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SUMMARY 

Extraction of buildings from remote sensing sources is an important GIS application 

and has been the subject of extensive research over the last three decades.  An accurate 

building inventory is required for applications such as GIS database maintenance and 

revision; impervious surfaces mapping; storm water management; hazard mitigation and 

risk assessment.  Despite all the progress within the fields of photogrammetry and image 

processing, the problem of automated feature extraction is still unresolved.   

A methodology for automatic building extraction that integrates remote sensing 

sources and GIS data was proposed.  The methodology consists of a series of image 

processing and spatial analysis techniques.  It incorporates initial simplification 

procedure and multiple feature analysis components.  The extraction process was 

implemented and tested on three distinct types of buildings including commercial, 

residential and high-rise.  Aerial imagery and GIS data from Shelby County, Tennessee 

were identified for the testing and validation of the results.    The contribution of each 

component to the overall methodology was quantitatively evaluated as relates to each 

type of building.  The automatic process was compared to manual building extraction and 

provided means to alleviate the manual procedure effort.   

A separate module was implemented to identify the 2D shape of a building.  Indices 

for two specific shapes were developed based on the moment theory.  The indices were 

tested and evaluated on multiple feature segments and proved to be successful. 
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The research identifies the successful building extraction scenarios as well as the 

challenges, difficulties and drawbacks of the process.  Recommendations are provided 

based on the testing and evaluation for future extraction projects. 
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Chapter 1 INTRODUCTION 

1.1 General 

Building footprints were shown to be very useful for a wide variety of applications.  

Two dimensional as well as three dimensional representations of buildings are commonly 

used within numerous routine civil and military operations.  From establishing and 

managing a GIS system for a city, to urban planning and even high-tech military urban 

combat training, building footprints are an essential part of many daily functions within 

the private and public sectors.  Building footprints can provide valuable information for 

natural hazard risk assessment, hazard mitigation and prepare for efficient emergency 

response.  For example, building footprints and actual building shape can be used for 

earthquake risk assessment.  The behavior of buildings under earthquake stresses is 

affected by multiple parameters including the symmetry of the structure.  Simulation 

based on actual building footprints can better evaluate the damage that an area may 

endure as a result of an earth quake and allow advance preparation.  When any natural or 

man-made hazard occurs, emergency response operations can greatly benefit from an 

updated building database that provides reliable information about possible location of 

individuals.  Great effort is put into the development of building data sets for cities and 

counties all over the world.  Building layers are used for urban GIS mapping, urban 

planning as well as resource management operations that can potentially produce 

revenue.  For example, storm-water management requires building areas as part of 

impervious surface delineation.    The definition of a building may vary by application 
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and hence entails different building characteristics.  Some applications may require 

general footprint information and focus on the symmetry of the shapes while other 

applications may need accurate corner locations and be particular with regards to attached 

structures (such as parking decks, balconies, garages). Gathering that information 

requires a significant initial effort as well as time and labor consuming update processes.  

Automatic extraction of buildings footprints from aerial imagery can considerably reduce 

the cost at all stages. 

 

Building extraction from aerial imager poses several major difficulties that any 

extraction process has to overcome.   Parts of the building may be obstructed from view 

by surrounding objects and shadows, edges of the building may be fuzzy (owing to 

similarity to the surrounding surfaces or sun-illumination issues), buildings vary in 

shapes (footprint of the roof), sizes and colors (not solid color within the roof), buildings 

appear different from different perspectives and much of the 3D information is omitted in 

a 2D image, and buildings may also contain islands of other feature with different colors 

such as vents and AC units.  Identifying all the characteristics of buildings requires 

operationalizing the logic of a human operator in order to distinguish a building from its 

surroundings.  

 

The method developed and demonstrated here integrates readily available remote 

sensing and GIS data along with image processing techniques in order to identify 

building footprints.  By integrating existing data in the context of a knowledge base, 

containing data derived from advanced technologies and methods, it will be possible to 
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produce inventories that are more accurate and cost effective than existing approaches.  

Data sources would include, but not be limited to aerial photography and local tax 

assessor parcel data.   
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The proposed approach is described in figure 1: 
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Figure 1 – Methodology of the building extraction approach 

1.2 Problem Statement 

This research is primarily aimed at automating the building footprint extraction 

process from remotely sensed sources, and as a corollary, minimizing the need for human 

intervention.  The automated extraction process will be based on simple parameters either 

available or derived from the scene and parcel data, and will not require prior knowledge 

or expertise in photogrammetry or remote sensing.  The research project will also 

evaluate the robustness of several extant techniques for building extraction.  The study 

will also implement the generated techniques by integrating both vector and raster data 

sets in a new manner, to achieve a more complete and reliable solution.   
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1.3 Significance and contribution to the field 

 

The contribution of the proposed methodology can be evaluated as contribution to the 

industry and academic research that demands building inventory, contribution to the 

automated feature extraction effort within the photogrammetry and remote sensing 

discipline and contribution to both image processing and photogrammetry by introducing 

image processing techniques rarely used within the remote sensing and photogrammetry 

field (such as the moment theorem) towards building extraction.  Moreover, the 

methodology will attempt to expand work done within image processing and can be used 

for processes other then building extraction. 

There is evidence in the literature that supports the need for more research on 

automated systems for feature extraction that combines geographical information from 

different sources and uses GIS data as a-priori knowledge (Brenner, 2005; Baltsavias, 

2004).  The methodology as presented introduces a new overall approach to building 

footprint extraction.  The integration of GIS and remote sensing sources as presented has 

not been implemented and tested as an entire approach to solving the problem.  

Simplification algorithms have been evaluated and tested in previous projects.  Hence, 

using parcel geometry and parcel attributes for simplification purposes will extend work 

done by Wijnant and Steenberghen (2004),  Ming et al (2005) and Ohlhof, et al (2004) by 

evaluating the added value of using readily available parcels layers and attribute 

information for simplifying the task.   

The automated building extraction procedure may be developed into additional 

inventory (roads, sidewalks etc) development tools in GIS and would enhance and benefit 
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a wide variety of applications.  Building locations are required for day to day 

management of cities and counties and for more complex applications such as evaluating 

damage after an earthquake.  All those applications can benefit from a 

methodology/automated procedure that can produce a large percentage of the building 

inventory and hence, maintain an updated inventory.  Brenner (2005) anecdotally 

mentions a German city that acquired about 30,000 km² of features.  Each building 

required several points, which required a huge effort.  The company estimated that an 

update of the area will require about 70% of the initial effort.  That number emphasized 

the concept that building extraction does not require only an initial investment, but is an 

on going expenditure. 

The photogrammetry and remote sensing field has been attempting to develop 

automated and semi-automated approaches for feature extraction and in particular 

building extraction over the last 15-20 years.  Today, we still do not have an “accepted” 

methodology to extract buildings from aerial imagery and therefore we normally digitize 

those features manually.  An automated approach that can be easily replicated and takes 

advantage of readily available sources may contribute to that effort.  The work can be 

viewed as a direct continuation/expansion of the work by Huertas and Nevatia (1988) that 

pioneered the usage of geometry and shadows for the purpose of building extraction 

based on edge detection, and the work of Irvin and McKeown (1989) that used shadows 

in different stages of the extraction process.  The methodology extends many projects that 

concentrated on extracting specific types of buildings such as Kim et al (2004) that 

developed a methodology to extract large rectangular buildings.  The methodology also 

expands the approach taken by many research projects that involve semi-automatic tools 
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with more considerable user intervention (especially for simplification), such as Müller 

and Zaum (2005) that uses seed growing mechanism and Sahar and Krupnik (1999) that 

initially break the image manually into regions of interest.  The methodology is aimed at 

high-resolution (1ft) imagery that is the current standard for urban aerial imagery and 

more elaborated than the more heavily tested 1m resolution aerial and satellite (IKONOS) 

imagery.  

The work of Hu (1962), Rosin (1999) and Rosin (2003) is used and implemented in 

the proposed methodology.  Although used within the image processing discipline, the 

moment theorem has not been commonly and heavily applied within the photogrammetry 

and remote sensing field for building extraction.  Evaluation of using this theory for the 

purpose of identifying building segments can contribute to the long effort of extracting 

buildings and possibly other types of features.  As mentioned above, we attempt to 

specify index not only for rectangular shapes (Rosin, 2003), but for the “I” and “O” 

shapes, from the common L, T, C, I, H, O building footprints.    Successful shape 

identification extends the work of Rosin (2003), Reiss (1991) and Schweitzer and Straach 

(1998) that evaluate properties of specific shapes based on moment invariants. 

1.4 Organization of Dissertation 

 

This dissertation is organized into six chapters.  The introduction chapter describes 

the need for automated building extraction procedures.  The chapter details the problems 

involving the extraction procedure and the added value of the proposed methodology.  

The introduction also defines the scope of the dissertation. 
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Chapter 2 reviews the current state of building extraction procedures within the 

photogrammetry and remote sensing field.  The review includes a survey of extraction 

procedures using different types of imagery, including aerial imagery, satellite imagery, 

LIDAR, and RADAR.   The review details the different image processing techniques 

used for the purpose of feature extraction and building extraction in particular as well as 

shape recognition techniques using the moment theorem.  The chapter also includes the 

basis for the motivation of incorporating GIS data in the methodology as well as moving 

from global image processing to a local image processing approach.   

Chapter 3 presents the current methodology of the project.  The chapter illustrates 

the flow of the building extraction model and provides a general description for each 

analysis phase.  The chapter is followed by a detailed description of the methodology 

implementation.  The description in chapter 4 includes the tools, algorithms and 

techniques used to implement the image partitioning, segmentation, feature analysis and 

generalization of the buildings outlines. Chapter 4 contains two sections. The first section 

presents the implementation details and the second section presents and evaluates the 

results of the testing.  The results evaluation section begins with general details about the 

testing area and the datasets.  The general information is followed with a test plan for 

different types of buildings within the testing area.  The testing evaluation includes a 

discussion of the success or failure and provides further analysis where required. The 

evaluation includes an in depth analysis of the factors that prevent successful extraction 

and also recognizes those scenarios that allow automatic extraction of buildings from 

aerial images. 
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Chapter 5 concludes the document and provides recap of the entire process as 

well as final remarks from the author regarding the contribution of the project, the 

recognized limitations for the approach and possible future research.  
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Chapter 2 LITERATURE REVIEW 

The work presented in this report is mainly concerned with the possible automation of 

the building extraction procedure.  The research and technological advances in 

photogrammetry, remote sensing and computer science introduced a remarkable potential 

for reducing human involvement in building urban inventory.  The methodology tested in 

this work involves different image processing techniques at different stages and 

emphasizes the need for data fusion during the extraction procedure. 

This section begins with a review of the history of photogrammetry and major mile 

stones that lead to the current digital era.  Section 2.2 entails a general review of the 

building extraction procedure and approaches taken in research for this purpose.  

Literature for the building extraction procedures is described in section 2.3 as well as 

image based classification techniques.  This section deals mainly with extraction from 

high resolution imagery.    Section 2.4 elaborates on image processing techniques used 

for the extraction of buildings from aerial imagery, including classification methods and 

shadow extraction.  Section 2.5 emphasizes the need to incorporate existing GIS data 

within the extraction process.  Different approaches that take advantage of existing 

spatial information are descried.  Section 2.6 provides a short review of LIDAR and laser 

scan technology.  Although not pursued within this project, the unique advantage of this 

technology for feature extraction is acknowledged.  As an important part of the 

methodology of this project, section 2.7 explicates the inherent value of subsetting an 

image into smaller patches prior to extracting the building.  Section 2.8 reviews the 

moment theory as a tool for shape identification as relates to the methodology.   
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2.1 Evolution of photogrammetry and Remote Sensing leading to feature 

extraction 

Photogrammetry has changed dramatically along side the technological advancements 

as developed in the past century.  The evolution period can be divided into several phases 

(Konecny, 1985; Madani, 2001).  The first phase is referred to as the “Analog 

Photogrammetry”.  This phase began around 1900 (Konecny, 2003) and inaugurated the 

use of aerial imagery for mapping purposes.  The mapping process was based on stereo-

plotters and the “stereoscopic measurement principal” (Konecny, 2003).  Stereo plotters 

reconstruct the relative location and orientation between images at the time they are 

captured.  Due to the different perspective of the images, a 3D model is created for the 

overlap area between the images.  The model was mainly used to capture elevation and 

contour lines.  The next phase began in the 50’s and is called the “Analytical 

photogrammetry”.  The analytical photogrammetry introduced the first aero-triangulation 

implementation, DEM generation and feature extraction as a result of the breakthrough of 

computer-aided techniques and applications in the 60’s (Madani, 2001).  The third phase 

is the computer-aided phase that started in the early 70’s and introduced a new level of 

efficiency to the mapping process.  During this phase we see the emerging computer and 

graphic processing abilities (such as CAD systems) as they become more and more 

dominant in the photogrammetry arena.   

 

The last and current phase is the “Digital photogrammetry”.  The inherent difference 

between that phase and the previous phases lies within the nature of the imagery.  The 

digital era deals with pixel image coordinates and grey levels, while previously the hard 
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copy image was the input media.  The greater power of computers and workstations, 

satellite imagery, photogrammetric cameras (including CCD, line scanners), on board 

GPS systems, scanners, RADAR technology have made an impact.  Currently even 

personal computers are able to perform many tasks that require massive processing power 

and space.  Advances in computer science and implementation of photogrammetric 

principles and techniques such as AeroTriangulation, orthophoto and DTM generation, 

allowed the photogrammetry and remote sensing community to move in a new innovative 

research path towards automation of more complex procedures.  Tasks such as feature 

extraction are still in research as they were in the last three decades.  There is a 

fundamental agreement that photogrammetry and remote sensing can provide an efficient 

and relatively easy way to collect data and maintain updated GIS systems for purposes 

such as resource management.  As imagery improves in spatial and spectral resolution 

and becomes more available, we are able to extract better, more accurate information.  

Still today, many processes rely on a human interpreter to distinguish between different 

features and digitize the accurate positions of objects. 

2.2 Building Extraction – General 

Many studies presenting automatic or semi-automatic approaches to building 

detection have been published.  Building extraction poses several major difficulties that 

any system has to overcome (as discussed in section 1.1).  Marr (1982) describes the 

human vision as an information-processing task.  This task encompasses many aspects of 

a human perception, such as shape, space, spatial arrangement, illumination, shading and 

reflectance.  Since we can not fully imitate the human brain functionality, it is a 

challenging task to automate image vision and interpretation.  Hence, operators are still 
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indispensable during the feature extraction phase, and many applications use a semi-

automatic approach to extract point, lines, areas and complex objects (Vosselman, 

1998). This approach utilizes the advantages of the human as well as the superiority of 

the computer for specific, repetitive tasks.  Line following mechanisms, based on an 

initial point on the road, have been prominent for road extraction (Aviad and Carnine, 

1988; Gruen and Li, 1995).  Similarly, the user may specify the approximate location of 

an object and the computer will then perform a specific task such as a seed-growth 

algorithm (user defined starting point and growth according to value similarity between 

pixels) to locate the boundaries.  Alternatively, users may locate one corner and using 

edge detection to locate the rest, acquiring approximate location of the corners and 

having the computer snap to the nearest “point-of interest” (the corner).  A third approach 

could employ manual digitizing in one image and using epi-polar geometry between the 

stereo pair to locate the height and the corresponding points in the second image (Tao and 

Chapman, 1997).   

The extraction of areas (polygons) is based on homogenous surface attributes such as 

grey levels (similar color for water areas, roof tops etc.).  One drawback of implementing 

that approach on an entire image is the wide variety of grey levels within the group of 

man-made buildings.  3D objects such as buildings are mostly referred to in the literature 

as complex objects.  For the extraction of those objects, the user utilizes geometric 

constraints to extract linear parallel lines for building edges and match those edges to 

overlapping images.  Man made feature extraction process can take advantage of 

supplementary information such as DTMs (Digital Terrain Model) for both building and 

road extraction.  That information can be used to impose geometric known characteristics 
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such as moderate changes in height along a road or a river, or rectangularity of buildings.  

These constraints can make the extraction process much more robust and reliable. 

Figure 2 portraits the main approaches, techniques and sources of data for building 

extraction, as described in the given research review. 
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Figure 2 – Main Approaches to Building Extraction 

Aerial Photographs and high resolution satellite imagery are the most common 

sources of data for feature extraction.  In order to extract 2D characteristics of a feature, a 

mono image may suffice.  3D features such as buildings often require analysis of 3D cues 

(such as shadows) within the image in order to adequately detect and extract the outline.  

Any 3D reconstruction of the feature requires either stereo imagery (two or more images 

with enough overlap area) or sophisticated extraction and analysis of shadows cast by the 

features.   
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2.3 High Resolution Satellite Imagery 

2.3.1 Data Classification Techniques from remotely sensed data  

Image segmentation and classification is a common and prominent method for 

extracting information from images in many disciplines, using a wide variety of well 

established approaches as well as new, innovative techniques (Wang et al, 2001; Bin et 

al, 2002; Chen and Wang, 2004; Zhang et al, 2006; Zebedin et al, 2006).  Segmentation is 

usually a first step in a process followed by subsequent analysis of the features and 

possible object matching algorithms.  The computer science community has shown great 

interest in image segmentation, much of that for the purpose of image retrieval from a 

database (Ahu and Yuille, 1996; Shi and Malik, 2000).  Smeulders et al (2000) discusses 

the difficulty of reaching a “strong” segmentation.  He then continues to discuss “weak” 

segmentations that result in homogeneous regions within the image that do not 

necessarily cover entire objects.  Compromising for a “weak segmentation” gives a rise to 

numerous problems in the following steps of the process and to the overall success of the 

image interpretation. 

Classification of data from aerial and satellite imagery is a well known approach 

within the photogrammetry and remote sensing communities. Remote sensed data 

enabled a replacement of in-situ measurement for disciplines such as forest management.  

Information that is otherwise very hard to obtain, is available through images for 

planners, ecology modeling, and many other disciplines (Jensen, 2005).  The remote 

sensing data collection records the amount of radiation reflected by the object, thus 

creating a “signature” of the object.  The signature of the objects holds much information 
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about the characteristics of the objects.  We are able to classify different types of objects 

and even sub-object using classification methods. 

Remotely sensed data is usually classified using methods that can be categorized as: 

Supervised and Un-Supervised classification.  A Classification is mainly an automatic or 

semi-automatic way to identify the signature of each class and their location in the image.  

The final goal of the classification is usually to yield land cover/ land use classes for the 

area of interest. 

Supervised classification – supervised classification assumes prior knowledge through 

personal experience, interpretation of aerial images and map analysis (Jensen, 2005; 

Hodgson et al, 2003).  The analyst manually trains the system by locating areas in the 

images that comprise of the classes of interest.  The user should strive to define distinct 

classes with the least amount of overlap between them (in the spectral space) in order to 

allow better classification.  To that goal, the user may take advantage of spectral plots 

that easily portray the degree of correlation between the classes. 

For each class, the system calculates statistical measures (Standard Deviation, Mean, 

covariance matrices etc).  During the classification process, every pixel is assigned a 

class according to the highest likelihood of being a member of the class. Once the 

classification is complete, a rigorous error evaluation takes place and statistics are 

available to the user.   

There are different types of algorithms that can be used for the classification.  Those 

can be divided into parametric and non-parametric classifiers.  The parametric assumes 

normal (Gaussian) distribution for the observations (Schowengerdt, 1997).  The most 
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common supervised classification method is the maximum likelihood algorithm (Ozesmi 

and Bauer, 2002; McIver and Friedl, 2002).  This classifier calculates a probability 

density function based on statistical measures of each class.  By placing the brightness 

value of the pixel in the probability function, we obtain the probability of the pixel being 

a member in a class.  The pixel will be assigned the highest probability class.  

The most common non-parametric classification algorithms and techniques are 

(Jensen, 2005): 

Parallelepiped – Parallelepiped classification is a fairly simple to implement and 

efficient algorithm.  For each band and class, the algorithm calculates the mean and 

standard deviation values.  The result is an n-dimensional vector with all the mean values 

of the trained data for each class in each band.  The boundaries for each parallelepiped 

are defied based on 1 standard deviation values.   A pixel is evaluated according to the 

high and low standard deviation values (greater then the lower boundary, less then the 

high boundary) and if not suitable to any class, it will be assigned to an unclassified class.  

A problem may occur when parallelepipes overlap.  In such cases, the pixel is usually 

assigned to the first found class or a criteria rule such as minimum distance can be used 

to make the decision.   

Minimum distance(MD) – Similar to the Parallelepiped algorithm, the minimum distance 

algorithm first calculates the mean values for each class in each band.  The result is a 

mean value vector for all the trained data. During the classification, the algorithm 

performs distance calculation between each pixel and the mean vectors.  The minimum 
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distance determines the class assignment.  The user is given the option of defining a 

maximum distance that beyond, the pixel will not be classified. 

Nearest neighbor (NN) – The simplest non-parametric decision rule that weighs nearby 

evidence more heavily, thus classifies a pixel to the nearest class (Cover and Hart, 1967).  

The calculated distance between the pixel and every class is Euclidean distance.  Other, 

less simple algorithms such as the k-nearest neighbor search for the closest k number of 

training pixels in the feature space to determine the class. 

Artificial Neural Networks (ANN) – Neural networks have been increasingly applied 

within numerous applications over the past decade (StatSoft, 2003; Makhfi, 2007).  The 

ability of ANNs to learn and reach a decision, like a human, has captured the interest of 

researchers from many fields.  ANNs have been used to make prediction such as future 

stock performance (Makhfi, 2007), data modeling, function regression, pattern 

recognition (California Scientific, 2007) and more. 

The concept of neural networks was first introduced by McCulloch and Pitts (1943), but 

required the advancement of computer technology to be successfully developed and 

applied.  ANNs simulate decision making processes as achieved by inter-connecting 

neurons in the human brain (Jensen et al, 1999).  The decision making process is based 

on initial training of the network.  Input and desired output examples are provided to the 

network.  During the learning process, the weights of the different connections are 

adjusted to achieve the specified outputs.   

There are two main advantages that made ANNs appeal to the remote sensing 

community:  ANNs do not require a normal distribution (hence, it is not necessarily a 
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parametric classifier) and they can simulate non-linear patterns (Jarvis and Stuart, 1996; 

Jensen et al, 1999; Jensen 2005).  ANN has been implemented in remote sensing software 

such as ENVI, but there is no clear consensus about the superiority of ANNs over 

traditional classifiers.  Several projects demonstrated better classification results for 

ANNs (Ji, 2000; Bischof et al, 1992; Jensen et al, 1999) while others show no significant 

advantage to ANNs or expressed more caution (Hepner at al, 1990; Jarvis and Stuart, 

1996).  Moreover, since there is no clear explanation to the rules as created by the neural 

network, it is being assessed as a “black box” (Qui and Jensen, 2004).  Hence, users are 

reluctant to use those systems for real world scenarios.  Another major disadvantage of 

ANNs is the training process that requires the users to be very knowledgeable about both 

neural networks and the area of interest for the classification.   This is a major 

disadvantage due to the relative simplicity of running any other traditional classification. 

Unsupervised classification - Unlike Supervised classification, Un-supervised 

classification does not require prior knowledge about the area of interest, thus, no training 

is required.  The system searches for natural grouping/clusters of the pixels (Jensen, 

2005).  The most commonly used classification methods are the ISODATA and K-means. 

ISODATA - ISODATA stands for Iterative Self-Organizing Data Analysis Techniques 

(Ball and Hall, 1967). No prior training is required, but the algorithm needs a starting 

point and thresholds (Fromm and Northouse, 1967) for split, merge and stop criteria.  The 

algorithm assumes Gaussian distribution of the pixels in each class.  

The criteria parameters include (Jensen, 2005) the maximum number of clusters; the 

maximum percentage of pixels allowed being unchanged between iterations - when the 

system reaches that number, the process stops; Maximum number of iterations - each 
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iteration involves recalculation of the class mean and re-reclassification of pixels; 

Minimum number of pixels in a class; maximum standard deviation for a class; minimum 

distance between cluster means; Split separation – if not 0, this value will be used to 

decide on the location of the new class when splitting large classes rather then using the 

standard deviation. 

The algorithm begin by calculating initial mean vector for the classes, and iteratively 

move pixels between classes, merge classes or split classes based on the input 

parameters.   The ISODATA algorithm is considered slow (Jensen, 2005).  

K-means – The goal of the k-means algorithm is to divide pixels between clusters in a 

way that the sum of squares within each cluster is minimized (Hartigan and Wong, 1979).  

The mean position of all pixels within a class defined the center of the class.  Pixels move 

between classes based on the Euclidean distance to the center of the class.   

Sometimes, the boundaries of phenomena may not be distinct, but rather fuzzy.  In 

the image space, a pixel may contain more then one land cover class (“mixed pixel”).  In 

order to handle this case, a fuzzy classification algorithm may be used instead of the hard 

classification methods described above (Laha et al, 2006).  A fuzzy algorithm is based on 

replacing the hard boundary between the classes with more gradual transition between the 

classes.  Those methods assign to each value several probabilities according to the set of 

classes it might belong to (Jensen, 2005). 

In the past decade we have witnessed the development of object-oriented 

classification methods.  Unlike the per-pixel classification algorithms, Object Oriented 

classification techniques aim to extract homogeneous regions within the image that bear 
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meaningful information.  The image is usually divided into sub-areas based on spectral 

and spatial characteristics and then each region is assigned to a class (Wang et al, 2004).  

The combination of spectral and spatial information is useful for land cover classification 

since, often, the same class encompasses several similar spectral signatures or different 

classes share spectral signatures.  

The classification techniques illustrated above have been widely employed by the 

photogrammetry and remote sensing communities for land cover classification.  The 

classification processes were based on one specific technique (Samaniego et al, 2008; 

Davis and Wang, 2002) or a fusion of several algorithms.  Zebedin et al (2006) illustrate 

an approach to automatically generate land cover/land use maps from aerial imagery.  

The images include both high resolution series of panchromatic overlapped images and 

low resolution multispectral images.  The methodology encompasses different 

classifications – maximum likelihood, neural network, decision tree and support vector 

machine.  Substantial effort is devoted to image matching DTM and DSM (Digital 

Surface Model) generation and AT (Aerial Triangulation).  Their result is a raster land 

cover classification map that showed a high accuracy of vegetation detection.  Li, Wang 

and Ding (2006) propose a feature extraction method that can be used for urban area 

mapping based on a potential function clustering method.  This clustering method 

segments the image by selecting peaks within the image histogram.  The claim is made 

that, within an urban image, a grey level histogram peak can be used to segment the 

entire image.  Once the segmentation is complete, the buildings can be selected manually.  

Every candidate is extracted using seed region growing followed by edge detection, 

dominant line detection and outline mapping.  The method was tested on a region within 
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a Quickbird image (0.61m) that, based on the example provided, includes mostly regular 

buildings.  The results shown were visual and the accuracy was depended on the selected 

grid size for the building outline mapping. 

    

Segmentation is an early step within the building extraction process in this project.  

By analyzing the histogram of a localized image, regions in the image are segmented and 

analyzed to identify buildings.  This approach can be more closely related to the object-

oriented segmentation approaches as discussed above. 

2.3.2 Building Extraction from Satellite Imagery 

 Fraser et al (2002) investigated to ability to extract buildings manually from 

IKONOS imagery in order to construct 3D models.  One of their conclusions was that 

about 15% of the buildings could not be identified in the imagery.  They reported 

possible sub-meter accuracy for stereo input images under certain conditions and data 

configuration.  Xiao, Lim, Tan and Tay (2004) use high-resolution IKONOS satellite 

stereo-pairs to extract roads and 3D models of buildings.  The building extraction relies 

on existing roads and previously extracted vegetated areas.  The building extraction 

process is semi-automatic, based on edge detection and “thinning” and allows the user to 

select between several potential rooftop alternatives and adjusts corners and edges.  For 

small buildings, the user may predefine rooftops to be recognized using Neural Networks.  

Heights are eventually computed using the stereo-pair images.   Sohn, Park, Kim and 

Heo (2005) propose a building extraction method based on high resolution IKONOS 

multispectral stereo pair images.  The algorithm is based on an image processing 
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technique BDT (Background Discriminant Transformation) on multi-spectral images.  

This technique is scale invariant, reduces the variability in the background, and enhances 

the non-background. Similar to the principal component, several bands are created with 

maximum to minimum differences between the background and the non-background 

(here, the potential feature).  The result of the first step allows the classification and 

clustering of buildings.  Once the buildings are enhanced using the previous step, they are 

clustered by the ISODATA algorithm (See section 2.3.1).  In the next step, using color 

indexing and distance measurements, matched buildings between different images are 

located.  Matching the buildings between the stereo-pair enables the generation of a 3D 

model.  This article highlights the growing need for extracting 3D characteristics of 

objects. This is definitely an open problem that needs to be tackled, although the results 

reported emphasize the need for future research that could utilize information such as 

shadows, since matches failed mostly owing to buildings obscured by shadows.  Wei, 

Zhao and Song (2004) use image processing techniques in order to extract buildings 

from high-resolution satellite imagery (using Quick Bird panchromatic images).  Their 

application is based on unsupervised clustering using histogram analysis and shadows in 

order to detect and locate buildings.  Edge detection and subsequent Hough 

transformations are used to extract the dominant lines of the buildings and construct the 

building footprint.   
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Table 1 - Sample of available aerial and satellite imagery 

Sensor Type Spatial 
Resolution 

Radiometric 
Resolution Temporal Resolution

*Panchromatic 0.5 ft 212 (0 - 4096) Varies 
*Color film 0.5 ft 212 (0 - 4096) Varies 
*Color IR film 0.5 ft 212 (0 - 4096) Varies 
*Panchromatic 1 ft 212 (0 - 4096) Varies 
*Color film 1 ft 212 (0 - 4096) Varies 
*Color IR film 1 ft 212 (0 - 4096) Varies 
QuickBird-2 Pan 0.6 m 211 (0 - 2048) 3 days 
QuickBird-2 MSS 2.4 m 211 (0 - 2048) 3 days 
IKONOS-2 Pan 1 m 211 (0 - 2048) 3 days 
IKONOS-2 2.4 m 211 (0 - 2048) 3 days 
IKONOS-2 MSS 4 m 211 (0 - 2048) 3 days 
SPOT-5 Pan 2.5 m 28 (0 - 255) 3 days 
SPOT-4 MSS 20 m 28 (0 - 255) 3 days 
SPOT-1,2,3 Pan 10 m 28 (0 - 255) 3 days 
SPOT-1,2,3 MSS 20 m 28 (0 - 255) 3 days 
Landsat TM 7 Pan 15 m 28 (0 - 255) 16 days 
Landsat TM 7 30 m 28 (0 - 255) 16 days 

* - spatial resolution depends on sensor altitude 

For testing the methodology presented in this research, we will use 1ft resolution 

color aerial imagery.  That detailed resolution allows an accurate detection of the building 

outline.  At the same time, this resolution presents problems such as the inability to use 

simple clustering functions (such as ISODATA) that are common for coarser resolutions 

(See SPOT and Landsat in table 1).  
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2.4 Image processing techniques 

According to pre-defined models of buildings, Huertas and Nevatia (1988) impose 

geometric constraints during the detection stage, and shadows are used to verify the 

outline of the feature as well as to estimate the height.  Shadows have been used in 

different stages of extraction by Irvin and McKeown (1989), as part of shape prediction, 

grouping, verification and height estimation.  Constraints are the core of the building 

recognition proposed by Kolhe, Plumer and Cremers (2000).  Their approach is based on 

constraints and logic programming, and employs hierarchical building models with 2D 

and 3D representations.  Sahar and Krupnik (1999) used methods that combine edge data, 

stereo-analysis and shadows in order to extract the 3D shape of the building.  3D 

information was found to be a significant source of information for the building detection 

process.  Sung Chun, et al (2006) developed a system aimed at 3D extraction of the 

building outline.  The user selects a point within the building on one image and the 

system locates the matching feature on other images and provides the best 3D hypothesis 

for the building.  The experiment results show an efficient semiautomatic approach for 

3D complex buildings.  Weidner and Förstner (1995) generate a high-resolution DTM, 

and with topographic data available for the scene, they extract and reconstruct the 

buildings.  Shi and Shibasaki (1996) use stereo imagery and line-based matching to 

overcome the absence of shadow information in an image in order to estimate ground 

elevation and evaluate the 3D lines of the building.  Avrahami et al (2008) describe a 

method to extract rooftops based on the assumption that rooftops are combination of 

polygons.  The approach consists of both manual and automatic steps, where the user has 

to select a parameterized model for the extraction and point to the location within the left 
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image.  Based on that input and the right image, the roof is constructed.  Multiple 

building extraction procedures were developed to identify buildings from a single image 

(mono). Kim et al (2004) developed a methodology to extract large rectangular buildings 

from 1m resolution imagery using a single image and line detection techniques.   The 

user’s interaction includes clicking on a point inside the building, and initiates a seed 

location for the process to identify the boundaries.  Their results conclude that short sides 

of the buildings are not well extracted and there were several cases of false line 

extraction.  Although some buildings were not oriented correctly, they believe the overall 

approach of pointing the building as a cue is a promising approach.  Müller and Zaum 

(2005) present an approach based only on an aerial image and image processing 

techniques.  Their approach initially uses a seeded region growing mechanism to segment 

the image.   Segments are then evaluated using geometric (area, roundeness etc) 

photomentic (Hue angle, mean hue angle etc) and structural (Shadows, relationship to 

other extracted buildings etc) parameters.  Jin and Davis (2004) integrate different 

algorithms based on spectral, structural and contextual (position and size of adjacent 

buildings) information in the image.  Their approach is aimed at 1m IKONOS imagery 

and they develop a DMP (Differential Morphological Profile) to generate the structural 

information as well as extract shadow regions.  The evaluation report shows that 72.7% 

of the building areas are extracted with a quality percentage 58.8%.  Over 70% is 

considered a good success rate, while the 58% quality shows need for improvement.  

Some gabled roofs and dark parking lots were not detected or falsely classified as 

buildings.  Lee et al (2003) used supervised and unsupervised classification techniques on 

both the multispectral and the panchromatic images of IKONOS satellite.  Their building 
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squaring techniques were based on Hough transformation and their overall extraction rate 

is 64.4%.  Most misclassification occurred owing to shadow inclusions and false road 

classification.  Tang et al (2004) tackled the problem of extracting high rise buildings.  

High-rise buildings usually have complex shapes and have not received enough attention 

within the feature extraction research.  The extraction procedure was based on 

identification of vertical lines in a mono image using fuzzy Hough–transform, 

complemented by photogrammetric principles that provide clues about the location of 

vertical lines in the image.  Locally, the authors analyze the texture of the windows on the 

wall of the building.  Roof extraction was accomplished using edge detection and line 

segmentation.  The approach was tested on a 0.2 meter scene from an aerial image and 

reconstruction results were presented for four high rise buildings in the image. 

The methodology of this research is geared towards minimizing user’s intervention; 

therefore, techniques such as selection of a starting point for seed growing, is not used.  

Shadows are extracted as means of verifying the location of the building and eliminating 

non-building (2D) features.  The process also evaluates the geometry of the feature as 

well as the validity of the building candidate based on geometric characteristics such as 

minimum size and width. 

2.5 Supplementing with existing spatial data 

Existing GIS data provides prior knowledge about the area and can add considerable 

value to the extraction procedure.  Baltsavias (2004) provides an overview of the status of 

feature extraction in research.  The author acknowledges the need for more projects that 

exploit a-priori information.  He points out to the fact that only few use a-priori 

knowledge in the form of GIS data, maps and geodatabases.  Duan, Prinet and Lu (2004) 
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used GIS data about the position and shape of buildings.  Their application uses a fuzzy 

segmentation technique for roof extraction without allocating the actual footprint of the 

building.  Segmentation of the building area is accomplished using seed growing 

mechanism.  The seed point is selected by calculating centroid points for buildings in a 

GIS building layer.  The building vector layer is converted to a raster image. The 

segmented regions and the original building raster image are compared through out the 

process to minimize differences in area between the polygons.   Koc and Turker (2005) 

developed similar applications to update an existing vector building layer.  They utilized 

image Supervised classification, NDVI (Normalized Difference Vegetation Index – 

indicator of vegetation presence in remote sensing images), DSM (Digital Surface 

Model) extracted from a stereo pair and object extraction techniques.  Khoshelham 

(2004), demonstrate the fusion of images data, height and plan 2D data (XY coordinates 

of the roof) to reconstruct the 3D model of the building.  The images used in that project 

include the near IR channel and hence allow simple identification of vegetation for the 

first step of vegetated-area elimination.   

Available GIS data such as tax assessor attribute data is used in this research as a cue 

for existing buildings, as well as a way to eliminate different areas within the image.  For 

example, vacant parcels are not searched.  In vegetated area, NDVI can be used as a first 

step of pre-processing before running the proposed application. 

2.6 LIDAR and Laser Scan based methods 

 In recent years, LIDAR points have become a valuable source of data for feature 

extraction.  The density of the points allow the generation of detailed DTMs as well as 

extraction of buildings, roads and other features (Gamba and Houshmand 2000, 
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Rottensteiner, Trinder and Code 2005, Nardinocchi, Scaioni and Forlani 2001).   

Rottensteiner, Trinder and Code (2005), describe their effort in automatic extraction of 

buildings and roads using LIDAR data.  Current LIDAR resolution, while high (about 

2m), actually causes ambiguity between buildings and vegetation features such as trees 

for the extraction process.  Overcoming that ambiguity requires the use of other sources 

of information such as intensity and/or RGB orthophoto that allows the classification and 

subsequent elimination of vegetation using NDVI or pseudo-NDVI.  In the project 

described in the article, a 2 phase algorithm was developed in which the buildings are 

first detected and then reconstructed.  The detection is based on a pixel-based 

classification.  The authors defined 4 basic classes - buildings, trees, grass and bare soil.  

Each pixel receives a probability score of being in each class (sum of all probabilities for 

each pixel is 1).  Other measures are used to eliminate different classes.  For instance, 

differences in height between the DSM and DTM can distinguish between building/tree 

object groups and flat grass/bare earth object groups.  Vegetation indices can distinguish 

between tree/grass object groups and building/soil groups.  By imposing these tests, a 

binary image is created where buildings are high-lighted.  The result is refined by 

eliminating areas that are suspected as trees.  The method failed mostly in residential 

small buildings and using NDVI seemed to increase the accuracy and extraction results. 

(95% of all buildings greater than 40 sq-m; buildings smaller a 30 sq-m were not detected 

at all).  Finally, the reconstruction of the building and extraction of the boundary is 

created with the aid of GIS external data (such as streets to separate buildings) and 

geometric characteristics for buildings.   Sohn and Dowman (2003) presented their 

approach to building extraction that includes a recursive extraction procedure to evaluate 
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the existence of buildings within both the LIDAR cloud and IKONOS image.  The 

building extraction was achieved using hierarchical segmentation of LIDAR DTM 

complemented by color imagery. 

Building detection using LIDAR point data is currently beyond the scope of the 

research, mainly since LIDAR data are not widely available for every urban area.  Future 

research can investigate the integration of the proposed approach with available LIDAR 

data. 
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2.7 Image subsetting approaches 

 

Image partitioning has been tackled within the computer science community mainly 

for the purpose of content-based image retrieval and matching.  In order to effectively 

retrieve information automatically from images, global image analysis is rarely sufficient.  

Numerous algorithms have been developed to partition the image into regions that allow 

easier interpretation of the objects (Berretti et al, 2000; Carson et al, 2002; Yixin and 

Wang, 2002; Jia and Wang, 2003; Chen and Wang, 2004).  The regions are created either 

by subdividing the image into pre-defined region sizes or number of regions, or locating 

homogenous regions in the image.  The inherent problem of pre-defined subdivision of 

the image is the cutting of objects between regions. 

Jiang, et al (2008) provide a semiautomatic methodology that first partition the image 

into homogeneous regions via image segmentation.  The segmented regions are then 

processed to improve the segmentation result.  The building extraction is performed 

within the homogeneous regions through an interactive selection of points for seed 

growing and then a region merge to union the buildings and remove overlaps.  Finally, 

edge detection is performed.  The method was tested on RGB image with 20cm 

resolution on an area that spans 867×617 pixels that consists mostly of regular buildings.  

The result was compared with ISODATA classification result.  Zhengjun, et al (2008) 

present a region based and feature based methodologies for building extraction.  The 

region based method relies on localized region extraction.  In order to extract 

homogeneous building regions, the user manually identifies an area that contains 

buildings and background.  This area is used to launch a mean shift segmentation method 
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that results in the areas of attraction.  A seed growing technique based on manually 

selecting the area of the building is applied on the segmented result.  Boundary fitting and 

shape recognition follow that step.  The feature extraction methodology is based on edge 

detection (Canny), line and corners detection followed by locating the boundary of the 

building and shape reconstruction.  Constraints on the length and the right angle search 

process for the corners are imposed.  The methodology was tested on QuickBird imagery 

and shows success rate of 75% (total of 35 buildings were tested) for extracting major 

rectangular and regular building rooftops.  

Sohn and Dowman (2003) simplified the building extraction procedure in an urban 

scene by localizing the search to the building area.  Their approach was based on LIDAR 

points and a technique that automatically distinguished between on and off terrain points.  

In order to differentiate between those types of points, the technique located homogenous 

slope sub regions in the LIDAR point cloud.  This localization approach failed for most 

residential buildings.  The low density of LIDAR points and surrounding trees seemed to 

be the leading reasons to the failure.  As regions as sub areas in the image are discussed 

within the computer science discipline, parcels as sub areas are commonly discussed 

within the GIS community.  The next several articles have a title that incorporates the 

term “parcel” for feature extraction.  Wijnant and Steenberghen (2004) used parcels as a 

measure to summarize land cover classes for land use rather then to reduce signature 

confusion.  Their methodology includes initial per-pixel classification of the 1m image to 

acquire land cover classes and then summation of the classes per parcel to distinguish 

different land use parcels by the type of classes they contain.  Ming et al (2005), use the 

term parcel as related to a region or a field that is acquired by initially breaking the image 
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into homogeneous segments based on computational rules.  A significant aspect of their 

project is developing a mechanism to partition the image based on spectral, texture and 

relationships between objects at different scales.  Partitioning of the image occurs from 

rough classification on a large scale to more focused processing on the more elaborated 

and smaller regions.  One of the major conclusions of the paper is the necessity to break 

the image into smaller areas.   Ohlhof, et al (2004), also refer to parcels as regions that 

have statistical parameters that differ from their neighbors, are homogeneous and have 

distinct boundaries.  Their projects involved development of an algorithm to extract those 

regions from the image as well as region growing techniques based on geometric and 

radiometric characteristics of the features. 

An easy way to partition the image prior to the building extraction process can 

tremendously simplify the entire procedure.  In this research I suggest the use of a 

graphic parcel layer to restrict the search to the close proximity of the building.  Each 

parcel is cut through the image to create a smaller search region that contains one or more 

buildings. 

2.8 Shape identification techniques and measures 

The different candidates for the features are segmented in the image space.  A 

significant problem is first to be able to describe automatically the properties of the 

segments.  Delineating segment properties allow the evaluation of the probability of a 

segment to be part of a valid feature.  Prokop and Reeves (1992) provide a significant 

survey of techniques based on moments for the recognition and representation of objects.  

The survey includes different types of moment invariants, the image ellipse and a variety 

of applications that take advantage of the “moment theorem”.   Hu (1962) introduced the 
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use of image moments for pattern recognition.  In this ground breaking paper, Hu showed 

the ability to determine the shape of a pattern using moment invariants.  Hu introduced 

seven different moments that define the area, COM (Center Of Mass), orientation, 

elongation in both axes (the standard deviation ellipse).  Higher order moments can be 

defined to be invariant to scale, skewness and rotation.  Hu showed that using moments 

can distinguish between letters of the alphabet.  Using the first two invariant moments, 

Hu defined X and Y coordinates and plotted them on a simple 2D Cartesian coordinate 

system.  The result plot demonstrated the distinct separation of alphabet characters over a 

graph.   A new letter can be identified by the minimum distance to an existing point on 

the graph.   Alt (1962) used moments to show that a limited number of moments are 

sufficient to describe and distinguish between patterns such as letters and numbers.  Reiss 

(1991) claims to discover mistakes in Hu’s theorem and revised Hu’s moment to be 

invariant under general linear transformations as well as changes in illumination.  Reiss 

also laid a foundation to evaluation of specific shape quality by calculating invariants 

specific to square and equilateral triangle shapes.   Schweitzer and Straach (1998) 

expanded the moment invariant theorem to describe automatically the properties of 

specific shapes based on the identification of the invariant properties of each shape.  

Their prototype shapes included square, rectangle, right triangle and triangle.  Rosin 

(1999) developed three rectangularity measures, based on MBR (Minimum Bounding 

Rectangle) and image moments.  Rosin showed how using simple algebraic calculation of 

moments can identify the rectangularity and orientation of the shape in the image.  Rosin 

(2003) expanded his methodology to evaluate ellipticity, rectangularity, and triangularity.  

Rosin includes measure of circularity, compactness, convexity and eccentricity and 
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shows limited results for automatic identification of all shapes.  The best achieved results 

were shown for a combination of measuring ellipticity using DFT (Discrete Fourier 

Transform) and triangularity via moment invariants.  Elad et al (2004) propose the use of 

complex moments for reconstruction of planar polygon.  This “shape-from-moment” 

approach extended previous work by calculating moments that are contaminated by noise 

(which is the expected scenario when working with real world data).  Guienko and 

Doytsher (2003) use moments to evaluate the geometric parameters of features such as 

buildings and parcels and after training the system, classification rules are used to extract 

different features within the urban environment.   

 

The “moment theorem” is used in the proposed methodology to evaluate geometric 

characteristics of each building candidate.  Once an area is segmented as a possible 

building, the raster image is used to calculate the different moments of the segment and 

as a result evaluate characteristics such as the rectangularity of the feature. 
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Chapter 3 METHODOLOGY 

The different research projects described above demonstrate several aspects of the 

extraction process that should be taken into consideration:  Buildings are complex 

features and no single geometry can describe them; Edge detection and line segmentation 

cannot be used as a stand alone solution for the extraction process; The image should be 

partitioned in a way that will simplify the extraction procedure; Ancillary information, 

such as GIS data, should be used to complement the solution; Extraction of 3D features 

should integrate depth cues such as shadows or stereo imagery; Defining segment 

properties and shape identification measures are essential for the elimination and 

validation of the extracted segments and hence should be incorporated in the process. 

   Based on the above conclusions and initial experiment results (Appendix I), a 

methodology based on integrating remote sensing sources and available GIS data is 

proposed.  The remote sensing data sets include high-resolution (1ft) ortho-rectified aerial 

imagery.  Available GIS data sets are used in different stages of the analysis, for initial 

simplification and filtering and later as elimination, validation and supporting a-priori 

information for the process.  Since buildings may appear in an image (also between 

images and different resolutions) in a wide variety of shapes and spectral signatures, the 

proposed procedure refrains from supervised training of the system. Moreover, even 

though we evaluate the rectangularity of the segments, a rectangle shape is not enforced 

on the extracted segment.   
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The suggested integration of several GIS sources, their attributes, topological 

relationships between raster extracted segments and existing vector data, as well as 

simplification first step based on tax assessor information, form a new, innovative 

approach for automatic building extraction.  Fusion of available data sources with spatial 

analysis and image processing techniques will provide a robust approach towards solving 

the problem.  The research presents an approach that includes several new approaches to 

alleviate the complexity of the problem, such as, cutting to parcel size to simplify the 

image, adding assessor attribute data and including user-one-time-intervention for 

shadow direction definition.  

 

All the stages, the suggested input information and the techniques are elaborated later 

in this section with initial experiments results.  The steps are depicted in figure 3 below.   
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Figure 3-Proposed Feature Extraction Methodology 

The extraction was based on prior GIS data that restrict the searching area within the 

scene, and image processing techniques for the extraction.  The following sections 

describe the various steps depicted in the methodology flow of figure 3. 
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Parcel-based image partitioning - This first stage can be explained as a simple 

“cookie-cutting” of the original image into parcel-sized images (referred to as “patches”).   

Tax assessor data sets that include parcel information are easily available for most areas 

within the USA and many countries around the world.  Moreover, each parcel includes 

attributes that classify the use of the building within the parcel, whether industrial, 

residential etc, and specify ancillary information such as built square-footage for taxation 

purposes.  The parcel attribute information can be used to: 

• Eliminate vacant parcel (Where improvement value is 0)  

• Distinguish between types of parcels, hence types of buildings.   The extraction 

methodology assigns different characteristics to Single Family residential houses 

and commercial or other types of buildings.  Landuse information about the parcel 

can be used to retrieve the type of building and assist during the extraction.  

Buildings within the same type are not necessarily within a continuous geographic 

area.  The process, regardless of the location, retrieves the parcel based on the 

defined type. 

• Calculate expected building footprint size – using the square footage and number 

of stories of the built features (if available). 

 

Zoning ordinance information about each parcel may be used to isolate the area of the 

parcel, most likely to contain the building.  Zoning information provides setbacks for the 

parcels which define the area allowable for building.  Final results of the process may be 

further evaluated using the zoning information to estimate the added value of zoning for 

future use within the building extraction process. 

 
39



3.1 Histogram Analysis 

The histogram analysis is based on locating peaks within the histogram.  Peaks in the 

histogram represent dominant features within the parcel.  Since the parcel is a finite 2D 

space with limited number of features, the building spans over a significant number of 

pixels – essentially a peak within all 3 bands (see figure 4).   Investigation of some 

preliminary images shows consistent peak generation histogram for the building roof.  

Within a large sample of buildings in the test images, it was noted that about 50% of the 

parcels contain a building that creates the majority peak (a highest peak in the histogram).  

In other cases (see figure 5), the building generates a peak, but not the majority one, and 

in some cases (figure 6), there is more than one building in the parcel.  Within the scope 

of the project, it will be evaluated whether more then 2 peaks need to be identified in the 

analytical process.   

 

 

Band1 Band2 Band3 

 

Figure 4 - Bands 1/2/3 for the image on the left.  The high sine wave represents the building.  

Values span (dark)0-255 (light).  
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Figure 5 - A parcel with a building peak that is not the majority.  Zero values are ignored. 

 

 

 

 

Figure 6 - A parcel with two buildings with different roof signatures.  Note that the higher 

peak also includes the parking lot area within the parcel. 
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3.2 Feature Segmentation  

According to the located peaks within the histogram, features corresponding to the 

peaks are segmented in the image space.  The segments are then processed further for 

smoothing and eliminating holes if possible.  Currently, results evaluate the usage of only 

the first and possible second highest peaks for the parcel.  A result of the initial 

segmentation is shown in figure 7. 

           

Figure 7 - Preliminary results - Original building on the left; segmented feature of only the 

majority peak on the right 

 

When different peaks are classified into the image patches, several features are 

segmented, as shown in figure 8, and the system has to evaluate automatically which 

segment/s is part of the building. 
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Figure 8 - Segmentation result of 2 peaks within histogram. 

 

Stages 4-6 are used as a mechanism to evaluate whether a segment is part of a 

building.  Segments that are definitely not buildings, based on the different measures, will 

be eliminated.  For the rest, a probability score is attached to each segment at the end as 

an evaluation measure for the user. 
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3.3 Parcel-attribute based elimination 

Size limitation may be used to eliminate segments that do not comply with the parcel 

built features. The size limitation is either evaluated using the SQUARE_FT and 

NUM_STORIES retrieved from the attribute table, or calculated as a minimum 

percentage of the parcel size. 

3.4 Shadows 

 Different research projects concluded the importance of using and extracting depth 

cues for detection of 3D features such as buildings.  Shadows have been proven to be a 

way to identify the existence of buildings and to distinguish between buildings from flat, 

ground surface features.  For the purpose of this research the user is required to provide 

simple indication of the sun illumination.  A brief look at the image, by any parametric 

user, can derive that information.  A GUI with directions and attached radio buttons can 

allow the user to define sun illumination aspect as a parameter for the application:  

 

Figure 9 – User GUI for inserting Sun-illumination direction 

For Example, in the image shown in figure 10, the user will indicate the 6st (West to 

East) and 2nd (South and North) radio buttons. 
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Figure 10 - Sun illumination orientation S->N and W-E 

Knowing the general orientation of the sun can help distinguish between segments 

that have the shadow on the correct position related to the segment and are buildings, to 

non-buildings as can be easily detected in figure 11 below. 

 

           

Figure 11 - White and Grey segments (right image) share a shadow.   The known 

orientation of the shadow can easily eliminate the grey segment from being a candidate 

building. 
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3.5 Geometry based elimination of low-probability building segments 

 In this step, the different Hu moments (Hu, 1962) will be evaluated and used for 

elimination of shapes as well as other recognized geometric characteristics.  Currently in 

the literature, measures of circularity (not relevant for that procedure) rectangularity and 

ellipticity (Rosin, 2003) have been developed and shown to be successful for different 

applications.  In order to evaluate the probability of the geometry to be a building, we 

will calculate the following:  

• Rectangularity and ellipticity of the segment.   

• Solidity – Solidity is defined as the (BoundingPolygonArea)/ Area.  That index 

measures the amount of holes within the segment 

• Convexity – Convexity is defined as (ConvexPolygonPerimeter)/Perimeter.  That 

index should give 1 for a complete convex shape such as a rectangle or a square.   

• Compactness – Area/(AreaOfShapeWithSamePerimeter).  In the literature, the 

compactness is usually defined for the image ellipse (a circle is given a perfect 1 

as the most compact shape).  For this research we propose using a square as the 

most compact shape, and will need to define the compactness index accordingly 

(16*Area/Perimeter²). 

Possible utilization of islands within the segment will be evaluated as an indication for 

elimination of the segment (holes that are bigger then expected will be an indicator for 

non-building).  Simple constraints such as a minimum width of a building will be used 

(for a space to be livable or used as a working area, minimum width is required). 
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According to the calculated indices (each index will be given a percentage, all 

summed to 1), a probability (confidence measure) is attached to each segment.   

I will attempt to use the measures defined in the literature as well as the moment 

theorem to define a specific index for one of the known shapes of the buildings (“O” and 

“I”), from the common L, T, C, I, H, O building footprints. 

3.6 Locating the footprint of the building 

This step encompasses the conversion of raster segments into vector polygons as 

depicted in the figure below. 

 

 

 

Figure 12 - A polygon shape file created for several parcels 

The result of the entire process is a vector file that contains the polygon geometry as well 

as the probability of the polygon to be a building. 
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3.7 Generalization  

Each polygon needs to be “cleaned” by generalization and orthogonalization of the 

corners.  Since generalization techniques have been implemented in various GIS 

applications, this step will not be implemented, and achieved using external software.  

For practical use within a GIS production environment, the process has to be 

automated as much as possible.  Once all the parcel-sized images are created (a separate 

process already developed), a batch process for each image that includes several models 

and c/c++ programs is invoked.  Most implementation is transparent to the user who only 

has to enter the image/parcel layer and sun illumination direction.  The implementation is 

currently done within the ERDAS-IMAGINE environment. 
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Chapter 4 IMPLEMENTATION AND EVALUATION 

Following the methodology section, this chapter provides implementation details as 

well as result discussion and evaluation.  The section begins with elaborated 

implementation details and examples correlated with the process flow depicted in Figure 

3.  The section entails the different assumptions, models, parameters and the 

implementation venue.  The shape recognition procedure based on raster image moments 

concludes the section.  The implementation section is followed by results evaluation.  

The Memphis test area, aerial photography and GIS parcel datasets as used in this project, 

are presented.  Results for the commercial, residential and high-rise building are 

presented and discussed.  The feasibility of the methodology for each land use type is 

evaluated as well as the reasons for failure in extraction and potential drawbacks. 

 

4.1 Methodology Implementation Documentation 

4.1.1 Image Subsetting 

The image subsetting procedure is a simple “cookie cutting” procedure that requires 

an image and a polygon layer as input. In this project, the input polygon layer is a parcels 

layer.  For each parcel within the image extent, a new, smaller, parcel-sized image is 

created that follows the parcel polygon boundary.  Since the result image has a 

rectangular shape, area outside the parcel receives the value 0 (black background).  

Example of the image subsetting is shown in Figure 13. 
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(a)                     (b)  

Figure 13 – Image Subsetting process.   (a) Original image overlayed with parcels layer 

(yellow line).  Highlighted parcel is sub-setted.  (b) Subset result image.  Background pixels 

in black 

Specific implementation details for the subset procedure are provided in Appendix A. 

4.1.2 Histogram Analysis and Image Segmentation 

The initial subsetting of the image into small, parcel-sized images is followed by a 

series of image processing techniques to extract the buildings.  The subset procedure 

localizes the search area to a finite section of the image.  Hence, it allows us to assert a 

basic assumption: the building area should be dominant enough and can be identified 

using simple image processing techniques.   

4.1.2.1 Histogram Analysis 

The histogram analysis is based on locating peaks within the histogram, which in the 

small area of the parcel, correspond to objects.   For a multi-spectal image that consists of 
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more then one band, the histogram analysis should incorporate several bands.  In this 

project, the three visible bands (RGB - Red/Green/Blue) were analyzed.  Mostly due to 

the small geographic area of the parcel, high correlation was identified between the 

histogram of the three bands (Figure 14).   

         

Band 1 Band 2 Band 3 

Figure 14 - Bands 1/2/3 for the image on the left.  The high sine wave represents the 

building.  Values span (dark) 0-255 (light).  

In order to identify the threshold of each peak, the process locates the high point for 

the peak and then searches for the low “Saddle Point” (Figure15), where the slope 

becomes more moderate or completely shifts direction (for example in a V situation). 

 

 

 

 
The “Saddle” Points of the peak 

Figure 15 – Identifying the “Saddle” Points for each peak 

Based on the “Saddle” points, a threshold is defined for each peak in each band.  

Then, all three bands are correlated to identify the object in all three bands. 
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Three different correlation scenarios were identified within the extraction process: 

All three bands histograms are highly correlated (Figure 14) 

Two bands are highly correlated and have a “Saddle” like geometry (indicating a bi-

modal peak, two classes mixed together), while the third band shows a full sine wave.   

This scenario occurs when the roof is slightly tilted and there is a difference in the grey 

levels between the two sides of the roof due to the sun illumination direction (Figure15). 
Band 3 Band 2 Band 1 

       

Figure 16 – Two sides roof on the left image.  Bands 1 and 2 are highly correlated and have 

a “Saddle” geometry for the building.  The third band shows a full sine wave for the 

building. 

A “Saddle” shape is defined as two peaks that are close to one another (not more then 

50 values away), their peak value is not significantly different (maximum of 1/3) and the 

saddle point is not less then 50 percent of the maximum number of pixels (the actual 

peak).  In case this scenario is identified, the two peaks within the saddle area for bands 1 

and 2 are combined into one peak and treated as the same object.  Figure 17 illustrates the 

affect of the peak combination on the object segmentation.  In section (b) of figure 17, 

each peak within the saddle was treated as a different peak, hence a different object (the 

right side of the roof of the building on the left was segmented but eliminated in the post 

processing).  As a result, each side of the roof was segmented separately.  In section (c) 

of figure17, the peaks were combined and treated as the same object.  As a result, the 

entire roof was extracted as the same feature.   
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(a) (b) (c)  

Figure 17- (a) Original image. (b) Two sides of the roof segmented separately. (c) Two sides 

of the roof segmented as one object in both buildings. 

Two bands histograms are highly correlated and have peaks that merge several 

objects.  The third band separates the peak, hence represent multiple objects.  Figure 18 

and Figure 19 show a building and areas around the building that share the same grey 

level values within band 1 and band 2.  Those bands values lie within the same peak in 

the histogram.  Band 3 better separates the peak in the histogram into 2 parts and allows 

to differentiate between the objects.  Figure 20 illustrates the difference between the 

peaks in bands 1 and 2 versus the peak in band 3.  In bands 1 and 2, the peak represents 

grey values of 2 objects, the building and the road around the building.  In order to 

distinguish between the objects, we need to recognize the separation within band 3.  

Section (a) in figure 20 shows the segmentation result when only bands 1 and 2 are taken 

into consideration.   Section (b) in figure 20 shows the segmentation result of bands 1, 2 

and 3. 
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(a)  (b)      

(c)  (d)  

Figure 18 – (a) Original image (b)Band 1 histogram (c)Band 2 histogram (d)Band 3 

histogram.  Band 3 separates the peak into 2 parts. 

 

(a)     (b)  

Figure 19 – (a) point around the building.  (b)point on the building.  Bands 1 and 2 have a 

value within the same peak and band 3 has a different value. 
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(a)   (b)  

Figure 20 – (a) Red segment represents a peak within bands 1 and 2  (b) Red segment 

represents all 3 bands.  The building is better separated from the surrounding objects in (b). 

Due to the locality of the search for buildings within the parcel area, the histogram 

analysis allows an easy correlation between objects and peaks within the histogram.  The 

highest peak in the histogram may not necessarily represent the built area within the 

parcel.  An evaluation for the number of peaks recommended for building extraction 

analysis is provided in section 4.2.5.  Based on manual observation and evaluation of the 

multiple peaks within the histogram, we allow for up to four different peaks.  Each peak 

information includes the peak value, the left threshold value and the right threshold value.  

The peak information is referred to as a “peak interval”. 

4.1.2.2 Feature Segmentation 

Based on the histogram analysis, peaks are segmented back into the image space.  

Each pixel is checked against the peaks information.  If the pixel value is found to be 

located within an interval of a specific peak (in all 3 bands), the pixel new value is the 

peak value.   A peak may represent a whole feature (Figure 21-a), a section within a 

feature (Figure 21-b) or several objects with the similar spectral characteristics (Figure 

21-c). 
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(a)                          (b)     (c)     

Figure 21- segmentation result.  (a) One peak represents the entire building.  (b) Different 

peaks represent the building as multiple sections. (c) Multiple features share the same 

spectral characteristics – same peak value. 

 

The result of the segmentation is a new image.  Each pixel value in the image 

represents a value of a peak or a background value (0).  The pixels are later clustered into 

distinct objects. 

 

4.1.2.3 Shadow Segmentation 

Shadows are the darkest areas in the image.  Initial observation of parcel-sized images 

revealed that shadows can be adequately identified as the lower 20% values within the 

grey level variance in the image.  For example, if an image values span between 20 and 

240, then all pixels with values between 20 and 64 are flagged as the shadows.  The 

analysis is done in all 3 bands and the result is a “Shadow Image” (Figure 22). 
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Figure 22 – Original image on the left and “Shadow Image” on the right. 

Pixels that are flagged as shadows are later eliminated from possible feature analysis, 

therefore, in this step, it is necessary to realize that there may be an overlap between 

shadow pixels and feature pixels when the feature is dark. For buildings with relatively 

dark roofs (figure 23), the feature values may be represented within the histogram as 

adjacent to or interleaved with shadow values.    

(a)  (b)  

Figure 23 – (a)Dark building.  (b) Band 1 histogram.  The building roof and the shadow 

share similar spectral characteristics. 
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In Figure 23, the building is represented by values between 30 and 50, while the 

shadow pixels are represented by the values 20 to 43.  The shadow area and the building 

roof share similar spectral characteristics and hence have overlap area within the first 

peak in the histogram.   Since grey level values in the image range from 0-255, the initial 

shadow variance is defined as 0-50 (20% of the variance of values in the image).  The 

initial result of the segmentation is shown in figure 24.  Section (a) in figure 24 represents 

the feature segmentation result.  Very similar result is depicted in figure 24 section (b) 

which represents the “Shadow Image”.  In order to restrict the area of the building and 

still allow adequate segmentation of the shadow area, the shadow area is restricted to 15 

percent of the grey level values in the image, instead of 20 percent or to the lower limit of 

the feature range.  As a result, in the example provided in figure 27, the shadow range 

changes from 0 to 50, into 0  to 37 and the feature range changes from 30-50, into 37-50.  

Narrowing the shadow range, hence changing the feature range, allows a better 

distinction between shadow and features.  In the example, figure 24(c) represents the 

final object segmentation result.  The dark shadow on the top of the building is flagged as 

a shadow and eliminated (see section a), while the side shadow area is attached to the 

building segment.  This is a better result then the initial segmentation result of the 

building and shadows as illustrated in figure 24 sections (a) and (b). 
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(a)  (b)   (c)  

Figure 24 – Segmented result of a dark building. (a) Objects segments (b) “Shadow Image” 

(c) Final object segment 

4.1.2.4 Segments Post Processing 

The result of the segmentation is two images. One raster image with values that 

represent the different peaks (thus potential buildings) and another that represents 

shadows (“Shadow Image”).  In order to extract buildings in the image, the pixels have to 

be clumped into distinct objects.  The post-processing of the segmentation is aimed at 

achieving segments that can be further analyzed to determine whether they represent 

buildings.  To that goal, the post-processing consists of several steps including clumping 

connected pixels with same peak values into continuous segments, clumping connected 

shadow pixels into shadow segments to allow further shadow analysis and finally closing 

small gaps (islands) within the segments.  Example for the post-processing result is 

illustrated in figure 25.  The segmentation result, as seen in figure 25, section (b) is 

individual pixels, each with the value of a peak within the histogram.  Section (c) shows 

the result of clumping the pixels into objects, where each color represents an object.  

Section (d) shows the result of the shadow segmentation for the image. 
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(a)   (b)  

(c)   (d)  

Figure 25 – Segment Post-Processing.  (a) Original image (b) Result of feature segmentation 

(c) Result of segment post-processing.  Each color represents a clumped segment (d) Result 

of shadow segmentation 

 

Figure 26 illustrates the same post-processing result within a parcel that contains 4 

different buildings.  It is apparent from both examples (figures 25 and 26) that the 

transition from segmented pixels to objects is necessary and provides the analysis process 

with both valid buildings segments as well as miscellaneous objects around the buildings 

such as parking lots, trees and roads.   
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Figure 26 - Segment Post-Processing in a multi-building parcel. (a) Original image (b) 

Result of feature segmentation (c) Result of segment post-processing.  Each color represents 

a clumped segment (d) Result of shadow segmentation 

The clumping procedure is a simple method that is used to search for similar pixels 

and create a continuous “clump”.  For each pixel, the neighborhood of the pixel is 

searched for pixels with the same value.  A neighborhood can be four or eight pixels 

(figure 27).  If a neighbor has the same pixel value, it becomes part of the clump and the 

search continues to that pixel.   

N N N
N p N
N N N

 N  
N p N
 N  

      

 (a) (b) 

Figure 27 – Neighborhood of a pixel.  (a) 8 pixel neighborhood (b) 4 pixel neighborhood 
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Any pixels that are clumped into very small segments (less then 2 percent of the 

parcel area) are eliminated.  Many small segments are created at this stage and pose a 

burden on down the line analysis.    Moreover, this ensures that relatively small, 

insignificant segments that are not dominant within the parcel, are eliminated at an early 

stage. 

The following elimination steps in sections 4.1.3, 4.1.4 and 4.1.5 aim to eliminate the 

miscellaneous segment while keeping the building segments for the final result.  

4.1.3 Eliminate By Parcel Attribute Analysis 

Tax assessor data provides valuable information that can be used within the building 

extraction process.  This section elaborates on the tax assessor information used for 

elimination of miscellaneous objects.  As any other source of information, the tax 

assessor data has to be updated and as close as possible to the time the imagery was 

acquired.  Examples of the elimination will be provided as well as observed limitations. 

Figure 28 details selected attributes from the tax-assessor database.  Each parcel has a 

unique ID (PAR_ID), number of stories (NO_STORIES), the area of the building 

(SQ_FEET) and other information such as the year the building was built and land use.  

Tax assessor information varies in details and format between jurisdictions.  Initial 

inquiry regarding the nature and details of the information is required.  In the information 

provided, as illustrated in figure 28, the actual expected area of the building outline is the 

total area of the building divided by the number of stories, hence equals to 

STORIESNO
FEETSQ

_
_ .   Each parcel is identified based on the PARCEL_ID. 
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Figure 28 – Selected attributes from the tax-assessor database 

Figure 29 illustrates the use of building area within the elimination process.  Section 

(a) shows the original image and section (b) is the segmentation result.  Each segment in 

section (b) has a color value and associated number of pixels which represent the size of 

the segment.   The size or area of the segment is reflected as a number in the histogram 

column in figure 29, section (d).  The histogram reflects the number of pixels in the 

segment, and since a pixel size is 1x1 ft, the number of pixels is in fact the area of the 

segment.  The black color, value 0, represents the background and is completely ignored.   

Section (e) details the tax assessor information for the parcel.  In this example, the 

commercial (OCC_TYPE is COM2) parcel contains a building that was built in 1990, has 

38810 square feet and only 1 level (NO_STORIES equals 1).  The two results that have 

values close to the area in the database are the light grey segment (44853 pixels) and the 
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white segment (28319 pixels).  The dark grey segment that has 110487 pixels is 

eliminated based on the size, and the output of that step is illustrated in section (c) and 

consists of two segments.   

(a)  (b)   (c) 

(d)  

(e)  

Figure 29- Eliminate by Parcel-Attribute result.  (a) Original Image. (b) Objects 

segmented in the image (c) Objects that remain after the size elimination process (d) ) 

Size (Number of pixels) of each segmented object (e) Parcel details in the tax-assessor db  

As shown in figure 29, it is not uncommon to have a discrepancy between the value 

of the area in the database and the extracted size of the segment from the image.  There 

are several reasons for that discrepancy: 

Currency of the Database – when the database is not up-to-date or there is a time gap 

between the database generation and the time the image was acquired, discrepancies 

between the database and the image are expected. 
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Extraction artifacts - Due to the nature of the automatic process, the extracted 

segments might have errors of omission or commission.   

Figure 30 shows several cases of omission errors.  Section (a) shows two segments, 

the grey segment representing the building and the white segment representing the 

surroundings.  Since the building has many AC units on the roof, the segment as 

extracted from the image has many islands.  As a result, the size of the segment is smaller 

then the size in the database.  The size in the tax-assessor database is 97317 sqft while the 

extracted segment size is 92175 sqft. Section (b) of figure 30 illustrates the omission 

error caused by shadows of nearby trees.  The database area for the building is 5120 sqft 

while the extracted segment size is 3596 sqft.  Sections (c) and (d) illustrate a very 

common artifact of the extraction process.  Due to tilted roof, different grey levels on the 

roof or division of the roof into several sections, the actual roof area in extracted as 

different sections.  In section (c), the roof is divided into two sections due to the different 

colors on each side.  In section (d), due to the sun illumination direction, the different 

sides of the roof are extracted as two separate segments.  The area in the database is 

14000 sqft, while the white extracted segment is 7028 and the grey extracted segment is 

7044 sqft. 
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 (a)    

         (b)    (c)    

   (d)    

Figure 30 – Extraction artifact - errors of omission.  Original image on the left and 

extracted segment on the right 

   Tilted roofs, as indicated in section 4.1.2.1, depending on the difference in color 

between the two slopes, can either be extracted as one roof segment or as two segments.  

The greater the difference in spectral values between the slope sides, the lower the 

possibility of extracting the roof as one segment.   

Errors of commission usually occur when objects surrounding the building share 

similar spectral values with the building.  In figure 31, there are two examples of 

additions to the extracted segments.  The black building on the left has two extensions 
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due to similarity to the shadow area surrounding the building. The building area in the 

database is 16875 sqft, while the extracted segment is 18217.   The grey building has a 

small addition on the lower right part resulting in difference between 15000 sqft in the 

database and 15729 sqft for the extracted segment.  Due to the commonality of a 2 sides 

roof, in case two segments appear close in size (not more then 20% difference), touch 

each other and have the same orientation, the cumulative area will be evaluated against 

the tax assessor area.  If the areas match, the segment will not be merged, but will remain 

for the next analysis. 

   

Figure 31 – Extraction artifact – errors of commission.  Original image on the left and 

extracted segments on the right 

 As indicated previously, there are cases when the roof is divided into several 

sections.  That usually occurs when there are division lines on the roofs (appear as lines) 

or when there are several levels on the roof that may seem divided due to shadow cast.  

Figure 32 illustrates such a case where the roof seems to be divided into two sections, a 

large section on the left and a narrow section on the right.  The dark line between the 

sections result in two different segments, since the pixels, although segmented with the 
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same peak value, are not connected.  The red area indicates the large segment that was 

not eliminated based on the area. 

     

Figure 32 – Extraction artifact – only one building section extracted 

Errors in the database – Erroneous information in databases is not uncommon and not 

limited to geographic datasets.  Human errors, data entry mistakes and miscalculations 

are just few reasons for those errors.  

During the project, it became evident that in some cases, the area of the building 

footprint was not the sqft area (in the database) divided by the number of stories, but 

rather the sqft area itself.  In order to identify how common those cases are and decide on 

the best analysis approach, the discrepancy between the area of the digitized buildings 

and the area in the database was evaluated.     

The building dataset consists of a point at the centroid of every parcel.  The point may 

be linked one or several buildings information based on the number of buildings in the 

parcel.  The digitized buildings dataset consists of polygon buildings outlines.   In order 

to evaluate the discrepancy in the area, the ratio between the digitized building area and 

the area in the tax assessor database was calculated.  Ratio close to one indicates small 

discrepancy between the datasets.  For a large number of parcels, it is quite complex to 
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link multiple building entries that are physically represented by one point at the centroid 

of the parcel, to a specific polygon outline in the digitized building layer.  As a result, the 

evaluation was limited to parcels that consist of a single building.  Each point from the 

tax assessor information was linked to a digitized building outline.   That link was based 

on geographic join between the layers.  Each point and polygon was first joined to the 

parcel it resides within.  Based on the parcel id, each point was attached to a specific 

polygon.  The initial join to the parcel eliminates the possibility of erroneously joining a 

point to a closest polygon that is outside of the parcel.   

The evaluation was separated to buildings that have multiple stories and buildings 

with one level, in order to isolate the affect of the number of stories.  For multiple stories 

buildings, the discrepancy was first calculated between the digitized area and the area in 

the database divided by the number of stories.  Then, the difference was calculated 

between the digitized area and the area in the database.  For the one level buildings, the 

discrepancy was calculated between the digitized area and the area in the tax assessor 

database. 

In the single building parcels, 6367 buildings in the database were identified as multi-

stories buildings.  The ratio between the digitized area and the area in the tax assessor 

area is shown as a graph in figure 33. 

It can be seen from the graphs in figure 33 and figure 34 that the majority of buildings 

have a ratio of 2 (3355 buildings) and 3 (2587 buildings).  Only a total of 80 buildings 

can be considered close to a ratio of 1 (1 +/- 0.2) 
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Figure 33 – Ratio between digitized area and tax assessor area for multi-stories buildings 

Figure 34 shows in greater details the area ratio within the 0 to 5 range. For the ratio 

of 4, the number of buildings drops to 155.   

           

Area Ratio between the digitized area and tax 
assessor database area for multi-storie buildings 

(digitized area / (db_area/number of stories))  

0
500

1000
1500
2000
2500
3000
3500
4000

0 1 2 3 4 5

Area Ratio

#o
f b

ui
ld

in
g

 

Figure 34 - Ratio between digitized area and tax assessor area for multi-stories buildings  

 
70



An examination of the relationship between the area ratio and the number of stories in 

the building, as seen in figure 35, reveals no direct or special relationship between the 

number of stories and the area ratio. 
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Figure 35 – Area Ratio .vs. number of stories for multiple stories buildings 

The red horizontal line indicates a ratio of 1.  It is obvious that no specific number of 

stories is linked to a specific range of area ratios.  Since we have a large number of 

buildings with 2 stories, there is a greater range (0-63) of values for the area ratios of 

those buildings.  For a 2 stories building, values greater then 4 or smaller then 0.25, might 

indicate a plausible error either in the database information or the digitized building 

dataset.  A total number of 458 buildings, which represent 7.2% of all the buildings,   

have such a large discrepancy (60 buildings with values greater then 4, the rest lower then 

0.25). 

To better evaluate the difference between the area of the digitized buildings and the 

area in the tax assessor database, a calculation of this difference was performed.  That 

 
71



difference was then divided by the digitized area and the expected result should be 0 

when the tax assessor area and the digitized area are exactly the same.    The average 

difference between the areas was 2438 sqft, for an average building area of 4857 sqft (the 

difference accounts for about 50.2% of the average building area).    A plot that shows 

the difference ratio was created for 6240 buildings (out of the 6367 buildings) that have a 

difference ratio that equals or is less then 1, and a second plot for the remaining 127 

buildings with a difference greater then 1. 
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Figure 36 – Ratio between the difference in area and the digitized area for  multi-stories 

buildings 

 

The Gaussian distribution shown in figure 36 is centered at 0.5-0.6 area ratio and 

represents the majority of the sample data (98%).  5478 buildings (86% of the total 

number of building) have a ratio of 0.6 or less.  Since the difference was calculated as an 
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absolute value, 0.5 ratio represents an area that is half or one and a half of the reference 

area.  The other 127 buildings area ratio is shown in figure 37. 
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Figure 37 - Ratio between the difference in area and the digitized area for  multi-stories 

buildings.  Only ratios greater then 1. 

The great area ratios for the 127 buildings, as represented in figure 37, are the result 

of either errors in the database or currency problems of the tax assessor database.    

Based on the area discrepancy analysis above, a threshold that allows a difference in 

areas in the range of 0.5-1.5 appears reasonable.  This range means that the area of the 

segment needs to be within the range of 0.5-1.5 of the area as retrieved from the tax 

assessor database. Moreover, there are many cases where the area in the database is the 

area of the building footprint rather then the total built area of the building.  Hence, the 

analysis based on the database area should account for those cases.  As a result, the 
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analysis process checks the area of the extracted segment, first, against the area divided 

by the number of stories and if no segments are found compatible, against the total area. 

The difference between the areas was also examined for one-story buildings.  For the 

one-story buildings 12442 were examined.  The evaluation revealed an average area 

difference (between the digitized buildings and the tax assessor database) of 720.54 sqft 

for an average building area of 9792.35 sqft.  The difference accounts to about 7.6% of 

the average building area, which is much lower then the 50.2% found for the multi-stories 

buildings.  The difference in percentage when calculated separately for each building was 

found to be 11.7% (difference divided by the digitized area). 
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Figure 38 - Ratio between digitized area and tax assessor area for one-story buildings 

(12004 buildings ratios between 0-1) 
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Figure 38 shows the ratio of the difference on a scale of 0 to 1.  A scale of 1 means 

the digitized area is twice the size of the area in the database.  Any ratio greater than 1 for 

one-story buildings indicates an error in the data.  438 buildings out of 12442 were 

identified with data errors and not shown in figure 38.   

From both the multi-stories and the one story buildings it is evident that there is an 

inherent discrepancy between the digitized area and the area value in the database.  

Hence, the analysis of the segment extracted from the image has to account for more then 

random artifacts of the extraction process.  In order to evaluate the use of tax assessor 

area within the extraction process, the threshold of the area can not be too large, as it will 

allow too many segments to remain as legitimate buildings.  As a result, the process 

allows for an area discrepancy between 0.5-1.5 of the area in the tax assessor database.   

4.1.4 Eliminate by shadow Analysis 

The shadow analysis is based on the fact that due to the sun-illumination, three 

dimensional objects cast a shadow on the ground.  The shadow should appear in a 

specific location relative to the building.  As illustrated in section 4.1.4, the user provides 

the sun illumination direction.  This is a relatively easy task that requires a scan of the 

image and determination of the location of the shadow.  For example, in figure 37, the 

sun casts shadow on the northern and eastern sides of the buildings (north is up).  The 

user should indicate a sun-illumination direction as south-to-north (S-N) and west-to-east 

(W-E) in the GUI (figure 39). 
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Figure 39 – Sun illumination direction. South to North and West to East 

The shadow analysis is based on the initial “shadow image” as created as a result of 

the shadow segmentation (section 4.1.2.3).  Since the shadow segment and the building 

segment are adjacent, a 10ft buffer is created around the segmented shadows.  Any 

segment that overlaps with the buffer is then flagged as a possible building. 

Next, the relative location of the shadow and the segment is examined.  First, the 

location and orientation of each feature segment and shadow segment is determined.  The 

orientation and the location characteristics of a segment are based on image moment 

analysis.  Using image moments the process calculates central location, image ellipse and 

orientation of the segment (section 4.1.7).   Figure 40 illustrates the analysis of the 

shadow and adjacent feature segment in order to determine whether the feature segment 

should remain as a possible building segment for following analysis.  Section (a) in figure 

40 is the original parcel-sized image.  Section (b) shows the result of the shadow 

segmentation and section (c) shows the feature segments that remain after the size 

elimination analysis.  There are 3 different colored segments in section (e).  The red 

segment illustrates the overlap area between the buffered shadow and the red feature 

segment.  The green and cyan represents the overlap area respectively.  Section (d) 

illustrates an overlay of the shadows and the feature segments as an input to the shadow 
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analysis procedure.  Very small shadow segments are eliminated.  A buffer is created 

around each shadow segment to determine adjacency to a feature segment.  Section (e) 

illustrates the result of the buffer overlap with the features.  Each shadow overlap area is 

shown in the color of the feature it overlaps.  Section (f) illustrates the result of the 

shadow analysis.  As can be determined by the image in section (a), the shadow location 

is expected on the northern and eastern sides of the building.   

Since the red shadow is located on the western side relative to the red feature 

segments, the red segment is eliminated.  The green shadow is located on the northern 

and the eastern sides of the building hence remain for the following analysis.  The cyan 

segment remains due to confusion regarding the relative location.  As illustrated in 

section (e), the shadow is located on the eastern, north-east and western sides of the 

building.  Since no geometrical constraints are used to determine the shadow geometry, 

all cyan colored shadow areas are analyzed.  As a result, the building seems to have 

shadows on different sides, including the expected locations.  To avoid elimination of 

legitimate building segments, the procedure keeps segments with some uncertainty.   
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     a)         (b)  

 (c)           (d)   

                                                                      (e)  

                                                                      (f)  

Figure 40 – Shadow analysis. (a)original image (b)Shadow segmentation result (c)Feature 

segments (d)Feature segments and Shadow overlap (e) shadow adjacent to the features 

(f)Shadow analysis result 
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Shadow analysis is a complicated task.  Shadows from adjacent features may overlap, 

including trees.  Shadows for buildings may not appear where expected due to occlusion 

of a near by feature.  Moreover, sections of a building may not be detected due to shadow 

cast.  All those issues are represented in 41.  Due to the complexity of shadow analysis in 

an urban setting, the analysis, as detailed in this section, does not eliminate segments 

when there is a level of uncertainty regarding the authenticity of the segment as a 

building. 

 

             

Figure 41 – Shadows around buildings.  From left to right – commercial buildings, 

residential buildings, high-rise buildings. 

Figure 42 illustrates the flow of the shadow analysis.   
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Figure 42 – Shadow elimination process flow 
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Figure 42 illustrates the flow of the shadow elimination process.  Following the 

segmentation of shadows, pixels are clumped together into shadow segments as explained 

in section 4.1.2.4.  A 10 ft buffer is created around each shadow segment.  Each feature 

segment is then examined for possible overlap with shadow buffers (since there may be 

more then one shadow area around the building).  In case a shadow buffer overlaps the 

segments, the feature is further examined for the relative location of the shadow and the 

feature.  If the shadow is located on the correct side of the building (based on the sun-

illumination input from the user), then the feature remains.  If no shadow is located on the 

correct side of the building – the segment is eliminated. If no shadow buffer overlaps the 

building, topological relationship between the features is examined.  If a feature segment 

that has no attached shadow but it touches another a feature segment that has a shadow 

attached on the correct side, then the feature segment remains.  The touching segments 

have to be similar in size and orientation to qualify for this analysis.  That constraint 

reduces possible confusion between different type of features, for example, building 

feature analysis and vegetation. 

     The result of the shadow elimination is an image with one or multiple segments 

that remain as possible building candidates.   
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4.1.5 Eliminate by Geometry analysis 

The geometric analysis comprises of common measures to represent the geometric 

characteristics of a segment.  The values of the measures as pertain to building and non-

building segments are used to eliminate segments based on a probability index.   In order 

to calculate probability index for each segment, values for each measure were calculated 

for manually selected building segments and non-building segments.  All the selected 

segments are the result of an automatic segmentation, not digitized buildings.  Hence, the 

selected segments represent the geometry of an actual result of an automatic process, 

rather then clean, manually processed segments. 

As mentioned in section 3.5, the measures used for the geometric analysis are: 

• Rectangularity - Rectangularity of shapes can be evaluated in different ways 

(Rosin, 1999; Rosin, 2003).  The standard method for calculating 

rectangularity is using the MBR (Minimum Bounding Rectangle) of the 

segment.  The rectangularity measure reflects the ratio between the area of the 

segment and the area of the MBR.  This method is obviously sensitive to 

spikes in the shape and may produce a low rectangularity value for rectangular 

shapes with a sharp localized spike.  The MBR method was concluded as one 

of the rectangularity calculation choices by Rosin (1999).  Rectangularity can 

also be estimated using moment invariants (See Appendix D).  The orientation 

calculations for this method were found to be sensitive to noise, and high 

rectangularity values can possibly be attributed to non-rectangular shapes if 
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they poses similar ratio of moments (Rosin, 1999).  The moment method, 

during progressive noise-adding testing, was found to be not significantly 

sensitive to noise and kept high rectangularity values for rectangles.  As a 

result, both the MBR and moment methods were calculated, and the highest 

rectangularity value for the segment was reported.  More evaluation for 

geometric analysis using moment invariant is elaborated in section 4.1.7. 

 

• Ellipticity - The ellipticity of a segment is evaluated using moment invariants 

(Rosin, 2003), which was shown to provide good classification results.   

Based on Rosin (2003),   
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(Elaborated moment definition is provided in appendix D) 

• Solidity – Solidity is defined as the Bounding Polygon Area divided by the 

actual segment area.  That index measures the amount of holes within the 

segment:     

Solidity = 
Area

lygonAreaBoundingPo
 

 

• Convexity – Convexity reflects the ratio between the perimeter of the convex 

hull polygon of the shape divided and the perimeter of the original shape.  

That index should give 1 for a complete convex shape such as a rectangle or a 

square.  Using the convex hull of the shape, three different measures were 
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evaluated.  The first convexity measure (convexity_g) was calculated based 

on the perimeter of the generalized polygon.  As elaborated in section 4.1.5.2, 

that measure was not found sufficient for discerning between the building and 

non-building segments.  As a result, other measures of convexity were 

examined: convexity_o, based on the perimeter of the original extracted 

segment, and convexity_area, based on the ratio of the convex hull area and 

the area of the generalized polygon. 

Convexity_g was calculated as the ratio between the convex hull and the 

perimeter of the generalized polygon (See section 4.1.6):   

Convexity_g = 
onlizedPolygfTheGeneraPerimeterO

PerimeterConvexHull  

Convexity_o was calculated as the ratio between the convex hull and the 

perimeter of the original segment polygon:   

Convexity_o = 
alPolygonfTheOriginPerimeterO

PerimeterConvexHull  

Similar to calculating convexity based on the perimeter, convexity can be 

calculated based on the ratio between the area of the convex hull and the area 

of the generalized polygon.  The area ratio was calculated as follows:   

Convexity_area = 
PolygoneneralizedAreaOfTheG

AreaConvexHull  

Area and perimeter are commonly used to represent and analyze shapes, 

internal representation as the area and external representation as the 

perimeter.  Since one can be constructed from the other (Rosin, 2000) there is 

usually no advantage of one method over the other.  Sometimes, however, one 
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method may make it easier to draw out certain conclusions or characteristics 

of the shape (Rosin, 2000).  The convexity measure based on area and the 

measure based on the perimeter will be examined and used accordingly to 

determine the probability of the shape to represent a building.     

• Compactness – Compactness reflects the ratio between the area of a shape and 

the area of a compact shape with the same perimeter.  We use a square as the 

most compact shape rather then a circle.  As a result, we need to define the 

compactness index accordingly: 

Compactness = 
erimetereWithSamePAreaOfShap

Area  = 2

*16
Perimeter

Area  

 

 

In order to calculate the geometric measures (rectangularity, convexity…), initial 

geometric computations are required.  First, the convex-hull of the segment is calculated 

using the Graham algorithm (Graham, 1972).  The Graham algorithm is explained in 

details in Appendix B.  One of the convex Hull points is used as an anchor for 

determining the exterior ring of the segment.  The exterior ring is the result of edge 

detection (section 3.1) followed by connecting points starting from the anchor (convex 

hull) point.  The exterior ring is generalized (section 4.1.6).  The generalized exterior ring 

is then used to evaluate the different measures.     

Extraction artifacts and geometry analysis constraints impose evaluation of the 

analysis parameters based on both known, accepted values, as well as observation of 

extracted segments.  In section 14-4-84 of the “Code of Ordinance and Character of 
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Memphis, TN” (available in http://municipalcodes.lexisnexis.com/codes/memphis/), 

there is no restriction on the minimum width of a dwelling, but a restriction on the 

minimum floor area – not less then 150 sqft.  A manual scan of residential, offices and 

commercial dwellings in the image as well as the automatic segmentation result 

concluded a minimum width parameter for a segment as 20ft.  The width of a shape is 

determined based on image ellipse parameters (see appendix D) of each segment. 

The size of islands within the segments was determined as not an indicator for a non-

building segment.  Necessary post processing of segments, as elaborated in section 

4.1.2.4, closes small gaps and reduces the size of larger gaps; building segment, due 

either to features located on the roof or extraction artifacts, have large islands on the roof 

(figure 43).  As a result, both non-building and building roofs may have large islands and 

can not be used as an effective geometric measure to discern between building and non-

building segments. 

   

Figure 43 – Islands on a roof. Left – Original image; Right – extracted segments overlaid on 

the image. 
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Figure 44 provides few examples for the geometric measures as calculated for several 

automatically extracted segments.  Sections (a), (b) and (c) represent each a building 

segment, highlighted in green.  Sections (d), (e) and (f) represent each a non-building 

segment, highlighted in red.  The database entry for each segment is attached to the right 

of the segment.  Each entry provides the calculated values for the rectangularity based on 

MBR; rectangularity based on moments; convexity_g; convexity_o; convexity_area; 

solidity; compactness (see equations at the top of section 4.1.5).  Figure 44 provides just 

few example of the wide variety of building and non-building segments as extracted from 

the imagery.    Some non-building segments can be easily detected both visually and 

based on geometric measures, as illustrated in sections (d) and (e).  Sections (c) and (f) 

represent a building and non-building segments respectively and illustrate the problem of 

discerning between the two classes due to similarity in geometric measures.  
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(a)   

(b)    

(c)    

(d)    

(e)    

(f)   

Figure 44 – Calculated geometric measures for building (a,b,c; green) and non-building 

(d,e,f; red) segments.  The segments image is overlaid on the original image.  
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4.1.5.1 Evaluating geometric measures for buildings and non-building segments 

In order to calculate a probability index for each segment, a range of valid values for 

each measure has to be evaluated separately for building segments and non-building 

segments.  To that cause, 240 parcels were randomly selected.  The parcels consist of 250 

automatically extracted building segments and 334 non-building segments.  Initially, the 

average and standard deviation (table 2) were examined for each geometric measure.  In 

order to use those measures to calculate the probability of a segment to be a building 

segment, those measures should be distinct for the building and non-building classes 

respectively.   

For all 250 building segments and 334 non-building segments, an average and 

standard deviation values for each measure (rectangularity, ellipticity, convexity, solidity, 

and compactness) were calculated.  Table 2 shows the average values and the standard 

deviation values as calculated for all the measures. Building segments highlighted in 

green and non-building segmented highlighted in red. 
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Table 2 - Geometric measures for building (green) and non-building (red) segments. 

 

 

Building 

Segments 

Average 

Building 

Segments 

Standard 

Deviation 

Non-Building 

Segments 

Average 

Non-Building 

Segments 

standard 

Deviation 

Rectangularity-

MBR 
0.63852 0.20222 0.42466 0.22757 

Rectangularity- 

Moments 
0.78271 0.13690 0.44655 0.19537 

Ellipticity 0.86896 0.08620 0.53547 0.27279 

Convexity_g 0.95853 0.07402 0.86401 0.12962 

Convexity_o 0.41457 0.06113 0.35140 0.07346 

Convexity 

Ratio 
1.07313 0.12621 1.51263 0.63973 

Solidity 0.99000 0.00492 0.95708 0.09240 

Compactness 0.73974 0.20044 0.48281 0.25242 
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The average and standard deviation values, as depicted in figure 2, reveal that those 

measures can not distinctly classify a segment as a building or non-building with a 

reliable probability.  The rectangularity based on MBR measure provides an average of 

0.64 for building segments and 0.42 for non-building segments.  The average values may 

appear distinct, but with a standard deviation of about 0.2, the range of the class within 

just one standard deviation creates an overlap between the classes, hence classification 

confusion.  The two convexity measures (convexity_g and convexity_o) reflect relatively 

small standard deviation values (0.06-0.13), but also fairly close average values 

(0.96/0.86, 0.41/0.35).  The solidity measure averages of (0.99/0.95) reflect an obvious 

overlap in values between the building and non-building segments. Any class with a large 

standard deviation value can not be defined in a distinct enough manner to allow 

adequate classification and probability calculations.     

4.1.5.2 Geometry parameters definition 

As illustrated in section 4.1.5.2, the average and standard deviation are not sufficient 

to determine whether a segment represents a building with certain probability.  In order to 

calculate the probability of a segment as a building or non-building shape, each segment 

(within the 240 selected parcels – see section 4.1.5.1) was visually classified.  Based on 

the calculated values for each segment, a graph for building and non-building segment 

was compiled.  The graphs, as illustrated in the following figures (figure 45 to figure 51) 

illustrate the distribution of the values for each class (building/non-building).  The graphs 

visually provide more information about similar or different trends between buildings and 

non-building segment.  The distribution of values and the extracted trends define certain 
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ranges of values.  Each range provides a probability for a segment to be classified as a 

building or non-building.      

 

Figure 45 illustrates the distribution of rectangularity (based on MBR) values 

between building and non-building segments.  The green graph depicts the values for 

building segments and the red for the non-building segments.  The obvious trends of both 

graphs reveal that rectangularity scores between 0.7-0.85 show a greater probability of 

representing a building.  Values lower then 0.6 show greater probability of being a non-

building feature. 
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Figure 45 – Rectangularity (MBR) values distribution for building and non-building 

segments 
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Figure 46 illustrate the distribution of values for the rectangularity measure based on 

moment calculations.  The graph depicts negative correlation, opposite trends between 

the building and non-building segments. Rectangularity values greater then 0.8, have a 

high probability of being buildings. Rectangularity values between 0.1—0.6, have a 

higher probability of being non-buildings then buildings.  Rectangularity values between 

0.6-0.8 can not indicate whether the segment is a building or not – a segment with a value 

in that range has the same probability of being a building or a non-building.  
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Figure 46 - Rectangularity (moments) values distribution for building and non-building 

segments 

. 
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Figure 47 – Ellipticity values distribution for building and non-building segments 

 

Figure 47 illustrates the distribution of ellipticity values for building and non-building 

segments.  The graph shows that ellipticity values greater then 0.85 indicate a building 

feature with a higher probability.  Ellipticity values lower then 0.6 indicate a non-

building with higher probability 

Figure 48 illustrates the distribution of convexity values (convexity_g – convex hull 

perimeter divided by the generalized polygon perimeter).  Similar trend for building and 

non-building values is depicted in the graph.  It can be inferred that convexity values 

lower then 0.8 might indicate a non-building feature with greater probability.  Convexity 

values greater then 0.95 might indicate building features.  Convexity values range 

between 0.8-0.95 shows slightly higher probability for non-building segments, but a 

growing trend for building segments.  Due to the similar trend, a second convexity index 

was calculated based on the original bounding polygon rather then the generalized 
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polygon.  The distribution of values for the second convexity measure (convexity_o) is 

illustrated in figure 49.  
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Figure 48 – convexity (generalized polygon) values distribution for building and non-

building segments 
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The convexity index, as depicted in figure 49, indicates a similar trend between 

building and non-building classes.  It may be inferred that very low values, lower then 

0.3, might indicate a non-building feature.  Due to the obvious overlap of values between 

the graphs, this index was not used for the confidence calculations. 
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Figure 49 - convexity (original polygon) values distribution for building and non-building 

segments 

Since the similar trend makes it hard to use this measure to distinguish between the 

classes of segments, a third ratio, based on the area of the convex hull and the area of the 

generalized polygon was calculated.  The distribution for the area based convexity 

measure (convexity_area) is shown in figure 50. 
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Figure 50 - convexity (area ratio) values distribution for building and non-building 

segments 

 

The convexity based on area, as depicted in figure 50, provides more information 

about the building and non-building segments.  Values greater then 1.5 indicate a high 

probability of being non-building segments.  Values between, about 1.35, to 1.5 indicate 

higher probability of being non-building features and values lower then 1.35 may indicate 

a building segment with higher probability. 
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Figure 51 – Solidity values distribution for building and non-building segments 

 

The graph in figure 51, illustrates the distribution of the solidity measure.  The graph 

indicates very similar trends (with minor differences) between the building and non-

building features.  Hence, the solidity measure was not used in the geometry analysis for 

the segments.  

 

The compactness measure, as illustrated in figure 52, indicates that very high values 

(0.85-1) represent building features with greater probability.  Compactness values lower 

then 0.75 indicate a non-building feature and the    
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Figure 52 – Compactness values distribution for building and non-building segments 

The compactness measure indicates that very high values (0.85-1) represent building 

features with greater probability.  Compactness values between 0.6 and 0.9 have a higher 

probability of representing a building.  The graph shows a growing trend for values 

between 0.5-0.6 for building features even though it is below the intersection point 

between the two graphs.  Compactness values lower then 50 show a higher probability of 

representing a non-building feature.   

 

Based on the values of the different indices and the trends of the graphs (figure 45 to 

figure 52), each range of values received a probability value.  The probability values for 

all indices were combined to one confidence value that reflects whether the segment is a 

building or not.  A script used to calculate the confidence is provided in appendix C.    
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4.1.6 Raster to Vector and Generalization 

The result of the image segmentation is a raster image containing different values, 

each represents a segment.  The segments have to be geometrically analyzed and 

converted to vectors as a final result.  The vector polygons can be then analyzed by 

creating the convex hull, calculating the perimeter, area etc.   

The raster to vector conversion is achieved by the following steps: 

Edge detection – locating the edge of each segment, including the islands.  Since the 

segment has only one value, the edge detection is a fairly straight forward process. 

Calculating the convex hull for each segment (see appendix B) 

Generating the exterior ring of the segment.  Starting with a convex hull point and 

adding connected points ensures that islands are not part of the exterior ring. 

Generalization – The goal of the generalization is to eliminate as many points as 

possible from the exterior ring and still capture the essence of the feature.  Essence of the 

feature means that for example, small intrusions and protrusions may be eliminated, but 

the critical defining points of the shape should be maintained.  Figure 53 illustrates a 

result of the generalization process.  The extracted segment depicted in white, the convex 

hull of the segment is painted in red and the generalized polygon in yellow.  Obviously, 

the defining corner of the building that was not part of the convex hull, but was included 

in the generalized polygon. 
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Figure 53 – Generalization example.  Left – Original image.  Right – extracted segment 

(white) convex hull (red) generalized polygon (yellow) 

First, the convex hull and the corresponding exterior ring are located.  Then, based on 

angular thresholds (between 60-120) followed by distance criteria (greater then 10 

percent of the line length), the process iteratively adds points from the exterior ring 

between every two nodes of the convex hull.  The integration of both angular and 

distance criteria for generalization of automatically extracted polygon has been examined 

in prior research projects.  Lee and Shan (2002) illustrate the advantage of using both 

criteria for IKONOS imagery (see Table 1) extracted buildings.  The authors use the 

Douglas-Peucker (1973), distance based methodology to eliminate redundant and extra 

points that cause a “zig-zag” affect of the line.  An angular criterion follows the distance 

criterion to remove “unrealistic sharp changes” of the polygon.  The authors conclude 

that the combination of both methodologies provides an effective simplification tool. 

In this project, instead of eliminating points from the exterior ring, points are added 

from the exterior ring to the convex hull.  To determine the drawbacks and advantages of 

each criterion (angular and distance), the angular threshold and the distance threshold 

were tested individually, including a fixed threshold for the distance (10ft).  A fixed 

threshold has inherent drawbacks due to the wide variety of lengths and sizes of 

buildings.  A 5 ft intrusion may be an important characteristic of a 20 ft building side, but 
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not as important on a 100 ft side.  Between every two nodes of the convex hull, points are 

examined for the angles.  Based on initial visual evaluation of buildings in the images and 

testing automatically extracted segments, an angle threshold of 90 degrees +/- 30 degrees 

(60-120) was determined.  The threshold is a result of both extraction artifacts and 

legitimate building shapes (figure 53).  The distance criterion is secondary to the angular 

criteria.  A point within a distance greater then 10 percent of the total distance between 

the two nodes may be considered for the distance criteria.  For buildings outline 

generalization, methodology that only uses distance criterion is inferior to the angle 

criteria, since the angle criteria manages to eliminate more points of the exterior ring, 

while keeping the critical turning points and corners on the ring.  The entire process is 

iterative in a sense that it begins with two nodes of the convex hull and examines exterior 

ring points located between them.  Once a point was selected to be part of the generalized 

polygon, it replaces the previous point (a convex hull node or a previously selected 

point).  The process continues until it reaches the second convex hull point. 

 

CH2

CH3

CH1

CH4

CH5

G1

G2

 

 

 

Figure 54 – Generalization process.  Convex hull points in black; Intermediate result in red; 

final result in green. 

Figure 54 illustrates the generalization process.  The initial convex hull result is 

depicted by points CH1-CH5.  A direction is determined for the convex hull ring and the 
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exterior ring (all the points on the edge of the shape) are sorted within the same direction.  

As a result, every two nodes of the convex hull have an attached, known list of points 

between them on the exterior ring.  In this example, the direction is CH1-CH2-CH3-

CH4-CH5.  Based on the angle created by CH1-G1-CH2 (about 110 degrees) and the 

distance between G1 and the CH1-CH2 line, point G1 is added between the nodes CH1 

and CH2.  Point G1 replaces point CH1, and the search for the next point continues until 

we reach point CH2.  One drawback of adding the distance criterion is that point G2 may 

not necessarily be placed exactly on the corner.  Derived from the distance criterion, the 

point may be placed close to the corner within the defined distance.  It should be noted 

that a slightly different result may be received based on the direction of the points 

(clockwise/counter clock wise) due to the nature of point-adding process.  

  

 

 

 

 

 
103



    (a)       (b)    

(c)   

  

 

Figure 55 – Generalization results overlaid on the image.  Exterior ring highlighted in Red; 

Generalized polygon – highlighted in green.  

Figure 55 illustrates several examples of the generalization process, successful results 

as well as artifacts of the process.  Section (a) depicts a relatively large building with a 
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small intrusion.  The small intrusion is eliminated due to the distance criterion.  The 

corner highlighted shows a corner that is not located exactly on the corner point, but very 

close to it, maintaining the essence of the shape.  Section (b) illustrates a typical problem 

of an automatic extraction process.  The generalization result, due to the intrusion on the 

left side, does not include a section of the building on the left side.  Sections (c) and (d) 

illustrate common rectangular and near-rectangular building examples.  The 

generalization result is a successful result that manages to dramatically reduce the 

number of points on the outline.  Section (e) shows a less common building shape.  The 

exterior ring defines the outline in great details and is fairly accurate.  The generalization 

result eliminates the upper intrusion and does not exactly follow the outline at the bottom 

of the shape.  As depicted in all examples in figure 55, the generalization result heavily 

relies on the convex hull result.  Artifacts of the automatic process may add or remove 

points to the convex hull location, hence, may have a direct affect on the final result.  The 

angular and distance criteria may eliminate or keep parts of the buildings and should be 

re-considered on a project-purpose basis (need the essence of the building; exactly the 

outline; eliminate small intrusion etc).   
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4.2 Result Evaluation 

The methodology was tested on aerial imagery acquired over Memphis, TN.   Three 

different types of buildings (commercial, residential, high-rise) were tested, each with 

intrinsic, distinct characteristics.  Due to the inherent nature of each type of buildings, a 

separate section is dedicated to commercial (4.2.2), residential (4.2.3) and high-rise 

(4.2.4) buildings.  More general topics that are common to all types of buildings are 

elaborated in sections 4.2.5 to 4.2.8.  Section 4.2.9 provides a comparison between an 

automatic process result and manual digitization of buildings.  Two different 

methodologies for manual digitization are provided and quantitatively evaluated. 

 

 

4.2.1 Memphis Test-Bed 

The Memphis test-bed area includes two data sets: aerial imagery and tax assessor 

parcel data set. 

The aerial imagery data sets include ortho-rectified image mosaics.  Table 3 provides 

specific details about the imagery as retrieved from the metadata files.  
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Table 3 - Aerial imagery over Memphis - metadata 

Image source (Origin Agency) National Geospatial-Intelligence Agency (NGA), 

U.S. Geological Survey (USGS) 

Projected coordinate System UTM, NAD83 Datum 

Camera Leica ADS40 Digital Camera System ISTAR 

Digital Image Processing Software Z/I Imaging 

Orthopro 4.0 Windows NT/2000 Systems 

Spatial Resolution 0.3m (approximately 1ft) 

Spectral Resolution 3 bands, natural color image (RGB) 

Single image area 1500 meter 

Acquisition date Feb 2004 

Image Original Format GeoTiff 

Mosaic ground Area 9 x 4.5 km 

Design accuracy 2.12m for X and Y 

 

The Shelby county tax assessor database, compiled in 2004, contains multiple data 

sets, including parcels and a building inventory.  The database contains 346,393 land 

parcels.  There are a total of 306,003 dwellings within 291,552 parcels, each parcel 

containing one or more built structures.  An extract of parcels and buildings points from 

the Shelby county tax assessor database is illustrated in figure 56.  The building inventory 

includes a point at the centroid of each parcel polygon.  The point layer was compiled 
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from the tax assessor database and is linked to one or multiple buildings, based on the 

parcel ID.  Each parcel has a unique parcel identifier, designated as the primary key in the 

parcel database.  The attribute schemes for the parcel and building inventory are provided 

in appendix J. 

 

Figure 56 – Extract of the parcel and building datasets in Memphis, TN 

The attribute data includes zoning information that was used to select subsets of 

parcels for testing.  The following three sections provide testing result for each type of 

building.  Initial subset of parcels is selected, followed by building extraction results and 

discussion. 

In order to quantitatively evaluate the result of the extraction process, a digitized 

building polygon layer was used as ground truth.  The building layer was provided by the 

Shelby County, TN.  The digitized-ground truth data set was used as the reference layer 
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compared with the extraction result building layer.  A quantitative evaluation calculates 

the discrepancy between the layers and allows drawing conclusions regarding the 

accuracy and efficiency of the extraction process.  As part of the evaluation, two types of 

errors were defined, Type 1 and Type 2.  Type 1 error represents the number of segments 

that were extracted but are not buildings.  Type 2 error represents the number of buildings 

that were not identified.  Those buildings were either not extracted or extracted and 

erroneously eliminated.  The two types of errors define very distinct results of the 

extraction process and may entail different manual post-processing.  The time, effort and 

overall cost of the post processing can be evaluated differently for the two errors. 

Moreover, the importance of Type 1 and Type 2 errors may vary by application.  The 

nature of the application may derive specific quality measurements for the extraction 

process.  For example, an application may state that it is crucial not to identify features 

that are not buildings as legitimate structures, therefore allow a larger number of Type 2 

errors while minimizing Type 1 errors.  Other application may be more concerned with 

actual extraction of as many buildings from the imagery and with the accuracy of the 

extracted features.  In this case, a larger number of Type 1 errors may be acceptable.  The 

importance of the errors also depends on the amount of effort and cost as defined for the 

post processing.  Limited or no post processing may dictate a distinct extraction approach 

that differs from other, less restrictive applications.  Each type of error requires a distinct 

set of manual operations.  Type 1 errors require simple one delete operation while Type 2 

errors entail digitizing the entire building.   As a result, each error may have a different 

weight attached to reflect the importance of the error during the post processing.  Since 
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this project is not aimed at a specific application, both errors were evaluated with the 

same weight.   

Besides the errors, a partial extraction result describes segments that represent 

buildings, but were extracted with an error of more then 50 percent of the building (for 

example, 45 percent of the building was extracted).  Successful extraction represents the 

remainder of the segments, which cover 50 or more percent of the buildings.  The 

average of the discrepancy for the buildings is also calculated.  The average value is the 

calculated mean of undershoot and overshoot for all the buildings.  The evaluation 

process was initially aimed for all building types, but adjustments have to be made as the 

results vary greatly between the distinct building types as shown in sections 4.2.2 

(commercial), 4.2.3 (residential) and 4.2.4 (high-rise).    
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4.2.2 Commercial Parcels Testing 

Most commercial and industrial buildings are located in the Memphis down town 

area.  Three image mosaics that span over the downtown area were identified to include 

substantial number of commercial and industrial buildings for the testing.  Initial 

selection of a subset of parcels was based on occupancy type.  Parcels that have a built 

structure (not vacant) and have occupancy type of either commercial or office were 

selected.  Within the three mosaic images, 1079 parcels were selected.  Figure 57 

provides an overlay of the selected parcels over the three image mosaics. 

 

Figure 57 – Commercial parcels in downtown Memphis,TN overlaid on orthophoto images. 
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4.2.2.1 Testing Results 

The result of the extraction process is a vector, polygon layer.  The polygon layer was 

compared to the ground truth, building dataset.  A quantitative evaluation of the result 

compared the vector layer with the building dataset.  The discrepancy between the layers 

was calculated as follows: 

Calculating the symmetric difference between the layers – First, union operation was 

performed on the polygon result and the building dataset.  The result of the union 

operation is segments inside and outside the intersection of the two layers.  The result 

segments that are outside the intersection of the two layers represent the 

overshot/undershoot areas.  Each of those segments is linked (joined) to a building. 

Calculate the overshoot/undershoot area for each building. 

Summarize the undershoot/overshoot for every building. 

Calculate the ratio between the undershoot/overshoot and the building 

 

Table 4 presents the results for the commercial buildings testing.  The testing parcel 

subset includes 1079 parcels that contain 1128 buildings.  The result vector layer was 

compared with a building layer and quantitatively evaluated as illustrated in table 4.  The 

“Method” column represents the sequence of processes as used for the testing.  “All 

eliminate” means a full run that includes all three elimination steps: elimination by size, 

shadow and geometry characteristics.  “No size” indicates that the elimination by size 

was not part of the process.  Similarly, the methods “No Shadow” and “No Geometry” 
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were tested.  Type 1 error represents the number of segments that were extracted but are 

not buildings.  Type 2 error represents the number of buildings that were not identified.  

Those buildings were either not extracted or extracted and erroneously eliminated.  

Partial extraction represents segments that represent buildings, but were extracted with an 

error of more then 50 percent of the building (for example, 45 percent of the building was 

extracted).  Success represents the remainder of the segments, which cover 50 or more 

percent of the buildings.  The following three values were calculated in order to better 

evaluate the degree of error and discrepancy between the result and the ground truth 

building layer.  The average of the over/undershoot for the buildings is also calculated.  

The average value is the calculated mean of undershoot and overshoot for all the 

buildings.  Last, the number of buildings with an area error less the 10 and 15 percent is 

provided.    
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(a)  7%   (b)  7% 

(c)  13% 

(d)   18%  (e)  22% 

Figure 58 – Area discrepancy between automatic extraction result (red) and digitized 

building dataset (green).   

Figure 58 provides several examples of extracted buildings and the calculated area 

discrepancy.  Sections (a), (b) and (c) in figure 58 illustrate an area discrepancy within 

the range of 10 and 15 percent.  Those examples demonstrate that buildings with area 

discrepancies within 10, 15 percent (and even close to 20 percent in section d) capture the 

building area in a manner that is acceptable for a variety of applications. Hence, an area 

error of 10 and 15 percent was selected and presented as an acceptable result for 

extracted buildings in table 4 below.   
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Table 4 - Commercial buildings testing result 

Method Type 1 Type 2 Partial Success 
Average 

over/under 
<10% <15% 

All eliminate 96 169 23 936 9.7 732 887 

No size 

elimination 

213 110 47 975 10.01 748 908 

No Shadow 

elimination 
272 100 35 997 10.2 759 927 

No Geometry 

elimination 
1556 153 40 939 9.72 735 890 

 

For the full run, 96 (about 10%) segments were flagged as Type 1 error, “false 

positive” identification, where a building was extracted but does not exist.   169 (about 

15%) segments were flagged as Type 2 error, “false negative” identification, where the 

building exists but was not identified.   Out of the 1128 buildings, 732 (about 64%) were 

extracted with under/overshoot percentage of not more then 10% and 887 (about 79%) 

with under/overshoot percentage of not more then 15%.  In the second scenario (“No 

Size”), the process added 59 legitimate parts of buildings, but Type 1 errors increased to 

213.  In the third scenario (“No Shadow”), the process identified 69 additional legitimate 

parts of buildings, but Type 1 errors increased to 272 segments (for instance, rectangular 

parking lots tend to be identified as buildings).  The final scenario (“No Geometry”) 

identified 16 additional legitimate parts but received a significant increase in Type 1 

errors. There are several interesting conclusions that may be drawn from the results, as 
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well as multiple questions to be raised.  Clearly, the full run, that includes all elimination 

steps, increases the overall accuracy of extraction and reduces the amount of manual 

post-processing.  The full run may have the lowest number of identified buildings, due to 

erroneous elimination of legitimate buildings by the elimination steps, but it has the 

lowest number of type 1 errors.  That is significant since type 1 errors indicate the 

amount of post processing effort.   

The increasing number of type 1 errors in the scenarios following the full run is 

reasonable. Since the segmentation step includes four different ranges (peaks) within the 

histogram, a parcel that contains 2 buildings with different colors, at least two non-

building segments are expected.  Those segments would be eliminated or appear as type 1 

errors.  The considerable difference between the number of type 1 errors between the “no 

size” (213), “no shadow” (272) and the “no geometry” (1556) can be attributed to the fact 

that the same segment may be eliminated in different steps.  When the “no size” 

elimination step is not used, a segment may be eliminated in any of the other elimination 

procedures.  The no geometry step is the final procedure in the analysis and indicates the 

number of segments that were not eliminated within the size and shadow elimination 

steps.  The number of type 1 errors for the “no geometry” step, indicates that for the 1079 

parcels, one or two segments in each parcel remained for the geometry analysis.  Figure 

59 provides examples of common segmentation results.  The left images are the original 

parcel-sized images and the right is the segmentation result.  Clearly, more then five 

segments are possible candidates that do not represent buildings.  Hence, it is not 

unreasonable to have one or two remaining for the geometry elimination analysis.   
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(a)    

(b)   

Figure 59 – (Left) Original parcel-sized image (Right) segmentation result 

The examples in figure 58 show that segments that are not eliminated by the size or 

shadow eliminations (due to removing the elimination step or due to analysis confusion) 

may be eliminated by the geometry analysis.  For example, the orange segment in the 

middle of section (a) or the pink segment in section (b).  By eliminating segments that 

otherwise would have been eliminated in previous elimination steps, the geometry 

elimination step reduces the number of type 1 error segments for the “no size” and “no 

shadow” elimination.  In addition, since the geometry elimination is the final step, it 

remains with the largest number of type 1 errors.  The geometry analysis appears to be a 

significant step in the elimination analysis with considerable effect on the final result.  

The “no size” and “no shadow” analysis, maintain an important role in the overall 

analysis and should be integrated in the process to reduce the post processing effort.   
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4.2.2.2 Extraction Failure Factors 

In table 4 (Section 4.2.2.1), 169 buildings are classified as type 2 errors, buildings 

that were not extracted in the full run process.  23 buildings were partially extracted using 

the same scenario.  In order to evaluate the reasons for these extraction failures, each 

building was manually inspected and classified as one or more of the following 

categories: slope (sloped roof), complex (complex roof signature), size (small size 

relative to the parcel size), shadow (complicated shadow cast), compound (compound 

buildings).   

Buildings that were not extracted were classified as follows (the same building may 

belong to more then one class): 

• “slope” class –        26 buildings. 

• “complex” class –   98 buildings 

• “size” class –            26 buildings 

• “shadow” class –      51 buildings 

• “compound” class – 17 buildings 

The 23 buildings that were partially extracted were classified as follows: 

• “slope” class –          5 buildings. 

• “complex” class –     18 buildings 

• “size” class –             9 buildings 
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• “shadow” class –     2 buildings 

“compound” class – 9 buildings 

The results of the classification indicate that a significant number of buildings were 

classified as “complex” (having complex roof signature).  A set of buildings with 

complex roof signatures is provided in figure 60. 

(a) (b) (c)     

(d) (e) (f)  

Figure 60 – Buildings with complex roof signature 

The examples in figure 60 include multiple buildings with complex roof signatures.  

The complexity may be attributed to objects located on the roof (sections b and e), color 

patterns (section a), multiple level roof (section e) or simply variety of grey levels due to 

shadow, material discoloration etc.  The variety of grey levels on the roof prevents 

clustering of pixels into continuous segments that can be further analyzed as possible 

buildings. 
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A considerable number of buildings were classified as “shadow”.  Those building 

features have a shadow cast that obstructs the shadow analysis (4.1.4).     Figure 61 

provides three examples of extraction artifacts that interfere with the shadow analysis.  

The examples show a gap around the building that separates the extracted segment and 

the shadow.  As a result, the shadow is not correlated with the roof segment, hence, 

eliminated during the shadow elimination step (the process analysis concludes that the 

segment has no shadow attached in the correct location). 

(a)  (b)   

(c)     

Figure 61 – Gap between the extracted building segment (red) and the shadow 

Example (a) shows a gap between the segment and the shadow, created by a lower 

level roof on the building entrance.  Example (b) shows a white belt around the roof of 

the building.  In example (c) the roof shadow creates a lighter color shadow gap between 

the building and the shadow.  All the above examples tremendously complicate the 

shadow elimination analysis. 
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The “size” class represents several scenarios.  One scenario includes buildings that 

were eliminated since their area was small relative to the parcel area.  Buildings extracted 

as multiple sections were eliminated when a section area was significantly different then 

the database area (the entire building area).  There may be a discrepancy between the 

database record and the area extracted from the image. Extraction artifacts and analysis 

problems due to the size of the building and the database attribute are discussed in section 

4.1.3. 

There are various factors that might affect the result of the extraction process.  

Clearly, the nature of the roof signature has a significant and direct affect on the 

segmentation, and as a result, on the entire extraction process.  Other contributing factors 

may be the size of the building relative to the parcel, shadow analysis, the slope of the 

roof and building compound architecture.  Some factors can be further investigated and 

possibly resolved (size, shadow and compound) while some (complex signature) will 

remain an obstacle to any automatic extraction process. 

4.2.2.3 Multi-building parcels 

97 out of the 169 buildings (57%) that were flagged as “type 2” errors (full run 

scenario), are located in multi-buildings parcels.  Multi-building parcels are defined as 

parcels that have 2 or more buildings.  69 out of the 97 buildings are located in parcels 

that have 3 or more buildings, and 42 are in parcels that have 4 or more buildings.  Out of 

the 936 successfully extracted buildings, 163 (17.4%) are located in multi-building 

parcels.  42 are located in parcels that have 3 or more buildings and 17 in parcels with 

more then 4 buildings.  Since multi-building commercial parcels are common, this 

 
121



section presents statistics that examines whether multiple buildings within a parcel lowers 

the probability for successful extraction. 

Total of 260 buildings are located in multi-building parcels.  37% of those buildings 

were not extracted.  Those buildings comprise of 57.4% of the buildings that were not 

extracted.  17% of the extracted buildings are located in multi-buildings parcels. Clearly, 

the failed extraction rate of buildings within multi-building parcels (37%) is much higher 

then the overall extraction rate (15% type 2 error).  Buildings that reside in multi-

buildings parcels cover a smaller area of the parcel and may become as a result less 

dominant features in the parcel.   

The buildings that were not extracted within the multi-building parcels maintain a 

mean area ratio between the building and parcel of 4.7%.  The actual average values 

range between 0.1-29.5%, with 76 out of 97 have a ratio of less then 5%.  62 out of the 97 

buildings are at least half the size of the average building area within the parcels. 

163 buildings were identified and successfully extracted within the multi-building 

parcels. 15 buildings have a ratio (building area divided by the parcel area) of less then 

5% with a mean ratio value of 35.1%.  155 buildings are at least half the size of the 

average buildings area within the parcel. 

One of the fundamental assumptions made in the project is that the building is a 

dominant feature within the localized parcel area.  A small, insignificant feature would 

not have a considerable presence in the image histogram and would not be easily 

identified.  When only one building resides in a parcel, it usually covers a large area 

within the parcel.  That is obviously not the case when there are multiple buildings within 
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the parcel.  Multi-building parcels may reduce the overall extraction rate of the buildings.  

As a result, it is suggested to evaluate the mean ratio between the buildings and the 

parcels area and adjust parameters for the size elimination accordingly. 

4.2.2.4 Parcel-sized images  

The extraction process limits the search for the building area by initial image 

partitioning.  Cutting the image using the parcel layer assumes that the building is located 

within the parcel boundaries.  Clearly, inconsistencies might occur when there is a 

significant time gap between the compilation of the parcel layer and acquiring the 

images.  The images and the parcels layer used in this project were both captured and 

compiled in 2004.  Some inconsistencies and discrepancies are expected between two 

independently created datasets.  For a parcel layer and an image, the discrepancy might 

be represented as a parcel boundary that intersects a building outline.  An evaluation of 

the consistency of such artifacts is presented below. 

In order to evaluate the phenomenon, a spatial selection is performed between the 

parcel layer and the digitized building outlines. The building layer contains the 1128 

buildings used for the testing (see 4.2.2.1) within the 1079 parcels.  The result of the 

spatial selection is a subset of buildings that intersect with the parcel boundary.   

Out of the 1128 buildings, 170 buildings (about 15%) outlines intersect with the 

parcels boundaries.  45 out of the 170 are compounds (figure 62) that comprise of several 

sections and reside within multiple parcels.  Compound structures can be separately 

extracted within multiple parcels.   
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Figure 62 – compound buildings residing in multiple parcels (yellow lines represent parcels) 

The 45 compound buildings include 11 “OFFICE CONDO” structures.  Those office 

buildings reside in multiple parcels and cover almost the entire parcel (Figure 63).  Office 

structures can be described as the union area of the office parcels.   

     

Figure 63 – office condo structure divided between multiple parcels 

An automatic process may not easily extract the multiple sections of the same 

structure since each section individually does not necessarily resemble a building 

segment.  As a result, it is recommended to initially merge office parcels that are 

touching the boundaries. 

Besides the compound structures, 125 buildings have sections outside the parcels 

boundaries.  For those structures, the percentage of the area that is located outside the 

parcel was calculated.  Since the process confines the extraction to the area inside the 

parcel, significant sections outside the parcel may clearly compromise the extraction 
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process.  In order to calculate the percentage, the total area that resides outside the parcel 

was divided by the total area of the building.  The following results were calculated: 

• 62 buildings have 2 % or less outside the parcel boundary. 

• 84 buildings have 5 % or less outside the parcel boundary. 

• 100 buildings have 10 % or less outside the parcel boundary. 

• 111 buildings have 25 % or less outside the parcel boundary. 

From the percentage calculation, about 50 percent of the buildings have minor or 

insignificant portions of the structure (<=2%) outside the parcel.  The vast majority of 

those buildings (80-90%) can be extracted successfully (10-15% error) or at least 

partially extracted (50% or more of the building is extracted).  Inspection of the 

extraction result shows that out of the 170 buildings that lie partially outside the parcel 

boundaries, 165 were identified and extracted.  154 structures were extracted successfully 

(area error <=15%) and 11 structures extracted partially (area error <= 50%).  The 

remaining 5 structures that were not extracted, failed due to complex signature of the roof 

top (See Figure 64) 
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Figure 64 – Complex roof signature.  Buildings reside in multiple parcels (yellow) 

Parcels, as already indicated, can dramatically simplify the extraction process.  From 

the evaluation presented in this section it is clear that the majority of buildings (85%) 

reside within the parcels boundaries.  Compound structures can be extracted in parts 

within multiple parcels. Other buildings that cross between boundary lines, maintain, for 

most cases, a significant portion of the building within the parcel area.  As a final note it 

can be concluded that the parcels layer can be used to localize the search for the buildings 

by dividing the image.  The loss of information is secondary to the obvious benefit to the 

extraction process and can be further reduced by applying a buffer around the parcels.  

The actual buffer size should be determined for each parcel individually based on the 

parcel size and the possible expected structure.   
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4.2.3 Residential Parcels Testing 

As mentioned before, the testing was performed on three types of structures: 

commercial, residential and high-rises.  Each type of structure has specific functionalities 

and exists in a different environment.  The structure characteristics and the environment 

have a direct affect on the extraction process.  For example, trees around the building are 

a prominent problem for residential buildings extraction versus high-rise buildings.  This 

section provides a discussion regarding the challenges of extracting residential buildings 

footprints.  Figure 65 provides two examples of residential single family houses (a) and 

apartment complex (b).  In both examples, trees and shadow casts obstruct the view of 

the buildings from above. 

          (a)     (b)  

Figure 65 – Residential parcels (yellow) overlaid on 1ft image  

Testing, similar to the commercial testing (section 4.2.2), was performed for 

residential parcels.  The testing includes 2580 residential parcels in the same image 

mosaics.  The outcome of the testing can be regarded as poor results.  Only 829 buildings 

out of the 2580 were detected and partially extracted.  The mean overshoot and 
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undershoot for the residential buildings was calculated as 55% with 92% of the houses 

having an overshoot/ undershoot greater then 50%.  Tree occlusion, sloped rooftops and 

townhouses that span multiple parcels were all contributing factors to the results.   

4.2.3.1 Residential Parcels Analysis 

Clearly, an analysis of the core problem is required to understand and possibly 

suggest better extraction methodology.  Since the entire methodology is based on the 

result of the initial segmentation, a further investigation of segmentation methodologies 

was performed.  In order to assess the result of the initial segmentation, two areas were 

selected.   One area (Figure 66 section a) is characterized by considerable number of 

trees, while the other (Figure 66 section b) does not seem to have as much vegetation 

around the buildings.  Within each area, 100 parcels were randomly selected as depicted 

in figure 66. 

(a)   (b)  

Figure 66 – 100 parcels overlaid on residential area (a) Area characterized by many trees 

(b) Area with little or no vegetation 
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The segmentation assessment includes a comparison of two methods:  the 

segmentation as implemented in the project using the histogram peak analysis and the 

Isodata classification method (section 2.3.1).  The Isodata, unsupervised classification 

algorithm, requires several input parameters, including the number of classes.  A careful 

examination of multiple parcels revealed that several classes are in particular dominant 

within a residential parcel.  Those classes include the built structure, driveway, shadow 

and vegetation.   

The result of the testing includes two segmentation images for each parcel.  One 

image is the result of the histogram analysis and the other is the result of the Isodata 

algorithm.  All images were manually examined to evaluate which segmentation method 

provides a better result.  Table 5 presents the result of the segmentation methods.  Test 1 

column provides the number of buildings within the more vegetated area.  Test2 was 

performed in a less vegetated area (significantly less trees around the buildings). 

Table 5 - Segmentation Result of Residential Parcels 

 Test1 Test2 

Vacant 4 0 

Histogram analysis – better 6 5 

Isodata – better result 30 50 

Isodata – better result but 26 30 

Only Isodata 5 0 

No method 29 15 
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The last row in table 5 indicates how many buildings were not segmented properly by 

any method.  29 buildings were not extracted within the more vegetated area and 15 

buildings within the less vegetated area.  In both scenes, the main reason for the failure 

was the trees.  Deciduous trees obscure parts of the house or complicate the roof 

signature with branches or with shadow casts.  Since test2 area does not include as many 

trees as test1 area, more buildings were adequately segmented (50 versus 30).  The 

Isodata algorithm seems to perform slightly better then the histogram analysis on the 

residential parcels.  It may indicate a relatively Gaussian distribution within the classes, 

since the algorithm assumes normal class distribution.  The better segmentation result for 

50 percent of the houses is not sufficient for an automatic extraction.  The process will 

not yield a satisfactory result with 35% (test1) or 50% (test2) segmentation rate.  The 

consistent poor segmentation result for both methods emphasizes the complexity of the 

residential parcel scene.    

Following the automatic segmentation results, that were not found to be adequate for 

building extraction, a semi-automatic approach was investigated.  Section 4.2.3.2 below 

elaborates on the algorithm and presents testing results. 
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4.2.3.2 Region Growing Algorithm  

Region growing is a semi-automatic image segmentation procedure (Tremeau, and 

Borel, 1997; Haralick and Linda G. Shapiro, 1992).  Region growing techniques have 

been used for feature extraction, including buildings (Li, Wang and Ding, 2006; Müller 

and Zaum, 2005; Ohlhof, et al, 2004).  The algorithm is based on initial selection of a 

seed point.  Every pixel connected to the seed is examined and added to the region to 

create a continuous, larger region.   A pixel that is added becomes a seed, thus expands 



the growing to its neighbors.  The decision whether to add a pixel to the region is based 

on spectral distance between the seed and the pixel, as defined by the user.  In many 

applications, such as ERDAS-IMAGINE, the user can define the extent of the 

neighborhood (4 or 8 connected pixels), the Spectral Euclidean Distance (the distance 

between the value of the pixel and the mean value of the seed) and the maximum number 

of pixels allowed in the region (Figure 67).   

 

 

Figure 67 – Region Growing GUI in ERDAS-IMAGINE 

 

The region growing algorithm result is highly depended on the parameters settings as 

shown in examples below (Figure 68). 
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Figure 68 – Region Growing Result. (left) Original Image (Right) (a) Spectral Distance = 50 

(b) Spectral distance=20 

 

 Figure 68 illustrates the different outcome of the region growing process for different 

input spectral distances.  The left image shows the original image of the building and the 

overlaid parcels layer (yellow).  On the right there are two sections of images.  Section 

(a) illustrates the result for a spectral distance of 50.  The growing algorithm was 

examined on both the parcel-sized image (on the left) and the entire image (on the right).  

Clearly, the pixels extend the parcel boundary lines when tested on the entire image.  

Section (b) was similarly tested for a spectral distance of 20. 

Region growing performs adequately in relatively simple scenarios as indicated in 

figure 69. 

(a)       

     (b)           
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Figure 69 – Region growing segmentation result (Spectral distance =50) 

The region growing procedure was tested on 100 residential parcels (test2 area with 

spectral distance of 50).  In 60 out of the 100 parcels, the region growing result expands 

beyond the actual building.  If the building is confined within the parcel area, the region 

can only grow inside the parcel.  Clearly, when the region grows outside the parcel, many 

pixels that append the building region should be removed.  The region growing results 

emphasize the advantage of using the parcel region rather then the entire image for the 

extraction. 

The three segmentation algorithms (Histogram analysis; Isodata; Region growing) 

were used to compare segmentation for several residential parcels scenarios.  The 

comparison and evaluation are provided in the following section. 

4.2.3.3 Three algorithms segmentation testing 

In order to extract buildings or any other feature from images, an initial segmentation 

of the image is required.  As indicated by the results in section 4.2.3.1, residential parcels 

present great challenges for the initial segmentation.  There is clearly high level of 

complexity and segmentation confusion that requires human intervention.  The two 

 
133



automatic segmentation procedures (Histogram Analysis; Isodata) as well as the semi-

automatic procedure (Region growing) were further examined.  The performance of the 

three procedures was evaluated for several residential parcels scenarios.  The specific 

scenarios were identified to provide representation of the major obstacles during the 

segmentation process.  The comparison may provide a better understanding and selection 

of the preferred procedure for a specific scenario.  

The various scenarios identify multiple sections of the structure, shadows, trees and 

the sun illumination (1 or more illumination sides).  The scenarios were tested and 

divided into “successful” scenarios and “failed” scenarios.  The successful scenarios are: 

• Two building sections; insignificant shadows on the roof; no trees occlusion; two 

sides of illumination.   

• Two building sections; shadows; no trees occlusion, one side illumination 

• Two building sections; shadows; no trees; one side illumination. 

• Several building; insignificant shadows on the roof (slope roof); trees occlusions 

on one building; 1 side illumination. 

• Mainly single section building; insignificant shadows on the roof; no trees 

occlusion;  two sides illumination 
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The failed scenarios are: 

• Two building sections; significant shadows on the roof; trees occlusion, one side 

illumination 

• Single section building; shadows; slight trees branches occlusion; one side 

illumination 

• Two building sections; shadows; trees occlusion; two side illumination. 

• Several slope building; shadows; no trees; two side illumination 

Each scenario is illustrated below and examined using the three segmentation 

algorithms.   

Scenario 1: Two building sections; insignificant shadows on the roof; no trees 

occlusion; two sides of illumination 

     

Figure 70 – scenario 1 [original image] [Histogram analysis Result] [Isodata Result].   
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Figure 71 - scenario 1: region growing result (spectral distance = 20, 50, 100).   

Figure 69 illustrates the original parcel image and the result of the automatic 

segmentation procedures.  The image shows a fairly simple scene with limited shadow 

casts on the roof, no trees and a tilted roof.  The histogram analysis result provides an 

adequate segmentation of only one side of the roof. The Isodata algorithm provides a 

better segmentation that appends parts of the surroundings to the building segment.  

Figure 71 provides results of the region growing algorithm for three spectral distances 

(the seed point is the intersection point of the vertical and horizontal lines).  It is clear that 

spectral distance of 50 provides the best representation of the building including small 

portions of the surroundings and gaps within the segment.  The building region may be 

partially extracted using the Isodata or the region growing procedures, but requires user 

post-processing corrections.  

The histogram plots for the image are shown in figure 72.  Compared to histogram 

plots of commercial parcels (section 4.1.2.1), the residential parcels histograms are not as 

“smooth” and there is less evident correlation between the bands (mostly between the red 

and the other bands).  
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Figure 72 – scenario1.  Histogram plots of the (left to right) Red, Green, Blue bands 

Since the histogram plot is less “smooth”, it is more complicated to automatically 

analyze the histogram and accurately allocate the different peaks and ranges.  That 

directly affects the segmentation of the corresponding objects in the image.  The reduced 

correlation between the bands can be attributed to the dominant presence of vegetation 

and its representation within the bands histogram.   

The segmentation result of the Isodata algorithm can be examined using feature space 

plots (figure 72).  Feature space plots show the spectral location of object pixels on a two 

bands plot.  Each axis represents a specific band.  The plot illustrates the correlation 

between the bands and an overlay of the segmented classes. A higher correlation between 

the bands is represented by a near-line plot.  Each ellipse represents a class as segmented 

in the image.  The overlap between the ellipses may illustrate the level of confusion 

between classes. 
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Figure 73 – scenario 1.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

The colors of the classes in the feature space plot correspond to the colors of the 

Isodata result in figure 70.  As indicated by the histogram plots in figure 72, bands 2 and 

3 are highly correlated while the other combinations are more scattered.  The classes 

representing the shadow and the ground are on the two far ends of the plots, have 

relatively small overlap with other classes and hence are segmented fairly accurately.  

Moreover, there is an evident concentration of pixels within the building ellipse area 

(cyan colored pixels) that indicate a significant number of pixels that represent that class 

(The same can be seen for the shadow class that is fairly dominant in the image).   The 

building (cyan) and the vegetation (green) have greater overlap, are closer on the spectral 

plot and as a result produce segmentation confusion.  The result is a building segment 

that includes vegetation and ground pixels, and vegetation segment that includes building 

and ground pixels. 

The histogram and the feature space plot indicate that it is possible to define fairly 

distinct classes within the parcel for scenario 1.  As with any segmentation procedure, 

some confusion and classification errors occur.  The fairly simple scenario provides the 

opportunity to segment the building area.  The Isodata and the region growing perform 

better but may require manual post-processing.  
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Scenario 2: Two building sections; shadows; no trees occlusion, one side 

illumination 

     

Figure 74– scenario 2 [original image] [Histogram analysis Result] [Isodata Result].   

         

Figure 75 - scenario 2: region growing result (spectral distance = 20, 50, 100).   

Figure 73 illustrates the original parcel image and the result of the automatic 

segmentation procedures.  The image shows a scene with multiple shadow casts on the 

roof and no tree occlusion.  The shadows are a major obstacle for the segmentation as 

they create a completely different grey level representation for several sections of the 
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house.  The histogram analysis result provides a poor segmentation while the Isodata 

algorithm provides a better segmentation of the “no-shadow” section of the house.  The 

Isodata result appends parts of the surroundings of the building to the building segment.  

Figure 75 provides results of the region growing algorithm for three spectral distances 

(the seed point is the intersection point of the vertical and horizontal lines).  The region 

growing result for the 50 and 100 spectral distances may be considered for the building 

segmentation.  No result provides a good segmentation as the 50 distance misses parts on 

the lower right side of the house and the 100 distance adds ground pixels to the building.  

The 100 distance result would be considered better and is the closest result to the Isodata 

procedure in figure 74.  The building region may be partially extracted using the Isodata 

or the region growing procedures, but requires user post-processing corrections to add the 

“shadowed” sections of the house. 

The histogram plots for the image are shown in figure 76.  Compared to the histogram 

plots of scenario 1, there seem to be a greater correlation between the bands.  The 

residential parcels histograms are again, not “smooth” and as a result produce a poor 

segmentation result for the histogram analysis segmentation. 

 

 

Figure 76 – scenario2.  Histogram plots of the (left to right) Red, Green, Blue bands 
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Examination of the feature space plots (figure 77) emphasized the correlation 

between the bands. There is a better correlation between bands 1-3 and 2-3, consistent 

with the histogram plots of the individual bands (closer to a line, less scatter).   

     

Figure 77 – scenario 2.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

In this scenario, the building ellipse (cyan) resides on the top end of the spectral plot 

and overlaps with the class “other” that represents miscellaneous objects around the 

building (ground, asphalt…).  The overlap explains the addition of objects on the lower 

right part of the image to the building segments.  The cyan colored pixels within the 

building ellipse indicate that there is a large number of pixels in that class.  This is 

consistent with the classification of building pixels in the image (figure 74).  

The histogram and the feature space plot indicate that it is possible to define fairly 

distinct classes within the parcel for scenario 2, with the exception of shadows on the roof 

and relatively minor additions.  The Isodata and the region growing perform better and 

may require manual post-processing.  
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Scenario 3: Two building sections; shadows; no trees; one side illumination 

      

Figure 78 – scenario 3 [original image] [Histogram analysis Result] [Isodata Result].   

          

Figure 79 - scenario 3: region growing result (spectral distance = 20, 50, 100). 

Figure 78 illustrates the original parcel image and the result of the automatic 

segmentation procedures.  The image shows a fairly simple scene with shadow casts 

between the two sections of the building, no trees and a tilted roof.  The histogram 

analysis result provides an adequate segmentation for the two sections of the roof. The 

Isodata algorithm provides a better segmentation that includes parts of the surroundings 
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within the building class.  The buildings class in this scenario includes separates 

segments.  The building roof is comprised of two distinct segments due to the shadow 

gap.   Figure 79 provides the results for the region growing algorithm for three spectral 

distances (the seed point is the intersection point of the vertical and horizontal lines).  It is 

clear that spectral distance of 100 provides the best representation of the building as it 

connects the two sections of the roof.  The segment is solid with some additions and no 

major gaps.  The building region may be partially extracted using any of the three 

algorithms, but requires user post-processing corrections.  

The histogram plots for the image are shown in figure 80.  The histogram plots show 

greater correlation between bands 1 and 2, consistent with the feature space plots in 

figure 81.   

 

 

Figure 80 – scenario3.  Histogram plots of the (left to right) Red, Green, Blue bands 

As indicated in the feature space plots, the building and the ground share the same 

class (cyan).  The ground pixels share spectral characteristics with the building and the 

dry vegetation and branches around the buildings.  As a result, besides the ground distinct 

class, ground pixels appear in the building and vegetation classes. The cyan pixels (in the 

segmented image) that are not connected to the building segment illustrate that confusion.  
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As illustrated in the above examples, the building ellipse comprises of cyan colored 

pixels that indicate a concentration of the cyan class pixels (building and ground) in the 

image.  That is consistent with the significant number of building pixels in the Isodata 

classification result in figure 78. 

    

Figure 81 – scenario 3.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

The histogram and the feature space plot indicate that it is possible to define the 

building with minor ground additions for scenario 3. Both the histogram analysis and the 

Isodata algorithms do not consider the actual location of a pixel within the image prior to 

the segmentation.  As a result, both methods segmented erroneously several regions 

within the image as part of the building class.  Due to shadow casts, the region growing 

procedure may require several seed points, one per section, to provide segmentation of 

the entire roof. 

Any of the three algorithms may be used to segment the buildings for scenario 3, with 

some misclassifications.   

Scenario 4: Several buildings; insignificant shadows on the roof (slope roof); trees 

occlusions on one building; 1 side illumination 
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Figure 82 – scenario 4 [original image] [Histogram analysis Result] [Isodata Result].   

         

Figure 83 - scenario 4: region growing result (spectral distance = 20, 50, 100).   

Figure 82 illustrates the original parcel image and the result of the automatic 

segmentation procedures.  This image differs from the previous examples since it 

contains multiple houses with different circumstances.  Houses 1-4 are very similar in 

color and roof tilt.  House number 5 has a distinct color and relatively simple scene with 

no trees and shadow.  House 6 illustrates a more complex scene with significant trees and 

shadow occlusion.  The histogram analysis technique performs well for the four simple 

buildings with the exception of segmenting separately the two sides of the roof.  House 

number 5 is not dominant enough within the image to be individually segmented.  Only a 

small part of house number 6 can be clearly seen from above and segmented.  The 
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Isodata provides a slightly better result since it combines the two parts of the roof to 

create one continuous roof segment for the simple four houses.  The region growing 

results requires a seed point per house.  A spectral distance of 50 provides the best 

segmentation result and extracts the entire roof of the four houses.  For a spectral distance 

of 100, many additional pixels were erroneously added to the region.   Clearly, the four 

houses, which represent fairly simple extraction scenarios without trees or shadow, can 

be extracted with any of the methods.  House number 6 can not be extracted without a 

human intervention due to significant occlusion.  House number 5 appears to have more 

variety of grey levels on the roof, hence, no segmentation method managed to 

successfully segment the house.  The region growing result for a spectral distance of 50 

illustrates the signature complexity.  The region growing methods extracts houses 1-4 are 

but fails for house number 5.   

The histogram plots for the image are shown in figure 84.  The histogram plots in this 

scenario appear more flat, since the value 255 (white) has the largest number of pixels in 

the image compared to the other grey levels.  The peak on the right side of the histogram 

represent the light section of the roofs, while the peak on the left side of the histogram 

represents the shadows and darker regions in the image.  Clearly, bands 1 and 2 are more 

correlated then any other band combination.  That correlation is consistent with the 

feature space plots in figure 85.   
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Figure 84 – scenario 4.  Histogram plots of the (left to right) Red, Green, Blue bands 

The segmentation result of the Isodata algorithm can be examined using feature space 

plots (figure 85).   

     

Figure 85 – scenario 4.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

The building class (cyan) represents the light color houses and has a small overlap 

with the ground, as depicted in the Isodata result in figure 82.  The ground and building 

class (pink) represents house number 5 that shares spectral characteristics with the ground 

object.  There is a clear concentration of pixels in the cyan class (cyan and blue pixels) 

that represent the four houses.  Opposite to those houses, the pink class corresponds to 

house number 5 and represents smaller number of pixels in the image.   

 
147



The histogram and the feature space plot indicate that it is possible to distinctly define 

a class for the light color, simple houses (1-4).  The trees and more complex signature for 

house number 5 prevent any of the methods from adequately segmenting the roof.  

Scenario 5: Mainly single section building; insignificant shadows on the roof; no 

trees occlusion; two sides illumination 

 

   

Figure 86 – scenario 5 [original image] [Histogram analysis Result] [Isodata Result].   

       

Figure 87 - scenario 5: region growing result (spectral distance = 20, 50, 100).   

Figure 86 illustrates the original parcel image and the result of the automatic 

segmentation procedures.  The image shows a fairly simple scene with limited shadow 

casts on the roof, no trees occlusion.  The histogram analysis and the Isodata procedures 

segment the roof in two parts.  Those algorithms segment other regions of the image 

within the same building class.  The Isodata algorithm seems to perform slightly better 

and extracts the roof area as two classes.  Figure 87 provides the results for the region 

growing algorithm.  It is clear that spectral distance of 100 provides the best 
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representation of the entire roof.  Due to the significant difference in grey levels between 

the two sides, a spectral distance of a 100 is required.  The region does not append pixels 

beyond the house area due to the vast difference between the house and the surroundings.  

That is a distinct and not very common case.   

The histogram plots for the image are shown in figure 88.  The plots show higher 

correlation between bands 1 and 2.  The correlation is consistent with the feature space 

plots in figure 89. 

 

Figure 88 – scenario 5.  Histogram plots of the (left to right) Red, Green, Blue bands 

The confusion between the building and the ground classes is clearly depicted in the 

segmentation result (figure 86).  The pink class and the cyan class that correspond to the 

two sides of the roof, have an area of overlap (figure 89).  The overlap between the 

classes provides a spectral explanation for the misclassification of pixels within the 

building classes.  
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Figure 89 – scenario 5.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

The histogram and the feature space plot indicate that it is possible to define the 

classes of the roof.  Each class represents one side of the roof and includes pixels that do 

not belong to the roof.  The region growing with a spectral distance of 100 provided the 

best segmentation.  The large spectral distance, as shown in previous examples, is usually 

too broad and significantly extends the roof area.     

The following testing scenarios provide examples of very poor segmentation results.  

The complex scenes are evaluated to determine which factors prevent successful 

segmentation and further extraction of the structure. 
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Scenario 6: Two building sections; significant shadows on the roof; trees occlusion, 

one side illumination 

 

        

Figure 90 – scenario 6 [original image] [Histogram analysis Result] [Isodata Result].   

          

Figure 91- scenario 6: region growing result (spectral distance = 20, 50, 100).   

Figure 90 illustrates the original parcel image and the result of the automatic 

segmentation procedures. The image illustrates a complex scene with considerable 

shadow casts on the roof and trees occlusion.  Obviously, when the roof can not be 
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clearly seen from above, it can not be extracted.  In the case of the house in figure 90, as 

well as in many other cases, a human may be able to determine the corners of the 

footprint.  The same can not be easily asserted for an automatic process.  All the tested  

procedures, including the semi automatic region growing algorithm, failed to adequately 

segment the roof. 

The histogram plots of the image are shown in figure 92.  The large peak on the left 

(dark) part of the histogram explains the large white segment in the histogram analysis 

segmentation result (figure 91).  The pixels in the image are basically divided between 

the large peak and the rest of the histogram.  As a result, all the darker pixels are 

segmented as one class.   

 

Figure 92 – scenario 6.  Histogram plots of the (left to right) Red, Green, Blue bands 

The feature space plots in figure 93 are consistent with the evident high correlation 

between the bands, especially bands 1 and 2.  
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Figure 93 – scenario 6.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

The ellipses in figure 93 show very large building and ground (cyan and pink) 

classes.  There is significant overlap between the building and ground classes which 

explains the poor segmentation result.  The ground and vegetation (green) class is 

completely overlapped by neighboring classes.  The overlap explains the 

misclassification between the vegetation (trees and branches) and the shadows.  The 

majority of the pixels in the image concentrate within the lower left part of the plot (cyan) 

which represents the shadow, ground and vegetation classes.  The buildings classes 

represent only a small number of pixels in the image due to lack of visibility of the 

building from above. 

The histogram and the feature space plot indicate that the majority of pixels in the 

image represent the shadows and vegetation (branches).  As only small section of the 

house can be clearly seen from above, it is very difficult to automatically extract the 

building.  Moreover, the shadows on the roof prevent the use of a semiautomatic process 

such as region growing due to the extreme variability of pixel colors on the roof.  

Scenario 6 illustrates an example of a parcel scene that requires a manual extraction of 

the building footprint.  
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Scenario 7: Single section building; shadows; slight trees branches occlusion; one 

side illumination 

 

 

     

Figure 94– scenario 7 [original image] [Histogram analysis Result] [Isodata Result].   

         

Figure 95- scenario 7: region growing result (spectral distance = 20, 50, 100).   

Figure 94 provides the original parcel image and the result of the automatic 

segmentation procedures. The image illustrates a fairly simple scene at first sight.  The 

entire house is clearly seen from above and there is no trees occlusion.  The factor that 

turns this image into a complex scene is the shadows.  The roof comprises of multiple 

tilted sections at different heights.  The sections cast shadows due to the sun illumination, 

and as a result, divide the roof into lighted and shadowed regions.  The result is multi-
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class representation of the roof.  The cyan, pink and grey classes interleave on the roof.  

Evidently, the region growing algorithm fails to correctly segment the entire roof.  The 

result either covers a small section of the roof (spectral distance 20, 50) or adds regions 

around the house to the roof segment (spectral distance 100).  The histogram analysis 

result shows a similar result, but with less continuous segments.  The histogram plots in 

figure 96 provide some explanation to the complex histogram analysis.  Bands 1 and 2 

are fairly correlated, but are represented by abrupt changes in the histogram which makes 

the peak analysis much more challenging.  The third band is not as correlated to bands 1 

and 2 which is consistent with the feature class plot in figure 97. 

 

Figure 96 – scenario 7.  Histogram plots of the (left to right) Red, Green, Blue bands 

The feature space plots in figure 97 show higher degree of correlation between bands 

1 and 2.  There a significant overlap between classes and significant confusion between 

the ground and building classes.  The shadow class includes all shadow areas, and for this 

example comprised of large sections on the roof.  
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Figure 97 – scenario 7.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

The testing results for this image indicate that the roof construction has a crucial 

affect on the extraction result.  Multiple tilted roof sections may produce excess shadow 

regions on the roof and directly prevent successful segmentation.  No automatic 

extraction method can adequately extract the house roof and a human intervention is 

clearly required.  
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Scenario 8: Two building sections; shadows; trees occlusion; two side illumination 

 

     

Figure 98– scenario 8 [original image] [Histogram analysis Result] [Isodata Result].  

            

Figure 99- scenario 8: region growing result (spectral distance = 20, 50, 100).   

Figure 98 illustrates the original parcel image and the result of the automatic 

segmentation procedures. The house suffers from tree occlusion and similar to previous 

example, the tilted roof sections cause shadow regions on the roof.  The complexity of 

the segmentation is evident by the poor classification and segmentation result for all three 

methods.  The Isodata algorithm shows fair segmentation for only the shadow regions in 

the image.  The histogram analysis result does not distinctly segment any class (apart 

from the shadow area) and can not be used for further feature extraction.  The region 
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growing algorithm fails to segment the roof.  The result either covers only parts of the 

roof (spectral distance 20 and 50) or vastly extends beyond the house area (spectral 

distance 100). 

The histogram plots of the image are shown in figure 100.  The concentration of the 

histogram on the left part of the graph is consistent with the fairly darker pixels in the 

image and the feature space plots in figure 101.  There is an evident higher correlation 

between band 1 and band 2 and much less correlation with band 3. 

 

Figure 100 – scenario 8.  Histogram plots of the (left to right) Red, Green, Blue bands 

The feature space plots in figure 101 are consistent with the high correlation between 

bands 1 and 2.  

      

Figure 101 – scenario 8.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 
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The ellipses in figure 101 show pixel concentration on the lower left part of the plot. 

That indicates a large number of darker pixels in the image.  There is significant overlap 

between the building and ground (pink and cyan) and some overlap of those classes with 

the building and vegetation class (green).  That explains some of the misclassification 

results between the classes in figure 98.  The shadow class, which includes many roof 

pixels, has a large concentration of pixels and does not have as much overlap with the 

other classes.  As a result, this class is segmented fairly well and distinctly in the image.  

The histogram and the feature space plot indicate that the majority of pixels in the 

image represent the shadows and vegetation (branches).  Due to the wide variety of grey 

levels that represent the entire roof, an automatic algorithm would probably fail to 

accurately segment the roof.  Scenario 8 is another example of a parcel scene that 

requires manual extraction of the building footprint.  
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Scenario 9: Several slope building; shadows; no trees; two side illumination 

     

Figure 102– scenario 7 [original image] [Histogram analysis Result] [Isodata Result].   

           

Figure 103- scenario 7: region growing result (spectral distance = 20, 50, 100).   

Figure 102 provides the original parcel image and the result of the automatic 

segmentation procedures. The house in this example covers almost the entire parcel area.  

The house has no tree occlusion and the only factor that might affect the segmentation 

result is the multiple tilt roof sections.  The tilted roof may derive shadow region, as 

depicted in scenario 7, and prevent successful segmentation.  Similar to scenario 7, the 

roof is represented by several classes.  The histogram analysis and the Isodata result show 

multiple segments on the roof.  Unlike scenario 7, there is a fairly continuous and large 

section in the middle of the roof that is segmented by the Isodata and the region growing 

algorithm.  This section provides a visual, better representation of the roof.  That section, 

as segmented by the Isodata algorithm, does not adequately represent the entire area of 

the house.  As a result additional manual post-processing is required. 
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The histogram plots in figure 104 provide some explanation to the histogram analysis 

result. Figure 102 shows four dominant classes that represent the roof (histogram analysis 

result in the middle).  Those are fairly consistent with bands one and two in the histogram 

plots which appear highly correlated.  The third band is not as correlated to bands 1 and 

2.  That is consistent with the feature class plot in figure 105. 

 

Figure 104 – scenario 7.  Histogram plots of the (left to right) Red, Green, Blue bands 

The feature space plots in figure 105 show higher degree of correlation between the 

bands 1 and 2.  clearly, the lighter grey level are more dominant in that image as the 

concentration of most pixels (blue and cyan pixels) are located at the top end of the 

feature space plots.  Since the house covers most of the image, the building class is part 

of all the classes.  That explains the misclassification and confusion in the Isodata 

classification result.  Each of the classes represents pixels on the roof as well as pixels 

around the house.   
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Figure 105 – scenario 7.  Feature space plots for bands combinations: 1-2, 1-3, 2-3 

Consistent with scenario 7, testing results for this image indicate that the roof 

construction has a crucial affect on the extraction result.  Multiple tilted roof sections 

may produce shadow regions on the roof and prevent successful segmentation.  

Automatic extraction methods may only partially extract the roof top area and would 

require manual post-processing   

4.2.3.4 Residential Testing Conclusions 

Residential buildings and their environment pose great challenges on any automatic 

extraction algorithm.  The nature of the residential scene emphasizes an attractive living 

environment.  As a result, residential houses are often characterized by interesting 

architecture and near by trees.  Those may look nice, but make the automatic extraction 

of the structure complicated or even impossible. 

The initial testing of the overall model on residential parcels indicated poor extraction 

results (4.2.3.1).  Since the entire process relies on successful segmentation of the image, 

further investigation of the segmentation was performed.  The evaluation of the 

histogram analysis result was performed in comparison with a well known and commonly 

used classification procedure (ISODATA).  The methods were tested in two testing areas 
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that differ by the amount of trees around the houses.   No extraction procedure performed 

well enough to allow further automatic analysis and refinement of the segments.  The 

ISODATA performed slightly better as indicated in section 4.2.3.1 but may still require 

exhaustive manual post processing.  Vegetation was concluded to be one factor that 

prevents correct segmentation of the roof (table 5, section 4.2.3.1) 

Following the automatic extraction procedure, a semi-automatic extraction algorithm 

was tested.  The region-growing algorithm, which has been heavily used in building 

extraction projects, was examined on 100 parcels (4.2.3.2).  The algorithm performance 

provides an indication to the complexity of the scene.  In fairly homogenous regions, the 

algorithm performs fairly well (figure 69). Hence, failure to segment a roof indicates that 

the roof signature is either complex or the surroundings of the house cause the segment to 

extend the house area.  In either case, the result is not sufficient for footprint extraction.  

Initial testing of the algorithm shows that 60 percent of the houses were not adequately 

extracted and expanded beyond the footprint of the roof.   

As indicated by the testing, no method seems to provide an acceptable segmentation 

result for all residential images.  In order to provide better guidelines for extraction, 

several representative residential parcels were selected and a comprehensive investigation 

of all the factors was performed (4.2.3.3).  The results of the testing suggest that when no 

trees obscure parts of the roof, there is an insignificant, minor or no shadow presence on 

the roof, then a fair segmentation of the roof is possible using an automatic or semi 

automatic procedure.  The histogram analysis is relatively more complex in residential 

parcels since it is characterized by a less smooth graph (abrupt changes in histogram 

values).  As a result, the Isodata classification performed slightly better for the majority 
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of cases and is recommended for a residential parcel automatic segmentation.  Before 

using the Isodata algorithm, the user should visually scan the residential parcels to verify 

the four class assumption (house; vegetation; driveway; shadows).  The region growing 

algorithm provides a result that is consistent with or better then the Isodata procedure.  

However, this algorithm is semiautomatic and requires the user to place one or more seed 

points on the roof of the building.  Moreover, the user has to define a spectral distance 

prior to the segmentation.  In about 50 percent of the testing cases, spectral distance of 50 

provides the better segmentation.  That value is recommended as an initial attempt, but 

may probably require adjustments by the user. 

 Contrary to the simple residential scenes, significant shadows on the roof and major 

trees occlusions would prevent automatic or semi-automatic extraction of the roof.  The 

presence of either factor was found to be enough to compromise the segmentation.  

Shadows may be cast by features around the house, but can be created by the multiple 

tilted sections of the roof.  Obviously, when the roof can not be clearly seen from above, 

an automatic process would fail to extract the structure.  In many cases, a human would 

be able to manually extract the footprint of the building.  In some areas, a tree may hide 

considerable sections of the house or may cast large shadow regions on the roof, and 

prevent an automatic or manual extraction.  It is recommended to visually scan the image 

prior to extraction.  The user may then be able to decide on the most efficient extraction 

methodology.   
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4.2.4 High-rise Parcels Testing 

For the selection of high-rise buildings in the Memphis area, high-rise was defined as 

a building with 10 or more stories.  An initial selection of the parcels from the tax 

assessor records identified 60 high-rise buildings that reside within 49 parcels.  Prior to 

extracting the building, a visual scan of the buildings and parcels was performed.  The 

scan revealed several prominent and occasionally unique characteristics of high-rise 

buildings and high-rise parcels.  Those characteristics were identified to pose problems or 

completely prevent the extraction of the building footprint.  A survey of those 

characteristics with examples is provided in the following section. 

4.2.4.1 High-rise buildings characteristics 

This section provides several examples of common problems that arise during the 

extraction of high-rise buildings.  Several of those characteristics may be unique to high-

rise buildings or represented in a unique manner in those types of buildings. 

Figure 106 provides an example of a high-rise building with multiple sections.  One 

part of the building appears much higher then the other part.  As a result, the high section 

cast a fairly large shadow and hides a significant section of the building.  Shadow cast on 

a building can definitely compromise the footprint extraction process. 
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Figure 106 – multi-section high-rise building.  Building footprint in green. 

Compound buildings are not unique for high-rise buildings, but pose a great challenge 

to the extraction process.  Figure 107 illustrates the difficulty of extracting such a 

compound.  As seen in the figure, each section of the compound appears differently and 

would be extracted as a separate building.  

 

Figure 107 – High-rise: Compound of high-rise buildings.  Building footprint in green.  

Parcel boundary in yellow. 

One phenomenon that seems to be fairly common for high-rise buildings is the 

inconsistency between the building outline and parcel boundary.  As seen in figure 108, 

the high-rise buildings (green polygons) do not fully reside inside the parcel area (yellow 

polygons).    In those examples, the majority of the building area is located outside the 
 

166



parcel boundary.  In the Memphis area, when the building is located inside the parcel, it 

seems to cover the majority or the entire area of the parcel. 

     

Figure 108 – High-rise building (green) outside the parcel boundary (yellow) 

As already seen in the above examples, figure 109 provides multiple examples of 

high-rise buildings with complex roof signatures.  The presence of multiple objects on the 

roofs, multiple levels and multiple sections, create a complex and complicated roof 

signature.  High-rises are commonly used by companies to install features such as 

telecom switches and antennas due to the relative height above the environment.  The 

extreme difference in signature between the different sections and variety within the 

sections adds to the complexity of the extraction procedure. 

     

Figure 109 – High-rise: Complex roof signature 
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An interesting example that emphasizes the difficulty of extracting high-rise 

buildings, even manually, is provided in figure 110.  Figure 110 includes two images of 

the same building.  The building in the Memphis orthophoto on the left and the same 

building, taken from google-earth, on the right.  On the orthophoto, it is very hard to 

identify the two sections of the building.  The building appears to be one tower rather 

then one tower and a lower level section. 

 

      

Figure 110 – High-rise building.  (Left) Memphis orthophoto (Right) Image taken from 

google-earth 

 

As predicted for high-rise buildings, shadow occlusion is one major obstacle for the 

extraction process.  Since the size of the shadow depends on the height of the building, 

the shadow cast may affect buildings around the high-rise structure as well as lower 

section of the building.     
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Figure 111 – High-rise: shadow occlusion 

 

Prior to extracting the building, a visual scan of the high-rise buildings in the 

Memphis area was performed.  Buildings were categorized based on the above 

parameters as follows (buildings are not restricted to one category): 

• 21 buildings outlines intersect the parcel outline 

• 19 buildings have multiple sections or are part of a larger compound 

• 44 buildings have complex roof signature. 

• 23 buildings have multiple levels.  All have mild or severe (obscure large 

sections) shadow occlusion. 

• 10 buildings have a roof signature that may allow automatic segmentation. 

The above categories assert that the majority of the buildings (44 out of 60) have a 

complex signature that may prevent adequate segmentation and extraction of the 

footprint.  About 30 percent of the buildings intersect the parcel outline and the same 
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percentage of buildings has significant shadow occlusion.  Out of the 60 test buildings, 

only 10 were found to be potentially extracted by an automatic process.   

4.2.4.2 High-rise testing results 

Similar to the commercial buildings testing, section 4.2.2.1, the 49 high-rise parcels 

were used to produce parcel-sized images.  The result of the extraction process is a 

vector, polygon layer.  The polygon layer was compared to the ground truth, digitized 

building dataset.  A quantitative evaluation of the result compared the vector layer with 

the digitized building dataset.  Table 6 presents the results for the high-rise buildings 

testing.  The testing parcel subset includes 49 parcels that contain 60 buildings.  The 

“Method” column represents the sequence of processes as used for the testing.  “All 

eliminate” means a full run that includes all three elimination steps: elimination by size, 

shadow and geometry characteristics.  “No size” indicates that the elimination by size 

was not part of the process.  Similarly, the methods “No Shadow” and “No Geometry” 

were tested.  Type 1 error represents the number of segments that were extracted but are 

not buildings.  Type 2 error represents the number of buildings that were not identified.  

Those buildings were either not extracted or extracted and erroneously eliminated.  

Partial extraction represents segments that represent buildings, but were extracted with an 

error of more then 50 percent of the building (for example, 45 percent of the building was 

extracted).  Success represents the remainder of the segments, which cover 50 or more 

percent of the buildings. Three additional values were calculated in order to better 

evaluate the degree of error and discrepancy between the result and the ground truth 

building layer.  The average of the over/undershoot for the buildings is calculated.  The 
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average value is the calculated mean of undershoot and overshoot for all the buildings.  

Last, the number of buildings with an area error less the 10 and 15 percent is provided.    

Table 6 - High-rise testing results 

Method Type 1 Type 2 Partial Success Average 

Over/under 

<10% <15% 

All eliminate 11 27 23 10 26.72 2 4 

No size 

elimination 

13 18 32 10 26.71 2 3 

No Shadow 

elimination 

16 21 25 14 26.95 2 4 

No Geometry 

elimination 

74 19 35 10 36.77 2 4 

 

For the full run, 11 (about 18%) segments were flagged as Type 1 error, “false 

positive” identification, where a building was extracted but does not exist.  27 (about 

45%) segments were flagged as Type 2 error, “false negative” identification, where the 

building exists but was not identified.   Out of the 60 buildings, 2 (about 3%) were 

extracted with under/overshoot percentage of not more then 10% and 4 (about 6%) with 

under/overshoot percentage of not more then 15%.  In the second scenario (“No Size”), 

the process added 9 legitimate parts of buildings, and Type 1 errors increased to 13.  In 

the third scenario (“No Shadow”), the process identified 6 additional legitimate parts of 

buildings, but Type 1 errors increased to 16 segments. The final scenario (“No 
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Geometry”) identified 8 additional legitimate parts but received a significant increase in 

Type 1 errors.  

(a)   (b)  

Figure 112 – High-rise: successful building extraction.   

Figure 112 provides two examples of successful building extraction results.  The left 

image (section a) contains one parcel and one building.  The green polygon represents the 

digitized building and the red polygon represents the result of the automatic process.  The 

right image (section b) illustrates three results: successful extraction of the corner 

building; type 2 error, where the building was not identified (the left most building); only 

parts of the building were identified separately (top building).  Figure 113 provides 

similar examples of one successful footprint extraction and two partial extractions of 

sections within the building. 
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Figure 113 – High-rise extraction result 

The one overwhelming conclusion from the above results is that the automatic 

process fails to successfully extract large percentage of high-rise buildings.  The process 

manages to identify and extract simple buildings, such as the examples in figure 112 and 

120, but those are not representative of high-rise parcels. The characteristics of the high-

rise building and the high-rise parcels, as indicated in section 4.2.4.1, prevent a successful 

footprint extraction using any automatic process.  The complexity of the signature on the 

roof of the building and the shadow casts would prevent an adequate segmentation using 

an automatic or semi-automatic process such as the region growing (4.2.3.2).   

One phenomenon that was not apparent in the Memphis orthophoto, but may have a 

significant affect on any extraction result for high-rise buildings is “relief displacement”.  

The phenomenon and the possible artifacts for the extraction process are discussed in the 

following section. 
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4.2.4.3 Relief Displacement 

In aerial imagery, one of the inherent distortions of the perspective projection is that 

objects are displaced from their accurate planimetric location due to a phenomenon called 

“relief displacement”.  Based on a definition from ASPRS (American Society for 

Photogrammetry and Remote Sensing), relief displacement is “… displacement of an 

image-point toward or away from the nadir according as the corresponding ground point 

is below or above the ground nadir Also called height displacement “.  The severity of the 

relief displacement artifact is determined by the location of the object in the image, the 

height of the object and the altitude of the sensor.  In order to overlay GIS data sets and 

measure distances on the image, un-rectified images are “orthorectifid”.  

Orthorectification changes the geometry of the image such that distortions due to terrain 

relief displacement, tilt and camera attitude variation are corrected (Jensen, 2000), and 

the result image has uniform scale.  The orthorectification process is usually performed 

using DTM (Digital Terrain Model) of the area which does not account for structures 

above the terrain.   As a result, the process does not eliminate displacement of tall objects 

such as high-rise buildings.  In figure 114 the high-rise buildings are “leaning” and show 

the side of the structure.  In a “true” orthophoto that problem is corrected, but it would 

still suffer from issues such as occluded area.  True orthophoto generation that uses DSM 

(Digital Surface Model) rather then a DTM, has been in research (Ayman et al, 2007; 

Gunay et al, 2007) but has not been widely adapted by the industry. 
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Figure 114 – High-rise buildings in mid-town Atlanta 

 

(a)      

(b)     

Figure 115 – High-rise buildings in downtown Atlanta. Parcel lines in yellow 
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Figure 115 provides several examples of the artifact caused by the “leaning” of the 

buildings.  While the bottom of the building is located inside the parcel, the top of the 

building seems to be located outside the parcel boundaries (section a).  Depending on the 

severity of the relief displacement affect, the top of the building may stay within the 

parcel boundary (section b).  The side of the building can complicate the extraction 

procedure since it may be extracted as a valid section of the building roof.  The texture of 

the side has been used in research to locate high-rise buildings (Liang, Weixin and 

Jianjun, 2004). 

Prior to any extraction procedure, the user has to evaluate the severity of the relief 

displacement phenomenon.  A minor affect may allow automatic or semi-automatic 

extraction, while more severe artifacts may prevent the extraction.  As a result, generation 

of a “true” orthophoto should be considered on a project basis. 

4.2.5 Number of Peaks Evaluation 

The initial step of the automatic building extraction process is the histogram analysis 

(4.1.2.1).  The peaks in the histogram are located and a range around the peak is defined 

as the peak area.  The values of the grey levels (colors) within each range are then 

segmented back into the image to create a classification (segmentation) result.  The result 

is further analyzed to identify the buildings and extract the footprint. 

In the current testing, the search was limited to four peaks within the histogram 

(4.1.2.1).  The initial assumption of the process is that the building area is fairly dominant 

within a localized region such as a parcel.  As a result, the range of colors that represent 

the building should manifest itself as a peak within the histogram.  In cases where the 

 
176



building is large enough, the highest peak would be representing the building.  In other 

cases it may be the second, third or even forth peak.  The purpose of this section is to 

evaluate how many peaks should be selected to extract buildings from aerial parcel-sized 

images.  For example, when selecting four peaks, what is the benefit of the forth peak 

compared with the number of type 1 errors that are added to the analysis.    

In order to evaluate the contribution of each peak to the overall extraction process, the 

segmentation result of the peaks in the image space is examined.  The location of the 

pixels, representing each of the peaks, is determined as “inside” or “outside” a building 

polygon.  Figure 116 and figure 117 illustrate the steps to evaluate the location of the 

peaks compared to the buildings.    
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(a)  (b)  

(c)  (d)  

Figure 116 – Peak analysis of a 1.25 square mile in downtown Memphis 

Figure 116 and figure 117 provide two examples for the peaks analysis.  Every 

reference to figure 116 reflects directly to figure 117.  Section (a) in figure 116 shows 

part of the testing area.  The yellow polygons represent parcels boundaries and the red 

polygons represent digitized buildings.  The digitized buildings polygon layer was 

converted to raster: buildings coded as value 1 and non-buildings coded as 0 (Figure 116, 

section b).  Section c shows a mosaic of all the parcel-sized images after the peak 
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segmentation.  Green pixels represent peak number1; brown pixels represent peak 

number 2; light blue pixels represent peak number 3; blue pixels represent peak number 

4.  The image in section b (buildings=1, non_building=0) and the segmentation result in 

section c were multiplied to create the image in section d.  This image contains the 

segmentation pixels inside the buildings.  Each pixel in the image that represents a 

building has a value between 1-4.  All the other pixels have a value of 0. 

(a)   (b)  

(c)  (d)  

Figure 117 – Peaks analysis of 0.9 square mile in downtown Memphis. 

 
179



Each building (or the symmetric difference between the parcel and the building) was 

given a zone number to create a zone layer.  The zone layer was overlaid on the segment 

image and summarized for statistics.   

 

    

Figure 118 – Peaks analysis – building represented by peak number 3 

Figures 118 and 119 provide examples of two buildings that are small relative to the 

parcel area.  As a result, the third (figure 118) and the forth (figure 119) peaks represent 

the buildings.  Figure 118 illustrates the intermediate result that includes all the 

segmentation of all peaks in the image space overlaid by the building footprint (red). 

     

Figure 119 – Peaks analysis – building represented by peak number 4 
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Figure 119 illustrates the final step of the analysis that includes only the segmentation 

result inside the building. 

The zones define the building area as well as the area around the building.  Both areas 

were analyzed and summarized for statistics.  Two detailed examples of the summary are 

provided below and illustrated in figure 120 and figure 121.   

 

Figure 120 - Peaks analysis: peak segmentation into the image.  Building polygon in red. 

Figure 120 shows a segmentation result of a parcel with one large building.  All four 

peaks are segmented into the image.  The building is mainly represented by peak 1 to 

create a large continuous segment.  The summary result for this parcel is provided in 

table 6.  Each row in the table represents a zone (the building or the area around the 

building).  The area that each peak covers within a specific zone is divided by the total 

number of segmented pixels within the zone (does not include 0 value pixels – not 

segmented!), to calculate the percent values. 
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Table 7 – Peak analysis for building in figure 127.  Percent of the peak area within the 

image 

 peak 1 peak2 peak3 peak4 
The building 95.5% 3.6% 0.67% 0.2% 

Around the building 1.3% 31.9% 45.4% 12.8% 

 

Clearly, peak 1 represents the building and does not add significant noise pixels 

around the building (pixels that do not represent features around the building).  Peaks 2, 3 

and 4 do not contribute significantly to the building segmentation (mostly peaks 3 and 4), 

but segment the area around the building. 

 

Figure 121 – Peaks analysis: 2 buildings peak segmentation into the image.  Building 

polygon in red.  Percent of the peak area within the image 

Figure 121 depict a parcel with two buildings.  Unlike the building in figure 120 that 

was represented by peak number 1 (green pixels), the buildings in figure 121 are 

represented mostly by peak number 2 (brown pixels).  The peak analysis statistics 

calculations are provided in table7. 
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Table 8 – peak analysis for buildings in figure 128 

 peak 1 peak2 peak3 peak4 
The left building 8% 85.1% 3.9% 2.9% 

The right building 9.1% 85.9% 1.6% 3.3% 

Around the building 59.6% 5.5% 19.3% 5.3% 

 

The statistics calculations in table 7 show that peak 1 and peak 2 represent the 

majority of the pixels inside and outside the building.  Peak number 1 provides 60 percent 

of the area around the building, while peak 2 represents the majority (about 85%) of the 

pixels inside the buildings.  In this case, peak number 1 provides a more considerable 

addition to the building (about 9%) compared with peak 3 and peak 4 combined (about 

5%). 

Similar peak analysis was performed for the commercial, residential and high-rise 

parcels.  Section 4.2.5.1 provides the calculation results for the commercial parcel, and 

section 4.2.5.2 and 4.2.5.3 provide the results for the residential and high-rise parcels 

respectively. 

4.2.5.1 Number of peaks evaluation for commercial parcels 

This section presents the statistics results as calculated for 1079 commercial parcels 

and 1128 buildings in the Memphis, TN downtown area.  First, the summary results for 

the pixels inside the buildings, is provided: 

• Within 667 buildings (59%) peak1 is the majority of the pixels (over 50%) 
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• Within 240 buildings (21%) peak 2 is the majority of the pixels 

• Within 76 buildings (6.7%) peak 3 is the majority of the pixels 

• Within 26 buildings (2.3%) peak 4 is the majority of the pixels 

• Within 119 buildings (10.5%) no peak has a majority 

Clearly, peak 1 and peak 2 represent the majority (80%) of the buildings.  The 

contribution of each peak to the buildings polygons was calculated as the average 

percentage of the peak within all buildings polygons.  The average values are:  

• Peak 1- average 56.6% within every building 

• Peak2 – average 25.4% within every building 

• Peak3 – average 11.8% within every building 

• Peak4 – average 6.1% within every building 

The average values emphasize the contribution of the first two peaks to the buildings 

polygons.  A count of the number of pixels that each peak contributes to the building 

region is provided.  The percentage of the pixels from the entire buildings area is also 

calculated: 

• No data - 469269 

• Peak 1 – 48981098  pixels  (76.1%)   

• Peak2 – 9514220 (14.8%) 

• Peak3 – 3828310 (5.9%) 

 
184



• Peak4 – 1942333 (3%) 

It is clear from the statistics that the first and the second peaks contribute the most to 

the building area (90% of the pixels).  Besides the total number of pixels, those peaks 

constitute to the majority of pixels within 80% of the buildings and represent a total of 

about 80% of the pixels within each building (on average). 

The statistics was calculated for the area around the building within the 1079 parcels:  

• Within 328 parcels (30.4%) peak1 is the majority of the pixels (over 50%) 

• Within 190 parcels (17.6%) peak 2 is the majority of the pixels 

• Within 35 parcels (3.2%) peak 3 is the majority of the pixels 

• Within 14 parcels (1.3%) peak 4 is the majority of the pixels 

• Within 512 parcels (47.4%) no peak is the majority 

Clearly, peak 1 and peak 2 represent the majority of pixels in about half of the 

parcels.  The contribution of each peak to the region around the buildings was calculated 

as the average percentage of the peak within the polygons.  The average values are:  

• Peak 1- average 33.9% within every parcel 

• Peak2 – average 27.1% within every parcel 

• Peak3 – average 15.1% within every parcel 

• Peak4 – average 7.6% within every parcel 
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Peak 1 and peak 2 still show a considerable contribution to the regions around the 

buildings.  The average values, however, are not as large as inside the buildings 

polygons.  About half (47.7%) of the regions around the buildings are not represented by 

a particular peak.  Still, based on the average values, it can be asserted that peak 1 and 

peak 2 provide significant data while peak 4, in particular, does not. 

The total number of pixels within each parcel for the region outside the buildings 

polygons was calculated: 

• No data – 16745093  (11.1%) 

• Peak 1 –49259386 pixels  (32.7%)   

• Peak2 – 46375369  (30.8%) 

• Peak3 – 26106998  (17.3%) 

• Peak4 – 11969122 (7.9%) 

Compared to the buildings polygons, there is a larger number of “No data” pixels, 

that represent pixels that were not segmented as part of any peak.  Peak 1 provides a 

lower percentage of pixels around the buildings compared to inside the buildings 

polygons.  Peak 4, in particular does not add significant percentage of pixels to the 

region. 

The above calculations show that the commercial buildings are dominant features 

within the parcel.  For the majority of parcels (80%), the first or second peaks represent 

the pixels of the building roof.  Those two peaks also provide 60 percent of the “noise” 

pixels around the buildings.  Peak 3 and peak 4 contribute significantly to about 10% of 
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the buildings and add about 25% of the “noise” around the buildings.  It may be 

beneficial to use only peak 1 and peak2 for the extraction of commercial buildings.  

Removing peak 3 and peak 4 reduces the extraction rate by about 10% but also reduces 

the number of candidate segments and the significant effort and time of manual post-

processing.  The use of peak number 4 in particular should be considered due to the low 

contribution of the peak to the overall extraction process.   

 

4.2.5.2 Number of peaks evaluation for residential parcels 

The peak analysis was performed for similar number of residential parcels and 

buildings.  The statistics for 1138 buildings was calculated as follows: 

• Within 290 buildings (25.5%) peak1 is the majority of the pixels (over 50%) 

• Within 64 buildings (5.6%) peak 2 is the majority of the pixels 

• Within 27 buildings (2.3%) peak 3 is the majority of the pixels 

• Within 2 buildings (0.2%) peak 4 is the majority of the pixels 

• Within 755 buildings (66%) no peak is the majority of the pixels 

Two of the above values may explain the difficulty of automatically extract 

residential buildings.  Peak 1, that was shown to provide a majority in almost 60% of the 

commercial buildings, has a majority of pixels in only 25% of the buildings.  More over, 

peak 1 and peak 2 combined, have a majority of pixels in only 30% of the buildings.  In 

66% of the buildings there is no clear majority to any class.  That indicates a high degree 
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of confusion within the building area segmentation and explains the low extraction rate of 

residential buildings.  That finding is consistent with the result of the residential buildings 

classification analysis in section 4.2.3.3. 

The contribution of each peak to the region inside buildings was calculated as the 

average percentage of the peak within the polygons.  The average values are: 

• Peak 1- average 36.1% within every building 

• Peak2 – average 18.4% within every building 

• Peak3 – average 12.2% within every building 

• Peak4 – average 7.2% within every building 

The total number of pixels for each peak inside the buildings was also calculated: 

• No data – 549828 (26%) 

• Peak 1 –783871pixels (36.8%)   

• Peak2 – 394679 (18.5%) 

• Peak3 – 249794 (11.7%) 

• Peak4 – 150768(7%) 

The calculated statistics for the residential buildings suggest that peak1 is not as 

dominant compared to the commercial buildings (36.8% vs 76.1%).  Peak 3 and peak 4 

maintain the low contribution to the buildings polygons and probably add to the 

confusion during the extraction.  About 25% of the pixels within the buildings polygons 
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are flagged as “No data”, which suggests that about a quarter of the pixels inside each 

building polygon are not classified.  That significant lack of segmentation emphasizes 

high degree of signature confusion of the roof of residential buildings.   

Statistics was calculated for the regions around the buildings:  

• Within 219 parcels (21.1%) peak1 is the majority of the pixels (over 50%) 

• Within 23 parcels (2.2%) peak 2 is the majority of the pixels 

• Within 5 parcels (0.5%) peak 3 is the majority of the pixels 

• Within 1 parcels (0.1%) peak 4 is the majority of the pixels 

• Within 789 parcels (76%) no peak is the majority of the pixels 

The contribution of each peak to the region around the buildings was calculated as the 

average percentage of the peak within the polygons.  The average values are  

• Peak 1- average 30.8% within every parcel 

• Peak2 – average 15.7%   within every parcel  

• Peak3 – average 12%   within every parcel 

• Peak4 – average 8.5%    within every parcel 

The total number of pixels for each peak around the buildings was also calculated: 

• No data – 3307899 (53.8%) 

• Peak 1 –1476607 (24%)   

 
189



• Peak2 – 656926 (10.6%) 

• Peak3 – 422850   (6.8%) 

• Peak4 – 280783 (4.6%) 

The large number of pixels that are not segmented (“No data”) may indicate that there 

are many small patches and island segments within the parcel.  Segments around the 

buildings are classified as noise, and there is no reason to expand the number of peaks in 

order to include them.  The statistics suggest a great degree of confusion within the 

residential extraction process, which directly affects the extraction rate.  A building 

polygon that does not have a majority of pixels with the same value (same peak) has a 

low probability for successful extraction.  As indicated in section 4.2.3.3., automatic 

extraction of residential buildings poses a great challenge.  The findings in this section 

help to illustrate the nature of the residential scene and help to explain the analysis 

challenges and low extraction rate. 

4.2.5.3  Number of peaks evaluation for high-rise parcels 

Similar to the commercial and residential peak analysis, statistics was calculated for 

the 49 high-rise parcels and 60 buildings.   

• Within 12 buildings (20%) peak1 is the majority of the pixels (over 50%) 

• Within 2 buildings (3.3%) peak 2 is the majority of the pixels 

• Within 6 buildings (10%) peak 3 is the majority of the pixels 

• Within 2 buildings (3.3%) peak 4 is the majority of the pixels 
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• Within 38 buildings (63.3%) no peak is the majority of the pixels 

Clearly, for a large percent of the high-rise building (over 63%), no peak dominates 

the roof top area.  That value explains the high degree of confusion during the 

segmentation of high-rise buildings.  It can explain the low extraction success rate for 

high-rise structures. 

The contribution of each peak to the regions inside buildings was calculated as the 

average percentage of the peak within the polygons.  The average values are: 

• Peak 1- average 27.3% within every building 

• Peak2 – average 15.2% within every building 

• Peak3 – average 15.5% within every building 

• Peak4 – average 7.6% within every building 

Total number of pixels representing each peak, and their percent within the building, 

were calculated: 

• No data – 482439.000 (27.3%) 

• Peak 1 –424112 (23.9%)   

• Peak2 – 239765 (13.5%) 

• Peak3 – 466207  (26.3%) 

• Peak4 – 156721 (8.9%) 
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The statistics calculations for the buildings polygons illustrate the complicated 

building extraction task.  There is a similar average contribution of peak 1 (24%), peak 3 

(26%) as well as the not-segmented pixels within the buildings.  This mixture of pixels 

within a building prevents a successful identification and extraction of the building 

footprint.  The statistics emphasize and are consistent with the low extraction rate for the 

high-rise buildings, as presented in section 4.2.4. 

The same statistics were calculated for the area around the building for all 49 high-

rise parcels: 

• Within 9 parcels (18.4%) peak1 is the majority of the pixels (over 50%) 

• Within 7 parcels (14.3%) peak 2 is the majority of the pixels 

• Within 2 parcels (4%) peak 3 is the majority of the pixels 

• Within 0 parcels (0%) peak 4 is the majority of the pixels 

• Within 31 parcels (63.2%) no peak is the majority of the pixels 

The contribution of each peak to the regions around the buildings was calculated as 

the average percentage of the peak within the polygons.  The average values are: 

• Peak 1- average 34.6% within every parcel   

• Peak2 – average 25.8% within every parcel 

• Peak3 – average 12.4%   within every parcel 

• Peak4 – average 5%    within every parcel 
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Finally, the number of pixels and their percentage was calculated: 

• No data – 389972 (14.8.8%) 

• Peak 1 –1476607 (37.7%)   

• Peak2 – 656926 (23.4%) 

• Peak3 – 422850   (17.4%) 

• Peak4 – 280783 (6.7%) 

The statistics for the high-rise buildings and the regions around the buildings 

emphasizes the great challenges of extracting high-rise buildings from aerial images.  In 

order to achieve successful extraction result, the desirable result of the segmentation 

should be continuous, large segments that represent the buildings, and small insignificant, 

easy to eliminate segments around the buildings.  The significant contribution of multiple 

peaks to the building polygons suggests that the segmentation result would not produce 

clear and obvious building footprints.  The building region are represented as multiple 

smaller segments and require manual post processing.   

Consistent with the findings for the residential and commercial parcels, the forth peak 

contributes the least information to the extraction process. In the case of high-rise 

buildings, the average contribution of the peak is minimal (5% on an average), and the 

peak pixels do not represent a majority for even one building polygon.  Elimination of the 

forth peak would probably not considerably change the extraction results. 
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4.2.6 Using Parcel Setbacks in the Analysis 

The following section examines the use of parcels setbacks to isolate the built area 

within the parcel.  Setbacks identify the approved building area within a parcel by 

defining distances from the parcel boundaries.  Setbacks may vary between zoning 

categories and subcategories (different residential zoning areas).  Moreover, the same 

zoning category might have different setbacks in different regions.  For example, 

Commercial parcel within the Central Business District (CBD) in Memphis has no 

setbacks, while commercial parcel within a local commercial district has defined setbacks 

(See ordinance Appendix J). Due to the large number of categories and subcategories, 

one residential and one commercial zoning categories were tested to evaluate the possible 

affect of setbacks on the extraction process. 

 

4.2.6.1 Setback analysis – Residential parcels 

The Memphis region ordinance includes 4 different zoning categories for single-

family houses parcels (R-S15, R-S10, R-S8, R-S6).  The minimum setback required for 

those categories is 5 ft setback on the side of the parcel.  In order to evaluate the 

feasibility of using setback to better isolate the building prior to the extraction, a 5ft 

buffer was created for all selected residential parcels (OCC_CLASS column in the 

database equals “RES1”). 

1761 residential parcels were extracted from a mosaic orthophoto image.  The parcels 

layer original boundaries intersect 238 (13.5%) houses.  Figure 122 illustrates four 
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residential parcels (yellow polygons) with four houses (green polygons).  A 5 ft setback 

inner buffer was defined within each parcel. The buildings polygons that intersect the 

parcel and setback outlines are highlighted. 

   

Figure 122 – Setbacks analysis –single family houses. (Green polygon) digitized house 

outline.  (Yellow) parcel.  (Pink) 5ft buffer inside the parcel.  Building crossed by the parcel 

line is highlighted. 

A total of 364 houses are crossed by the outline of the 5 ft buffer.  This is an increase 

of 126 houses or 53% over the 238 houses crossed by the original outline.  Besides the 

large addition of houses crossed by the minimum-setback buffer, the minimum-setback 

buffer does not cover a significant portion of the parcels, hence would probably not have 

a significant affect on the result of the automatic process.  A methodology that takes into 

consideration the different setbacks on the front/side and rear of the parcel by possibly 

including a road layer may be implemented and better isolate the building.  Since three of 

the residential categories have 5ft setback for the side and 20 ft setback for the rear and 

front, a 20 ft setback buffer was also applied to the parcels (Figure 123). 
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Figure 123 – Setback analysis.  20 ft inner buffer (orange) 

The residential parcels dataset has an average parcel area of 1961.8 sqft.  A manual 

visual observation of the 5ft and 20 ft buffer reveals that the buffers do not significantly 

reduce the number of objects that would be segmented around the building.  As a result, 

the setbacks do not decrease the processing or the post processing time and effort.  The 

setbacks were shown to increase the number of buildings that intersect with the boundary 

(5ft inner buffer provides an increase of 50%).  An intersection between a building and a 

boundary indicates that sections of the building would not be segmented or extracted.  

That is a major limitation of using setbacks, and the degree of the phenomenon has to be 

evaluated on a project (region) basis.  This approach may be re-evaluated in regions 

where the setback area constitutes a larger percentage of the parcel and does not increase 

the number of buildings that intersect the boundary of the parcel. 
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4.2.6.2 Setback analysis- commercial parcels 

The Memphis ordinance includes several commercial and office zoning categories.  

The C-P and C-L required zoning setbacks were used to define the buffers for the testing. 

A10 ft minimum setback for the side, rear and front of the parcels was defined.  From the 

parcel layer, commercial parcels with occupancy of “COM2”, which represents 

warehouses in the Memphis area, were extracted.  That category includes 399 parcels. 

105 buildings were crossed by the outlines of the 399 commercial parcels boundaries 

before the buffer was incorporated.  200 buildings were crossed by the outline of the 10ft 

buffered parcels (pink polygons, figure 124).  This indicates a significant increase (90%) 

in the number of buildings that intersect with the polygon boundary.  For that parcels 

category, the front setback is defined as 30ft and the rear setback as 15ft.  In order to 

evaluate the isolation of the building using setbacks, a 30 ft setback was also defined for 

the parcels.  Similar to the residential parcels, the setback buffers, even the maximum 

setback values buffers, do not significantly reduce the number of possible extracted 

objects within the parcel.  However, the setbacks inner buffers add extensively to the 

number of buildings that intersect the buffered outline.  328 buildings were crossed by 

the outline of the 30 ft buffer, which indicate an increase of 223 buildings (or 212%) 

compared to the buildings that intersect the original parcels layer.  The uniform buffer 

that was used in the testing may be replaced by the specific setbacks for the 

side/front/rear of each parcel.  Based on the commercial parcels setback analysis, 

setbacks do not seem to better isolate the built area in the parcel without increasing the 

probability of eliminating sections of the building. 

 
197



               

Figure 124- setback analysis – commercial buildings.  (yellow) parcels (pink) 10 ft buffer 

(orange) 30 ft buffer 

4.2.6.3 Setback analysis – high-rise parcels 

High-rise buildings, particularly due to relief displacement, extend the boundary of 

the parcel.  34 out of the 60 high-rise buildings are crossed by the outline of the parcels 

boundary.  The majority of the buildings are office buildings, and as such, a minimum 

setback of 5ft has been used for the inner buffer. 

       

Figure 125 - Setback analysis – high-rise parcels.  (yellow) parcels (pink) 5ft buffer 
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The 5ft inner buffer within the high-rise parcels did not change the number of 

buildings that intersect the boundary.  As can be visually seen in the examples in figure 

125, the buffer do not reduce the number of potential segmented objects.  For many high-

rise parcels, the building area covers most of the parcel area.  As a result, the setbacks do 

not seem to isolate better the built area within the parcel.   

 

4.2.7 Ratio of Building Area to Parcel Area Evaluation 

The following section examines the ratio between the building area and the parcel 

area.  The ratio of buildings that were successfully extracted as well as building that were 

not extracted is presented in order to identify a possible connection between the ratio and 

the probability to extract the building. 

4.2.7.1 Building to parcel ratio - commercial 

The ratio between the building area and the parcel area was calculated for all 1128 

commercial buildings. 

• 353 have a ratio less then 10% 

• 235 have a ratio between 10-20% 

• 449 have a ratio between 20-50% 

• 70 have a ratio between 50-100% 

• 21 buildings have a ratio greater then 100% 
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For the buildings that were not extracted, the average ratio is 11.6%, ranging from 

0.47% (3590/671234.9) to 247% (32566/13142.4).   

• 109 out of 169 ( 64.5%) undetected buildings have a ratio less than 10% 

• 143 out of 169 (84.6%) undetected buildings have a ratio less than 20% 

• 164 (97%)– less than 50%  and 165 less than 56 

• The rest (3) are over 100% 

Office complexes that were tested within the commercial category tend to expand 

over multiple parcels, have a ratio greater then 100% and were complicated to extract. 

For the successfully extracted buildings, the average ratio was calculated as 32.1% 

ranging from 0.6% (9217.8/1542941.8) to over 100% (4142.4/2110).  The building with 

the ratio over 100% was extracted in two different parcels.  Clearly, the average ratio of 

the extracted buildings (~32%) is higher than the average for the buildings that were not 

extracted (~11%). 

• 244 out of 936 (26.1%) detected buildings have a ratio less then 10% 

• 445 out of 936 (47.5%) detected buildings have a ratio less then 20% 

• 870 out of 936 (92.9%) detected buildings have a ratio less then 50% 

• 915 out of 936 (97.8%) detected buildings have a ratio less then 100% 

• The rest were extracted as section within more then one parcel. 
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The ratio calculations show that the majority of the extracted buildings (92.9%), as 

well as the majority of the un-extracted buildings (97%), have a ratio less than 50%.  

However, 64.5% of the buildings that were not extracted and only 25.5% of the extracted 

buildings have a ratio less than 10%.  Moreover, almost 85% of the buildings that were 

not extracted have a ratio less then 20% compared to 47.5% of the extracted buildings.  It 

can be inferred that buildings with “building to parcel ratio” lower then 10% (hence, not 

dominant within the parcel) have a lower probability of being extracted.  That conclusion 

is directly correlated to one of the initial project assumption.  The assumption suggests 

that within a parcel region, a building is dominant enough to be extracted.  Of course, the 

extraction result also depends on the number of other distinct features in the parcel (each 

feature type represented as a peak in the histogram). 

4.2.7.2 Building to parcel ratio - residential 

For the residential houses ratio calculation, 949 houses within the same image mosaic 

were selected.  As concluded in section 4.2.3, the automatic extraction process shows 

insufficient results for residential parcels.  The evident factors that prevent the extraction 

were identified as trees, shadows and roof construction.  This section examines the ratio 

between the house area and the parcels area as follows:   

• 224 (23.6%) buildings have a ratio less then 10% 

• 527 (55.5%) buildings have a ratio less then 20% 

• 799 (84.1%) buildings have a ratio less then 50% 

• 816 (85.9%) buildings have a ratio less then 100% 
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• 133 (14%) buildings have a ratio over 100% 

The mean ratio for the residential buildings is 97.9% with range of 0.09% – 2719.2%.  

It should be noted that all the buildings with a ratio over 100% are either townhomes or 

condominiums. As expected, the ratio of these structures has a significant affect on the 

mean ratio.  Those structures expand over multiple parcels and are very difficult to detect.  

It is recommended to merge all adjacent condominium and townhome parcels prior to 

any extraction attempt.   

The percent of residential buildings that have a ratio less then 10% and less then 20% 

is similar to the percent of the commercial buildings that were extracted (23.6 vs 26.1/ 

55.5 vs 47.5).  These ratio percentages were shown previously to successfully 

differentiate between the extracted and un-extracted commercial buildings.  Hence, for 

residential buildings it is suggested that the ratio between the buildings/house and the 

parcel is not a significant factor that can prevent the extraction.  The environmental and 

architectural characteristics have a greater affect on the extraction outcome.  

4.2.7.3 Building to parcel ratio – high-rise 

The ratio between the building area and the parcel area was calculated for the 60 

high-rise buildings as follows: 

• 15 buildings have a ratio greater then a 100% 

• 13 buildings have a ratio between 50-100% 

• 32 buildings have a ratio less then 50% 
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The 10 buildings that were successfully extracted range between 4-88% ratio of 

building to parcel area, with an average of 35%.  Buildings that expand beyond the 

boundary of the parcel in a rate of 200 to even 1000 percent (building 10 times bigger 

then the parcel), obviously, can not be successfully extracted.  There were 9 buildings 

with that extreme ratio within the 60 building sample.  Similar to the residential buildings 

conclusion, the building to parcel ratio does not appear to be a significant factor that 

accounts for the poor extraction.  45 of the 60 buildings cover more then 50% of the 

parcel, while only 10 were extracted successfully.  Factor such as shadows, multi-levels 

and complex roof signatures appear to have the most considerable affect on the extraction 

result (section 4.2.4) 

4.2.8 Testing Manual Digitization 

The manual portion of the testing entails manually identifying and digitizing 

buildings from 1ft imagery.  The goal is to compare the automatic and manual results as 

well as two different manual digitization methodologies. The testing comprised of three 

steps: (1) complete manual digitization of buildings from a full aerial image scene; 

(2)“cleaning” the automatic extraction result; (3)complete manual digitization of 

buildings from pre-cut parcel-sized images.  The steps were evaluated for commercial 

and residential areas separately and do not include the second step for residential 

buildings (due to the poor performance of the automatic process for those buildings).  

The user logs the time it takes to perform each of the steps.   

The first step provides the reference work, as currently performed when building 

footprints are manually digitized from images.  The result is compared with the “clean” 
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result of the automatic process and includes a quantitative evaluation.  In addition, the 

result of the first step is compared to a manual digitization from parcel-sized images.  The 

comparison allows evaluating the potential savings of time and effort by digitizing from 

parcel-sized images rather then the entire full image scene. 

For the manual testing, 50 commercial and residential parcels were selected (figure 

59 – selected parcels are highlighted).  In order to compare the manual effort with the 

automatically extracted result, the subset of selected parcels has to account for the types 

of parcels used in the automatic process.  As a result, the selected parcels comprised of 

multi-building parcels (12 parcels); parcels in which buildings were not automatically 

extracted (7 parcels); non-rectangular buildings (20 parcels); small parcels (14 parcels) 

and a variety of grey level color buildings.  The residential parcels were selected to 

include houses that can be easily and clearly identified and houses that have interfering 

objects and shadows in their surroundings.   

   

Figure 126 – 50 commercial (left) and 50 residential (right) parcels selected for manual 

digitization 

During the digitizing process, the parcel layer, as illustrated in figure 126, is overlaid 

on the image.  The results are presented in table 8 below.  The commercial parcels 
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include 50 parcels with 84 digitized structures, comprised of 825 points (built structures 

range from 4 corner buildings to 29 corner compound building).  The residential 

buildings include 50 structures comprised of 334 points (houses range from 4 corners to 

12 corners structures). 

Table 9 - Results of manually digitizing building within parcels 

Method Time Time Per 
building 

Time per 
corner 

Average Difference in 
Area (%) 

Commercial – manually 
digitizing a full image 42 min 30sec 3.1sec N/A.  this is the reference 

layer 

Commercial – “cleaning” 
automatic extraction 
result 

18.5min 13.2sec 1.3sec 3.35% 

Commercial – manually 
digitizing parcel-sized 
images 

26min 18.5sec 1.9sec 2.01% 

Residential - manually 
digitizing a full image 16min 19.2sec 2.9sec N/A – this is the reference 

layer 

Residential - manually 
digitizing parcel-sized 
images 

11min 13.2sec 2.0sec 7.01% 

 

Table 9 presents the results of the manually digitized buildings for the scenarios 

detailed above.  The table includes several quantitative comparisons between the 

methods.  First, three different time measures are provided: the overall time for 

accomplishing the task is provided; the time is divided by the number of buildings to 

allow better evaluation of the average time it takes to complete the task per building; time 

is divided by the number of corners.  The last column provides a measure of discrepancy 

between the result of a method and the digitized buildings layer. The reference layer for 

the comparison is the result of digitizing buildings from the full image scene.  The layer 

was selected as the reference to allow consistency for user decision making during the 
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process as well as a measure of reference to the currently used method by the industry to 

digitize buildings.  The selected method is not confined or restricted by the parcel layer. 

Hence, it allows an analysis of the advantages and disadvantages of using parcels for the 

manual building extraction.  The area discrepancy is measured in percent and is 

calculated by adding all the “symmetric differences” in area between the two layers, and 

then dividing by the total building area in the reference layer. 

The first three rows in the table compare three different methods for extracting 

commercial buildings.  The first row provides the results for manually digitizing 

buildings on an entire image scene.  The second row provides the results for “cleaning” 

the automatic process result.  “Cleaning” refers to eliminating segments that are not 

buildings, merging segments where appropriate, moving or deleting vertices and fully 

digitizing buildings that were not extracted.  The cleaning is performed on the vector 

polygon layer overlaid on the full image.  The third row provides the results for manually 

digitizing buildings from parcel-sized images.   

Based on the testing, the most time consuming method (42 min) to manually extract 

buildings is to digitize the structures from an entire image scene.  There is almost a 40 

percent reduction of time when the digitizing is performed on parcel sized images (26min 

versus 42 min).  There is about 56 percent reduction in time for “cleaning” the automatic 

result (18.5min versus 42min).  The significant reduction in time between manually 

digitizing from a full image versus parcel-sized images can be attributed to the constant 

miscellaneous zooming (in and out) and panning through the image.  Figure 127 portraits 

the substantial differences between the commercial structures.  The image on the left 

illustrates the great variety of sizes that represents commercial buildings.  Moreover, the 
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residential image on the right emphasizes the difference between commercial and 

residential scenes.  While the commercial parcels and buildings deviate greatly in size, 

the residential buildings are fairly uniform.  As a result, while digitizing buildings from a 

commercial scene, the user has to constantly zoom in and out and pan throughout the 

image.  Those actions contribute considerable time to the overall digitizing task.     

    

Figure 127 – (Left) commercial buildings and parcels show a wide variety of building sized; 

(Right) residential buildings and parcels fairly uniform in size.  

The least amount of time was attributed to “cleaning” the automatic extraction 

process.  The considerable time difference is due to the fact that many of the buildings 

were already extracted and some did not need any correction.  As pointed by the user, the 

actions of merging segments and moving or deleting vertices require more time then 

simple digitizing.  Hence, even though not all the points had to manually extracted, there 

is only about 50 percent savings in time between fully manually digitizing and cleaning 

the result.  That difference, however, can become significant when extrapolating to larger 

regions.  The 56 percent difference for cleaning the automatic result and 38 percent for 

digitizing from parcel sized images, interpret into 78.3 and 53.3 working hours 
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respectively for 10,000 buildings.  That means that in order to extract 10,000 buildings 

from aerial images, we may save 78.3 hours by cleaning the result of an automatic 

process and 53.3 hours by digitizing from the parcel-sized images.  The minor 

discrepancies in areas between the different methods are largely insignificant as depicted 

in figure 128.  The result of manually digitizing the parcel-sized images is better (2.01%) 

then the clean result of the automatic process (3.35%), since some artifacts of the 

automatic process and generalization were not corrected (see right image on figure 128).    

   

Figure 128 – (Left) green - buildings digitized on a full image;  red – buildings digitized on 

parcel-sized images.  (Right) green - buildings digitized on a full image;  red – “clean” result 

of an automatic process 

The 2.01% difference is attributed to two buildings that were cut by the parcel 

boundary.  Figure 129 illustrates one of the two buildings with 25.2% discrepancy in 

area.  The user was able to take advantage of sections of the building within the parcel 

boundary to assess the location of sections that were not available outside the parcel 

boundary.   Without the buildings that had sections outside the parcels boundaries, the 

method of digitizing buildings from parcel sized images yields an area discrepancy of 1.5 

percent. 
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Figure 129 – (green) building footprint as digitized on a full image (red) building footprint 

as digitized on a parcel sized image (yellow) parcel boundary 

The forth and fifth rows in table 8 provide the results for the residential buildings.  

The 50 residential parcels include only 50 buildings with significantly smaller number of 

corners compared to the commercial parcels. Hence, the considerable difference in 

manually digitizing the commercial and residential buildings.  Moreover, as depicted in 

figure 60, the size of residential parcels is fairly uniform and does not require as much 

zooming in and out during the digitizing process.  The results show a consistent 

significant reduction in time (32%) between digitizing from a full image (16min) versus 

digitizing from parcel sized images (11min).  The major difference between a 

commercial and residential scene is the degree of decision making required by the user.  

In a residential scene there are many interfering objects and phenomena, such as trees and 

shadows that obstruct the building footprint.  The user has to invest more time to assess 

the actual location of the building corner.  As a result, even the same user may extract the 

footprint of the building with great discrepancy.   Figure 130 illustrates two such 

examples, where the same buildings were extracted manually with differences of 46.5 

(left image) and 15 (right image) percent in area.  Unlike the left image (with the 46.5% 
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discrepancy), the user was able to take advantage of a more clear shadow area and tree 

branches to better locate the building footprint on the right image.  

    

Figure 130 – Footprint discrepancy between two manually digitized residential buildings.  

Green and red represent the building footprints.  Yellow represents the parcel boundary. 

Figure 131 illustrates the result of manually digitizing residential houses in a clear, 

free from trees parcels. 

 

Figure 131 – discrepancy between manually digitized residential buildings.  (Green) – 

digitizing on a full image  (Red) – digitizing on parcel-sized images.  
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The manual testing provides several insights regarding the use of parcels for the 

building extraction process.  Parcels can assist to significantly reduce the time and effort 

required to extract buildings.  They may be utilized as part of an automatic process as 

well as part of a manual extraction procedure.  As presented above, digitizing buildings 

from parcel sized images rather then the full image scene may dramatically reduce the 

extraction time.  To avoid cases where the parcel cuts through a building outline, it is 

recommended to apply a buffer around the parcel prior to cutting the images.   
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Chapter 5 CONCLUSIONS 

5.1 Recap of the process 

The research as described in this document presents a new approach to building 

extraction from aerial imagery.  The integration of several available GIS data sources 

including both the spatial and attribute data, provide an innovative methodology to solve 

or better meet the challenges of building extraction.  The research presents a 

methodology that includes several new approaches to address the complexity of the 

problem.  Those include partitioning the image, adding tax assessor attribute data and 

including user-one-time-intervention for shadow direction definition.  The analysis 

procedure entails multiple stages including geometric evaluation of the extracted 

segments.  The importance of the geometric analysis is demonstrated and emphasized in 

the geometric analysis sections of this document.   

The process is tested and evaluated on three distinct and different types of buildings 

including commercial, residential and high-rise.  The evaluation provides a comparison 

between the three types of buildings as relates to the extraction process.  The automatic 

extraction was found to be more successful in commercial parcels compared with 

residential and high-rise parcels.  Various factors that may affect the result of the 

extraction process were identified and investigated.  The nature of the roof signature has 

a significant and direct affect on the segmentation, and as a result, on the entire extraction 

process.  Other contributing factors may be the size of the building relative to the parcel, 

shadow analysis, the slope of the roof, number of buildings within the parcel (multi-

 
212



building parcels), building compound architecture and building-specific phenomenon 

such as relief displacement for high-rise structures (4.2.4.3).  Some factors may be 

possibly resolved (size, shadow, compound) while some (complex roof signature) will 

remain an obstacle to any automatic extraction process.  The unique nature of each type 

of structure poses specific challenges on the extraction procedure that need to be tackled 

and further investigated.   

The extraction process design, implementation and results are presented in the 

previous chapters.  Initial parcel-based partitioning of the image is performed.   The 

simplicity of the partitioned image provides an easy and efficient way to improve the 

extraction process.  The benefit of the image partitioning as well as the drawbacks are 

presented.   Image partitioning localizes the search to a significantly smaller and limited 

area and provides the opportunity to make certain simplifying assumptions.  It allows a 

relatively simple histogram analysis that correlates section in the histogram to features in 

the image space.  The image partitioning was examined to evaluate the potential benefit 

as part of a manual building extraction.  The drawbacks of the partitioning, mainly 

parcels outlines intersecting structures, were evaluated for the three different types of 

buildings (commercial, residential, high-rise).  Recommendations were provided 

according to the testing and evaluation findings.  It was found that the vast majority 

(about 85%) of commercial and residential buildings resides within the parcels 

boundaries, and most non-compound buildings that intersect the parcel boundary, 

maintain a significant portion of the building within the parcel area.  As a result, it can be 

concluded that the parcels layer can be used to localize the search for the buildings by 

dividing the image.  The loss of information is secondary to the obvious benefit to the 

 
213



 
214

extraction process and can be further reduced by applying a buffer around the parcels.  

On the contrary, the majority of high-rise buildings, particularly due to relief 

displacement, extend the boundary of the parcel.  Successful extraction of high-rise 

buildings would require applying a buffer around the parcel.  Image partitioning was also 

found to significantly reduce the time and effort required to manually extract buildings.  

It is shown that digitizing buildings from parcel sized images rather then the full image 

scene may dramatically reduce the extraction time.  It is recommended to apply a buffer 

around the parcel prior to cutting the images in order to provide the user with the entire 

building area.   

Following the image partitioning, histogram analysis and image segmentation is 

performed.  The histogram analysis and segmentation is a crucial stage within the 

extraction process.  The results establish that a poor segmentation results are correlated 

with poor building extraction.  Different factors may affect the segmentation result and 

they may vary by type of structure.  The significant factors that can affect the 

segmentation are identified for each type of structure.  Moreover, the project evaluates 

how prevalent the different factors are in preventing the building extraction.   

One of the main assumptions of the process suggests that the building is a dominant 

feature within a localized parcel area and as a result should be manifested as a significant 

peak within the image histogram.  The correlation between the histogram peaks and the 

features in the image is evaluated to determine the number of peaks that should be 

considered for the histogram analysis.   

The feature segmentation is followed by a series of analyses.  The analyses include 

size analysis, shadow analysis and geometry analysis of the segments.  Each step is tested 



and evaluated for the contribution it provides to the extraction process.  The size analysis 

is based on tax assessor attribute data and was shown to benefit the extraction but appears 

to be sensitive to extraction artifacts such as segmentation overshoot/undershoot.  The 

shadow analysis requires user input.  The analysis verifies the legitimacy of a segment as 

a 3D, shadow casting feature, such as a building.  Shadow segmentation in the image 

space and the analysis limitations are presented and discussed.  The geometry analysis 

incorporates multiple common geometric shape characteristics.  These parameters are 

individually examined by comparing the behavior of the parameter between building and 

non-building extracted segments.  The value of each parameter is then used to calculate 

the probability of a segment to be a building.  The remaining segments are converted to a 

vector polygon layer for possible manual post-processing. 

The process was tested for different scenarios: full run including all three analysis 

steps; excluding the size analysis; excluding the shadow analysis; excluding the geometry 

analysis.  Each run provides a way to isolate the affect of certain analysis on the 

extraction process, hence, evaluate the benefit to the overall process.  Results and 

recommendations are presented and discussed.  The commercial building analysis found 

that the full run, that includes all elimination steps, increases the overall accuracy of 

extraction and reduces the amount of manual post-processing.  The geometry analysis 

appears to be a significant step in the elimination analysis with considerable affect on the 

final result.  The “no size” and “no shadow” analysis, maintain an important role in the 

overall analysis and should be integrated in the process to reduce the post processing 

effort    A detailed examination of residential parcels was performed to evaluate and 

better understand the unique nature of the residential environment.  Two well known and 
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accepted feature classification methodologies were tested and compared to the histogram-

based segmentation process.  The complex environment and the factors that prevent 

successful extraction are discussed at length.   It was noted that residential buildings and 

their environment pose great challenges on any automatic extraction algorithm.  The 

nature of the residential scene emphasizes an attractive living environment.  As a result, 

residential houses are often characterized by interesting architecture and near by trees.  

Those may appear aesthetic, but make the automatic extraction of the structure 

complicated or even impossible.  When no trees obscure parts of the roof, there is an 

insignificant, minor or no shadow presence on the roof, then a fair segmentation of the 

roof is possible using an automatic or semi automatic procedure.  As a result, the initial 

testing of the overall model (automatic) on residential parcels indicated poor extraction 

results (4.2.3.1).  Other extraction procedures (ISODATA, Region growing) did not 

performed well enough for all buildings to allow further automatic analysis and 

refinement of the segments and may still require exhaustive manual post processing.   

Since discovered by Hu in 1962, the moment theorem was examined, improved and 

expanded in numerous research projects.  The nature of buildings (as man made features 

that commonly appear in certain shapes) provides the opportunity to use moments to 

classify the shape of the building.  Previous projects developed indices for simple 

geometric shapes such as ellipse, rectangle and triangle based on moments.  This project 

presents a method to identify and distinguish between “I” and “O” shape features and can 

be used for building shape identification.  The method is tested and evaluated on multiple 

“clean” and “noisy” segments and proved to be successful. 
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The research identifies distinct as well as similar properties between the different 

types of building.  A separate section is devoted for each type of building to discuss the 

distinct characteristics of the building and the environment, as relates to the extraction 

process.  General factors are examined within the same chapter for all types of buildings.  

Those include building and parcel outline intersection, parcel setbacks and investigation 

of the number of peaks in the histogram. 

The contribution of the research to the advancement of science within the GIS, 

building extraction and shape recognition disciplines is discussed in the following 

section.  

5.2 Contribution to the Domain 

This section evaluates the contribution of the project to several research domains.  

The evaluation includes contribution to the industry and academic research that demands 

building inventory, contribution to the automated feature extraction effort within the 

photogrammetry and remote sensing discipline and contribution to both image processing 

and photogrammetry by introducing the moment theorem towards building extraction and 

building shape identification.  Each of the following section investigates the contribution 

of a specific section to different domains. 

5.2.1 GIS and Imagery Integration 

The research methodology as presented introduces a new overall approach to building 

extraction.  The integration of GIS and remote sensing sources as presented has not been 

implemented and tested as an entire approach.  The research integrates several 

simplification algorithms to alleviate the complex extraction process.  Image partition 
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techniques have been researched and developed within the computer science community 

for diverse applications, including feature extraction.  Clearly, an easy and effective 

method to partition the image prior to the extraction can dramatically simplify the entire 

procedure.  The research project tests and evaluates image partitioning using a parcel 

layer.  Parcels were shown to simplify the extraction process while maintaining minimum 

loss of information.  About 15% of the commercial and residential houses intersect the 

parcel boundaries as well as about 50% of the high-rise buildings.  Buildings that cross 

parcels lines were found to maintain a significant portion of the buildings within the 

parcel area.  Specific pre-processing recommendation for certain types of structures such 

as office compounds and townhouses are discussed as a result of the testing.  General 

recommendations for reducing the loss of information such as applying a pre-processing 

buffer are also discussed.  The research provides initial investigation of parcel setbacks as 

a method to isolate the built structure better within the parcel area. Using setbacks did not 

appear to efficiently isolate the building in the parcel without increasing the probability 

of eliminating sections of the building.  The research concludes that the parcels layer can 

be used to localize the search for the buildings by dividing the image.  The loss of 

information is secondary to the obvious benefit to the extraction process and can be 

further reduced by applying a buffer around the parcels.  The research project 

acknowledges the unique nature of spatial data by applying a-priori GIS data to the image 

partitioning task.  Hence, the project clearly contributes to the computer science work 

aimed at image partitioning for feature extraction (Berretti et al, 2000; Carson et al, 2002; 

Yixin and Wang, 2002; Jia and Wang, 2003; Chen and Wang, 2004) and specifically for 
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building extraction (Sahar and Krupnik, 1999; Sohn and Dowman, 2003; Jiang, et al, 

2008; Zhengjun, et al, 2008). 

5.2.2 Reducing Manual Digitizing Effort  

The photogrammetry and remote sensing field has been attempting to develop 

automated and semi-automated approaches for feature extraction and in particular 

building extraction in the last 20 years.  Today, we still do not have an “accepted” 

methodology to extract buildings from aerial imagery and therefore digitize those 

features manually.  The research project presents a detailed evaluation of the testing 

results and includes a comparison between the automated and manual extraction 

procedures.  The results suggest an advantage to automatically extracting commercial 

buildings while maintaining manual digitizing for other structures.  The research offers a 

significant contribution to manual extraction effort by presenting a method that can 

reduce time and cost for the manual digitizing process.  Using parcels to localize the 

extraction area and eliminate user extraneous operations was shown to be extremely 

efficient.  This contribution is significant as efficient building extraction procedures are 

required to inventory development, day to day management of cities and counties and for 

more complex application such as evaluating damage during an earthquake.  All those 

applications can greatly benefit from a methodology or procedure that can produce large 

percentage of the building inventory or at least considerably reduce the effort. 
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5.2.3 Multiple technique integration   

The research methodology integrates readily available sources and image analysis 

techniques in an innovative manner. The research focuses on extraction from an image 

product (1ft orthophoto) that is widely acceptable as a standard imagery source.  The 

integration of GIS data (parcel attributes), shadows and geometry analysis expands many 

research efforts that encompass some of those techniques (Huertas and Nevatia, 1988; 

Irvin and McKeown, 1989; Kolhe, Plumer and Cremers, 2000; Duan, Prinet and Lu, 

2004;  Khoshelham, 2004;Wei, Zhao and Song, 2004;  Müller and Zaum, 2005).  The 

research testing is geared towards evaluating the individual benefit of each analysis to the 

overall extraction procedure.  The suggested benefit of the attribute data, shadow analysis 

and geometrical analysis is provided in details.  The geometry analysis appears to be a 

significant step in the elimination analysis with considerable effect on the final result.  

The attribute data and shadow analysis sustain an important role in the overall analysis 

and should be integrated in the process to reduce the post processing effort.    

5.2.4 Testing Different Structure Types (Multiple Land Use) 

Past research projects have tended to concentrate their effort on specific building 

structure types or geometric properties (Kim et al, 2004; Tang et al, 2004).  The research 

project presented was not designed to extract specific types of buildings such as high-rise 

or commercial and was not constrained to a specific geometric shape.  Several geometric 

parameters were used to differentiate between building and non-building structures.  Each 

parameter was evaluated and possible shape identification tools provided for future 

research.  The methodology was tested on three types of parcels and buildings including 
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commercial, high-rise and residential.  The testing suggests successful results for 

commercial buildings.  A 79% success rate for commercial buildings is comparable with 

previous research that reported 72.7% extraction rate with 58.8% accuracy (Jin and 

Davis, 2004) and 64.4% (Lee et al, 2003).  Jin and Davis (2004) suggest that any 

extraction rate over 70% is considered a success and Fraser et al (2002) concludes that 

15% of the buildings can not be manually identified in the (IKONOS) image.  The 

commercial buildings testing, includes investigation of factors that may complicate the 

analysis.  Those factors include roof construction, roof signature complexity, building 

size, shadows and building compounds.  Each factor is quantitatively examined and 

evaluated.    The automatic procedure did not extract as successfully residential and high-

rise buildings.  The results provided an opportunity to examine the distinct nature of each 

structure type and identify the factors that prevent the extraction.  The environmental and 

architectural aspects of the buildings are investigated including a quantitative assessment, 

in a manner that was not previously attempted.  The extraction of residential structure in 

particular, was examined by comparing three different extraction approaches (automatic 

procedure, region growing, Isodata classification).  The complexity of the residential 

scene was established and possible automatic extraction discussed.  The results are 

consistent with current research projects that concentrate on extracting the roof as 

multiple different polygons (Avrahami et al, 2008).  High-rise structures pose distinct 

challenges on the extraction process and have not been the target of many previous 

research projects.  This research provides specific assessment with regards to 

automatically extracting high-rise buildings from aerial images.  The unique 
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characteristics of high-rise buildings as portrayed in aerial imagery and complicate the 

extraction process are identified and discussed.  

5.2.5 Building Shape Recognition 

The work of Hu (1962), Rosin (1999) and Rosin (2003) is used and implemented in 

the proposed methodology.  Moments are used to evaluate the rectangularity of the 

extracted shape and can further assist to differentiate between buildings and non-

buildings features.  The research successfully attempts to extend the work of Rosin 

(2003), Reiss (1991) and Schweitzer and Straach (1998) that evaluate properties of 

specific shapes based on moment invariants (Appendix D).  We present a methodology to 

describe and differentiate between buildings shapes using image moments.  Indices based 

on moments were developed and can be used at the end of any feature extraction process 

to identify a shape with a calculated probability. 

5.2.6 Conclusions 

The contribution of this research project can be evaluated through the success and 

failure of the procedure.  The successful extraction of the commercial buildings 

extraction provides a methodology that can be easily replicated.  The failure of the 

procedure for the residential and high-rise buildings provides a contribution to the 

understanding of the complexity of the problem.  When a methodology fails, the 

circumstances and mitigating factors have to be carefully examined.  This research makes 

an effort to identify the factor that prevent the successful extraction of the buildings and 

suggests recommendations when possible.  Clearly, an automatic process can not always 
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imitate and completely replace the human logic; hence, this research recognizes the 

situations that require a manual effort.  Since manual digitizing is suggested for multiple 

image scenes and structure types, a method to reduce the manual effort is tested and 

evaluated.   

The research provides an important analysis of the three very distinct types of 

buildings.  The environmental and architectural aspects of each building type is carefully 

examined and evaluated as relates to the building extraction effort.  The factors that may 

prevent a successful extraction are identified for each building type and mitigation 

measures are recommended where possible.  Additional extraction procedures including 

semi-automatic procedures and manual extraction are presented as well.  As the building 

extraction research community concludes two decades of research, a discussion should be 

initiated regarding the possibility of achieving an automated process.  Research can not 

focus on a specific type of building or specific geometry; there should be a broad 

perspective that includes careful examination of common building types such as 

commercial, high-rise and residential.  The solution can be an integration of selective 

methodologies, each aimed at specific building type.  This research provides an initial 

examination of the unique complexity of the problem for each building type and possible 

solutions and recommendations. 

5.3 Limitations of the Approach 

The limitations of the approach can be divided into limitation rooted in the imagery 

source, limitation of the overall approach, and specific limitations within the 

methodology. 
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The project concentrates on one of the most readily available and commonly used 

imagery source.  Orthophotos are used in every organization from government to the 

private industry for many applications, including feature extraction.  Using an accepted 

image source is a clear advantage.  However, orthophotos pose obvious limitations to any 

extraction process.  First, any mono image provides only two dimension data and lacks 

height information. Shadows extraction and analysis is one approach to overcome that 

limitation.  Current research in shadow analysis can not completely replace stereo 

information.  As suggested for future research, LIDAR data may also be integrated into 

the procedure to provide height information.  Second, the common orthophoto generation 

process does not correct relief displacement artifacts for structures above the datum.  This 

phenomenon is more severe and evident in high-rise buildings and requires special 

attention prior to extraction.  

The design of the methodology formulates a series of analyses that rely heavily on the 

initial partition of the image as well as the image segmentation results.  The initial 

partitioning of the image is achieved using a parcel layer.  The time gap between 

acquiring the image and the compilation of the parcel layer should be minimal to avoid 

discrepancies.  The image and the parcel layers for this project were created in the same 

year.  Some discrepancies (about 15% of the parcels) still occur due to data errors.  

Inconsistencies between the two sources create inevitable loss of information.  The 

extraction process can not identify sections of a building that lie outside the parcel 

boundary.  A recommendation to mitigate this limitation is to create a buffer around the 

parcel prior to partitioning the image in order to capture as much of the building area as 
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possible.  Special attention should be given to high-rise buildings due to relief 

displacement artifacts. 

The segmentation of the image follows the image partition and is the first step within 

the image analysis.  As presented in section 4.2, the final results of the building extraction 

rely heavily on the segmentation, for all building types.  Complex roof signature that 

provides a scattered segmentation result was shown to prevent successful extraction.  

This factor was found to be extremely significant for residential and high-rise buildings 

due to the nature of the environment and roof construction.  Since each type of building 

has unique characteristics, a segmentation methodology should be tailored to each type 

individually.  The methodology can be automatic or semi-automatic to provide the least 

amount of post processing. 

As indicated by the testing, the methodology does not provide successful extraction 

results for residential and high-rise buildings.  Simple scenarios that include minor 

shadows inclusion, insignificant trees around the buildings and simple roof construction 

allow reasonable building extraction.  On the contrary, when the roof can not be clearly 

seen from above, an automatic process would fail to extract the structure outline.  In 

many cases, a human would be able to manually extract the footprint of the building, but 

severe tree and shadow presence would prevent even manual extraction.  

Recommendations for mitigating measures prior to extraction were provided.   

The testing concludes that the automatic process fails to extract high-rise buildings.  

The process manages to identify and extract simple buildings but fails to extract the 

common high-rise structures.  The characteristics of the high-rise buildings and the high-

rise parcels, as indicated in section 4.2.4.1, prevent the successful footprint extraction 



using any automatic process.  The complexity of the signature on the roof and the shadow 

casts prevent an adequate segmentation, hence fails to extract the building. 

The methodology encompasses a set of analysis techniques and tools.  Those 

techniques entail certain limitations.  Some limitations may be overcome by an alternate 

design, while some are the result of the extraction procedure artifacts and may be very 

complicated to resolve.  As already mentioned above, the process heavily relies on the 

segmentation result.  A segment may define an overshoot or undershoot of the actual 

building, may include islands and gaps and even exclude an entire section.  Compound 

buildings may be extracted as multiple sections and merged during the post processing.  

All the artifacts greatly affect the analysis procedure following the segmentation.  The 

size elimination essentially compares the size of the segment to an expected structure size 

in the database.  In case of a severe overshoot or undershoot, we expect a significant 

discrepancy between the values.  Moreover, the geometry analysis of a segment depends 

on the actual shape of the segment.  A segment that deviates from the actual shape would 

be erroneously analyzed.  As a result, a building segment may be categorized as a non-

building with high probability and vice versa.  The methodology attempts to mitigate the 

affect of the segmentation by defining a threshold for the size comparison, and multiple 

geometric measures that define the probability of a segment.  The multiple geometric 

measures were designed to identify all buildings and not confine the process to specific 

shapes.   However, there seem to be some bias towards rectangular buildings and non-

rectangular may receive lower probability of representing a building.  As a result, the 

final building vector layer includes segments with a probability greater then 50 (more 

then 50 percent probability of representing a building).  An improvement to this approach 
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should include a library of known shapes with pre-defined shape indices (as defined got 

the “O” and “I” shapes using moments).  

The generalization procedure result relies on the convex hull generation.  Artifacts of 

the automatic process, may add or remove points to the convex hull location, hence, may 

have a direct impact on the final result.  For example, an unexpected spike on one side of 

the building may significantly change the geometry of the convex hull.   Moreover, the 

angular and distance generalization criteria may eliminate or keep parts of the buildings 

and should be re-considered on a project-purpose base (the user should decide whether to 

maintain the essence of the building; exactly the outline; eliminate small intrusion etc).  

Shadow analysis can assists to identify three dimensional structures.  This project 

takes advantage of shadow information in a limited manner that includes verifying the 

legitimacy of a segment as a building, based on the location of the shadow.  This 

methodology may fail when there is a gap between the building roof and the shadow (for 

example when there is a belt around the building), when objects such as trees around the 

building cast shadows on the wrong side of the building, when shadows of several 

buildings interleave or when the color of the building roof resemble shadows.  Shadow 

analysis is important and should be broaden to identify possible building locations, not 

only to distinguish between 3D and 2D features. 

Other limitations can be attributed to the histogram analysis.  The histogram analysis 

is based on identifying the peaks within the histogram and their respective ranges.  As 

emphasized in the testing results, the nature of the histogram graph may have a 

considerable affect on the histogram analysis result.  It is fairly easy to identify the peaks 

in “smooth” histogram graphs (for the commercial buildings), while “jagged” graphs with 



abrupt changes (for the residential) clearly pose a greater challenge on the analysis.  

Moreover, the histogram analysis requires the number of peaks to identify.  The balance 

between loosing information and extracting too much un-relevant (noise) information 

should be evaluated.  More peaks usually mean more segments to analyze.     

The following section discusses future work as relates to the limitation of the research 

and the testing results.  

5.4 Future Research 

Future research work should be derived from the unique nature of each type of 

building.  Histogram analysis may be sufficient for commercial buildings extraction but 

not sufficient for residential structures.  Residential roofs, as mentioned before, are 

designed to appear attractive.  As a result, the material and the set up create a rough 

surface.  Moreover, shadow casts may generate visually different sections.  A potential 

alternative to the histogram analysis for residential parcels is based on the fact that the 

colors may appear different, but the texture of the roof remains the same.  Texture, 

although easy for a human to comprehend, is still a fairly complex task for a computer.  

Haralick et al. (1973) introduced the “Gray-Tone Spatial-Dependence Matrices” to 

extract texture of surfaces from images, which are referred to as GLCM - Grey Level Co-

occurrence Matrix.  The GLCM examines combination of pixels in the image based on 

adjacency and the frequency of their occurrence.  GLCM is computation intensive 

procedure that is not easy to implement but the methodology is used to examine texture 

of objects (Soh and Tsatsoulis, 1999; Kuplich et al, 2003) and texture classification (Jing 

Yi,  et al., 2008).  

 
228



Features can be described using different characteristics such as geometry, spectral 

signatures and texture.  Regardless of the segmentation methodology, geometry analysis 

can definitely assist during the analysis and shape recognition phases.  Improved 

geometric analysis would consider developing shape indices for a library of shapes.  The 

testing for the “O” and “I” shapes proved a plausible shape differentiation and shape 

recognition using the moment theorem.  The library can be used to enhance the 

probability calculation of a segment within the extraction process.  Besides 

rectangularity, a segment would be examined for other pre-defined shapes.  The highest 

value would be used to evaluate whether the shape represents a legitimate building shape.   

Shadows may provide significant information about the location and shape of the 

building.  The use of shadows in this project is somewhat limited and can be broaden.  

Shadows may assist to identify the actual location of the building.  Moreover, geometry 

analysis of the shadow cast should enable to differentiate between actual building 

shadows that have straight lines adjacent to the building, and objects like trees, that have 

less specific characteristics.   

Shadows help to capture the three dimensional aspect of the buildings.  An optional 

data resource that provides three dimensional data is a LIDAR cloud.  LIDAR image 

integrated with an orthophoto can dramatically improve the extraction result, especially 

for high-rise buildings.  Those structures are large enough to maintain a sufficient number 

of LIDAR points.  Moreover, the affect of relief displacement would not continue to be a 

factor that prevents the extraction.  LIDAR may significantly improve residential area 

analysis by eliminating ground level features as well as identifying tree canopies.  Due to 

the nature of the LIDAR point cloud, building sides would appear as an abrupt change, 
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while tree sides appear as a gradual change.  Multiple return LIDAR points may be used 

to extract structure hidden under trees.    

The project initiated an investigation of factors that may prevent automatic extraction 

of buildings.  Future work should carefully investigate those factors as well as expand the 

examination to mitigating factors.  For example, “is there a preferred time of day for 

acquiring the image?”.  Shadows information should be exhausted during the extraction 

process, but may potentially compromise the procedure.  It may be better to acquire the 

image with limited shadow affects to achieve the best extraction result.   

A successful methodology would apply a specific set of analysis tools for a specific 

type of building.  One methodology approach can not resolve the extraction problem and 

the cost-benefit of an automatic extraction should be evaluated on a project basis.  

However, future work should integrate multiple methodologies and procedures and allow 

the user to initiate the proper methodology in his/her discretion.  Any such system should 

employ the parcel based image partitioning with a buffer.  The user would be able to 

evaluate whether a fully automated, semi automated or manual extraction should be used.  

Testing would compare the system to a fully manual extraction.  As the need for building 

extraction grows within GIS departments in the public and private sector, a solution that 

alleviates the tasks and allows efficient extraction, is required.  The described system 

may be the anticipated solution for a more efficient, mass extraction solution. 

An important aspect of the project is the integration of image sources with GIS data.  

GIS data was proved to assist and significantly alleviate the extraction procedure as well 

as provide important segment analysis information (the building area elimination phase).  

Future research should exhaust the use of available GIS information such as parcel data, 



building blue prints and road layers to simplify the analysis, provide clues for the location 

of the building and update changes in the structure.  

Finally, the entire approach should be tested in other regions.  The Memphis test-bed 

provides a wide variety of building types, sized and colors.  Testing in a different 

environment would allow to substantiate the results of the testing, and generalize the 

conclusions.  Additional testing may also include image source at different resolution to 

evaluate the validity of the assumptions and methodology for other images (either higher 

resolution Quickbird image or lower resolution IKONOS image). 
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APPENDIX A .  Image Sub-Setting Procedure 

The Image Sub-Setting procedure was implemented as a java program, using GDAL 

(Geospatial Data Abstraction Library) libraries.  GDAL libraries are open source libraries 

that can be found in http://www.gdal.org/.  The program runs as a command line and 

requires an image and polygon layer as an input.  The image format should be “img” 

(ERDAS-IMAGINE native format) and the polygon layer is expected as a “shp” file 

(ESRI vector format). Each new image is identified using an attribute in the shp file as 

defined by the user (See Figure 132) 

 

Figure 132– Running the Image Sub-Setting Procedure.  The inputs: image “sub_j3.img, 

shape file “par2.shp, attribute name “PARCELID”. 
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APPENDIX B . Graham Algorithm for calculating the Convex Hull 

Graham published his algorithm for calculating the convex hull in 1972.  The 

algorithm is commonly referred to as Graham’s scan.  The algorithm assumes a finite 

number of points and begins by locating the most extreme point on the y axis (the lowest 

or the highest y coordinate).  This point would always be part of the hull and is the center 

of the following analysis.  Step 2 includes calculating the angle based on the extreme 

point in an increasing manner.  Step 3 includes the creation of the hull by calculating the 

turn between the points.  A left turn represents a point on the hull edge.  A right turn 

requires the scan to go a step back.  The complexity of the process is evaluated as O(n log 

n). 

Example of the scan is provided below: 

 

(a)   (b)   (c)  

Figure 133 – Graham scan.  (a) A finite set of points (b) sorting the points by angle 

(c)creating the hull (green).  Wrong turns (red) 
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APPENDIX C . Calculating confidence for a segment 

For each segment during the geometry analysis (section 4.1.5), a set of geometric 

characteristics is calculated.  The characteristics include rectangularity, convexity, 

ellipticity and compactness.  This section provides the VB script used to calculate the 

confidence based on the different indices.  The probability was calculated for each range 

based on the number of observations for the building and non-building on the graph 

(normalized by the total number of features in the class–buildings or non-buildings).  For 

example, the total number of building features is 250/ non-buildings 334.  For a point in 

the graph that has 150 buildings and 50 non-buildings, a normalized number is calculated 

as 150/250=0.6 and 50/334=0.15  respectively.  Hence we can conclude an 80% 

(0.6/0.75) probability for the range for representing a building feature. 

***Lines that begin with an asterisk indicate my comments. 

Dim conf As Double 
Dim rect_m As Double 
Dim rect_d As Double 
Dim rect As Double 
Dim convex As Double 
Dim compact As Double 
Dim ellip As Double 
Dim convex_area As Double 
Dim convexty As Double 
 
 
***rectangularity based on moments 
Select Case [rect_momen]  
    Case 0.8 To 1 
        rect_m=100 
    Case 0.5 To 0.8 
        rect_m=50 
    Case 0.3 To 0.5 
        rect_m=20 
    Case Else 
        rect_m=10 
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End Select 
 
***rectangularity based on MBR 
Select Case [rect_disc_]  
    Case 0.85 To 1 
        rect_d=100 
    Case 0.7 To 0.85 
        rect_d=80 
    Case 0.6 To 0.7 
        rect_d=40 
    Case Else 
        rect_d=20 
End Select 
 
If rect_m > rect_d Then 
    rect= rect_m 
Else 
    rect= rect_d  
End If 
 
 
***compactness 
Select Case [compactnes]  
    Case 0.9 To 1 
        compact=90 
    Case 0.6 To 0.9 
        compact=80 
    Case 0.5 To 0.6 
        compact=70 
    Case Else 
        compact=30 
End Select 
 
*** ellipticity 
Select Case [elps_index]  
    Case 0.85 To 1 
        ellip=80 
    Case 0.7 To 0.85 
        ellip=30 
    Case Else 
        ellip=10 
End Select 
 
***convexity based on generalized polygon 
Select Case [convexity]  
    Case 0.95 To 1 
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        convex=100 
    Case 0.85 To 0.95 
        convex=40 
    Case 0.7 To 0.85 
        convex=20 
    Case Else 
        convex=10 
End Select 
 
***convexity based on area ratio 
Select Case [convex_are]  
    Case 0.5 To 1.35 
        convex_area=80 
    Case 1.35 To 1.5 
        convex_area=30 
    Case Else 
        convex_area=0 
End Select 
 
If convex > convex_are Then 
    convexty= convex 
Else 
    convexty = convex_are 
End If 
 
***final average of the probabilities into a confidence 

conf=(rect+convexty+ellip+compact)/4 
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APPENDIX D . Shape Recognition Using Moments 

The human brain can fairly easily identify and classify the shape of a building by 

simply observing the feature.  An automatic process, that accurately identifies and 

classifies the shape of buildings, may result in valuable time saving as well as accurate, 

consistent classification.  Automatic classification measures intend to imitate human 

pattern recognition and decision making mechanism, which in many cases become 

“fuzzy”.  Even when testing “clean”, lab created features, the difference between a 

rectangle and an “O” shape may not be clear.  How big should be the island inside the 

“O” in order to be clearly classified as an “O” and not as a rectangle with a small island?  

Building footprints, as extracted from an image, may vary greatly in their shape 

depending on the method of extraction.  Manual digitization and for greater extent, 

automatic processes, introduce noise to the edge of the extracted feature.  As a result, the 

“fuzziness” of the extraction becomes a greater obstacle for the automatic classification 

to overcome.   

Based on shape identification techniques that use and expand the moment theorem 

(Hu, 1962), this chapter evaluates the ability to identify not only simple feature such as 

triangles and rectangles (Rosin, 1999; Rosin, 2003), but two other common building 

shapes.  The chapter outlines the steps taken to develop the index for “O” and “I” shapes.  

Based on the index formulas, different “clean” and “extracted” features are tested to 

evaluate the validity of each index and identify the “fuzzy” classification area, where the 

index may not clearly identify the shape.   
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Moment Invariants 

Moment invariants have been commonly used for the purpose of shape recognition 

(Hu 1962; Dudani et al, 1977; Blumenkrans, 1991; Bookstein, 1991; Jiang and Bunke, 

1991; Li, 1992; Safaee-Rad et al., 1992; Trier et al., 1996; Loncaric, 1998; Realpe and 

Velazquez, 2006) .  Different moments have been introduced in the literature (such as the 

Hu, Legendre, Zernike, pseudo-Zernike polynomials or Chebychev moments) and allow 

unique description of a shape.  By normalizing central moments, Hu (1962) introduced 

his set of invariant moments that include seven moments invariant to translation, rotation 

and scale.  Following sets of moments tried to overcome some of the shortcomings of 

Hu’s moments.  Since Hu’s moments were found to not be orthogonal, they sustain a 

high degree of redundancy.  Modifications to Hu’s moments allow minimizing the degree 

of redundancy (Rothe et al. 1996; Zhang et al. 2003).  Moment invariants methods are 

frequently used and are theoretically sound, although they bear certain disadvantages 

such as sensitivity to noise within high order moments. 

Moment definition 

For a continuous function f(x,y), we can define raw and central moments (translation 

invariants) as follows: 

Raw moments are defined as: 

( )dxdyyxfYXM
x y

qp
qp ,, ∫ ∫=   

Central Moments are defined as:  
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The moments can be modified to the special case of an image as the following scalar 

values.  For images, Raw moments are defined as: 
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I represents the intensity of the image in the location (x,y) 

Central Moments are defined as: 
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Based on the moments, we can calculate the orientation of the shape using: 
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Shape Indices 

Rosin (1999) defines a rectangularity index based on image moments as follows: 

3
00

22144
m

R
μ

= .  R should peak at 1 for rectangles and range between 0-1 for non 

rectangles.  Value greater then 1 should be calculated as 
R
1 . 

The rectangularity index is based on a rectangle (a x b), centered at the origin (figure 

134).   

2
b(0 , ) 

 

Figure 134 – Rectangle centered at the origin used for Rectangularity index definition 

According to Rosin (1999), the moments of that rectangle are: 

abm =00  and  
144

33

22
bam =  (the proof for m22 is provided in appendix E). 

The rectangularity index is a direct result of those two moments.   

Based on the rectangularity index, as defined by Rosin (1999) and the mathematical 

proof, as provided in E, an O shape index was defined.  The O shape similarly is centered 

(0,0) ( 2
a , 0) 
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at the origin and is defined as indicated in figure 135.  Each side of the O shape is half the 

side of the rectangle, and is defined as a/2 x b/2.   

2
b(0 ,

 

Figure 135 – O shape centered at the origin used for O shape index definition 

The O index is defined as: 3
00

22

7
432

m
O

μ
= .  The proof for the O index is provided in 

appendix F. 

An I shape is defined centered at the origin and defined as indicated in figure 136.  

The leg width of the shape is defined as 1 forth of the entire width of the shape.  The 

index was calculated as 3
00

22

449
1125*16

m
m .  An I shape with leg width of one half of the 

entire width was also calculated as 3
00

22

19
1296

m
m . 

(0,0) ( 2
a , 0) 

) 

(

4
b(0 , ) 

4
a , 0) 

 
241



( 2
a , 0) 

4
a

, 0) 8
a

 

(

 

Figure 136 - I shape centered at the origin used for O shape index definition 

The second I index (half width leg) was added due to confusion between the O index 

and the “I” index.  To avoid the confusion, a second definition of the “I” shape was added 

as a half width leg rather then a quarter width leg.  Enriching the shape library with a 

second definition allows to evaluate whether multiple definitions manages to discern 

better between different shapes.    

Shape recognition testing 

The table below contains the shape indices as calculated for multiple shapes.  The 

shapes are either “clean”, manually created shapes or automatically extracted shapes.  

Based on the equations provided above, the rectangularity, “O” shape and “I” shape 

indices are calculated.  For the “I” shape, two values are calculated, one for the one 

quarter leg width and another for the one half leg width.   
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Table 10 - Shape indices testing results 

 Shape Rectangularity O Index I Index Kurtosis 

1 

 

0.452647 0.935853 
0.613674 

0.958547 
0.989674 

2 

 

0.622854 0.680113 
0.445976 

0.758159 
0.986052 

3 

 

0.816677 0.518701 
 0.340132 

0.578224 
0.995884 

4 

 

0.999979 0.423602 
0.277772 

0.472212 
1.000001 

5 

 

0.369648 0.872611 
0.751466 

0.782783 
0.985981 

6 

 

0.416654 0.983578 
0.666686 

0.882327 
0.979240 

7 

 

0.985832 0.429699 
0.281770 

0.479009 
1.031014 
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Table 11 continued 

 

 

8 

 

0.613165 0.690860 
0.453023 

0.770139 
1.033631 

9 

 

0.420427 0.992483 
0.660704 

0.890316 
0.950839 

10 

 

0.999619 0.423450 
0.277672 

0.472189 
0.999923 

11 

 

0.746289 0.567623 
0.372212 

0.632761 
0.996371 

12 

 

0.284244 0.671001 
0.977253 

0.601928 
0.621817 

13 

 

0.527854 0.802515 
0.526240 

0.894607 
0.722123 
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Table 12 continued 

 

14 

 

0.681899 0.621223 
0.407359 

0.692511 
0.832732 

15 

 

0.247866 0.585127 
0.892318 

0.524893 
0.600655 

16 

 

0.619456 0.683844 
0.448422 

0.762318 
0.786115 

17 

 

0.322194 0.760589 
0.862144 

0.682293 
0.618506 

18 

 

0.077464 0.182867 
0.278872 

0.164042 
0.978075 

19 

 

0.712442 0.594590 
0.389895 

0.662822 
1.120515 
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Table 9 illustrates the calculated indices for rectangular shapes, “I” shapes, “O” 

shapes and random blobs.  The initial testing included the indices for each shape 

including the rectangularity, “O” index and “I” index columns.  The test shapes show 

progressive transition from an ideal shape to rectangular shape.  For example, rows 1-4 

show the transition from an “O” shape with a large island to a complete rectangular shape 

(4).  The indices calculated for the shape indicate the difference between the shapes.  

Since the index was designed to peak at 1 for the “perfect shape” (as defined in the 

previous section ), the shape 1 and shape 9 show a high “O” index value (0.935853/ 

0.992483).  Shape number 2 present two separate phenomena as the rectangularity index 

value (0.622854) is close to the “O” index (0.680113) and one of the “I” index values 

(0.758159) is actually higher then the “O” index.   As the island within the “O” shape get 

smaller, the shape resembles more a rectangle.  This transition is clear for shapes 3 and 4 

that show the highest index value for “rectangularity”.  The confusion between the “O” 

shape and “I” shape is discussed below.  Since the result of image segmentation is rarely 

a clean shape, each shape was tested for a “noisy shape” scenario.  Shapes 5-8 present 

two lab created shapes (5,6) and two segmentation results (7,8).  Clearly, noise added to 

the shape for shapes 5 and 6, do not significantly affect the index result.  Both, shape 5 

and shape 6, show the highest values for the “O” index.  Shape 7 indicate a high 

rectangularity value, similar to shape 2 and shape 8 shows confusion between the “I” 

(0.770139) and “O” (0.690860) indices.   

Similar to the transition from the “O” shape to rectangle, transition shapes were 

defined for the “I” shape.  Shapes 12-14 illustrates the change in indices as shape number 

12, “the ideal shape” shows a very high “I” index (0.9772563); shape 13 shows a high “I” 
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index (0.894607) but also a high “O” index; shape 14 which is very close to a rectangle 

shows a high “I” index (0.692511) as well as high rectangularity index (0.681899).  

Shape 14 may be considered close enough to a rectangle by manual classification which 

alleviates the confusion.  Shapes 15-17 represent noisy “I” with indices values that do not 

deviate considerably from the clean shapes.  As a result, the noise does not reflect change 

in the classification result (0.892318 vs 0.977253; 0.762318 vs 0.692511; 0.862144 vs 

0.977253).  Shapes 18 and 19 provide examples of automatically extracted blob shapes 

and their calculated indices.  Shape 18 receives very low scores for all indices and shape 

19 receives a higher value for the rectangularity index (0.712442). 

It is obvious that moment based indices can be used to identify shapes and distinguish 

between shapes.  The index provides a classification tool that compares a shape to a pre-

defined shape and calculates a probability.  Further investigation is required to examine 

the confusion between the “O” and “I” shapes as indicated in shapes 1 and 2 for the “O” 

shape and shapes 12 and 13 for the “I” shape.   

The indices, as designed and defined above, are based on second order moments.  

Second order moments provide a fundamental description of the shape by defining the 

orientation and elongation of an ellipse that best fit the shape.  As a result, obvious 

confusion occurs between the shapes.  In order to distinguish better between the shapes, 

higher order moments were examined.  The third order moments define the symmetry of 

the shape for each axis.  Since both shapes are highly symmetrical relative to the shape 

center axes, the third order moment does not appear to provide a solution.  The forth 

order moments define the kurtosis of the shape.  Kurtosis is a common statistical term 

that defines the peakedness of a curve.  As relates to images, kurtosis defines the intensity 
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distribution along an axis (Mukundan and.Ramakrishnan, 1998) and is defined as 

2
20

40

μ
μ

=xK  for the x axis and 2
02

04

μ
μ

=yK  for the y axis.  Due to the nature of the shapes, 

there is a clear difference between the distributions along the axes between the “I” and 

“O” shape.  The “O” shape has a similar distribution along both axes, while the “I” shape 

show different trends along each axis.  As a result, a kurtosis index was defined as 
y

x

K
K

.  

The index is designed to peak at 1 for shapes with similar x and y axis distribution such 

as “O” and a rectangle.  As seen in table 9, the kurtosis values for all the “O” shapes is 

very close to 1 and varies between 0.950839 (shape 9) and 1.033631 (shape 8).  The “I” 

shape kurtosis calculation values are much lower and range between 0.621817 (shape 12) 

and 0.722123 (shape 13).  It is noted that shape 14 that resemble greatly a rectangle was 

not used for the comparison between the “I” and “O” shapes.  As a result, the kurtosis 

index provides a method to distinguish between the “I” and “O” shapes and to avoid the 

confusion as described above.  

The above results present a methodology to describe shapes and differentiate between 

shapes using image moments.  The indices can be used at the end of a feature extraction 

process to identify a shape with a calculated probability or to better discern between 

buildings and non-buildings blob segments. 
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APPENDIX E Mathematical proof for the second order moment used for 
Rectangularity Index. 

We would like to prove that 
144

33

22
bam =  is true for a rectangle a x b, centered at the 

origin (figure 137). 

Based on : ),(, yxIYXM q

x y
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He result is multiplied by 4 to indicate that the initial integral is calculated for one 

quarter of the rectangle! 

144
4*

24*24
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APPENDIX F . Mathematical proof for the O index 

We would like to prove that O shape index =  3
00

22

7
432

m
m  for an O shape, centered at 

the origin (figure 135).  As shown in appendix E, 
24*24

33

22
bam =  for a quarter of a 

rectangle (axb). 

For each quarter of the internal rectangle (the island of the O shape), we need to 

calculate the second order moment.  Since the dimension of the island are )4,4( ba , 

similar to the proof in appendix E,  ∫ =
4/

0
3

3
2

3*4

a aX  and ∫ =
4/

0
3

3
2

3*4

b bY  are the result of 

the integral on one quarter of the island.  As a result, for each quarter of the O shape, we 

have to subtract the moment of the island from the moment of the island: 

4096
7

64*64*924*24

333333

22
bababam =−=       

For the entire rectangle, we multiply by 4, hence: 

1024
7 33

22
bam = .  We know that abm 4

3
00 = . 

From  and , for the index to peak at 1 for the O shape, the index is: 22m 00m 3
00

22

7
432

m
m  
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APPENDIX G .  Mathematical proof for the I index 

We would like to prove that I shape index =  3
00

22

449
1125*16

m
m  for an I shape, centered at 

the origin (figure 136).  As shown in appendix E, 
24*24

33

22
bam =  for a quarter of a 

rectangle (axb).  For the I shape, the two side intrusions have to be subtracted from the 

entire rectangle.  Hence, for each quarter, a second order moment for the side intrusion 

rectangle has to be calculated.  Since the dimension of the rectangle are )4,8
3( ba , it 

spans from 8
a  to 2

a  on the x axis and from 0 to 4
b  on the y axis.  similar to the proof 

in appendix E,  ∫ =
2/

8

3
2

3*512
63a

a

aX  and ∫ =
4/

0
3

3
2

3*4

b bY  are the result of the integral on one 

quarter of the island.  As a result, for each quarter of the O shape, we have to subtract the 

moment of the island from the moment of the island: 

512*64*9
449

512*64*9
63

24*24

333333

22
bababam =−=       

For the entire rectangle, we multiply by 4, hence: 

16*4608
449 33

22
bam = .  We know that abm 8

5
00 = . 
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From  and , for the index to peak at 1 for the O shape, the index is: 22m 00m

3
00

22

449
1125*16

m
m .  For an I shape with leg width of one half of the width rather then one 

forth, the index is: 3
00

22

19
1296

m
m  
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APPENDIX H . Database attribute scheme for the parcels and building inventory 

Table 13 - Attribute Scheme for the parcel dataset 

Field Name Description
PARCELID Parcel Identifier (Unique; No Duplicates allowed)
COMDAT_REC TRUE for Commercial Parcels
DWLDAT_REC TRUE for Residential Parcels
LAT Latitude of Parcel Centroid in NAD 1983
LONG Longitude of Parcel Centroid in NAD 1984
PARID Alternate Parcel Identifier
APRLAND Appraised Value of Land
APRBLDG Appraised Value of all buildings in the parcel
RTOTAPR Total Appraised Value (of land and buildings)
ASMT_CLS Assessment Class (roughly corresponds to General Occupancy)
ASMT_LUD Assessed Land Use of parcel (roughly corresponds to Specific Occupancy)
OCC_CLASS Occupancy Class of parcel (roughly corresponds to HAZUS Occupancy Categories)

 

Table 14 - Attribute scheme for the building inventory 

Field Name Description
PAR_ID Parcel Identifier (Duplicates allowed for multiple buildings in the same parcel)
PARID_CARD Building Identifier (Unique, No Duplicates allowed for this field)
LAT Latitude of Parcel Centroid in NAD 1983
LONG Longitude of Parcel Centroid in NAD 1984
STR_TYPE General Structure Type (used for summarized tabulations in the accompanying workbook)
YEAR_BLT Year of Construction
OCC_TYPE HAZUS Occupancy Category
OCC_DETAIL Specific Occupancy Category, describing the detailed use of the building
TOT_APPR Total Value of the Building and Contents

BLDG_VAL Total Value of the Building (obtained by distributing the appraised value of the parcel across all the buildings 
contained within the parcel, weighted by each building's square footage)

CONT_VAL Total Value of the Contents within the Buildings (derived from multiplier functions of appraised building value; 
multipliers vary by occupancy category of building)

NO_DU Number of Dwelling Units in the building (usually for residential categories; represent multiple use if found in other 
occupancy categories)

SQ_FEET Square Footage of the building
EF Essential Facility Designation for the building
NO_STORIES Number of Stories for the building
tract 2000 Census Tract Identifier in which the building is located
CT_LAT Longitude of Census Tract Centroid in NAD 1983
CT_LON Latitude of Census Tract Centroid in NAD 1984
STR_TYP2 HAZUS Structure Type
pidc Alternate Building Identifier (not unique, Duplicates allowed)
OCC_BROAD General Occupancy Categories (used for summarized tabulations in the accompanying workbook)
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APPENDIX I . Preliminary Results - Edge detection Approach 

In much of the existing literature, edge detection and line segmentation techniques 

have been suggested heavily for feature extraction.  Using the primary data available in 

this project, I have tried to extract buildings from high resolution imagery via edge 

detection techniques.  This approach includes large scale ortho-rectified aerial images of 

1 ft resolution.    Locating structures in an entire scene that spans over several miles and 

contains hundreds of buildings at different size, shape and spectral signature is not an 

easy task.  In order to simplify the problem, the first step in this methodology was to cut 

the images into smaller areas of analysis.  To accomplish this, subsets of the digital image 

are created using parcel boundaries, in order to reduce the amount of data to process, and 

to limit the noise in data.  Parcel boundary layers are easily available, cover most built 

areas within the USA and restrict the search for the buildings to a very small area that 

will be referred to here forth as the “patch”.  Moreover, each parcel has a usage attribute 

attached, that classifies the use of the building on that parcel (industrial, residential, 

vacant etc).  This information was first used to eliminate all residential parcels from the 

analysis.  The process is semiautomatic and consists of several major stages as depicted 

in Figure 137. 
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 Figure 137 – Building extraction process 

The analysis begins with edge-detection – a technique that locates an edge by 

examining the image for abrupt changes in pixel values (change in contrast).  The 

direction of the edge is perpendicular to the direction of the change (Haralick and 

Shapiro, 1992).  The common edge detection operators can be divided into “directional” 

and “non-directional”.   “Non directional” operators locate edges everywhere in the 

image while “directional” operators require pre-defined edge orientation.  One prominent 

directional operator is Sobel (1970) that defines two masks, one horizontal and one 

vertical.   The edge detection procedure is accomplished via applying a filter-mask or 

several masks to the image.  This process, in the image space, is called “convolution” and 

it assigns a value to the pixel in the middle of the filter.  The filter determines the value 

based on neighboring pixels.  Filters can be low-pass filters that smooth the image and 

high pass filters that emphasize certain elements in the image, such as edges.   The LoG 

(Laplacian of Gaussian) operator revolutionized the edge detection procedure.  During 

the convolution, smoothing operator is applied to image, followed by a Gaussian operator 

that emphasized the edges.  One drawback of that operator is the possible shift of the 
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edge location when the edge is not a straight line, as in corners.  Canny (1986) operator is 

one prominent edge detector based on smoothing before the edge detection.  The Optimal 

Zero Crossing Operator (OZCO, Sarkar and Boyer, 1991), for which public domain code 

is available, was used for the edge detection and segmentation.   

The building outline usually appears as an edge.  Edge points are then grouped into 

straight lines using a “line segmentation” routine.  These steps are performed on the first 

principal component image created from the original 3 bands.  Corners are created by 

enforcing rules on the line segments derived in the segmentation process.  Rules are both 

proximity- and orthogonality-based with built-in and adjustable tolerances, leading to the 

creation of L- and T-shaped corners (see Figure 138).  Pairs of corners satisfying 

conditions of distance/orientation and displacement then form short chains.  Short chains 

are grouped into longer chains based on “shared” corners.  This grouping occurs 

iteratively, successively building longer chains, until the chain is closed, or until a 

maximum specified number of corners in a building have been reached.  The different 

chains are grouped according to their corner locations in order to extract multiple 

buildings in one image. Each corner chain is then graded based on several conditions, 

including distance between corner points covered by corner legs; displacement offsets 

between lines; orthogonality of the corners; number of corners extracted; type of corners.  

The chain with the highest score is selected, and the coordinate locations of its corners 

form the output – these corners are then “built” into a preliminary polygon for 

downstream analysis.  If no chain is found with a high enough score, the process is 

repeated after tolerance thresholds are incrementally relaxed.   
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d
90±σ 

T shaped corner L shaped corner 
 

Figure 138 – Types of corners 

Figure 139 below indicates successful implementations of the process for rectangular 

and L-shaped buildings.  Each figure consists of 4 panels from left to right, beginning 

with the raw image subsetted to the parcel, to edge detection, then to line segmentation 

and formation of chains and through to the final vectorized building footprint polygon.   

 

 

   
(a) 
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Figure 139 – Successful implementation for a rectangular building (a) and L 

building (b) 

 

 

 

           

(b) 

                   (a)                                              (b)                                              (c) 

 

Figure 140 –Examples of result problems with the extraction process  
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The examples in Figure 140 demonstrate several of the limitations of the 

implementation that relies heavily on edge detection techniques and geometric 

characteristics of a building.  Even within a parcel sized image, objects around the 

building, on the roof and shadows may interfere with the extraction process.  The 

different features have strong, straight edges, are within close proximity to the building 

and become part of the candidate building polygon.  Figure 140(a) demonstrates the 

problem of a non-flat roof.  Each side of the roof creates strong enough edges due to sun 

illumination angle, and be considered as a valid rectangular roof. In figure 140(b) lines on 

the roof interfere with the external outline edges and create an L shape roof.  Figure 

140(c) illustrates extraneous objects and shadows around the building that obstruct with 

the detection of the true building outline.   

 

The initial testing did not produce satisfying results as a stand alone approach.  One 

of the conclusions, consistent with previous research, is the need for integration of 

approaches.  Only geometry or only shadow extraction for example, will not provide a 

sufficient solution.  As a result, we propose a different, more robust methodology as will 

be illustrated below. 
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APPENDIX J . Code of ordinance of Memphis, TN – Zoning section  

Taken from the “code of ordinances of Memphis, TN”  

Available in: http://municipalcodes.lexisnexis.com/codes/memphis/ 

Footnotes for are found at the end of the chart. 

Table 15- Memphis Zoning Ordinanace 

District 
and Use  

Minimum 
Lot 

Require
ments 
Area  

(square 
feet) 

Minimum 
Lot 

Require
ments 
Width 
(feet) 

Minimum 
Yard 

Require
ments 7, 

20, 23 

Front 
(feet) 

Minimum 
Yard 

Require
ments 7, 

20, 23 

Side 
(feet) 

Minimum 
Yard 

Require
ments 7, 

20, 23 

Rear 
(feet) 

Maximu
m Height 

16 (feet) 

Maximu
m Gross 
Density 
Per Acre 
(in units) 

Land 
Use 

Intensity 
Ratios 

Maximu
m FAR 

Land 
Use 

Intensity 
Ratios 

Minimum 
LSR 

Land 
Use 

Intensity 
Ratios 

Minimum 
OSR 

AG 
district:  

          

1. Single-
family 
detached 
dwelling
s  

43,560 (1 
acre) 

60 60 5 30 35 1.0 None None None 

2. 
Institutio
nal uses  

1 acre 60 60 FN 1 FN 1 35 None None None None 

3. 
Country 
clubs  

1 acre 60 60 FN 1 FN 1 35 None None None None 

4. Other 
uses  

1 acre 60 60 FN 1 FN 1 35 None None None None 

R-E 
district: 
Dwelling
s and 
other 
uses  

22,000 120 50 22 15 40 35 0.51 None None None 
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Table 13 continued 

 

R-S15 
district: 
Dwelling
s and 
other 
uses  

15,000 100 30 2 5 3 25 35 2.9 None None None 

R-S10 
district: 
Dwelling
s and 
other 
uses  

10,000 65 20 2 5 20 2 35 4.4 None None None 

R-S8 
district: 
Dwelling
s and 
other 
uses  

8,000 60 20 2 5 20 2 35 5.4 None None None 

R-S6 
district: 
Dwelling
s and 
other 
uses  

6,000 50 20 2 5 20 2 36 7.3 None None None 

R-S6I 
district: 
Dwelling
s and 
other 
uses 

See §§ 
16-76-6 
(E) and 

(F). 

         

R-D 
district:  

          

1. Single-
family 
detached 
dwelling
s and 
other 
uses 
except  

6,000 50 20 2 5 20 2 35 7.3 None None None 
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Table 13 continued 

 

2. Two-
family 
dwelling
s  

6,000 50 30 2 5 25 35 14.6 None None None 

3. Single-
family 
attached 
dwelling
s 12  

3,000 25 30 2 5 4 25 35 14.6 None None None 

R-TH 
district:  

          

1. Single-
family 
detached 
dwelling
s  

6,000 50 20 2 5 20 2 35 7.3 None None None 

2. 
Townhou
se 
dwelling
s  

2,500 16 30 2 5 4 25 35 12.0 .28 .48 .74 

3. Two-
family 
dwelling
s  

6,000 50 30 2 5 25 35 14.6 None None None 

4. Single-
family 
attached 
dwelling
s 12  

3,000 25 30 2 5 4 25 35 14.6 None None None 

5. Other 
uses  

10,000 100 30 2 5 20 35 None None None None 

R-ML 
district:  
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Table 13 continued 

 

1. Single-
family 
detached 
dwelling
s  

6,000 50 20 2 5 20 2 35 7.3 None None None 

2. 
Townhou
se 
dwelling
s  

2,500 16 30 2 5 4 25 35 15.0 .28 .48 .78 

3. Two-
family 
dwelling
s  

5,500 50 30 2 5 25 35 15.8 None None None 

4. Single-
family 
attached 
dwelling
s 12  

2,750 25 30 2 5 4 25 35 15.8 None None None 

5. 
Multiple-
family 
dwelling
s  

10,000 100 30 2 FN 5 FN 6 35 15.0 .35 .45 .73 

6. Other 
uses  

10,000 100 30 2 5 20 35 None None None None 

R-MM 
district:  

          

1. Single-
family 
detached 
dwelling
s  

5,000 50 20 2 5 20 2 35 8.7 None None None 

2. 
Townhou
se 
dwelling
s  

2,500 16 30 2 5 4 25 35 15.0 .28 .48 .74 
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Table 13 continued 

 

3. Two-
family 
dwelling
s  

5,500 50 30 2 5 25 35 15.8 None None None 

4. Single-
family 
attached 
dwelling
s 12  

2,750 25 30 2 5 5 25 35 15.8 None None None 

5. 
Multiple-
family 
dwelling
s  

10,000 100 30 2 FN 5 FN 6 125 30.0 .75 .40 .69 

6. Other 
uses  

10,000 100 30 2 5 20 125 None None None None 

R-MH 
district:  

          

1. Single-
family 
detached 
dwelling
s  

5,000 50 20 2 5 20 2 35 8.7 None None None 

2. 
Townhou
se 
dwelling
s  

2,400 16 30 2 5 4 25 35 18.2 .28 .48 .74 

3. Two-
family 
dwelling
s  

4,800 50 30 2 5 25 35 18.2 None None None 
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Table 13 continued 

 

4. Single-
family 
attached 
dwelling
s 12  

2,400 25 30 2 5 4 25 35 18.2 None None None 

5. 
Multiple-
family 
dwelling
s  

10,000 100 30 2 FN 5 FN 6 None 75.0 1.75 .45 .68 

6. Other 
uses  

10,000 100 30 2 5 20 250 None None None None 

R-MO 
district:  

          

1. Mobile 
homes  

4,000 40 25 2 5 15 12 8.0 None None None 

2. 
Recreati
on 
buildings 

4,000  25 2 10 25 35 None None None None 

O-L 
district:  

          

1. Office 
and 
other 
uses 
except  

5,000 50 30 5 10 20 10 35 None None None None 

2. Single-
family 
detached 
dwelling
s  

5,000 50 30 2 5 20 35 8.7 None None None 
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Table 13 continued 

 

3. Two-
family 
dwelling
s  

5,500 50 30 2 5 25 35 15.8 None None None 

4. Single-
family 
attached 
dwelling
s 12  

2,750 25 30 2 5 4 25 35 15.8 None None None 

O-G 
district:  

          

1. 
Offices 
and 
other 
uses 
except  

5,000 50 30 2 5 10 20 10 125 None 3.0 None None 

2. Single-
family 
detached 
dwelling
s  

5,000 50 30 2 5 20 35 8.7 None None None 

3. Single-
family 
attached 
dwelling
s 12  

2,500 25 30 2 5 4 25 35 34.8 None None None 

C-P and 
C-L 
districts:  

          

1. All 
uses 
except 
offices  

None None 30 14, 15 10 8 15 24 35 None None None None 

2. 
Offices  

None None 30 14, 15 10 8 15 2 35 None 1.5 None None 
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Table 13 continued 

 

C-H 
district:  

          

1. All 
uses 
except 
offices  

None None 30 14, 15 10 8 15 2 50 13 None None None None 

2. 
Offices  

None None 30 14, 15 10 8 15 2 50 13 None 3.0 None None 

CBD 
district:  

          

1. Single-
family 
detached 
dwelling
s  

5,000 50 None 5 15 35 8.7 None None None 

2. 
Townhou
se 
dwelling
s  

1,200 16 None 5 4 15 35 36.3 .28 .48 .74 

3. Two-
family 
dwelling
s  

2,500 36 None 5 15 35 34.8 None None None 

4. Single-
family 
attached 
dwelling
s 12  

1,250 16 None 5 4 15 35 34.8 None None None 

5. 
Multiple-
family 
dwelling
s  

None None None None None Unlimited None 1.75 .45 .68 
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Table 13 continued 

 

6. 
Offices  

None None None None None Unlimited None 7.00 None None 

7. 
Commer
cial uses  

None None None None None Unlimited None 7.00 None None 

8. Other 
uses  

None None None None None Unlimited None 7.00 None None 

I-L 
district: 
All uses  

None 60 30 14, 15 10 8 15 FN 9 None None None None 

I-H 
district: 
All uses  

None 60 30 14, 15 10 8 15 FN 9 None None None None 

H 
district:  

          

1. Single-
family 
detached 
dwelling
s  

5,000 50 30 2 5 20 35 8.7 None None None 

2. 
Townhou
se 
dwelling
s  

2,500 16 30 2 5 4 20 35 17.4 .28 .48 .74 

3. Two-
family 
dwelling
s  

2,500 25 30 2 5 20 35 34.8 None None None 
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Table 13 continued 

 

4. Single-
family 
attached 
dwelling
s 12  

1,250 16 None 5 4 15 35 34.8 None None None 

5. 
Multiple-
family 
dwelling
s  

10,000 100 30 2 FN 5 FN 6 125 30.0 .75 .40 .69 

6. 
Offices  

5,000 50 30 14, 15 5 10 20 10 125 None 2.00 None None 

7. 
Hospital
s  

None 50 None 10 10 20 10 125 None 2.00 None None 

8. Other 
uses  

5,000 50 30 14, 15 5 10 20 10 125 None None None None 

CU 
district:  

          

1. Single-
family 
detached 
dwelling
s  

5,000 50 30 2 5 20 35 8.7 None None None 

2. 
Townhou
se 
dwelling
s  

2,500 16 30 2 5 4 20 35 17.4 .28 .48 .74 

3. Two-
family 
dwelling
s  

2,500 25 30 2 5 20 35 34.8 None None None 
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Table 13 continued 

 

4. Single-
family 
attached 
dwelling
s 12  

1,250 16 30 2 5 4 20 35 34.8 None None None 

5. 
Multiple-
family 
dwelling
s  

10,000 100 30 2 FN 5 FN 6 125 30.0 .75 .40 .69 

6. 
Offices  

5,000 50 30 14, 15 5 10 20 10 125 None 2.00 None None 

7. 
Educatio
nal 
institutio
ns  

None 50 None 10 10 20 10 125 None 2.00 None None 

8. Other 
uses  

5,000 50 30 14, 15 5 10 20 10 125 None None None None 

P 
district:  

          

1. 
Parking 
lots  

5,000 50 FN 11 5 8 5 8 None None None None None 

2. 
Parking 
structure  

5,000 50 30 10 10 15 10 50 None None None None 

FW 
district  

None None 50 None None None None None None None 

C-N 
district  

None None None None None 35 21 None None None None 
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FOOTNOTES 

1 Buildings shall be set back from side and rear lot lines, two feet for each foot of 

building height.  

2 The minimum front yard setback set forth on Chart 2 shall apply except as follows.  

(a) If the property has a front yard along a major road or parkway identified in the 

Major Road Plan a minimum forty-(40) foot front yard setback is required.  

(b) If the property has a rear yard in a reverse frontage orientation along a major road 

or parkway identified in the Major Road Plan a minimum twenty-five (25) foot rear yard 

is required.  

(c) If the property has a front yard along a major or minor collector street as defined 

by the subdivision regulations a minimum thirty (30) foot front yard setback is required.  

(d) All subdivisions recorded prior to the date of approval of this zoning text 

amendment shall be governed by the required minimum thirty-(30) foot from yard and 

twenty-five- (25) foot rear yard setbacks unless a modification is approved by the land 

use control board to allow the reduced setbacks for the entire subdivision. Consideration 

of such modification shall require signature of all property owners. Appeal of land use 

control board action is to the appropriate local legislative body(ies).  

(e) Approval of the reduced setbacks on individual lots created prior to the date of 

approval of this zoning text amendment shall be the jurisdiction of the board of 

adjustment.  
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(f) Lots along cul-de-sac streets serving twenty-five (25) or fewer dwelling units and 

where sidewalks are not required shall be allowed a minimum front yard setback of 

fifteen (15) feet.  

3 The minimum side yard allowed shall be five feet; provided, however, that the total 

number of feet combined of the side yards on each side of a dwelling or other use shall be 

fifteen (15) feet.  

4 The side yard requirements shall apply to only one side yard of the first and last 

attached houses in each set of attached houses. Each attached single-family dwelling shall 

have only one five-foot wide side yard.  

5 The size of the required side yard shall be the greater of ten (10) feet or the number 

of feet derived under the following formula for buildings on the perimeter of a multiple 

dwelling development. The size of the required side yard for buildings located on the 

interior of a multiple-family dwelling development shall be determined as follows:  

(a) If a required side yard abuts a building wall which contains any living room 

windows, the size of the required yard shall be computed as follows: ten (10) feet plus 

two feet for every ten (10) feet of wall height and fraction thereof plus one foot for every 

fifteen (15) feet of wall length or fraction thereof.  

(b) If a required side yard abuts a building wall which contains any window other 

than living room window, the size of the required yard shall be computed as follows: five 

feet plus one foot for every ten (10) feet of wall height and fraction thereof plus one foot 

for every fifteen (15) feet of wall length or fraction thereof.  
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(c) If a required side yard abuts a windowless building wall, the size of the required 

side yard shall be computed as follows: Five feet plus one foot for every ten (10) feet of a 

wall height and fraction thereof.  

6 The size of the required rear yard shall be the greater of twenty (20) feet or the 

number of feet derived under the following formula for buildings in the perimeter of the 

multiple-family dwelling development. The size of required rear yards for buildings 

located on the interior of a multiple-family dwelling shall be determined as follows:  

(a) If a required rear yard abuts a building wall which contains any living room 

windows, the size of the required side yard shall be computed as follows: ten (10) feet 

plus two feet for every ten (10) feet of wall height and fraction thereof plus one foot for 

every fifteen (15) feet of wall length or fraction thereof.  

(b) If a required rear yard abuts a building wall which contains any windows, other 

than living room windows, the size of the required yard shall be computed as follows: 

five feet plus one foot for every ten (10) feet of wall height and fraction thereof plus one 

foot for every fifteen (15) feet of wall length or fraction thereof.  

(c) If a required rear yard abuts a windowless building wall, the size of the required 

rear yard shall be computed as follows: five feet plus one foot for every ten (10) feet of 

wall height and fraction thereof.  

7 A corner lot used for single-family purposes shall have two front yards and two side 

yards; i.e., no rear yard. A corner lot used for nonsingle-family purposes shall have two 

front yards, one side yard and one rear yard.  
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8 The minimum side yard requirement shall apply only if the property abuts or is 

adjacent to property zoned or used for residential purposes or the residential portion of an 

approved planned development. Otherwise, no side yard is required.  

9 The maximum height for buildings located in the I-L and I-H district shall be one 

hundred (100) feet except where property in the I-L and I-H district abuts or is adjacent to 

property zoned or used for residential purposes or the residential portion of an approved 

planned development, in which case the maximum height shall be forty-five (45) feet.  

10 The required side and rear yards adjacent to property zoned or used for residential 

purposes and the residential portion of an approved planned development shall be 

increased one foot for every foot of building height and fraction thereof above two 

stories.  

11 A minimum front yard of thirty (30) feet shall be required if the front yard of the 

property abuts or is adjacent to property zoned or used for residential purposes or the 

residential portion of a planned unit development; otherwise, a minimum front yard of 

five feet shall be required.  

12 Only two attached single-family dwellings are permitted in a building.  

13 Provided that the height limitations of property in the C-H zone which was 

formerly in C-3 commercial zone shall be no more restrictive than were the height 

limitations of the former C-3 commercial zone under the preexisting ordinance.  

14 Where an existing principal structure is set back less than forty-two (42) feet from 

the rights-of-way line, a new principal structure, or an extension thereof may be 

constructed at less than the required forty-two (42) foot setback provided:  
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(1) The new construction is within one hundred (100) feet of an existing principal 

structure and is located on the same side of the same street and within the same block; 

(2) The new construction is not closer to the right-of-way than the existing principal 

building(s) as specified above; 

(3) The minimum setback permitted is fifteen(15) feet from the proposed right-of-

way line as indicated on the Memphis urban area transportation plan or forty-five (45) 

feet from the center line of a street not designated on the MUATS plan; and  

(4) Landscaping shall be provided in accordance with Section 16-120-4(D) if parking 

is provided within the required front yard.  

15 Where an existing principal building is set back less than thirty (30) feet from the 

right-of-way line, a new principal building(s) or an extension thereof may be constructed 

at less than the required thirty- (30) foot setback provided:  

(1) The new construction is within one hundred (100) feet of the existing principal 

building(s);  

(2) The new construction is not closer to the right-of-way than the existing principal 

building(s) as specified above;  

(3) The minimum setback permitted is fifteen (15) feet; and  

(4) Landscaping shall be provided in accordance with Chapter 16-12. 

16 Church steeples, spires and belfries are permitted to exceed the maximum 

permitted height limitations.  
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[17--19 Reserved.]  

20 Modification of required building setbacks may be approved by the director of 

planning and development (or designated representative) up to a maximum of ten (10) 

percent of the required building setback subject to the following criteria:  

(1) A modified building setback shall not be approved unless a specific plan for 

placement of a building on the site is presented which justifies that the changed setback is 

needed to accommodate the development.  

(2) The modified building setback shall not conflict with streets, sidewalks, 

easements or landscape requirements.  

(3) The modified building setback shall not injure or damage the use, value or 

enjoyment of surrounding property or hinder or prevent the development of surrounding 

property.  

21 Maximum height - thirty-five (35) feet, except where abutting residential uses are 

less than thirty-five (35) feet, then height standard needs to be compatible with site plan 

review standards of Ordinance No. 5026AM. 

22 In the R-E district, attached garages facing the street shall not be permitted.  

23 Within the city a corner lot that is fifty (50) feet or less in width may be allowed 

one front yard setback of fifteen (15) feet subject to the following criteria:  

(1) The second front yard shall conform with the requirements of the zoning 

ordinance.  
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(2) Along a major road, the fifteen (15) foot setback shall be subject to the approval 

of the land use control board.  

(3) The building shall not encroach into utility, drainage or other easements.  

(4) The building shall not block the vision triangle.  

24 When a commercial use abuts the rear yard of an existing or proposed residential 

use, the minimum rear yard setback for the commercial structure shall be twenty (20) feet 

for the first ten thousand (10,000) square feet of building, plus an additional five feet of 

setback for each additional ten thousand (10,000) square feet or fraction thereof of 

commercial building. 

(Ord. 5026AM § 2 (part), 2004; Ord. 5026 § 2 (part), 2003; Ord. 5025 § 2 (part), 

2003; Code 1985 Appx. A, Chart 2) 
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APPENDIX K . Building Extraction GUI 

 

Figure 141 illustrates the user interface for the building extraction process.  The 

interface was developed using ERDAS-IMAGINE interface tools.   

 

Figure 141 – Building Extraction GUI 

 

The user input includes the input image and output vector file at the top of the 

window.  The middle section of the window includes 3 parts.  In the left part the user 

defines the sun illumination direction as appears in the image.  In the middle section, the 

user defines which elimination analysis to skip for a specific run.  The default is a full run 

that includes the entire set of analysis processes.  The right section includes the GIS 

input.  The input includes a dbf table with the building data, including the structure size 

and the specific fields names (size column, number of stories and the parcel id attribute). 
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The bottom of the window provides the user with the option to run the process in a 

batch mode.  The batch mode runs the building extraction procedure for multiple parcel-

sized images. 
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