CONTINUQUS AND INTEGER GENERALIZED FLOW PROBLEMS

A THESIS
Presented to
The Faculty of the Division of Graduate
Studies and Research
by

Robert Warren Langley

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

in the School of Industrial and Systems Engineering

Georgia Institute of Technology

June, 1973

CONTINUOUS AND INTEGER GENERALIZED FLOW PROBLEMS

Approved:

-
N s ‘

L

Wy, Chairman

[I o ——
J.[‘j \Jrrw]su
A 1NN

7 V. E. Ungep”
RV

/s

Code e TUOLS

b
Date approved by Chairman: _May 1e® 1974

ii

ACKNOWLEDGMENTS

I am unable to fully express my appreciation and gratitude to
Dr. Mike Shetty. His teaching, guidance, and friendship have sustained
me throughout my educational experience at Georgia Tech.

I wish to thank Dr. John Jarvis for introducing me to the work of
Ellis Johnson and for his helpful advice and criticism during my disser-
tation research.

I also thank Dr. Ed. Unger, Dr. Jamie Goode, and Dr. D. E. Fyffe
for reading the dissertation and providing helpful criticism.

Acknowledgment is due to Dr. Jeff Kennington for producing the
computational results in Table 4.

The guidance and counsel provided by Dr. W. W. Hines and Dr. L. A,
Johnson during the early phases of my program of study are greatly appre-
ciated.

Finally, I thank Sherry, Anne, and Kasey for their understanding

and consideration.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS. & ¢« v 4 v v v v v v v v s v s e e m s s e ii
LIST OF TABLES . . + + v v v v o 4 o o o v o o o o o « ¢ « o o s o » v
LIST OF ILLUSTRATIONS. . o v + ¢ ¢ v ¢ 4 ¢ ¢ v v v ¢ v o s = o » & » Vi
SUMMARY. . . v v v ¢ v & ¢ v v o v s s 4 4 e e 2 e+ w e e oaos e« . Vil
Chapter

I. INTRODUCTION AND LITERATURE SURVEY. + « + « & + & 1

Introduction

Problem Statement

Applications of the GFP

Solution Procedures for the GFP
Network Programming Computational Devices
Applications of the IGFP

Procedures for Solving the IGFP
Concepts of Linear Programming
Review of Integer Programming Methods
1.9.1 Combinatorial Methods

1.9.2 Enumerative Methods

1.9.3 Algebraic Methods

1.10 Summary

- - .

= e e e e e
. .
OO0~ OB N

1IT1. BASIS CHARACTERIZATION FOR THE GFP. « « « « « & &+ . 28

2.1 Introduction :

2.2 Basic Graph Terminology

2.3 Graphical Representation of the GFP
2.4 GFP Example Problem

2.5 PBasis Characterization

III. NETWORK PROGRAMMING BY ROW AND COLUMN GENERATION. 60

3.1 Introduction

3.2 Simplex Multiplier Calculation

3.3 Column Generation

3.4 Row Generation

3.5 Basis Change and Updating Simplex Multipliers
3.6 Labeling the Tree

iv

TABLE OF CONTENTS (Concluded)

Chapter Page
IV. CONTINUOUS ALGORITHMS & +& & & & &+ « o o s o« « « « & . 118
4,1 Introduction
4.2 GFP Algorithm
4.2.1 Statement of the Algorithm
4.2.2 Initialization
4.2.3 Justification of the GFP Algorithm
4.2,4 Computational Results
4.3 Ordinary Flow Algorithm
4.3.1 OFP Algorithm Statement
4.3.2 Simplifications for the OFP Algorithm
4.3.3 Computational Results
4.4 Primal Transportation Algorithm
4.4.1 Problem Statement
4,4.2 Simplifications for the Transportation

Problem
4.4.3 Computational Results
4,5 Resolution of Degeneracy
4.6 Summary

V. INTEGER GENERALIZED FLOW PROBLEM CHARACTERISTICS. 158

Introduction

IGFP Group Formulation

Determinant Calculation

Structure of the Nonbasic Columns and
Basic Rows

5.5 Penalties

5.6 Summary

5.
5.
5.
5.

£ N

VI. ALGORITHM FOR THE IGFP. + « « 4+ « 4 o o o & o &« « « 195

6.1 Introduction

6.2 BSelection of Method of Solution

6.3 Branch and Bound Procedure

6.4 Computational Results

6.5 Obtaining a Feasible Integer Solution

VII. CONCLUSIONS AND RECOMMENDATIONS « « « &« &« + & « + « « 208

7.1 Conclusions
7.2 Recommendations

BIBLIOGRAPHY . . & & v v v v e v e v s o e v v a e m s s s a a s o« 212

VITA . v v v @ o 4 o s v 6 s 4 e o o s o o v s 4t s e e e e e e e e . 220

LIST OF TABLES

Table Page
1. Simplex Iterations for GFP Example. . . . « 4 4+ + « « - « + & 35

2. Generalized Flow Computational Results. , . + « + . « 125
3. OFP Computational Results . . . « + + « ¢« « v ¢ = « = « « » » 139
4. Transportation Computational Results. + + + . . 149

5. IGFP Computational Results. . o v 4 4 o o o o = « o o« « » » » 202

vi

LIST OF ILLUSTRATIONS

Figure Page

1, Examples of Graphical Structures . .« + ¢ + « o « 4+ = « =+ + « 29
2, Generalized Flow Example. . . « + v + 4 + ¢ o « « o« « = s + 33

3. Graphical Representation of Simplex
TteratbtionsS. « o o « o v o & = s & 5 3 o 8% + s 4 e s s w e s 40

4, Block Diagonal Matrix . . . 4 &+ v 4 ¢ 4 & o 4 o 4 s e 1 e s 44
5. Basis ComponentsS. .+ « 4+ o + 4 s s o o o s 4 s v 2 2 s o s . 45
6. Entering Arc Configurations . . « « ¢« ¢ & « ¢ « o« « s + o « = 69
7. Basis Exchange Configurations . . . « ¢« 4 « 4 « & ¢ o » o s » 92

B. Comparison of OFP and SHARE OTK Algorithms
(NOdES) v & v v 4 v v 4 ¢« o o o 2 o s s s & o s o« o o« o« + « - 143

g. Comparison of OFP and SHARE OTK Algorithms
(ATCE) e 4+ v & v s e e e e h e e s e e e e s e s e e s s e s . 144

10. Branch and Bound Procedure. &« & & v 4 o« ¢ + « « «» - 199

vii

SUMMARY

The characterization of the basis for ordinary and generalized
network problems given by Dantzig, Johnson, and others is shown to provide
a powerful tool for exploiting the sparseness of the constraint set for
these problems. This graphical representation is used to directly compute
the nonzero entries in specified columns and/or rows of the basis inverse,
Based on this, algorithms for the generalized flow (GFP), ordinary flow
(OFP), and transportation (TP) problems are developed and computational
results for the resultant computer codes are given. The power of the ap-
proach is illustrated by the fact that the solution times for the OFP
code are five times faster than the Share out-of-kilter code on the same
problems. The details of the computer implementation are also given.

The integer generalized flow problem (IGFP)} is considered and the
previously mentioned basis representation for the GFP is used to identify
the interaction between variables in the group theoretic formulation of
the problem. Several properties of the IGFP are noted. A branch and

bound algorithm is developed and computational results for the IGFP are

given.

CHAPTER I

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

A great deal of recent research in mathematical programming has
been concentrated in the specialized field of integer programming (IP).
This research is stimulated by the wide application of such models and
the need to be able to find solutions efficiently. To date no effective
algorithm, say one comparable to Dantzig's simplex method for the linear
programming problem, for the general IP problem has been found. Very
good results have been obtained for some IP problems by taking advantage
of the special nature of a particular type of problem (e.g., matching,
set covering). This successful exploitation of problem structure pro-
vided the motivation for the research of this study. The problem chosen

is the integer generalized flow problem (IGFP) which is defined in the

next section. The problem is important in its own right to warrant study.
Besides, it offers a reasonable chance of yielding a successful solution
technique and of providing insight into the process of exploiting the
problem structure in integer programming. The objectives of this study
are:

1. To develop a detailed characterization of the structure of

the generalized flow problem (without integer constraints).

2. To develop or extend existing solution procedures for the GFP

which will be compatible with the integer programming method chosen to

solve the IGFP.

3. To use the characterization in (1) to develop a characteriza-
tion of the IGFP.

4, To develop an effective solution technique for the IGFP.

In the chapters that follow, several topics are investigated and
brought together in accomplishing these primary objectives., The associ-

ated continuous generalized flow problem (GFP) is studied and an efficient

solution procedure derived from a characterization of the structure of

its basis, Algorithms which take advantage of this structure are presented
for two special cases of the GFP, the ordinary minimum cost flow and
transportation problems. The IGFP is characterized from a group theoretic
point of view, and efficient means for utilizing information from this
formulation in a branch and bound solution procedure are developed. The
results from the study of the structure of the GFP and IGFP are brought
together in a branch and bound integer programming procedure. A summary

of the main results of this study and areas for additional research are
given in Chapter VII.

Throughout the dissertation, if material of a broad nature is
being discussed (e.g., linear programming), one or two general references
are given which are not meant to be considered the only work in that
field. When specific methods are addressed, the associated reference(s)
are given. In some cases references are limited to the most recent work
in a field or the ones specifically related to a topic in the disserta-

tion.

This introductory chapter contains a mathematical statement of the

IGFP and the associated GFP. Applications of the GFP are cited from the
literature, and solution procedures for the GFP are surveyed. An example
from Dantzig's ubiquitous book [15] motivates the restriction of the
variables for the GFP to integer values. The work of Estabrook [20] on a
special case of the IGFP is then reviewed. Necessary notation and ter-
minology from linear and integer programming used later in the disserta-

tion are summarized.

1.2 Problem Statement

The integer generalized flow problem is stated mathematically as:

(IGFP)
n
Minimize c.X, (1)
Lo J 1
3=1
Subject to:
n
}1 aijxj = bi i=l,...,m (2)
=1
0==x, =M, i=l,...,n 3
3 3] , (3)

xj integer for all j.
a, # 0 for at most two i ¢ {1,...,m}
where ¢,, a,,, M, integer for all i and j.
J 1] J
For all integer programming problems it will be assumed that all coeffi-
cients and bounds are integer,

The continuous linear program associated with the IGFP when the

integer requirement is relaxed is called the generalized flow problem

{GFP) and is:

(GFP)
nl
Minimize c.X,
5% (%)
=1
Subject to:
n
aijxj = b, i=l,...,m (5)
j=1
0 < 2, <M, =L, e0., 6
; i J n (6)

oF # 0 for at most two i ¢ {1,...,m}

The flow with gains problem considered by Jewell [56] and others is

the same as the generalized flow problem studied in this dissertation.

An important special case of the GFP has been called by Dantzig
[15] the weighted distribution problem and by Balas and Ivanescu [3] and
others the generalized transportation problem (GTP). The latter terminol-

ogy will be adopted here. The generalized transportation problem is thus:

{GTP)
m n
Minimize . .X, (7
o4 1] 1]
i=1 j=1
Subject to:
n
< | =
E: aijxij = Si i=,.40e.,m (8)
i=1
m
x,, =T, 1=1l,.4uu.,n 9
5 i3 -y ©)
i=]
0<x,. =M . i=l,....,m (10)
1] 1]

J=l,«..u,n

To see that the GIP is a special case of the GFP, note that each
variable appears in only two equations, one from the set of Eqs. (8) and
one from Egs. (9). If slack variables were added to Eqs. (8) they would
appear in only one equation. This is one foxrm of the GIP. Other forms
may censist of different inequality or equality relations on the two sets
of equations {B8) and (9) or the coefficients in Egs. (9) may be something
other than one. This does not alter the fact that this is still a special
case of the GFP.

The GFP and the GTP are generalizations of the transhipment and
transportation problems, respectively. In these ordinary flow problems
the nonzero aij in Eq. (2) are either plus one or minus one. If there are
two nonzero coefficients, one is a plus one and the other is a minus one.
The ordinary flow problem has been studied extensively and detailed ref-

erences may be found in the books of Ford and Fulkerson [21] and Hu [54].

1,3 Applications of the GFP

Jewell [56] and Dantzig [15]} cite several examples in which mathe-
matical models for resource allocation problems have the form of the GFP.
Arms [1] uses the generalized transportation model to solve optimum
weapons-allocation problems and Eisenman [19) puts the machine loading
problem in the GIP form. Jensen {55} uses a GFP formulation to study
water resource allocation. Jarvis and Jezior [57] use a generalized flow
formulation to model a health care system. Demmy [16] requires the solu-
tion of generalized flow problems as subproblems in his master procedure

for a more general linear programming model., In a different field,

Fujisawa [23] and Onaga [76,77] discuss electrical and communication net-
work problems which can be formulated as gemeralized flow problems. Ac-
cording to Eisenman [19] by taking advantage of the special structure of

the generalized flow problem, one is able to solve large scale problems

whose solutions would be impractical by direct application of the simplex

method.

The range of application of the generalized flow problem justifies

the investigation of the specialized solution procedures detailed in the

next section.

1.4 Solution Procedures for the GFP

Development of solution procedures for the GFP has paralleled that
of ordinary flow problems; that is, applying the various simplex-based
techniques and making use of the resulting simplifications. The solution
procedures are categorized as primal-dual, primal, and dual fellowing the
linear programming terminology. In addition, some studies focus on the
graphical representation of the problem to develop sclution procedures.
These procedures, however, can just as well be interpreted in linear pro-
gramming terms.

Jewell originally considered the GFP under the name of flow with
gains [56]. He extended the work of Ford and Fulkerson [21] for ordinary
networks to the GFP in developing a primal-dual algorithm. He also con-
sidered the graphical nature of the problem producing a max-flow min-cut
theorem analogous to that of Ford and Fulkerson. Recently Minieka [74]
has presented a method to initialize Jewell's algorithm, modified it to

ensure finite convergence, and interpreted it in terms of the out-of-kilter

algorithm for ordinary flow problems. Jarvis and Jezior [57], Smith [86],
and Grinold [49] all apply Jewell's ideas to the maximization of flow into
a specified sink node in the generalized flow setting. They take advant-
age of the structure of the GFP as well as additional structure to produce
efficient specialized algorithms.

Dantzig [15) applied the primal linear programming method to ordi-
nary flow problems and extended the results to a special case of the GFP,
namely the GTP discussed in section 1.2. Johnson [58] brought together
the algebraic approach of Dantzig with the graphical methods of Ford and
Fulkerson for the ordinary flow problem and of Jewell for the GFP. He
also suggested a method of keeping track of the basis for the ordinary
flow problem. Simonnard [85] also interpreted distribution problems in
terms of a graph. Recently Maurras [71] has reported computational re-
sults of applying a specialization of the primal linear programming method
to large generalized flow problems.

In a set of three related papers in 1964 the generalized transpor-
tation problem was considered. Balas and Ivanescu [3] developed the
theory for extending primal solution techniques for the ordinary trans-
portation problem to that of the GFP. They focused on the simplifications
in caleculating the new set of basic variables for a specified basis change.
Eisenman [19] presented an algorithm for carrying out the method of Balas
and Ivanescu and extended it to the capacitated problem. Lourie [67] in-
dicated efficient means for implementing Eisermman's algorithm on a computer.
More recently, Arms (1] considered a solution procedure for the GTP and
presented limited computational results.

The approach taken in this dissertation is also based on the primal

simplex algorithm. A graphical representation of the basis of the problem
is used which allows the identification, computation, and updating of only
that information directly required to carry out the simplex operations.
Additionally, this representation can be efficiently maintained and up-
dated. This is in contrast to the graphical solution methods such as the
out-of-kilter algorithm of Ford and Fulkerson for ordimary flow problems
and the algorithm of Jewell for the GFP. These methods are based on such
concepts as flow augmenting paths, cut sets, etc. and information (e.g.,
labels) from one iteration is not used in the next iteration.

Dual methods were applied to the GFP by Balas [4] and Takahashi
[88] independently in 1966. Balas specifically considered the GTP but
his ideas are readily extendable to the GFP. In the same year Charnes and
Raike [13] applied dual methods to some special cases of the GFP, Spe-
cifically, they considered the "shortest path problem” whose solution for
ordinary networks is given by Dijkstra and others. Glover and Klingman
[32] extended the work of Charnes and Raike to provide an initial dual
feasible solution for the capacitated GFP.

As mentioned earlier, there are studies which take advantage of the
graphical representation of the problem in the spirit of the Ford and
Fulkerson algorithm for maximum flow for the ordinary flow problem. Some
of these studies arose from the field of electrical engineering for the
problem of maximizing flow into a sink node with the GFP constraint set.
Pujisawa [23] developed a procedure for maximizing flow into the sink by
successively finding paths between the source and sink along which flow

could be increased. Mayeda and Van Valkenberg [73] investigated the

properties of the GFP analagous to those for the ordinary flow problem
studied by Ford and Fulkerson [21] and others. Onaga [76,77] considered
the graph-theoretic properties of the GFP and adopted a dynamic programming
algorithm for minimizing the flow out of a specified source node while
maximizing flow into the sink node.

Rutenberg {79) has discussed the GFP with a nonlinear objective
function and has extended the convex-simplex method to this problem.
Glover and Klingman [31] have shown a method for transforming some gener-
alized networks into equivalent pure networks. They have also discussed
a computational simplification for the GTP [35]. Malek-Zavarei and Ag-

garwal [69] discuss equivalences and properties of the GFP.

1.5 Network Programming Computational Devices

The close relationship between the ordinary flow problem and the

generalized flow problem is indicated by the articles detailed in the

previous section. Recently, several computational devices for ordinary
flow problems have been reported. Since methods for the cordinary flow
problem may be extended to the GFP, these recent results will be outlined.
The primal computational methods for the ordinary flow problem
center around the manner of identifying the current basis and of chang-
ing from one basis to another. Glover and Klingman [29] and Glover,
Klingman, and Kearny [34]) developed a means of doing this which is essen-
tially that of Johnson [59]. They include the details of changing from
one basis to another. Srinivasan and Thompson [87] consider similar
methods and develop devices to reduce the effort required for determining

leaving variables. Both of these efforts are specifically addressed to

10

the transportation problem. Tomizawa [92] also indicates improvements
in methods for solving transportation problems.

The computational results reported by Glover, Klingman, Napier,
and Kearny [30,36] and Thompsen and Srinivasan [91] for the transportation
problem and for the improved out-of-kilter algorithm of Glover, Klingman,
and Barr [38] for the ordinary flow problem show the improvements that can
be obtained by effectively exploiting the specialized basis structure of

the ordimary flow problem.

1.6 Applications of the IGFP

To illustrate the need to consider the requirement that the vari-
ables in a GFP be integers, the following example is taken from Dantzig
[15]:

Consider the GFP used to model the following situation., An airline
has a fleet composed of several types of aircraft. These aircraft must
be allocated te various routes to satisfy a specified passenger demand.
Since the cost of operating a particular aircraft on a specific route
varies from route to route, the allocation should be made to minimize
the total cost, while satisfying demand and utilizing only the aircraft

available. The appropriate definitions and mathematical problem state-

ment are:
xij - number of aircraft type i to be allocated to route j
cij - cost of operating one type i aircraft on route j
pij - number of passengers accommodated by aircraft type i on
route j
a, - number of type i aircraft available

bj - passenger demand on route j

The problem is then:

m n
Minimize §1 ;? c,.X,.
PR A 11 1]
i=l j=1
Subject to:
n
E‘ Xij < a; i=l,...,m
=1
m
5? pijxij b1 j=1l,...,n
=]
x ,20
1]

11

(11)

(12)

(13)

(14)

The following example is for two aircraft types to be allocated to two

routes,

Minimize

20x. . + 110x., + 50x 1t 300x

11 12 2 22

Subject to:

50x11 + 100x21 = 150

40x12 + 100x22 = 100
x,, =20 for all i and j.
1]

The optimum linear programming solution is

(15)

(16)

12

X = 1.5
X9 = 2.5
Xpy = .75
Xpy = 0

Total cost - 342.5

Of course it is not possible to allocate a fraction of an aircraft. The

solution, Xy = Z, Xy = 3, Xyy = 1, Xyy = 0, obtained by rounding up the
nonintegral values is not feasible. But consider the solution X1 < 1,
Xyg = 3, Xy = 1, Xpg = 0. This solution is feasible and has a cost of
400. Another feasible integer solution is Xy = 1, Xyo = 0, Xoy T 1,

Xpy = 1 with a cost of 370. The optimal integer solution is X1, = 3,

Xyp = 0, Xpp = 0, and Xpy = 1 with a cost of 360. This simple example

points out the well known fact that it is not simple to obtain an optimum
integer soluticon to a system of limear constraints from the solution of
the associated linear program. From this example it is clear that the

addition of the integer requirement to the GFP is worth investigation.

1.7 Procedures for Solving the IGFP

There are no published algorithms for specifically solving the

integer generalized flow problem. Estabrook's algorithm [20] solves a

specialized case of the IGFP called the integer generalized transportation
problem (IGTP). This problem is stated:

Minimize

i~1a

n
Sﬂ c,.X, . (17)
1 j¥

Subject to:

13

n
/ aijxij < Si i=l,...,m (18)
J"'—_-
m
i=1
x,. = 0 and integer for all i and j. (20)

1]

3>

Tj’ aij 2z 0 and integer for all i and j.

As mentioned previously, several perscons have developed solution

c. ., S,
ij i

procedures for the GIP, which is the above problem, without requiring xij
to be integers. Estabrocok uses the unique structure of the basis for the
GTP and the particular form of the equations for the GTP to simplify the

rounding algorithm of Gomory [40] when applied to the IGTP.

Two drawbacks of the rounding algorithm are that it does not
guarantee that a feasible solution will be found and the amount of storage
required is dependent on the size of the determinant of the optimal LP
basis. These are true of the algorithm of Estabrook also. However, his
computational results indicate that the use of the special structure of
the GTP basis and the group formulation of the IGTP are powerful ways of
considering the problem. The extension of some of Estabrook's simplifi-

cations of the group structure of the IGTP will be given in Chapter V.

1.8 Concepts of Linear Programming

Certain terminology, definitions, and concepts of linear program-
ming will be used extensively in the development in later chapters. To
provide a common basis for discussion, a summary of relevant material from

linear programming will be given in this section. The material follows

14

the presentation in Lasdon [66] which was condensed from the definitive
work of Dantzig [15]. Similar material is covered in many books includ-
ing Simonnard [85] and Hadley [51] among others.

In matrix form an upper bounded linear programming problem (P)

can be stated as:

(P}
Minimize cx (21)
Subject to: Ax = b (22)
0= x; < Mi i=l,...,n (23)

Ais an m X n matrix, x is an n X 1 column vector, and the remaining
vectors are conformable.

It will be assumed that the rank of A is m. A feasible solution

to P is a vector x = (xl,.....,xn) which satisfies equations (22) and
(23). A basis is an m X n nonsingular matrix, B, formed by some m columns
of the constraint matrix A. (Since the rank of A is m, it contains at

least one basis.) The variables x creen X associated with the columns

1’

of the basis B are called basic variables. The remaining variables are

called nonbasic. Thus, if the nonbasic variables are assigned values at
their upper or lower bounds, the remaining basic variables are determined
uniquely by solving the resulting set of equations. Such a solution is

called a basic splution.

A basic feasible solution is a basic¢ solution which satisfies Eq.

(23). 1t follows that a basic feasible solution may have a most m com-

ponents strictly between zero and the upper bounds (Mi)' A nondegenerate

basic feasible solution is one with exactly m components strictly between

15

the upper and lower bounds. The cannonical form of a linear programming

problem is the system of equations obtained when equation (22) has been
rearranged or transformed sco that the first m columns of A form an iden-
tity matrix.

To introduce certain terminology comsider problem P without the
upper bound X, = Mi' If the objective function Eq. (21) is expressed in
terms of the current nonbasic variables, the coefficient for each nombasic

variable is called its relative cost factor or current cost. For a given

basis B the row vector m is defined by the equation:

mB = cp (24)

The wector cB is the vector of cost coefficients associated with the basic

variables. The components of the vector m are called the simplex multi-

pliers associated with the basis B. It follows directly that the relative

cost factor (Ej)for a nonbasic variable X may be calculated by:

T, =c, - TA, (25)

The wvector Aj is the corresponding column from the original set of equa-
tions (22}, and we must have Eﬁ 2 0 for optimality.

The optimality conditions for the bounded variables problem P are
readlly related to the simplex multipliers and relative cost factors de-
scribed above.

Corresponding to the problem P (called the primal problem} is
another linear programming problem called the dual problem (D). The form

of the dual problem is:

16

(D) %1
Maximize ub - Z. viMi (26)
1=
Subject to:
vA - v £ ¢ (27)
v =z 0, u unrestricted . {28)

The u variables are associated with the primal constraints Egq. (22) and
the v variables are associated with upper bound constraints contained in
Eq. (23).

The well known complementary slackness conditions of linear pro-

gramming for this primal-dual pair of programs are:

f{c, -uA, +v,) =0 29
xJ(CJ u, VJ) (29)

vj(xj - Mj) =0 (30)

If 0 < xj <1Mj, then by Eq. (30) Vj = (0 and:

c, - uA, =0 . (31)

Now let B be the columns of A corresponding to the basis, i.e., for the
variables 0 <ij*< Mj if the problem is not degenerate. Let Vg and cp be

the components of v and ¢ corresponding to the basic variables. Then,

from Eqs. (29) and (30),

cp - uB =0 or uB = CB {32)

17

Equation (32) is the same as Egq. (24) with 7 = u. When Xj = 0, then again

from Eq. (30) Vj = 0 and the relative cost factor Egq. (25) becomes:

, - UA,) =(c, ~-uA)=¢, =20,
(CJ u 3 + VJ) (cJ u J) cJ (33

] j

fied by letting vj = —(cj - uAj). The nonnegativity restriction on vj

When x, = Mj’ from Eq. (29) we get Cj = uyA, + v, = 0 which can be satis-

then yields the optimality condition as:

c, = (c, - uA,) <0 h =M.
J (cJ J) when xJ 3 (34)

This discussion relating the primal and dual problems is relevant
to the presentation in later chapters. Detailed results in this area may

be found in the previously cited references.

1.9 Review of Integer Programming Methods

This section will briefly describe the various strategies for
solving general integer programming problems which are discussed in rela-
tion to the IGFP in later chapters. The terminology necessary to subse-
quent sections will be defined here. There are several excellent survey
articles on integer programming notably those of Balinski and Spielberg
[7] and Geoffrion and Marsten [26]., This section is not intended to sup-
plant those articles but te present the ideas necessary to the understand-
ing of later topics. Following the manner in [7], the methods of integer
programming are separated into (i) combinatorial, (ii) algebraic, and
(iii) enumerative. A fourth category may be added, namely (iv) approxi-

mate or heuristic methods which attempt to obtain a so-called "good”

18

integer scolution, but do not validate its optimality.

1.9.1 Combinatorial Methods

Combinatorial methods encompass algorithms which consider a spe-
cific combination of values and directly determine optimality or lead to
a new combination. In particular, these methods are characterized by an
algebraic bound on the number of iterations as a function of a problem
parameter rather than an exponential bound as in the general case. Solu-
tion methods for the assipnment and ordinary transportation problems have
been developed which come into this category. However, these are not
considered as integer programming problems since the integer requirement
is redundant because of the special nature of the constraint set. Few
actual integer programming algorithms are in the combinatorial class,
The notable exception is the matching problem and its variations studied
principally by Edmonds and Johnson [18] and Balinski [8]. For those prob-
lems a particularly effective way of enforcing the integrality require-
ments has been developed which leads to efficient algorithms. However,
Padberg [78] has recently shown that the problem of edge covering by nodes,
seemingly next in degree of difficulty after the matching problem, is
much more difficult to attack with a combinatorial approach. That leads
one to expect that combinatorial methods are extremely limited in the
scope of their applicability.

1.9.2 Enumerative Methods

The methods which have proven computationally most successful to
date are in the class called enumerative. The fundamental strategy of
the enumerative approach is to develop a tree hierarchy of nodes repre-

senting candidate problems whose solution may provide a solution to the

19

integer programming problem. The search adds nodes to the tree until a
sclution is found which is shown to be the best over all others which
have been found or which may be found as a result of searching the re-
maining candidate problems. The characteristics of an effective enumera-
tive method are (i) scheme for recording the state of nodes considered
and keeping track of those to be considered, (ii) means for identifying
a sclution when it has been found, (iii) rule to choose the next candi-
date problem (node) for consideration, and (iv) strategy for directing
the search of the tree.

The enumeration methods are categorized as implicit enumeration or
branch and bound according to the method used to direct the tree search.

The branch and bound method evolved from the initial work of Land
and Doig [65] as improved by Dakin [14]. These are, in fact, the basis
for most commercially available general IP codes such as UMPIRE, OPHELIE,
and MPS-MIP., The strategy at a node is to solve the associated linear
programming problem, i.e., the IP problem with integrality relaxed. If

the solution is all integer, then it becomes a candidate solution. If

one or more variables are not integer, one is chosen (xi) and two new

nodes are created in the tree with the restriction that:

x, 2 [Ei] +1 or x % [Ei]' (35)

Ei is the value of the fractional variable in the LP solution and [y] is
the greatest integer less than or equal to y.
If a candidate solution is found, it is compared to the best solu-

tion found so far (called the incumbent solution). If it is better, it

replaces the incumbent. That branch of the tree is terminated since any

20

further restriction of this problem can result in only worse solutions.
To generate two descendant nodes from a given node requires the

choice of a branching variable. According to Johnson [61) this choice is

crucial in determining the effectiveness of the search. Suppose the value

LPi. It is easily shown

forms a lower bound on the objective function value for all

of the objective function at the current node is Z

that ZLP.
i

nodes below the current node. A great deal of work has been done by
Driebeck [17], Dakin [14]}, Tomlin [93], Johnson and Spielberg [60], and

others to develop a penalty (Pi) such that Z + Pi can be used as a

LP,
i

lower bound instead of ZLP . Once an incumbent scolution is obtained, the
i

effective use of penalties allows rapid curtailment of the search. That

is, if a penalty is large encugh so that 2 + Pi >—Zinc’ the cost of

LPi
the incumbent, then that branch may be terminated or fathomed; since no
better solution may be found. Likewise a branch is fathomed if the asso-
ciated LP is infeasible, since obviously there cannot be any feasible
integer solutions along that branch,

After either finding a candidate solution or creating two nodes to
be added to the list of candidate problems, the node to be considered
next must be selected. Various heuristic rules have been used to make
this choice. A trade-off must be made between flexibility of choice and
the difficulty in selving the linear program at each new node. The use
of the splution of the LP at one node in solving the LP at a nearby node
is highly desirable. This also points out the need for an efficient LP
solution procedure; particularly one which takes advantage of problem

structure, if that is possible. The node choice is also related to the

requirement to store information for each node to characterize its candi-

21

date problem and perhaps to facilitate its solution.

In summary, the devices important to the development of an effec-
tive branch and bound scheme include effective choice of branching vari-
ables, good strategy for choice of node to be solved, efficient LP solu-
tion procedures, means to store the candidate problem for each node, and
calculation of penalties which reduce the number of nodes which must be
explicitly considered. Ap additional device which might be considered is
a means to determine a "good" integer solution early in the search so
that the depth of the tree (in terms of LP objective value) may be
limited,

The implicit enumeration strategy (e.g., Balas [5], Glover [27],
Geoffrion [25], and Trotter [95]) sacrifices the flexibility of the tree
search of branch and bound for efficient means of storing the tree and
identifying that portion which has yet to be searched. Associated with
each node of the implicit epumeration tree will be a set of fixed wvari-
ables and a set of free variables. The fixed variables have been fixed
at specific values at nodes higher in the tree. The free variables are
examined in hopes of finding a new incumbent solution or determining that
searching along that branch is no longer fruitful. This is done by con-
sidering the logical implications of the constraints of the associated LP
one at a time. The information contained in the solution of the LP has
not been used extensively in implicit enumeration schemes with the notable
exception of the surrogate constraint concept of Glover [28] and Geof-
frion [25]. The choice of the branching variable (i.e., the free variable

to be fixed) is done primarily omn logical considerations and penalties

22

have not been used. (Geoffrion and Marsten [26) mention the use of

- penalties with Geoffrion's 0-1 code RIP30C but no report of their results
has been published.) The rigidity of the search is compensated by the
simplicity in maintalning the tree. The clever devices used for this are
reported in Geoffrion [25] for the 0-1 problem and by Zionts [96] and
Trotter [95] for the general integer problem. The main consideration for.
implementing an implicit enumeration algorithm is an effective means for
utilizing the logical information in the linear programming constraints.
Information derived from solving the associated LP may alsc be used (e.g.,
via the surrogate constraints).

1.9.3 Algebraic Methods

The so-called algebraic approach has emanated from the extensive
theoretical work of Ralph Gomory [41,42,43,44). They are divided into
cutting plane methods and group theoretic methods, although the two are
closely related, The intuitive idea of the cutting plane method is to
use the original LP constraints and the integer requirements to develop
additional linear constraints or cutting planes which reduce the linear
programming solution space. 1f the added constraints sufficiently reduce
the LP solution space, the optimal integer solution may be found by ordi-
nary linear programming techniques. Unfortunately, the information used
for constructing these additional constraints has not led to a rapidly
converging algorithm with the notable exception of Martin's work f701
with the set covering problem. Recently, work by several authors, prin-
cipally Balas [6], Glover [39], and Burdet [10], has focused on geometri-

cal ideas to derive cutting planes. Burdet [11] does much to relate these

23

geometrically motivated ideas to the algebraic notions of Gomory. Un-
fortunately, except for the unique case of the matching problem mentioned
previously, the derived cuts are unrelated to the structure of the origi-
nal linear programming problem., Thus the power of special purpose LP
algorithms is lost when one uses a cutting plane method. In fact, the
concept of exploiting special structures to solve integer programming
problems does not seem to be directly compatible with the usual methods
of adding additional linear constraints. This severely limits the use of
cutting planes when developing an algorithm particularized to take ad-
vantage of the special structure of the associated linear program.

The group theoretic method is an extension of the methods of Gomory
for constructing cutting planes. The main theoretical ideas in Gomory's
papers have been extended by Shapiro [81,82,83]. The description below
follows that presented in [7]. More detailed descriptions are found in
the texts of Hu [54] and Garfinkel and Nemhauser [24] among others.

Consider the following linear programming problem in cannonical

form associated with an integer problem.

(P1)
Minimize cx {36)
Subject to: Ax + Is = (37)
x,8 2 0 (38)

Suppose that the optimal basis is B and the variables x and s are divided
into the LP optimum basic variables Xp and corresponding nonbasic wvari-

ables Xy The integer problem can be rewritten as:

24

(r2)
Minimize
-1 -1
(cN - cBB AN) Xy + cBB b (39)
Subject to:
x, + B Ax_ =3B b (40)
B AN
> .
Xa 0 N =0 Xps ¥y integer

°y and AN are the original costs and constraint columns associated with
the nonbasic variables.

The integer programming problem can be restated as: find an

integer vector Xy = D such that Xp z 0 and integer where:
x. =8 - 5L (61)
B Ay

and Eq. (39) is minimized. Shapiro [84] calls the vector -B—]'ANxN the

Y which makes it integer. Using

correction to the LP solution x; = B~
group theory of abstract algebra, Gomory, Shapiro, and others have for-
malized these ideas into a unified theory and developed various prop-
erties of this formulation in the references cited earlier. Much of
recent research in integer programming has been devoted to using the
theory of Gomory to develop algorithms for solving the general integer
problem., To date there has been only limited success with general IP
algorithms derived from group theory. The best reported results are
those of Gorry and Shapiro [48]. The amount of effort required with the
group algorithms reported so far is proportional to the determinant of

the optimal LP basis B. This, in general, may be very large,.

Some applications of group theory, to specially structured problems,

25

have produced seemingly efficient algorithms, Thierez {90] developed an
algorithm based on group theory which successfully solved large set
covering problems., This is not surprising considering the relationship
between group methods and cutting planes and the fact that Martin [70]
has solved set covering problems with cutting plane methods since 1965.

Tompkins characterized the structure of the group problem for the
fixed charge transportation problem in his doctoral dissertation. He
developed an algorithm from this characterization, but reported no com-
putational results,

Estabrook applied Gomory's group theoretic rounding algorithm
[40] to the generalized tramnsportation problem in his doctoral disserta-
tion [20] with good computational success. His development will be dis-
cussed in Chapter V.

Recently, results from group theory have been used to enhance
other IP methods, principally branch and bound procedures. Gomory and
Johnson [46,47] have shown how useful cutting planes may be developed by
applying group theoretical ideas to a single row of an optimal LP tab-
leau. Johnson [62] has developed an algorithm to construct these con~
straints. These constraints may be used to obtain a penalty associated
with integerizing a particular fractional basic variable. These penal-
ties can be used to aid selection of a branching variable and to provide
improved bounds as described in the description of branch and bound
methods, Johnson and Spielberg [60] have reported promising experimental
results when these penalties were used in solving knapsack problems, Ken-

nington [63] has used the group theoretic characterization of Tompkins

26

and the penalty ideas of Johnson to derive a powerful branch and bound
algorithm for the fixed charge transportation problem,

The group characterization of the integer programming problem
focuses on the underlying mathematical structure of the problem, Apply-
ing the results directly to a problem has not produced computationally
successful algorithms. It does seem that by using the group theory to
identify the structure of the problem one is able to construct algo-
rithms to best exploit the special structure of a particular problem.
This is the main thrust of Chapter V where the IGFP will be formulated
as a group problem,

1.10 Summary

In this chapter we have given the general background for the study
of the IGFP along with a survey of solution procedures available for
solving the GFP. A brief survey of linear programming and integer pro-
gramming has been given to provide a common terminology for discussion
in later chapters.

Chapter II contains the characterization of the GFP, The methods
emanating from this characterization for network programming are pre-
sented in Chapter IIIL. In Chapter IV these methods are organized into
algorithms for the GFP and two important special cases; the implementa-
tion of these algorithms on a computer is also discussed and computa-
tional results reported, In Chapter V the characterization of the IGFP
is given in terms of its group representation and some results of Esta-
brook are extended to the IGFP, In Chapter VI the motivation for select-

ing a branch and bound procedure is given and the algorithm and computa-

27

tional results presented. Additional means of enhancing the performance
of the algorithm are discussed., 1In Chapter VII the results are summar-

ized and recommendations for future research are made,

28

CHAPTER II

BASIS CHARACTERIZATION FOR THE GFP

2,1 TIntroduction

In this chapter the definitions and correspondences necessary for
describing the GFP in terms of a graph are given. The simplex procedure
is applied to an example problem and the operations performed in the
standard simplex tableau are contrasted with the ones which result when
the information structure depicted by the graph is used. The special
structure of the basis for the GFP which results in the simplifications
indicated in the example is formally characterized, The definitions and
basis characterization given here are similar to those of Dantzig [15]

and Johnson [58].

2,2 Basic Graph Terminology

A graph G(N,A) is a finite set of nodes N(vertices) and a finite
set of arcs A(edges) comnecting the nodes. The set of arcs may be par-
titioned into two disjoint sets, Ar and AS, defined such that each arec
a_ in the set Ar is associated with a particular node pair (ni,nj) and
each arc a in the set As is associated with a node singleton (ni). Arc
a. e Ar is called a regular arc incident on nodes n, and nj and arc
a_ e As is called a slack arc incident on node n, . Thus Ar is called the

S

set of standard or regular arcs, and set As is called the set of slack

arcs, A graph is shown in Figure 1(a).

(b) A Spanning Subgraph

Figure 1.

Examples of Graphical Structures

12

29

30

{c) A Path (al,a4,a6)

(d) A Cycle (a3,a4,a5)
Figure 1. (Concluded)

A subgraph G' of G is a graph whose node set N' is contained in
the node set N (i.e., N'C N) and whose arc set A' is contained in the

arc set A of G (i.e., A" C A, see Fig. 1(b}). A spanning subgraph is a

subgraph whose node set is the same as that of the graph (i.e., N' = N).
Consider a sequence of nodes and commecting arcs such as (nl,al,

nz,az,...,am_l,nm). This sequence will be called a path between node ng

and node n - This sequence is called a simple path is no node is re-

peated. A path may be denoted by the sequence of arcs only since by

definition an arc goes between two unique nodes, In a path if a node is

31

repeated (i.e., n, = nj for some i and j), then the portion of the path

starting with n, and ending with nj is called a c¢ycle. If no other node

between n, and nj is repeated, then it is called a simple cycle.

2.3 Graphical Representation of the GFP

The structure of the GFP lends itself to a graphical representation.
This representation focuses attention on the relationship among the vari-
ables and equations and provides insight into how the operation of various
solution procedures can be efficiently carried out. Suppose the equatioms
of a GFP are numbered (1,...,m), the variables which have nonzero coeffi-
cients in two equations are Xygeros¥os and the variables which have a

nonzere coefficient in one equation are x To display this

okl ks
problem as a graph, define a set of nodes N = (nl,...,nm). For each

X, e X_ = {xi: i=n+l,...,n+s}, if x; has its nonzero coefficient in
equation j draw a line attached to node P; and call it slack are a -

For a particular x. e X = {xi : i=1,...,n}, suppose a nonzero coefficient
ajy is in equation 1] and a nonzero coefficient aZi appears in equation q, -

Connect nodes n. and n_ and call the connecting line arc a;. Label the

i i
arc a, with a_., at the node n and a,. at the node n as follows:
i 1i Py 21 94
814 aZiQ
G£>f a, 3
i

Further, on the graph by placing an arrowhead on the end of arc a, inci-
dent on node n we mean the coefficient near node n is the second non-
i i

zero coefficient of the variable X In tracing a path, to traverse a

forward arc a; we mean that the node(equation) associated with a. is

32

encountered before the node{equation) associated with 2y, To traverse
a reverse arc we mean that the node(equation) associated with a5, is en-
countered before the one associated with ay;- Graphically, in a path a

forward arc is traversed tail to head and a reverse arc is traversed head

to tail.

For the methods used to solve the generalized flow problem in this

dissertation these arbitrary definitions do not mean as much as for other
methods, If the signs of ar; and a,, are opposite for all i, then the
usual interpretation on the graph is of flow from the node with positive
coefficient to the node with negative coefficient. These conventions

are consistent with those for ordinary flow problems used by Ford and

= -1 for all regular arcs.

Fulkerson [21] with a,, = +1 and a,

1i i

A convention similar to that above can be adopted for slack arcs.
Usually slack arcs will correspond to slack or artificial variables which
appear with a plus or minus one in a single equation., For slack arcs in
general, the convention will be if the variable %, appears with a posi-
tive coefficient in eugation Ps» then the corresponding arc a, will have
an arrowhead on the end not attached to node Py - On the other hand, if
X, appears with a minus sign in equation Py» the arrowhead is on the end
of arc a, incident on node P, - Figure 2 is an example of a generalized
flow problem and the corresponding graph. The slack variables Xq and Xg
and the artificials x9 to X5 have been added to the problem and are
shown as slack arcs on the graph. The coefficients are shown at the
respective ends of each arc and the costs and bounds are shown in paren-

theses on each arc as (ci’Mi)' No distinction is made between slack and

artificial variables on the graph as both are represented as slack arcs.

Minimize 3x1 + 2%, + 2%, + 3x, + x. + 2x

Subject to:

2 3 4 5 6

Xl + x2 + x7
-xl - x3 + 2x4 + x9
- % + 2x3 + 2x + xlO
- x4 - xs + X
+ x6 - XS
05xlslo 05x255 Osx355
0 < x4 = 8 0= X < 15 0= X < 25

{a) A Generalized Flow Problem

ay (=)

210 @)

(b) Graphical Representation of a GF¥P

Figure 2,

Generalized Flow Example

20

w O o O

34

There is a one to one correspondence between equations and nodes,
and variables and arcs. Normally when referring to the graph, the terms
nodes and arecs will be used, but on occasion to facilitate the presenta-
tion, some liberty will be takeﬁ in using these terms interchangeably.

The approach taken throughout this research is to utilize the
information structure of the GFP as displayed in its corresponding graph
to develop solution techniques for the GFP and related special cases of
the GFP as linear programming problems. This is in sharp contrast to the
approach of Jewell [56] and Ford and Fulkerson [21] where properties of

the associated graph are used as the basis of the solution technique.

2,4 GFP Example Problem

An example of a GFP problem is given in Figure 2 along with its
corresponding graphical representation, Slack and artificial wvariables
have been added in Figure 2{(b). The application of the upper bounded
simplex method to the problem generates the sequence of tableaux in Table
1. The big M method was used, and the first nonbasic variable encountered
whose current cost indicated improvement of the objective function was
chosen as the entering variable. The sequence of subgraphs in Figure 3
shows the basic variables at each iteration of the simplex and the enter-
ing monbasic variable is shown in dashed lines,

To highlight the use of the graph for characterizing the GFP and
its use in providing the necessary information to solve the problem with
a simplex procedure, several observations will be made on the solution of
the example problem. This is done to highlight areas where the graphical

representation provides information for solving the problem more effec-

Table 1, Simplex Iteraticns for GFP Example

(':j 3 2 2 3 1 2 0 100 100 100 100

Mj 10 5 5 B 15 25 0 00 00 00
Basic_ _
Yar, b b x1 x2 x3 xu xi x6 x8 xg9 x10 x11 x12 rr
x? 00 20 1 i 0
x9 las) 0 -1 -1 2 1 100
X ©© 0 -1 2 2 1 100
X,y 0 -1 -1 1 i 100
Xip © 5 i -1 1 100

103 102 -98 -97 =-99 2 100

X0 leaves, x5 enters, Rows 3 and 4, 7 3 -52, 33, and 'c—5 change,

ce

Table 1, (Continued)

1 X2 X3 Xh x5 x6 X? x8 xg x10 X11 xlz m

x7 o0 20 1 1 1 ' 0
xé o 0 -1 12 1 100
-1 1 101
x5 15 0O) 1 i 5 >
-1 1
x11 00 0 5 i -1 1 2 1 100 .
x12 oo 5 1 -1 1 .100
103 121 o 2 100
Xg leaves, xk' enters, Rows 2 and 4, Tos Ei' 33, gnd 34 change,
x? 00 20 1 i 1 0
-1 -1 1 103
% & 0 3 z 1 2 2
-1 1 101
xs 15 0 5 i 1 5 >
«] -] 1 1 1
X (o] 0 5 5 3 1 5 3 1 100
Xy, © 5 1 -1 1 100
109 103 -89
5 > > 2 100

X4 leaves, x3 enters, Rows 2,3, and 4, nz, rr3. and My 33, -51, -52, and 26 change,

9¢

Table 1, (Continued)

Basic_

Var, b, b x1 xz x3 xb x5 x6 x? x8 x9 x10 x11 x12 1

X, 0 20 1 1 1 0
-1 1

X, 8 0 -1 > 1 1 1 5 1 L
1 - 4 L

x5 15 "0 1 5 1 2 1 > 2 3

x3 5 0 -1 -1 1 2 i i 2 5

Xy 5 1 -1 1 100

7 5 -103 100

X, leaves, Xg enters, Rows 3, 4, and 5, nz, T‘[3, and T 26' 34. -51, and '52 change,

X, o 20 1 1 h 1 0
-1 1

Xg 25 0 -1 3 1 1 1 5 1 -99
- =1 1 =

X 15 0 1 2 1 1 3 5

Xy 5 0 1 1 -2 -1 -98

N .]; _ _

Xip @ 5 1 > i 1 1 160

~96 :gz 103 100

Xy leaves, X, enters, Rows 1, 2, 3, and 4, o ¢, and c, change,

1 1 3

e

Table 1, (Continued)

Basic_
Var, b b x1 X, x3 Xy, x5 X¢, x? Xg x9 Xjg X1 ¥p T
x? o 20 1 -1 2 1 0
xg 25 0 T 14 1 1 -3
-1 1 =97
*g 150 2 1 1 2 1 2
x, 10 0 1 1 -2 3 -98
X, 00 5 Ioa 4 - 1 100
2 96 -89 100
x12 leaves, X), enters, Rows 1,2,4, and 5, 113, U and 1-;5, -52,33,3&, and 38 change,
x? oo0 10 1 1 2 2 =2 0
Xg 20 5§ 1 -1 1 -3
_1 .];
x5 15 4 5 1 1 > 1 L
x, 0 10 1 1 -1 2 2 % 2 -9
x, 8 5 : 41 4 -1 11t
-2 7 9

%, enters at upper bound, No changes except in right hand side,

8¢

Table 1, (Continued)

Basic_ _
)
Var, b b x1 x2 x3 xu x5 x6 x7 XB
x7 o 10 1 i 2
1 1 -1 1
x5 122 22 > 1 1 3
' 1
xl 5 5 1 1) -2 3
Ll L. -
X), 55 22 > 1 1 i
-2 7 11
U

The optimal solution is x, = 5, X, = 5, x3 = 0, X, =

x? = 10, and Xg = 0,

6¢

basic variables

— — — entering nonbasic
variable

0
——-[}-'variables at
upper bound
0 ! 5

25—@

e bW wwm o

Figure 3,

Graphical Representation of Simplex Iterations

0%

25

Figure 3.

{Concluded)

i%

42

tively than the straightforward application of the simplex method. Cer-
tain assertions will be made without proof at this stage. However, these
will be proved later in Chapters II and III when the problem structure and
solution procedure are formally characterized.

From either end of a nonbasic variable a simple path containing
only basic arcs may be traced to either (i) a basic slack arc or (ii) a
simple cycle of only basic arcs. In diagram F of Figure 3 nonbasic arc
a, goes between nodes 2 and 4, From node 2 the path (2, as 1) leads to
basic slack arc a.. From node 4 the path (4, ags 5) leads to basic slack

7

arc a_. In diagram D nonbasic arc a, goes between node 4 and node 3.

9 6
Node 4 is contained in the simple cycle (4, ag, 3, 2,4, 2, 2, 4) and the

path (5) containing a single node leads to the basic slack arc a) g This
relationship between nonbasic and basic variables leads to the development
of efficient solution procedures for network type problems (ordinary flow,
transportation, ete.) and is a direct result of the basis structure of
these problems. This nonbasic-basic variable relationship leads to an
efficient procedure for determining the current column representation of

a nonbasic variable., In the simplex method this is required to determine
the variable leaving the basis.

In the primal simplex method the simplex multipliers (dual vari-
ables) correspond to the nodes and are used to determine when a nonbasic
variable is to enter the basis. Note that, in the example problem,
usually not all of the simplex multipliers change from one tableau to the

next. The fact that the simplex multipliers which change can be identi-

fied directly leads to an efficient procedure for the pricing operation

43

in the simplex calculations. The structure of the GFP can be exploited
to perform the two primary operations of the simplex: determination of
an entering nonbasic variable and determination of the leaving basic

variable,

2.5 Basis Characterization

The concept of a basic solution is fundamental to the simplex pro-
cedure. A basis, basic solution, and related ideas were summarized in
Section 1.8. Another characterization of a basis is given by the state-
ment that B is a basis of A, if and only if each column of A can be repre-
sented as a unique linear combination of the columns of B. The proof of
this may be found in any book on linear algebra (e.g., Hildebrand [521).

In the GFP the basis has a special structure., To discuss this
we need the following terminology. A matrix arranged as in Figure 4 with
identifiable square blocks which have no nonzero entries in common rows

or columns is called a block diagonal matrix. A slack arc whose associ-

ated variable is basic will be called a root and the node on which it is
incident will be called the root node. If all the variables corresponding
to the arcs contained in a simple cycle are basic, the cycle will be called
a pseudoroot. Assume that the matrix in Figure 4 is the basis for a GFP
problem. 3Block Bl contains the root a; shown in the subgraph correspond-

ing to B, in Figure 5(a). Block B2 contains the pseudoroot (a6, 2z, g,

1
ag) shown graphically in Figure 5(b).
We will now state several lemmas and a theorem related to the struc-

ture of the basis. Theorem 2.1 below is essentially Johnson's result in

[58]. However, we have adopted a constructive proof which forms the nu-

root

P L T I

23
A

a4
s

|
' |
o = — e o o - o~ {
[_ O g |
_ ak ak
| [
| | -
_ a.Ka~
| © |
8!
\—. ' ._ akak _
_. ' __ -
s ' » N - —
A
_ = I o' 0,_ [+ I i
I S 2 |
I ol R
o o
I | B :
\| - _ =
v x i
| o _ x
QR m
M | i
_kk
o o | t
|
|
e = e -
)
by - - .
|
—0|‘l
{
1 © « » =

pseudoroot

U
1

44

Block Diagonal Matrix

Figure 4.

45

{a)

Rooted Component

10

O

11

€

(b) Pseudorooted Component

Figure 5.

Bagsis Components

12

46

cleus of the solution procedure discussed in Chapters III and IV. Before
the statement of the lemmas and the theorem, we will define some notation
and terminology which are used throughout the remainder of the presenta-
tion.

When going from node P; to node q along the arc for the variable
., the first coefficient encountered, which is in equation P> will be
denoted 214 and the second coefficient will be denoted a and is in

equation q; - An example is:

e o %k
P, q,

and the sequence of arcs (az,...,ar+1) follow-

Consider an arc a1

ing ay in a simple path. The ordered set of coefficient pairs for the

sequence of arcs (al,az,...,a) is (akl’ak'l)’ <ak2’ak'2)""’

r+1

i i defi a . A ia i a
(akr+1’ ak'r+l) in the notation defined above ssociate with each arc

2.1 after the designated arxc ay the weight di defined in the following
manner:

211 41312 1%

d1 = s d2 = - sesey d = - "

A2 k3 4 kr+l

or
kel s
a = (-0 1 (zn———) (1)
i=1 V417

We will now proceed to the lemmas and theorem.
Let Bi be a set of columns of a basis B for the GFP with the

following property. The original rows of B corresponding to Bi contain

47

no nonzero entries other than in the columns of Bi' Also, any nonzero
entry in Bi can be reached from any other nonzero entry in Bi by a series
of alternating row and column moves through other nonzero entries.
Lemma 2.1

If Bi is defined as above, then it cannot contain two columns which

correspond to slack arcs (roots).

Proof:
Assume to the contrary. That is, let Bi contain columns b1 and
hich contain the single nzerg entries a and a i .
br+1 which contain ingle no o entri 1] an Kr+l’ respectively
The nonzero entry a can be reached from a by a series of alter-

kr+1 k'l
nating row and column moves. Let the columns encountered in such a trace
be used to define a path. Remove the appropriate arcs (and columns) from
the path to make it a simple path. Let the path now be (al’aZ""’ar+l)
with a. and a as the slack arcs. Consider the linear combination of

1 r+l

b obtained using the arc weights pre-

the associated columns b2,..., r+l

viously defined:

t

B = 9Pl

=
N
=

Considering only the rows of the Bi with nonzero elements in the

path:
439
dja iy T dya,
gt =] (2)
L}—lak'r T krtﬂ

The vector g' is denoted as g' = (g',...,g'r)T
The first element is:
B' = a (ak'1> = a
- - 1
1 k2 akz k'L
For any other entry g{, i=2,...,r
'::
8 = 4 1%y Y 4%
But:
4 = di;lak’i-l
1 ki+l
Thus;
g =d, .a (diplakri> a =0
. . ¥ . =
i i-1k'1 aki+1 ki+l
The vector g is thus:
=0 ~
et
_ 10 _
E=1: |=h
LO

The column bl has been represented as a linear combination of other

48

(3)

(4)

(5)

columns of the basis. This contradicts the definition of a basis and the

lemma is proved.

An example illustrating the lemma is given below.

Let B be:

49
~ -
1 k2 s
k2 a
B = a3 4 a (6)
- k'3 k6 kd
s
ak,EJ
The subgraph corresponding to B is:
B is
i
Aty k2
a] a
Bi _ k'2 ak3 . 7
k'3 'k
The two slack arcs are ay and ag. The set of arcs containing these two

arcs and the path between them is (al, ass a3, a6). The weights di are:

" e By R D S
dl T a d2 T 7 a ,a d3 =t a3 .a (8)
K2 k2%k3 k2%k3%k6

The lipear combination of the columns for as5 a3, and 36 is:

50

which, with additional zerc entries, is the column for a..

By s .
1
ak2 k2 k'l
fK'1 . *k11%2 . o)
L. K Llkz -
ak2 kt2 akZakB k3
A r1212%13 . Het1%12% 13 . 0
22343 0% KO
el e -

1

Lemma 2.2

let Bi be defined as before, then Bi cannot have a set of columns

corresponding to a simple cycle (pseudoroot) and a column corresponding

to a slack arc (root).

Proof:

Assume to the contrary, that is, assume Bi has a simple cycle and

a slack arc. As in lemma 2.1 a series of row and column moves can be

made to define a simple path between the slack arc and an arc in the

cycle.

This column can be represented as the sum of two columns each with one

nonzero entry:

Choose a column from the cycle.

0

ak,p

O R e O
i w]

(10)

(11)

51

Taking the root and bt as the two slack arcs in Lemma 2.1, there

exist multipliers d; associated with the arcs in the path from the root

to bt such that

b=) dlb! (12)
i=1

Likewise, there exist multipliers d; associated with arcs in the path from

the root to bS such that:

Adding:

b=b +b:yd_b. (13)

The components bi’ i=1,...,r correspond to the arcs in the two paths con-
sidered, and di = d{ + d; for arcs contained in both paths and di = di or

d; if they are in only one of the paths, An example of the situation

covered in this lemma is:

k1 k2
a a, , a ,
Bi — k2 ak 3 . k'S (14)
k3 k'4
" k4 ks
The associated subgraph is:
2 1~ &2

52
Choose the column for a, as the column from the cycle to separate.
"o 07 [o”
0
b = =b + b = + (15)
a1y t s ay, 0
x| R I 7Y
The path for bt is (33, ays al) and for bS (as, a,, al). The multipliers
are:
ey : A L D A L W A
d1 ~a d2 =T Ta .a d3 - a, .a, .a (16)
k3 k3 k2 k3 k27kl
gn - kb P 1S S TR, Y 0.3 A
s 2 A% > Asto®a
The linear combination is:
— 1 " t 1" ' 1
b = (dl + dl)bl + (d2 + d2)b2 + d3b3 + dSbS (an

Hence b has been expressed as a linear combination of other basic vectors
which is impossible.
Lemna 2.3

With Bi defined as before, Bi cannot have a set of columns corres-
ponding to two simple cycles (pseudoroots).
Proof:

Again by contradiction assume that Bi contains columns correspond-
ing to the two cycles. Define the path between the two cycles as before.
Choose a column corresponding to an arc in one of the cycles and separate

it into two columns centaining only one nonzero entry.

53

But in the proof of Lemma 2.2 we have shown that each of these can
be expressed as a linear combination of basic arcs. Adding, the arc we
separated can then b2 represented as a linear combination of basic arecs.
This contradicts the assumption that B is a basis and the lemma is proved.
Lemma 2.4

For a set of k columns, Bi’ as considared in the previous lemmas,
there are exactly k rows with nonzero entries.

Proof:

Assume that there are nonzero entries in less than k rows. Of the
k columns of Bi either two columns have a single nonzero entry, or one
column has one nonzero entry and a subset of the columns forms a cycle,
or two distinct subsets of the columns form cycles., But by Lemmas 2.1,
2.2, and 2.3 none of these conditions are possible and hence at least k
rows of Bi must contain nonzero entries.

Now assume that more than k rows of Bi contain nonzero entries,

By definition of Bi this can only happen if each of the columns of Bi
contains twe nonzero entries and no subset of the columns forms a cycle
(the set of columns contains no root or pseudorcot). Thus there can be
at most k+l rows of Bi with nonzero entries. Let the remaining columns
of the basis B be arranged into sets in the same manner as Bi' Since

no set of columns has nonzero entries in rows where another set has non-
zero entries, and since the total number of rows equals the total number
of columns, then at least one of the sets of columns must have nonzero
entries in one fewer rows than it has columns. But we have shown this to
be impossible in the first part of the proof. Hence Bi must have nonzero

entries in k rows, where k is the number of columns in Bi'

54

A characterization of the basis for the GFP can now be given using
the lemmas. The following theorem is fundamental to the remainder of the
presentation.

Theorem 2.1

A basis for the generalized flow problem is block diagonal with

each block containing either one column corresponding to a slack arc in
the associated subgraph or a set of columns corresponding to a single
cycle in the subgraph but not both, That is, no block contains columns
for two roots, two pseudoroots, or a root and a pseudoroot.
Proof:

We will first establish constructively that the basis is block
diagonal. A basis consists of m linearly independent columns of A.

Choose one of these columms. Either it has one or two entries:

- =
3k %k
(i) |o or (ii) {o (19)
: Akt
: 0
L o

Select all other columns with entries in the row containing a in case

(i) or in the rows containing a and & in case (ii). For each column
so selected repeat the process. Continue until either all the m columns
have been selected or until no columns have entries in the previously

selected columns. If m columns have been selected, then there is one

set of columns. Otherwise repeat the procedure to define sets 2,...,R.

55

The maximum number of sets is obviously m with a column for a slack arc
in each set.

By the constructive procedure used to defipe the sets, each set of
columns is of the form of Bi in Lemmas 2.1 through 2.4. Let the set of
rows with nonzero entries in each set define the block for each set of
columns. By Lemmas 2,1 through 2.3, no block contains two roots, a root
and a pseudoroot, or two pseudoroots. Also by the proof of Lemma 2.4 each
block must contain a root or a pseudoroot. The theorem is thus proved.

Several definitions can now be made which are useful in describing
the algebraic operations of an algorithm in terms of the corresponding
graph. The connected subgraph corresponding to a block Bi of the basis is
called a tree. If the block Bi contains a slack column, the tree is a
rooted tree, If the block contains a set of columns corresponding to a

simple cycle, then the tree is a pseudorooted tree. The set of comnnected

subgraphs, one for each block of the basis, is called the basis forest.

Each tree (rooted or pseudorooted) will be called a component of the basis
forest and its corresponding block will be called a ¢omponent of the basis

matrix B.

To facilitate the presentation these definitions differ slightly
from the usual definitions of a tree and forest (e.g., Johnson [58]) in
that the slack columa or root and the cycle or pseudorcot are incorporated
into the definitions instead of being considered separately.

Two useful corcllaries follow directly from Theorem 2,1.

Corollary: There is a unique path of basic arcs from each node in a tree

to the root or pseudoroot.

56

Proof:
Assume to the contrary. That is, suppose that there are two paths

from node n, to the root or the pseudoroot. Denote these paths as

P, = (ai yeeesd,) (20)

Consider two cases. First assume the tree is rooted. Then arcs

a, and aj are incident on the same node to which the root is attached.
p q

Also, a, and a, are both incident on node n,. Then (a, ,...,a, ,

i j k i i
1 1 1 p

a, ,...,aj) defines a cycle of basic arcs in the tree, But by Theorem
3
q 1

2.1 a tree cannot contain a cycle and a root, thus for a rooted tree the

corcllary is proved.

For the case of a pseudorooted tree, if P1 and P2 are incident on

the same node of the pseudoroot, the proof is the same as if the tree were
rooted. Otherwise, let np and nq be the nodes of the pseudoroot at which

P, and P, end. Let a, ,...,a_ be the arcs in the path between n and n
1 2 k1 kr p q
in an arbitrary direction arcound the pseudoroot. Since ai and aj are
1 i

K and P1 % P2, then (ai R A T T TR L

i P 1 r
a, ,...,aj) defines a cycle of basic arcs, different from the pseudoroot.

]
q 1

Thus the basis tree contains two cycles which contradicts Theorem 2.1 and

both incident on node n

the corocllary is proved.

Corollary: Let bi be a column of a component Bk of the basis. Then,
deleting bi will partition Bk into two subcomponents BL and BE {one of
them possibly empty)} such that the corresponding two subblocks of the

matrix have no nonzero entries in the intersection of their rows and

57

columns. If bi is not the root or part of the pseudoroot, then one of

the subcomponents contains the root or the pseudoroot of Bé.

Proof:

Assume bi has nonzero entries in two rows. Select the row con-
taining one of these nonzero entries and proceed as in the proof of
Theorem 2.1 for constructing components by selecting all columns with
nonzero entries in the row, then considering the rows where these have

other nonzero entries, etc. In this manner B; is constructed and the re-

maining columns of B

 comstitute Bﬁ (possibly B! is empty). For the

k

same reason that no two components in Theorem 2.1 have nonzero entries

in common, neither will Bﬁ and Bﬁ. The corollary is proved.

It may be noted that, if bi corresponds to the root or an arc in
the cycle denoting the pseudorcot, then deletion of bi will not yield two

separate blocks, i.e., we will have Bé = ¢ and B; = Bk without column bi'

1}

Thus, in all cases removal of column bi yields a subcomponent Bk

which does not contain the root or the complete pseudoroot of Bk' We will
have frequent occasions to refer to this block in later chapters. We
will call B’ the portion of B

k k

ated with bi' The terminolegy i1s more meaningful in terms of the graph

above bi or above X, the variable associ-

of Bk' Bi will correspond to that part of the tree above the arc for X,
"

(i.e., away from the root) and the unique path from any node in Bk to the

root will contain the arc for xi.

This corollary is illustrated by the following example:

58
a1 216
%21 214
a
Bk - 2 a a a (21)
13 %24 %15
822 P23
| 25 |

Choose bi = b, which has nonzero entries in rows two and four. Selecting

4
the entry in row two places bl in Bﬂ which, in turn, places b6 in B&.
a a
11 16
B! = (22)
k a5 0
'—'l —y
8] 0 312
313 g5 9
nwo_
By =[223 © 22
0 a H]
2
’ >]

po— \ , e ’- ‘ . dom
12 ' } 1]
a L]] &

. 25 R B ' 1o
= o] = t

S R b
15 713 T24 'b,
--------- 1 - - 1w
va ' a ' t

0 1 Y
i y 2 a '

- 11 1__@ - { vt

The graphical representation with nodes corresponding to the original row

order:

o~

Node four is directly above %, and nodes (4, 5, &, 3) and arcs (35, 4y

a3) comprise the portion of the graph above X,

59

60

CHAPTER III

NETWORK PROGRAMMING BY ROW AND COLUMN GENERATION

3.1 Introduction

In Chapter II a constructive method was used to exhibit the

structure of a basis of the generalized flow problem. This constructive

characterization can be used to develop efficient algorithms for the GFP.
All of the algorithms presented in this paper are derived by applying

the simplex method to the GFP or a special case of the GFP. The simpli-
fications which result from the special nature of the GFP basis structure
permit identification and utilization of only that information necessary
to make decisions at each step of a simplex algorithm. When organized
for use on a computer, these simplifications greatly reduce the amount of
storage required over that of the standard simplex techniques or one of
its efficient implementations. The extent of this improvement is indi-
cated by the results of Murras [17].

In this chapter it is shown how the operations required in a sim-
plex procedure (primal, dual, etc.) can be simplified by using the infor-
mation structure of the GFP as depicted in graphical form, The main
thesis is that the inverse of the current basis does not have to be known
explicitly but may be effectively computed as needed. This leads to ef-
ficient procedures for generating a row or column of the current tableau
as required. A method for recomputing the simplex multipliers is given

in Section 3.5 which significantly reduces the effort required to update

61

the multipliers at each basis change. A method for identifying the current
basis is derived by extending the triple labeling method of Johnson [59]
for the ordinary flow problem. The way this scheme is used in carrying
out the simplex operation is exhibited and procedures to change the labels

to reflect a change of basis are given in Section 3.6.

3.2 Simplex Multiplier Calculation

The two decisions to be made in the primal simplex method are, in
order, (i) choose 2 nonbasic variable to enter the basis and (ii) choose
a basic variable to leave the basis. Usually, a nonbasic variable is
chosen to enter from the set whose current cost (EG) indicates a reduc-
tion (for minimization) in the objective function if the variable 1is
brought inte the basis, That is, if the nonbasic variable xj is at its
upper bound and Ej > 0, reducing xj will lower the objective value, and
likewise, if xj is 0, then if Ej < 0 increasing xj will reduce the objec-
tive value. Consider the computation of the current costs for a gener-
alized flow problem. Let the column associated with x, have nonzero

coefficients a ., and a

ki T in equations Py and q s respectively. Let the

simplex multipliers associated with equations p, and q, be & and m_ .
1 1 p q

i i
The optimality conditions are:
= i i o s - - =
x5 0 implies c, = ¢y ”piaki nqiak'i 0 (1)
= j i < == - - <
X, Mi implies c, =€, npiaki quak'i 0 {2

Since Ei = 0 for all basic variables, the relative costs are computed for

nonbasic variables and if the conditions of Eqs. (1) and (2) do not hold,

62

a variable is chosen to enter the basis. The usual rule is to choose i%*
such that:

_— 2 —t
Ciy = Mip (Ci) (3

where ¢! = ¢, if x, =0 and T! = - ¢, if %, =M., For network problems
i i i i i i i

there is some reason to believe computational advantage can be gained by
choosing some other candidate for entry which would not necessitate the
calculation of all Ei as required when the minimum trule is used. The

simplex multipliers (n} are found by solving the equation:

B = ¢ (4)

where <3 is the vector of cost coefficients of the basic variables corres-
ponding to the columns of B, Since B is block diagonal, this separates
into the solution of R sets of equation:

1°1 7 g 272 B> -+ TrBgp = ¢p - (5)

mB, = cp - (6)

Assume that the nk % nk matrix Bk contains a slack column and has

been arranged in lower triangular form with the equations and variables

numbered as indicated:

T . L
ny ak'ng.\ 0 . ~e . .h.?
Y - [
-~ . >
~ . :
~ . :
~ .
B, = ~ e :
k p .
Ay ~ .
- s
; s k3 O
ak‘2\ ~
N
n ®3 w2 kg

The associated graph is:

This system of equations (6) is solved by starting at the root node (n
and progressing out the tree along basic arcs successively solving for

the simplex multipliers as each node is encountered in turn. For the

part of the graph shown:

63

(7

(8

X

a, 1., 1+ a

1271 * 2222
313 't AggTy T

In general for nodes Py

64

&)

and 9 associated with variable X,

(10)

The equation used depends on whether node P, or q, is encountered first.

To compute these values a device is needed to identify root nodes and to

trace a tree outwardly from the root,

In this manner the simplex multi-

pliers are computed so that the current costs for each nonbasic arc can

be found to determine optimality.

Because of the nature of the basis and basis exchanges all simplex

multipliers are calculated initially and a subset is recalculated at each

basis change. The method for

1t Bi contains a cycle
determined and then each node
the simplex multipliers above

suppose

doing this is presented later in this chapter,

the simplex multipliers of the c¢cyele are

in the cvcle is treated as a root node and

it are determined as before,

2% 4o
1223 %12
| 899 89
t a

For example,

(11)

65

The set of equations to be solved is:

T, + a, T, =¢ (12)

2973 7 #13M 3
31471 T 24T, T Gy
3y5T3 7 21575 = €4
Solving for Pk
3 Z23% fa3%a
213 813815 3143198, 1
TT1 = a a a (13)
. (_ 23)(_ 22)(_ 11)
23 212 271
In turn:
. 1 " %11 I €2 " 8227 o ‘4 " *14™M
- 3 -] -
2 aZl 3 al2 4 324 2
€5 = 8557y
TT =
5 a

In general, to determime the dual variables corresponding to a cycle,

assume that the podes in the cycle are numbered 1,2,...,r. Thus the

66

numbering assigns a direction around the cycle. Assume that the corres-
ponding coefficients on the basic variables around the cycle are (aki’
ak'i) as encountered and the costs are <, i=1,...,r. Define the set

of constants

P, = E_El,_ (14)
k'i-1
Then the formula for nl is:
[r
1 Cr " Py TP P12 122 picl]
= a — (15)
k'r - 0" 1 e

r
The gquantity (1 - (_1)r 'Hl pi) # 0 because otherwise Bk could not be a
i=

part of the basis. This is shown below.

The cycle corresponds to the square submatrix Bﬂ, where:

B, 'o
A
Bk - ¢~,1-_- (16)
B ' B’
u

— ¥ t . +
But Det(Bk) = Det(BA)Det(Bk). Thus Det(Bk) % 0 since Bk is part

of the basis. Then:

r r
_— r
Det (B)) = igl a . - (-1) 121 a1y (17)
Suppose:
r L
1 -(-1) B _p, =20 (18)

67
Then:
r I ki
1 - (-1)" I Paie Q a9
i=] k'i
r 1 T T
But
(_1)-r = (--1)r for r an integer (21)
Thus
r r I B
1H=1 a, - (-1 iIil a ;= 0 = Det (k) (22)

which contradicts Det(Bﬁ) # 0.

To calculate the simplex multipliers for a cycle requires tracing
around the cycle from a node in the cycle. Then by tracing out from each
node in the cycle, the simplex multipliers corresponding to the remaining
nodes can be determined. Since all components of the basis are either
rooted or pseudorooted, the complete set of simplex multipliers can be
calculated by the methods shown. The current costs Ei can then bhe cal-

culated and an entering variable chosen by an appropriate rule.

3.3 Column Generatiom

Once a nonbasic variable has been selected to enter the basis,
its representation in terms of the current basic variables must be found
so that the variable to leave the basis may be determined. For the primal
simplex method, the leaving or blocking variable is the one which allows
the maximum change in the entering variable consistent with maintaining

primal feasibility. The generation of the required column, the determina-

68

tion of the blocking variable, and the change in the values of the basic
variables can be done efficiently using a procedure derived from the con-
structive proof of Lemmas 2.1 - 2.3 in Chapter II.

First consider the various relationships an entering nonbasic
variable can have to the basic variables as shown in Figure 6. First an
entering variable can have a nonzero coefficient in one (Figure 6(a,b) or
two equations (Figure 6(c,d,e,f,g,h)). If it has a nonzero entry in one
equation, the tree containing the corresponding node can be rooted or
pseudorooted (see Theorem 2.1 of Chapter II),

If the entering variable has nonzero coefficients in two equations,
the corresponding nodes can be in the same tree (Figure 6(g,h)) or dif-
ferent trees (Figure ©6(c,d,e,f)). If they are in the same tree, it can
be a rooted tree (Figure 6(g)) or pseudorooted tree (Figure 6(g,h)}.

If the two ends cof the arc corresponding to the entering variables are

in different trees, either both trees are rooted (Figure 6{c)), both trees
are pseudorooted (Figure 6(e)), or one tree is rooted and the other is
pseudorooted {Figure 6(e,f)). 1In the case that ome is rooted and the
other pseudorooted, without loss of generality, denote the tree containing
node p; as the left tree and 9 the right tree. Then either the left

tree is rooted and the right tree pseudorooted or vice versa. This ex~
hausts the possible combinations of an entering variable and the associ-
ated basis component.

For all of the situations depicted in Figure 6, the game operation
must be accomplished; that is, the nonbasic column corresponding to the
entering variable must be constructed and the blocking variable determined.

The breakdown into the various cases is useful since the column construc-

(a) Slack Arc Incident on
a Rooted Tree

Ve

(c) Regular Arc Between Two
Rooted Trees

Figure 6. Entering Arc Configurations

— e

(b) Slack Arc Incident on a
Psaudorooted Tree

-— - Nonbasic Arc

A

(d) Regular Arc Between Two
Pseudorooted Trees

Basic Arc

69

(e) Regular Arc with Left Tree Rooted {(£) Regular Arc with Left Tree
and Right Tree Pseudorooted Pseudorooted and Right Tree
Rooted
\~\

(z) Regular Arc with Both Ends (h) Regular Arc with Both Ends in
in the Same Rooted Tree the Same Pseudorooted Tree

Figure 6. (Concluded)

0L

71

tion procedure will be slightly different for each case. The column
generation procedures for cases (a) through (h) in Figure 6 are presented
next.

First consider case (a). Let xi be the entering nonbasic variable
with its nonzero coefficient in equation P, - The basis B can be parti-
tioned inte B and B' where Bp is associated with the columns in the
unique path from node P; to the root (including the slack columm for the
root) and B; is associated with the remaining columns (see corollary to

Theorem 2.1). The path is:

X, . X X xX
i 1 Ou 2 O‘""' r-1 O r
9
Apri A1 %kl qer-1 %&'r1 %kr
The matrix Bp has the form:
E -
k1
et %2
ak'Z\
Bp = \‘,‘ (23)
qr-1
__ Terr-1

Suppose the column for X, is:

(24)

ceea O X

Let the representation of bi in terms of the current basis be the vector

72
d with components di' Then:
)
B ki
P d 0
S I Bl (25)
0 P X
1 0

The vector d has been partitioned into (dp/dg)t. From the proof of Lemma
- . " t

2.1, there exists a solution d; to dep = (ak,i,0,0,...,O) so that (dg,O)

solves the above system and is the unique representation of the column of

X, in terms of the current basis vectors. Let (x xr) be the basic

1

variables in the path from node Py to the root, with x_ as the slack vari-

able at the root. From Lemma 2.1 the compconents of dg are;:

a . -a,
=Xt axeLrly o pog (26)
k1 kr

These are precisely the weights defined in Eq. (1) of Chapter II.

Now consider the inverse of the basis B. Let d denote the jth

column corresponding to equation Pj' 1f ep is a column vector with a
i
one in row Pj’ then:

3

%o | d °

==} B! = = 1| « row p. (27)
' p d j

0o 1 P Q

Comparing this with Eq. {25), we readily have the solution:

d = (28)

73

with nonzero entries Ei only for i =1,...,r.
The graphical representation of the basis identifies the nonzero
elements in the basis inverse and provides a means for calculating them.
If the basic path from node pj ends in a pseudoroot as in case
6(b), column construction is similar with additiomal comsideration for

the basic variables in the pseudoroot. The following example illustrates

the differences.

0
BP= k'4 k3 b = g (30)
0

The equation to be solved is: bS = de . For the path to the pseudo-

a

root: d. = k2 . For the cycle define the constant q:
1 a,
k'l
a a a
k'4 k'3yk'2
47 (- a)(" a)(a) Gh
k4 k3 k2

The remaining coefficients are:
a

k1
d, = (- a q) d
2 ak,2 k1™ 1

. a
_ ..&'.2)
dB“(—a d,

74

The current representation of the column for Xg contains the non-

zero entries d1"°"d4 corresponding to the basic variable X, in the path
to the pseudoroot and the basic variables Xys Xq, and X, in the pseudo-
root. For this example, the nonzero entries in the fourth column of B—1
are:
d
aj = L= (32)
k5 k'l
gt = d (1 q)
2 s Py Vg
4t = 4 At (1 q)
3% ke ‘2
d a ;,a, ;4 ,
4! = 4 _ _ klZkl k'4 (1 q)
4 % 1342 M2

Suppose the column corresponding to the entering variable X, has
nonzero entries in two rows as in cases (c¢) through ¢h).
o

i
b, =] 0 (33)

Then, as in the proof of Lemma 2.2, bi can be expressed as the sum of two

slack columns:

75
—00- r-—o -y
2y 0
b, =b'+ b= |0] + |- (34)
i i i . ak,1
:)
-.-d n. =

The method for determining the current representation of 2{ and
h; has already been shown. Suppose nodes P, and 9 corresponding to the

nonzero entries a and a

ki K1y are in different trees as in cases (c,d,e,

or f). Then the representation is precisely as before with the two
columns of the inverse matrices involved, being computed for two differ-

ent blocks B, and B, .
j k

If both nodes P; and q, are in the same tree, then the order of
determining the representation is slightly different. For a rooted tree
(Figure 6(g))}, from both node Py and q; there is a unique simple path of
basic arcs to the root. Sipnce the paths both end at the root node, they
must join at some node; s, which must be the root node or some node above

it. Denote the path starting at Py the left path (PL) and at 95 the right
path (PR).

Let the variable corresponding to the arc in PL incident on node

s be xL with associated column bL and the wvariable xR with column bR cor-

respond to the arc in PR incident on s. As in the coreollary to Theorem

2.1, partition Bk into BL’ BR’ and BL where BL corresponds to the path

above Xy and BR to the path above Xp The root is contained in Bﬁ. The

partitioned matrix is:

76
:L RS T S
y 0 10, |
125 1 4
B rak'L, o "
N e R
} / ! (35)
la, . | Va 1
1 KLy 0 kr,
!) ’ i
L 10y t
The column for X, is:
aki ¢ a row in BL
0
b, =1 (36)
t a < a row in B
k'l R
0
R
The coefficient aki is in a row corresponding to BL and 2, is

in a row corresponding to BR. The graphical representation is:

For the basic variables in PL and in PR3 the weights (nonzero entries)
are calculated as before. If the cycle formed by the two paths to s and
the entering arc correspond to a set of linearly dependent variables, the
representation is complete and the variables in the path to the root and
the slack variable at the root do not have to be considered. One would
like to detect this linear dependence before calculating the weights and

entries for the variables below node s. The following lemma gives a means

77

for doing this,

Let the weight for the wvariable X be dL and the weight for Xp be
dR'
Lemma 3.1

If both ends of an arc corresponding to a nonbasic variable x, are
in the same rooted tree, then the set of columms corresponding to the
cycle formed by the entering arc and the portions of the paths to the
root from both ends of the nonbasic arc until they join is linearly de-
pendent if dLak'L + dRak'R = 0.

Proof:

By the comnstructive proof in Lemma 2.2, the weight for the vari-

able x, corresponding to the arc below s in the path to the rcot is:

- d.a, , - da , .

9 = 2: = i: - - aklj (dpagrg, *+ dpagig) G7)
But the quantity in parenthesis on the right hand side of Eq. (37) is
precisely the quantity in the lemma. Thus, if dLak'L + dRak'R = 0, then
dj = (0, But if dj is equal to zero, then all of the weights in the re-
mainder of the path including the root are zero. The column for the non-
basic variable x, can thus be expressed as a linear combination of the
colums corresponding to PL and PR, hence the set of columms is linearly
dependent.

The lemma suggests The following method for determining the cur-
rent representation for the column for X -

1. Compute the weights for the variables in PL to s.

78

2. Compute the weights for the variables in PR to s,
3. Check the linear dependence condition in the lemma, i.e.,
- 07 ; ;
dLak'L + dRakIR 0?7 1If so, then the representation is complete,
&, 1f not, compute the weight for xj:

. =l
dy = s (dyayey, + dpdprg)

5. Continue to the root computing the weights iteratively as
before.

The last case to be considered is case (h) when both ends of a
nonbasic arc are in the same pseudorooted tree, If the left path and
right path join at a node above the pseudorcot or at the same node in the
pseudoroot, the difference between case (g) and case (h) is the same as
the difference between cases (a) and (b). If the left and right paths
meet the pseudorcot at different nodes, a slightly different method is

used, Consider the example showmn below.

P
GZD (:> - -

- R .. P
® ® U

As before, the entries are computed down the left path to L and down the
right path to R, An arbitrary direction is chosen around the cycle and

the variables numbered as encountered, starting with the first one after
node L, as xi,...,x&, x&+1,.

(air,, ai,r). x& is the basic variable before node R and x&

1 3 s] L}
L with nonzero entries (akl, ak‘l)""’

+1 is the

79
variable after node R in the cycle.
Define:
u-1 a .
i+l
gy = .I_i__l . (38)
J k'j
v-1 2y s
By = A - kit (39)
J=u 3krj
Let di correspond to the weight for xi in the cycle. Then:
L]]
(ol - - ks ® k1)
k'R°R PN
ar = - kv 2 (40)
1 -a' a' .a!
k k'u "kl ku+1)
1
81 gty B2
atl .
dl = - d} (—.1—‘1'—1-) i=2,...,u (41)
J J aklj
(a4, - a‘k'RdRakl)
1
ar | = LL ak'ngl 4
utl (42)
(ak'v) aku+lakl)
8, Beru 8
at. .
ay=-ar, e TR T (43)
J kj

This method of obtaining the entries for the basic variables in
the cycle is more complicated than considering the entering variable as
the sum of two slack variables, getting the representations separately,
and adding the columns together. However, this method requires tracing

around the cycle twice, while the other method would require tracing

80

around the cycle four times., The denominators in Egs. (40) and (41) can
be shown to be nonzero in the case that the variables corresponding to
the cycles formed by ® PL, PR, and the path from node R to node L are
linearly independent. Calculating these quantities provides a test of
where the blocking variable might be.

We have discussed above, for all the different cases, the methods

for generating the current representation for a nonbasic variable in

terms of the current basic variables,

3.4 Row Generation

The discussion in the previous two sections related to the opera-
tions involved in a primal simplex network algorithm for the generalized

flow problem. For a dual algorithm another similar concept is needed.

In general, a dual simplex method chooses as a departing variable a basic
variable violating the primal constraints. Once this variable is chosen,
its corresponding row of nonbasic entries is needed, and the entering
variable is chosen as the one allowing the maximum change consistent with
maintaining dual feasibility. A dual algorithm requires the generation
of the row associated with a specified basic variable. The method for
doing this is essentially the same as that for determining the simplex
multipliers and updated costs for nonbasic ares in the primal method.
This close connection is evident since in the primal case the current
costs are in fact the row associated with the objective function.

Suppose the current row associated with a basic variable xj whose
associated column has its nonzero entries in block k is to be generated.

For basic variable X, this row <§j> is obtained by multiplying the corres-

81
ponding row of the basis inverse (yé) and the original columns for the
nonbasic columms (AN).

a, =b! bt
it AN (44)

The calculation of the required row of the inverse can be accom-
plished in the following manner. First, note that the inverse of a block
diagonal matrix is a block diagonal matrix of the inverses of the original
blocks, Thus the row will contain zero entries for all columms not asso~

[- Ld - > ' 'l »
ciated with Bk' Next partition Bk into Bk and Bk using column bj for the

basis variable xj as the partitioning column (see the partitioning corol-

lary after Theorem 2.1).

oo ?%
LI .
torgr, b
}4_}Jk4
B = ? Y AR5 (45)
. ! 0 IB"
O
b * ! . | J—
The block Bﬁ contains the root or pseudoroot. The required row of B;l
is the solution to:
b¥ B, = e = (0,...,1,0,...,0) (46)

-]
w T
j~ position
For convenience, the subscript j will be dropped when referring to Q? and
b%,...,bﬁ will be the components of g;. Let bf,...,b¢ be the elements of
% . . 1 e o 1 " * i
Ej which multiply Bk and bv+l""’br multiply Bk' Also let bv miltiply

% . . .
a and bv+1 multiply akj' Then Eq. (46) can be rewritten:

k'j

82
[b¥,...,b*1 | B} , = [0----1] (47
)
. lak'J_
| naiy
e :
[b$+1,...,b¥] 0 : o = [Q*--=0] (48)
T 3
The solution to Eq. (48) is obviously:
b# = 0 i=vtl,...,r (49)

Equation (47) has the same form as Egq. (32) in Chapter I for deter-

mining the simplex multipliers, i.e.,

uB = ¢ (50)

if b?,..

(0,...,1) is identified with the vector c

.,b? are identified with elements of u and if the vector

B? Eqs. (50) and (47) are identi-
cal. But in Section 3.2 an iterative method was presented for solving
the system of equations (50). Thus Egq. (47) can be solved in the same

iterative manner, tracing out from the node above the arc for xj. The

entry for this node is calculated by noting that:

_ 1
ak'jb$ =1 thus b§ = ak'j {51)

Let two nodes P and 9 correspond to any two rows of [Bﬂ bj] and let

P; and q be connected by the arc for the basic variable X . Let node

P; be nearer the root.

83

to root B u
£) @)
v

Let bg be associated with node P, and b? be associated with node

9 and assume bg has been calculated., Then b? is calculated using the

relationship:
akubg +-ak|ub§ =0, (52)
i.e,,
b% = a’k_u h*
t o a,, s

This is the relationship used to iteratively calculate the nonzero
elements bf,...,b§_1 in h?. The above development has shown that the
only nonzero elements of the row of the inverse corresponding to xj are
the ones associated with the rows of Bi and hence the nodes above the
arc for xj in the associated graph. Moreover, each of these elements
will in fact be nonzero. Once these nonzero elements have been calcu-~
lated, the current row for xj can be obtained using Eq. (44).

An example of the construction of a row of the Inverse and the

current row for a basic wvariable is now given using the sample problem

from Chapter II.

The arcs corresponding to basic variables are in heavy lines and for non-

84

basic variables in broken lines, To generate the row associated with Xgs

the fourth row of B;l must be calculated since the columm for x5 is the

fourth columm.

o
Ed

7 2 "3 75 6
o =y
1 0O 0 o0
c 0 - 0
0 0 - 1
0 0 0 L
To generate the row for x5, partition Bk about the column for x5.
1 o0 0 0
' '
Bﬂ :ak,s, 0 1 - 0 0
Bk = —g-r-~--i*- = 0 2 -1 0 {54)
135 15 -1 00
L
The row of the inverse to be computed is:
* = % +*
b (5%, ...,b%) (55)
. % = % = % o=
But by Eq. (49): b5 bg b3 0
And by Eq. (51): b = = = -1
' ' =11
- (1)b¥
And by Eq. (52): bf = D =1
The fourth row of B;l is:
b! = [000 -1 1] {56)

IS

To determine the entries for the nonbasic variables Xis Kys and x

4 8

85

s the

appropriate original columns are multiplied by the constructed row.

1 0 0
_ -1 2 0
a, =blA =[000-11] |0 O O} =[01-1]
i iy 0 -1 0
o o0 -
For the case of a pseudorooted component consider:
112
-1
8

- dm W wa

(57)

To generate the row associated with Ko the third row of B;l is

calculated:
x3 x4 xs
-1 2 0
B, = 2 0 2
k 0 -1 -1
- ' 1 =
lb1 + 2b2 0
t [-
2b1 b3 0
S T -
2b2 b3 1
Solving:
T = .
bl 1
1 -~ L
b2 -5
bl = -2

(58)

(59)

(60)

86

The entries in the generated row corresponding to xl, Xys and x6

are calculated using Eq. (44}.

a, = (D¢ =1 (61)
a, = -1(-3) = %
56 = 1(2) = -2

Using these methods any row of the inverse matrix corresponding to
a specific basic variable and the corresponding entries for the nonbasic
variables in the updated representation of that row may be generated
directly from the tree structure of the basis and the original coeffi-
cient matrix,

An interpretation of the nonzero entries in an updated row may
also be given in terms of the current basis graph. Consider the nodes
in the tree containing the basic arc (variable) whose row is being
generated. Then only nonbasic arcs incident on these nodes can have non-
zero entries, Further, only nonbasic arcs which are incident on the tree
above the generating arc can have nonzerc entries, This is evident from
the construction of the corresponding row of the basils inverse already
given. Nonbasic arcs which have both ends in the tree above the generat-
ing arc will have a nonzero entry only if the simple cycle of basic arcs
and the particular nonbasic arc form a set of linearly independent vec-
tors.

These characteristics may be stated as a theorem,
Theorem 3.1

The row in the current tableau for basic variable xi will contain

87

nonzero entries for only the nonbasic variables corresponding to:

1) Arcs which are incident on exactly one node in the basic tree
above the arc for X5,

2) Arcs which are incident on two nodes in the basis tree above
x5 such that the cycle formed by the arc for the nonbasic variable and
arcs for basic variables above x, constitute to a set of linearly inde-
pendent vectors.

Proof:

If an arc corresponding to the nonbasic variable xj is not incident
on the tree above the wvariable Xs 5 then xj will have a zero entry in the
current row for X, . This is seen since the entry for Xj in the row for

xi is calculated:

Zij = bibj (62)
where bi is the complete row of the inverse for X, and bj is the original
columm for Xj' But it has just been shown that all of the elements of
bi not corresponding to nodes above %, are zero. Thus, since the nonzero
element(s) of bj occur in rows where the elements of bi are zero zij mist
equal zero.

If the arc corresponding to xj has both ends in the tree abowve X,
then the paths from both ends of xj to the root or pseudoroot must in-
clude X Hence xj and some set of basic variables associated with arcs
above L must form a c¢ycle. Suppose that the columns corresponding to
the c¢ycle are linearly dependent, but that Xj has a nonzero entry (Eij)
in the current row for the basic variable X, . Then, disregarding primal

feasibility, a simplex pivot could be made on Zij making x. basic and x;

i

88

nonbasic. In terms of the graph this would mean that the tree which
contained X would break inteo two components, one tree consisting of the
nodes and arcs not above Xs s which would retain the root or pseudoroot,
and another tree consisting of the nodes and arcs above X - The latter
tree would have a pseudoroot formed by the cycle containing X, described
previously. But it was assumed that the columns of the cycle were
linearly dependent and hence the definition of a basis is violated.

This contradiction proves the last part of the theorem.

This interpretation has a special significance for ordinary flow
problems where in each column for a regular variable one nonzero entry
is a plus one and one is a minus one, The single nonzerc entry for the
columms of the slack or artificial variables is a plus or minus one.

It is well known that a basis for these ordinary flow problems can
contain no pseudoroots {(cycles) (Dantzig [15], Johmson [58]), This is

easily seen by considering the p X p matrix of such a cycle:

2l Berp
ety %2
B = 2 (63)
c ~
~N
~,
| *k'p-1 “kp_|
The determinant of such a matrix is:
; HP & 64
Det(Bc) - gll 81 T -1 iil Aeri (64)

The coefficients for each variable x, are given by:

89

aki =+ 1 and ak'i = -aki

Since BC is a cycle, then there are precisely p plus one and p minus one
entries in Bc. Suppose r of the a, . are equal to plus one, Then (p-r)

of the a are also equal to plus one. Similarly, (p-r) of the a, and

k'i
r of the ., are equal to minus one. The notation a and &y implies
a direction around the cycle. In this direction the above discussion

implies we will have r forward arcs and (p-r) reverse arcs. The calcula~

tion of the determinant of Bc is:

P p-r, .. T p-r
i = (-1 D= (-1 65
By = CDPTMT = (D (65)
P _ r, . .p-r _ T
B aeg = CDTAOPT = D (66)
Pet(B,) = (-DFTF - (-1HP(-1)F (67)
But
D= DT (68)
Thus
Det(8)) = (-)°7 - (-1)P¢-1)7 =0 (69)

Since r was chosen arbitrarily, no cycle may be in the basis for the ordi-
nary flow problem, This leads to a corollary to Theorem 3.1.

Corollary: For the ordinary flow problem, the only nonzero entries in

the current row for basic variable *, are for nonbasic variables xj whose
corresponding arcs are incident on one node of the tree above the arc

for variable xi.

90

Proof:
If the arc for nonbasic variable xj is incident on two nodes above

x5 then it is contained in a cycle with a set of basic arcs above X,

and the cycle corresponds to a set of linearly dependent columns. Hence,
by Theorem 3.1 the corollary is true.

It can also be noted that, for the matching problem, where a, =

g = 1 for all i, no even cycles can be in the basis, If they were,

k'i
then the determinant of the submatrix of the cycle would be given by

Eq. (64) as:

p p
- _ ¢_1aP
Det(Bc) B 111 aki (-1 511 ak'i (70)
but
L 1 for all i and p is even.
Det(B) = (1) - -»HP1=1-1=0 (71)

which is not possible. This result is well known and has been proved by

Johnson [58] and others,

3.5 Basis Change and Updating Simplex Multipliers

Row generation has a close relationship to the updating of simplex
multipliers and nonbasic evaluators after a basis change. Consider the
primal simplex operations performed in updating the objective vow in a
tableau. The pivot element is in the column of the entering nonbasic
variable xj and in the row of the departing basic variable X, . To update

the objective function row the ratio Effgij is multiplied by the row cor-

91

responding to x, and subtracted from the current updated cost row. Hence
only the simplex multipliers and current costs with nonzero entries in
the row corresponding to the basic variable are changed. This property
is the basis for the theorem of Glover, Klingman, and Kearny [34] for up-
dating the objective function row for the ordinary transportation problem.

By observing the structure of the basis before and after a basis
change is made, the simplex multipliers which must be recalculated can
be specified exactly, The nature of the change in the structure of the
basis is detalled in the two lemmas and a corollary which follow. Several
examples are given in Figure 7.

First denote two distinct components of the basis as B1 and B2.
Let x, be the entering nonbasic variable with associated column bi and Kj
be the leaving basic variable with assoclated columm bj which is a colum
of B,. By the second corcllary to Theorem 2.1, let B, be partitioned
into two blocks by bj so that Bé contains the root or pseudoroot of 32
and B! is above b,. If b, is a2 slack c¢columm or in a cycle then Bg = B2

2 i j

and Bé

Lemma 3,2

is empty by definition,

Let bi replace bj in the basis. If bi has its nonzero entries in
rows corresponding to the two distinct blocks B1 and B2, then after the

basis change Bé is a distinct block and B1 together with bi and BE is a

distinet block., A trace from a nonzero element of Bl to a nonzero ele-

ment of BE in a series of alternating row and column move on nonzero

element must contain the nonzero elements of bi'

{a) Arc enters,
Root leaves,

Figure 7.

{(b) Arc enters, (c¢) Arc enters,
Pseudoroot leaves, Arc leaves,

~= — — entering arc

leaving are

Basis Exchange Configurations

[4:

(d) Root enters,
Root leaves.

E- X-Eo——ci’b——o}i

{e) Root enters, (£} Root enters,
Pseudoroot leaves. Arc leaves.

————— entering arc

leaving arc

Figure 7. (Continued)

€6

(g) Pseudoroot enters, (h) Pseudoroot enters,
Root leaves. Pseudoroot leaves,
X
R

————— entering arc

leaving arc

Figure 7., (Concluded)

?ﬁ)

(i) Pseudoroot enters,
Arc leaves,

%6

95

Proof:

The portion of the basis corresponding to B1 and B2 is given in

partitioned form as:

| {]
Lo 0 \ !
m = !
B' = 0 B; v b, vV 0 (72)
R R
' ! + B!
' + !
After the basis change it becomes:
| t t
B 1 ¢ 0 0
...l'........| | QN
| - | 1 T
B 0 \ bl |_-I.ig-:.“" (73)
] | '
Bl
S

That B, remains unchanged is clear, since its columns are not af-

1

fected by the exchange. Since Bé and Bg have no nonzero entries in the
intersection of their rows and columms, the deletion of bj leaves Bé as a
distinct block.

The entering columm bi has a nonzero entry in a row corresponding
to BE by definition of entering and leaving variable. Thus, with the
addition of bi to the basis all of B! would become part of the same com-

2

ponent as B. using the constructive process for defining a block (see

1
Theorem 2.1). Since they were distinct blocks, BE originally had no non-

zero entries in common with Bl° Thus, bi is the only column with a non-
zero enfry in a row of Bl and a nonzero entry in a row of BY, proving the

last part of the lemma.

96

The lemma can be stated in terms of the associated graph, Before
the basis change B1 and 32 are both rooted (pseudorooted) trees. BE
contains the root or pseudoroot for B, (if it is not empty). BE is con-
nected to Bé by the arc for Xj and is in fact above this arc, After the
basis change B! corresponds to a rooted tree, Bl’ bi’ and BE form a

2

rooted tree and BE is above the arc for % . An example of this is:

BZ
X.
" BI

2 2

Before the exchange:

O}fl._i._o_

After:

: ; Xi xj
Tree 1 Tree 2

Other examples illustrating the lemma are given in Figure 7(a,b,c).

If the leaving variable is a root or part of a pseudoroot, then
then BE = B2 and the blocks Bl and 52 will become one block after the ex-
change; otherwise, they will remain as two distinct blocks after the ex-
change. In the case that the entering column has only one monzero entry

the following corollary to the lemma holds,

Let the column bi associated with the nonbasic entering variable

x; have only one nonzerc entry in a row corresponding to the block BZ'

Let B, be partitioned into Bé and BE by the colummn bj of the leaving

2

variable xj.

97

Corollary: After the basis exchange Bi is a distinct block and Bg is a
distinct block with bi as its root,
Proof:

The proof is the same as for the lemma with B, empty,

1

Examples of the corollary are in Figure 7(d,e,f).

On the other hand, comsider the case where the column bi for the
nonbasic entering variable xi has both nonzero entries in two rows of
the same component Bl' Let xj and bj be defined as before. Let s be
the node where the paths from the rows of the nonzero entries of bi join
before reaching the root or pseudoroot. Let the nodes where the paths
meet the pseudoroot be n and Nps respectively. Let bj partition Bl into
Bi and BI as before,
Lemma 3,3

if bi has its nonzero elements in two rows of the same block Bl’
then after the basis exchange either 1) a nonzero entry of B{ can be
reached from a nonzero entry of Bi through a series of alternating row
and columm moves on nonzero elements only by going through the nonzero
elements of bi or 2) Bi is a distinct block and BE is a distinct block
with a pseudoroot comprised of the columm bi for the entering variable
X, and the columms of the variables in the paths from both ends of X, to
the joining node(s) s (nL and nR).
Proof:

For (1) the proof is essentially the same as Lemma 3.1. For (2)

Bi contains a root or pseudoroot and has no common nonzero entries with

B{ after the deletion of bj; thus it is a distinct component. If By

98

contained a root or if s was above the root or pseudoroot, then Bg has as
its pseudoroot the entering variable X, and all variables in the paths to

s from both ends of ;. If n and n, are distinct, then the pseudoroot

of Bg

the part of the cycle between n

is comprised of X, 5 the variables in the paths to o and g, and
L and n, not containing the leaving variable
x.. If the leaving variable is a root or in a pseudoroot, then Bi is
empty.

Some cases covered by the lemma are shown in Figure 7(g,h,i).

The following theorem uses the structure of a basis change estab-
lished in the preceding lemmas and corollary to specify the recalculation

of simplex multipliers,

Theorem 3.2

The only simplex multipliers which need to be recalculated after a
basis change are those associated with nodes above the entering arc.
Proof:

The definitions and terminology used in the lemmas and corollary
are used here, First consider the case where the columm bi of the enter-
ing variable X has its two nonzero entries in the rows of two distinct
components B1 and BZ' Let the columm bj of the leaving variable xj par-
tition B2 into Bé and BE as before. Since Bl and Bi retain the same form,
the corresponding simplex wultipliers remain the same. Let M. be the sim-
plex multiplier associated with the row of B1 containing the nonzero

entry a . of bi' Then for the equation of BY containing the other nonzero

ki 2

entry, the simplex multiplier Cns) is determined by the equation:

i T AriTs T G (74)

99

But e does not change, Thus:

n o=t Tk (75)

Since BE contains no other nonzero entries in common with Bl’ the remain-
ing simplex multipliers are determined iteratively as demonstrated in
Section 3.2,

If the entering variable is a root as in the corollary, then the

simplex multipliers have to be determined only for Bg with the one at the

root Cﬁr) determined by:

2T = <. (76)

The case where both nonzero entries of bi are in the same tree as
in Lemma 3.3 follows the same pattern. If the dropping variable is above
the joining node s, then the recalculation of the simplex multipliers is
the same as the first instance. If a distinct component BE is formed
with a pseudoroot, then the simplex multipliers of the cycle are calcu-
lated and the remainder calculated tracing out from each node of the
cycle as before,

The following examples from Figure 3(f,g) of the example of Section
2.4 demonstrate the use of the theorem, The graphical representation of

the problem before the basis change, with ®, entering and x, leaving is:

100
Tree 1 Tree 2
1 1
—
G
s
M3
After the basis change:
The equation for the simplex multipliers before the change was:
nBl = cB1 (77)
n'32 = cg
2
with:
2 0 0 T = [, T.] c, = [0 3]
5 - [? ﬂ A - [1 1 é] L2 By
- - - f = -
1 0 2 0 1 1} [ﬂ3 U ﬁ6] g {1 2 1000]

Using the iterative scheme tracing out from the root of a tree, the sim-
plex multipliers can be calculated.

For Tree 1:
(g =0 . =0 (78)

For Tree 2:

101
(1)715 = 1000 e = 1000 (79)
e +'ﬂ4 = 2 M, = ~9938
2n3 STy, = 1 My = -997/2
After the basis change there is only one tree, since a root left the
basis.
] [}
Bror o °s,
1 - . - - - =
[r m'] | hii . (80)
1
0 : : B2 B2
i 0 0 0 0
0-1 2 0 0 3
(v, m, ., 7w, T"m.] 0 0 0 2 90f = |3 (81)
172 3 74 5" Ih o -1 -1 1 1
o 0 0 0 1 2

Ty and T, remain the same. The calculations for the simplex mul-

tipliers above X, are:

2n2 - W4 =3 n4 = -9 (82)
2n3 - ﬂ4 = 1 ﬂ3 = - 4
ﬂh +'ﬁ5 = 2 ﬂs = 11

Another example with a pseudoroot is taken from the iterations
shown in Figures 3(d,e}. Before the change, with X entering and x,

leaving:

Tree 2

102

After the change:

! _ nB, = ¢ {83)
B2 = ch L Bl
with
-1 2 0 o= [n5] cg = [1600]
B1 = [1] B2 =12 0 2 1 2
o -1 - ' = [w, n, m™,] ¢, = |3
3 2 4 BZ 1

The calculations for the multipliers before the change:

For Tree 1

=4 (84)

3
2T‘f3'-1‘1’4=]. n4=5
For Tree 2
= 1020 = 1000 (85)

= (86)

103

) -
[m™"] [n5 T, T4 nz] (87)
Lil,.0__0 1000
B = :1 1 -1 c 2
P y v 22 B 1
v -1 2
m remains the same, Nodes 2, 3, and 4 are above the arc for Xg»
M, T Cg T Mg = 2 - 1000 = -998 (88)
LS55 1 - 998 _ -997
3 2 2 2
T, = <Cg t 2n3 = =2 -~ 997 = -999

3.6 Labeling the Tree

In the earlier sections, methods for carrying out the simplex
operations for the GFP have been developed which utilize a graphical
representation of the problem. The procedures need an efficient means for
identifying the tree structure and for tracing up and dowm a rooted or
pseudorooted tree. The method of doing this will be discussed now.
Glover, Klingman, and Kearny (34] have presented a scheme called the aug-
mented predecessor index method for maintaining the tree for ordinary
transportation problems. They indicate that it is essentially the triple
labeling method of Johnson [59]. Srinivasan and Thompson [87] have also
presented a similar scheme, and Maurras [71] indicates a labeling pro-
cedure for the GFP but does not give the details, The methods given here

are extensions of Johnson's triple labeling scheme for the ordinary flow

104

problem,

The requirements for a labeling scheme are:

1) Trace from a node in the tree to the root.

2) Trace all nodes above a specified node.

3) Detect when a root or pseudoroot has been reached in a tracing
down a tree,

4y Trace the nodes of a pseudoroot.

5) Efficient updating of labels when a basis change is made.

The essence of the row and column generation procedures is to use
the labels tc calculate the current representation of a row or column
directly, without the node-labeling search of an out-of-kilter type al-
gorithm. Two schemes will be presented: omne with the restriction that
if there is an arc between two nodes it is unique and the other without
this restriction.

For the first method the labels will be node numbers of other
nodes in the same tree. Consider node i. Then, if node j is connected
to node i by a basic arc, a device is needed to determine the arc between
i and j; that is, which variable (xk) occurs in equation i and in equa-
tion j. From this a and a,y, May be found. Let there be n regular
variables (two ended arcs) and s slack arcs (slack and artificial vari-

ables). Define the function Nij such that Nij = k if the nonzero coeffi-

cient a of X, occurs in equaticon i and a,, Occurs in equation j and

Nij = -k if a1k is in equation j and a, in equation 1i.

N.. =k if b row i (89)

i
[

a row j

Further

row i (9

]
o

N,., = -k if b

a row j

In terms of direction of an arc as defined previously Nij =k, if arc k
is directed away from node j toward node i and Nij = -k if arc k is from
j to i, Let there be m equations (nodes). If there is a slack arc at
equation i address it by defining Nm+1 i = k.

Associated with each node i will be three labels: the down label
(Di), the up label (Ui)’ and the right label (Ri). The down label will
indicate the next node closer to the root (or pseudoroot) connected to
the current node by a basic arc. The node on which a basic slack arc is
incident is called the root node and has a down label of zero. If a node
is part of a pseudoroot, its down label will be negative,

Thus, Di = j indicates that node j is the next node down the tree
connected to node i by arc k = ‘Nijl' If Di = 0, node i is the root node
1f Di‘< 0 then node i1

and the associated basic slack arc is k = N
m+l 1

is part of a cycle of basic arcs,

106

The up label Ui indicates a hode connected to node i by a basic
arc, one arc farther away from the root or pseudoroot. If Ui = j, then
arc k = !Nijl is the basic arc connecting nodes i and j and arc k is in
the path from node j to the root or pseudoroot. Ui = (indicates that
there are no nodes above node i; that is, node i is at the end of a tree.
Since more than one node may be directly above a particular node, the
right label Ri indicates a node (other than i) directly above the node Di'
That is, nodes i and Ri are both above the same node (Di). Ri =0 indi-
cates that there are no other nodes above node Di which have not been

specified by an up or right label. For example:

QAPP @ Lxny ©inny
1 0o 2 0 1 0 2 0
(2) 2 1 4 0 2 1 3 0
3 2 0 5 3 2 0 5
4 2 0 3 4 2 0 0
5 2 0 0 5 2 0 4

root

The labels in (a) or (b) may be used to represent the tree struc-
ture in the graph showing that a particular set of labels is not neces-
sarily the unique representation. If Di~< 0, then node is is in a cycle,
and Ri indicates an adjacent node in the cycle,

This labeling scheme allows tracing up or down a tree as required
to carry out the simplex operations for the GFP which have been described.

To trace down a tree, the path tc the root or pseudoroot is found by:

107

This proceeds until D, < 0. If D, = 0, then the slack arc is a_ =N .
i i s m+1,1i

If Di < 0, then let p = i, and let noq = R,, a, = !N

+1 i 5 | until ni =p,

e e |

in which case the cycle has been traced.
The example below shows the down trace required to obtain the repre-

sentation of a nonbasic arc between a rooted and a pseudorooted tree.

A

1
i

6
n= 12
T Y
L
I I A
I N I
LT A O
Yo T Nes T ° 13 o1 ;
N R
Ngg = By =8
Nyg =Ny =9
Ngg = Ngg =10
Ngg = Nggp T U
No 11 = My10712
=13

N2 107 Mo 12

108

To determine the representation of nonbasic arc L node five will

be called its left end and ncde six its right end. Tracing down labels

from node six and finding the connecting arcs defines the path:

This is the

right side:

to

It

s3l =3
nl =3
N5l =1 (5, a5, 3, a5, 1, a;)

the root and the slack arc at the root. From the

3=R; =8 [Nyl =8 p=7
gol =9
97| = 10 Terminate since n5 = p.

(6) 6‘7’ 7! a8) 8, a’9, 9, alo’ 7)

This is the path to the pseudoroot and the pseudoroot. These sequences

of nodes and arcs are used to derive the column representing X in terms

of the basic variables.

To trace all of the nodes above a specified node, the following

algorithm is used:

Let the original node be k.

{1) PFollow the up labels until Ui = (for some i.

(2) 1f Ri #0, let 1 = Ri and go to step 1, otherwise go to step 3.

PRV

(3) Llet i = Di. If Ri # 0, let 1 = Ri and go to step 1, otherwise
go to step 4.

(4) 1f Di # k, go to step 3 otherwise terminate.

To trace all nodes above node one in the single tree example with

five nodes, the algorithm produces the following trace.

Ul = 2 i =2

U2 =4 i=4

U4 =0 R& = 3 i=3

U3 =0 R3 =5 i=35

U5 =0 R5 = 0 D5 =2 1i=2

R2 =0 D2 =1 i=1 Terminate.

If the root node is used as the starting point, the algorithm
traces all the nodes of a rooted tree. For a pseudorooted tree, a node
in the cycle is chosen as the starting node, the previcus procedure is
used to trace above it; the node to the right of the current node in the
cycle is obtained using the right label; ;and the procedure is repeated
until the original node is reached. The upward trace is used to calculate
the original simplex multipliers, update the simplex multipliers, and
generate a row of the basis inverse, if it is required. The labeling
scheme is the means for storing the current basis. The method is essen-
tially an indirect addressing scheme in which the variables of the basis
(arcs) are identified through knowledge of the equations (nodes) in which
they occur.

As mentioned, this procedure is limited in that only one variable

may appear in the same two equations. That is, there cannot be two arcs

110

between the same two nodes and only one slack or artificial wvariable can
appear in each equation. Consider a situation where the cost for a regu-
lar variable is a piecewise linear Ffunction. Charnes and Lemke [12] have
shown that this variable may be replaced by the sum of a set of variables,
one for each segment of the cost function. For the GFP this means that
several variables will appear in the same two equations with different
costs and bounds. The labeling systems must have a mechanism to identify
which basic variable corresponds to the arc connecting two nodes in a
tree of the basis. Similarly, both a slack variable and an artificial
variable in the same equation may be required to define an initial basic
solution. The following labeling method will allow these conditions
which were not allowed in the previous scheme.

Instead of using nodes to determine arcs in the basis, this scheme
will use a node and attached arc to determine an adjacent node. In a
sense this scheme is the opposite of the previous indirect addressing
scheme. Three labels, down, up, and right, will be associated with each
node. However, the label is the number of the basic arc leading to the
appropriate node in the previous labeling scheme. The end of a tree ig
still indicated by the up label equaling zero, i.e., Ui = 0, The right
label being zero (i.e., Ri =) and less than zero (i.e., Ri <) have
the same meaning. Suppose there are n two ended arcs numbered 1,...,n,
and s slack arecs numbered n+l,...,n+s. Then if Di > n, node i is a root
node and Di is the associated slack arc.

Tracing down a tree from node s is accomplished by the following

algorithm., Initially i = s; there are n two ended arcs; and j = 0.

111

(1) j = j+1, nj =i, k = Di'
(2) If k> n, go to step 7. If k< 0, go to step 3.

Otherwise, aj = k. If P = i, let i = 9y otherwise, let i = P> 80 to

step 1.
(3) Let t =1i.
(4) Let k = Ri’ aj =k, j = j+l.
(5) 1f Py = i, let i = 9y > otherwise let i = Py 80 to step 6.
(6) ny = i. If i = t, terminate; otherwise, go to step 4.
(7) aj = %k, root reached, terminate.

The set of labels and arc orientations using the new seheme for

the previous example is:

w1 AR
1 12 10 1 13 2 o©
2 2 1 2 2 0 3
3 1t 3 3 3 5 0
4 3 4 4 4 0 ¢
5 3 5 5 5 0 4
6 5 b b 7 0 0O
76 7 7 -1 7 8
8 &8 7 8 -1 11 9
9 9 B 9 -1 0 10
1 9 7 10 11 12 0
11 10 8 11 12 o 1
12 10 11 12 [
i3 1

Applying the down trace algorithm, from both ends of a:

I}

1 i
2) j=1,n =5
3) k=D, =5

0= k= 12 Thus a, = 5

4) Pe # 5 Thus i = Pg = 3
%) j=2, n, = 3
6 k = D3 = 3

0 k< 12 Thus a, = 3
7) Py % 3 Thus i = Py = 1
8) j =3
) k= D1 = 13

k> 12

a3 = 13 Terminate

The path to the root and the slack arc at the root are:

(5’ as’ 3, a3’ 1’ a13)
From the other end of a6:

1)y 1= gy = 6

2) =1, n, = 6

3) k= D6 = 7

0s ks 12 Thus a, = 7

4) py = 6 Thus i = q; = 7

53y j =2, n, = 7

6) D7 = =1 Pseudoroot encountered.

7) t =7

8) k= R7 = B, a, = 8, j =

9) Pg % 7 Thus 1 = Pg = 8, n, = B, t #1i

10) k= RB =9, ay = 9, j =4

11) p, # 8 Thus i

112

113

9 4
13) Pig = 9 Thus 1 = 40 = 7, n, = 7
14) i =+t =7 Terminate,

The path to the pseudoroot and the pseudoroot are:
(6’ a?’ 7’ 88’ 8, ag, 9’ alo’ 7)

The changes required for an upward trace are analogous. The up-
dating of the labels to reflect a basis change is essentially the same
for both labeling metheds. We will illustrate it for the latter scheme
which is adopted in the coding of the algorithm presented. The exact de-
tails of the required changes depend on the nature of the basis change
as shown in Figure 7. Generally, only the labels for the nodes between
the entering arc and the leaving arc must be changed. Consider the sim-
plest case in which neither a root nor pseudoroot is ipveolved in a basis
change. The path between the entering arc (al) and the leaving arc (ar)
is called the stem. Suppose the nodes and arcs are numbered such that

this path is (nl,al,...,nr,ar,nr) as shown below.

a a a To root
TO I'OO!: - - ﬂ-’ -l--M——"' w - -

Left tree Right tree

The down labels in the right tree before the change are:
D, = a, i=2,...,4.
The new down labels after the basis change are:

SI =a, 4 i=2,...,r.

114

The down labels for the left tree and the remainder of the right tree
remain unchanged after the basis change.

Now consider the up labels. Before the basis change, suppose:

Un. = ai—l
1

The new up labels after a basis change wil be:

i=3,...,rl.

U =R i=3,...,r+l.
n, n.
i i-1

As discussed previously in this section, the representation of the
tree above a certain node is not unique. Thus, if Un % a; _1» then by
i
using the right labels determine nj so that Rn =ay g Then let
]

R =R .
i Ti-1

To impose the new up structure, let:

U = a, R =10 i=1,...,r-1.

These label changes will, in effect, graft the stem and a2ll nodes connected
to it to the tree through the entering arc and cut the leaving arc. To

illustrate the scheme:

Assume n = 20.

a. enters, a_ leaves.
9 8

An appropriate set of labels is:

115

i D, U, R,
— - r 1
i i 2 0
2 4 3 0
3 6 5 7
4 5 0 4
5 8 6 0
6 2 0 0
7 21 1 C
8 3 0 0
9 7 0 0
i0 22 8 0
The stem is:
(n]., 39’ nzi a&’ n3, 36: n5)
The down labels become:
D2 =9
D3 = 4
To reverse the upward labels:
1) T= R2 =0 Adjoin entering arc.
R2 = Ul = 2
Ui = 9
2) U3 =4 7 No Remove old up hierarchy.
k = Uj =5 1f Ps = 3 ng = qg = 4
= ? = =
R4 4 7 Yes R.q T=20
3) T = R3 = 7
= U = 3
R3 9 3
U2 =4
4) U5 =6 ? Yes
U = =
S T =17

Since 5 is the cut ncde, terminate.

116

The new trees and labels are:

i D, U, R,
— i i i
1 1] 0
o
T

4 5 0 0
5 8 0
6 2 0 0
7 21 1 0
8 3 0 0
9 7. 0 0
10 22 8 0

The boxed labels were the ones changed.

This is the fundamental scheme for changing labels. Only the
labels indicating the hierarchy along the stem must be changed., Slight
modification must be made to create or dissolve a cyecle or for the entry
or departure of a root.

Recent work in tree structure labeling has been done by Srinivasan
and Thompson [B87], Glover and Klingman [27]}, and Glover, Klingman, and
Kearny [34]. The predecessor index method of the latter two papers is
precisely the down labeling scheme for tracing to the root. The exten-
sions mentioned by Srinivasan and Thompson [87] are more useful when the
basis graph consists of only one tree and does not seem to be as attrac-
tive when several rooted components are present. The paper of Glover,

Klingman, and Kearny details the label changing procedures for the ordinary

117

flow problem using a Johnson type scheme of the first type mentioned.
Maurras [73] discusses a labeling and relabeling procedure for the GFP
but it is not clear how his scheme is used to trace up or down a tree.
His main idea seems to be that of identifying the order of the coeffi-
cients for amn arc in a path to the root.

The nature of the GFP has been described in this chapter and
methods to take advantage of this structure for solving the GFP have been
outlined. These devices are organized into an algorithm for the GFP and

some of its specializations in the next chapter.

118

CHAPIER IV

CONTINUOUS ALGORITHMS

4,1 Introduction

In this chapter the characteristics of the generalized flow

problem noted in previocus chapters are used to specialize the primal sim-
plex method into an algorithm for the GFP. The current basis is recorded
using the triple labeling scheme described in Section 3.6. The column
generation scheme given in Section 3.3 and simplex multiplier recalcula-
tion method described in Theorem 3.2 are the main tools for carrying out
the simplex operations. A general description of the GFP algorithm is
given in this chapter. Computational results are also presented.

The GFP algorithm specializes further when the same concepts are
used to construct an algorithm for the ordinary flow problem. These
specializations are noted in Section 4.3, and an outline of the ordinary
flow algorithm and computational results are given.

Finally, the special characteristics of a similar algorithm for
the transportation problem are noted and the computational results using

such anp algorithm are presented in Section 4.4.

4.2 GFP Algorithm

4.2.1 Statement of the Algorithm

The algorithm is now stated in general terms.

1. Inpnitialize by determining a primal basic solution and computing

119

the corresponding simplex multipliers.

2. Select a nonbasic variable xj to enter the basis from the set
J={j: T,>0and x, =M, orc,< 0, x, =0 where ¢, = ¢, - _ a

3 3Ty 1 7% "7

1
- Ty aZi} 1f J = ¢ terminate; otherwise go to step 3.
i

i

3. Determine the structure of the current basis relative to the
entering variable using the labels,

4. Iteratively construct the column of the entering variable and
determine the variable to leave the basis, noting the position of the
leaving variable in the tree structure of the current basis.

5. Using the column (gj) and the change (A) in the value of the
entering variable from step 4, compute the new values of the basic vari-

able affected by the basis change, i.e., x' = x - ad

j.

6. Using the information about the tree structure and the entering
and leaving variables from steps 3 and 4, change the labels to represent
the new basis.

7. Recalculate the simplex multipliers (m) above the entering

variable. Return to step 2.

The difference between this algorithm and the general primal sim-
plex method is that additional logical information is used to take ad-
vantage of the special structure of the basis of the GFP. Thus, in step
4, only the nonzero entries in the column for the entering variable are
calculated. Also, in step 7, only the simplex multipliers which change
are recalculated. Thne theoretical justification for these methods were
presented in Chapter III. The algebraic operations and storage require-
ments of maintaining the current basis inverse is avoided by using these

techniques also. To use these techniques, the label representation of the

120

basis must be maintained and updated. This was shown to be a reasonable
task and efficient means for doing it were presented in Section 3.6.

4.,2.2 Initialization

The initialization may be accomplished in several ways. The simple
one used to obtain the computational results presented later in this sec-
tion is given below. Assume the equations are in equality form (i.e.,
slack variables have been added).

Let there be m equations and n variables with nonzero coefficients
(ali’aZi) in the two equations P; and q, - Let there be s slack variables
so that there are s variables with one nonzero coefficient (ali) in equa-

tion Py The initial right hand side is b = (b ...,bm). The initializa-

i,
tion procedure is:

0 if cj 20
=* -
Set xj xj where x? {Mj i £ cj‘< 0

Adjust the right hand side so that:
b* = b - Ax*

For each equation i which contains a slack variable xz and whose

adjusted right hand side b? is greater than zero let: x: = bf.

For each of the remaining r equations define an artificial variable

X i = n+s+l,...,n+s+r so that

i 3 =
if bi < 0, ay 1
* =
bi 20, a, 1
and let x, = |b§| for all such equations.

Additionally, if b? = 0, set the upper bound on the corresponding

121

artificial variable equal to zerc. A set of labels corresponding to the
above artificial and slack variables is constructed to define the initial
basis.

In certain instances, a starting solution with fewer artificials

may be attainable. Consider the degenerate case, i.e., when
R' = {i : b¥ =0} # ¢ ¢))

In this case, for i ¢ R', any variable xj with a nonzero coefficient in
equation i can be brought into the basis at its present value (either Mj
or 0). A nonempty set R' might often occur. OConsider the case where the
equations for GFP can be partitioned before the addition of slack vari-

ables into the sets:

s={1:§ak_xjsbi;bi>o} (2
] J
R={1: Ejak.xj = bl ; bi = 0} (3
j]
= i = . e
T = {i H) aijj b, b, 0} (&)
J

In the usual terminology, S5 is the set of sources, R is the set of inter-
mediate nodes, and T is the set of demands. Consider the graphical repre-
sentation of the sets R and 8. Associate with each arc the direction de-
fined by the convention in Section 2.3 and the costs (ci). By defining a
dummy node connected to all of the nodes of S, a spanning tree can be
determined by funding the shortest path from the dummy node to all the

nodes in S R. The original variables corresponding to the spanning tree

122

could be used in an initial basis eliminating all artificials from the
set R. Two limitations of this method ave that the labels reflecting this
basis must be determined, and the spanning tree takes little account of
the original problem except for the per unit variable costs. For certain
special cases the algorithm of Charnes and Raike [13] or Glover and Kling-
man [32] could be used to determine a spanning tree which would take into
account the constraints of the original problem except for the bounds.

It must be remembered that all of these starting procedures are
heuristic in that there is no theoretical reason that one should result
in a fewer number of iterations than another. The desire to eliminate
artificials seems reasonable to be sure; however, limited computational
experience indicates that, while the procedures may reduce the number of
simplex iterations, they may actually increase the total computation time,
This is because, in general, the effort required for an iteration is pro-
portional to the pumber of wvariables with nonzero entries in the current
column for an incoming wvariable. In fact, the GFP algorithm presented
takes advantage of the structure to compute these nonzero coefficients
directly. By constructing a spanning tree of sorts, the initial path
lengths are greatly increased and this could be more detrimental to com-
putational effectiveness than the improvement obtained by eliminating
artificial variables.

By whatever means, once the set of labels for the initial basic
solution has been defined, the imitial simplex multipliers can be calcu-

lated using the procedure of Section 3.2.

123

4,2.3 Justification of the GFP Algorithm

As previously mentioned, the algorithm described in the first sec-
tions of this chapter is based on the primal simplex method of linear pro-
gramming. Disregarding for a moment the question of degeneracy which will
be considered in Section 4.5, the finiteness of the algorithm will follow
if correspondences between the steps of the algorithm and the standard
simplex method can be established.

First, at each iteration of the algorithm, the current column for
a specified nonbasic variable is constructed and the standard ratio test
is made to determine the departing basic variable, The maximum change in
the incoming nonbasic variable and its current column are used to calcu-
late the wvalues of the basic variables associated with the basis after
the limiting basic variable is replaced by the nonbasic variable, The
labels are updated to reflect this change of basis. Hence, at each itera-
tion a set of labels representing a basis is recorded and the correspond-
ing values of the basic variables are maintained along with the values of
the nonbasic wvariables., This is the same as the bounded variable simplex
me thod,

If an artificial variable is in the final basis at a nonzero value,
it is well known that the problem has no feasible solution. Otherwise,
the stopping rule is the optimality criteria given in Eqs. (33) and (34)
of Chapter 1. Assuming nondegeneracy, no basis may be repeated and hence
the algorithm terminates with the optimal solution if there is one.

4.2.4 Computational Results

A computer ceode of the primal GFP algorithm was developed in

124

FORTRAN V for the UNIVAC 1108 computer. The performance of the code for
solving a number of randomly generated problems is given in Table 2, The
problems were generated by specifying the number of nodes and the arc
density . Then each node i was connected to node i+l and to ¢(n-2) ran-
domly chosen additional nodes. Clearly, this will produce a connected
network with arc density . The costs, nonzero coefficients, and upper
bounds were chosen randomly from a uniform probability distribution over
specified ranges. The percentages of source nodes and sink nodes were
specified and these nodes were chosen randomly among all the nodes. The
amount of supply or demamnd at a source or sink node was chosen from a
uniform distribution over specified ranges.

Storage requirements for the code are approximately 9m + l4m
where n is the number of variables with nonzero coefficients in two equa-
tions and m is the number of equations. This is considerably less than
for ordinary simplex algorithms which usually require at least mn storage
locations. For example, a problem provided by Jensen [55] from a water
resource application with m = 62 and n = 186 required approximately 2550
cells of storage for the GFP algorithm compared with mn = 11500 and was

solved in .78 second.

4.3 Ordinary Flow Algorithm

The concepts used to construct the GFP algorithm can be used to
devise an algorithm for the ordinary flow problem (OFP) usually solved by
some version of the out-of-kilter algorithm of Ford and Fulkerson [21].
There are two primary areas of simplification in specializing the GFP al-

gorithm for the OFP. First, because the nonzero coefficients in the

Table 7,

fiepevralized Flow Oommutatinnal Rasults

Prohlan

Numha

Mrydeo

Smuroes

T+oratiara

"Tan)

Averamn

T ma

b

Al
~Q

(=]

%
288
PR

302

326

N1
s
113
166

100

ot

78

YA

Tahle 2, (Contimed)

Problen Hoder Sounrass Siris Avrs Treratinnme Tima¥ Avewvaro
ke (Sl Time
11 e e el FOyE ciE 1,188
- - - rd
12 Ve 1% 17 YA zhh L0

14 L 1c ek 39 D£9 Rxex!
(R 76 5T 236 B2 1,016
14 100 £x a2 1198 735 3,627

17 100 1A 300 110FR £33 3,708

18 100 L 31 1108 12 3,820
19 100 1R 27 10R0 782 3,068

20 100 13 31 1111 1140 5,760 L1073

Are dengsity~ 1 Source dernsity- 2 Sink Adensity- 73

A1l surmlies=200 DNemand ranse L0-6N Tegt varse 1-100

Upner bound ranme 50-80 Lower bound=0 Left reefficient=t,
Richt coefficient ranre -,B- -1,

*Solution time on Univac 1108 in multiprocessing mode exclusive
of input/output time,

**¥MNo feasible solution,

921

127

constraint set are plus one and minus one, these may be specified impli-
citly. The second area of simplification results from the structure of
the basis for the OFP and will be considered in detail in Section 4.3.2.

4.3.1 OFP Algorithm Statement

To specify the coefficients for variables with two nonzero coeffi-
cients, note that one is a plus one and one a minus one. Using the pre-
vicus notation, let xj appear in equation pj with coefficient plus cne
and equation qj with coefficient minus one. In terms of the GFP notation
a ., =1, a2j =1, for j = 1,...,n.

The slack and artificial variables are specified logically. Let

+ . . -
there be s slack arcs with a single nonzero coefficient of plus one and
s slack arcs with a single nonzero coefficient of minus one. Thus, if

] + . + . + -

ntl < j=n+ s , then alj =1, and if n+5 + 1 = j < n+s + s , then

alj = -1.

The outline of the algorithm is the same as for the GFP and will
not be repeated., The initialization procedure is the same with minor
simplifications because the coefficients in the constraint set are plus
one or minus one. The comments on improved initialization procedures
stiil apply; however, there may be more incentive for using the spanning
tree method since "good" algorithms are available and the only constraints
neglected using the spanning tree are the bounds. Except for degeneracy,
finiteness of the algorithm has been established, since it is a speciali-

zation of the GFP algorithm. Degeneracy is resolved for this preoblem in

a relatively easy manner in Section 4.5.

128

4.3.2 Simplifications for the OFP Algorithm

It is well known and was demonstrated in Section 3.4 that the basis
for the OFP can contain no cycles. This means that only three combina-
tions of entering variable and associated basic component{s) can occur:
1) two nonzero coefficients in rows of different rooted components, 2) one
nonzero coefficient in a row of one rooted component, and 3) two nonzero
coefficients in rows of the same rooted component.

Cases one and two are handled in the same manner as for the GFP.
Case three is covered by Lemma 4.1 below.

Let x, be the entering nonbasic variable, with unique paths PL and PR
from either end to the root. Let s be the node where the paths join.
Lemma 4.1

For the ordinary flow problem, if Xj has both nonzero coefficients
in rows of the same component Bk’ then the leaving variable corresponds
to an arc in PL or PR above the node s where they join.

Proof:

Assume to the contrary, that is, assume the leaving wvariable is
bzlow node s. Then, the part of Bk above the leaving variable becomes a
distinct component after the basis change with a cycle as its pseudoroot
by Lemma 3.3. But this is not possible, since a cycle cannot be part of
the basis for the OFP.

The procedure for constructing the column for a nonbasic variable
is the same as for the GFP except that the condition for linear dependence
in a cycle does not have to be chacked since it has been established that

any cycle corresponds to a set of linearly dependent wvariables.

129

Further, the actuval column construction is greatly simplified for
the OFP., It is necessary to consider only (a) whether the incoming vari-
able is being increased or decreased, (b) the path the basic variable is
in (PL or PR), and (c) the orientation of the basic arc in the path.

The definition of arc orientation in a path given in Section 2.3 is re-
phrased here.

An arc corresponding to the wvariable X, is called a forward arc
in a path if when tracing the path in a specified direction Py is en-
countered before Gy - In other words, the equation containing the plus
one coefficient is encountered before the one with a minus one. A

reverse arc for x, means that U is encountered before P

k

Let the entering nonbasic variable be xj. Define & by:

+1 if xj =0
® A1 ifx, =M, G)
1 J
8 indicates whether the entering variable is increasing (& = +1) or de-
creasing (6 = -1). The determination of the nonzero entries in the cur-

rent column for x, is specified in the following theorem and two corol-
laries. These are equivalent to the rules given by Johnson in his simplex
procedure for minimum cost flow in reference 58.

First assume that the two ends for the arc for xj are in different

rooted trees with coefficient akj = +1 in equation pj and coefficient

ak'j = -1 in equation qj.
Theorem 4.1

The nonzero entries in the current column for xj are determined by

the following rules:

130

1., For all basic variables X5 corresponding to arcs between pj
and the root including the root, let d£ = -8 for forward arcs and d; =
+6 for reverse arcs.

2. TFor all basic variables X5 corresponding to arcs between q,
and the root including the root, let d£ = +§ for forward arcs and d; =
-8 for reverse arcs.

Proof:

Let the coefficients for the basic variables as encountered in
tracing a path be (aki’ak’i) as before. Consider the path PL from pj to
the root including the root. Suppose PL contains the variables (xl,...,

xr). By Eq. {(26) of Chapter III the nonzero entries are:

a, . -a, 4.
d1=a—kl, di=-—‘;—i‘—1-di1 i=2,...,r
kil ki i
or
i-1 ,-a,
4, = a . I (ak t);—}— T S (6)
3 e=1 kt ki
ak,
But ak_ = 1 and = .1 for all t.
] e
Thus:
q, = - i=1,...,r (7
akl

By the rules of the bounded variable simplex method, the column is used
directly if the nmonbasic variable is increasing and the negative of the
column is used if the nonbasic variable is decreasing. Thus, the column

of the increasing nonbasic variable (xj or its slack) is:

131

or
+4 for forward arcs
d} = (8)
-6 for reverse arcs
This proves (1) of the theorem and (2) is proved in a similar manner.

The following corollaries specify the column construction for the
case where the column for a nonbasic variable has both nonzero entries in
rows of the same component and the case where the column for a nonbasic
variable has only one nonzerc entry.

Corollary: If the two nonzero coefficients of a nonbasic variable xj are
in the same basic component, then the column construction rules of the
theorem are valid and only the basic variables in the paths PL and PR
above the joining node s have nonzero entries.

Proof:

By Lemma 4.1 the basic variables in PL to s and PR to s and xj
form a dependent set, and thus they are the only basic variables with
nonzero entries in the current column for xj. The verification of the
rules is the same as in the theorem.

Corollary: Suppose the original column for the nonbasic variable xj has
only one nonzero entry (akj), i.e., it corresponds to a slack arc., If
akj = 1, the nonzero entries in the current column for xj are computed
using (1) of the theorem and if akj = -1, the current column is computed
using (2) of the theorem.

Proof:

The analogy to the theorem is straightforward.

132

The calculation of simplex multipliers after a basis change is
also greatly simplified for the OFP. Before specifying the recalculation
procedure, a lemma concerning the basis inverse for the OFP will be proved.
Lemma 4.2

For the OFP, the nonzero entries in the row of the basis inverse
corresponding to the column bi for basic variable X, are all plus one if
the arc for x, is a reverse arc when tracing out from the root and are all
minus one if the arc for X, is a forward arc when tracing out from the
root.
Proof:

Using the partitioning corollary of Section 2.5, partition the

component Bp about the column bi'

(9

Assume that B; contains the root unless bi is the slack column. The row
b* of the inverse of Bp corresponding to bi is the scolution to:
1. wl o wta —— — i
[b?lf,...,b\-;,b;}_{_l,,,,,b.\r:pr = {0,...,1,0...] = e (10)
The b? are the components of the required row of the inverse and bé and
b* _ multiply the nonzero entries in column bi' But this is the same as

v+l
Eq. (46) of Chapter III, hence:

i33

bﬁ =0 k = v+l,...,T {1i1)
b % =
akibJ + ak'ibv+1 1 (12)

For any two equations Py and 9, corresponding to rows of B; with the asso-
ciated elements of b* being bg and bﬁ, Eq. (52) of Chapter I1II must be sa-

tisfied.

a b¥ + a
u s

. b = 0 (13)

k'ua

Where the arc for variable X connects nodes P, and 9, But:

iy = * T em—
bv+1 0 thus bV P {14)
ki
The coefficient a,, = -1 if the for x. is a forward arc and a, ., = +1
ki i ki

if the arc is a reverse arc when tracing out from the root. Also from

Eq. (13), if b§ has been calculated:

-a
b = KU 4%
t A 5
But
a
aku = -1 for any u.
k'u

Thus b%* = b*,
E s
This means that:

b = b i=1,.,.,v-1 (13

134

All nonzero entries in a row of the inverse are the same and the lemma is
proved.

A theorem concerning the recalculation of simplex multipliers can
now be proved using the lemma.

Let B, be that portion cof a component above the leaving variable

A

as in the partitioning corollary following Theorem 2.1. Let ni be the
value of the simplex multiplier associated with the node above the enter-
ing variable before the basis change and let ™ be the value of this sim-

plex multiplier after the basis change. Then:

m, =n! + Am (16)

where Aﬂi is the change in the simplex multiplier because of a basis
change. The following theorem specifies which simplex multipliers change
and the exact amount of the change.
Theorem 4.2

For the OFP the only simplex multipliers which change when the
basis changes are those in the component BA above the departing variable,
and these all change the same amount Aﬂl.
Proof:

The first part of the theorem follows directly from Theorem 3.2
since the OFP is a special case of the GFP,

To prove the second part of the theorem, consider the p-1 equations

in p unknowns given by:

7B, = ¢ (17)

135

7 is the vector of simplex multipliers associated with the equa-
tions of the component above the departing variable, and Cy is the vector
of costs of the variables corresponding to the columns of BA' Let T the
first component of 7, be the simplex multiplier associlated with the equa-

tion of the node above the entering wvariable. By adding the equation

m, =1l {18)

m [}
0 _ '
|
After the basis change the system satisfies;
n o=
© o
— 1
- BA = [ﬁl +oamy cA] {20)
L]
Subtracting (19) from (20)
fr, -l 1]
0 t B[=lan, 0] (21)
'
14 -1
- 0!
[nc -nl = [Aﬂl 0l . E B, (22)

Thus the change is specified by the first row of the basis inverse. But

by Lemma 4,2 this row is all plus ones. Thus:

(23)

|

[nc -n] = an

And the theorem is proved.
Instead of tracing the tree above the entering variable and itera-
tively recomputing the simplex multipliers, the simplex multiplier ™ for

the node above the arc of the entering variable is computed, and its

change amy added to all of the remaining simplex multipliers associated
with BA' Let E{ be the relative cost of nonbasic variable X, after a

basis change and anl defined as above.
Corollary: The only relative costs Ei which change when a basis changes
are those associated with variables with one nonzero coefficient in a row
corresponding to BA' If the coefficient is minus one, then E{ =c, Anl
and if the coefficient is plus one, then E; =c; - bm,.
Proof:

If a nonbasic variable has no nonzero coefficients in rows of BA’
then clearly the basic change does not affect the relative costs since

the relevant simplex multipliers do not change. If a nonbasic variable

has both nonzero coefficients in rows of BA’ then before the basis change:

c.=c¢c, -m + (24)

(25)

'

!
3
-+
=g
=}
—

Thus the new relative cost is determined by:

i i

- Cnp + Anl) + an + Anr) = ¢

137

(26)

If a nonbasic variable has one nonzero coefficient and it is a minus one,

then either:

El =cy -w o+
Py 9
becomes:
cl=c¢, -1 +7 +An, =c¢. + An
i i p. 1 i 1

i i

Or for a slack:
E=Ci+ﬂ
1 4
Py
becomes:
Ch=c, +m™ 4 AT, =c, + Am
i 1 i 1

Likewise for a plus one coefficient:

The corollary is proved.

Theorem 4.2 and the corollary are extenmsions of the result of

Glover, Klingman, and Kearny {34] for the transportation problem.

27

(28)

(29)

(30)

(31)

The computational usefulness of the corollary is not straightfor-

ward, since the identification and recalculation of the current costs for

the affected nonbasic variables could require more effort than is worth-

while.

138

4.3.3 Computational Results

The simplifications indicated in Section 4.3.2 were used to con-
struct an algorithm for the ordinary flow problem. This algorithm was
coded in Fortran V for the UNIVAC 1108. The results of solving a number
of problems with the OFP code and the SHARE out-of-kilter code [80] are
given in Table 3 and Figures 8 and 9. The problems were generated in a
manner similar to that described for the GFP computational results. Both
codes were run on the UNIVAC 1108 under identical conditions.

The results indicate that the use of the techniques and devices
described ip this paper lead to an effective solution procedure. The
computational times for the OFP code are comparable to those of Glover,
Klingman, and Barr {38] for their improved out-of-kilter code, although
it is difficult to make comparisons since different problems were solved
on different computers. Klingman, Napier, and Stutz [64] have indicated
that a primal method is being developed which is better than the improved
out-pf-kilter code.

Since the code for the OFP algorithm was experimental and intended
only to verify the effectiveness of the methods explored in this paper,
we believe that better computational times may be cbtained by improving

the computer coding methods.

4.4 Primal Transportation Algorithm

4.4.1 Problem Statement

The ordinary flow algorithm can be specialized further when applied

to the capacited transportation problem. Assume that the problem is in

the form:

Tahle 3,

OFP Computational Results

Problem Nodes ©Sourcves Sinks Arcs Iteratlons Time-~0FP* Time-0TK* Average
Nunmber OFP (Sec) (Sec) Time
1 50 11 12 115 82 .112 +909
2 50 20 9 128 52 .110 1459
3 50 10 9 129 L9 ,055 694
L 50 13 9 124 70 099 +572
OFP"- 082
5 50 16 8 121 28 L036 JS11 OTK-,589
6 75 19 13 248 126 168 1.478
7 75 12 9 219 140 243 1.368
8 75 13 16 230 153 +205 2,080
9 75 12 20 239 255 452 2,995
OFP~,257
10 75 16 16 226 148 .218 1,138 OTk-1,913
11 100 19 20 384 290 <565 2,941
12 100 2k 15 3% 198 438 2,510

6L 1

Table 3.

(Continued)

Problem Nodes Sources Sinks Arcs Iterations Time=0FP¥ Time~0TK* Average
Number OFP (sec) (Sec) Time
24 165 47 2h 956 351 .881 5¢325
OFP=-2,047
25 165 36 35 995 833 2,236 9.771 OTK-8,387
26 185 33 7 1222 1303 4,271 13,710
27 185 32 42 1189 1345 4,339 17.5679
28 185 49 34 1153 605 2,133 8.412
29 185 43 35 1176 720 2,116 9.518
30 185 40 4s 1181 1309 5.172 14,067 OTK~12,331
A 200 29 43 1366 1516 5.449 20,536
32 200 37 47 1384 1438 4,084 22,548
313 200 34 yy 1397 1419 k,972 21,509
3 200 Lo 49 1393 1336 k992 17.571
OFP=4,795
35 200 33 37 1416 1197 3.578 14,435 OTK~-19,31

0%t

Table 3,

(Continued)

Problem Nodes Sources Sinks Arces Iterations Time-OFP* Time-0TK* Average
Number OFP {sec) (sec) Time
13 100 26 19 396 175 .338 2,443
14 100 21 16 395 230 «599 2.931
OFP-, 514
15 100 18 17 391 285 .630 3.153 OTK-2,795
16 150 32 3 837 685 1.980 8.89%4
17 150 26 28 801 689 1.974 9.180
18 150 29 33 794 750 2,516 8,832
19 150 3 33 827 751 2,109 9,44k
OFP-2 [098
20 150 35 32 800 671 1.915 6.922 OTK-8,564
21 165 38 24 97 670 2.033 8.795
22 165 %9 3% 1023 634 2.M3 8,964
23 165 32 25 1019 871 2,672 9.083

71

Table 3, (Continued)

Problem Nodes Sources Sinks Arcs Iterations Time-0FP* Time-0TK* Average

Number OFP (Sec) (Sec) Time
36 300 68 52 2974 1872 11,925 L
37 300 54 76 3096 344 20,149 L
38 300 55 5 2975 2543 15.155 L
39 300 4 59 2966 2759 17.293 L
40 300 56 57 3034 2729 15,506 L OFP-16,005

Arc desity-,03 Source density~,2 Sink density-.2

Source range 50-80 Sink range 30-50 Cost range 1{-100

Upper bound range 40-80 Lowexr bound=0

*Solution time on Univac 1108 in multiprocessing mode excluslve of input/output time
**No feasible solution

L-Problem too large for code

(472

143

25 =
Each point is the average of five problems for a

specified number of nodes.

20 =

15 <

Time (sec)

10 =

50 100 150 200 250 300

Figure 8, Comparison of OFP and SHARE OTK Algorithms (Nodes)

144

25 M

Each point is the average of five problems
for a specified number of nodes.

20 =

15

Time (sec)

10

1 1] i 1 \
500 1000 1500 2000 2500 3000

Arcs

Figure 9. Comparison of OFP and SHARE OTK Algorithms (Arcs)

145

(TP) n_+n
s t
Minimize ;1 C.X, {(32)
o 1 1
i=1
Subject to:
Jnt
X{ < a, j = l,...,nS (33
f=(j-Dng+l
Z "'XJ-:-bi i‘-‘*‘l,...,l’lt (34)
j=i+knt
kZO,...,nS-l
x, 20,a,20,b, 20 for all i and j.
i j i

This can be represented as a graph with nodes 1,2,...,ns,ns+l,
...,ns+nt. There is an arc starting at each node in the set NS = (1,...,
ns) with a plus one and ending in the set NT = (ns+1,...,ns+nt) with a
minus one, There are thus n_+n, equations and ns*nt variables each ap-
pearing in two equations. For each equation in (33) the slack variahle
xns+nt+j = aj, j= 1,...,ns with cost c“s+“t+i-= 0 are added. For each

+1, i = 1l,...,0, with

equation in (34) the artificial xj = bi’ j = 2ns+n c

t
cost cj = R are added. This provides an initial starting solution with
n_ slack variables and n_ artificials. This problem might be called the
completely connected transportation problem. If arcs are to be excluded,
they could be given the same high cost as for the artificial variables.
The structure of the transportation constraint set can be used to
simplify the logic required when applying the principles of the ordinary

flow algorithm. Also, since there is only one arc from any node to any

other node, the node based labeling system is used to characterize the

146

current basis. Computationally this has advantage, since the node
oriented system uses fewer operations to determine the same information

as the arc based system. Experience with the GFP algorithm has shown

that the code using the node labeling method is 10 to 20 percent faster
than the code with the arc based system on the same problems. The savings
in operations are illustrated by this example.

Suppose one is given node k and wishes to know the next node below
it in the tree and the basic arc comnecting the two nodes. In the arc
labeling system the operations required would be:

(1) x=%k, j=D

X

i’ otherwise, y = pj

x, j, and y are the required information.

(2) If x= pj then y = g

Foxr the node labeling system there is a matrix N with elements
N such that, if arc j goes between nodes x and y, then ny = j. The
same information is found by:

(1) x=%, y=D

@ 3=7

Since these types of operations are performed many times using the

b 4

primal flow approach on the algorithms of this chapter, the computational
savings of using the second labeling system are considerable,

There is only one slack or artificial variable associated with

each node. These are identified by Nk = ns+nt+k, if wariable

n +n_+1 =
s t

X is a slack or artificial at node k. If k £ n_, the variable is
ns+nt+k 8

a slack, otherwise it is an artificial. The different labeling scheme
makes it advisable to alter the methods used for the ordinary flow problem

for the transportationm problem. The path to the root(s) from both ends

147

of the entering arc are traced to determine whether the nonbasic arc
connects two trees or is contained in one tree, and the two cases are
considered separately.

4.,4.2 Simplifications for the Transportation Problem

In addition to the simplification in the logical specification of
nodes and arcs already noted, one additional specialization can be used.

Let 8 be defined as in Eq. (5). Let P. and PR be the paths from each end

L
of the arc for the entering variable to the roots or joining node.
Theorem 4,3

For the ordinary transportation problem, the entries for the wvari-
ables in PL and PR are alternately +8 and -6 to and including the root ox
to the joining node s if applicable.

Proof:

All positive coefficients appear in the equation set NS and all
negative coefficients in the set NT. Starting in NS the associated arcs
are alternately forward and reverse arcs starting with a forward arc, and
starting in NT the arcs are alternately reverse and forward starting with
a reverse arc. All slacks in x_ have a plus one coefficient and all arti-

ficials in NT have a minus one coefficient. Thus, by Theorem 4.2 this

theorem is proved.

4,4.3 Computational Results

The uncapacited version of the algorithm described in the previous
sections was coded in Fortran V for the UNIVAC 1108 computer. The code
is a direct implementation, specialization, and extension of the ideas
of Johnson in [58) and [59]. It is similar to the codes of Thompson and

Srinivasan [91) and Glover, Kearny, Klingman, and Napier [30,36] but was

148

developed independently. The original computaticonal results obtained
using artificial variables for all of the destinations in the starting
solution and a first negative evaluator rule for choosing an entering
variable were disappointing. The studies mentioned above reported that

a better starting solution and choice rule greatly improved computation
times. TUsing their experience, we implemented the modified row minimum
start method and modified row first negative evaluator choice rule de-
scribed in both [36) and [91). The results of solving a number of 100
percent dense transportation problems with this improved version of the
code are given in Table 4. These times are comparable with the times for
the 1970 code of Srinivasan and Thompson [91], but are not as good as
those claimed for their 1972 code or those for the code of Glover, Kearny,
Klingman, and Napier in [36].

A modification was made to the triple labeling scheme of Johnson
to reduce the storage requirements., In the node oriented labeling scheme
in Section 3.6, a matrix entry ny was used to determine the arc between
nodes x and y. For a transportation with n_ sources and n, destination,
this matrix N required (ns+nt)2 storage locations. If a fourth label Ax
is used to identify the unique basic arc directly below node x in the
basic tree, then the matrix N is not required. For example, if it is
known that node x is above node y in the tree, then Ax is the basic arc
which connects them. These labels are updated in the same manner as the
down labels. 1Im [36] it is mentioned that the code of Srinivasan and
Thompson may be used only on 100 percent dense problems. With the addi-
tional core storage requirement of ns+nt plus the number of ares, the
method described here may be used to solve problems of any density in a

manner similar to that described for the OFP code in the previous section.

149

Table 4, Transportation Computational Results*

Prob Problem Average Average . Constral
Set No, Size Iterations Time(Sec)” Facto

1 100 x 100 551 4 b0 0-.1
2 100 x 100 487 6.768 - .2
3 100 x 100 301 4,342 2 = ,5
b 120 x 120 622 6,609 0- .1
5 120 x 120 508 6,961 A -2
6 120 x 120 316 5.516 2= .5
7 140 x 140 809 7.988 0-.,1
8 140 x 140 664 8,497 ol - 2
9 140 x 140 329 4,667 .2 - .5
10 160 x 160 895 11,050 0~-.,1
i1 160 x 160 695 12,602 d - .2
12 160 x 160 369 8.629 2 =~ .5

*The results in this table wore obtalned by J, L,
Kennington using a code developed using the methods
described in this section,

1Each problem set consists of five problems,

2Solution time on Univac 1108 in multiprocessing
mode exclusive of input/output time,

3he constraint factor is the excess of total supply (Esi)
over total demand (=T :]) divided by total supply.
Constraint Factor = 21 = FTj
=38
1

150

4,5 Resolution of Degeneracy

If the problem is not degenerate, a simplex based algorithm is
finite since only basic sclutions are considered which are not repeated.
It remains to be shown that, when the problem is degenerate, there can be
only a finite number of basis changes between decreases in the objective
function. The random choice rule of Dantzig [13] or the simple rule of
Azpeitia and Dickinson [2] involving choosing the variable which has
been in the basis the least number of times might be adopted for theo-
retical completeness but neither of these has any direct relation to
the problem at hand. The approach taken here will be to use a more
complicated rule due to Dantzig [15] and show that for many of the con-
ditions which can occur for a degenerate basis change this rule has a
simple interpretation in terms of the basis graph. Dantzig's rule evolves
from the following development.

Suppose that the right hand side of the starting tableau for the
GFP be replaced by the set of m+l components row vectors Ei = (hi gi),
i=1,...,m where e; is an m~dimensional unit vector., These vectors
are lexicographically positive since it is assumed bi = 0 for each 1i.

Then the vector valued variables on some subsequent iteration

are given by:

b, = [b, Byy Bigsee-sBy] 1=1,...,m (35)

where Ei is the ith row of the basis inverse.

If the dropping variable is chosen so that:

151

b B,
£ = lexicomin (—i—-) (36)
3 .
s 13

The corresponding vector valued objective function is lexicographically
decreasing and hence finiteness is established,

To see how this rule specializes for the GFP, the wvarious cases
for basis changes will be considered, First, suppose that a nonbasic
variable Xj is entering the basis and its corresponding arc is between
two basis components both with roots, Define the component containing
pj as Tree One and the one containing qj as Tree Two. Suppose that
there is a tie between two basic variables XX in the path from pj to
the root of Tree One. To use the rule of Dantzig, the rows of the in-
verse for these two variables are required,

In Chapter III, a method was presented showing that an iterative
scheme could be used to solve for the row of the basis inverse correspond-
ing to any basic variable, This involved solving an equation of the type
giB = e where e, is the ith unit vector when the ith row of the inverse
B is the submatrix corresponding to the tree containing X, . B is lower
triangular and all entries of Qi are equal to zero until the ith one,

In terms of the graph, for variable X the entries of the ith

row of
the basis inverse are all zero except corresponding to nodes above it in

the basic tree, Let di be the element in the row of the basic variable

k
x, for the nonbasic colum for X - Thus, if X, and X, in the same tree,
d. .
t1

< 0.

the rule of Dantzig says choose x if G > 0 and choose x, if
s qpte o A

This follows since:

152

b b
t
%:a—-—" and T={1 Qti=0}C.S={1 Bsi""o} (37)
si t1

T is a proper subset of S. Thus, when the first nonzero element Bei #0

B b
is encountered, By = 0. Thus, if E£li> 0, then EE— is lexicographi-
b, . ti si
cally smaller than 53— and if EEE- < 0, the converse is true,
ti ti

But the first nonzero element in 8, encountered is the diagonal
element and it can be determined easily., Suppose that node r is below

the bagic arc X, and node t is above it. The equation to determine the

element Btt is

vt pt T B =1 (38)

. . 1
But B . = 0 since r is below x_, then B . Thus, if a,, > 0,
Tt t et A, k't

then Bee >0 and a e < 0, then Bee < 0.

k
The sign of the required element is determined by the coefficient
of the basic arc generating the row next to the node away from the root
and the sign of dti which is plus if X, is decreasing and minus if X, is
increasing. The lexicographic rule of Dantzilg can then be stated as

follows,

Theorem 4.4

Suppose that X, and X, are two basic variables in the path from
the entering nonbasic variable to the root which are tied for the minimum
ratio to determine the blocking variable. Alsoc suppose x, is above x, in
the tree and let Aty be the coefficient associated with X, in the equa-

tion corresponding to the node directly above X, in the tree. Then the

153

a.
rule dropping X if EEES> 0 and dropping X, if ;5£~< 0 maintains the
ti ti

lexicographic order which by Dantzig's proof insures finiteness.

Now suppose that the two variables x_ and X which are tied are

t
in the paths between the entering variable and the root or pseudoroot
in different trees, i.e., x, is in Tree One and X is in Tree Two. The

submatrix for these two components is lower trilangular and in block form,

B1 0

0 B (39)
Thus, the row of the inverse corresponding to x, will have the first non-
Zerc element by the same reasoning as before. The lexicographic rule
for this case becomes:
Corollary: Suppose X and x,_ are two basic variables with X, in the path
between an entering arc and the root in one tree and X, is in a similar
path in another tree. Assume that X, and x_ are tied for leaving variable
by the standard ratio test and that ary iz the coefficient for X, in the

equation corresponding to the node above x, in its tree. Then the rule

t
which drops xg if §k£.>'0 and drops x, if a—£”< 0 preserves the lexico-
ti si

graphic order required for finiteness,
Proof:

The proof follows directly from the theorem.

The case where one of the dropping variables is a root iInstead of
a variable in the path is the same as if the root variable is treated as
a path variable. This follows directly from the method of generating

the row of the inverse corresponding to the root,

154

If both ends of the entering arc are in the same rooted tree,
then the path from each end to the root must join at some node n above
the root., 1If X and x, are tied for leaving wvariable and X is above n
and x, is below n, then the rule of Theorem 4.4 applies. If X, and X,

are both above n, call the branch containing £ branch one and the branch

contalning X s branch two. Ilet B, correspond to the part of the basis

1
above X and B2 the part above X, with B' being the remainder.
' ']
EERETI Sa TR R
Be= [0 12,10 EBILO (40)
ﬂ-r hendidi C - - —
PO - FO —
b = |%1s b = [|"1t
s 0 t 0
25] “2¢]

But this case reverts to the same case as in the Coreollary to Theorem 4.6
where branch one is identified with Tree One and branch two is identified
with Tree Two.

The éases covered so far are all that can occur for the ordinary
flow problem since either a slack arc enters a rooted tree, or the nonbasic
entering arc connects two trees or has both ends in the same tree. Thus,
the rules above are sufficient to ensure nondegeneracy in the ordinary

flow algorithm, They are restated below in terms of forward and reverse

155

arcs and increasing and decreasing the basic variable. Define Tree One
to be the left tree and Tree Two to be the right tree in the case of two
rooted components with left and right defined as in the statement of the

algorithm. Assume analogous definitions for left and right branches.

A Nonbasic X L Variable to
Entering Variable 5 Be Dropped
Increase Above t in Forward s
left tree Reverse t
Above t in Forward t
right tree Reverse 8
Decrease Above t in Forward t
left tree Reverse s
Above t in Forward s
right tree Reverse t
Increase Above n in Forward)
same tree with
arc t below Reverse t
Decrease With t below Forward t
Reverse 8
Increase Right branch Forward s
with t in left Reverse t
Decrease Right branch Forward t
with t in left Reverse 5

The rules in this chart could be implemented computationally, but
it does not seem necessary since an example of cycling has not been found
in practice, These rules are consistent with the rules of Maier [68] for
the maximum flow problem using spanning trees,

For the GFP, consideration must be made for the possibility of a

156

tie occurring between a variable in a pseudoroot and some other variable.
In this case there seems to be no simple interpretation of Dantzig's rule
and the rows of the inverse must be generated and the standard test made.
If one of the variables is in the pseudoroot and the other not, then only
the row for the variable in the pseudoroot need be generated since it will
have a nonzero element before the other variable does. If this were to
be done in practice, the rows could be generated as previously indicated,
circumventing the need for explicitly maintaining the basis inverse.

Also, since the determination of the minimum ratio is done in a pairwise
fashion, the transitivity of lexicographic ordering allows the resolution

of ties to be made in a similar manner.

4,6 Summary

Alporithms have been presented for the generalized flow problem,

the ordinary flow problem, and the capacitated transportation problem
based on the row and colurm generation techniques given in Chapter III.
These algorithms take advantage of the structure of the problems to mini-
mize the amount of computer storage required and to efficiently carry ocut
the steps required in the operations of the primal simplex method. The
computational results indicate that this is a powerful method for solving
these problems, Dual or primal-dual algorithm may be developed which take
advantage of the structure of these problems in a similar manner. It is
conjectured that a dual algorithm may not be as effective for these prob-
lems, particularly when there are many more variables than equations.

In this case a larger number of quantities will have to be com-

puted to determine the entering variable, and roughly the same computation

157

will be required to update the basic solution, the labels, and the simplex
multipliers. This conjecture seems to be supported by the previously
cited results of Klingman, Glover, etc, for the transportation problem.
The effectiveness of a primal-dual algorithm for network problems using
the concepts developed here should be investigated and is the subject of

a separate study,

158

CHAPTER V

INTEGER GENERALIZED FLOW PROBLEM CHARACTERISTICS

5.1 Introduction

In Section 1.9.3 it was pointed out that the group theoretic
formulation of an integer programming problem most directly displays
the interaction between the constraints of the underlying linear pro-
gramming problem and the requirement that the variables be integer
valued., In Chapters I1I and III characteristics of the GFP problem have
been derived and a procedure has been gilven for solving it. The funda-
mental concept used to solve the GFP has been a graphical representation
of its basic solutions, to identify interactions between basic and non-
basic variables, and to limit the operations of the primal simplex
method to only the relevant variables. If the IGFP i3 formulated in
group theoretic terms, Interactions between variables may be character-
ized using the graphical representation in a manner analogous to that
which was done for the continuocus problem.

In Section 5.2 a means of formulating the IGFP as a group theoretic
integer problem is given which uses the information available when the
optimal solution to the associated GFP is obtained with the algorithm
given in Chapter IV, The graphical representation of the optimal GFP
solution is used to identify interactions between the basic and nonbasic
solutions in terms of satisfying the iIntegrality requirement in Section

5.3. The algorithm of Estabrook for the integer generalized transporta-

159

tion problem, a special case of the IGFP, is discussed in Section 5.4,
Finally, a summary of methods for obtaining penalties to be used in
branch and bound integer programming is given in Section 5.5. Johnson's
group thecoretic method for the construction of inequalities from the
group problems, a row at a time, is given as ; means of obtaining
penalties. This method is attractive since the results reported in
Johnson and Splelberg indicate that the penalties are good, and the
implementation of Johnson's procedure is particularly compatible with

the methods used to solve the GFP.

5.2 IGFP Group Formulation

The statement of the general integer programming problem in terms

of the optimal linear programming basis B is restated here:
Minimize: c B-lb + (cy,, - ¢ B_lAN) (L)
B N~ °B N

Subject to:

Xy = 3"l - (B-IAN)XN 2)

Xps Xy = 0 and integer (3)

The statement of the problem in this manner assumes that the simple upper
bound constraints have been considered explicitly. {(Assume that all
variables have lower bounds of zero and upper bounds Mj.) The standard
group formilation can be obtained from the upper bounded tableau with
some manipulation,

If a variable is at its upper bound, then in the expanded tableau

160

it is basic and the slack associated with the upper bound constraint
is nonbasic at zero. The explicit upper bound constraint for xj is:
X, s, =M, or x, =M -s, 4
J 3 i i J 3)
All of the information needed to formulate the group IP problem is con-
tained in the reduced upper bounded simplex tableau. The following de-
velopment shows the transformation.
The extended tableau for an upper bounded linear programming

problem is:

(P1)
Minimize: cx (3)
Subject to: Ax = b (6)
Lx+1Iss= M (7)
X, 520 (8)

All elements in A, b, ¢, and M are integer.
The x vector is partitioned into Xps the basic wvariables in the optimal
upper bounded simplex problem, X the nonbasic wvariables at their upper
bound in the optimal upper bound simplex problem, and Xy the nonbasic
variables at zero in the optimal tableau. The corresponding slack vari-

are m component vectors,

ables are s The wvariables XB and s

B> Sp* Sy- B

X and s, are p vectors and Xy and 8y 2re n-m-p vectors. The columms of
the A matrix are partitioned correspondingly into B, Au, and AN. Problem

Pl can be rewritten as:

Minimize: CpXp + ¢ Xy + NN (9

Subject to:

(P2)

Wi
£
e
Hooz;t-

Qo H O

F o © ~H

The optimal basis is:

n-m-~p

o o H

H o

o Q

w

Qo H O

- O O

o

H o

o O

The inverse of the optimal basis is:

H O O O

n-m-p

- O O O

n-m-p

=n
Z‘:Z

161

(10)

(1D)

(12)

(13)

Multiplying the constraint equations of P2 by the inverse of the optimal

basis results in:

162

"1 -1 -1, L ool

%, BAy BTA, Bb - B AM

*u + 0-1 II_’l N E‘lb -1 (14)
SB -B AN B Au su Mﬁ - B + B AuM

_SI‘IJ _In-m-p 0 i i MN

The wvalues of the basic variables are substituted into the objec-

tive function as in Egs. (1-3), and the equivalent integer programming

problem is:

1

1 AM) +cM
uu uu

Minimize: cB(B_ b - B {15)

-1 -1
+ (cN - cBB AN)xN + (cBB Au cu)su
Subject to:

(Ir1)

-- _ ﬁ -—- -—

37 - 57lA M ' !
uu

M L, *N
= M, - b+ lam| -1 -3-1a s (16)
u u u

u
L 4 Lhme

" oft

[+23
18 =@

(17)

Xgs X s Xys Sps .2 Sy 20 and integer
Since M has integer components, from Eq. (6) if x is integer than s will

be integer also and vice versa, We will therefore explicitly require

Xy and 5 to be integers and impose integrality om X, by the congruency

relationship Eq. (20) below. Relaxing the nonnegativity constraints on

Xps Sps Xp and Sy the group problem then becomes:

163

Minimize (CN - cNB-lAN)xN + (cBB-lAu - c,u)su (19)
Subject to:
[B-IAN -B'lAu] :N =3 - B'lAuMﬁ (20)
u
Xy su z 0 and integer. (21)

The optimality conditions of the upper bounded simplex method
require that:
ey - cBB'lAN zZ0 (22)
¢ - cB A =0 (23)
u B u
Hence, all of the coefficients in the objective function are positive,
The constraint coefficients are obtained for the nonbasic variables at
zero directly from the final tableau of the upper bounded simplex methods,
and the coefficients for the slack variables s, are the negative of the
ones for the corresponding variables at these upper bounds in the optimal
tableau,

The algorithm for the GFP given in Chapter IV does not maintain
the tableau used in the formulation of the group integer programming
problem, In fact, the basis inverse is not directly available., However,
either the columm generation method or the row generation method given
in Chapter III can be used to construct the required tableau. The row
generation method is used below to illustrate this constructionm.

The graphical representation of the optimal LP solution to the

164

example problem given in Chapter II is:

The nonbasic variables are Xq and Xg at their lower bounds and X, at its
upper bound. To generate the full tableau, the row for the basic vari-
able which is the root will be generated. Then proceeding along the tree,

away from the root, the row for each basic variable in turn is generated.

The row of the basic inverse for Xy is:

by =1
b,=b =1
b, = 2b, = 2
by =b,/2 =1
by = -b, = -2

The entry for the nonbasic Xy is:

“1(b,)) + 2by = -1 42 = 1

For the slack corresponding to Koy it is the negative of:

1b1 - lb3 =1-1=20

For x,:

165

The row of the basis inverse for xl is:
¥ = - - -
bi [0 1 1 2 2]

The coefficients for the nonbasic variable are:

e <T1hF T = o
Xy 1 =1b', + 2b7, = -1
S, : =(1b; - 1b,) = -1

: ~1b = -2

Ag ¢ 5

Similarly, using the inverse of the row for x,°

x: -1

82 : -%

Xg -1
For %5t

Xy 1

5, : %

Xg 0
For X!

*3

Xg -1

The updated costs are determined for the nonbasic variables:

¢ for Xy 1 €y - 2ﬂ3+n2=2-2(-4)+(-3) = 7
¢ for .52 : - (c2~ﬁ1+n‘3)=— (2 -0 + (-4)) = 2
c for %, : eg+m, =0+ 11 =11

B 8 8

166

The integer programming problem written in terms of the final LP tableau
is:
Minimize 7x3 + 232 + llxs (24)

Sulkzject to:

}; Fl 0 ? EOH
x -1 -1 -2 Xq 5
x[=-]1 -4 -1 S,| + |5/2 (25)
X % 0 Xg 5/2
X 0O 0 -1 5
b 6- b —— L -
X =0 for all i
5, =20 and all variables integer (26)

By dropping the nonnegativity constraints on the basic variables and

taking fractional parts, the group problem is obtained.

Minimize 7x3 + 232 + llx8 27
Subject to:
0 0 0 0
of (0 0 O Xq
g =o§o 5, (28)
4] 0 x
0 0 0 0
X,y S, X, =2 0 and integer {29)

3* 722 78

The above illustrates the formulation of the group problem using
the final upper bounded simplex tableau. It also illustrates the method

of constructing the required information when the GFP algorithm has been

167

used to solve the upper bounded generalized flow problem,

5.3 Determinant Calculation

In general, the determinant of the final basis of the linear pro-
gramuing problem is a measure of the difficulty of the associated group
problem. This is because the number of elements in the group is equal to
or less than Det(B). The method for calculating the determinant of the
basis for a GFP is much simpler than for general linear programming
problems,

In Theorem 2,1 it was shown that any basis for the GFP can be made
block diagonal with Dblocks Bl""’Bp' It is well known that the abso-
lute value of the determinant of such a matrix is the product of the

determinants of the individual blocks.
; P
|Det(B)| = [_|Det(B.)| (30)
i=1 1

Theorem 2,1 further established that the blocks were of two types:
either having a column with a single nonzero entry or having a cycle.
The following theorem shows the method of calculating the determinant
for a block with a slack column.
Let a, be the nonzero entry in the slack column for the variable

x Without loss of generality, let the varlables encountered when trac-

1.
ing the tree above the root be in order KpgeoosX, with coefficients (aki’
ak'i) with a ; in the equation nearer the root.
Theorem 5.1

The determinant of a block with a slack column is given by:

168

r
Det(8) = ay I (31)

Proof:

Consider the arrangement of the block Bk by placing the columns in

the order b ,...,br with bj associated with xj. The tracing procedure

1
implies that the new column will have one of its nonzero entries in common
with a column already placed in the block while no colummn already in the
block has a nonzero entry in common with the second nonzero entry., Con-
sequently, the coefficient in each column in the equation farthest from

the root is placed along the diagonal and the other is placed in the appro-

priate row above the diagonal. The resulting upper triangular matrix is:

8kl %k2
A1
B = S~ (32)

The determinant of this matrix is the product of the diagonal
elements, hence the theorem is proved.

If block Bk contains a pseudoroot, it may be arranged in the
following manner. Let the first r columns of Bk be the columns corres-
ponding to the pseudoroot with the rows arranged sc that the nonzero ele-
ments are in the first r rows of Bk defining block BR. For each wvariable

X., § = rtl,...,p whose arc is incident on the pseudoroot, consider the

169

block BD above x_ defined by partitioning on the columm for Xj as in the
J

partitioning corollary following Theorem 2.1. The columns for the vari-

ables not in the pseudoroot may be arranged so that all the coefficients

in the equations corresponding te the pseudoroot are in a block B1 adja~-

cent to BR and blocks BD ,...,BD are block diagonal below Bl' This ar-
1 P
rangement is shown below.
' "
Eil |akr+1
[
KLy, l
Ao : Byr+2
. |
= . ' 33)
B o (
1
i
kel Pku :
: Bty :
1 [
I---- ------ -.--{a----—_
i k'ri2
\
\ N
'
- ' -
p— ' L
Pro !l Ll
y B
D1
) B
= i D2
\
\ .
' -
i
B
'
D
L 2

This arrangement of Bk is possible since if Bl contalined more than

one entry per column this would mean that Bk contains two cycles coentra-

dicting the fact that it is a basis, Then considering each arc connected

170

to the cycle as a root for those above it, the block arrangement below Bl
follows from the same argument given for a rooted component. This leads

to the following corollary.

Corollary: The absolute value of the determinant for a pseudorooted com-

ponent of the basis B is:

k
ds
‘ . r r T P *
= il - {- I . 3
|DetBk| |i=1 aki (-1 i=1 ak‘ i | I ulil (vlll akljv)l (34}

Proof:

That the determinant of a block diagonal matrix is the product of
the determinants of the blocks along the diagonal is well known. The
first expression in the equation is the determinant of a cycle given in

Eq. (17) Chapter III. Each of the blocks B_ along the diagonal has the

D,
same form as in the theorem and hence the deierminant is the product of
the coefficients farthest from the pseudorcot when tracing out the tree.

The above theorem and corollary were proved in a different manner
by Estabrook [20] for the GTP as his Theorem 2.5. The theorem and corol-
lary can be used to calculate the determinant for each component of the
basis and the absolute value of the product of the individual components
gives the absolute value of the total determinant as required.

As an example of the computation of the determinant for a rooted

component, consider the problem used in the last section to comstruct the

nonbasic columms. The associated graph with the coefficients is:

171

The sequence of basic variables tracing out from the root is (x7, X505 X5

X5 xs). The matrix of associated columms is:

The absolute value of the determinant is:

| Det B| = }al? 859 89 315 a26i = |1(-1)(-1)(2)(1)] = 2

The graphical representation of an example with a pseudoroot is:

The sequence of basic variables generated by tracing around the pseudo-

root, then out from each nede in the pseudoroot is (xl,xz,XB,x4,x5,x6,x7).

The matrix of associated columns is:

2 3 I N
1 -1 a1 1 B
] -
-—-B-il—-l‘ ----- 2 ! BD
B = l—3| = { 1
i st I | Bp
0 | &l ' 2
S ' Bp
" : Voo | 3.

(33)

The absolute value of the determinant of the submatrix corresponding to

172

the pseudorocot is:

3

Det Bp| = jay) ayy 8,5 = (-1)7 a,) a;, a4

R/

[(2)(-1)(8) + (1) 33 =7

For each block B_ :

D
i
| Det BD1| = [az4| =3
| Det BD2| = |ayg a16| = (-2)(4) =8
Det BD3 =8y, = 1

The absolute value of the determinant for the component is:

Det B = Det B_ Det BD Det BD Det BD = 408

R 1 2 3

Hu {54, Chapter 19] summarizes some work of Gomory concerning the rela-
tionship of the value of the determinant to the group formulation. The
magnitude of the determinant of the optimal LP basis is meaningful both
theoretically and computationally when considering the group integer
problem.

Estabrook [20] points out that a large determinant of the optimal
LP basis can cause numerical difficulties in obtaining the group repre-
sentation of the problem. He then gives a method for the GTP for ob-
taining an equivalent representation of the group problem which may
avoid these numerical difficulties. His technique is extended to the
GFP below and the method for obtaining the new representation is refined,

In Section 5.5 a problem involving a single row from the set of Egs. (20)

173

is discuésed. The device described below provides insight into the com-

putational effort required to solve this single row cyclic group problem,.
Suppose that the optimal LP basis is only one component B, Assume

that B contains a slack column and that the determinant of B is D. The

inverse of B can be expressed as:

N = m-il (36)

where n,, and m,, are integers,
1} 1]
The matrix N is called the adjoint matrix and is all integer.
The coefficients of the nonbasic variables in the optimal tableau are
given by:
-1, _ 1
B A =D (37)

Since N and AN are integer matrices, all of the coefficients can be ex-
pressed as fractions with denominator D. The number of elements in the
group generated by the columns of B-]'AN is equal to or less than D and
the amount of effort required for the usual techniques for solving the
group IP problem Eqs. (1-3) can be expressed as a function of D, Suppose
that there is a common factor d of the nonzero elements of the adjoint

matrix N. Then N can be expressed as:
N = dN' (38)
where N' is also an all integer matrix, If the quantity d is an integer

greater than one and if d divides D, then the denominator of all the ele-~

ments in B_lAN can be reduced by the factor d and numerical difficulties

174

caused by large D in representing Eq. (37) may be avoided. In additionm,
the coefficients in any row of Egq. (37) may now be considered as a set of

fractions over the smaller common denominator D/d.

A method for determiping such a factor d for the IGFP is shown in
the following lemma and theorem. Let b be a column of B-l. The column b
can be generated using the procedure given in Section 3.3. Without loss
of generality let the basic variables whose columns are used to generate

b be in order XoreersX As described in Section 3.3, these variables

1
correspond to a path in the graph associated with B and X, is the vari-
able of the slack arc at the root. Let B be partitioned into Bp and B;

where B; contains the columns for the variables X seeesXge This is the

same as in Egq. (25) Chapter III.

B = [Bp B[‘)] (39)

Further, let the subblock B; be as follows with its rows and columns

arranged so that it has the form of Eq. (32) but in reverse order:

— ——
a, 0]
Byr fxtro1 0
B; = . (40)
ak'Z 0
B k2 %kl

Lemma 5.1

Let b be a column of B_1 as described above. If ;EB and —
su iu

175

are nonzero elements of column b in rows s and i, respectively, with row

m
, su ,
s above row i, then =~ 1is an integer.
iu
Proof:
We will first use the column generation scheme to generate the non-
zero elements of b. Let the coefficients of the basic variables X seees¥y

being in the equation cor-

in the path to the root be (a aki) with a

ki
responding to the node closer to the root. Equations (27) and (28) im

k.i,

Chapter III show that the only nonzero elements in b correspond to the
columns for X seee Xy Using equation (26) from Chapter II1, the nonzero

elements br""’bl can be expressed as:

1 '@-1 Pkr-J
b=, bi=l’i:——-———— f=1,00.,r-1 41)
k'r
20 *k'r-j

If B is arranged as in Eqs. (39) and (40), then the nonzero elements in b
are ordered so that b1 is in the first row, and bS is in a row above bi

if s is less thanm i. But for bS and bi the denominators msu and m, are

iu
given by:
r-s
Msu ~ jgg ak'r-j (42)
r-i
m, = [a . {43)

iu 4o k'r-j

Thus for s less than i:

176

= 1 a,, (44)

and this is an integer, proving the lemma.

This lemma can be used to prove the following theorem,

Theorem 5.2

Let p., = B . Then:
1j mlu

(1) plj is an integer for each j.

(2) If d is the greatest common divisor of {plj], then g is an
integer.
Proof:

To establish (1) note that:

n..
N=p|2d| =pp?t (45)
mij
is an integer matrix.
Thus ;2— = Py must be integer for all i and j. In particular for i =1,
ij

2 o Py is an integer for all j.
14 J -
To show (2) we know by Lemma 5.1 that ;Ei is an integer for s less
1]
than i. Thus:

D

p m,, m_.
i3 11 . _8] (46)

P D m, ,

5] — 1j

is an integer for s less thanp i.

177

In particular, for s =1, gq,

P s
. = =1 is an integer for all i and
ij 1i

. P1g _ ,
j. 1f d is the greatest common divisor of {plj}, then i tlj is an
i Eii = = pt. i L integer
integer for all j. Furthermore, a " qijtlj = pij is also an integ

for all i and j. The matrix N can thus be expressed as:

- i - - '] = an! (47)
NEPR Pigiysl = dlpgyny
1]
The basis inverse is:
-1 _ dN'
B T D
But g = mijpij which is also an integer and the theorem is proved.
If the factor d is greater than 1, then D! = g is smaller in ab-

solute value than D and the coefficients of the nonbasic wvariables in the

optimal LP tableau can be expressed as:

Ry = By = g Ny (48

All of the elements in Eﬁ can be expressed as fractions over the
denominator D' which is smaller than D.

To determine the factor d, we generate the row of the basis inverse
corresponding to the slack arc at the root, and retain the denominators
mlj' The determinant D can be calculated at the same time. The set

[pl.} is calculated by p,, = *2“. Finally, d is the greatest common
j 1j mlj

divisor of {pij}. It is obvious that the theorem applies to each compo-
nent of the basis containing a slack column if there are more than one.

For a pseudorooted component, a similar theorem can be stated.

178

First consider the form of such a component ordered by choosing a node,
tracing around the cycle, then tracing out from each basic variable not
in the cycle touching node one of the cycle; then for node two and so on.

The resulting matrix will be:

) (49}

BC corresponds to the cycle. There is a separate block Bi for each basic
arc incident on the cycle but not comtained in it. This is seen by re-
fering to the corollary for the partitioning of a block by a columan.

The inverse of B is written directly:

B =) (50)

Let D = |Deth| and Di =]Det(Bi)| for the blocks.
Theorem 5.3

The determinant of a pseudorcoted component Dr may be expressed as
an integer D'/d where d is the greatest common divisor of the numbers

(®,D,...,D).

179

Proof:

The reasoning is similar to that for the proof of Theorem 5.2.
The details are omitted.

Theorems 5.2 and 5.3 generalize Theorem 2.6 of Estabrook [20] to
the case of generalized flow and provide a more direct means of perform-
ing the reduction.

The example below illustrates the calculation of the factor d for

a rooted component.

~a
—

The corresponding matrix is:

2 1
11 9 3 2
B = 6 (51)
9
6
The determipant of B is computed to be
b= 7128

The first row of the inverse is:

w:%, 1 9 3 2]
1 2(11) (2)(a1)(6) 2(11)(9) 2(1L1)(6)

Dividing the denominaters intec D gives the factors p.

180

p=[LQA1)6)O)(6) (9B (9(6) (6)(6) (6)(9)]

The greatest common denominator is 18. Thus, the problem can be

represented as fractions over the common denominator 396 instead of 7128,

5.4 Structure of the Nonbasic Columns and Basic Rows

The row and column generation methods of Chapter I1I can be used
to describe the structure of K, the updated matrix of coefficients of the
nonbasic variables in the coptimal LP solution. These columns play an im-
portant role in group theoretic solution procedures since they, in effect,
generate the complete group of colummns. Intuitively, the correct nonnega-
tive integer combination of these columns will produce the optimal integer
solution. The group based methods construct nonnegative integer combina-
tions of these columns under a transformation, to obtain an integer solu-
tion and then verify the feasibility and/or optimality of the solution.
The remainder of this section will be observations about the structure
of A and what the structure means in terms of the associated graph. The
intent is to highlight the special structure of the IGFP as opposed to a
general IP problem and to demonstrate the information contained in the
graphical representation of the optimal continuous solution.

In Chapter III1 a procedure for constructing the current columns of
A for a nonbasic variable was developed. It was shown that this column
contained nonzero entries only for the basic variables in the paths from
the ends of the nonbasic arc to and including the respective root(s) or
pseudoroot(s). Under certain conditions, it might contain nonzero en-

tries for only a subset of these basic wvariables. A nonbasic variable

181

can affect only the integrality of those basic variables corresponding to
the rows in which it has nonzero entries. Intuitively, the farther from
the root that a nonbasic variable meets a tree, the greater the number
of basic variables with which it will interact,

The row generation procedure of Chapter III provides similar in-
sight for basic variables. The current row for a basic variable will
have entries only for those nonbasic variables which meet the tree once
above it, or twice above it in an independent cycle, This means that the
set of nonbasic variables which interacts with each basic variable can be
defined, The size of these sets depends in some measure upon the posi-
tion of the basic variable in the tree. A root variable or a variable
in a pseudoroot will have nonzero entries for all nonbasic variables
which touch the tree except those which touch it twice and form dependent
cycles, Intuitively, the higher a basic wvariable is in a tree, the fewer
the number of nonbasic variables with which 1t interacts.

Estabrook formalizes this ordering of variables and uses it to
develop his CASCADE algorithm, His procedure uses a dynamic programming
method and considers one row at a time, with the row ordering based on
the nearness of the associated basic variable to the top of a tree, The
group problem for a row is never considered until the rows for all basic
variables above it in the tree have been considered. He also takes ad-
vantage of the fact that the denominator for a row is increasing for
variables which are lower in the tree as seen in the column generation
procedure, He takes special advantage of the fact that the GIP constraint
set has all plus one coefficients in one set of its equations to reduce

the number of rows which must be explicitly considered, Estabrook's

182

algorithm requires checking the nonnegativity constraints on the basic
variables after a solution is obtained, and he suggests means for check-
ing or for enforcing some of these nonnegativity constraints during the
group optimization. He notes, however, that enforcing these conditions
during the process of the group algorithm would detract considerably from
its computational effectiveness.

In this dissertation, information from the group formulation will
be used to aid in the solution of the problem, but the specialized group

structure outlined in this section will not be used directly.

5.5 Penalties

The concept of penalties in relation to branch and bound methods
for integer programming was mentioned in Section 1.9.2., They will be
discussed in more detail in this section and a means for using informa-
tion from the group formulation in constructing penalties will be dis~
cussed, The first part of the section is based on Tomlin [93].

At a node of a branch and bound IF tree, a continuous bounded
variable linear program is solved. If all the variables are integer in
the solution, or if the continuous solution objective value is greater
than the best integral solution so far, branching from this node is not
necessary since no better integer solution is possible below the node.
If some basic variable X is noninteger at value Ei, then any integer

solution must satisfy:

x; = ["Ei] +1 or x = [b] (52)

183

where [Ei] is the greatest integer less than or equal to Ei.

Define:

f, By -) (53)

If X, were chosen as the branching variable, then one of the constraints
in Eq. (52) would be associated with each of the branches. If it is
assumed that one of the constraints above is added to the final simplex
tableau for the current node, then an estimate of the continuous objec-
tive function value at the newly created node will be the change in the
objective function for the first simplex pivot. Suppose the current row
for ;> the equation constraining it to be an integer higher, and the ob-

jective row are written:

bl = xi + § aij j (54)
- byl -1=>-x + 8 (55)
- zo = }-;I: cjxj (56)
To put the tableau in cannonical form, Eq. (54) is added to Eq. (55).
bi = xi + ? aijxj 57
- (L - £)=)3 a3 1%; + 8 (58)
i J
- ZO = bR cjxj (59)

The tableau is now dual feasible and the first dual simplex pivot

chooses the pivot element by finding the minimum ratio,

184

%ip _ min (51
. mr () (60)
p 1] 1]

The change In the objective value for the first pivot is:

- (1 - fb.)cP
P = = (61)

u, a,
i ip

We will call this the up-penalty. A similar analysis for adding the con-

straint making X, less than [Ei] gives the following down-penalty.

(fb‘)cP
P, = —— (62)

D, a,
i ip

The minimum ratio in this case is found by:

C . C.

P _ min i

2=, "M (ED) (63)
ip ij ij

This may be done for each of the basic variables which are fractional.
Since any node below the current node must have one of the conditions
imposed, any integer solution below this node must assume the minimum

additional cost:

?C = minimum [Pu , PD]
bi fractional i i

(64)

These penalties are derived by imposing the restrictions that the
basic variables must be integer. Each variable is considered separately

with no consideration given to the interaction between basic variables

185

or the requirement that the nonbasic variables beinteger. A simple exten-
sion to the penalties derived so far is the requirement that the nonbasic
variable which comes into the basic when the newly restricted variable
leaves must also be integer and hence must be at least one.

The quantity associated with the dual pivot which goes into the

calculation for Pu when xp is introduced into the basis becomes:
i

- = i
max (cp, -) (65)

And similarly for the down penalty. The motivation for these penalties
is the same as before except some slight consideration has been given to
the requirement that at least the nombasic variable XP =1 if Xp = 0.
Tomlin shows that a stronger penalty may be derived by considering
the Gomory fractional constraint (Gomory [41]) derived from each row of
the tableau associated with a noninteger basic variable. A constraint

for a particular X1

-f, =-%f .x +5 (66)
bi j
where:
L. - . . f £
31J [alj] I i < fbi
£f .= (67)
+J (1 - £..)
f if £,, > £
b, (I-) i3 b,
i
where the fractional part f,. is given by £,, = a,, - [a,.].
ij 1] ij ij

This constraint can be added to the tableau in the same manner as before

and the change in the objective function for the first dual simplex pivot

186

can be used as a penalty. Tomlin shows that this penalty is greater than
or equal to the previously derived penalties. This penalty utilizes more
of the problem requirements since Eq. (66) is derived by considering the
integrality of the basic variable Ky and all of the nonbasic variables
{xj}.

Gomory and Johnson [46,47] use a row of the optimal LP tableau to
derive stronger constraints than Eq. (66). By relaxing the nonunegativity
constraints on all of the basic variables and the integrality requirements
on all of the basic wvariables except one particular basic variable X

we obtain the following problem,

Minimize: > E&xj (68)
3
@)

Subject to: |
fx, Bf 69
), £ 55 (69)

J
x, =20 and integer for all j. (70)

Equation (69) is the congruency relationship from one row of the
set of equations (20)}. The elements {fj} and fO are the fractional parts
of the coefficients for the nonbasic variables xj and the right hand side
from the row for the basic variable X The solution to Gr provides a
valid penalty for it is the minimum increase in the LP objective value
for satisfying the congruency relationship Eq. (69) using an integer
combination of the nonbasic columns from the optimal LP tableau.

If problem Gr were solved for each row with a fractional basic

187

variable, then the maximum objective wvalue from these would be a valid
penalty. Unfortunately, solving the problem Gr is a difficult task in
general, It is what is termed a cyclic group problem and methods of
dynamic programming or a network formulation are usually used to solve it.

An attractive alternative is offered by Johnson in [62]}. He pre-
sentg a method which can be used to solve Eq. (68). Moreover, the method
can be terminated prior to completion with information which can be used
to construct a valid constraint of the form of Eq. (66) and which will
provide a penalty at least as good as that gotten by using Eq. (66).

The following is a brief description of Johnson's algorithm in-
tended to provide insight into the process of constructing the valid in-
equality and solving Gr at the same time.

The fractional parts {{fj], fo] are members of a cyclic group.
Positive integer combinations modulo one of the elements {fj] can be
formed so that they will equal (generate) each member of the group. In
particular, it is desired to form the positive integer combination mod one
which equals fo and costs less than any other positive integer combina-
tion which equals fo.

Consider the following problem G; which is a relaxation of prob-
lem Gr’ the single row cyclic group problem.

Find 8% = Minimum [el, 62}

@

where 61 and 62 are defined by:

51 = Minimum S* ijj {71)
je Jl

188

@)
Subject to: £ _
Y i3 7 Jo
je Jl
xj = 0 for all j ¢ Jl;
&, = Minimum ;: T.x%.
2) i
Jl e Jz
(2,
Subject to:
v _ .
/. (1 - fj)xj =1 - fo’ {(72)
] € J2
xj =0 for all j e 32

when the sets J, = £3 : fj < fo}, Jy, = {j: fj >-fo}.

In effect, the integrality requirement on the nonbasic wvariables

has been relaxzed and Pl and P2 are single equation minimization problems

called continuous knapsack problems. The constraints of Py and P2 are

such that the solution to G; has only one xj nonzero (xj , xj) in each

1 2
subproblem.
The optimal values of the objective values for P1 and P2 are given
by: T ot
Jy o ‘
61 = F for some iy e Jl
J1
c, (1-f
g, 075
62 :"‘ETE'.—‘)— for some _]2 [=4 J2.
2
e = i 3 e o— i
Let j 3y if 61 = 62 and j* iy if 62 >'6l.

189

The optimal value 8% for G; is given by:

c.*f
-%—~9 if 61 < 62
o = b (73)
c_*(l-fo) '
(l'fj*) if 62 <&

Using the solution §* to G;, Johnson defines the piecewise linear

function ™ such that:

%éi 0<=usx<f
o o
m{u) =< {(74)
%%E%l%: f = u<=<1l
o o

This function satisfies certain requirements so that the following

is a valid inequality for the IP problem.
m(f) =T m(f.)x,
(5 = 2 m(E),
But substituting the values for fD and {fj} into Eq. (74):

b - *
£ 6% (1-£)8

m(E) = g = gy = o (75)
0 8]
and
(o
£ 1edy

mED) =Y sx(1e£) (76)

(1-£)

190

The inequality is:

6%f x. . &¥(1l-£,)x,
we § Thn, oy
j.eJl © JEJ?_ ©
But this is equivalent to:
f (1-£f,)x,
0
=
£ S‘ R y 7 (78)
jedy jedy ©

Equation (78) is the Gomory fractiomal cut and n(fo) = §*% is the associ-
ated Tomlin penalty.

Now, intuitively, the price has been paid for using the group ele-
ment fj*; thus, we can reach either the element f0 or fo - fj* {mod 1)
and solve the congruency problem. It can be done with the original group
elements, or the original elements plus ones of the type fj* + e, where
e, are group elements previously paid for in the sense that fj* has been
a limiting element. For the first iteration then the elements {0,1} are
the e; for which nothing was paid. The algorithm proceeds by solving
sets of problems like G;, one for each element in the enlarged set of
eligible right hand sides (i.e., f0 and fo - fj* for the second iteration).
The algorithm generates a piecewise linear function with an increasing
number of segments symmetric about the set of candidate solving elements
(fo, fo - fj*’ fo - fk*"")' At any iteration the function so generated
can be used to define a valid inequality and ﬂ(fo) is the associated ob-

jective function penalty. If a candidate solution element is reached

191

exactly by one of the eligible group elements, the cyclic group problem
for that row has been solved and W(fo) is the minimum cost of making the
basic variable associated with that row integer with positive integer
combinations of the nonbasic variables with nonzero fractional parts of
their coefficients in the row. The integrality of the other basic vari-
ables has been relaxed.

This discussion has been a sketch of the method given by Johnson
[62] to which the reader is referred for more details and the proof of
the validity of the algorithm. The following example illustrates the
calculation of all of the penalties described above. The integer program-
ming problem with all of the constraints except for one row of the optimal

LP tableau relaxed can be stated:

(79)

Minimize 3x1 + 2x2

Subject to:

1 3. _3
Xy * 7 X < F Xy =3 (80)

The penalty derived from the first dual simplex iteration after

adding the constraint X4 = 1 is:

4
-7 (@)

- R
P, = =3 (81)

3
7

For adding Xq < 0:

192

3
73
Py = g =3 (82)
7
The Gomory fractional cut using Eq. (66) is:
3,3
2 &)
3_ 1 7 7 _1 9
2 T Bl s e (83)
7
The Tomlin penalty is:
3 3
< (3 F@
minimum |2 7 il (84)
T T8 3
7 28

The cyclic group problem derived from Eq. (79) and Eq. (80) is:

Minimize 3x1 + 2x2 (83)
Subject to:
% X, + e Xy = % (mod 1) (86)
Xis Xy =0 and integer.

The function generated by the first iteration of the Johnson algorithm is:

u(-%é) 0sus<3

mlu) = 87
(1-w) &Y

~d{L
[T

which is the Tomlin penalty as expected. - The

wlo

The penalty is u (%) =

193

next iteration generates the function:

4
21 u 0= u= %
-123 u + 28 % <u< %
mw =< 22 u 8 & £ u= 9 (88
2 - 7 7
-49 u + 49 % fu=sl
\
The penalty is:
3
TT (?) =9 (89)

The next iteration of the algorithm verifies that this is the solution of
the cyclic group problem.

The maximum penalty from the single pivot analysis was %, the
Tomlin penalty was %, but the penalty obtained by two iterations of
Johnson's algorithm was 9. Without considering the other basic variables,
an integer solution at any node below the current one will have an ob-
jective value at least 9 units greater than the objective value of the
LP at the current node. The experience reported by Johnson and Spiel-
berg [60] and Kennington [63] indicates that the penalties derived from
consideration of the cyclic group problems from the rows of fractional
variables is strong information for use with a branch and bound procedure.

The information required for any of the penalties is the row of
coefficients for nonbasic variables corresponding to a noninteger valued
basic variable, This is easily obtained from the optimal GFP solution
using the row generation procedure given in Section 3.4.

The penalties described in this section are tools to aid the

194

decision process of a branch and bound (or perhaps an implicit enumera-
tion) algorithm. Their use is heuristic in that using them to choose the
branching variable or the next candidate problem for consideration does
not assure one that the search will be shortened or that an integer solu-
tion will be found sooner. Decisions made using these penalties are based
on a supposition as to the nature of the search after the decisions have
been made. However, it is reasonable to conjecture that, if the compu-
tation of a penalty takes into account more of the problem restrictions,

then better decisions can be made.

5.6 Summary

In this chapter the group formulation of an integer programming
problem has been considered. The methods necessary to formulate the IGFP
as a group IP problem from the optimal linear programming sclution ob-
tained by the GFP algorithm in Section 4.2 were presented. A description
of this group IP problem was given and related to the graphical repre-
sentation of the optimal continucus soluticn. The work of Estabrook was
considered, and his algorithm for the IGTP was discussed. Finally, the

results of several authors concerning penalties for enumeration methods

were summarized.

195

CHAPTER VI

ALGORITHM FOR THE IGFP

6.1 Introduction

In previous chapters the specially structured linear programming

problem designated as the generalized flow problem has been characterized

and an algorithm for solving it has been presented. The algorithm takes
advantage of the problem characterization to eliminate some operations
and improve other operations required when the simplex procedure is used

to solve the problem. In Chapter V the integer generalized flow problem

was characterized in terms of the solution to the associated GFP and the
use of the graphical representation of the problem to identify the inter-
action between the variables for the integer problem was discussed, 1In
this chapter several of the methods and procedures previously presented
will be combined into a branch and bound algorithm for solving the IGFP.
This algorithm is constructed to take advantage of the special properties

and characterizations of both the GFP and IGFP.

6.2 BSelection of Method of Solution

In Section 1.9 the general approach for solving integer programming
problems was described. The characterization of the GFP and IGFP did not
indicate that a combinatorial approach might be used for solving the IGFP;
thus, no further consideration was given to this type of solution pro-

cedure.

196

Implicit enumeration methods attempt to apply logical tests to the
constraints of the associated linear programming problem to eliminate the
need to explicitly consider certain sets of the varlables as possible
solutions to the problem. It appears that an implicit enpumeration al-
gorithm could be organized to take advantage of the sparsity of the IGFF
constraint set. However, as indicated by Geoffrion [25] and Trotter [95],
the effectiveness of an implicit enumeration algorithm is greatly en-
hanced by the use of informatien derived from the associated LP. This
additional information is usually in the form of a surrogate constraint
which does not have the same form as the original set of constraints and
could not be treated in the same manner. Thus, although an implicit
enumeration algorithm could be specialized to take advantage of the con-
straints of the GFP, the derived surrogate constraints would not have
their special structure. Specialization of an implicit enumeration al-
gorithm for the IGFP would be largely a matter of organizing the algorithm
to take advantage of the form of the constraints and would not focus on
improving the solution procedure by deriving better information from this
special structure., For this reason, the implicit enumeration approach
was not taken.

Although the characterization of the IGFP in Chapter V suggests
that a group theoretic method might be developed for the IGFP, this ap-
proach was not used directly, The simplification used by Estabrook to
develop his algorithm for the IGFP does not occur for the IGFP., Addi-
tionally, Estabrook's algorithm shared the drawback of the direct group

approach for the general problem, in that we are not assured that the

197

solution to the group problem will be feasible for the original problem.
The methods which must be used to reapply the relaxed constraints have
not in general been efficient. For these reasons, a group theoretic al-
gorithm was not developed. On the other hand, the branch and bound ap-
proach has several features which permit taking advantage of the special

structure of the IGFP. This is discussed in detail below.

6.3 Branch and Bound Procedure

In Section 1.9 the tools necessary for an efficient branch and
bound procedure were listed as:
(i) Efficient LP solution method.
(i1) Branching variable strategy.
(iii) Penalty calculation to provide good bounds.
(iv) Node choosing strategy.
(v) Efficient storage of candidate problem.
(vi) Method for finding a "good'" feasible solution,

The detailed study of the GFP and IGFP in Chapters II through V
has provided the devices necessary to construct a branch and bound al-
gorithm which incorporates the characteristics listed above. From the
computational results given in Chapter IV it will be seen that the GFP
algorithm given in Section 4.2 is very efficient. Further, it requires
less storage space than a general simplex algorithm. The results of
Johnson and Spielberg [60] and Kennington [63] indicate that the penal-
ties derived from considering the cyclic group problem derived from the
row of a noninteger basic variable facilitates a branch and bound IP
algorithm. In addition, Johnson [61] indicates that the heuristic rule

of choosing the branching variable as the basic variable whose row pro-

198

vides the maximum penalty is an effective device. Since the row genera-
tion technique given in Section 3.4 is an efficient method for generating
those rows which are required, satisfactory means for accomplishing (ii)
and (iii) are at hand. 1In conjunction with (ii) and (iii), the node
choice strategy will be to choose the node with the smallest estimated
objective value ZE = ZLP 4+ PEN where ZLP is the LP objective value from
its predecessor node and PEN is the penalty from the single row cyclic
group problem, If the penalty calculations are effective, then by choos-
ing the least cost node, one presumes that as integer solutions are en-
countered a large number of nodes may be removed from the candidate list
since only those with the larger penalties and hence the larger lower
bounds have been included. The use of this rule is supported by Kenning-
ton's experience for the fixed charge transportation problem which is a
mixed integer problem with a network structure and can be formulated as an
IGFP problem. The effectiveness of the special algorithm for the GFP de-
creases the desirability of using a "near" node choice strategy to enhance
the restart capability of the continuous solution procedure. Since an
advanced start for the continuous problem is not being used, the storage
requirements for the candidate problems (nodes) are reduced. A method
for obtaining a good feasible solution is discussed in Section 6.5. Thus,
the means are at hand for the construction of a branch and bound procedure
for the IGFP. The algorithm is presented below and in Figure 10.

We will denote by C the list of candidate problems (which do not

have integrality requirements) created by imposing additional bounds on a

variable from some previous problem in the candidate set.

199

’l

|

IF C = ¢ TERMINATE. OTHERWISE

STEP 1

SELECT PK SUCH THAT

SOLVE P OBTAINING 2 and % .
IF x~ ALL INTEGER GO TO 4.

k . i .
ZE = ZE ¥ 1 ¢ C
C=¢-p"
STEP 2
k k x &

Kk LP

OTHERWISE GO TO 3.

k

CALCULATE PENi FOR EACH FRACTION COMPONENT
x;. DETERMINE x _ SUCH THAT PEN_ > PEN, FOR
ALL j. IF 2 < Z
OTHERWISE CREATE P* AND P° AND LET

STEP 3

k

Lp + PENt GO TO 1.

c=c+? +p7°. GoTO 1.

k ok
IF 2., i Z; GO TO 1. OTHERWISE Z; = Z/p,
RECORD x°. LET € = C - P FOR ALL i SUCH MGl

i
THAT ZE -2 ZI' GG TO 1.

Figure 10. Branch and Bound Procedure

200

k € C will be denoted by the vector xk with
. . k k., . , . k
objective value ZLP' If P is infeasible, we will let ZLP = w, The

The solution to a problem P

value Z; will denote the lower bound on the value of an integer solution

contained in the constraint set of Pk. It is obtained by adding the

J

LP where P! is the predecessor prob-

penalty PEN to the objective value Z
lem to Pk. PEN is the penalty associated with the fractional variable in
the solution to Pj which was restricted to comstruct Pk. The value ZI
will denote the current lower bound on the objective function value for
the IGFP obtained from the incumbent integer solution xI. Using this
notation the branch and bound procedure can be stated,

Step 0. Set ZI =, Let Pk « GFP. Go to Step 2.

Step 1. If C = @ terminate; the incumbent solution is optimal.

Otherwise select and remove problem Pk from C such that ZE =

{z; :iec).

Step 2. Solve Pk, obtaining the objective value ZEP. If the
components of xk are all integer go to step 4. Otherwise go

to step 3,

Step 3. For each noninteger basic variable xj calculate the

penalty PENj. Choose the branching variable X, such that

k

= i : <
PENt PENj for all j. 1If Zi ZLP

+ PENt go to step 1,
Dtherwise create two problems P* and P° by branching on X,

with additional constraint xt = [x:] for Pr and xt = [xk] + 1

t
for P° with lower bounds z% = 2% = zK 4 PEN . Place these
or 1 owe n E E LP t.

problems in C and return to step 1.

k . _ oK
Step 4. If ZLP = ZI go to step 1. Otherwise set ZI = ZLP

201

. ; k
and record the new incumbent solution x . Remove any problem

Pi from C if ZE z ZI' Go to step 1.

The algorithm is finite since branches of the enumeration tree are
terminated only if no integer solution can be found below a node which
will be better than the incumbent solution. If the candidate list is
empty then the optimal integer solution is the incumbent solution.

The GFP algorithm given in Section 4.2 is the algorithm used to
solve the relaxed candidate problems. The penalties are calculated from
Johnson's algorithm for the cyclic group problem using the row gemeration
procedure of Section 3.4. The number of iterations in Johnson's algorithm

is specified by the user and Tomlin's penalties are generated if only one

iteration is specified.

6.4 Computational Results

The results of solving a number of problems with the IGFP algorithm
are listed in Table 5. Problems 1, 2, and 9-14 are of the IGTP type and
the rest are IGFP problems. The GFP algorithm used to solve the candi-
date problems does not employ an advanced start and was started with an
ipitial basis composed of all artificial and slack variables. Problems
11 and 12 are the same problem with 11 using one iteration of the Johnson
algorithm to find penalties and 12 using three iterationms. For this prob-
lem at least, the additional effort used to find stronger penalties re-
sulted in three less LP problems being solved but the total solution time
was increased by 30 percent. For almost all of the problems the bulk of
the solution time is spent in finding the first integer solution. After

one is found, the penalties seem to provide an effective fathoming device

Table 5, IGFP Computational Results

Problem No, of No, of 1LIP's LP Contlnuous Integer Time to Total
Number Eqn, Var, Solved Time Sol, Value Sol, Val, First Sol, Time*

.052 342.5 360 107 120

1 4 8 9
2 4 8 7 027 350, 380 092 101
3 b 12 9 238 16.273 17 376 382
L 5 21 2 007 4s6,5 477 019 024
5 5 21 3 015 43, by 072 077
€ 5 11 4 024 267,333 278 47 «053
7 5 13 12 068 108,608 119 11 16
8 5 1 5 052 36,283 38 130 135
9 5 11 8 .07 29,444 31 .118 123
10 7 19 5 079 104,667 106 .120 124

(404

Table 5,

(Continued)

Problem No, of No, of LP's 1P Contimuous Integer Time to Total

Number Egn, Var, Solved Time Sol., Value Sol, Val, First Sol. Time*
11 8 24 29 1.0125 565.197 566 1.929 1.958
12 8 24 25 .839 565,197 566 2.530 2,563
13 8 24 9 278 305.145 307 571 576
14 8 P 5 .158 563,788 *% 280
15 10 b2 7 .093 113.5 115 166 225

#A1]1 times in seconds on Univac 1108 in multiprocessing mode exclusive of

input/output time

*No feasible lntager solutlion

£0¢

204

for the remaining candidate problems. A method for obtaining a feasible
integer solution after solving the initial GFP is given in the next sec-
tion., It might be used with the IGFP branch and bound algorithm to pro-

vide a better bound at the initiation of the search.

6.5 Obtaining a Feasible Integer Solution

In this section a method for obtaining an integer solution which
is feasible to all of the constraints binding at the LP optimal solution
is given. If the solution is alsc feasible to all of the nonbinding con-
straints it is a feasible integer solution and may be used as the initial
incumbent solution. 1t provides an initial bound on the branch and bound
search tree. The method is due to Hillier [53] and Biondi and Schmid [9]
who developed their procedures independently. This procedure is particu-
larly easy to implement using the row and column construction techniques
for the GFP given previously. Using these methods the solution (if one
is found) is obtained at little additional cost after solving the GFP.
The method tends to find a solution in the proximity of the continuocus
solution (fo)' A brief outline of the method is given below. A major
limitation is the assumption that the original problem contains no equal-
ity constraints.

The intuition and geometry of the method is to construct a Hyper-
cube of edge length one inside the interior of the feasible region defined
by the constraints binding at the LP optimum. The integer sclution con-
tained in this hypercube will be feasible for the binding constraints and
thus is a good candidate as a feasible integer scolution. After solving

the GFP, for all binding constraints (not containing a basic slack),

205

construct the new right hand side defined by:

JB is the set of basic variables and (a_j) are the corresponding
i
. . . th .
coefficients in the 1 equation.

This new right hand side is used to calculate the vector:

1b >

x'" =<B
where

<> denctes the integer vector obtained by rounding each component
of x to the nearest integer value and B-l is the inverse of the optimum
basis.

If x' is feasible to all of the nonbinding constraints, then it is a
feasible integer solution. If x' is not feasible, either the procedure
may terminate and the branch and bound search may be started with no lower
bound or, as suggested by Hillier [53], a search may be made between Xp
and x' for a feasible solution.

For the GFP, b£ can be calculated by scanning the variables and
calculating a new right hand side value if X, is basic. The inverse of
the basis is not explicitly available, but it can be generated a row at a
time by the procedure in Section 3.4. The only equations to be checked
after x' is calculated are the bounds 0 and Mi and the constraints corres-
ponding to basic slack arcs in the graphical representation, since they

are the only ones which are not binding at the LP optimum. An example is

given below.

The optimal soluticn to the problem defined by Eqs. (15) and (16} inm

Chapter I displayed on the associated graph are:

b, = -150

-100

o
1

bl =4 - 3(1+1) = 3
| S —
b} = b, = 3
bl = -150 - £(1-501 + 1-1001) = -225

-100 + #(1-401) = -120

-
-
It

The row of the inverse for x25 is:

1 1 1
(1 100 2 so]
Thus
Xyo = (1 1/100 1/2 1/80] 3
-225 2
3 = 4
-120
For x21:
X3, = [0 - 1/100 - 1/2 - 1/80] 3
-225| = 2%

3
-120

206

207

For xll:
x!.=[0 0 1 1/40] 3
11
-225 3
3
-120
The rounded solution is:
| — L | I— |
k1 =0 Xy =3 % =2 x,=0

The solution is feasible with a cost of 430 which would serve as

a lower bound for the branch and bound procedure.

208

I3

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The primary motivation for the research presented in this disserta-

tion was the search for a solution procedure for the integer generalized

flow problem. For this purpose it was necessary to obtain an effective

solution procedure for the continuous problem. In addition, in proceed-
ing towards this goal, we have obtained several worthwhile results related
to the area of primary investigation. The main accomplishments and results
of this research are elaborated below.

As mentioned previously, the main trend of thinking in this study
was guided by Johnson's characterization of a basis for a network prob-
lem in terms of a basis forest. This graphical representation has been
proved in this study using a constructive approach. The approach taken
is organized into a procedure for row and column generation to carry out
the simplex operations. The procedure directly exploits the sparseness
of the constraint matrix of the GFP and minimizes the amount of computa-
tion effort.

The procedure mentioned above directly leads to an efficient means
of computing the basis inverse of the GFP. This is used to compute the
dual variables and the relative cost factors. Ability to compute the

inverse in this fashion is alse likely to have a strong impact on the

209

additional research areas listed later, It may be recalled that the
methods of Balas [3,4], Johnsoﬁ [58], and Maurras [71,72] require the
recalculation of all simplex multipliers, whereas, in this study, only
those multipliers which change are i&entified and recomputed at each
iteration.

To keep track of the basis and the simplex computations, Johnson
[59] has proposed a triple labeling scheme for the OFP. The scheme is
extended to the GFP in this study.

The information derived from the GFP is used to solve the IGFP,

The graphical representation of the GFP 1is shown to provide a good means
of viewing the group theoretic formulation of the IGFP and, in particular,
the graph can be used to identify the interaction between variables.

A means for directly calculating the determinant of an LP basis
is given, as is a method for improving the group formulation. The con-
structive procedure and the continuous algorithm for the GFP are used to
construct a branch and bound algorithm for the IGFP.

In addition to the development of algorithms for solving the GFFP
and the IGFP and the associated detailed steps, the study has demonstrated
that the resulting procedures are effective. The solution times given in
Table 2 for the GFP are indicative of the power of the methods. The GFP
algorithm is specialized for the OFP and transportation problem. The
computational results for the OFP algorithm are better than those for
the out-of-kilter algorithm, long thought to be the best algorithm for
minimum cost flow problems. The computational results for the transporta-

tion code are comparable with recent results by other investigators,

210

Table 5 lists the computation times for the IGFP algorithm. There are no

effective algorithms to compare with these results,

7.2 Recommendations

Several areas for additional research are indicated by the investi-
gation reported here, Some of these are listed below.

(1) A primal-dual algorithm for the OFP could be constructed to
take advantage of the graphical representation of basic solutions., This
representation can be viewed as an efficient way to identify sets of
variables and/or equations. For example, the set of variables required
to represent a nombasic variable is directly identifiable using the graph.
However, in the out-of-kilter algorithm, a search must be made (labeling)
for this set which is identified at a breakthrough. Similarly, the set of
simplex multipliers which change at an iteration is easily identified and
updated using the tree representation, The out-of-kilter method must
accomplish a similar function by identifying labeled and unlabeled sets
of nodes and the set of arcs between them. The main requirement for a
primal-dual algorithm using the graphical representation would be a means
of identifying the set of variables which forms the restricted primal
problem.

(2) Based on the results for the transportation algorithm, an
investigation of improved starting solutions and entering variable selec-
tion criteria should be made for both the GFP and the OFP.

(3) The graphical interpretation of the group formulation for the
IGFP may provide the means for constructing a group theoretic algorithm.

Since the interaction between variables is identifiable, the use of this

211

information in a group theoretic algorithm should be studied.

(4) The computational results for the IGFP indicate that a great
deal of the effort is spent in identifying the first integer solution,
The heuristic method for finding a feasible solution presented in Section
6.5 should be implemented and tested computationally,

{5) The graphical representation of the GFP and the OFP provides
a means for efficiently performing parametric analysis after the original
problem has been solved. For example, if the cost of a basic variable
changes, the only simplex multipliers affected until the basis changes
are those associated with nodes above that basic variable whose cost
changed, Likewise, if a component of the right hand side changes, the
only basic variables whose values change until a basis change occurs,
are those in the path from the node associated with the changed right
hand side component and the root (pseudoroot). Clearly, the parametric

programming potential of the graphical representation should be exploited.

10.

11.

12,

212

BIBLIOGRAPHY

Arms, R, L., "An Algorithm for a Special Class of Generalized
Transportation-Type Problems,'" Research Analysis Corp. Report
TP-337 (1968).

Azpeitia, A, G. and Dickinson, D, J., "A Decision Rule in the
Simplex Method that Avoids Cycling," Numerische Mathematik, Vol.
6, 329-331 (1964).

Balas, E. and P. L. Ivanescu, "On the Generalized Transportation
Problem," Management Science, Vol, 11, 188-203 (1964).

Balas, E., "The Dual Method for the Generalized Transportation
Problem,'" Management Science, Vol. 12, 555-568 (1966).

Balas, E., '"Discrete Programming by the Filter Method," Operations
Research, Vol. 15, 915-957 (1967).

Balas, E., '"Integer Programming and Convex Analysis: Intersection
Cuts from Outer Polars," Mathematical Programming, Vol. 2, 330-382
{1972),

Balinski, M. L. and K, Spielberg, "Methods for Integer Programming:
Algebraic, Combinatorial, and Enumerative," Chapter 7 in Progress
in Operations Research, ed. J. Aronofsky, John Wiley and Sems,
1969,

Balinski, M, L,, "On Maximum Matching, Minimum Covering and Their
Connections," in the Proceedings of the Princeton Symposium on
Mathematical Programming, ed. H. W. Kuhn, Princeton University
Press, 1970.

Biondi, E. and R. Schmid, "An Approximate Algorithm for Discrete
Linear Programming,” IEEE Transactions on Systems Science and

Cybernetics, Vol. SSC-5 (1969).

Burdet, C. A., "Enumerative Inequalities in Integer Programming,"
Mathematical Programming, Vol, 2, 32-64 (1972).

Burdet, C. A., "On the Algebra and Geometry of Integer Programming
Cuts,'" Management Science Research Report 291, Carnegie-Mellon
University GSIA (1972).

Charnes, A, and C. Lemke, "Minimization of Nonlinear Separable
Convex Functions,'" Naval Research Logistics Quarterly, Vol. 1,

301-312 (1954).

13.

14.

15.

16,

17.

18.

19.

20,

21.

22,

23.

24,

25,

26,

213

BIBLIOGRAPHY (Continued)

Charnes, A, and W. M. Raike, "One Pass Algorithms for Some Gener-
alized Network Problems,' Operations Research, Vol. 14, 914-924

(1966).

Dakin, R, J., "A Tree Search Algorithm for Mixed Integer Program~
ming Problems," Computer Journal, Vol. 8, 250-255 (1965).

Dantzig, G., Linear Programming and Extensions, Princeton Univer-
sity Press, 1963.

Demmy, W. S., "Multicommodity Flows in Generalized Networks,"
Memorandum Report No. 9, Research Division, Advanced Loglstics
S5ystems Center, Headquarters AFLC (1969).

Driebeck, N, J., "An Algorithm for the Solution of Mixed Integer
Programming Problems,'" Management Science, Vol, 12, 576-587 (1966).

Edmonds, J. and E. Johnson, "Matching: A Well Solved Class of
Integer Linear Programs," in Calagarv International Conference on
Combinatorial Structures and Their Applications-1969, Gordon &

Breach, 1970,

Eisenman, K., "The Generalized Stepping Stone Method for the
Machine Loading Model," Management Science, Vol. 11, 154-176 (1964).

Estabrook, J. R., Jr., An Integer Programming Method for the Gener-
alized Transportation Problem (Unpublished Dissertation), Dept. of
Industrial Engineering, Columbia University (1969).

Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton
University Press, 1962,

Forrest, J. J. H., J. P. H. Hirst, and J. A, Tomlin, "Practical
Solution of Large and Complex Integer Programming Problems with
UMPIRE," presented at the XIX International Meeting of TIMS (1972).

Fujisawa, T., "Maximum Flows in Lossy Networks," Proceedings of
the First Allerton Conference on Circuit and Systems Theory, 1963.

Garfinkel, R, S. and G, L. Nemhauser, Integer Programming, John
Wiley and Sons, 1972,

Geoffrion, A, M., "An Improved Implicit Enumeration Approach for
Integer Programming," Operations Research, Vol, 17, 437-454 (1969).

Geoffrion, A, M. and R. E. Marsten, "Integer Programming Algorithms:
A Survey," Management Science, Vol. 18, 4653-491 (1972).

27'

28,

29.

30.

31.

32,

33.

34,

35.

36.

37.

214

BIBLIOGRAPHY (Continued)

Glover, F., "A Multlphase-Dual Algorithm for the Zero-One Integer
Programming Problem,” Operations Research, Vol. 13, 879-919 (1965).

Glover, F., "Surrogate Constraints," Operations Research, Vol.
16, 741~749 (1968).

Glover, ¥. and D. Klingman, "Locating Stepping-Stone Paths in
Distribution Problems Via the Predecessor Index Method," Transpor-
tation Science, Vol. 4, 220~225 (1970).

Glover, F., D, Klingman, A. Napier, and D. Kearny, "A Comparison
of Computation Times for Various Starting Procedures, Basis Change
Criteria, and Solution Algorithms for Distribution Problems,' Re-
port CS 44, Center for Cybernetic Studies, University of Texas-

Austin (1971).

Glover, F. and D, Klingman, "On the Equivalence of Some Generalized
Network Problems to Pure Network Problems," Report CS 81, Center
for Cybernetic Studies, University of Texas~Austin (1972).

Glover, F, and D. Klingman, "Basic Dual Feasible Solutions for a
Class of Generalized Networks," Operations Research, Vol. 20, 126-
136 (1972),

Glover, F. and D. Klingman, "Dual Approximate Methods for the Dis-
tribution Problem,'" Management Science, Vol. 18, 574-583 (1972).

Glover, F., D. Klingman, and D. Kearny, "The Augmented Predecessor
Index Method for Locating Stepping Stone Paths and Assigning Dual
Prices in Distribution Problems,' Transportation Science, Vol. 6,

171-179 (1972).

Glover, F. and D, Klingman, "A Note on Computational Simplifica-
tions in Solving Generalized Transportation Problems,'" Report CS
87, Center for Cybernetic Studies, University of Texas-Austin
(1972).

Glover, F., D. Klingman, D. Kearny, and A, Napier, "A Computation
Study of Start Procedures, Basis Change Criteria, and Solution Al-
gorithms for Transportation Problems," Report CS 93, Center for
Cybernetic Studies, University of Texas-Austin (1972).

Glover, F., D. Klingman, and D, Kearny, "A Double-Pricing Dual
Feasible Start Algorithm for the Capacitated Transportation
(Distribution) Problem,'" Report CS 105, Center for Cybermetic
Studies, University of Texas-Austin (1970, Rev. 1972).

38.

39.

40.

41.

42,

43.

45.

46.

47.

48.

49.

50.

215

BIBLIOGRAPHY (Continued)

Glover, F., D. Klingman, and R, S. Barr, "An Improved Version of

the OQut-of-Kilter Method and a Comparative Study of Computer Codes,"
Report CS 102, Center for Cybernetic Studies, University of Texas-
Austin (1972). :

Glover, F., "Cut Search Methods in Integer Programming,'" Mathe-
matical Programming, Vol. 3, 86-100 (1972).

Gomory, R. E., "On the Relation Between Integer and Non-Integer
Solutions to Linear Programs," Proceedings of the National Academy
of Science, Vol. 53, 260-265 (1956).

Gomory, R, E., "An Algorithm for the Mixed Integer Problem,"
RM-2597, The RAND Corp. (1960).

Gomory, R, E,, "An All-Integer Programming Algorithm," in Indus-
trial Scheduling, ed. Muth and Thompson, Prentice-Hall, 1963,

Gomory, R. E., "An Algorithm for Integer Solutions to Linear Pro-
grams,' in Recent Advances in Mathematical Programming, ed, Graves
and Wolfe, McGraw-Hill, 1963.

Gomory, R. E., '"Some Polyhedra Related to Combinatorial Problems,"
Linear Algebra and Its Applicatioms, Vol. 2, 454-550 (1969).

Gomory, R. E., "Properties of a Class of Integer Polvhedra,"
Chapter 16 in Integer and Nonlinear Programming, ed. J. Abadie,
Academic Press, 1970.

Gomory, R, E. and E. Johnson, "Some Continuous Functions Related
to Corner Polyhedra,” Mathematical Programming, Vol. 3, 23-85
(1972),

Gomory, R. E. and E. Johnson, "Some Continuoue Functiona Related
to Corner Polyhedra-II," Mathematical Programming, Vol. 3, 359-
389 (1972).

Gorry, G. A, and J. F. Shapiroe, "Computational Experience with a
Group Theoretic Integer Programming Algorithm," WP 603-72, Sloan
School of Management, Massachusetts Institute of Technology (1972).

Grinold, R. C., "Calculating Maximal Flows in & Network with
Positive Gains,” WP CP-337, Center for Research in Management
Science, University of California-Berkeley (1971).

Guignard, M. M. and K. Spielberg, '""Mixed Integer Algorithms for
the (0,1) Knapsack Problem," IBM Research and Development Journal,

Vol. 16, 424-430 (1972).

51.

52,

53.

54,

55.

56.

57.

58.

59.

60.

61,

62.

63.

65.

216

BIBLIOGRAPHY (Continued)

Hadley, G., Linear Programming, Addison-Wesley, 1963,

Hildebrand, F. B,, Methods of Applied Mathematics, Prentice-Hall,
1965.

Hillier, F. 5., "Efficient Heuristic Procedures for Integer
Linear Programming with an Interior," Operations Research, Vol.
17, 600-637 (1969).

Hu, T, C., Integer Programming and Network Flows, Addison-Wesley,
1969,

Jensen, P. A,, Private Communication (Oct., 1972).

Jewell, W. S., "Optimal Flow Through Networks with Gains,"
Operations Research, Vol. 10, 478-499 (1962).

Jezior, A. M. and J, J. Jarvis, "Maximal Flow with Gains Through
a Special Network,'" Operations Research, Vol. 20, 678-688 (1972).

Johnson, E. L., "Programming in Networks and Graphs,! ORC Report
65-1, University of California~Berkeley (19653).

Johnson, E, L., "Networks and Basic Solutions,'" Operations Research,
Vol. 14, 619-623 (1966).

Johnson, E. L. and K. Spielberg, "Inequalities in Branch and Bound
Programming,'" IBM Research Report RC-3649 (1971).

Johnson, E. L., Private Communication (May and Sept., 1972).

Johnson, E. L., "Cyclie Groups, Cutting Planes, and Shortest
Paths,” presented at the Mathematical Programming Seminar, Mathe-
matics Research Center, University of Wisconsin-Madison (1972).

Kennington, J. L., Fixed-Charge Transportation Problem; A Group
Theoretic Approach (Unpublished Dissertation), Dept. of Industrial
and Systems Engineering, Georgia Institute of Technology (1973).

Klingman, D., A, Napler, and J, Stutz, "NETGEN--A Program for
Generating Large Scale (Un) Capacitated Assigmment, Transportation,
and Minimum Cost Flow Network Problems," Report CS 109, Center for
Cybernetic Studies, University of Texas-Austin (1973).

Land, A, H. and A, G. Doig, "An Automatic Method of Solwving Dis-
crete Programming Problems," Econometrica, Vol. 28, 497-520 (1960).

66.

67.

68.

69.

70.

71.

72,

73,

74.

75.

76.

7.

78.

79.

217

BIBLIOGRAPHY (Continued)

Lasdon, L. S., Optimization Theory for Large Systems, The
MacMillan Company, 1970.

Lourie, J. R., "Topology and Computation of the Generalized Trans-
portation Problem," Management Science, Vol. 11, 177-187 (1964).

Maier, S. F., "Maximal Flows Using Spanning Trees,'" Report 71-14,
Operations Research House, Stanford University (1971).

Malek-Zavarei, M. and J. K. Aggarwal, "Optimal Flow in Networks
with Gains and Costs," Networks, Vol. 1, 355-365 (1972).

Martin, G. T., "An Accelerated Euclidean Algorithm for Integer
Linear Programming," in Recent Advances in Mathematical Program-
ming, ed. Graves and Wolfe, McGraw-Hill, 1963.

Maurras, J. F,, "Optimization of the Flow Through Networks with
Gains,”" Mathematical Programming, Vol. 3, 135-144 (1972).

Maurras, J. F., Private Communication (Feb., 1973).

Mayeda, W. and M. E. Van Valkenburg, "Properties of Lossy Communi-
cations Nets," IEEE Transactions on Circuit Theory, Vol, CT-12,
334-338 (1965).

Minieka, E., "Optimal Flow in a Network with Gains,'" INFOR, Vol.
10, 171-178 (1972).

Mitten, L. G., "Branch and Bound Methods: General Formularion
and Properties,'" Operations Research, Vol. 18, 24-34 (1970).

Onaga, K., "Optimum Flows in General Communications Networks,!
Journal of the Franklin Institute, Vol. 283, 308-327 (1967).

Onaga, K., "Dynamic Programming of Optimum Flows in Lossy Communi-
cations Nets," IEEE Transactions on Circuit Thecory, Vol. CIL-13,
282-287 (1966).

Padberg, M. W., "On the Facial Structure of Set Covering Problems,"
Report 1/72-13, International Institute of Management, Science
Center Berlin (1972).

Rutenberg, D. P., "Generalized Networks, Generalized Upperbound-
ing, and Decomposition of the Convex Simplex Method,'" Management
Science, Vol. 16, 388-401 (1970).

80.

81l.

82.

83.

84.

85.

B6.

87.

88.

g9.

90.

91.

92.

218

BIBLIOGRAPHY (Continued)

SHARE Programming Library Distribution No. 3536, "Out-of-Kilter
Network Routine," (1967).

Shapiro, J. F., "Dynamic Programming Algorithms for the Integer
Programming Problem-I; The Integer Programming Problem Viewed As
a Knapsack Type Problem,” Operations Research, Vol. 16, 103-121
(1968).

Shapiro, J. F., "Group Theoretic Algorithms for the Integer Pro-
gramming Problem II: Extension to a Genmeral Algorithm," Operations
Research, Vol. 16, 928-947 (1968).

Shapiro, J. F., "Turnpike Theorems for Integer Programming Prob-
lems, " Operations Research, Vol. 18, 432-440 (1970).

Shapiro, J. F., "Generalized Lagrange Multipliers in Integer Pro-
gramming," Operations Research, Vol. 19, 68-76 (1971).

Simonnard, M., Linear Programming, Prentice-Hall, 1962.

Smith, C. W., Maximal Flow at Minimal Cost Through a Special Net-
work with Gains (Unpublished Thesis), Dept. of Ind. and Sys. Eng.,
Georgia Institute of Technology (1971).

Srinivasan, V. and G. L. Thompson, "Accelerated Algorithms for
Labeling and Relabeling of Trees with Applications to Distribution
Problems," Journal of the ACM, Vol. 19, 712-726 (1972).

Takahashi, I., "Tree Algorithm for Solving Resource Allocation
Problems," Journal of the OR Society of Japan, Vol. 8, 172-191
{1966).

Takahashi, I., "Tree Algorithm for Solving Network Transportation
Problems," Journal of the OR Society of Japan, Vol. 8, 192-216
{1966).

Thiriez, H., "Airline Crew Scheduling: A Group Theoretic Approach,"
Report R-69, Flight Transportation Laboratory, M.I.T. (1969).

Thompson, G. L. and V. Srinivasan, "Benefit-Cost Analysis of Coding
Techniques for the Primal Transportation Algorithm," Management
Science Resgearch Report WP-97-70-1, Carnegie-Mellon University
(1970, Rev. Dec. 1971).

Tomizawa, N., "On Some Techniques Useful for Solution of Transporta-
tion Network Problems, Networks, Vol. 1, 173-194 (1971).

93.

94.

95.

96.

219

BIBLIOGRAPHY (Concluded)

Tomlin, J. A., "Branch and Bound Methods for Integer and Nonconvex
Programming," Chapter 21 in Integer and Nonlinear Programming, ed.
J. Abadie, North Holland, 1970.

Tomlin, J. A., "An Improved Branch-and-Bound Method for Integer
Programming,'' Operations Research, Vol. 19, 1070-1075 (1971).

Trotter, L., E.,, An Implicit Enumeration Algorithm for Integer Pro-
gramming (Unpublished Thesis), Dept. of Ind. and Sys. Eng., Georgia
Institute of Technology (1970).

Zionts, S., "Toward a Unifying Theory for Integer Linear Program-
ming," Operations Research, Vol. 17, 359-367 (1969).

220

VITA

Robert Warren Langley was born January 18, 1943 in Memphis,
Tennessee. He was graduated from Huntsville High School, Huntsville,
Alabama in June 1961, and he entered the United States Air Force Academy
the same month. He was a Distinguished Graduate in June 1965 receiving
a B.S. in Engineering Science with a major in Astronmautics.

His first assignment after receiving his commission was as a gradu-
ate student at the Massachusetts Institute of Technology where in Sep-
tember 1966 he received a S.M. in Aeronautics and Astronautics with a
major in Guidance and Control. From 1966 until 1970 Captain Langley was
assigned to the Central Inertial Guidance Test Facility, Holloman AFB,
New Mexico, first as a test amalyst, then as a branch chief. He enrolled
in the School of Industrial and Systems Engineering at the Georgia Insti-
tute of Technology in September 1970 and was awarded the Ph.D. degree in

June 1973.

