[Z(C-1) 	Z(C1)1( 1 	2A) + A[Z(C-2) 	Z(C2)1} j) (2.102) 

Wk z 11j 
2 W g 	 A 

K3 = 	
\--, 

1 
 — LaWkP-v.{CCIZI(C0)(1 — A) + iiC--1Z I (C-1) + CiZ i (COili, ( 2 . 1 03) 

i 	z J 

2  Wri  A 	
(2.104) K4 	2AolczvitZi(C1) - V (C- 1 )].i ,  

AE  ,w 2 
Y '  K5 vc{v( G 	.- 

	

)— [z'cco 	ol + z(c_. 	( 2.105) = 
i  7 2Vivk z  

IA simple illustration of this phenomena can be found in Swanson's Plasma Waves published by 

Academic Press, New York, 1989 
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Figure 2.4: WKB dispersion relation for a hot deuteron plasma with a small compo-

nent of hydrogen. Conversion to an ion Bernstein wave occurs near the cold plasma 

two-ion hybrid resonance [83]. 

It is now easy to identify the contributions from 71 = 0 (Landau damping), 

n = 1 (fundamental cyclotron damping) and 71 = 2 (second harmonic damping), 

clearly indicated by (n . The cold plasma dielectric tensor is obtained by setting v ta 

 equal to zero. In addition the ion Bernstein wave is now seen in the hot plasma 

dispersion relation as kz  goes to zero (electrostatic limit) as shown in Fig. 2.4. There 

is a possiblity of mode conversion from the fast wave to the ion Bernstein wave and 

this greatly diversifies wave physics in the hot plasma regime. In the next section, 
• 

an elementary description of the effect of the plasma inhomogeneity is presented. 
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Wave Absorption 

A propagating wave can be absorbed in a plasma by several damping mech-

anisms. For ICRF heating, the basic damping mechanism is cyclotron damping. 

Physically, in order to interact significantly with the ion motion to produce ion heat-

ing, the wave polarization must contain a component which rotates in the sense of the 

ions (i.e. left-hand polarization) as mentioned before. This is exactly the case for the 

slow wave mode, which leads to strong absorption at the cyclotron resonance. In the 

case of the fast wave mode, the left-hand polarized part is almost perfectly screened 

out as w ft . However, in initial experiments in the mid-70s, it turned out that 

even for fast wave heating, the results were better than the theoretical expectation. 

In this section possible damping mechanisms and the effect of minority species and 

thermal effects on the wave absorption are considered. 

Collisional and collisionless processes are possible for the wave damping mech-

anisms. Collisional damping is essentially that of ohmic heating, and becomes less 

effective as the temperature is increased. According to Paoloni, [15] the ohmic power 

loss due to collisions is just 

(2.106) Pconiaion 	f -- Ez 1 2 (117, 
v 27/ 11  

where nil = 5.2 x 10-s 7-3z
/2(

fri
e v ) 11-m is the parallel (to the magnetic field) Spitzer 

resistivity and the integration is over the volume of the tokamak. As previously 

mentioned, in a highly ionized plasma electron mobility increases which shorts out 

the parallel electric field. This significantly reduces the effectiveness of collisional 

damping significantly. 

Collisionless damping is more complicated because the thermal motion of the 

particles (the hot plasma dielectric tensor) must be considered. As an introduction 

to how particles absorb the wave energy, single particle cyclotron damping [18] is go-

ing to be discussed. Particles that feel the wave E-field at their cyclotron frequency 
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absorb the wave energy. The well-known condition for such single particle resonance 

is w — kii v ii  = 14. In toroidal geometry, ions movinging along the B lines which twist 

around the magnetic axis can pass through the resonant surface twice at each com-

plete revolution. On each passage through resonance the ions receive a perpendicular 

(to B) kick, mv± , which is calculated from the equations of motion: 

tjz 	ft(t)v y  = 	Ex  cos cot, 
m 

tly  Sl(t)v z  = — 1-Ey  sin wt. 
m 

(2.107) 

( 2. 1 08 ) 

Let E± 	;(Ez  ± Ey ),u = v, -I- ivy . Expanding the instantaneous cyclotron 

frequency g i  around the resonance, 

Oft 
Sl t (t) = w + (t + to)- ,- + • • • • (2.109) 

The two real variable equations can then be written as a single equation in the 

complex variable u, 

du 

dt 
zit(t)u = m 

L 
[E+e -i' t 	. ( 2. 110 ) 

Here by neglecting the non-resonant term (E ) (non-resonant due to the right-hand 

polarization) and integrating for t << t o , the average change in energy per transit of 

the resonant surface can be computed as 

De = ril-(u(t)v(t)' — u(—oo)u( -00)`), 

2 27r = 
2 m 

where CV can be expressed by 

Sl'
af2  

= (2.112) 

and a  is the derivative along the field line. Particles turning near the resonance 

--* 0) will exhibit a singular behavior. So it will be necessary to keep more 

terms for these particles and their behavior can be described by what is known as the 
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Airy function correction in which the total absorbed energy can be written in terms of 

Airy functions. It was found that this higher order correction was only important for 

a very small number of particles [19] and in most cases the Stix formula, Eq.(2.111), 

was acceptable. In Eq.(2.111), it should be noted that energy gain is proportional to 

the left handed polarized electric field. 

The second harmonic case can also be analyzed in the same way. The resulting 

change in energy per transit is 

A 	qvi iVE+ I 2  
7 400 112 1 1 112  • 

( 2.1 1 3 ) 

Note that the energy gain in the second harmonic is proportional to IVE 4d. The 

Larmor radius must be a non-negligible fraction of a wavelength for this case. In this 

case 

Vlir es 	
—  (2.114) 
kll 

which is not zero at the second harmonic. The polarization at the second harmonic 

resonance layer is not fully right-handed as seen even in cold plasma theory [12]. 

Landau damping and transit time magnetic pumping (TTMP) [18] both involve 

energy absorption by particles moving along B with the phase velocity of the wave, 

i.e. particles for which w — k ii vo  = 0. The only difference is that in Landau damping, 

the force on the particle due to the wave is qE while in TTMP the acting force is 

—p.VB as in the equation of motion 

dv z  
m-- dt = q Eo  cos(k. z — wt),), 

dv z
= 
	8B2 

777, 	 II- 	 • dt 	z 

In Stix[18], they were expressed as 

(2.115) 

(2.116) 

1 d my 2  \ L  
dt 2 	zn ,vo 

7w 2 13 2  (w ) Of (v0) ) 
2 mik l kki 	avo 

7 (2.117 ) 
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d my2 TTItIP 

\dt 2 zo ,vo 

POild 	2 M ( a f (v0)) 
zl 

2m 	k 	avo  

 

(2.1 1 8 ) 

Since wave absorption implies a collisionless, resonance process, in the rest of this 

section the processes involved in resonance absorption are considered. The resonance 

layer here is limited to the two-ion hybrid resonance layer. The first analysis of this 

process came from Budden [20]. He used a second order differential equation to 

describe wave phenomena near this cutoff-resonance pair'. The Budden equation is 

271 
zy" -F (z)y = 0 (2. 11 9) 

where n  = irA 2 a/2 for a > 0. This equation has a pole at z = 0 (resonance) and a 

cutoff at z = —a. He showed that the transmission of energy was given by T 2  = e-2 T1 

 for incidence from either side — incidence from the right where resonance was met 

first or incidence from the left where cutoff was met first. There was no reflection 

for the incidence from the right but R 2  = (1 — T 2 ) 2  from the left. It should be noted 

that the energy was not conserved as indicated by T 2  + R2  < 1. This is caused by 

the lower order differential equation (second order here) which did not say where the 

depleted energy goes. 

A higher order equation to describe this physical phenomena is 

Y`v  A2 (zy" gy) = 0 (2. 120 ) 

as Wasow [21] used, but this equation describes only a resonance. An extension of 

this equation was studied by Stix [22] where he used the term "mode conversion" 

for the conversion of the slow wave to a warm plasma wave. Although this equation 

was a more generalized version of the Budden equation and suitable for studying the 

2 The two-ion hybrid resonance layer is always accompanied by a cutoff layer. 
• 
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coupling between different modes, it did not include tunneling through the cutoff 

region. The fourth-order mode conversion-tunneling equation is 

y i v 	A 2 zy" (A 2 z -y)y = 0 	 (2.121) 

which was derived by Swanson [23] for the normal incidence case (k m  = ky  = 0). 

This equation was studied by many authors [24,25,26,27] with various mathematical 

methods including the method of matched asymptotic expansion [24,26], the method 

of Laplace [24,25], and the variational method [27]. They obtained the coefficients 

for reflection, mode conversion and tunneling (transmission) of wave energy near 

the hybrid resonance layer. The important difference from Budden's result is that 

the wave energy is conserved, and the depleted energy in Budden's solution is mode 

converted to the ion Bernstein wave (IBW). 

A further extension of this equation included absorption [28,29], which was 

written as 

y iv + A 2 zy tt + ( '1 2 z  + 7 )y  = 	z ) , 	 (2.122) 

where g(y, z) represents the absorption term. The results of this calculations in-

dicated that strong absorption suppressed the mode converted wave and reduced 

transmission. 

Extensive numerical analysis was done by Colestock and Kashuba [30] by di-

rectly integrating the mode conversion equation for the Princeton Large Torus (PLT) 3 . 

Summarizing their work, only a very small fraction of the incident power was mode 

converted for low-field incidence, but minority ion damping was strong for this case. 

From the high-field side, a significant fraction of the incident power was converted 

into the backward (v phase v yroup  < 0) Bernstein wave and was subsequently lost to 

'Since their observations were for a specific experiment (PLT) the details are not true for general 

cases, but their general trends are. 
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electrons through Landau damping. At sufficiently high temperatures where cy-

clotron damping is enhanced due to the Doppler shifted resonance layer, the low and 

high-field incidence cases should approach each other as damping overcomes mode 

conversion. At very low k z  values, absorption decreases while from the low-field side, 

the reflection coefficient increases significantly. 

Overall, mode conversion can be expected to play a role over a broad range of 

parameters, especially if low parallel wave numbers are excited where the absorption 

term is weak due to weak Doppler shift of the fundamental resonance layer. While 

these calculations may account for the overall characters of the power flow and wave 

damping, further refinements to include rotational transform [11,31,32,33] as well as 

improvements to the basic concept of RF conductivity in a plasma are likely to be 

required before wave absorption can be completely understood. 

Wave Thermalization  

The last step of the physical process of ion cyclotron resonance heating (ICRH) 

is the thermalization of wave energy inside the plasma. As mentioned before, the ions 

streaming along the field lines receive a vertical kick in energy as they pass through 

the resonance zone proportional to the length of time they stay at resonance. Except 

for a few singular orbits, most particles do not spend much time at resonance. As 

such, most ions receive a periodic kick in energy with plenty of time between resojiance 

layer transits to randomize their phase with respect to the wave. The quasi-linear 

velocity-space diffusion [34] can be applied in this case due to the fact that this theory 

is developed for waves of any oscillation branch propagating at an arbitrary angle 

to a uniform magnetic field in a spatially uniform plasma. Stix [18] first analyzed 

this problem thoroughly and he obtained the velocity diffusion operator due to the 
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resonant interaction as 

a frf(v) 	7r.z 2 e 2 1E+12  E  1 a jn-,  ( ki v i )  

at 	— 8m 2 1km  I 	VI at)" 	oi  

x8[v m  — w — 
 nit i l  1 ( 3 AV)  

k m 	v, ov, 

when f(t7) is the particle distribution function summed over the cyclotron harmon-

ics. To obtain the expression for f(17), he considered the Fokker-Planck equation in 

spherical velocity coordinates and dropping angular dependence: 

where 

a fol C(f)  afril)  
at 	a t (2.124) 

v 2  av 
1.1[v2((z,v ) ,) + i; ((Av.i.) 2 ))i] 

1 32 
 2v2  81/ 2 (V2 ((AVII)2 )f)  

=- 	
1 a (1  _ 1,2)  a (((v_0 2 )f).  

4v2 aft 	ail 
Here µ = v and the Coulomb coefficients (Atm), ((Avil) 2 ) and ((Av 1 ) 2 ) have been 

determined for test particles diffusing in an isotropic Maxwellian plasma of ions and 

electrons. Integrating Eq.(2.124) in the steady-state, he obtained an expression for 

f(v) 

where 

and 

[_ 	
dv 

	pv2)1 
f (6) = 	f(0) exp 

Jo 	13v 2 + 2Kv 2 	' 

a = (Avo + 21T, (( Av, )2), 

0 = ( ( A vi l ) 2  

K-
3 

nmi Re(f • f'). 
2 

(2.125) 

2 

(2.123) 

C(f) = 
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To discuss the behavior of f(ii) in Eq.(2.125), he defined an effective (ion) temperature 

at each value of E = mv 2 /2, 

[d(In  f)1  
[kTrifri - - 

dE 

where 

1 
[ 

m (p )(4 7red2 

ri 	R5 (Te — Ti  + ae ) 	1 
' 	(2.126) 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

(2.131) 

(2.132) 

kTe(1 + 

R i  

/i 	EE 

E 

e 

7;(1 + R 5 +0 	1+ (EIE5 ) 31 2 1 

(2)) 1/2 
) 	 tn, 

n 	3 3 •Z21' 3 

8 \Frn,e nz 2 q4  ln A 

1+ R5  + 

) 1 / 2 , 

213  

(m'  

n e /e  

rnv 

2kTi  
2 

2 

mkT5  

2 
2E(1 + 

3V—ir 

where (p) is the wave heating power per unit volume and In A is Coulomb logarithm. 

The subscript "j" in m, n, and z indicates parameters for the background ion and 

parameters without subscript represent the resonant ion, which is experiencing the 

cyclotron resonance energy absorption. Figure 2.5 and Eq.(2.127) show that the 

energy of the resonant ion distribution increases with power but inversely to the 

background density, resonant ion density, and charge. Figure 2.5 shows that for 

appropriate conditions the resonant ion species diffuses in velocity space preferentially 

at high energies acquiring a high energy tail due to the decreasing velocity dependence 

of Coulomb collisions in Eq.(2.127). The power absorption parameter (p) is somewhat 

ambiguous unless a dynamic interface with the RF power absorption calculation is 

available. Another missing characteristic is the effect of the distribution anisotropy. A 

bounce-averaged diffusion operator has been calculated [35,19] in which the trapped 
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Figure 2.5: Minority ion distribution function for various values of the RF power 

density parameter, an energetic, non-Maxwellian distribution develops as a result 

of RF-induced velocity diffusion [18]. 
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particle effect is considered by adding a drift term to the Fokker-Planck equation of 

the form 

af(17)  
at 	(

vii + va • v) 	c(f) + a MO  
at 	

(2.133) 

where 1 is the length along the bounce orbit and f is assumed to have been averaged 

over a gyro-orbit. A Monte-Carlo method for studying locally enhanced spatial dif-

fusion indicates that enhanced fast ion diffusion from the resonance zone may occur. 

With simple plasma and RF models a non-bounce-averaged analysis was performed 

for the ATF RF power calculation in Chapter V. 

Effect of the Helical Geometry 

The most striking differences in a helical magnetic geometry compared to toka-

mak geometry are 3-dimensional characteristics such as the saddle point and helically 

twisting mod-B contours. Thus the inhomogeneity of the field along the ion path, 

toroidal asymmetry, and complex boundary which can be ignored or simplified in 

tokamak geometry become important. 

Figure 2.6 shows a typical ATF magnetic geometry'. Since the mod-B contours 

have a saddle point (which in real space, is slightly off from the magnetic axis), 

there always exists a pair of resonance layers inside and outside or above and below 

(depending on the toroidal angle 0) the equatorial plane. Also note that the radial 

gradient of the mod-B contour is small near the saddle point. 

Usually, for ICRH experiments in this geometry, the RF frequency is determined 

so that the resonance layer is placed on axis. For the minority heating regime, the 

location of the hybrid resonance layer depends on the minority concentration. The RF 

'The author is grateful to D. K. Lee for providing this figure. 
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Figure 2.6: Typical magnetic geometry of the ATF Torsatron at 0 = 15° 

energy absorption would be different for each concentration. Numerical calculations 

were performed for several cases and are presented in Chapter V. 

Since the resonance layer rotates helically, at certain antenna locations the res-

onance layer could be quite close to the antenna. This becomes a concern, especially 

when the edge evanescent layer is thick, so that RF power is likely to be deposited in 

the edge region. In ATF, most of the large k m  modes have thick evanescent regions in 

low density target plasma, typically ft, < 0.8 x 10 13cm'. For this case in a narrow 

band about kil = 0, antenna could be efficient as happened for W VII-A (see the last 

section in this chapter). 

After the L-2 stellarator [36] showed significant ion heating in the fast wave 

fundamental resonance heating regime (which was thought to be an ineffective regime 

due to poor polarization), a series of theoretical works [37,38] showed that helical 

magnetic geometry with its large inhomogeneity along the ion path could enhance 

the cyclotron absorption at the fundamental resonance layer. 
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Including the inhomogeneity of the magnetic field, the expression for the power 

absorbed by a particle was given as, 

P = 
w 2 .  2/ E 

 + 	

(0 , )12 
drli 

327  s=1 I de I 8 • 
(2.134) 

where / is the number of helical coils, and 0 8  is the resonant angle where (4., 

Substituting / = 1 into this equation, Eq.(2.111) can be recovered, which was derived 

for tokamaks by Stix. To illustrate how much the magnetic inhomogeneity affects 

the RF power absorption, the coefficient of absorption enhancement /S was calculated, 

which becomes 
wb  

ti 

(kiivi)2 
(2.135) 

 

where co b  is bounce frequency, usually denoted by v t  in a stellarator and :tin in 

a tokamak. Here, m is the number of magnetic field periods around the torus for 

a stellarator and q is the quality factor for a tokamak. For tc. >> 1, the following 

condition should be satisfied. 

1 n = ‹ x

2 

 ( = 
mei 

(2.136) 

In this calculation i for a stellarator is larger than for a tokamak by a factor of mq. 

There is also another theory [31] concerning cyclotron enhancement in helical 

geometry, in which the authors examine the effects of long wavelength modes (small 

ki t or even kit = 0 modes) which is supposed to be ineffective due to the negligible 

Doppler effect on resonance shift. 

Numerical Simulation of ICRH in a Helical System 

Here, a full wave RF heating code which calculates global RF wave fields in 

a helically symmetric, straight stellarator is described[39]. A modification which 
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Figure 2.7: The Helically Symmetric Coordinate System 

reflects the effect of the side wall image current on the antenna spectrum was made 

to this code[42]. The basic algorithm and ATF plasma model are discussed. Detailed 

modeling results for the initial ICRH experiments on ATF are discussed in Chapter V. 

In a helically symmeric system as shown in Fig. 2.7, cylindrical coordinates are 

transformed to helical coordinates where 0 = 9 — hz and h is helical pitch defined by 

h R Defining the scalar flux function zgr , 0) and 0) in a stellarator as, 
• 

2  r 
i,b(r, 0) = Bo 

h
- 	

2 
 — r 	ft ./;(ihr) cosm, 	 (2.137) 

0) = Bo  = constant, (2.138) 

where It  is the modified Bessel function of order 1 and 1 is the number of helical 

windings. For l = 2 machines such as ATF, the 1 = 2 term is dominant in the Ei  
term and e2 = 2Bo ha,K2(2ha,) where a, is the coil radius. Then the magnetic field 

can be described as a function of lb and as 

1& ,  
r ao' 

+ 
h 2 r2  
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Figure 2.8: ATF Magnetic Geometry Simulated by a 2-D RF Heating Code 

hr (-Qt) - - 
.13 1  = 	ar  

1 -1-  h2r2  
(2.141) 

This expression models the ATF (1 = 2, m = 12) magnetic field structure as shown 

in Fig. 2.8. 

The cyclotron resonance layers consist of a pair of hyperbolas. If minority ions 

exist, hybrid resonance layers and cut-off layers for the slow wave appear as two pairs 

of hyperbolars and the lower-hybrid cut-off layer as an ellipse near the plasma edge. 

Choosing the unit vectors in the orthorgonal coordinate system as 

	

IN7r 	
(2.142) 

lb 

	

2 = b x b, , 	 (2.143) 

:53  = b , 	 (2.144) 

where b = P0/11301, then the wave equation in helical coordinates, 

—VxVxf +4,K • 	 (2.145) 
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can be obtained as in Ref. [39]. 

In this code, warm plasma effects are included in K according to the scheme 

of Ref. [40]. This is the so-called "reduced-order" scheme in which the ion Bernstein 

mode is discarded so that the order of the whole equation is reduced from fourth 

order to second order. It should be noted that the effect of the IBIV on the energy 

balance exists in the kinetic flux term. K is expanded to second order in the Larmor 

radius, 

K = €(°) ilc 1 €(1)  — kl€ (2)  , 

where EP) is the cold plasma dielectric tensor which can be expressed as 

€( 0 )  = 	_ 	0. ( 0 ) , 
Eo w 	8  

(2. 14 6) 

(2.147) 

and € (1 ) and E 2  ) are the first and second-order finite Lamor radius corrections which 

can be expressed as 

E( 1,2 )  = 	E 0. (8 1,2 ) , 	 (2.148) 
Eow 

and the exact form of the warm plasma conductivity tensor, cr, is given in Ref. [41]. 

In this code it is assumed that E li  = 0 (zero electron mass). Figure 2.9 shows the 

warm plasma dispersion relation in ATF, calculated using the parameters in Table 2.1 

In this figure, the RF frequency was reduced to show the hybrid resonance along the 

same chord as the fundamental minority resonance layer. Double resonance layers 

and cut-off layer are shown on both sides of the saddle point along with hybrid 

resonance and cut-off pairs for the ion Bernstein wave roots. 

For the recessed box type antenna used for the ATF fast wave antenna, the 

image currents flow in both side walls with r phase difference from the strap current. 

To include the effect of this current, a modification was made to the code which 

includes a multistrap configuration. The detailed equations and analysis are given in 

Appendix A and in Ref. [42]. 
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Figure 2.9: Warm Plasma Dispersion Relation in ATF Using Parameters from Ta-

ble 2.1 

The power absorption calculation is performed using the Poynting theorem: 

1 	— 	— 	
(2.149) —

2 
e 	• 	= — — e 	• ext V • { Re(E' X El + 1  R 	Ei 	2 R {E- • J 

2/4 

where J. is the plasma current and fez , is the antenna current. The first term in the 

LHS is the Poynting flux, Sp , the second term is the sum of the power dissipated to 

the plasma, Es  P,, and the divergence of the kinetic flux of the wave, V • Q, carried 

by particle's thermal motion. The mode conversion process is included in the kinetic 

flux term. Then Eq.(2.149) can be rewritten as 

v•(§,+Q)+EP. = — 2Re {f -  • lext} 

When the local energy deposition rate is expressed as 

= 2 
—1  Re(f-  • /8 ), 

(2.150) 

(2.151) 
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Table 2.1: ATF Parameters for Simulation of D(OI) Regime 

Major radius 	 m 	2.1 

Minor radius 	 m 	0.3 

Magnetic field on axis 	T 	0.95 

Central electron density -3 3 x 10 19 

 Electron temperature at axis keV 1 

Ion temperature at axis 	keV 0.2 

Antenna Current 	 A 	300 

ICRF wave freq. 	 MHz 13.0 

it automatically includes the V • Q term, which is the kinetic flux. Without an 

accurate definition of Q, it is impossible to calculate the power partitioning. In this 

version of the code, no resolution of the absorbed power to the various plasma species 

was attempted. 

The total loading impedance is calculated as 

	

2Piot 	4 7r. 
R(w) = —171T  — 1112 He 217:  F (k 

where Pab z (kz , 	f r dr f deli (r , 0). 

(2.152) 

In this code the 3-D power absorption by summing contributions from all kz  

values. The helical geometry results in an asymmetric power absorption for k z  = 0, 

and the image currents suppressed the low-k =  modes. More detailed simulation of 

the ATF ICRH experiments was performed and is presented in Chapter V. 
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ICRH Experiments 

Since ICRH experiments were first performed in the late 1950s, many exper-

iments have been attempted with different schemes, powers, and goals on various 

devices. In this chapter, these experiments and their results are surveyed and sum-

marized. 

Early Experiments 

Most of the early ICRH experiments were performed in Princeton on the B-65, 

B-66, and Model-C stellarators. In 1957, Stix [7] demonstrated the existence of the 

natural mode of oscillation of a plasma at a frequency just below the ion cyclotron 

frequency, and the first ICRH coupling experiment was performed on the B-65 race 

track stellarator in 1958 [43,44]. It is worthwhile to look at this first experiment. 

The device was in the shape of a race track in which toroidal magnetic fields 

up to 20 kG could be produced. It was also equipped with a divertor and with 

helical windings to give a rotational transform to the confining magnetic field. A 

large transformer was used to induce an ohmic current. 

The experimental procedure was as follows. After the initial ohmic heating 

phase, the resonance heating was turned on for 2 ms. The inductance of the heating 

coil was made resonant with capacitors, and measurements were made of the input 

voltage, the input current, and the phase angle. 

Although the major ion species was deuterium, it was clear that there was a 

hydrogen minority in this plasma because of the double loading observed. There was 

a double peak in the deuterium resonance region. The second peak was interpreted 

as the generation of an ion cyclotron wave. This correlated with the Do and C/// 

line spectrum curves very well. But the neutron counting rate was sharply peaked at 
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Figure 2.10: A "magnetic beach" analogy [44] 

the deuterium resonance. It seems probable that these neutrons came from deuterons 

which were in the low density regions outside of the main discharge column and which 

were accelerated to high velocities by the cyclotron resonance process. The main 

result of this first ICRH experiment was that both the neutrons and the generation 

of ion cyclotron waves indicated that some of the transverse electric field penetrated 

into the plasma. 

The wave mode used in this RF experiment was the ion cyclotron wave (slow 

wave) in the "magnetic beach" configuration. The term "beach" comes from the 

analogy with ocean waves which are moving in toward the shore and, because the 

water is getting shallower and shallower, the wavelength becomes shorter and shorter 

as shown in Fig. 2.10. Finally, in the shallow water the waves are unable to propagate 

and the wave energy is transformed into heat. The mode used (the slow wave) is left-

hand circularly polarized in the same sense as the ion motion and gives good ion 

heating under the experimental conditions of devices during this period. 

There were several other important effects observed which affected later experi- 
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meats. First, wave energy was absorbed at the cyclotron frequency of each ion species 

if two or more ion species existed in the plasma [43]. This phenomena contributed 

to uniform heating. Second, in later experiments [45] harmonic ion cyclotron wave 

propagation and absorption were observed and attributed to electron Landau damp-

ing of the small but finite parallel electric field associated with the slow wave branch. 

Third, the fast wave mode was observed propagating for frequencies just above the 

ion cyclotron frequency under certain experimental conditions [45]. Fourth, strong 

electrostatic loading of the antenna occurred which led to poor core heating and ap-

parent surface power deposition. Finally, very energetic ions were observed and it was 

found that this limited the RF power which could be applied because of high radiation 

and neutron emission [46,47]. Fast wave characteristics and appropriate experimental 

condition for this wave were studied and also hot plasma effects and other damping 

mechanisms like transit-time magnetic pumping (TTMP) were actively studied in 

the late 1960's. 

Tokamak Experiments 

The tokamak concept was introduced [48] to the western world and actively 

studied in the late 1960s, and several small tokamaks were built in the early 1970s. Its 

different magnetic field configuration made it difficult to apply the slow wave scheme 

to the tokamak. Another branch, the fast wave, has the apparent disadvantage that 

the electric field is right-hand circularly polarized in the same direction as the electron 

motion and gives poor ion heating at the ion cyclotron resonance. However, in 1971, 

Adam and Samain [49] first reported a second harmonic heating scheme in which the 

poor ion heating capability of the fast wave would be enhanced at the second and 

higher harmonics due to thermal effects. 

Another important observation was that the fast wave cavity resonance and 

toroidal eigenmodes exist. These were first observed in the TM-1-Vch [51] and TO-1 
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[52] in 1971. Cavity eigenmodes are global modes, which provide rather uniform 

power deposition around the torus. This eigenmode generation enhances antenna 

loading, so more power can be transferred to the plasma. Unfortunately, for a fixed 

plasma density and magnetic field, there exists an enormous set of eigenmodes and as 

Stix [13] pointed out, simultaneous excitation of multiple eigenmodes is undesirable 

because it leads to a very strong field in the local vicinity of the antenna which may 

cause very deleterious edge heating. Eigenmode studies were strongly pursued during 

the 1970s [53,54,55]. 

In 1974, Adam [53] tried to prove his second harmonic heating scheme and 

examine eigenmode characteristics in the ST tokamak. To investigate cavity modes, 

22 RF probes were placed around the machine. It was found that toroidal eigenmodes 

depend on density variation. Plasma heating was attempted with Prf  70KW at 

the fundamental and second harmonic ion cyclotron frequency. 

The main results of this pioneering tokamak ICRH experiment were that sec-

ond harmonic heating was more efficient than fundamental cyclotron heating and in 

both cases a high energy ion tail was formed. Their eigenmode study proved that 

eigenmodes led to large peaks in the loading just as the theory predicted. The ion 

temperature almost doubled in second harmonic heating but saturated due to loss 

of confinement of the high energy ion tail. This heating scheme was tested in other 

machines throughout the 70s and 80s, but the confinement of high energy ions was a 

major problem. 

In 1976, TFR experiment [55,56,57] showed that the damping rate was stronger 

than predicted by theory. They found a large increase in the diamagnetic signal 

which had to be attributed to the presence of a minority of H in the D plasma and 

to damping effects associated with the presence of the w = OH layer. They proposed 

that the existence of another singular layer (later it was identified as the ion-ion 

hybrid resonance) might play a significant role in this case. Thereafter, this hybrid 

55 



Table 2.2: Result in TFR600 for the Effect of 77 on Heating Features [59] 

Heating Power and Thermal Energy for High ?I  Plasma, without and with RF 

Without RF 	With RF 

Ohmic power 	 kW 	420 	 335 

RF power 	 kW 	 440 

Electron thermal energy 	kJ 	6.3 	 7.8 

Ion thermal energy 	 kJ 	5.4 	 7.3 

(c/117/dt) 0 	 W.cm-  3 	 1.4 

Heating Power and Thermal Energy for Low 77 Plasma, without and with RF 

Without RF 	With RF 

Ohmic power 	 kW 	411 	 510 

RF power 	 kW 	 420 

Electron thermal energy 	kJ 	6.6 	 7.3 

Ion thermal energy 	 kJ 	5.4 	 7.1 

(diVidt) 0 	 W.cm' 	- 	 1.0 

resonance concept accompanied with mode conversion theory was actively examined 

both theoretically and experimentally. 

In the minority heating regime, 77, the minority concentration is a very impor-

tant parameter and its effect on heating needed to be determined. The TFR600 

experiment [59] in 1980 was dedicated to this subject. The results are listed in Ta-

ble 2.2. Their observations were that at 71 = 20%, (they called this regime the mode 

conversion regime because mode conversion is dominant in this case), power coupling 

to the plasma was linear with launched power and never saturated. Both the ion 

and electron temperature increased, while at '77ti 2 ti 3%, (they called this regime 

the minority regime because minority resonance heating is dominant in this case), 

ion heating was observed but electron heating was less efficient than that of the first 
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case and an unconfinable high energy ion tail was produced. All subsequent TFR 

experiments [79,60] were performed in the mode conversion regime. 

The principal conclusions in TFR Experiments were that 60% of the RF power 

was delivered to the plasma, 20% was lost in the antenna and transmission line, 

and the other 20% was lost in various mechanisms occurring near the wall (which 

induced an impurity generation problem). Another problem was the degradation of 

the energy confinement by metal impurities. In this heating regime, as expected from 

the theory, the main fraction of the RF power transmitted from the high field side 

of the torus was absorbed by electrons, leading to a fast initial heating rate of that 

component. In experiments with a metallic limiter, where an important fraction of 

the power absorbed in the center of the plasma was radiated by high Z impurities, 

the large heating rate of ions observed was attributed to collisional equipartition with 

metallic ions accelerated at their second harmonic cyclotron frequency. 

While TFR experiments were performed in the mode conversion regime, PLT 

investigated the minority regime. First the effect of different ion species on loading 

was examined in a 1980 experiment [61]. They found that in the II minority regime, 

the proton and deuterium distributions were Maxwellian and significant electron 

heating was observed, while in the 'lle minority regime, the efficiency of deuterium 

heating was increased and there was no significant electron heating. Thus they used 

'Ile as the minority species for their high power minority heating experiments between 

1982 and 1985 [62,63,78,64]. 

An impressive ion temperature increase was observed and large sawteetli in the 

electron temperature profile were presented. Since the ion temperature rise was very 

large, the PLT group hypothesized that other processes than pure cyclotron damping 

by the minority component played a role in the absorption mechanism in these 'He 

minority heating experiments. They also made several important observations about 

energy loss processes: 1)Even when a metallic limiter was used, power radiation 
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due to the high Z impurities did not increase dramatically as observed in the TFR 

experiments. 2)High energy ion formation were attributed to banana trapped ions 

and in the 'He minority regime the tail energy was much reduced compared to the 

H minority regime. 3)Electron density during RF heating was appreciably increased 

leading to charge exchange loss. 

ICRII experiments in PLT demonstrated the efficiency of the minority heating 

regime, and proved that the 1980 TFR result was machine dependent: high-energy 

ion confinement in PLT was believed to be better than that in TFR. 

Impurity production and other edge phenomena during ICRII have become con-

cerns for efficient RF heating [65,66,67,68,69,70]. The wave spectrum launched from 

the antenna was believed to affect coupling, and in 1983 antenna phasing experiments 

were begun to examine the effect of the wave spectrum on heating, coupling and edge 

conditions. Impurity reduction by optimizing the antenna phasing was first observed 

in the JFT-2M tokamak [80]. They proved that the reduction in impurity emissions 

and radiation loss were closely correlated with the amount of power radiated from 

the antennas with a parallel wave number near = 0. They thought that coaxial 

modes propagating in the vacuum region between the plasma and vessel wall might 

be increasing the impurity production during ICRII. This experiment was tried in 

several other tokamaks and gave similar results [70,72]. 

General characteristics of plasma-material interaction (PMI) during ICRH are 

listed in Table 2.3. 

Recent ICRH  Experiments  

Two major problems which still remain to be solved for ICRII are confinement 

degradation during RF heating and strong edge/RF interaction. These may be con-

sidered as a single problem because the strong edge/RF interaction is presumed to 
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Table 2.3: General Changes in Edge Plasmas during ICRH 

Line averaged density 	 Up 

Total radiation 	 Up (mostly C and 0) 

Edge density 	 Up 

Scrape-off-layer (SQL) length 	 Up 

Edge electron temperature 	 Up 

Dependence of edge effects on antenna phase yes 

Particle acceleration in edge region 	 yes 

be the major reason for confinement degradation. Some possible mechanisms for 

edge heating/ionization [73] are coupling to inaccessible modes (e.g., coaxial mode 

or electrostatic mode), near-field particle acceleration (e.g., resonant interaction or 

strong field effect), nonlinear collective effects (e.g., parametric decay or ponderomo-

tive effect), and physical sputtering, arcing, or evaporation. In the ASDEX ICRH 

experiments [74], improved RF launching conditions were found when the wall was 

carbonized and ICRH was combined with NBI. Also a clear anticorrelation between 

impurity production and wave absorption was observed, with inefficient absorption 

leading to increased impurity production. The JET experiment [75] on impurity 

production also revealed that carbonization reduced impurity production. 

Extensive studies of plasma edge conditions during ICRH were performed in 

JET with Langmuir probes. In these experiments [76,77] the following observations 

were made: The electron temperature in the edge region increased during ICRII, 

particle fluxes increased as a result of ICRII, the source of increased particle fluxes 

was in the edge rather than in the core plasma, plasma-sheath rectification took 

place, and the edge temperature rise was probably a result of direct heating of the 

edge by the RF. Very active study of this subject is still going on both theoretically 

and experimentally. 
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The discovery of a high-confinement regime, the so-called H-mode, which com-

bines the virtues of good global and central confinement even with auxiliary heating 

was of paramount importance for fusion research. In 1986, the ASDEX team [81] 

investigated the H-mode in ICRH plasmas with and without additional NBI. For the 

first time, the H-mode was realized with ICRII alone using H minority in a deuterium 

plasma. With ICRH, usually the impurity situation is unfavorable for transition into 

the H-mode. The ICRH-induced impurity release reduces the energy flux from the 

center to the plasma periphery because of increased central iron radiation. Strong 

recycling and an enhanced low-Z impurity level may additionally cool the plasma 

boundary thus hampering the H-mode transition which appears to be strongly linked 

to high edge electron temperature. This deleterious influence of metal impurity ra-

diation has been overcome either by increasing the power flow through additional 

NBI heating or by carbonizing the torus walls. Typical characteristics of the H-mode 

transition are density increases and the presence of the high frequency edge localized 

mode (ELM). It should be noted that ICRII-induced ion tails perpendicular to the 

toroidal field have shown no significant negative influence on global confinement. 

The JET experiment is representative of the current status of ICRH heating 

experiments. JET has eight antennas in operation. Each antenna can launch up to 

4 MW and has a quadrupole conductor and an actively cooled Faraday shield. The 

shield blades are tilted to line up with the equilibrium magnetic field, thereby shorting 

out the parallel electric field. The effect of antenna phasing on edge conditions 

was investigated. This experiment was performed with three antennas with various 

poloidal antenna current configurations. The quadrupole configuration gave the most 

favorable results for coupling and edge/RF interaction. 

In JET, it is difficult to couple large amounts of RF energy when the plasma 

current is low. The plasma disrupts at Prf = 1 MW. Combining NBI with ICRII 

produced favorable heating results in JET. The NBI increased the antenna loading. 
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There exists an interesting regime called "Monster sawtooth", in which the internal 

relaxations (sawteeth) stop and the plasma is remarkably free from MHD activity for 

about one second. The central electron temperature more than doubles and a peak 

temperature of 7.4 KeV has been obtained with 10 MW of additional power. They 

also combined ICRH with pellet injection which again gave improved confinement. 

Finally, in 1989, the JET team [82] achieved QD-D 0.8 with 16 MW ICRH NBI 

and pellet injection. Many improvements in heating came from experiments with 

pellet injection and Be-limiter experiments. At present ICRH experiments have just 

begun in other large tokamaks such as TFTR, JT-60, and DIII-D with higher power 

and more complicated antenna systems. 

The Compact Ignition Tokamak(CIT) is designed to have a high power ICRII 

system without an NBI system. A waveguide launcher is also being developed and 

tested. 

The next decade will be dedicated to testing high power RF heating on reactor-

sized devices. Optimized antenna phasing and favorable wall conditioning will be 

used to avoid deleterious impurity and radiation problems in attempts to realize D-T 

ignition. 

ICRH in Helical Devices 

Even though ICRH experiments were first performed in helical devices (the B-

65 stellarator, the Model-C stellarator), few helical devices were operated after the 

tokamak concept was introduced in the late 1960s. The series of Uragan torsatrons 

and the L-2 stellarator in USSR, the series of Heliotrons in Japan, and the series of 

Wendelstein stellarators in Germany were important ones. There were also several 

small devices in England, the United States, and Australia. 

In the 1980s, the study of helical devices was revisited in search of a steady-state 
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operational concept. Several medium-size machines were constructed and operated. 

The Heliotron-E, WVII-AS and ATF were designed, and built in this period. 

ICRH experiments were conducted on stellarators in the USSR and Japan both 

for heating and plasma production. In the Uragan-3 torsatron[84], ICRF was used 

for plasma initiation and provided ne  ti  2 — 4 x 10 12  cm -3 , Ti  --, 1 keV and Te  

300 eV plasma for 50 msec with 400 kW RF power. ICRF heating was tested on 

this machine and previous machines in this series and anomalously fast ion heating 

and loss phenomena were observed. It was thought that this was due to non-linear 

coupling of RF power and was correlated with the existence of the parametric decay 

instability. 

In the L-2 stellarator[85], ICRII was used on ohmic plasmas at the fundamental 

cyclotron resonance frequency. Although this was an unusual scenario, they observed 

good ion heating with this scheme. Based on this result, they theorized the enhance-

ment of the cyclotron damping in the helical geometry described in the previous 

section. In the H-minority regime, they obtained a marginal increase in ion temper-

ature of 30 to 50 eV, high toroidal damping and low loading impedance (less than 

0.252) with 100 to 150 kW rf power. No significant radiation nor impurity influx was 

observed. 

In \Vendelstein VII-A[86], two types of antenna were used: a narrow loop an-

tenna and a broad antenna. Due to large increases of the radiation loss, ICRII heating 

efficiency was very low. In the minority regime with the broad antenna, some increase 

in the stored energy was observed. They suffered with very low loading, less than 

0.1E2 of plasma loading compared to the 0.30 of vacuum loading, resulting in large 

ohmic loss to the antenna structure and transmission line. However, it is interesting 

to note that the broad antenna worked better than the conventinal loop antenna, due 

to the fact that it launched a narrow band of the 19 1  spectrum. Most of these results 

were in good agreement with full-wave numerical calculations. 
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The most successful ICRH experiments were done in Heliotron-E[87,88]. Since 

its size and plasma parameters are comparable to the ATF, the results of this ma-

chine is presented in some detail. They used a complicated high-field-side-launch 

antenna. A coupling study was done in the predecessor, Heliotron-DR, with different 

antenna types and configurations. The two main configurations were the low-field-

side launch and the high-field-side launch. Loading was better with high-field-side 

launch and it showed a strong magnetic field dependence, such that loading was 

peaked for a magnetic configuration with the resonance layer located on axis. With 

low-field-side launch, peak loading always occurred for higher field with the resonance 

layer slightly outside the magnetic axis. The high-field-side-launch configuration was 

chosen for Heliotron-E and yielded good loading results, although part of antenna 

structure was damaged by direct contact with the plasma. The initial ICRH re-

sults were promising. Substantial bulk ion and electron heating were obtained, but 

a significant increase in radiation was a concern for long pulse operations. In the 

second stage, they upgraded the RF power source and antenna to deliver up to 1.5 

111W to the plasma. They also attempted ion Bernstein wave heating (IBWII) and 

slow wave (ion cyclotron wave) heating, which showed good heating results. With 

700 kW of RF power, they observed a 400 eV increase in the ion temperature. Very 

good correlation with minority concentration was observed, which demonstrated that 

higher RF power absorption by the minority ions occurred when the hybrid resonance 

layer was on axis. Radiated power and impurity influx still increased with time and 

suppressed any electron temperature increase. The ion heating efficiency was found 

to be around 1-2 eV•10 19 m-3 /kW which is comparable to similar sized tokamaks. 

Numerical simulation was well matched with the experiment. 

The ATF ICRH experiments should provide useful data on the other configura-

tion — low-field-side launch with movable antenna. Loading impedances, the effect 

of minority concentration, frequency, and ion confinement are important issues to 
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be pursued and addressed. In the work described in this thesis, those issues were 

pursued and the experimental observations were analyzed via numerical simulations. 

These are the main contents of Chapters IV and V. 
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CHAPTER III 

EXPERIMENTAL APPARATUS 

In this chapter, the Advanced Toroidal Facility (ATF) and its operating pa-

rameters will be presented with brief description of the available diagnostics for ICRH 

studies. The antenna and RF systems are also described. More lengthy explanation 

will be given for the Langmuir probe and RF probes, which were specially fabricated 

for this study. Finally the ATF data aquisition system will be outlined. 

The Advanced Toroidal Facility 

The ATF is a torsatron type stellarator with I= 2 and m = 12, which means 

that there are two sets of helical field coils with 12 field-periods. Several references[1, 

2,3,4,5] have been published reporting the features of ATF and some initial results of 

operations. Here, some of the essential features and goals of ATF are described along 

with physical machine parameters. Table 3.1 shows the major physical dimensions 

of ATF and the parameters of its magnetic configuration. 

A currentless plasma was generated by two, 53 GHz, 200 kW gyrotrons l . 

Most of the current-driven instabilities can be avoided in this scheme. Three pairs 

'Some amount of current still exist. 
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Table 3.1: Parameters of ATF Vacuum Vessel and Magnetic Configuration 

Major Radius 	m 	2.1 

Average Plasma Radius 	m 	0.3 

Average HF Coil Radius 	m 	0.46 

Plasma Volume 	m3 	3.7 

Magnetic Field on Axis 	T 0.95 or 1.9 

Number of IIF Coils 	 2 

Number of Toroidal Periods 	 12 

Plasma Aspect Ratio 	 7 

Edge Rotational Transform 	 0.95 

Central Rotational Transform 	 0.35 

of vertical-field (VF) coils provide the opportunity to study various magnetic config-

urations for optimization. This feature is closely related to the potential of high-0 

operation with an optimized magnetic configuration and to operation in the second 

stability regime. Initial results on this issue were encouraging[5,6]. 

A top view of the ATF showing the locations of the major diagnostics is 

shown in Fig. 3.1. The fast wave antenna was located at the TN-5 port. Two RF 

probes and a Langmuir probe were located at the same port. Another RF probe was 

placed on Bottom-4 port. The scannable neutral particle analyzer (NPA) was at the 

TN-1 port and measured the minority ion tail and ion distribution. Spectrometers 

were at the adjacent port, TN-23, and consisted of a grazing incidence spectrometer, 

a vacuum Czerny-Turner spectrometer and a visible spectrometer. Two pumped 

limiters were located at Top-14 and Bottom-16 and the ECE system at Top-6. The 

Thomson scattering system was located at Top and Bottom-8 and TN-9 ports and a 

2 mm interferometer was located at TN-21. Two ECH inputs came from Top-10 and 

73 



ECE 

Thomson Scattering System 

ECH Waveguide 

Pellet Injector 

111 	

ICRF Antenna 
Edge Probes 

f 	•-... 	ICRF Antenna (planned) 

Neutral Particle Analyzer 

Gas-Feed Valve 
Limite 

-.,/ Spectroscopy 
.1 j  

Impurity Monitor 

2mm Interferometer 
HIBP 

Neutral Beam Injector 

Figure 3.1: Top View of the ATF with Diagnostics 

12 ports and two gas-puff valves were located in IN-1 and IN-17. 

The optimized helical field coil configuration (1 = 2, m = 12) gives a moderate 

rotational transform (i./27-1,. =0  = 0.35, t/27r1„ a  = 0.95), shear 	3), and aspect ratio 

(R/a, 	7). This configuration was optimized for high-/3 operation in the second 

stability regime which is one of the original goals of the ATF project. 

Figure 3.2 shows the ATF magnetic coil sets consisting of two sets of helical 

coils, and three pairs of poloidal field coils referred to as inner, outer, and mid-

vertical field coils. With these coil sets, wide variations from the standard magnetic 

configuration can be obtained which provides for great flexibility in the study of 

various magnetic configurations. 

The IBI contours are rather complicated because of the two sets of helical 

windings as shown in Fig. 2.6. 

The IBI contours are important to ICRH experiments because they determine 
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Figure 3.2: The ATF Coil Sets 

the location of wave resonance layers'. The profound difference from tokamaks is 

that the IBI contours are quadrupolar and twisted. This makes the wave-particle 

interaction a three dimensional problem and difficult to simulate when compared 

with calculations for tokamak geometry. 

The ATF has run with magnetic fields of 0.95 T and 1.9 T at the magnetic 

axis. In both cases, the 1BI contours are very similar. 

2 1n a real situation, the actual location of the resonance layer also depends on particle velocities, 

the wave propagation angle, and the minority concentration. 
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Figure 3.3: The ATF Fast Wave ICRH Antenna 

The Fast Wave Antenna 

The ATF ICRF antenna is a resonant double loop (RDL) type antenna which 

has two grounded capacitors. The ATF antenna' is shown in Fig. 3.3. Compared 

to other types of antennas such as a single loop antenna, the RDL configuration 

has advantageous electrical properties. Since the RDL antenna is matched at the 

feed point, it results in low voltages and currents in the feedline. The antenna is 

tunable over a wide frequency range, too. For the ATF antenna, this range extends 

from several MHz to mid-thirty MHz. In addition to these advantages, there were no 

external tuning loops or tuning elements, which simplified the system and significantly 

redUced the overall cost. But there were mechanical disadvantages to be overcome 

3The author is grateful to R. H. Goulding, F. W. Baity, T. D. Shepard and D. 1. Hoffman 

for providing data about antenna measurements and for enlightening discussions about antenna 

modeling. 
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such as vacuum-side complexity and no access to the tuning capacitors while the 

system is under vacuum. 

Mechanical Design 

The ATF fast-wave antenna was designed to launch the fast wave at power 

levels up to 1 \V, to be radially movable with a range of 15 cm, and to have no 

external cooling system for short pulse operations. 

The current strap was made from copper and most of the other structures were 

fabricated from stainless steel except the Faraday shield tubes, which were made from 

Inconel 600 and brazed to graphite tile. The current strap was 10.8 cm wide and 43.3 

cm in total length. The total poloidal width was 122 degrees in angle with a radius 

of 20.3 cm. Two legs which stretched from either end of the strap were connected 

to the capacitor housing. The RF power was fed to the top end of the strap by a 

50 12, transmission line with copper-inner-conductor, stainless-steel-outer-conductor, 

which was connected to a 50 f2 vacuum feedthrough located about 2 m from the 

antenna. Figure 3.4 is a side view of the antenna in which a cross section of the ATF 

vacuum vessel, relative antenna location, bellows system and vacuum feedthrough 

are shown. The current strap was tilted by 10 degrees to the vertical alignment to 

optimize the polarization of the launched wave by minimizing E 11  components. The 

minimum distance between the current strap and the back plane was about 12.3 cm 

and the distance of each side wall from the center was 10.5 cm. 

There were 45 Faraday shield tubes arranged in two tiers. The front rods 

were 0.95 cm in diameter, copper plated Inconel tubes with front half sections brazed 

to graphite. The rear rods were 1.27 cm in diameter, fabricated from stainless steel 

with rear half sections which were thick copper plated. These elements were welded 

to the stainless-steel Faraday-shield frame, which also consisted of a side wall and 

strap housing. The inside of the Faraday shield frame was copper plated. Graphite 
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Figure 3.4: Diagram of the ATF Antenna System Installation 

bumper tiles were also provided to protect the welds and the side walls. 

The radial translation of the antenna was provided by an electric motor. 

Rotation was changed to translation by a ball screw and thrust bearing unit. A 

bellows was provided between the port cover section and the moving carriage section. 

Electrical Properties 

The electrical behavior of the antenna was modeled in two different ways[7]. 

The simple model is a lumped-element model, as shown in Fig. 3.5.(a). To take 

the finite wavelength effect into account, a distributed model was also considered as 

shown in Fig. 3.5.(b). 

In a lumped-element model, an electrical circuit is represented by a few prop-

erly chosen lumped coupling elements, in which the distributed effects of the electric 

or magnetic fields are neglected. 
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Figure 3.5: The Electrical Circuit Model of the ATF Antenna (a) Lumped-Element 

Model (b) Transmission Line Model 
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Table 3.2: Parameters for Lumped Elements in the Antenna Modelling Calculation 

for C1=1413 pF, C2=1620 pF, and 1=9.3 MHz 

	

L1 nH 	30 

	

Lane nil 	47 

	

Li" nH 	75 

LC1 nH 68.9 

LC2 nH 72.1 

Rant 
	11 	0.23 

The capacitors used for the ATF antenna were the Jennings CWV2-1600, 

which have a capacitance range of 112 to 1620 pF, a peak working voltage rating 

of 24 kV, and a maximum operating current which depends on frequency, but is 

650A in the ATF ICRH operational regime for which the limitation is due to 

bellows heating. The calculations took into account the series inductance of the 

capacitor, which scales roughly linearly with capacitance from 47.7 n11 at 112 pF to 

72.1 nit at 1620 pF. 

The plasma loading was assumed to be evenly distributed along the current 

strap in the distributed model and to be a resistance in the lumped-element model. 

Table 3.2 shows the parameters used in the following calculations. 

In Fig. 3.5, L1 denoted lead inductance, while the lead resistance was ne-

glected. Vf represented the voltage at the feed point and the series inductances of 

the capacitor, L c1  and Lc2 were included. 

There are two loops with loop currents / 1 , and .12. The governing equations 

for this circuit are 

1,7),  = IiZ1, 
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/1 {Rant Rplasma jEW(Lant + LC1 Lplasma) wc 	1I 	( 3 . 1 ) 

l/f = I2 Z2 

I2 	g  j Lieg  + L c 2 ) 	 w C 2 1.  
(3.2) 

1 1:f  is determined from 	N/PZA , where P is the power input to the antenna and 

ZA is the impedance looking into the antenna at the feed point, which is denoted as 

Zi Z2 

-11 

(Zi + Z2 ) 

12 	
Z2 

Z2(Z1 + Z2) 

 

	

PZi 	
(3.5) 

To match the antenna input impedance to the transmission line, which is assumed 

to be 5011, 

	

Zit  = ZA jwL1 = 	5011. 	 (3.6) 

Therefore, 

Re(Zi,) = 5012, 

	

Im(Zin ) = 0. 	 (3.7) 

Equation (3.7) is a system of two nonlinear, algebraic equations for the two 

unknown capacitances, C1 and C2. A "root-finder" routine was used to obtain the 

capacitances at the matching condition given an initial guess. 

When the frequency is high and/or the dimension of the system is large 

enough, the distributed effects become important. In Fig. 3.5.(b), it was assumed 

that the plasma loading was evenly distributed along the current strap. 

ZA = 
+ Z2 

Now, the current at each loop is obtained by 

Vf  
Z1 ' 

P Z2 

(3.3) 

(3.4) 
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&ant 

ZO leg 

(3.14) 

(3.15) 

and the input impedance at z = —1 is denoted by 

(ZL cosh -y/ + Z0  sinh -y/1 
= Z0  Il 

Z0  cosh -y/ 	sinh-y/i 
(3.16) 

For a lossy-transmission line[7], 

yl = 

yz = 

(3.8) 

(3.9) 

where, 

Rant + Rplastna  jW(Lant 	Lplasma )3 

.7wWCantl 

Z2 = RI" jc.oL ieg , 

Y2  = jwCieg . 

Here y  is the propagation constant, and all parameters have units per length. 

Then, the characteristic impedances can be denoted by 

Replacing ZL with Zcl and Zc2, where 

ZCI = 

Zcz = 

j (w.Lci  

j (W LC2 — 

1  wC 1) 
1 

wC2 / 

(3.17) 

(3.18) 

then Zi  for each leg can be calculated. 

Since the first leg consists of the current strap and a leg, 

Zit Zielrap 	 (3.19) 
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Zi2 = Ziieg2 

[Zc2 cosh -y2 /leg  + Zoieg  sinh 72 / leg  
Zokg  Zo i eg  cosh -y2 /l eg 	ZC2 sinh -y2/ie g  

(3.22) 

where, 

Zilegt 

Zcl  cosh 72 / 1 , 6 	Zoicg  sinh -y2 /kg  
Zokg   Zoieg  cosh -y 2 /leg 	ZG. 1  sinh 72lie g  

cosh yllstrep 	Zoant  sinh 7 /8trap 
ZOant Zo,„„ t  cosh 	211„, sinh -v 1 ,1 strap 

(3.20) 

 

Zi strap (3.21) 

   

Since the second leg consists of a leg only, 

Finally, the input impedance can be expressd as 

ZjiZi2 	, 
ZA 	 Ldlersd• (3.23) 

Using the "root-finder" routine, the values of Cl and C2 can be determined at the 

matching condition. 

Unlikely the lumped-element model, the voltage and current can be obtained 

anywhere along the line in this model. Generally, they are represented as 

V(z) = Vi  cosh -yz — /i Zo  sinh -yz, 	 (3.24) 

/(z) = h cosh -yz — Zo — sinh-yz, 	 (3.25) 

where the subscript i denotes an input quantity and Z o  is the characteristic impedance 

of the line. 

The tuning range and power handling capability were examined using the 

above two models. Figure 3.6 shows the matching capacitances as a function of 

frequencies for the two capacitors in a lumped-element model as compared with 

the distributed model without plasma loading, R pli,sm„ = Lpk, sm,, = 0. Figure 3.7 

shows the same case with plasma loading (111). As the plasma loading increases, the 

capacitance of the capacitor 1, the current-strap-side, increases, while the capacitance 

Limil

ow 

of the capacitor 2 decreases as shown in Fig. 3.8. 
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5 

as a Function of 

The power handling capability of the RDL type antenna is limited by the 

voltage and current at the capacitor position, where the voltage is maximum. Since 

the lumped-element model did not predict voltage and current along the line, the 

distributed model was used to see how the voltage and current distribution changes 

as the loading changes. Figure 3.9 shows the results which are expected. The higher 

the loading, the better the power handling capability of the antenna from an electrical 

point of view. The ATF antenna can launch ti 60-80 kW of power in vacuum' 

(Rplasma = 0). To launch 300 kW of power into the plasma, at least ti 1S2 loading 

was needed as shown in Fig. 3.9.(c). Since the loading increases linearly with density, 

ATF target plasmas produced by ECH cannot provide enough loading for future 

high-power experiments, due to the ECH density cutoff. 

The distributed model was used to determine the sensitivity of the VSWR, 

4 During antenna conditioning, 100 kW power was usually used with a pulsed mode. The current 

limitation (650 A) at the capacitor position was calculated for cw operation. 
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defined as 
V 

VSWR = 	max  
'n 

1 +1P1  
1 — Ipl' 

(3.26) 

where p is the reflection coefficient, to the loading and the frequency at a fixed position 

of the capacitors. As shown in Fig. 3.10, the VSWR is sensitive to the frequency. 

If the VSWR is to be lower than 2, the ATF antenna has a very narrow band of 

frequency for a reasonable matching condition. 

Loading Calculations 

In experiments, for loading calculation the forward and reflected power were 

measured with directional couplers placed at the generator-side of the dc-break, were 

measured. In the lumped-element model, the impedance was calculated at the feed 

point as a function of the plasma loading. From the coupler, the transmission line 

model was used to calculate the impedance at the feed point from the measured value 

of the reflection coefficient. By matching these two values at the feed point, the real 
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and imaginary parts of the plasma loading were obtained. In this case it was assumed 

that the plasma loading affected only the parameters of the current strap, and not 

those of the legs. This is the simplest way to determine the plasma loading from the 

experimental data because the loading is represented explicitly as a function of the 

measured reflection coefficient. 

In the distributed model, the loading is expressed implicitly as a function 

of the measured reflection coefficient in nonlinear, algebraic equations. When using 

"root-finder" to solve it, however, it turned out to be very sensitive to the initial 

value and it was not possible to follow rapidly fluctuating experimental values. 

Another concern in determination of the plasma loading is calibration. For 

ATF, the current monitor placed near the current strap was also used to measure the 

antenna current. The loading calculated from this signal was similar to the loading 

calculated by a lumped-element model, but there was an "offset" between those two 

values as shown in Fig. 3.11. In Fig. 3.11(a), the offset looks like a linear offset 

due to miscalibration. But in Fig. 3.11(b), the offset only occurred in the higher-

VSWR region. Two things that might have caused this problem would be inaccurate 

calibration of the measuring system and using incorrect antenna parameters such as 

electrical length, intrinsic resistance, inductance and physical dimensions. 

Changing the electrical length of the transmission line reduced the offset but 

also reduced the loading and changed the shape. The offset was also dependent 

on the intrinsic resistance and inductance of the current strap and legs. Varying 

these parameters only reduced the offset, but did not change the shape of the signal. 

However varying these parameters changed the measured loading quite substantially. 

A combination of adjustments turned out to be best. Figure 3.11(b) shows a "non-

linear" offset between the two signals as mentioned above. Figure 3.12 shows the 

result of the same shot after modifying the electrical length of the transmission line 

from 3.771 m to 3.4 m and the intrinsic resistance of the antenna from .23 f to .18 
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tion Coefficient and Current Probe Signal. (a) Linear Type (b) Non-Linear Type. 
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Q. The offset disappeared everywhere. 

RF System 

Description of the RF Transmitter 

For ATF ICRH experiments, two transmitters were used. One provided 100 

kW of RF power in the 5 - 30 MHz range, while the other provided 200 kW in the 

5 - 19 MHz range. Except for the output power levels, the transmitters are fairly 

similar.  Each transmitter (AN/FRT-86) consists of an exciter (modulator-synthesizer), 

a series of RF power amplifiers and a water, vapor, and forced air cooler. The exciter 

determined the output frequency, produced the modulation process, and furnished 
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Figure 3.13: Block Diagram of the RF Transmitter, AN/FRT-86 

up to 250 mW of signal to the power amplifier. Then power amplifier provides 200 

kW average RF power to a 50 ft load. Figure 3.13 shows the overall block diagram 

of the transmitter. 

The series of amplifiers consists of two 4CX350A broadband amplifiers oper-

ated with a. nominal load of 200 SZ and two 4CX350A buffer amplifiers in parallel as 

the first tuned stage with a nominal load impedance of 200 IL A 4CW2500A driver 

amplifier feeds the final power amplifier tube, a 4CV250.000A. 

The output tank circuit consists of a conventional 77- — L network which trans-

formed the resonant plate impedance of the tube (5000) to the desired 50 St output. 

A tunable harmonic filter was provided to suppress harmonics at least 80 dB below 

the carrier power. This filter is followed by a fixed tuned VHF filter with a cut-off 

around 36 MHz. Note that harmonic generation of the output could also be con-

trolled by setting a proper load Q for the output tank circuit. The driver tube and 

power tube require forced cooling even at low duty cycle due to the large, continuous 
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filament power being dissipated. The vapor phase cooling was used to cool the an-

ode of the power amplifier tube and the water cooling was used on the driver tube, 

filament of the power tube, coils, filters and capacitors. 

Equipment protection was provided by a crowbar for the final power amplifier 

tube. The crowbar consists of an ignitron tube as a fast timing switch in series with 

a. non-inductive damping resistor connected across the output of the high voltage 

supply. This crowbar circuit could be initiated by short circuits on the supply line 

or arcs within the tube, resulting in fast discharge of the plate power supply for 

the power amplifier tube. Other protection circuits were also furnished to protect 

equipment and personel. 

RF System Operation 

The ATF RF system is outlined in Fig. 3.14. A IIewlett-Packard network 

analyzer (HP8753A) was used to generate a continuous RF signal with the desired 

frequency and the waveform envelope was provided by a Wavetek waveform generator 

(Model 175). These signals were fed to a mixer to modulate the cw signal with the 

waveform envelope and then delivered to the transmitter input terminal. There 

were two directional couplers at the location of the transmitter output to detect 

forward and reflected signal. The reflected signal was also fed back to the mixer/arc 

detector module to initiate the transmitter protection circuit when the reflected power 

exceeded a pre-set level. 

Since there were two transmitters to feed the antenna, a coaxial switch was 

installed to maintain a proper configuration — always one transmitter to a dummy 

load and the other one to the antenna. A power combiner to combine the output 

of both transmitters and provide 300 kW output power was designed and fabricated 

but was not installed for these experiments. A long transmission line linked between 

the transmitter and antenna. Two directional couplers at the antenna side measured 
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Figure 3.14: Diagram of the ATF ICRII System 

forward and reflected power for use in antenna tuning and loading calculations. 

The transmitter had an internal interlock string to assure a safe operational 

state before high RF power was generated. The ATF also had an interlock string 

including the antenna and ATF logic, which had to be satisfied before any RF power 

operation. If both of these internal and external interlock strings were satisfied, the 

system was ready for RF operation by applying an RF drive signal to the transmitter. 
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Edge Probes 

A double-tip Langmuir probe and three magnetic (RF) probes' were installed 

on ATF around the ICRII antenna. The main purpose of the probe measurements 

was to monitor the antenna near-field patterns and the plasma edge conditions during 

ICRF wave heating. 

The RF/edge coupling is a complicated, multi-coupled process which has 

not yet been well addressed. Theoretical efforts[8] have suggested several possible 

mechanisms driving this process. Some of them are the effect of Ell component 

of the antenna fields which should be eliminated by a Faraday shield, non-linear 

coupling (ponderomotive force) in front of the Faraday shield due to the ripple of the 

electric fields, direct edge heating, sheath effect of the Faraday shield or other antenna 

structures, and surface waves, etc.. Experimental approaches[8,9,10] to understand 

these phenomena must be carefully designed and performed. 

By measuring the edge RF field patterns during ICRH and monitoring the 

changes in the edge plasma, especially electron density, temperature and floating 

potential, these data can be correlated with global plasma behavior such as heating, 

impurity generation, radiated power, and particle transport. 

In addition to this, limited fluctuation measurements can he performed with 

these probes in the edge region during ICRH. These measurements can indicate the 

presence of nonlinear phenomena such as RF sheath formation or the parametric 

decay instability, and possibly effects related to the fluctuation-induced transport 

(anomalous transport). 

'The author is grateful to R. H. Goulding for guidance in the probe design and analysis and to 

Gene Purdy and T. Muhammed for fabricating the probes. 
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V p 
Vo 

Figure 3.15: Electrical Circuit Model for the Magnetic Probe 

Here both Langmuir and magnetic probe theory, probe design, and experi-

mental set-up are presented and the experimental results will be described in subse-

quent chapters. 

Theoretical Considerations 

Magnetic (RF) Probe  Magnetic probe measurements exploit the simple principle 

that a changing magnetic field in a closed loop can induce a current. By taking a 

simple model[11,12,13,14], one can simulate these measurements. Figure 3.15 shows 

the equivalent circuit model used in several previous works. Here, Lp  represents 

the self-inductance of the coil, Rp  is the resistance of the coil (which is frequency-

dependent due to the skin-depth effect), Cp  is an effective capacitance representing 

the stray capacitance of the coil and its lead, and RL  is the load resistance. Vp  is the 

ENIF generated by the external magnetic fields. It is proportional to the number of 

turns N, to the coil area A, and to the time rate of change of flux linking the coil. 
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Thus Vp  is written as 
dB 

Vp  = 	 (3.27) 
dt 

In RF experiments, usually T. is written as wB where w is the angular 

frequency of the launched wave, and where B and Vp  vary as e iwt. To obtain Vo , one 

can manipulate the following equations: 

I = 11 + 12 , 

RL12 	
wC 
	 (3.28) 

L  = (iwLp  Rp)/ + (
1 + iw

R
CpRL )-/-  

Then 

RL 

(3.29) 

Vo 	I = 
1+ iwCpRL, '  

Vp 	 Ri, 

iwLp 	Rp  1 	iwCpR L,' i+iwRcI,,RL 	+ 

Vp  

(1 — w 2 Cp Lp 	i(wCpRp + 

[(1 — w 2 Cp L L'E) 2 	R ) 2 }1' P  + 	(wCP P  
where, 

0 =tan 
wRp Cp  

R1' 
[ 

1— CO 2 Cp L p + yez,  

Neglecting Cp  and Rp , Eq.(3.29) can be rewritten as 

V 	Jo 
170  = 'pe (3.30) 

[ 1  + ( c-4LE ) 2 l 1/2'  - 

where, 

0 = tan -1 ("P ). 
RL 

Defining the sensitivity of the probe as 

(3.31) 
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Figure 3.16: The ATF RF Probe and Equivalent Circuit Diagram 

it becomes a function of N. The frequency response of the probe can be represented 

by the time constant, r = R, --al' 3  which is also a function of N. Here, Lp  is equal to 

N 2 L 0  where L o  is the inductance of one turn. Usually, in RF experiments where high 

frequency response is necessary, a one turn coil is used. 

The RF probes used in this experiments were designed in a different way. 

Figure 3.16 illustrates one of the magnetic probes and its equivalent circuit. A larger 

coil area was used for better signal output and two coax cables ran through to an 

RF transformer. A transmission line model °  was used for this probe as shown in 

Fig. 3.16. A virtual ground exists at the middle of the coil, so the system can be 

divided into two identical circuits. By doing a simple impedance calculation with a 

lossy-transmission line model[7], one can obtain 

Vo  = 2/ • ZL, 

6This model was suggested by R. H. Goulding. 
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Zr, cos 13/  + iZo  sin 0/ -1 
 = 	fro 

Zo  cos 0/ -I iZL  sin 131 

where, 
27r 

=  
where A is the wavelength. 

(3.3 2) 

It should be mentioned that the magnetic probe picks up some amount of 

electrostatic signal from capacitive coupling between the probe and plasma, as well 

as the desired electromagnetic signal. To compensate for this effect, a Faraday shield 

is usually used. Another method is to place a second coil, wound in the opposite 

direction, next to the first loop. If it is assumed that these two coils pick up same 

amount of electrostatic signal, this signal is easily cancelled by connecting the center 

conductors to opposite ends of a transformer. The former method was applied for 

the ATF RF probe and was incorporated with a shield for protection from particle 

bombardments. 

Before fabricating the magnetic probe, a prototype magnetic probe (without 

a Faraday shield) was made to test the signal level compared to the usual single turn 

loop probe and the signal attenuation between two orthogonal loops. It turned out 

that the signal level was very sensitive to grounding and circuit shielding used to 

suppress external signals. 

To compare signal levels between the prototype probe and the small single 

turn probe, the expected output power from each probe was calculated. The ratio of 

the output power from both of these probes was represented by 

Pprototype = Vprototype 2  = 2  Oprototype 
(3.33) 

Psmallprobe liSmallprobe Osmallproi 	• 

With the given dimensions of each probe, this gave 37.5 dB. Assuming that only half 

the flux in the prototype was present due to the presence of the metallic center piece, 
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then 

2  Pprototype 	Oprototype/ 2   

Psrraillprobe 	Osmallprobe 

and this gave 31.5 dB, which was close to the measured value, 30 dB. The measure-

ments showed a linear signal level with respect to the size of the loop. 

The prototype probe showed good signal polarization between the two orthog-

onal positions. The measured phase differences as the coil was turned 180 degrees 

appeared as almost 180 degrees. It was not possible to measure how much signal 

would be attenuated due to graphite shield with this prototype probe because it had 

no Faraday shield. 

After fabricating the actual probes, they were tested to examine the frequency 

response, sensitivity and how much the Faraday shield attenuated the signal. A 

Helmholz coil with radius of 8.3 cm was used for absolute calibration of the probe by 

measuring sensitivity, defined as in Eq.(3.31). This coil produced a magnetic field of 

0.1081 Gauss at the center where I was the current flowing through the coil. Since 

the coil had a resonance around 40 to 60 MHz and the total electrical length reached 

a quarter wave length around 80 to 100 MHz, the data was difficult to interpret in 

these regions. Only the results in the 1 to 30 MHz region are shown, which covers 

up to the second harmonic resonance frequency of the hydrogen plasma at 0.95 T in 

ATF. Figure 3.17 shows the data from the absolute calibration of the three probes 

and the previously tested prototype probe and single loop probe. 

The single loop probe can be easily modeled by the equivalent circuit model 

given in Eq.(3.28). But our probe could not be matched by this model. The result 

of the transmission line model given by Eq.(3.32) showed a good match with the 

experimental data in most of the frequency range of interest. From comparisons 

in signal level between the prototype probe and one of the actual probes, it was 

revealed that the Faraday shield reduced the signal level by almost 60%. This seemed 

reasonable because the effective area was reduced --60% by the Faraday shields. One 

(3.31) 

100 



5 

4 

3 

2 

1 se
ns

it
iv

ity
  (

V
o

lts
/

G
o  

u
ss

)  

big 	-41-.  -* 
small 1 	0- -) /IL  ,4 	A  
smoll2 	♦ -• 
mockup 4c — * 
loop 	D- EJ 

i— 
/ 

L 	. 
--4 

 

\ 
\ 

/ 

* 

A / 

/ _,/ 
111-  

/ , 

, 

/ 
A 

-6- 	I 
-O.  

"4.  

..... 

7  

•.. 

/ 

*---- 
z-Cf" 

7 mai -411- R 4:i'l -19- (9-111 -17-C-(5" ® -E ] --CT(  

1 

0 
	

10 	20 
	

30 
	

40 

frequency (MHz) 

Figure 3.17: Results of the Absolute Calibration Plotted as Sensitivity vs. Frequency 

of these probes was tested with the TFTR prototype antenna, at higher frequencies. 

In this case, the Faraday shield degraded the signal by about 5 to 10 dB. Figure 3.18 

shows the comparison between the transmission model and test results measured 

using the Helmholz coil from 1 to 30 MHz and the TFTR prototype antenna from 

30 to 80 MHz. This figure shows the effectiveness of a transmission line model for 

predicting the frequency response of the ATF magnetic probes. 

From all these data, well-modeled, reliable magnetic probe measurements 

were expected, with linear frequency response up to 30 MHz, two orthogonal loops 

and a good S/N ratio even though they were covered by a large area of graphite 

Faraday shields. 

Langmuir Probe  Langmuir probe measurements are made by biasing a metal 

probe to a voltage (V) with respect to some large conductor in contact with the 

plasma (single probe), or with respect to another probe (double probe) and measur- 
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Figure 3.18:. The Comparison Between the Transmission Line Model for the RF Probe 

and the Test Data Measured by the IIelmholz Coil and Prototype Antenna 

ing the current flow (I) to the probe. 

The heat flux to the probe should be minimized to avoid damage. Since the 

electron current to the probe is much larger than the ion current and because of 

other reasons listed below, the single probe method operating in the ion saturation 

regime was chosen for the ATF Langmuir probe. Even though the floating double 

probe method has advantages in this regard in normal condition, the system can not 

fully float in a high frequency RF environment because of the large stray capacitance 

between the power supply and ground[15]. Also double probe temperature measure-

ments concern only the fast electron-tail, not those in the body of the distribution[16]. 

Another reason for using the single probe method in ATF experiments was that un-

der the given conditions, in which two probe tips were used, one could measure the 

density, temperature, and potential simultaneously. 

It is generally accepted that there are three parameters which determine the 

14 
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Figure 3.19: Langmuir Probe Operating Regime[17] 

various operating regimes of a Langmuir probe[17]. These are A D /R,A/R, and A/A D 

 where AD is the Debye sheath thickness, A is the particle mean-free-path and R is 

the radius of the Langmuir probe. The operating regime can be divided first into 

two domains, depending on the magnitude of AIR, which is called Knudsen number 

Kn . There is a classical Langmuir probe domain where K n  >> 1 and a continuum 

electrostatic probe domain where KT, < 1. In each domain, one can identify several 

different operating regimes depending on the magnitudes of A/A D  and R/AD. If 

R/AD  >> 1, it is called a thin sheath regime, whereas if R/A D  << 1, it is called a 

orbital-motion-limit regime. If A/A D  >> 1, it is called a collisionless regime, whereas 

if A/AD  << 1, it is called a collisional regime. Therefore, if AD >> A >> R, the 

probe is in a collisional thick sheath regime. Figure 3.20 shows this two-dimensional 

representation of the various operating regimes. 

The importance of classifying the operating regimes is that the governing 

equations to describe the probe characteristics can be obtained using appropriate 

assumptions for the given operating conditions. In fusion devices, in addition to the 

above considerations, it must be determined how large the effect of the magnetic field 
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is, and if there are any other perturbing sources such as an RF-field or high energy 

charged beams. 

For the typical ATF operating parameters in Table 4.1, AD 2 x 10' cm and 

A 100 cm at the edge region and the radius of our probe is 7.9 x 10 -2  cm. Therefore 

the ATF edge region lies on K, >> 1 and A >> R >> AD - so-called "conventional 

thin sheath" regime. 

The magnitude of the magnetic field at the ATF edge was about 0.7 T when 

the central magnetic field was 0.95 T. In this case, with Ti  = 10 eV and Te  -= 20 

eV, the electron Larmor radius was pe 	1.5 x 10' cm and the ion Larmor radius 

was pi 	6.5 x 10' cm. This meant that the effect of the magnetic field could 

not be ignored. Also high frequency (up to 30 MHz) RF-field effects on the probe 

characteristics had to be considered. 

The probe was operated in the ion saturation current regime to avoid higher 

electron current influx to the probe from an unexpected plasma condition like disrup-

tion. When a probe is inserted into a plasma, there is a sheath region surrounding 

the probe, in which charge neutrality is violated and a strong electric sheath poten-

tial occurs. Therefore one has to solve the Poisson equation self-consistently with 

the equations of motion for the electrons and the ions. This problem is usually very 

complicated and impossible to handle analytically. Under the conditions given above, 

a thin sheath surrounding the probe is assumed and a planar approximation is then 

adequate. 

If it is assumed that the probe is operating in the ion-saturation current 

regime where all electrons are repelled, one can make the approximation 

eV(x)  
74(x) noe  exp 

Te  

where n 3  is unpertubed plasma density. 

(3.35) 
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The ion velocity can be written as 

(-2eV)2  
771i 

(3.36) 

for Te 	assuming that the ions have zero energy at oo. The total ion particle 

current density is Ar, = An iv i  where A is the area of the surface through which the 

ion current flows and this should be constant in equilibrium, and is denoted by 

Ji = Art i vi  = constant. 	 (3.37) 

Therefore the Poisson equation becomes 

V2V 	
—e 

17 == 
Co 

—e [Ji( 	1  
CO A —2eV t)

2 rt„,, exp —
eV ]. 
Te  

(3.38) 

Next, this equation is applied to two distinct regions. First, at large distances 

from the probe there is a plasma region where quasi-neutrality is satisfied. In this 

region, the V 2 V term may be neglected and the equation becomes 

Ji 
	  = exp —

eV 

A(7 2ex)1/2 rni 

(3.39) 

For the sheath region, V 2 V cannot be ignored. Bohm et al.[18] first derived the 

condition that V at the plasma-sheath boundary equals =II by Taylor expansion 
2e 

about V = V„, yielding the well-known Bohm current as 

eV, ( 2eV, 
 )
) 1 / 2  

Ji = A,n,, exp 
m i   

= 0 .61A anoo  (--;) "2  , 	 (3.40) 
772i 

where A, is the area of the sheath surface, which for a cylindrical probe is given by 

A, 	Ap (1 
R) 	

(3.41) 
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where Ap is the area of the probe surface, and e is approximately 4AD for hydrogen. 

This is generally applicable, provided the sheath is thin and Te  

Several people have solved the full Poisson equation to get exact solutions 

numerically. The calculations of Laframboise[19] are sufficient for establishing the 

current-voltage characteristics of spherical and cylindrical probes over essentially the 

entire range of practical conditions of operation, in the collisionless limit. For prac-

tical purposes, the approximate fits to his results are quoted as given by Kiel[20] for 

ion collection by a cylindrical probe with Zi  = 1, 

where, 

Ji 	
E), 	.)1/2 = F(E) [1 

+ f( 
-37:1  k - X13/ 
 SP 

(3.42) 

F(E) = € 1 / 2 (ex'erf( N/i7,) + 2 VX.,/ 7r), 
0.693 
	 for E < 1, 

f(E) = 2.18(1 — 0.2E0.35 )(1 + E) -1/8 , 

R 
Sp = 

AD 
eV; 

T€  

The error function erf(t) is defined as, 

erf(t) —= -_277: 	e - Y2  dy . 	 (3.43) 

In the ATF plasma, as mentioned before, the effects of the magnetic field 

should be included. Although there have been no rigorous studies for magnetic field 

effects, Harrison and Thompson [21] obtained a simple result which was the same 

expression as for the field-free-case Bohm current presented in Eq.(3.40), with two 

X. 
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small modifications: The area was replaced by the projection area in the direction of 

the magnetic field, and the coefficient changed from 0.61 to 0.5. In the ion saturation 

regime, 

= 0.5enc,,C,, 	 (3.44) 

where C, is the sound speed defined as 

= {k(T e   +7'1 2  
m 

From this equation, an unperturbed, distant density was obtained as 

(3.45) 

(3.46) 

where It  was a measured ion saturation current and A l  was the projection area in 

the direction of the magnetic field. 

For fusion plasmas with large magnetic fields, the following features were 

observed [22]: (a)The ion saturation portion is usually flat while in an unmagnetized 

plasma it was never saturated. This is presumably owing to the large value of R/A D , 

(b)The ratio of Je IJi  was small compared to an unmagnetized plasma where this 

ratio was about J"--11  ---, 60. This is due to the electric field increasing along the v  771 e 

flux tube which repels ions in front of the probe. Figure 3.20 shows these features 

measured in the ATF plasma. In ATF the ratio of Je lJj  was in the range of two to 

five. 

Finally, the effect of the high frequency RF field must be considered. The ATF 

ICRH experiments used frequencies up to 30 MHz. The RF field moved the probe 

characteristic curve back and forth with the RF frequency. The frequency response of 

the Langmuir probe was less than 1 MHz. Even if the density increased, the frequency 

response won't exceed 10 MHz due to the stray capacitance. Therefore the probe 

could not follow the fast moving curve at all. What it measured was the time-averaged 

curve which might be distorted significantly from the original curve. Figure 3.21 
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Figure 3.21: RF Effect on the Langmuir Probe Characteristic Curve 
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shows the effect of stray capacitance on the probe characteristic curve.[23] An AC 

impedance due to stray capacitance gives a load line with slope 1(1/R L 	jwC,)I, 

where j 	RE, is the load resistance and C, is the stray capacitance. The DC 

load line normally has a slope 1/R L . The operating point of the probe is determined 

by the intersection of the two load lines. For floating potential measurements, the 

load line should be close to the horizontal axis because the intersection with the 

characteristic curve is at a point close to where I = 0. Therefore R L  should be 

large for this case, and C, must be small for the higher-frequency case. The former 

requirement would be easy, while the latter could be difficult to achieve. The easiest 

way is to put the resistor as close to the end of the probe as possible. There also are 

various other techniques to overcome this problem[23]. 

For electron density and temperature measurements, a smaller resistor is re-

quired. But since the RF-fields distorted the curve substantially, care should be taken 

in analyzing data from the probe. Figure 3.22 shows a distorted time-averaged curve 

with two extreme possibilities for the corresponding instantaneous curve. The fatal 

change is the slope of the curve in the transition region, which is used to determine 

temperature and density. Also the floating potential of the time-averaged curve is 

different from the time-averaged floating potential. 

Even in high-frequency RF environments, however, there is a region in the 

characteristic curve which is little changed — the ion saturation regime. Taking a 

slope from there and multiplying by two would restore the original curve as shown 

in Figure 3.22. The electron density is calculated according to Eq.(3.46). This 

was attempted by Caughman, et al.[10]. Another method, the so-called two probe 

method, was proposed by F.F. Clien[24]. 

Once the density is known, the temperature can be obtained from the slope 

at a point where the characteristic curve deviated from an exponential fit in the 

ion-saturation regime. 
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Figure 3.22: Time-Averaged Langmuir Probe Characteristic Curve (Dashed) with 

Two Extreme Cases 

There is still not a good way to measure the floating potential in a high-

frequency RF environment with this conventional floating Langmuir probe'. 

Applications of Probe Measurements to ICRH Experiments on ATF 

Three magnetic probes and a Langmuir probe were installed on ATF for the 

ICRH experiments. Figure 3.23 shows the locations of the probes. The big probe 

and a small probe were placed on the antenna port (TN-5) and another small probe 

was placed on adjacent bottom port (Bottom-4). 

The big probe was equipped with a motor-driven translator and the two small 

probes were equipped with manual translators. Each translator had an 8-inches (20.5- 

'Capacitive and emissive probes are widely used for this purpose. 
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Table 3.3: The Exact Probe Positions in (r, z, cb) Coordinates 

R (cm) q  (Degree) Z (cm) 1 

Probe I (Big probe) Max-In 226.06 9.72 10.29 

Max-Out 242.0 10.07 10.29 

Probe II (Small 1) Max-In 230.62 4.57 -25.25 

Max-Out 247.35 5.28 -25.25 

Probe III (Small 2) Max-In 210.25 -2.77 -47.62 

Max-Out 210.25 -2.77 -37.62 

cm) stroke. 

Under normal conditions, the maximum probe-in positions were 20.5-inches 

(52-cm) for the big probe and the small probe on the antenna port and 21-inches (53-

cm) for the small probe on the adjacent bottom port. Each distance was measured 

from the inside of the port cover flange to the top of the probe head. The toroidal 

angles for these probes at the maximum probe-in position were 10°, 4° and — 2°, 

respectively. The exact positions in (r, z, cb) coordinates are tabulated in Table 3.3. 

Here r is major radius, z is vertical distance from the plasma center, and cb is toroidal 

angle. 

The magnetic probes were used for monitoring the antenna near field, eigen-

mode detection, and field attenuation measurements during RF heating. With a fast 

digitizer, a frequency spectrum was obtained to examine the correlation of magnetic 

field fluctuation with other plasma performance characteristics. 

The Langmuir probe was basically used for edge electron density and tem-

perature measurements. Along with these data, FIR interferometer measurements 

gave the whole plasma column density profile with and without ICRH. 
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Figure 3.23: Relative Locations of the Three Edge Probes 

A probe data analysis program, PDA, was written by which the magnetic 

probe and Langmuir probe data were read, analyzed and plotted. 

Experimental Considerations 

Probe Design The ATF environment was very harsh for probes even in the edge 

region. Every probe had to be protected from high heat flux. Graphite armour was 

adopted to protect the loops and to shield out electrostatic coupling for the magnetic 

probes as shown in Fig. 3.24. The probe shown in Fig. 3.24 was damaged by insertion 

too far into the plasma column for 3 days. 

In the magnetic probes, for high frequency response, a single turn loop was 

used with a large area to improve the S/N ratio. A 0.141-inch (0.36-cm) stainless 

steel (SS) coax cable ran through the SS tube attached to the translator outside the 

vacuum vessel, and arrived at the SS base. From there, stripped cable ran through 

the graphite armours and ceramic spacers to the ring conductors in the top. As 
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Figure 3.24: Garphite Shield and Inside of the Graphite Head Shown in the Damaged 

Magnetic Probe 

four coax cables were connected in this way, each cable was separated exactly by 

90 degrees around the ring conductor. The two separate ring conductors were used, 

each of which was connected to the two stripped cables, separated by 180 degrees, 

so that two separate, orthogonal loops were formed. To reduce the impedance by 

preventing the formation of other loops between coax cable legs, the four coax cables 

were tightened together without spaces in between them. 

In the big probe which consists of two magnetic probe loops and two single 

Langmuir probe tips, two additional coax cables ran from the tips to the translator to 

form the double-tip Langmuir probe. The two graphite tips were 1.6 mm long, 0.63 

mm in radius, and separated by 5.75 mm. To avoid particle accumulation between 

the graphite tip and the graphite armour, a ceramic insulator was added between 

them. 

In summary, the main features of these probes were 1) graphite armour to 
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Figure 3.25: Diagram of the Electronics for RF Probe Measurements 

reduce heat and particle flux to the loops and tips, 2) large loop area to compensate 

signal degradation due to graphite Faraday shields and single-turn design, 3) two 

orthogonal loops to determine two components of the B-field, 4) in the big probe, 

two single Langmuir probe tips were placed on top of the graphite probe head, and 

5) all probes were position-controlled by translators. 

Electronics  The electronic system used for the magnetic probes in the ATF ICRH 

experiment is shown in Fig. 3.25. An RF transformer was used to couple the probe 

signal with the measurement electronics. The whole circuit was shielded from external 

magnetic fields. Two different ground paths were used for the loop and the electronics 

so that the measurement circuit was floating with respect to the vacuum vessel. 

The box which enclosed the transformer was placed near the probe to minimize 

the path length for the probe signal. The signals coupled through the transformers 

were transmitted directly to the phase and amplitude detection modules in which 

114 



Aeon 
Digitizer 

-04 	 

Probe 

1 Mil 

1 lif2 

	

r\AAr---T 	  
1 kfl 

BOPI000 	

1(11  

Voltage 
Supply 

	

• 	•  

289J 

289J 

ADS289J 	28" 
Isolation 
Amplifier 

Amplitude 
Detector 

Vessel Ground 

HP33I 2A 
Function 
Generator 

Signal Ground 

Figure 3.26: Diagram of the Electronics for Langmuir Probe Measurements 

information about the phase with respect to a reference signal and the absolute 

amplitudes of the signal was obtained and sent out to a CAMAC data aquisition 

module. 

Circuits for the Langmuir probe were more complicated and varied depending 

on the experimental conditions. The circuit used in ATF is shown in Fig. 3.26. The 

ATF timing clock signal triggered a waveform train from a Hewlett-Packard function 

generator (3312A), typically a sawtooth form amplified by a KEPCO bipolar oper-

ational amplifier (BOP1000M). This bias voltage set a potential difference between 

one of the tips and the plasma. One probe tip was used for current measurements, 

and the other tip was used for potential measurements. These two tips were con-

nected to smaller and larger resistors, respectively, then the signals were transmitted 

through two differential amplifiers (ADS 289J) and finally recorded in an Aeon 3232 

digitizer. As in the magnetic probe circuit, the probe ground path was different from 

the ground path of the electronics. The Langmuir probe was equipped with a motor- 
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Figure 3.27: Diagram of Langmuir Probe Positioning Circuit 

driven translator for remote position control. Figure 3.27 shows the CAMAC system 

for probe positioning. A Joerger stepping motor controller unit was used to control 

the motor, and an encoder provided the probe position through a digital read-out. 

The position data was registered in registers (QIR). The software used for stepping 

motor control for the Thomson scattering system was modified for probe position 

control 8 . 

8The author is grateful to D. A. Rasmussen for providing the program and to D. C. Giles for 

helping him modify it. 
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1 

The ATF  Data  Acquisition System 

ATF Data System 

The ATF data system[25,26] consists of a variety of hardware and software 

items. The hardware acquired all forms of data, generated all control waveforms and 

provided trending and logging services for the safety interlock and control systems. 

The hardware consists of two VAX 8700 cpu's, two MicroVAX front ends and 

a set of PLCs. The VAX 8700 system manages overall data acquisitions and dynamic 

control. The CAMAC system is driven by this VAX 8700 system, which performs 

physics-related control including generation of waveforms. State control is done by 

four Modicon 584 PLCs and interfaced with the VAX 8700 system by a MicroVAX 

front end. There is an optical juke box which is a WORM disk used for back-up data 

and almost on-line storage. By using utility software the data are rapidly brought 

on-line for analysis. 

The software supervises and monitors data flow and memory, manages the 

data and files, and provides interface to the PLC and CAMAC. The software consists 

of the following: 

SAMS: supervising and monitoring system, 

DMG: a signal-based data and file management package, 

ORNL/FED: CAMAC driver package, 

ONSPEC: commercial package to interface to the PLC, 

IDL: commercial, general purpose data analysis package, 

PLOTCH: a "quick look" package. 
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Figure 3.28: The ATF Data Acquisition System and Data Flow Diagram 

Figure 3.28 shows the outline of the ATF data system and the data flow through this 

system. 

ICRH Data System 

The ATF ICRH project has two diagnostic names: ICRF and ICRFAUX. 

Most of the RF data are acquired under ICRF except for the two fast digitizer 

signals which are acquired under ICRFAUX. There are 30 signal names in ICRF and 

2 signal names in ICRFAUX as listed in Table 3.4. 

L 
All analog signals for ICRF are digitized by an AEON 3232 digitizer unit 

which has 32 channels with a 5 kHz sampling rate. Other digital signals are directly 

stored in a Jorway QIR (Quad input register) before being read by a CAMAC con-

troller. The two signals in ICRFAUX are digitized in two TRANSIAC digitizers each 
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Table 3.4: Signal Name and Description in ICRF and ICRFAUX 

IC_AT1C1 

IC_AT1C2 

IC_AT1RI 

IC_AT1RR 

IC_AT1RV 

IC_AT1TI 

IC_AT1TR 

IC_AT1FV 

IC_CPRB1 

IC_DPC 

IC_DPPOS 

IC_DPSWP 

IC_DPV 

IC_RF1BP 

IC_RF1BT 

IC_RF1PH 

IC_RF1PK 

IC_RF2BP 

IC_RF2BT 

IC .RF2PH 

IC_RF2PK 

IC_RF3BP 

IC_RF3BT 

IC_RF3PH 

IC_SETUP 

IC_TR1FV 

IC _TR1RV 

Antenna Capacitor 1 Position 

Antenna Capacitor 2 Position 

Imaginary Part of Antenna Reflection Coefficient 

Real Part of Antenna Reflection Coefficient 

Antenna Reflected Voltage 

Imaginary Part of Antenna Transmission Coefficient 

Real Part of Antenna Transmission Coefficient 

Antenna Forward Voltage 

Current Probe Signal 

Langmuir Probe Current Signal 

Langmuir Probe Position 

Langmuir Probe Bias Sweep Voltage 

Langmuir Probe Floating Potential 

RF Probe 1, Loop 1 Signal 

RF Probe 1, Loop 2 Signal 

RF Probe 1 Phase 

RF Probe 1 Fast Digitizer Signal 

RF Probe 2, Loop 1 Signal 

RF Probe 2, Loop 2 Signal 

RF Probe 2 Phase 

RF Probe 2 Fast Digitizer Signal 

RF Probe 3, Loop 1 Signal 

RF Probe 3, Loop 2 Signal 

RF Probe Phase 

Analyzer Setup Parameter 

Transmitter Forward Voltage 

Transmitter Reflected Voltage 
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Figure 3.29: The ICRH Data Acquisition System and Data Flow Diagram 

of which has 1 channel with a 100 MHz sampling rate. A block diagram of the ICRF 

and ICRFAUX data acquisition system and data flow is illustrated in Fig. 3.29. 
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CHAPTER IV 

EXPERIMENTAL OBSERVATIONS 

In this chapter, the results of ICRH experiments performed on ATF are pre-

sented. Detailed analysis is presented in Chapter V. Wall and antenna conditioning 

are the first topic and a description of the target plasma and global changes due to 

ICRH follows. Some important diagnostic signal traces with ICRH are presented in 

detail. These are antenna loading, spectroscopy data, neutral particle analyzer data, 

and edge probe signals. 

Wall Conditioning and ECH Target Plasma 

Wall conditioning in ATF 

Most of the experimental work on ATF (including ICRH) required clean walls 

and a good base vacuum. To obtain these conditions ATF used three different wall 

conditioning techniques: baking, glow discharge cleaning, and gettering. 

Baking was accomplished by inductance coupling of ac power to the vacuum 

vessel with low-power excitation of the helical windings. The rate at which adsorbed 

gases are spontaneously desorbed from a metal surface in a vacuum can be described 

by the equation [1]: 
dc co 	Ed 

dt 	
ro exp ( 

kT)' 
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where c is the surface concentration, c o  is the initial concentration, To is the time 

constant when there is no binding energy, Ed is the binding energy and T is the surface 

temperature. Since the desorption rate depends on the baking temperature, it is 

possible to calculate the time for a specific gas to be desorbed at a given temperature. 

For ATF, the maximum allowable temperature was 150 °C and a 6 minute 

baking cycle was used (2.5 minutes on and 3.5 minutes off). However, tightly adsorbed 

molecules or atoms still cannot be released in any realistic time, so even after baking 

the walls remained covered with adsorbed species. The consequence of this was that 

the wall released gas in large quantities when bombarded by plasma particles. This 

was the reason for using glow discharge cleaning (GDC) simultaneously with baking. 

There were several excitation sources for GDC, they consisted of a DC power 

supply (600 - 1000 V), an RF power supply (13.6 MHz), and a microwave power 

supply (1-3 GHz). In some cases a parallel combination of dc and high frequency 

sources was used. In ATF, the 1 kV, 2.5 A DC power supply was used for 11 2  and D2 

GDC. Initial breakdown occurred at about 15 mTorr for a "dirty" vessel and about 

40 mTorr for a "clean" vessel. There was also electron cyclotron resonance discharge 

cleaning (ECR-DC) which consisted of 3 kW cw at 2.45 GHz, applied simultaneously 

with a small magnetic field. The resonant IBS is 0.0875 T and it was used with 

3 x 10 -5  Torr H2 gas. Induction heating (baking) and GDC have been performed 

simultaneously. This resulted in lengthening the time to radiative collapse in the 

early phase of ATF operation[2]. Since the magnetic field created when the helical 

field coils are used for baking significantly reduces the size of the glow discharge 

volume, GDC was much more effective after the induction coil was turned off which 

was for 3.5 minutes of the 6 minute cycle (58%). 

The ICRH antenna was initially conditioned during baking and GDC cycles, 

and significant outgassing was observed. Outgassing was especially high when the 

antenna was operated in the multipactor breakdown regime, typically a very low RF 
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Figure 4.1: Partial Pressure of Five Dominant Mass Peaks vs Time during Antenna 

Conditioning (Taken during Multipactor Breakdown) 

power as shown in Fig. 4.1. During later experimental periods after extensive antenna 

conditioning and gettering, this phenomenon was not observed and only a few hours 

of antenna conditioning was needed for launching full RF power 200 kW). 

In early ATF operation, a plasma stored energy collapse followed by a density 

collapse usually happened during NBI+ECH discharges even though the Ze f f was 

very low (< 2) and radiated power was only about 30% of the input power. Induction 

heating and CDC could not eliminate this problem. Neither did gettering with two 

Cr balls help. At the time, magnetic field errors were thought to be the primary 

cause of the problem. However, field error correction did not eliminate the collapse. 

As the number of getter balls was increased the time to the collapse was delayed 

significantly even though the problem was not completely solved. With six-ball . Ti 

gettering, which covered 70% of the wall area, NBI heating sustained the plasma 

as long as 300 ms without a collapse. 

In a typical getter cycle, each source is heated to 1150 °C and yields a sub- 

126 



30 

20 

Aku # 
‘ gitg  saY 'l 0 1---e■ 

1. 2-Cr GETTER  I 

Jd 

6-Ti 
GETTER 

4-Ti GETTER 	2 

. 	 0 8 
 

„ 1 a 
R
a
i 	 0 

NI  " 	

ril /13 

n  II n 	n 	n 11 	
n 

'11 	f'.' 	A H 	,,.0,-1 n 	1 A  4 

,nP A A. P. 	tl'l: 	°4  
I 

. t,; ■ c:11 ' 

41
'1
- t -40  

0.95T 1.90T  
x 	I ECH 

A 	 NBI 

4-Cr GETTER 

3000 	3500 	 6500 	7000 	7500 	8000 	8500 

SHOT NUMBER 

Figure 4.2: Maxima of the Stored Energy for Discharges with a Variety of Gettering 

Configurations[4] 

limation rate of 0.1 gbh,. The deposition process is continued for half an hour and 

deposits an average of 5 monolayers of titanium. The effect of gettering on plasma 

performance has been studied by R. Isler et al.[3], and Fig. 4.2 shows the effects on 

the stored energy. The radiation from low-Z impurities and the impurity content 

were lower than for pre-gettering periods according to spectroscopic measurements. 

However, high-Z impurity lines appeared as the edge temperature increased. 

This evolution of the wall condition affected the ICRH also. Figure 4.3 is 

a chart showing the evolution of the ATF wall condition and antenna conditioning 

in terms of the duration necessary for vacuum conditioning of the antenna and the 

timing of major ATF vacuum openings. In 1988 when the first ICRF wave power 

experiments started, the maximum RF power level injected into the plasma without 

collapse was about 40 kW. In 1989 when 30 hours of antenna conditioning were done 

before attempting ICRH, 100 kW of RF power still collapsed a plasma pre -gettered 
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with four Ti balls. Three months later, after 30 hours of antenna conditioning and 

six Ti ball gettering, 200 kW of rf power could be launched into the plasma without 

causing a collapse. 

ECH Target Plasmas and Changes During ICRH 

Target plasmas for the ICRII experiments were generated by electron cy-

clotron heating (ECH) with a 53 CHz, 200 kW gyrotron. A second gyrotron with the 

same specifications was installed in October, 1989. As mentioned previously, wall 

conditioning evolved and magnetic field errors were fixed during the course of the 

ICRH experiments. This affected plasma performance, and so the basic parameters 

of the plasma were not the same during the whole experimental period. The effect 

of six-Ti gettering and the second gyrotron particularly changed the target plasma 

parameters (including density, stored energy and edge temperature). The field error 
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ECH Power 

Line Avg. Electron Density 

Central Electron Temperature 

Central Ion Temperature 

Stored Energy 

Zef 

	

350-400 	kW 

— 0.6 x 10 13  cm-3  

	

800-1000 	eV 

	

150-200 	eV 

	

1.5-2 	kJ 

2 

Table 4.1: ATF Parameters for ICRH Target Plasma 

correction produced broader profiles of electron temperature and density[5]. 

Since most of the data used in this dissertation were obtained after the second 

gyrotron installation, the plasma parameters described here will reflect those plasma 

conditions. Table 4.1 shows some important plasma parameters for the period after 

installation of the second gyrotron. 

It should be noted that since these parameters were varying day by day, 

detailed comparisons must be made with care. 

During ICRF most of the plasma parameters influenced by wave-plasma in-

teractions were affected. Global changes occurred in density, temperature, stored en-

ergy, Zef , f radiated power, edge parameters and particle distributions. The changes 

in these parameters are interconnected, and often have different time scales, so that 

there is an effective time scale for a discharge to transiently evolve to a new equilib-

rium. In the ATF ICRH experiments, with up to 200 kW of power, little change in 

the equilibrium was observed if the target plasma had constant density when ICRII 

was applied. The temporal behavior of a typical shot in this category is shown in 

Fig. 4.4. 

Rising-density shots were another type of discharge into which RF waves were 

injected. During these shots the plasma density would rise uncontrollably, resulting 
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in collapse of the energy content of the plasma. This was not present without RF. 

The time behavior of various signals for this category of shot is shown in Fig. 4.5. 

Usually the density rise during ICRII was prevented by gettering and adjusting the 

gas puff, but occasionaly uncontrollable density increases occured. In a sequence of 

shots with uncontrolled density increase, typically the onset time of the density rise 

would move earlier and earlier in time, so that finally the density increase would 

begin immediately as the ICRH was turned on. 

A common behavior was observed in both constant density shots and rising 

density shots. The density trace showed an immediate drop as soon as the RF wave 

was initiated, as illustrated in Fig. 4.6. This density drop is believed to have been 

caused by a fast ion loss since the orbits of edge heated fast ions become unconfined, 

as will be discussed in Chapter V. 

In both cases, no measurable bulk ion or electron heating was observed from 

the Doppler broadening of the impurity line measurements and the Thomson scatter-

ing measurements even though the NPA measured a large minority ion (hydrogen) 

tail up to 50 keV and some (apparent) deuterium temperature increase. The stored 

energy was also constant or decreased slightly during ICRH. In later experiments the 

radiated power measured by a bolometer did not change during ICRH even though 

several impurity lines measured by spectroscopy increased. These data and other 

detailed observations are presented in following sections. 

Loading Measurements 

Loading measurements during ICRH experiments were performed by two dif-

ferent techniques. Low power loading measurements were performed with a Hewlett-

Packard network analyzer (HP-8753A) and an antenna directional coupler. This 
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method was also used for high power experiments. The other technique involved 

using a current probe to measure the antenna strap current. With a knowledge of 

the vacuum loading and the equivalent probe signal, loading was calculated using the 

antenna current probe signal. 

Low power loading measurements at 28.8 MHz were performed during the 

early period of ATF operation with ECH-1-NBI target plasmas. The 28.8 MHz fre-

quency was equivalent to the second harmonic frequency of hydrogen for a magnetic 

field of 0.95 T on the plasma axis. The plasma condition was poor due to impu-

rities and the field error problem and the antenna was not fully conditioned. The 

dependence of the loading on the density and the frequency is shown in Fig. 4.7 and 

Fig. 4.8. From these figures, it can be seen that the loading was very sensitive to 

both the plasma density and the frequency of the RF wave. The frequency depen-

dence was verified by experiments with different frequencies and in different heating 
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Figure 4.9: Loading Change as a Function of Frequency Determined by Various 

Heating Regimes (Low Density ECH Plasma) 

regimes as shown in Fig. 4.9. In the hydrogen second harmonic regime (28.8 MHz), 

the measured loadings were highest. In the D(H) regime (14.4 MHz), plasma loading 

was less than the vacuum loading, which meant that half of the power was dissipated 

in the antenna structure. The D( 3 He) regime (9.63 MHz) exhibited the lowest load-

ing. This frequency sensitivity of the plasma loading was also observed during ICRH 

experiments in the Elmo Bumpy Torus (EBT)[6]. No high-Q eigenmodes, however, 

were observed during either of these experiments. Vacuum loading was also measured 

as a function of RF frequency. The vacuum loading was proportional to -V1 within 

± 10%. 

In the September, 1989, experiments, for most of the high power (-- 100 kW) 

shots, the loading was peaked in the very early phase of the RF pulse (20 to 30 msec), 

then decreased to 0.1 CI for the rest of the RF pulse. The loading also changed with 

the RF power level. For 5 and 10 kW of RF power, the loading stayed up around 
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0.5 Il. Above about 20 kW of RF power, loading went down after the initial peak. 

These phenomena clearly showed that RF power above 20 kW changed the edge 

plasma conditions in front of antenna within 20 to 30 msec after RF onset, which 

changed the antenna loading. This was consistent with the Langmuir probe results 

on that day which showed large changes in n, and Tr  around the antenna for power 

levels above 20 kW. 

After gettering with six Ti balls and extensive antenna conditioning started 

(December 1989) plasma loading in the D(II) regime at 0.95 T, 14.4 MHz, 200 kW of 

RF, increased to 0.2 12, slightly higher than the vacuum loading. It was also observed 

that loading did not degrade during the shot due to edge plasma changes. However, 

as the experiments progressed, loading dropped to 0.1 Sl , probably because the wall 

gettering was wearing off during the day. Typically plasma conditions at the end 

of the day were not as good as at the beginning unless a break for gettering was 

taken during the middle of the day. The rising-density shots looked better in terms 

of loading than the constant density shots. 

Another parameter on which loading depended sensitively was the gap be-

tween the plasma and the antenna. After pushing the antenna in as far as possible, 

the plasma was then shifted outward to change the gap by changing the inner and 

outer vertical-field coil currents. When this was done the plasma equilibrium was 

radically changed, producing a very low density plasma when the plasma was shifted 

out. Supprisingly, the loading almost tripled. Most of the loading change was prob-

ably contributed by edge plasma coupling, since the ICRF wave could not propagate 

into the low density central plasma region due to a thick evanescent layer. This 

will be demonstrated in Chapter V. The RF probes also showed evidence of edge 

propagation as shown in the edge probe measurements section of this chapter. 

Increasing the density was clearly observed to be the best method of increas-

ing the antenna loading. In ATF however, the ECII target plasmas were limited 
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in density by the cutoff density of the 53 GHz ECRF wave, which was at about 

'n et = 5.0 x 1014  cm' (fie  0.8 x 1013  cm -3 ). Neutral beam injection was an 

alternative way to increase the loading. Unfortunately it was not possible to do more 

than make loading measurements with NBI. The beams were required to be hydrogen 

since D beams would have created an unacceptable neutron radiation hazard. With 

hydrogen neutral beams the II fraction was too high for D(H) experiments, and the H 

minority resonance at the edge would have prevented succesful D( 3 He) experiments. 

Hydrogen second harmonic experiments with beam injection would have been possi-

ble but were never attempted after the field error was fixed. Another possibility for 

increasing the density was D pellet injection. Due to poor matching, no succesful 

shots were achieved, although this may be done in the future. The major problem in 

using pellets was that ECH plasmas could not be sustained during the pellet injec-

tion experiments. This might change in the future with the use of smaller pellets or 

increased ECH power/frequency. 

Summarizing the loading measurements, with the ATF plasma and RF con-

ditions described, the loading was very low due to poor propagation and low density. 

The loading was also sensitive to the wave frequency, increasing with the square root 

of frequency. Some experiments were done to change the loading without chang-

ing the target plasma. These experiments indicated that higher density, shifted-out 

plasmas would be better target plasmas as far as loading was concerned. 

Spectroscopic Measurements 

Even though ATF was equipped with good spectroscopic instruments, there 

were no systematic measurements with ICRF wave injection during the experiments 

for this thesis. However, in most of the ICRH experiments, a grazing incidence UV 
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spectrometer and a vacuum Czerny-Turner spectrometer were working, measuring a 

specific impurity line amplitude and/or ion temperature from Doppler broadening of 

the impurity line. There were also two impurity monitors tuned to 2838 A and 3791 

A which were the CII and 0III line wavelengths, respectively.' 

After extensive six-element Ti gettering on ATF, most of the carbon lines dis-

appeared, while CII measured from the impurity monitor still appeared in significant 

amounts. This is attributed to the fact that the impurity monitor has a relatively 

wide wavelength band so that other low charge state, high Z impurity lines made 

contributions rather than carbon[3]. 

In this section no conclusive statements are attempted due to the lack of 

dedicated operations and data, however, a clue about the effect of ICRII on the 

impurity behavior and some related topics are presented in a careful manner. 

Typical impurity line signals with ICRH are shown in Fig. 4.10. An RF power 

threshold was observed around 40 kW after starting the six-element Ti gettering 

cycle. After 6-Ti gettering, (which increased the edge temperature) the signals from 

the two impurity monitors and H a  signal quickly increased initially, as before, but 

then slowly decreased. This is illustrated in Fig. 4.11. The initial increase was 

clearly due to energetic particle loss but the subsequent decrease is not understood; 

however, it is assumed to be the effect of edge cooling. These two signals were very 

well correlated with loading data and the neutral particle analyzer data which are 

shown later in this chapter. 

Overall, six-element Ti gettering was good for ICRII. This can be seen by 

the fact that before 6-Ti gettering, ICRH always forced the plasma to collapse with 

100 kW power, however, after 6-Ti gettering accompanied with extensive antenna 

1 The author is grateful to R. C. Isler, E. C. Crume, L. D. Horton, S. Hiroe and T. Uckan for 

providing data presented in this section and valuable comments 
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Figure 4.12: Radiated Power During ICRH After 6 Ti Gettering 

conditioning, 200 kW of RF power could be launched without causing a collapse. This 

was in agreement with the radiated power during ICRH measured by the bolometer 

as shown in Fig. 4.12. Although the radiated power measured by the bolometer did 

not change during ICRH, this was contradicted by spectroscopic measurements, for 

which radiation emission from low Z and high Z impurities changed in time with 

ICRH. No data for the total radiated power inferred from spectroscopy with ICRII 

was available. 

The grazing incidence UV spectrometer was used mostly for measuring single 

impurity lines in the UV during ICRF heating. Due to the lack of any systematic 

measurements, some observations were made by looking at the measured data and 

correlating with other signals or plasma and RF conditions. 

A rapid density drop was observed at the very beginning of the ICRF phase 

in most shots, again indicating direct fast ion loss. Fig. 4.13 shows the shot average 

of the line integrated density and FeXVI emission signal during ICRH from shot 

50 
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Figure 4.13: Fast Ion Loss and Induced Wall Sputtering 

9004 to 9016. A correlation was found between these two signals, showing that the 

initial density drops were direct fast ion losses which increased the wall sputtering 

rate resulting in increased FeXVI line emission. The fast ion loss induced by ICRII 

seems only to have occurred in the early phase of the RF pulse as inferred from the 

FeXVI line in the sequential shots. To obtain a consistent picture, Fig. 4.14 shows 

the temporal changes in the fast minority ion distribution measured by a neutral 

particle analyzer (NPA), the 0III line emission measured by impurity monitor, stored 

energy measured by a saddle loop, and changes in the plasma loading measured 

by an antenna current probe. For some reason, RF heating was apparently only 

effective during the early phase of the pulse for 30 msec on these shots. These data 

were taken during the second day of a dedicated week of ICRII experiments. The 

data on the first day, however, showed quite different results as shown in Fig. 4.15, 

but spectroscopic data was not available on that day. The highest energy fast ion 

spectrum stayed at a constant level throughout the RF pulse, and loading was higher 
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Figure 4.15: Temporal Changes in Fast Ion Distribution on the First Day of Operation 

in the Week of Dec. 11, 1989 

than in the sequence of shots, 9004-9016. 

The antenna served as an impurity source when it was pushed in. Since the 

Faraday shield was made of carbon, carbon radiation would be expected to increase 

due to enhanced sputtering even if Ti gettering covered the Faraday shield with 

several layers of titanium. Figure 4.16 shows the comparison between the impurity 

monitor signal (tuned to CII line) with the antenna in and with the antenna out. 

The limiter, also made of carbon, was usually located at its maximum-out position 

during the ICRII experiments in order to avoid RF leakage problems caused by the 

limiter contacting the plasma. 

A vacuum Czerny-Turner spectrometer was used for measuring ion temper-

atures from Doppler broadened impurity lines. Usually the OVII line was used for 

central temperature measurements and the CV line for outer measurements. None 

of the shots showed any significant increase in central temperature with 200 kW of 
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Figure 4.16: CII Line Emission for Antenna In and Out Radial Positions 

RF power, while the edge temperature sometimes increased 10 to 30 eV. Figure 4.17 

shows a comparison of the measured ion temperatures with RF and without RF for 

two different radial locations. The ion temperature measured by the spectrometer was 

quite different from that measured by NPA, which is presented in the next section. 

The Doppler broadened ion temperature measurements show that the RF 

power was absorbed outside rather than at the plasma center. This will be analyzed 

in more detail in Chapter V. 

Finally, Zeff  changes were calculated from bremsstrahlung emission measure-

ments. The expression used for emission is[7], 

CS(Wp(0.5 + 
n,/ 	/I 

— 	))0.35 

Ze j f 	 (4.2) 
2.35 nei  

where C is the calibration constant, S(mV) is the detected signal amplitude, W p(kJ) 

is the stored energy, and n e1 (10 14  cm -2 ) is the line-integrated density. Figure 4.18 

shows the result for the ICRH shots (11376-11389). The ICRII increased the Zef 1 
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Figure 4.18: Ze f f Inferred from Bremsstrahlung Radiation Measurements 

value by 50%. The increase in Zeff is attributed to high-Z impurities sputtered by 

fast ions created by ICRH and to low-Z impurity influx caused by direct edge heating 

or other RF-induced plasma-wall interactions as seen in other ICRH experiments 

surveyed in the last section in Chapter II. 

The Neutral Particle Analyzer Measurements 

The horizontally and vertically scannable neutral particle analyzer (NPA) 

was installed on ATF 2  in the summer of 1989. Initial attempts to use the NPA dur-

ing ICRF heating experiments on ATF failed due to an electromagnetic interference 

2 The author is grateful to M. R. Wade and R. J. Colchin for providing NPA data and valuable 

comments 
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Figure 4.19: A 3-D Plot Showing the Fast Ion Tail in Both Hydrogen and Deuterium 

Channels 

(EMI) between the RF system and the NPA. Several locations were found where RF 

signals leaked from the torus. After sealing the suspected areas, the NPA began to 

provide useful data. Unfortunately, there were no data for the second harmonic heat-

ing regime because of the EMI. Thus all the NPA data presented here were measured 

in the hydrogen or helium-3 minority heating regime. The main experimental result 

is that ICRF produces an energetic minority ion tail. 

Figure 4.19 shows a typical minority ion tail distribution. This tail formation 

was clearly dependent on the RF power, plasma conditions, and the location of the 

resonance layer. Also, the tail was not constant with time during the RF pulse. 

Figure 4.20 shows the power dependence of the energetic hydrogen minority ion tail 

formation. In changing from 40 kW to 70 kW of RF power, the tail energy changed 

significantly. 

The temporal behavior of the energetic tail is shown in a previous subsection 
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Figure 4.20: Fast Minority Ion Tail Formation as a Function of RF Power at a Fixed 

Time into the Discharge 

in Fig. 4.14. During most of the minority ICRH experiments, the NPA data showed 

a big tail around 30 to 50 msec after RF wave injection began, then the tail energy 

was significantly degraded. This means that the RF efficiency or RF absorption 

was decreased, probably due to RF-induced plasma changes. Plasma degradation 

was seen in the stored energy trace and Tece  trace'. Low frequency edge magnetic 

fluctuations around 50 kHz were also observed at the time of energy degradation. As 

mentioned in the preceding section, there were differences in the NPA signal between 

shot 8875 during which the ion tail energy maintained a constant level throughout 

the RF pulse, and the shot 9004 series during which the ion tail energy degraded 50 

msec after RF wave injection began. 

The minority species concentration 77H  also affected the tail formation. At a 

3The stored energy data were provided by W. Wing and Tece  data were provided by G. L. Bell. 
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Figure 4.21: Minority Ion Tail Energy as a Function of Minority Species Concentra-

tion 

fixed power level, a lower concentration produced a higher tail energy. Figure 4.21 

demonstrates the 71H  dependence of the tail formation. 

Here, an important issue arises related to the minority concentration and its 

effect on location of the hybrid resonance layer. With a 14.4 MHz RF wave launched 

into a magnetic field of 0.95 Tesla on the plasma axis, a minority concentration of less 

than 2% would keep the hybrid resonance from being located beyond the saddle point. 

However with greater than 4% concentration, the hybrid resonance moved beyond 

the saddle point as illustrated in Fig. 4.22. These results were consistent with the 

results of the Magnetic field scan in Heliotron-E[8], where the most energetic ion tail 

was formed when the hybrid resonance layer was located at the plasma axis. The 

frequency scan data, to be presented later, also showed consistent results. This also 

agrees with 2-D code simulations. More detailed analysis will be given in the next 

chapter. 
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Figure 4.22: Location of the Hybrid Resonance Layers as a Function of Minority Ion 

Concentration 

It should be noted that in ATF for ECH discharges, direct orbit loss was the 

only mechanism which had a faster time scale than charge exchange loss. Thus if 

a tail was truncated above a certain energy in the NPA spectrum, there were two 

possibilities. Either there was no high energy tail above that energy level or the 

fast ions were lost before they charge exchanged. Understanding which situation 

occurred is important because if the former is correct, then poor absorption of RF 

energy might be the cause while if the latter explanation is correct, then energetic 

particle loss might be an intrinsic problem for ICRH heating of low collisionality 

discharges (e.g., low density ECII) in ATF. There was some indirect evidence of direct 

high-energy particle loss. If there were no transport (CX) or slowing down (i.e., low 

collisionality), then direct particle loss might be related to "stripe" formation on 

the vacuum vessel wall. At one point when the vacuum vessel was opened to air, a 

picture of the antenna Faraday shield surface showed clear stripe traces in contrast 
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(a) 
	 (b) 

Figure 4.23: (a) Picture Showing Stripes due to Ion Orbit Loss (?), (b)Picture Does 

Not show any Trace of Stripes Formed 

with the bright Ti-gettered vacuum vessel surface, as shown in Fig. 4.23. But it is 

not clear whether these stripes were caused by ICRII. A second picture taken the 

day after subsequent ICRH experiments showed no evidence of stripes. Figure 4.6 in 

the previous section shows, however, the immediate decrease in line averaged density 

after RF onset, although the gas puff signal cannot explain such a strong decrease. 

As previously discussed, the wall sputtering rate also increased during the density 

drop. 

Other interesting NPA data were taken showing energetic tail formation dur-

ing frequency and position scans. As the ICRH frequency was decreased, moving the 

resonance layer outward from the magnetic axis, the tail energy increased (Fig. 4.24). 

In addition, shifting the plasma center outward increased the antenna loading (even 

though the average density decreased) and generated a big tail (even though 1/H 

probably increased), which is shown in Fig. 4.25. 
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The NPA also made horizontal and vertical scans with the RF applied (the 

NPA moved between reproducible shots). Interesting data during the RF pulse were 

obtained from these scans as shown in Fig. 4.26. The peak in the distribution occurred 

at an angle of the NPA away from the perpendicular to the magnetic field direction. 

At first thought, it would seem to be a banana orbit particle effect as in tokamaks[9, 

10]. In an attempt to confirm this hypothesis, two more scans with different RF 

frequencies, equivalent to different resonance layer positions, were performed. These 

results [Fig. 4.26(b) and (c)] look different from the distribution with the resonance 

on axis shown in Fig. 4.26(a). It is certain that RF energy affects particle orbits in a 

consistent way, and to understand the data more theoretical analysis must be done 

on how RF energy affects various particle orbits in ATF. 

In ATF, three methods were used to measure the ion temperature, namely 

impurity line Doppler broadening measurements as shown in the previous section, 
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Figure 4.27: Deuterium temperature measured by NPA with ICRH in the D(H) regime 

a neutral particle analyzer, and neutron detectors' for D-D reactions. In the pre-

ceeding section, it was shown that in all of the low density ICRH experiments, the 

Doppler broadening measurements showed no measureable increase in the central ion 

temperature. However, in some cases the edge ion temperatures measured from the 

CV line were increased by 10 to 30 eV. The NPA measurements were strikingly dif-

ferent from the spectroscopic measurements. The inferred ion temperature increased 

substantially by several tens to as much as a couple of hundred eV (Fig. 4.27). This 

difference is attributed to the poor mass rejection of the NPA deutrerium channel so 

that the big hydrogen tail could be seen in the deuterium channels. 

Another concern about the ion temperature measurement made by the NPA 

in ATF was the location of the gas puff valves. One valve was located at a port on 

the wall opposite to the NPA port, in order to increase the flux to the NPA. This 

'The author is grateful to A. C. England for providing neutron data. 
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nonlinearly increased the neutral density as a function of plasma radius (with the 

largest density increase at the edge) resulting in a higher charge exchange probability. 

It was found that the high energy tail formation was clearly related to the location 

of the gas-puff valve as shown in Fig. 4.28. 

The neutron measurements were not useful for low ion temperatures. A 

simple calculation shows that the minimum ion temperature which could have been 

measured by the ATF neutron detectors was about 600 eV. Since no neutrons were 

detected above the noise level, it can be inferred that the ATF ion temperature was 

less than 600 eV, in agreement with the spectroscopic measurements. 

WV ,W 

12.5 15.0 
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Edge Probe Measurements 

Three probes installed around the fast wave antenna were used to monitor 

changes in edge RF fields and to measure edge plasma parameters during the RF 

pulse. Due to the possible toroidal asymmetry and direct interaction of the plasma 

with the antenna, probe results near the antenna might not be consistent with data 

obtained in other toroidal sectors in ATF. However, edge plasmas usually responded 

very quickly to the RF wave no matter where measurements were made around 

the torus. The floating potential changed within a few msec after the RF wave 

injection began. The two impurity monitor signals and the line integrated density 

also responded very quickly, as mentioned before. This was probably due to the fact 

that in the low density (ECH) plasmas, toroidal damping was so weak that RF wave 

filled the torus uniformly in the toroidal direction. 

Langmuir Probe Measurements 

The ICRF Langmuir probe had double tips, one measuring the floating po-

tential and the other measuring n e  and TT  by sweeping a bias voltage. The floating 

potential responded very quickly to the RF as mentioned before, however, the sweep 

frequency was limited to less than 10 Hz due to stray capacitance, therefore it was 

not possible to measure the time response of n e  and 7; to the RF. However, the cur-

rent signal during a sweep clearly changed at the RF onset time. Figure 4.29 shows 

the response of the Langmuir probe signal to the ICRH. The most distinctive effects 

of RF injection on the Langmuir probe I-V characteristics were noisy fluctuations of 

the current signals, changes in the floating potential, higher signal amplitude and a 

different slope in the transition region. The electron saturation point was difficult 

to determine and even in the ion saturation region, the ion saturation current was 

always changing, indicating fluctuations in density and temperature. The ion satura- 
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tion current without RF injection was otherwise constant due to the strong magnetic 

field. Arc tracks over the 0.6 mm distance between the biased probe tip and the 

graphite head armour of the probe, which was always grounded, were occasionally 

observed, especially during high density discharges with high bias voltage. 

Figure 4.30 shows the n e  and Te  edge measurements observed during D(H) 

minority regime ICRH. This direct edge measurement showed that ICRH increased 

the edge temperature and density, which could he ineterpreted as evidence of direct 

edge coupling of the RF wave. 

During these low-density ECH plasma ICRH experiments in ATF, propaga-

tion was poor due to the low spectral density of low 19 1  modes launched. According 

to the loading measurements, more than half of the injected power went to the an-

tenna structure or vacuum vessel. In addition, fast ions generated by the RF which 

was absorbed, and direct edge heating by edge propagating modes, enhanced wall 

sputtering and reionization which changed the edge conditions very rapidly. Because 

of the small number of accessible modes, loading was very sensitive to changes in 

edge conditions. As shown in preceding sections, loading dropped quickly in the first 

few tens of msec of RF injection, during which edge conditions changed rapidly as 

indicated by the diagnostic signals discussed above. 

The edge density also reflected the line average density changes observed 

during ICRH in the rising density shots. The edge density sharply increased in the 

first 10 to 20 ms of RF injection, then slightly decreased even if nei  was still increasing. 

The Ha  and impurity monitor signals were consistent with the sharp increase in the 

plasma edge density seen at the same time. During these shots, the H a  and impurity 

monitor signal decreased in time after an initial peak. The plasma edge density 

remained at a higher level than during the pre-RF period. 

During the constant-density shots, the density started increasing inside the 

radius corresponding to the current-strap position. Figure 4.31 shows the radial 
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Figure 4.31: Radial Profile of the Edge Electron Temperature and Density 

profile of n e  and T, in the constant density shots at 50 msec after RF was injected. 

As the probe passed R 232 cm, particle flux from the face of the Faraday shield 

started reaching the probe tips. Density increased 4 to 10 times the values observed 

further out, and the temperature also increased. From this observation, it is obvious 

that the antenna itself divided the scrape-off-layer (SOL) and the two regions were 

quite different during the RF phase. No data are available without RF for this 

configuration. 

RF Probe Measurements 

The ICRF magnetic probes measured two orthogonal components of the mag-

netic field[11]. Since the magnetic field lines in ATF were very complicated and the 

shear in the field was largest at the edge region, alignment of the loops to the local 

magnetic field line was somewhat difficult (i.e., arbitrary). As the probe moved in 

and out radially, the angle between the perpendicular direction of the loop and the 
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field line changed. Therefore the data were only meaningful when compared with a 

reference signal, such as the probe signals during vacuum only RF injection. Com-

parison of the probe signal from RF injection into plasma with RF injection into 

vacuum allowed determination of the wave propagation direction. 

A typical vacuum signal from the big probe was peaked at the current strap 

position and then decreased. The other two probe signals showed the effect of the an-

gle to the local magnetic field line on their signal amplitudes and radial profiles. Tak-

ing the sequence of shots from 9004-9018, which were in the D(II) regime, constant-

density shots with no eigenmodes, a comparison with calibrated vacuum data is 

shown in Fig. 4.32. The angle between the local vacuum magnetic field line and the 

perpendicular direction of the probe loop surface varied about 17 degrees during the 

162 

• 



full radial translation of the probe s . The radial positions of the probe, except the 

last one (R=230 cm) were located behind the Faraday shield. 

In low density plasmas, the wave mode was likely to be an eigenmode. Even 

in the constant-density shots, the dominant mode was a single mode as will be shown 

in the next chapter. In the rising density shots, a few discrete eigenmodes were 

observed during the density rise. Figure 4.33 shows a typical RF probe signal with 

discrete eigenmodes. The amplitude of each mode was either higher or comparable 

to the equivalent vacuum value. This means that the observed eigenmodes were not 

penetrating modes but rather edge circulating modes. This characteristic can be seen 

by correlation with other edge diagnostic signals[11]. 

The RF probes were also used to measure high frequency magnetic fluctu-

ations during D(H) RF heating experiments. A 100 MHz sampling rate Transiac 

digitizer was used for sampling data and an IDL (IDL is a proprietary data analy-

sis software package) fast Fourier transform (FFT) routine' was used to obtain the 

frequency spectrum. In a sequence of reproducible shots, a narrow band of low fre-

quency fluctuations was found about 30 to 40 msec after RF injection. This time was 

also the effective RF coupling time after which loading decreased, Tee, and the stored 

energy were slightly reduced, and the NPA showed a less energetic tail formation. It 

is not clear whether the low frequency modes were correlated with these phenomena. 

These low frequency modes appeared regularly throughout a sequence of shots and 

a radial profile of its amplitude showed a kind of standing wave form as shown in 

Fig. 4.34. Note that the sensitivity of the probe to the low frequency signal is much 

lower than to the high frequency signal. In this figure the signals were not calibrated 

5 The author is grateful to D. K. Lee for providing a computer code to calculate this angle. 

The author is grateful to S. Hiroe and D. C. Giles for providing the hardware and software for 

fast digitizer measurements and to W. Wing for providing the FFT routine. 
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because sensitivity measurement was too erroneous in the low frequency region. Since 

the measured signal is proportional to the fluctuating magnetic field times angular 

frequency, the high frequency (14.4 MHz) signal is 288 times larger than the low fre-

quency (50 kHz) signal for the same magnetic field fluctuation. In most of the shots, 

higher harmonics of the fundamental RF frequency also appeared on the RF probes, 

showing some non-linear coupling possibly due to RF sheath effects. No parametric 

decay instability of the RF was observed during these shots. The frequency spectrum 

measured by one of the RF probes is plotted in Figs 4.35 and 4.36. 
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Summary  

Extensive wall conditioning including induction heating, glow-discharge clean-

ing and six-element Ti gettering with antenna conditioning significantly improved the 

ICRH operational performance as well as general ATF perfomance. Even with these 

good operational conditions, (due to the low density plasma) the ICRH deposited 

most of its power to the edge region resulting in degraded heating performance. 

Loading measurements and spectroscopic measurements support this observation and 

also showed edge cooling due to RF-induced impurity influx or wall sputtering. The 

neutral particle analyzer showed a large nonthermal minority ion tail caused by un-

confined orbit loss of edge heated particles, which will be explained in Chapter V. 

These results were consistent with the edge probe measurements indicating direct 

RF/edge interactions. 

It was also observed that loading was sensitive to frequency, strap - plasma 

gap and density. An optimized ATF magnetic configuration was crucial for better 

performance. This was a function of RF frequency and minority concentration as well 

as plasma temperature and mod-B configuration. The frequency scan and minority 

concentration scan demonstrated the importance of these parameters. 

Some physics including fast ion confinement, eigenmode study and magnetic 

fluctuations are discussed in the next chapter. The initial results showed that in stel-

larator geometry it requires more effort to understand these important issues rather 

than is required for tokamak geometry. Assumptions such as toroidal or poloidal 

symmetry must be avoided in the stellarator geometry. 
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CHAPTER V 

DATA ANALYSIS AND DISCUSSION 

In this chapter, analytic and numerical modeling are employed in an effort to 

better understand the experimental data and to find future directions and expecta-

tions for the ATF ICRH experiments. In particular, missing links in the experimental 

data needed to build a whole, consistent picture of the ATF ICRH experiments are 

supplied from calculations. Some of the topics investigated are: 

• Propagating modes and their characteristics, 

• RF power absorption, 

• RF/edge interaction, 

• Fast ion confinement in ATF, 

• RF power balance. 

It is not possible to cover all of these topics exhaustively, but some of them 

will be examined in considerable detail. 
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Table 5.1: Input Parameters of ATF Plasma and Vacuum Vessel for Computer Sim-

ulations 

Simulation With a 2-D RF Heating Code  

The 2-D RF heating code discussed in Chapter II was used for simulating 

the ICRH experiments performed on ATF. Experimental values were used for most 

of the required input parameters of the code, including density and temperature 

profiles. Table 5.1 shows typical input parameters used for simulation of the D(H) 

experiments. 

For density and temperature profiles the following functional form was used: 

f(P) = (1( 0 ) — f(a)){ 1 . 0  — Pa? + f(a), 
	 (5.1) 

where p is the radial flux coordinate, f (0) and f (a) are the values of f at the plasma 
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center and last closed flux surface, repectively, and a and 	are numeric constants 

which were determined from the experimental data. 

Basic physical characteristics and global characteristics of RF waves in the 

ATF plasma are discussed first. A dominant propagating mode of the lei' spectrum in 

terms of power absorption from the launched antenna spectrum appeared in these low 

density target plasmas. A detailed study of this mode follows, including polarization, 

region of propagation, absorption layer, and wave field profiles. The power deposition 

profile is discussed later with the 3-D calculation results (helical symmetry assumed) 

and compared with the experimental observations. 

The simulation of the ATF magnetic field geometry used by the 2-D code was 

shown in Fig. 2.7. For the geometry shown in the figure, the warm plasma dispersion 

relation of the fast wave, launched from the low field side on a horizontal (vertical in 

the code geometry) chord is displayed in Fig. 5.1. The magnetic field saddle point in 

the 2-D code is the field of the minority species fundamental resonance (for which the 
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ICRH is tuned). Therefore the hybrid resonance is located "sideways" (pependicular 

to the chord) and does not appear in Fig. 5.1. Hence the ion Bernstein wave is cutoff. 

Figure 5.2 is a two dimensional plot which shows the locations of the resonance layer 

and cut-off layer for two different k11 modes. 

For smaller k ll  modes, the fast wave was able to propagate over most of the 

region in front of the antenna, while for larger k 11  modes, the lower hybrid cutoff layer 

was located in the plasma region. This made the evanescent layer very thick, which 

made it difficult for the ICRH wave to tunnel through it. 

The RF field profiles were also different for these two k1 1  modes. For the given 

plasma conditions, /ell = 10 m -1  appeared as the dominant mode. With this in mind, 

the field profile for this mode showed an eigenmode structure with an odd m number 

but the k l1  = 3.8 m -1  did not. However, since the 19 1  = 10 m-1  mode had a larger 
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edge evanescent layer, power deposition was limited to the edge region, while for the 

k11  = 3.8 m -1  mode, good penetration to the central plasma column was possible, 

where power would be deposited as shown in Fig. 5.3. In this figure, contours of 

constant field and power deposition are shown in the ATF geometry. 

The antenna spectrum was primarily determined by the width of the strap 

and the gap between the side walls. For this low density plasma, the strap width 

(-s,  10 cm) and gap between the side walls (22 cm) were too narrow to launch the 

narrow band of accessible modes (low k11 modes). The side wall image currents 

affected the spectrum so that low modes were suppressed. Unfortunately, the 

suppressed modes were the ones which would have penetrated to the plasma center, 

and possibly performed useful heating. This situation would improve with the higher 

density plasmas for which this antenna was originally designed. 

Figure 5.4 shows the 	power spectrum. The broken line is the spectrum 

for the strap without a toroidal current distribution and the solid line is for the 

strap with a toroidal current distribution, including image currents. Note that a dip 

appears around 19 = 0 when the toroidal distribution was included. There is also 

asymmetry around k 11  = 0. This is caused by the helically symmetric configuration 

and poloidal field effects (the antenna strap is at an angle to the toroidal portion of 

the field). When the field is reversed, this asymmetry is also reversed. It is interesting 

to compare this spectrum with an antenna spectrum without plasma effects as shown 

in Fig. 5.5 1 . The peak in Bz  appears at kll 207n -1 , (note: kz  and kii  denote the 

same quantity) but this mode has such a high k il  number that it does not penetrate 

into the central plasma column at all, as was shown in Fig. 5.4. Therefore it is 

speculated that the higher kii modes (higher than 15m - '), did not contribute much 

'The author is grateful to P. M. Ryan for calculating the antenna spectrum for several different 

cases. 
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Figure 5.5: ATF Antenna Spectrum without Plasma Effects: Bz  is Calculated at 

3 cm from the Faraday Shield Surface. 

to power absorption in the low density plasmas because reflection was too high. It 

should be noted that although high k il  modes had poor penetrating capability in low 

density plasmas, they allow larger Doppler shifts of the resonance layer, which would 

increase cyclotron absorption by moving the resonance layer toward regions where 

the polarization is favorable to ion heating (the left-hand polarization is increased). 

This is why high-density plasmas, which permit propagation of high-k 11  modes, are 

more efficiently heated by ICRF. 

The left-hand polarized electric field profile as plotted in Fig. 5.6 shows that 

1E+  I was zero at the resonance layer within numerical error. 

Loading is calculated from f Paba dV/1/1.2„t  as given in Eq. 2.152. Although 

any plasma parameter can affect loading, the loading was experimentally found to be 

most sensitive to density and frequency. Here the effects of density included profile 

effects and the gap between the antenna and plasma. Overall, simulated loading 
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Figure 5.6: The Radial Profile of the Left-Hand Polarized Electric Field (1E + 1) 

data matched the experimental data quite well. Figure 5.7 shows the calculated 

density dependence of the loading. Eigenmodes were observed but they appeared 

more often for the same density range in the experiments. Figure 5.8(a) shows the 

frequency dependence of loading for the D(I1) regime in which the frequency of 14.4 

MHz placed the fundamental resonance layer on the magnetic axis in the typical 

ATF ECH plasma. The simulated loading is higher with slightly lower frequencies 

than 14.4 MHz. This is believed to be due to the difference in topology of the 

resonance-cutoff layers. Figure 5.8(b) shows magnetic configurations for different 

frequencies. It can be seen that the highest loading occurs when the resonance layer 

and hybrid layer occur near the flat region around the saddle point. The same effect 

can be obtained by changing the magnetic field or minority concentration. However, 

increasing the minority ion concentration also increases the distance between the 

fundamental resonance layer and the hybrid resonance layer which would decrease 

the efficiency or require higher temperature (velocity) as indicated by Eq. (2.14). 
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According to the simulation results, in ATF at 14.4 MHz in the D(II) regime, to keep 

the hybrid resonance near the saddle point, the minority concentration should be less 

than 5%, taking the fact that the saddle point is slightly inside the plasma magnetic 

axis into account. 

Simulation of the RF power deposition profiles was the most important output 

of the 2-D code. Due to the lack of a kinetic model in the plasma response function 

(the warm plasma dielectric tensor), the power partitioning to each plasma species 

could not be calculated with the 2-D code. For higher modes, as expected, the 

calculation shows that power was deposited on the outside at these low densities. In 

Fig. 5.4, the k z  spectrum for power absorption shows that the dominant mode was a 

single kz  = 10 m-1  mode and the power of this mode was deposited in the outer half 

radius. This is reasonable because in the experiments the measured loading was very 

low, which shows that not much power was absorbed by the plasma and that edge 

heating occurred during ICRH. If the calculation is correct, in a low density plasma a 
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little power would go to the central column, large edge heating due to the evanescent 

wave would have occured in the plasma edge, and toroidal damping would have been 

very weak. As discussed in Chapter IV, no central heating was observed, and the 

electron temperature in the plasma edge region increased dramatically. Experimental 

evidence of weak toroidal damping was also observed. Several diagnostic signals -

impurity monitor signals, spectroscopy signals, H a  signals - measured on the far side 

of the torus from the antenna responded instantly to RF wave injection and the RF 

signal leaked through the limiter on the far side of the torus when there was plasma. 

Since the wave length of the dominant mode was comparable to the vacuum vessel 

radius, a standing wave was probably formed. All these conditions enhanced edge 

heating. Figure 5.9 shows the radial profile of the calculated flux-surface-averaged 

absorbed power for k11=10 In this case 80% of the power was deposited in the 

outer half radius, including the effect of larger volume with increasing minor radius. 
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In calculating the power balance, it is useful to define a quality factor [1] 

Q as the ratio of the imaginary part of the absorbed power to the real part of the 

absorbed power. If Q is small, more of the RF wave is coupled resistively to the plasma 

and loading increases, while when Q is large, reactively coupled power is large and 

the loading decreases. Since the vacuum loading was measured as — 0.1852 at 14.4 

MHz and the calculated loading did not include vacuum loading, by comparing the 

calculated loading with the measured vacuum loading, the relation between the ratio 

of the absorbed power to the total input power in measurements and the equivalent 

Q value in calculations can be estimated. Here it was assumed that the calculated 

loading was equal to the total experimental loading after the vacuum loading was 

subtracted: Zm  = Zp  Z,,, and Z,, = Zp , where subscripts m, p,v and c stand for 

"measured","plasma","vacuum" and "calculated", respectively. For Zp  = Z,,, 50 % 

of the power is absorbed by the plasma and the other half would be lost by ohmic 

coupling to the structure. In this case (Z p  = Z,) the simulation showed the 

equivalent Q ti  50. This quantity is useful in the next chapter where projections for 

future experiments are discussed. 

In summary of this section, by using a 2-D RF heating code the power depo-

sition spectrum of the antenna was studied as a function of the k i t mode number for 

low-density ATF plasmas. It was found that the launched waves could not penetrate 

to the central plasma because of high-k 1 1 mode launching (low-k 11  modes were unfor-

tunately suppressed by the antenna design). This caused most of the RF power to 

be deposited in the plasma edge region. The loading calculations from the code were 

in good agreement with the measured loading. Both the calculated and measured 

loading indicated that half of the RF power was lost to the antenna structure via 

ohmic loss. The density dependence of the loading showed an eigenmode character-

istic. The frequency dependence of the loading indicated that the location of the 

Doppler-shifted resonance layer is very important. 
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RF/Edge Interaction 

Though extensive edge diagnostics were not available for the ATF ICRH 

experiments, there was data from various diagnostics which were specially designed 

for edge studies, namely H a  detectors, spectrometers and probes. These diagnostics 

were used to examine the RF/edge interaction within the limits of their applicability. 

Ha (Da ) detectors have been widely used to assess particle confinement by 

measuring the interaction of electrons with edge neutral hydrogen (deuterium). The 

Ha  (Da ) signal is a function of the edge neutral density, electron density, and electron 

temperature. During the ICRH experiments in ATF, the Ha  signal showed an initial 

peak then decreased as shown in Fig. 4.11. Since the edge density was increasing, 

as indicated by the Langmuir probe measurements, the source which caused the Ha  

signal to increase came from the plasma edge region. The decrease after an initial 

peak is believed to be caused by edge plasma cooling due to impurity flux from 

sputtering of the structure induced by unconfined fast-ions, and wall impurity influx 

enhanced by direct edge heating (the reader is reminded that edge [edge plasma] here 

means plasma outside the last closed flux surface and plasma edge means the plasma 

just inside the last closed flux surface). Note that the Ha  detection filter installed 

in ATF had a wide enough wavelength bandwidth to detect the Ha  and Da  lines 

simultaneously. Therefore the detector signal was the sum of collisional excitation of 

H atoms and/or D atoms produced by recycling and dissociation of H2 /D2  molecules. 

There was insufficient data to totally characterize the antenna-near field in-

teraction except for the observation that the edge density and temperature increased 

during the RF even behind the antenna Faraday shield layer, observation of eigen-

modes generation, and observation of harmonics of the generator frequency in RF 

probe signals, probably due to sheath rectification. 

The radial profiles of the edge electron density and temperature as shown in 
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Fig. 4.31 were used for energy accounting during the RF. Assuming that the dominant 

loss was parallel heat flux to the antenna and that fast ion orbit loss might be ignored 

for the edge region, a simple analytic formula for the parallel energy flux is given by 

[2], 

	

qrtal  = (2r 	+ 7,)kTe rt,C, f (r), 	 (5.2) 

where, 

Ti  
= 

Te ' 
— 1 for 7 > 1, 

	

2 	e  I Vsheathi 
7e = 1 — lie + 	 kT, 

kTe meTi 
el sheath = 	In 	 ---, —3.8 for r = 1, 

2 	mil', 

Lie  is the secondary electron emission coefficient, C, is the sound speed defined as 

Cs  7: 
k(T, +  Ti ) 

m i 	2  

and f (r) is a density reduction factor ranging from 0.487 for r = 0 to 0.798 for r = oo. 

The total power deposited at this toroidal location was obtained by integrating grted 

over the minor radius. Assuming that the effective region was just in front of the 

antenna, then the total power deposited in this area was obtained from 

Ptotal  
rlim 

'92  

dr J r de qrt °1 27rr dr,  , 
9 1  

(5.3) 

where 0 1  and 02 were the minimum and maximum poloidal angle of the antenna 

aperture. Figure 5.10 shows the result of a rough calculation of the gra profile using 

Eq. (5.2) and the data of Fig. 4.31. The total power deposited in front of the antenna 

in this case was about 21 kW which was 10% of the total RF power. Because there 

was no data point inside R 230 cm and due to the small assumed effective area, this 

result might somewhat underestimate the RF power deposition in the edge region. 
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Figure 5.10: gr' l  Profile with and without RF 

Ohmic loss to the structure was also responsible for edge parameter changes and 

should be subtracted from the calculated value of the edge RF energy accounting to 

calculate only the ratio of RFfedge interaction to the total RF power. Obviously the 

value calculated above is too uncertain to use for a precise power-balance study. A 

comparison will be made between an indirectly calculated value and the above value 

in a later section in this chapter. 

Discrete eigenmodes were observed in the rising-density shots as shown in 

Fig. 4.33. Identification of each eigenmode requires a systematic measurement from 

different toroidal and poloidal locations around the vacuum vessel. Since the ATF was 

not equipped with a sophisticated probe array, only a simple analysis was attempted 

using a radially moving probe to measure the phase difference between the RF signal 

and a reference signal. The phase difference between the current-strap current signal 

and one component of each probe was measured simultaneously. Since the two small 

probes tended to rotate as they were radially translated, only the results from the 
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big probe (moved remotely by a stepper motor drive) are shown here. As the probe 

moved radially, the toroidal probe location was little changed but the poloidal location 

was changed by — 15° as shown in Fig. 5.11. Using this information, phase angle 

versus poloidal angle is plotted as in Fig. 5.12. In this case, the measured changes 

in the phase angle came almost solely from the poloidal components because of the 

reasons described next. If an e i(n`75+me) dependence where 0 and 9 are the toroidal 

and poloidal angle is assumed, the shear effect is neglected and A0 0 along the 

radial probe path, then e'" 9  is the dominant term. Between successive eigenmodes, 

no change was observed in the toroidal component of the phase angle at the same 

probe position but the poloidal phase angle deduced from the radial profile measured 

as the probe moved was different. This indicates that successive eigenmodes had the 

same toroidal mode number. It is now possible to identify the modes with a simple 

calculation as shown below. 

The fast wave dispersion relation, Eq. (2.59) can be adapted to a helical 

Po
lo

id
a l

 A
ng

le
  (

de
g

re
e)

  

187 



A
 P

ha
se

  (
D

eg
re

e)
  

100 

90 

80 

70 

60 

50 

Shot 8937-8961 

17 	18 	19 	20 	21 
	

22 
	

23 
Theta (Degree) 

Figure 5.12: A Plot of Measured Phase Angle as a Function of the Angular Changes 

in Poloidal Location of the Probe 

geometry as 

(lc, — mh) 2  = 
1 
2 

( w 2 _ . 2  
2 	C _I_) 

VA 
(5.4) 

where vA  is the AlNen velocity, rrt is the poloidal mode number and h is the helical 

pitch. For an average radial mode number defined as [3] 

it 
2a 
it 
a 

for m = +1, 

otherwise, 

kz  = 10 m -1 ,vA = 0.084w determined from Table 4.1, and with f=14.4 MHz for 

the D(H) heating regime at 0.95 T, the onset densities for m = 0,1,2,3,4 modes 

calculated from Eq. (5.4) are 0.81, 0.37, 0.5, 0.56, and 0.76x10' cm -3 , respectively. 

For the m = —1 mode, the onset density becomes 0.97x10" cm -3 . Comparing 

this with the measured density (Fig. 4.33) the possible poloidal mode numbers are 

in = 0, 1, 2, 3, and 4, as shown in Fig. 5.13. 
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Figure 5.13: Comparison Between Calculated Eigenmodes and Measured ones 

In stellarators/torsatrons, toroidally and poloidally resolved edge data are 

more important than in other machines because of the complex edge geometry. Even 

in the Alcator C tokamak [5] (the edge geometry of tokamaks is much less complicated 

particularly for circular plasmas), there sometimes existed a large poloidal asymmetry 

in particle flux. During the initial RF experiments, RF effects appeared everywhere 

around the torus, because (as demonstrated in Chapter IV and above), toroidal 

damping was very weak. However, it will be demonstrated in the next chapter that 

as density is increased in future experiments toroidal damping should become strong, 

and most of the nonlocal phenomena should disappear. 

In summary of the RF/edge interaction section, the energy deposited to the 

edge plasma region directly by the RF was calculated using the data from a Langmuir 

probe. This calculation indicates that 10% of the total RF power was deposited in the 

edge region (the gentle reader is once again reminded that edge here means outside 

the last closed flux surface). The RF probe measurements demonstrated eigenmode 
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generation during a density ramp, which probably were poloidal modes, as shown 

in the calculation above. The importance of the generation and identification of the 

eigenmodes is that it reinforces our argument for the modes which were launced by 

the antenna, showing that they were basically edge dominated modes which did not 

penetrate to the plasma center. The observed eigenmodes agree reasonably well with 

those calculated from the launched antenna spectrum with the 2-D RF code. 

Fast Ion Studies  

Confinement of fast minority ions generated by ICRH is the key factor for 

success of the minority heating scheme with a low minority concentration. In this 

section, this topic is discussed by analyzing the measured NPA data shown in Chap-

ter IV. Understanding of the fast ion behavior in the ATF plasma is necessary for 

this work. The time scales for possible fast ion loss channels in the low density ATF 

plasmas are discussed first. Then a study of the loss cone in ATF follows. The effects 

of RF on the particle orbit are also illustrated with a collisionless orbit following 

code. From this basic knowledge, an interpretation of the NPA data is performed. 

First of all, some time scales for the competing energy transfer and loss 

mechanisms for fast ions are considered. The direct ion loss time is estimated [6] as 

1 PStiX  I  V1OSS 

TIOSS 

1105.1 stix 

where P]o„/Pstb, is the ratio of power lost due to unconfined orbits to the total 

absorbed power as calculated from the Stix formula, Eq. (2.111), 111 0„ is the energy 

above which particles are lost, Tstix is temperature defined as 

PStix  
TStix = 	 Ts) 

dnminority 
(5.6) 

(5.5 ) 
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and r, is the fast ion slowing down time [7] given by 

3 x 1014 21(T,/e) 3 / 2  = 	
ne Z 2 1n A 
	 (sec). 	 (5.7) 

In words, Eq. (5.6) states that in the case when unconfined orbit loss is dominant, the 

power which is lost is a function of the tail temperature only. Then from Eq. (5.7) 

and the equation 
I loss nminori ty 

r10 3 5 

Eq. (5.6) was obtained. The tail temperature, T stix , is proportional to the RF energy 

absorbed by fast ions for the slowing down time, r,, during which electrons drag 

fast ions dynamically. The relation between Pioss/Psti.  and  Tstix/Wios5  was calculated 

and is plotted in Fig. 5.14. For the outer edge of the standard ATF plasma where 

Pio5s/Psti. was 1, n o., was about 0.033r, or 'nos. 1-2 msec. 

The charge-exchange-loss time scale is easily calculated from a basic knowl-

edge of atomic physics and is given by: 

1 
rcx 

nneutral ( 0-1)  )cx 2  
(5.9) 

where 71  neutral is the neutral density and (ov), x  is the charge exchange cross section, 

which is a function of energy. Fot the case where the fast ion velocity is large compared 

to the neutral velocity, 

(cry) CZ  = cr(E)vf,,st ion , 	 (5.10) 

where E is the fast ion energy. Spatially resolved (or even averaged) neutral density 

is apparently one of the most difficult quantities to measure in fusion experiments, 

since it has exponentially (or even more nonlinear) toroidal and poloidal variations 

(depending on gas sources and recycling points), which means that knowledge of it 

at any single position does not imply knowledge anywhere else [8]. No measurement 

of the neutral density was attempted in ATF. Based on measurements [9] of similar 

conditions in the Heliotron-E plasma, it is estimated that the central neutral density 

Ploss (5.8) 
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was on the order of 0.5 x 10 8  cm -3  and the edge neutral density was 0.5 x 10 9  cm -3 . 

For this case rcx is in the range between 5 and 50 msec for the plasma region where 

the ions of interest (10 to 100 keV) are believed to have been created. But this value 

is subject to change at the NPA position due to a gas-feed valve located at the IN-1 

port. 

The time scale for hydrogen fast ion energy transfer to electrons can be rep-

resented as the energy equilibration time for proton-electron collisions [10]: 

[ rpe = 1.8 x 10.-19 
 (mpme)z neApe  

(mpTe + rneTp) 
(5.11) 

where Ape  is the Coulomb logarithm for p — e collisions. This time is calculated as 

about 50 msec for the typical ATF low density parameters shown in Table 5.1. 

The time scale for hydrogen energy transfer to deuterium is much longer than 

rp, and is give by [10] as 

[ -1  
rpd = 1.8 x 10-

19  (MPMX ndApd  (5.12) 
(mpTd  + MdTp )  

where Apd  is the coulomb logarithm for p — d collisions. With the same parameters 

from Table 5.1, Tp d is calculated as about 200 msec. All the quantities in Eqs.(5.11) 

and (5.12) have the cgs units except the temperature which is in eV. 

From the above scaling it can be seen that in the plasma edge region of ATF 

fast ions generated by RF were rapidly lost due to unconfined orbits, while in the 

central region, CX loss was competing with electron drag. Unfortunately, in the 

low density ATF plasmas, as discussed previously, the RF power flux to the central 

minority ions was very small. Thus, total energy transfer to the plasma via electron 

drag was negligible. It would be interesting to consider how this picture is improved 

for higher density plasmas, and this is discussed in the next chapter. 

To understand energetic particle confinement in ATF better, a Monte-Carlo 
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orbit following code' which simulated the ATF magnetic geometry in Boozer coordi-

nates was used to calculate the confined-particle fraction as a function of energy. The 

whole v 11 /v space was divided into eight cells and four particles were started in each 

cell with a random starting position in p, which is the radial coordinate in the Boozer 

coordinate system [11], where the radial coordinate is the gradient of the magnetic 

flux surface represented as a circle. For a set period of time, the code followed the 

orbit of each particle and determined if it remained confined. A particle was lost if 

the particle orbit hit the last closed magnetic flux surface. Figure 5.15 shows the 

results as a function of particle energy and position in p. 

The confinement fraction was calculated as the sum of the confined time of 

each particle divided by the total given time in each cell. Clearly, the confinement 

fraction averaged over the whole pitch angle was degraded as ion energy increased 

and as p increased (Fig. 5.15(a)). The pitch-angle dependence showed that particles 

with smaller pitch were more poorly confined (Fig. 5.15(b)), as expected. 

A comprehensive study of the loss cone in the ATF magnetic geometry has 

not been performed. However, an initial study [12] showed that when the effects of 

the equilibrium electric field are not included, most of the particles in the outside 

region are within the loss cone, even for a 1-keV particle. This study also showed that 

the presence of the radial electric field reduced the loss cone for particles of energy 

1 keV. But this favorable effect of the electric field is not effective for particles with 

energy higher than seven to ten times the electron temperature (Te , -- 1 keV in the 

ATF) [13]. 

Orbit studies in ATF have revealed that there is a factor which affects particle 

confinement significantly, the minimum-B contour [14,15]. In Boozer coordinates, 

these contours appear as shown in Fig. 5.16 for the ATF standard configuration, 

'The author is grateful to S. Painter for allowing him to use this code and assisting with it. 
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where it can be seen that the closed contour region occurs mainly inside the plasma 

magnetic axis. The location of the minimum-B contours in ATF can be varied by 

changing the mid-vertical field coil current. It was found [14] theoretically that as 

the area of the closed minimum-B contours increases, particle confinement is better. 

Particle confinement enhancement by controlling the configuration of the minimium-

I/31 contours has been proposed for helical devices [14]. This enhancement occurs 

because the drift orbits of energetic trapped particles approximately follow the min-B 

contour according to both analytic (J-invariant) and numerical (guiding-center-orbit-

following code) calculations [15]. If this is the case, particles heated in the inside 

region (see Fig. 5.16) where most of the minimum-B contours are closed, would be 

confined better. 

Exact inclusion of RF effects in the orbit following code would have been quite 

difficult, even though the RF-induced electric fields can be calculated everywhere. 
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Exact calculation of particle orbits with RF would require the solution of the full 

equation of motion of the particle including the RF-particle interaction term which 

would be a function of gyrophase of both the particle and wave. This was attempted 

by other researchers for a mirror-based configuration and demonstrated a stochastic 

behavior of the wave-particle interactions [16,17,18]. Since such work would have 

taken significantly more manpower and time than was available, a simplified RF 

heating model was used to show how RF affects the particle orbit in the collisionless 

regime3 . In ATF, fast-ion generation by ICRH could be treated as a collisionless 

phenomenon because the 90-degree scattering time was much longer than the loss 

time due to charge-exchange or particle drift orbits, as will be demonstrated in the 

following section. Therefore confinement of RF-created minority fast-ions could be 

studied by simply using an orbit following code without including collisional effects. 

For the simple model, it was assumed that every particle passing through the local 

resonance layer was heated by the RF wave electric field (which was pre-determined 

from the RF heating code) and the RF amplitude was assumed constant at the 

resonance layer everywhere in the torus. Phase mixing effects were ignored, and the 

energy and pitch were recalculated whenever a particle passed through the resonance 

layer. The particle orbit was then followed with those new values. For the RF 

perpendicular (to the magnetic field) kick to the particle energy, Eq. (2.111) was 

used. An example of this calculation is shown in Figs. 5.17 through 5.19. Even 

though this was not a precise simulation of RF effects on particle orbits, several 

interesting points can be seen. First, a trapped particle absorbs more energy from 

the RF wave than a passing particle. Particles are heated to high energies in a 

relatively short time, especially if the particle is helically trapped. The RF can also 

3The author is grateful to R. H. Fowler for providing the orbit following code and to C. L. Hedrick, 

M. D. Carter and E. F. Jaeger for enlightening discussions about simulation of RF effects on particle 

orbits. 

197 



change the type of the particle orbit as the particle is heated. This can be seen 

in Fig. 5.17, where the passing particle orbit was not changed by the RF, while in 

Fig. 5.18, the passing particle orbit was changed to a banana particle orbit. For 

a helically trapped particle, as shown in the Fig. 5.19, resonance localization was 

evident, indicating that the turning point was localized towards the resonance layer 

as it was kicked by the RF. Actually these cases shows the maximum energy that a 

particle could obtain since the phase of the gyromotion of the particle was assumed 

in-phase with the wave electric field as the particle passed through the resonance 

layer. 

In a tokamak, ICRH produces energetic, banana trapped ions whose banana 

tips lie near the resonance layer [19,20]. The banana width grows as they are accel-

erated to higher energies and are lost via charge exchange, or collisional scattering 

out of the resonant orbit. However, it is possible for the electron collisional drag to 

balance the acceleration by transferring energy from the fast ions to electrons. In 

stellarators, ICRH is assumed to produce helically trapped particles. The number of 

banana trapped particles is small in stellarators and the ripple in the magnetic field 

is larger than in tokamaks. Particles heated at major radii in the outer region beyond 

the plasma center (R > Ro ) where the mirror ratio is large, are likely to be lost due 

to large VI/31 orbit drifts. However, particles heated on the inside can follow a closed 

minimum-[BI contour and be confined longer. Deeply helically trapped particles can 

absorb large amounts of RF energy since they stay longer in the resonance layer. 

In the central region of a stellarator, the number of helically trapped particles is so 

small that the contribution to heating from trapped ions is small. In the edge at large 

major radii (R > Ro , as before) a large fraction of the ions are trapped and easily 

absorb RF energy, but due to the large loss cone in this region these ions are likely 

to be lost before transferring energy to other particles. Therefore in ATF, for good 

fast ion confinement, RF power deposition should occur in the region where there are 
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closed minimum-1BI contours and a larger number of untrapped particles. 

In the ATF ICRII experiments, fast ion tails were observed during D(H) 

minority heating, while no energy transfer to the bulk plasma was measured. If 

unconfined fast-ion loss was dominant, high energy particles generated by ICRF 

would have been lost before they transferred their energy to the bulk plasma via 

collisions. With the knowledge of the power deposition profile in the low density 

ATF plasma discussed in the preceding section, it can be seen that plasma edge (now 

we use plasma edge, as opposed to edge plasma, to mean that portion of the plasma 

in the confined region just inside the last closed flux surface) heating led to enhanced 

fast ion loss because of the unconfined orbits in this region. 

With the preceeding background of the response of the ATF plasma and 

magnetic geometry to the RF-generated fast ions, the NPA data measured during 

ICRH can now be analyzed. It was shown in the previous chapter that the NPA 

measured a large proton tail (up to 50 keV) during most of the D(H) experiments. 

In other words, there were particles accelerated to 50 keV energy, and confined at 

least for the charge exchange time scale. The most ambiguous parameter here is 

again rcx  which is inversely proportional to the neutral density. In most of the 

ICRH experiments, a gas-puff valve located at the opposite port (IN-1) to the NPA 

aperture (TN-1) was used for gas feed to the experiment. Two separate experiments 

with this valve and with a different valve showed significant differences in the energetic 

tail energies as shown in Fig. 4.28 (remember that the y-axis has a log scale). When 

a different gas puff valve (located toroidally far away) was used it is probable that 

the particles heated in the outer region of the torus experienced direct orbit loss (as 

discussed above) before they were lost to charge exchange. Therefore the small tail 

observed was formed by particles confined for a significant time whose RF energy 

gain was balanced by electron drag. On the other hand, when the valve was used, 

TC X for the edge particles was small and was comparable to the orbit confinement 
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time of the edge heated particles, which was less than 2 ms. In this case, edge heated 

particles contributed significantly to the measured NPA signal. 

The frequency scan in the D(H) regime at 0.95 T showed large differences in 

tail energy as a function of frequency, as shown in Chapter IV. One experiment was 

done at 16 MHz which placed the resonance layer inside of the magnetic axis, and 

another experiment was done at 12.8 MHz which placed the resonance layer farther 

outside, past the plasma magnetic axis. Here, a much larger tail was generated 

for the 12.8 MHz case. This caused a larger impurity influx as demonstrated in 

Fig. 4.24. Loading was higher in the higher frequency case. No evidence of bulk 

heating was observed in either case. The reason for a larger tail in the low frequency 

case is presumed to be the higher power density. A 2-D RF heating code simulation 

showed that toroidal damping at the low frequency was very strong, while it was 

very weak at the high frequency, which increased the deposited power density at the 

low frequency by about ten times. This increase was large enough to account for the 

measured loading discrepancy. The reason for higher loading at the higher frequency 

is probably just the already observed frequency dependence. 

The NPA horizontal scan data for each of three different frequencies showed 

considerable change as the frequency changed. This was shown in Fig. 4.26. Reso-

nance localization and banana-trapped particle orbits [6,20] which appear in tokamak 

geometry could not be used to explain these data. The primary reason for this is 

that there are not many banana trapped particles in the stellarator geometry. These 

banana trapped particles were used to explain the NPA spectra for the tokamak case. 

When the same analytic calculation was performed for the ATF 4 , it was found that 

the calculated peaks of the distribution at 14.4 MHz and 16 MHz should be different, 

4 M. R. Wade and the author did this calculation. The author is grateful to C. L. Hedrick for 

enlightening discussions about this calculation 
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but the measurements looked the same, as shown in Fig. 4.26. The effect of absorbed 

RF power on the particle orbits (helically trapped particles) in stellarator geometry 

must be considered to resolve this discrepancy. 

Even without theoretical analysis of the orbits, simple consideration of the 

data provides some insight. Figure 4.26 shows that the minority fast ion tails were 

only present for certain ranges of the horizontal and vertical angle of the NPA to the 

magnetic field (recall that the NPA could be scanned in both vertical and horizontal 

angles). For this range of analyzer angles, the NPA could detect only particles which 

had small pitch (v_i_ >> v11). Comparing the NPA data taken for 14.4 MHz RF injection 

with and without opening the gas-feed valve close to the analyzer, the scanning 

spectrum of flux vs. energy vs. angle looked similar for both cases, except that the 

amplitude was different. This means that edge heated particles (case for which the 

gas-feed valve close to the analyzer was open) and centrally heated particles (case for 

which a different gas-feed valve, toroidally far from the NPA, was open) contributed 

in the same way to the analyzer signal. Since toroidal damping was very weak, the 

effect of locally heated particles in the vicinity of the NPA port could have been 

dominant, especially for edge heated particles. With this thought in mind, for the 

12.8 MHz case, at the perpendicular analyzer angle, in which the resonance layer 

was isolated near the outside and inside plasma surface (Fig. 5.20), where nneutral 

was high, locally trapped particles were likely to be charge-exchanged immediately, 

which would have increase the NPA measured signal at this angle (90-degree angle), 

as shown in Fig. 4.26(b). 

In summary of the Fast Ion Studies section, an analytic estimation of the 

fast-ion loss time scale showed that in the plasma edge region the fast ion loss time 

and the fast ion charge exchange time were comparable to each other, but much 

faster than the time to transfer the fast ion energy to the background electrons or 

ions. In the central region, however, the energy transfer time was less than or equal 
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Figure 5.20: Fundamental Resonance Layer at 12.8 MHz with 0.95 T 

to the charge exchange time, but certainly less than the time for fast-ions to be lost 

due to poorly confined orbits (i.e., the central fast-ion orbits were well confined). 

The particle orbits in the plasma edge region were in the loss cone according to the 

orbit studies, therefore plasma edge heated particles (either trapped or untrapped) 

were subject to rapid loss. Centrally heated particles were well confined (effect of the 

closed minimum-B contours). The effect of the RF on particle orbits was studied by 

using an orbit-following code with a simple RF model. This showed rather dramatic 

effects on the trapped particles. Edge heated trapped particles were rapidly lost due 

to unconfined drift orbits. The previous power deposition studies and these orbit 

studies mean that the RF power was deposited in the plasma edge, created fast ions, 

and was rapidly lost because of the loss cones in the plasma edge. 
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Power Balance Calculations 

A very simple calculation of the RF power balance is presented below. The 

errors in this calculation were estimated (see below) and show that it is a very crude 

model. However, it remains relevant since the channels for RF power flow in ATF 

were so few, that the errors are smaller than the estimated power flow to each channel. 

In the cases that have been examined so far, the dominant loss channel was ohmic 

loss to the antenna structure as indicated by the low antenna loading. Over half of 

the input RF power was lost through this channel. The dominant loss channel for 

propagating power was demonstrated by the simulations discussed above to be fast 

ion loss and/or charge exchange loss. The NPA data were used as a tool to estimate 

this power loss, as discussed further below. 

First, a simple analysis of the RF power balance is given to obtain some 

qualitative idea of where the RF power went. A simple expression for the RF power 

balance in ATF during ICRH is given by: 

PRFin = Pohrnic /edge Pfast ion) (5.13) 

where Pohmic  is the power loss to the antenna structures, P edge  is the power coupled 

directly to the edge plasma (unconfined plasma outside the last closed flux surface) 

and Pfast fast ion is the power absorbed by fast minority ions. The Pfast  fast  ion  power was 

assumed to be lost before transferring energy to the bulk plasma. 

From loading measurements, Pohn,i , was estimated by comparing the plasma 

loading with vacuum loading. Usually the ratio P ohinic /P - RFin was > 50% for low 

density plasma cases. For shots from 9004 to 9018, typical plasma loading was 0.15 SZ 

which was slightly less than the vacuum loading, 0.18 SZ (total loading on plasma 

shots was assumed to be equal to the vacuum loading plus the plasma loading, so the 

plasma loading was found by subtracting the vacuum loading from the total measured 
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loading). Therefore Po  hini c  was 	110 kW out of 200 kW RF power input. The 

Langmuir probe data and simple analytic formula given in Eq. (5.3) were used to 

estimate Pe d ge . As shown in the previous section, assuming most of the power was 

deposited in front of the antenna poloidally, P - edge 	21 kW. The term Pfast ion was 

obtained from the equation: 

Pfast ion — 
n fast ion Zest ion (5.14) 

Tfast ion 

where ni-ast ion was the fast ion density which absorbed RF power, /last ion was the 

average energy of the fast ions and T fast ion was the energy confinement time of the 

fast ions. Since edge-heated fast ions were assumed to be lost immediately via direct 

orbit loss, and (as demonstrated previously in the simulations), TCX  is assumed to 

be comparable to 71....t ion, Pfas t i on  can be calculated from the measured NPA ion 

distribution data since the measured NPA signal mostly consisted of contributions 

from orbit-lost fast ions. Here again the probability of charge exchange interaction is 

assumed to be the same for all ranges of the energy of lost fast ions as was done for 

Eq. (5.9). For this case 
-fast fast ion was calculated from the data as about 1.5 keV (shot 

9004-9018). Recalling Trnst ion TCX noss, Tr.st. ion 2 ms as calculated in Eq. (5.9), 

this looks reasonable. The density n ctist  ion  was estimated from the nd trace which 

showed an initial drop as shown in Fig. 4.6 which was assumed to be a result of fast ion 

loss. In this case, nfastion ^, 6.7 x 10 11  cm'. Then _fast  fast  ion  becomes 81 kW. From this 

simple analysis, the power ratios were calculated as P ohnii , Pedge • Pfast ion ^ 5 1 4. 

Possible errors in this calculation are estimated by considering missing RF 

energy flow channels such as direct deuterium heating and by examining the validity 

of assumptions used for the above calculation. The fraction of direct deuterium 

absorption to the minority absorption was estimated in the D(H) regime as [21] 

PD ODRID  

PH nH 
(5.15) 
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where 3D = 2/IOnDTD/B 2  was the deuterium beta. From the data in Table 4.1, 

/3D =0.05%. For minority concentration of 5%, the fraction of direct deuterium ab-

sorption at the center is only 1% of the minority absorption. And toward the edge, 

this ratio is reduced more. Therefore PD could be neglected as far as Eq. (5.15) is 

valid. Mode-conversion is another channel for RF power flow, however, as mentioned 

in Chapter II, for a low-field-side launch and low minority concentration (less than 

10%) the fraction of mode converted wave should be negligible. But this fraction 

depends on the plasma conditions, too. Therefore more analysis is needed with ac-

cuarate modeling to estimate this fraction correctly. However, the fraction of the 

RF power mode-converted is both small compared to the ECH power and ineffective 

at electron heating because it is in the edge. The assumption that all the energy 

absorbed by the minority ions was lost in -rcx  ti  2 ms may not be accurate. Since 

no evidence of bulk heating was observed, the possibility of power transfer to the 

background plasma is doubtful. However, it is also unknown whether the effects of 

10 or 20 kW of RF power absorbed by electrons in comparison to 350 kW of ECH 

would be measurable. If Tfost ion  << TCX the NPA would not see any directly-lost fast 

ions. As seen in Fig. 4.28, the case without using the inside gas-feed valve belongs to 

this category. Therefore for higher amplitude ion tails than this case, T f,„ t ;or, must 

be closer to rcx . This remains to be seen in the following Fokker-Planck analysis 

(see below). More uncertainty came from the calculation of P edge  (power directly ab-

sorbed by the unconfined plasma outside the last closed flux surface in the antenna 

vicinity). Only the radial profile at a fixed toroidal and poloidal locations was used, 

which implies that the range of error could be very large. It was assumed that Ped ge 

was deposited only in front of the antenna which covered one sixth of the total area 

of the poloidal edge region at a fixed toroidal location (antenna location). Therefore 

from Eq. (5.3) _Pedge  ranged from 21 kW to 126 kW out of 200 kW total RF power. 

Since the loading data were believed to be quite accurate, for the above case in which 
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of 	f 	f 
-I- 
 C(f)  + Q(F), 

at — 7-cx 	Tloss 

(5.16) 

the plasma loading was about the same as the vacuum loading, 100 kW would be 

the maximum power attainable for Page edge Or Pros t i on . Due to a larger range of error 

and difficulties of modeling, direct determination of an accurate quantity for Ped ge 

was almost impossible. Therefore after more precise estimation of Pfeil ion  by ana-

lytic. modeling and. Fokker-Planck numerical calculations, the valid range of P - e d ge  was 

determined. 

Stix [191 performed analytic calculations to find the ion velocity distribution 

function during RF heating. He expressed the distribution in terms of an effective 

temperature given by Eq. (2.126). It seems irrelevant to compare Eq. (2.126) with the 

measured NPA data because Eq. (2.126) was derived with the Coulomb collision term 

as a single, dominant energy loss mechanism. For cases in ATF where drift orbit loss 

of fast ions constituted the major loss channel for the fast ion energy, comparison of 

the NPA data with Stix's equation would be unreasonable even if the drift loss term 

was included because the basic assumption of Coulomb collisional dominance would 

still be violated since the drift loss time is shorter than the electron drag time. All of 

the shots for which the gas-feed valve IN-1 (opposite the NPA) was used fall into this 

category. Fortunately, there were NPA data measured on shots when this valve was 

not used. These shots showed obviously smaller (less energetic) ion tails. In this case, 

since Tcx 710„, the contribution of drift loss particles was minimum (they were lost 

to the walls rather than charge-exchanging into the NPA) and the measured NPA 

ion distributions are believed to represent a quasi-steady-state collision dominated 

distribution in the plasma center. 

For this case the charge exchange loss term and direct orbit loss term were 

included in the calculation. Following Stix, the kinetic equation for the ion velocity 

distribution function including these terms was found to be: 
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where the first term in the RHS is the charge exchange loss term, the second term is 

the unconfined orbit loss term and f is a function of v 1 1, v1 , 0 and t. Here, rcx  and 

rhos. are functions of temperature. The operators C(f) and Q(f) are the collision 

term and the RF contribution to the ion kinetics, respectively. The expressions for 

C(1)• and Q(f' which Stix used are given by Eq. (2.124) and Eq. (2.123), respectively. 

Although rcx  is a function of v, it. seems to be reasonable to set it to a constant 

at any fixed radial position since the charge exchange cross section is a very slow 

function of energy between a few keV and 100 keV. Note that Eq. (2.126) is the 

analytic solution for the case where r cx , n o„ cc. 

To solve this equation for the ATF ICRH experiments, the Fokker-Planck 

code, RFTRANS 5  was used with a simple ATF plasma model. A description of the 

code RFTRANS is given in Ref. [22]. This code solves a 3-D, steady-state Fokker-

Planck equation. The two velocity-space dimensions are speed v and pitch angle 0, 

with a real-space parameter, r. In Eq. (5.16), there are two loss terms, but in this 

version of the code, only the drift loss term was included. Since all the loss rates can 

be controlled by input parameters, vcx  was implicitly included in vi ..s.• To compare 

the calculations and NPA data for the ion distribution, the following assumptions 

must be made. First, since the calculation was done for a steady-state solution, 

the NPA data must be assumed to represent a quasi-steady-state. The NPA data 

at about 50 ms after the RF pulse began were taken as a steady-state distribution. 

Second, rcx  must be much larger than r1o„, otherwise the signal in the NPA is no 

longer representative of the confined particles but rather the lost ones, while f in 

Eq. (5.16) is the confined particle distribution function. Only for this case can an 

ion distribution measured by NPA be compared to the simulated ion distribution in 

'The author is grateful to M. D. Carter for allowing him to use this code and for enlightening 

discussions about the results. 
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the loss cone, because the code only simulates the remaining particles, not the lost 

particles. 

Even though the original code has a real space transport term, it was ignored 

in these calculations and the kinetic equation used for the steady-state condition was, 

— vf(v, 6) + 5 + C(f(v,19))+ Q(f(v,6)) = 0, 	 (5.17) 

where v is the loss rate modeled as discussed below, and S is a constant source rate 

(to compensate for drift orbit losses) which was needed for a steady state solution. 

Assuming that passing particles are diffusive and well-confined and only trapped 

particles are convective, the drift velocity consisting of the curvature and VB drift 

is calculated as 

V 2  
VD 	(VR, Vvg) 	 (5.18) 

2R 1l ' 

where Rc  is the radius of the curvature and SZ is the cyclotron frequency. The loss 

rate in this case becomes 
vD 	V

2 

v -‘f -- 
a — 2aRcir 

where a is the loss radius (which was taken to be the minor radius). This loss rate 

was compared to the 90° collision rate in order to compensate for any scattering 

back into the confined regime. The fast ion on slow ion and slow ion on electron 90° 

collision rates are given [10] by: 

(5.19) 

where it = m i /m p , particle energy e and temperature T are both in eV and A is the 

coulomb logarithm. The electron drag term, C(f) is expressed as 

C( f) = 	1  a 2 (cc af 	cclaf D„ wt;  + Dvov- — F:c f) 

	

I  accaf 	laf 

	

— v sin  05e  sin e  D0,-5; 	— F;c f) (5.22) 
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where all coulomb collision coefficients are summed over plasma species. The simple 

RF operator given by Stix [19] was used, 

= 
pr, 1 a 	of —v, 	 (5.23) 

 2mi n i  v1  avi  01)1
, 

where: the .1.0  term in the original expression was approximated to be 1 and Pi. 1  is the 

flux surface averaged power density. 

To keep the model simple, the plasma region was divided into two separate 

regions (two-point models). One region represents the central column of the plasma 

where fast ion confinement was relatively good, while the other region represents the 

plasma edge where the fast ions produced by the RF drifted out quickly, as discussed 

in the previous section. In this model there was no coupling between these two regions 

("points"). The RF power deposited in each region, P , . 1  was estimated from the 2-D 

RF heating code. 

To evaluate the validity of the model, a qualitative comparison to the NPA 

data was attempted. Table 5.2 shows the parameters used for calculations reflecting 

typical D(H) heating experiments. Based on the 2-D RF heating code results, it was 

assumed that the RF power was deposited unformly in the toroidal direction and 

most of the power was absorbed in the outer edge region around the resonance layer. 

There were several controllable free parameters. One was the RF power 

density which was much higher than for a uniform distribution model. Since most of 

the RF power was deposited along the resonance layer, a weighting factor was used to 

multiply the value for the uniform distribution case. In Table 5.2, P,. f is described as 

a constant multiplied by 0.027 kW/cm 3 , which was the power density with 100 kW 

of RF power uniformly distributed throughout the ATF plasma volume. The other 

6 This model was suggested by J. A. Rome. 
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Table, 5.2.: Input Parameters for Fokker-Planck Model of the ATF ICRII Experiment 

Minority Fast Ion Distribution 

Te (1) 	eV 	 830 

71(2) 	eV 	 600 

TD(1) eV 	 200 

TD(2) eV 	 150 

TH(1) eV 	 200 

TH(2) eV 	 150 

ne (1) 	cm -3 	6.6 x 10 12  

nc (2) 	cm-3 	5.4 x 10 12  

nD(1) CM -3 	 6.3 x 10 12  

nD(2) CM -3 	 5.1 x 10 12  

nH(1) cm-3 	3.1 x 10 12  

nH(2) cm-3 	2.6 x 10 12  

./3,1(1) x0.027 EV/cm 3 	0.17 

/9,1(2) x0.027 kIV/cm 3 	2.0 

R 	 m 	 2.1 

a 	 m 	 0.3 

Rm (1) 	 1.05 

R,(2) 	 1.17 
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Figure 5.21: The Loss Cone Region in the Ion Velocity Distribution for R„,=1.22 

important free parameter was the loss cone definition. Due to the lack of systematic 

studies of this topic for ATF, this adds another uncertainty to the results. The mirror 

ratio defined as 1/R, = sin 2  9, was used to determine the loss cone angle, 9, from the 

vi_ = 0 axis. For example, for R,,, = 1.22, 9 = 64.9° which means that the loss cone 

was defined as shown in Fig. 5.21. The values R„,=1.05 and R m =1.17 were used for 

the central and edge loss cone mirror ratios, corresponding to 9 = 77.4° and 67.6°, 

respectively. 

The data shown in Table 5.2 show that 80 kW out of 200 kW was absorbed 

by the plasma and 80% of the absorbed power was absorbed in the outer edge region 

where the fast ions were only briefly confined. The rest of the power was absorbed 

in the central region where the fast ions were confined longer. The ion distribution 

calculated for this data agreed well with the measured NPA ion distribution and gave 

a reasonable number for the confinement time in each region. 

The numerical calculations indicated that a moderate energy ion tail (up to 

10 keV) was formed in the edge region as shown in Fig. 5.22 and Fig. 5.23. This value 

is comparable to the measured ion tail shown in Fig. 4.28 for cases without using the 
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IN-1 gas-feed valve. The calculated power transfer to the electrons was about 80 

% for the central region and 10 tic for the edge region. In the edge region it was 

calculated that 90 % of the power was lost through the drift orbit loss channel. The 

fast ion energy confinement times were calculated to be 32 ms and 1.7 ms and the 

thermal ion confinement times were 160 msec and 5 msec for the central and edge 

region, respectively. Even though there were free parameters controlled to match 

the calculation with the experimental data (namely RF power density and loss-cone 

angle), reasonable agreement was attained qualitatively in the ion tail formation 

between measured and calculated values. The calculated fast ion confinement time in 

the edge region is also in good agreement with the original experimental calculation, 

Trest. ion TCX 2 ms. There was no possible way to experimentally confirm the 

fast-ion confinement times, due to a lack of knowledge of the neutral density profile, 

absolute calibration of the NPA, and absolute measurement of the creation rate of 

fast ions. 

More precise power balance calculations would require better modeling of the 

fast ion orbits and loss cone distribution as well as a multi-region model with precise 

RF power density information for each region. 

To summarize this power balance section, although a precise power balance 

analysis was not possible, the estimated ratio of the power loss channels from a 

simple calculation is Pohnii , Pedge : Pfast  ;„„ f_'-2 5 : 1 : 4. It is believed, considering 

all sources of error, that these calculations are correct within a factor of two. The 

largest uncertainty is the ratio of P e dge  to Pil,st ion . Pohr,,j, is believed accurate to the 

order of 5%. The end result of the power balance calculation is that about 100 kW 

out of 200 kW of the RF power went to the antenna and metal structure of ATF, 

21 kW went to direct heating of the unconfined edge plasma, about 70 kW went to 

edge fast-ion orbit loss, and less than 10 kW out of the 200 kW was actually absorbed 

in the plasma center, and transferred to the thermalized plasma. 
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Figure 5.22: Results of the RFTRANS Fokker-Planck Calculation for ATF Low Den-

sity ICRH Case for Region 1 (Central Region): (a) Ion Distribution in Velocity Space 

(b) Ion Flux vs Energy at Different Pitch Angles in Velocity Space. 
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Figure 5.23: Results of the RFTRA NS Fokker-Planck Calculation for ATF Low Den-

sity ICRH Case for Region 2 (Edge Region): (a) Ion Distribution in Velocity Space 

(b) Ion Flux vs Energy at Different Pitch Angles in Velocity Space. 
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CHAPTER VI 

CONCLUSIONS 

Summary and Conclusions  

Fast wave heating experiments were performed on low-density ECH target 

plasmas using 100-kW and 200-kW RF transmitters. Various heating regimes were 

investigated in the frequency range between 9.2 MHz and 28.8 MHz at magnetic fields 

of 0.95 T and 1.9 T. 

For low-power loading measurements with NBI-heated plasmas in the second-

harmonic hydrogen resonance heating regime, it was found that loading was propor-

tional to density, antenna-plasma gap and RF frequency in low-density ATF plasmas. 

Extensive wall conditioning including induction heating, glow-discharge clean-

ing and Ti gettering with antenna conditioning significantly improved the RF opera-

tional performance. For the final experiments, 200 kW of RF power (not accounting 

for antenna loss) could be launched into the ECH-produced, low-density target plas-

mas without severe impurity influx, radiation emission, or disruption. 

With full-power experiments, loading was measured to be fairly low mainly 

due to the low density and large antenna-plasma gap. The low plasma loading led to 

higher ohmic loss to the antenna structure — more than half of the transmitter output 

power. Among various heating regimes, the second harmonic hydrogen resonance 
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heating regime showed the highest loading, about 0.6S1 for ne 	6.0 x 10 12  cm'. 

This was mainly due to the high RF frequency used for this regime (28.8 MHz). 

During D(H) heating experiments, NPA signals showed suprathermal minor-

ity ion tails up to 60 keV. However, no measureable bulk ion and/or electron heating 

was observed. This was demonstrated to be due to the fact that RF-produced fast 

ions were on unconfined orbits, such that the energy transfer time to the bulk elec-

trons/ions was much longer than the orbit loss time scale. A large part of the reason 

for heating of particles on loss orbits was the wave spectrum launched by the an-

tenna, which consisted mostly of high km modes. These high km modes experienced 

a thick evanescent layer and deposited their energy in the edge plasma region (the 

antenna was originally designed for higher density plasmas). A Monte-Carlo type 

orbit calculation illustrated that the edge plasma region was dominated by a drift 

orbit loss-cone. 

As both wall and antenna conditions were improved, RF effects on the edge 

region (unconfined region of the plasma between the last closed flux surface and 

the vacuum vessel wall) were much reduced. Langmuir probe measurements showed 

that ne  and T<  were increasing during ICRH near the antenna and peaked at the 

current strap position. The RF probes showed that the wave was not propagating 

well into the confined-plasma region, as indicated by comparison with the vacuum 

signals (for propagating waves the signals with plasma are much reduced from the 

vacuum level, but for these low density plasmas the signal levels were almost identi-

cal). During the density ramp, discrete eigenmodes were observed. Even though there 

were not enough probes for easy mode identification, the observed eigenmodes were 

likely poloidal modes, as shown by simple calculations and the phase measurements 

discussed in Chapter V. High-frequency spectrum measurements using a 100 MHz 

sample-rate digitizer showed some nonlinear coupling to higher harmonics around the 

edge plasma region, presumably due to antenna RF sheath effects. Low-frequency 
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spectra were also observed in the RF probe signal. These were correlated with a slight 

stored-energy degradation. Further systematic investigation is needed for thorough 

understanding of this possible instability. 

A numerical simulation was performed with a 2-D RF heating code which sim-

ulated stellarator magnetic geometry by using helical symmetry. The image current 

of the ATF antenna was properly accounted for, yielding good agreement with ex-

perimental loading values. Simulations with ATF experimental parameters provided 

the power-absorption spectrum, wave-field profiles, RF power deposition, eigenmodes 

and polarization. A consistent picture with the experiment was obtained. 

A simple RF power balance was performed with a relatively small number 

of RF power-flow channels. Since the collision time was longer than the charge 

exchange loss time, by replacing the electron drag term with a charge-exchange loss 

term, the kinetic equation for the ion velocity distribution function was numerically 

solved. This gave the estimated RF power flow to the suprathermal ion tail formation. 

The most dominant loss channel was parasitic loss to the antenna structure caused 

by the low loading. The other loss channel considered was RF/edge interaction. 

The RF/edge interaction energy was estimated from Langmuir probe radial profile 

measurements of n e  and T. This edge-deposited energy was in agreement with the 

power remaining after the power flows to the structure and fast ions were calculated. 

It was estimated that 50% of the RF power was lost to the antenna structure, 10% of 

the RF power was directly absorbed by the edge plasma, and 40% of the RF power 

was absorbed by fast ions, of which 75% was lost via drift orbit loss. Therefore 

at most only 10% of the total injected RF energy could be transferred to the bulk 

plasma, which made a negligible contribution to the bulk plasma power balance (i.e., 

no bulk heating was observed). 

By including a fast-ion drift loss term in the ion kinetic equation, the RF-

TRANS Fokker-Planck modeling code was used to understand fast ion confinement 
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and RF energy flow to the fast ion channel. A simple ATF plasma model (two point 

model) was adopted. Reasonable agreement was achieved in comparison with the 

experimental NPA data. The results indicated that about 25% of the total RF power 

absorbed by the plasma was transferred to the electrons and the rest of the power was 

lost through drift orbit loss. This loss was severe in the plasma edge region (confined 

plasma region just inside the last closed flux surface) where 90% of the absorbed 

power was lost to fast ions on unconfined drift orbits. 

To illustrate the effect of RF on a single particle orbit, RF terms were included 

in the guiding center orbit following code. The result showed a dramatic RF effect on 

helically trapped particles which passed through a resonance layer. Particle energy 

increased a few hundred keys in a tenth of a milisecond. The turning point moved 

closer to the resonance layer as particles were heated. More refinements to this model 

(code), including phase mixing in a simple form, are being undertaken. 

A projection of the understanding gained in studying the low density exper-

iments to the proposed high-power, high-density ICRH experiments was performed 

and showed much better results, including bulk heating due to a shorter fast ion 

energy transfer time, a broader power spectrum, a larger number of propagating k i i 

modes, and higher loading. For even better results, slots in the antenna housing and 

more radial translation of the antenna system is proposed (see next section) to launch 

low kll modes and increase the plasma loading, especially for low density plasmas. 

In general, the experimental observations were in good agreement with what 

was to be expected in the low density regime, as shown by the agreement of the nu-

merical calculations of the theory with the experimental results. Projections to high 

density operation showed that ICRII would work quite well in ATF. To prove this, 

more power and higher density target plasmas are necessary and more operational 

time must be dedicated to ICRH experiments. A good summary of the low density 

ICRH heating experiments on ATF would be that no heating was obtained because 
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the launched spectrum of modes could only propagate in and be absorbed by the 

confined plasma edge, where high energy trapped particle orbits are unconfined, and 

any power absorbed has only a short distance to travel to leave the confined plasma 

region. 

Prospects for Future. Experiments on ATF 

The experimental results shown in Chapter IV and the simulation results 

with the RF heating code revealed that the low density target plasma did not allow 

the RF wave to propagate to the plasma center, so that considerable energy was 

deposited in the edge region, plasma loading was reduced, and edge-heated fast-ion 

orbit loss resulted in little energy transfer to the bulk plasma. In this section, since 

there are plans to increase the target-plasma density, the effect of the higher density 

plasma on the ICRH is examined. To be realistic, the density level that can be 

achieved is surveyed first. The density limit in ATF ECH plasmas came from the 

cut-off density for propagation of the ECH wave. For ECH at 53 GHz, this limit was 

ne  0.8 x 1013  cm-3 . There are plans to install a 106 GIIz ECH source which would 

increase the density limit by four, since the critical density goes as the square of the 

frequency. Another possible method for obtaining a dense target plasma would be to 

use NBI-created plasmas as a target for the ICRII. Preliminary experiments along this 

line have already been performed. The data from these experiments was extremely 

preliminary, and not suitable for publication, but 100 kW of ICRH was launched 

into a target plasma driven with approximately 1 MW of NBI power, in a minority 

heating regime (helium neutral beams were injected into a deuterium target plasma 

with a hydrogen minority). The antenna loading increased by approximately a factor 

of 10 over the ECH driven target plasma case, and the stored energy of the plasma 

was observed to increase more than 10% for the case where the ICRII was injected 
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into the NBI plasma, as opposed to the case where only the NBI power sustained the 

plasma. These results, though modest, are nevertheless encouraging, considering the 

low RF power level. The experiments must be systematically reproduced with a full 

set of diagnostics, before they can be taken seriously. 

The plasma density for the NBI target plasma mentioned above increased to 

LO x 1014  cm -3  with a 100 ms quasi-steady-state period. The biggest problem 

was the difficulty in controlling the hydrogen minority concentration because of con-

siderable prior operation in hydrogen. Another concern was that the available RF 

power 200 kW) seemed to be negligible compared to the NBI power (> 1 MW). 

At the time of this writing (July, 1990) a 1 MW RF source is being prepared for 

future experiments. 

The simulation model discussed in Chapter V, which appears to be valid 

from comparisons with experimental data from the low-density ICRH experiments, 

was used to predict ICRH performance in higher density plasmas. The 2-D RF heat-

ing code was used for loading, the k 11  spectrum, propagation, and power-deposition 

calculations. The Fokker-Planck code, RFTRANS was used for calculating energy 

transfer to the bulk medium and for fast ion confinement studies. 

The 2-D heating code results indicated that higher density plasmas 

1.5 x 10 13  cm-3 ) would improve loading by a factor of 5, increase the lower k o  portion 

of the spectrum, enhance wave propagation (as indicated by the RF-induced field 

profiles reaching into the central region), increase toroidal damping, and increase 

the fraction of RF power deposited in the central plasma region. The most likely 

scenario for future work with increased density target plasmas is to continue using 

helium neutral beam injection into deuterium plasmas with a hydrogen minority. 

The initial experiments mentioned above yielded high density (ti e  — 1 x 10 14  cm'), 

non-collapsing plasmas up to 200 msec (limited by the NBI pulse length for the 

small amount of ICRII power available). The helium neutral beams were treated 

a 
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in the numerical calculations discussed next as an impurity with high energy and 

concentration. The parameters for this case are listed in Table 6.1. 

Figure 6.1 and Fig. 6.2 show the result from the simulation for the D(H) and 

D(3 He) regimes. These simulations were performed at frequencies of 14.4 MHz and 

9.63 MHz for a 0.95 T magnetic field, respectively. Loading was higher in the D(H) 

regime; however, in both cases the wave penetrated to the central column and power 

deposition was toroidally localized near the antenna. This means that good loading 

and heating results are to be expected for future high power experiments in these 

regimes. The Q defined in an earlier chapter is --, 6 (compared to 50 for the low 

density case) in both high density cases, which means that loading should be very 

high so that Pohmic  (the power to the metallic structures) should be negligible (i.e., 

the antenna launching efficiency to the plasma should be close to 100%). 

The RFTRANS Fokker-Planck code simulation was also performed for these 

higher density cases with 200 kW power. This time, more power was assumed to be 

absorbed in the central column (as predicted by the 2-D code) and the power density 

was higher than for the lower density case owing to the higher loading. The results 

indicated that most of the power (> 90%) would be tranferred to the background 

plasmas and little high energy tail formation would be expected because slowing 

down was very fast, therefore most of the fast ion energy would be transferred to the 

background plasma (Fig. 6.3 and Fig. 6.4). 

From this calculation it is observed that the fast-ion confinement time is ap-

proaching the preset diffusion time, indicating that RF energy thermalizat.ion would 

be limited by diffusive transport rather than by convective loss (fast ion orbit loss). 

Therefore a proper diffusion model becomes important. 

Both of the simulations (Fokker-Planck and 2-D wave propagation) promise 

that ICRH will work well with higher-density target plasmas in ATF. The 2-D RF 

heating code showed that loading should be dramatically increased and RF power 
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Table 6.1: Input Parameters of ATF Plasma and Vacuum Vessel for Computer Sim-

ulation for Future High-Density Scenario 

Te (0) 

TT(a) 

Tma;(0) 

Tmai (a) 

Trn in (0) 

Tm in (a) 

Ttmp (0) 

Timp (a) 

n e (0) 

m e (a) 

A n 

 R 

a 

7/minority 

impurity 

Gap between strap and plasma 

Strap width 

Side wall width 

eV 

eV 

eV 

eV 

eV 

eV 

eV 

eV 

CM
-3 

CM 
- 3 

cm 

m 

m 

cm 

cm 

cm 

400 

15 

250 

15 

250 

15 

850 

15 

1 x 10" 

2 x 10 13  

5 

2.1 

0.3 

0.05 

0.3 

6 

10.8 

22.0 
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Figure 6.1: The 2-D RF Heating Code Results in D(H) Regime for a High Density 

Case (fi e  7 x 101 ' cm') (a) kz  Spectrum (b) Power Absorption Profile in Equato-

rial Plane (c) Bs  Profile in r — 0 Plane (d) Power Absorption Profile in r — 9 Plane 
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Figure 6.2: 2-D RF Heating Code Results in D( 3 IIe) Regime for High Density Case 

7 x 1013  cm-3 ) (a) kz  Spectrum (b) Power Absorption Profile in Equatorial 

Plane (c) Bz  Profile in r — B Plane (d) Power Absorption Profile in r — B Plane 
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absorption should be excellent. As far as fast ion confinement and RF power ther-

malization are concerned, the model (RFTRANS with two region model) predicts 

good bulk electron and ion heating through collisional drag, and good confinement 

of the fast ions for a diffusion time. Since this was only a two point (region) model 

however, better modeling of fast ion confinement and RF power thermalization in 

ATF must be performed in order to understand the planned future experiments. 

Future Work  

In the initial ICRH experiments, the k il  spectrum of the antenna current 

appeared to be very broad, especially for low density plasmas. The effect of the side-

wall current made the situation even worse by suppressing low modes (the only 

ones which could have propagated to the plasma center). To improve this situation 

with only minor hardware modifications, the current strap can be modified easily by 

changing the strap width and making slots in the strap housing (side walls). From 

a simulation, an increase in loading was observed with the latter modifications, as 

shown in Fig 6.5. The change in the strap width is not effective unless the width of 

the strap housing changes, which is technically difficult. 

Several methods to increase the density of the target plasma were proposed. 

Simulations also indicate that good loading and heating data could be expected 

with higher density plasmas. Also optimizing the locations of the cyclotron and 

hybrid resonance layers, which are functions of frequency, 77, and B o  is important for 

maximizing efficiency. As suggested by simulations, a slightly lower frequency should 

be explored for which both resonance layers are moved slightly outward, and minority 

concentrations of less than 5% are necessary for good results (see Chapter V). 

Fast ion confinement as a function of the area of the closed minimum-B con- 
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tours can be tested. This experiment will test the theoretical proposal (see reference 

[141 and [15] in Chapter V) as well as help in optimizing ICRII. Fokker-Planck calcu-

lations are very useful to understand kinetic interactions between wave and particles. 

More precise modeling for stellarator geometry of the RF operator and loss cone 

should be undertaken. The validity of the model should be tested by comparing to 

experimental data. In higher density experiments, collision and diffusion in real-space 

become important. Proper modeling of these processes requires good understanding 

of the wave-particle interaction in stellarator geometry. Since the trapped ion portion 

is larger in a stellarator than in a tokamak with the same aspect ratio, the effect of 

the ICRF wave on these helically trapped particles should be pursued, as was done 

for tokamaks [1]. The concept of well-confined and barely-confined regions should be 

refined and fast ion confinement should be examined in both regions. The results of 

the present work suggest that in stellarators central heating is more important than in 

tokamaks as far as fast ion confinement is concerned. The hypothesis of the enhanced 

cyclotron absorption due to the helical geometry given in Chapter II stands on this 

assumption. The larger trapped ion population in the outer region of the plasma, 

which is caused by edge RF heating, could degrade ion confinement in this region. 

An orbit following code is a useful tool to examine these topics if it features a proper 

model of the RF effect on particle orbits. A simple RF-heating model was presented 

in this thesis, but a more precise model is necessary to obtain a good understanding 

of RF effects on the various orbits existing in stellarator geometry. This would also 

make it possible to simulate NPA scanning data and the physics behind it. 
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Appendix A 

Fourier Representation of ICRH Antenna 

Current Including Side-Wall Image Currents 

The antenna model in the 2-D RF heating code is the so-called "current sheet" 

model in which the antenna current was described as a jump condition in the RF 

magnetic field at a certain radial position. Since the RDL-type antenna has current-

carrying side walls, Fourier expansion of the antenna spectrum should be changed to 

include these image currents. Figure A.1 shows the diagram of the current strap and 

side walls in this model. There are a main current strap and two side walls which can 

be treated as three-strap case with different current amplitudes and phases in each 

strap. Since even in a current strap, most of the current flows along the side edges, 

two current straps and two side walls (four-strap model) are also considered. Note 

that even though the side walls were stretched radially, this radial distribution is not 

considered in this calculation. Instead a weighting factor is used to compensate for 

this and typically it was assumed that 30% of the total image current flows through 

this radially localized side wall. 

In the current sheet model, the antenna current is represented[1] as 

J(r, 0, z) = f (0)O8(r — ro )J(z), 	 (A.1) 

where, f(0) is the poloidal current shape factor described in Ref.[1], J(z) = I(z) /L is 

the toroidal current density distribution function and L is the toroidal strap width. 
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Note that radially localized effect is represented as a delta function. It is assumed 

that the strap current and side wall currents are different in magnitude by the ratio 

1(=   and different in phase by bcp. J(z) can be represented by Fourier sum as 

follow: 
03 

J(z) = E Jk. exp(ilcz z), 	 (A.2) 

where, Icx  = 
RT 

and RT is the major radius. Taking the integral in both sides, then 

1 	f27rRT 
Jk. —  	dz 

27r RT 
exp (A.3) 

For the three-strap case shown in Fig. A.1, the integral on the right-hand side in 

Eq.(A.3) is expressed as 

LTO  
1 	 2

L 	T I  

dz e 
-1—z 	

_L 	

z e -i  
2 	2 

fwdl L T 1  

RT 	 d)42 
27rRT { j°  2 — 2 

w2d1 	T 	I  2 27rRT 1 2irRT— 	 
+J1 

2 	
dz e- 	+ 	 Lo dz  e nT 	(A.4) 

7rRT —   

where all strap dimensions are shown in Fig. A.1. Some manipulations of Eq.(A.4) 

give 

= 	jo  /sin LT°  k z  + exp (i6cp)[sin ( wdl 	LT1 ) k z  
rRTk z 	2 	 2 

— sin ( wdl —
2 

LT1 ) lc,]} , 	 (A.5) 

where, LI- = 7 exp (i5(p). From Eq.(A.5), if LT1 is equal to zero (which means the 

single-strap case), the result reproduces Jaeger's original expression[1] for the single-

strap model. 

For the four-strap case, the integral on the right-hand side in Eq.(A.3) is 

expressed as 

Jk. = 

L 0 	 Iv _L  

27r- RT 

1 	z +  2 — 	—i 1  Z 	 2 	2 	—i-j—Z dz e 	+ Jl  
2 	2 	

n

7rRT - '11  4- 	
dz e

-i nI
T 

z 	
J 	

2dI LT212 
dz e 	T 

2 27r RT w2do 

dz e 	. (A.6) 
2 .7RT— '2d1  — I 	 2wRr 	—LiT± 

Jk. 
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This becomes 

Jk. 
2J0  L T O wd0 	 L T 1 	wdl 

k z 	 k z 	— k z i ir RTkZ  [ s i n -- 	k cos 
[ 	

2 
+ y exp (i8c,o) sin 	

2 	
cos 	.(A.7) 

2 	 2 

With Eq.(A.2) and Eq.(A.5) for the three-strap model and Eq.(A.2) and 

Eq.(A.7) for the four-strap model, Eq.(A.1) can be rewritten as 

where, 

For three starps, 

2e ik" 

e, z) 

LTO 

= fA(r, o)J. > Ck z (Z), 
k, 

5(r — ro) 

(A.8)  

(A.9)  

(A.10) 

(A.11)  

(A.12)  

(A.13)  

9 ) 	 e 
= f (8) 	271-  RT 

LTO 	LT1 	wdl 
k z 	led kZLTO  Ck.(Z) = 

and for kz  = 0, 

For four straps, 

C ie . (z) 

and for k z  = 0, 

kz 	27 { 	
2 

sin 

4e4`.' = 

Ck.=- 0 (z) 

exp (ibcp) 	sin 	cos 	, 
LT1 	2 	2 

= 1 + 27e'6 ". 

1 	 wdO 0
k, sin —

LT  
cos 

kz  

+7 exp 

Ck s ,_- 0 (z) 

{ 

LTO 	2 	2 

L21 	wl 1 	 d 
. sin 	cos —2--k, ] , (i5.(p)7,74 

= 2(1 + -ye i61P). 

Since it was assumed that the induced electric field f(r,  , 9, z) and the plasma 

current igr, 9, z) were represented in the same way, then 

E(r , e, z) = Io  L Eks (r , 6) ck: (z), 	 (A.14) 

fgr ) ° , Z) = Io 	. (7',O)Ck.(Z). 	 (A.15) 
k, 
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The total absorbed' power can be represented as 

where, 

Ptot 
	f

• 	

Ii'(r, 9, z)rdrd9dz, 

• rdradz Re[Ec  (r, 0, z) • ip (r, 0, z)1, 

• 27rRTIOE Pab.(kz,w), 
k. 

Pab,(kz ,w) = f rdrd0Re[Ei:.(r, 0) • frjr,0)11Ckz (z)1 2  , 

and 

iCk.(z)i 2  = CZ.(z)Ckz(z)• 

Therefore, for three straps, 

(A.16)  

(A.17)  
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(A.19) 

For four straps, 

16 	1 	L 	wd0 	1 	L 1 	wdl kz 
ICk s (z)1 2  =   sine T

0 k
z  cost 	k z  + 7 2 	sin e  --T-k, cost  — - 

k 2  LT0 2 	2 	2 	LT1 2 	2 	2 

1 	LTO wdO 	LT1 	wdl 
+27 cos 6()I, 

LTOLT1 
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2 
k, cos 

2 
lc, sin 

2
-  kz  cos 	

2 
 kz  (A.20) 

and for kz  = 0, 

rie.(z)12 = 4[1 + -y 2  + 27 cos 8(P] - 

	 (A.21) 

As shown in Eq.(A.18) through Eq.(A.21), ICk.(Z)1 2  is no longer a function of z. 

Since this code does not calculate the antenna current distribution self-

consistently, it has to be given the optimized and realized current distribution. It 

should be noted that for the RDL-type antenna, the effect of the side-wall current 
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makes the average in the z-direction of the toroidal component of the induced mag-

netic field, and therefore the absorbed power at k 2  = 0 zero. 

For the purpose of illustration, to make the spectrum zero at k, = 0 , 1Ckg (z )1 2 

 should be eliminated at kz  -= 0. For (Scp = 7r as usual, then From Eq.(A.19) and 

Eq.(A.21) y should be 0.5 for the three-strap case and 1 for the four-strap case. 

Therefore if all the return current flows through two radially localized side wall, then 

k, = 0 mode is completely suppressed. But in real geometry, the return current 

flows through the side wall with a certain radial distribution and also through the 

back plane. Therefore the amounts of the return current passing through the radially 

localized side walls as simulated in this code should be some fraction of the total 

return current. By comparing with a 2-D magnetostatic code calculating the vacuum 

antenna field as shown in Fig. 5.5, 30% of the total return current was assumed to 

flow through this localized side wall throughout the calculations in this thesis. 
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