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SUMMARY

Past experimental studies of the viscosity of suspensions of rigid rods

have yielded results which are inconsistent within themselves and in disagree-

ment with theoretically predicted behavior. Analysis of the past experimental

work in the light of theory indicated that several important variables affecting

the viscosity of suspensions of rigid rods were not completely understood. These

variables are concentration, the presence of the viscometer walls, and curvature

of the rods.

This study was undertaken for three reasons: (1) to determine the magnitude

of the effect of the above variables on the viscosity, (2) to compare theoretical

results with experimental results obtained under conditions more closely approx-

imating the conditions assumed in the theory, and (3) to determine the reasons

for the inconsistencies in the past experimental data.

The choice of the conditions under which the experiments were made was

governed primarily by the conditions assumed in the theory. It was found that

straight, nylon fibers, of length-to-diameter ratio = 20, suspended in a tetra-

chloroethane- paraffin oil solution, met theoretical conditions as closely as

possible. Viscosity measurements were made in the concentric cylinder viscom-

eter designed by Myers (16, 19). Using this system, the effect of concentration

on the apparent viscosity could be determined.

The magnitude of the effect of fiber curvature was evaluated by making

viscosity measurements on fibers of known curvature keeping all other variables

constant.

Wall effects were studied by varying the annulus width of the viscometer.
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It was found that at volume concentrations below 0.0042, relative viscosi-

ties obtained experimentally were within 10% of those predicted by theory pro-

vided measured values of the orientations of the particles were used in the

calculations.

As the volume concentration increased above 0.0042, there was a rapid in-

crease in viscosity followed by a slight decrease and a second increase. The

rise and dip in the viscosity were found to be due partially to changes in the

orientations of the rods and partially to fiber-fiber interactions.

The investigation of the effect of the wall on the viscosity of straight,

rigid rods indicated that the effect was negligible even at fiber diameter and

fiber length to annulus width ratios of 0.0176 and 0.358, respectively.

Viscosity measurements on suspensions of curved fibers showed that a very

slight curvature has a pronounced effect on the viscosity. A relationship be-

tween fiber curvature and the ratio of the experimental to the theoretical

intrinsic viscosity was obtained. It was found that above a certain degree of

curvature, the above ratio is dependent only on the degree of curvature and

not on the actual length-to-diameter ratio of the fibers.

An analysis of the results of past studies in view of the findings of this

study indicated that the most probable reasons for the disagreement within the

past studies and between the past studies and theory were: (1) the concentra-

tion ranges covered were too high and, (2) in most cases, the fibers used were

curved.

Some viscosity data were obtained using flocculated suspensions. It was

found that the suspensions were non-Newtonian. The viscosity obtained at any

given concentration was higher than that obtained using well-dispersed suspen-

sions. The difference depended on the degree of flocculation.
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INTRODUCTION

The hydrodynamic treatment of the movement of macroscopic particles with

respect to a viscous fluid was begun over a century ago by Stokes (1). Stokes

solved his general hydrodynamic equation describing the motion of a fluid for

the slow translation of a sphere in an infinite fluid of constant density and

viscosity. The general hydrodynamic equation derived by Stokes was first devel-

oped by Navier (2) and has since become known as the Navier-Stokes equation.

Oseen (3), partially incorporating fluid inertial effects, solved the

Navier-Stokes equation for the translation of a sphere and obtained an improve-

ment over Stokes' solution. Oseen then solved for the limiting case of the

effect of an arbitrary point force on the velocity components of a fluid. The

resulting equations have been used as the starting point for several later

works in this field. Later, Overbeck (4) analyzed the more general case of

an ellipsoid in creeping motion. Using Oseen's method, Lamb (5), and later

Burgers (6), solved the special cases of the translation of infinitely long,

and long but finite cylinders, respectively. No further theoretical develop-

ment in this area was accomplished until the recent works of Tchen (7) and

Brenner (8). Tchen, also using Oseen's method, predicted the translation of

curved ellipsoids. Brenner, by accounting for back flow due to a particle in

translation, proposed general solutions for boundary effects. Many of these

theoretical predictions have been experimentally verified; however, there

remain important discrepancies.

The more complex problem of particle rotations in a linear velocity gradient

has also received much attention in theoretical hydrodynamics. This phenomenon

has been treated in studies of the effect of suspended macroscopic particles on

the apparent viscosity of a fluid.
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The first theoretical contribution in this area was Einstein's (9) equation

for the viscosity of a suspension of rigid spheres. Jeffery (10) then extended

Einstein's work to the more general case of ellipsoids. Burgers, again using

Oseen's solution for the effect of a point force, obtained an equation for the

viscosity of suspensions of rigid rods. In his solution, Burgers did not take

into account flow around the ends of the rods or the effect of the thickness of

the rods on rotation. Therefore, his solution was approximate as compared to

the rigorous solutions of Einstein and Jeffery.

All of the above theoretical studies on the viscosity of suspensions were

based on the assumptions of no influence of one particle on another, no inertial

effects, and no wall effects. The apparent contradiction between Burgers' use

of Oseen's solution and the assumption of no inertial effects is explained in

the text.

Experimental studies on the viscosity of suspensions of rigid, macroscopic

spheres using concentric cylinder viscometers have verified Einstein's theory

(11, 12). Also, Jeffery's equations describing the rotation of ellipsoids in a

linear velocity gradient have been shown to be correct (13). Since Jeffery's

viscosity equation reduces to that of Einstein, it has also been assumed to be

correct.

Experimental viscosity measurements on suspensions of cylindrical fibers

began with the work of Eirich, et al. (14) before Burgers' theory was published.

Later, Nawab and Mason (15) and more recently. Myers (16) made similar studies.

None of the results obtained in the experimental studies agreed with Burgers'

theory.
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Nawab and Mason suggested that curvature of the fibers used in their study

could have accounted for some of the difference between theoretical and experi-

mental results.

Myers suggested that some of his work may have been influenced by wall

effects.

No measurements of the magnitude of the effect of the wall or fiber curva-

ture on the viscosity were made, however, and the concensus of opinion among

these workers was that the primary reason for the lack of agreement between

theoretical and experimental results was due to failure of the theory.

No theoretical studies have been made on the effect of fiber curvature on

viscosity. However, Tchen (7) has shown theoretically that a large fiber curva-

ture has a significant effect on the translation of a fiber in a fluid. Also,

Forgacs and Mason (17) showed experimentally that a slight curvature has a large

effect on the rotational behavior of fibers in a linear velocity gradient.

Therefore, one would also expect some effect on the viscosity of a fiber sus-

pension due to fiber curvature.

Wall effects due to a discontinuity of the suspension at the wall have been

predicted by Vand (18) for suspensions of spheres. Also, Brenner's work indi-

cates that there may be a wall effect in measurements of the viscosity of suspen-

sions. However, the presence of wall effects in concentric cylinder viscometers

has not been conclusively demonstrated by experimentation.

Although not mentioned by Nawab and Mason, or Myers as a possible reason

for lack of agreement between theoretical and experimental results, the concen-

tration of the fibers used in all of the past studies was relatively large lead-

ing to the possibility of significant fiber-fiber interactions.



-6-

Since the magnitude of the effect of concentration, fiber curvature, and

wall effects, on the viscosity of fiber suspensions was not fully understood, it

was felt that premature conclusions had been reached as to the accuracy of Burgers'

theory. Therefore, the object of this study was (1) to determine the magnitude of

the effect of these variables on the viscosity of suspensions of rigid rods so

that a better evaluation of Burgers' theory could be made, and (2) to obtain a

better understanding of the effect of these variables on the apparent viscosity.
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THEORETICAL

In this section a very brief outline of Burgers' (6) derivation of an equa-

tion for the viscosity of suspensions of rigid rods is given. Only the major

steps in the derivation plus those points which will be considered in some detail

later in the dissertation are presented. A more complete derivation is given in

Appendix I.

Burgers was concerned with the effect of rigid rods suspended in a liquid

under conditions of flow described by the equations: v = G y, v = 0, v =0

on the viscosity of the suspension.

The following assumptions are made in the derivation:

1. There are no inertial effects.

2. The particles are straight, rigid cylinders large enough so that there

will be no effect due to Brownian motion.

3. There is no slip of the liquid at the particle surface. Slip, in this

case, "implies an infinitely greater resistance to the sliding of one portion

of the liquid past another than to the sliding of the fluid over a solid"(20).

4. There is no effect on any one particle due to the presence of any other.

5. There is no wall effect.

Burgers found that the forces which develop in a fluid due to the presence

of the rods could be expressed in the form of a doublet* of strength M = 2Fe.

To determine the magnitude of M in terms of the dimensions and orientations of

the particles, Burgers used Oseen's (21) solution of the Navier-Stokes equation

*Two forces of opposite and equal magnitude, F, acting at points a distance 2e
from one another along a straight line constitutes a doublet of strength M =
2Fe.
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for the effect of an arbitrary force on the velocity of a fluid. Although Oseen's

solution partially takes into account fluid inertial effects, Burgers made simpli-

fying assumptions which eliminated these effects from consideration. In deter-

mining the magnitude of M, effects due to the ends of the rods were neglected.

Knowing the magnitude of the doublets formed, Burgers determined tne effect

of these doublets on the shear rate of the liquid and therefore on the viscosity

of the suspension. In this step, Burgers neglected effects due to the thickness

of the rods. The results of these calculations, given in terms of the relative

viscosity of the suspension, are as follows:

where

c = volume concentration = ntd 2/4)L

L = length of the rod

d = diameter of the rod

0 and 0 = spherical co-ordinates (defined by Fig. 1) describing the
orientation of the rods

n = number of rods per unit volume.

Burgers' analysis of the motion of the particles led to the result that

after an infinite period of time, all the particles would become aligned in the

direction of flow and remain there. This was known from actual observations not

to be true. The reason that Burgers' equations failed to predict the continuous

rotation of the particles was that, throughout the derivation, effects due to the

thickness of the particles were neglected. This result prevented an averaging of

the factor sin 40sin 20. Thus, Burgers turned to Jeffery's (10) equations for the
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z

Figure 1. Rigid Rod in a Velocity Gradient

motion of ellipsoids in a linear velocity gradient to obtain an expression

Note that, in doing this, Burgers is assuming that ellipsoids and cylinders

will behave the same in rotation. Assuming Jeffery's equation for the motion

of ellipsoids to be correct, Mason, et al. (22-24) showed that cylinders have a

period of rotation which is less than that of an ellipsoid with the same length-

to-diameter ratio. This will be discussed in more detail later.

In Jeffery's derivation, the thickness of the particles is taken into account.

Jeffery's equations for the angular velocities of ellipsoids are as follows:
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where K is a constant of integration, referred to as the "orbit constant." When

K equals infinity, the particle will rotate in the xy-plane. When K equals zero,

the particle will be oriented vertically and spin about its axis.

When the particle thickness is taken into account, the theory predicts that

the particles will never stop rotating in a velocity gradient.

Using Equations (5) and (6), Jeffery solved for the mean value of the orien-

tation factor and found that:

If only particles with a/b > 1 are considered, the following approximation

can be used:
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Now if 0 and 0 are the values of the angles 0 and 0 for the position from

which the particles started, then from Equation (6),

and neglecting b /a cos- 0, then:

where X is defined by Fig. 1.

Thus, by combining Equations (8) and (10),

This is still the mean value of the orientation factor for one definite

orbit. In order to find the average for all orbits, Burgers, following Eisen-

schitz (25), assumed that the values of X would be evenly distributed over the

surface of a sphere. For this case, cosXo becomes 2/t and

For the limiting case of K = infinity in Equation (8), i.e., orientation

in the xy-plane,

Now substituting the values found for sin 0 sin 20 into Equation (2), the

following results are obtained:

Random orientation,

Orientation in the xy-plane,
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PAST EXPERIMENTAL WORK

WORK OF EIRICH, ET AL.

The first work on the viscosity of suspensions of rods was done by Eirich,

et al. (14). The rods used were prepared from filaments of silk and rayon.

Eirich used a concentric cylinder viscometer having a rotating annular cup.

A torque sensing cylinder was placed in this annulus thus forming a double annulus

viscometer. The dimensions of the viscometer were as follows:

Rotating cylinders

Diameter of outer cylinder 41.5 mm.

Diameter of inner cylinder 29.4 mm.

Torque sensing cylinder

Diameter 35.0 mm.

Wall thickness 1.4 mm.

Height 30.5 mm.

Eirich's viscosity measurements were made over an angular velocity range

from 100 to 250 rad./sec.

The viscosity studies on the silk fibers were carried out in a medium of

tetrachloroethane and olive oil which had a viscosity of approximately 6 centi-

poises. For studies with the rayon fibers, a mixture of bromoform and olive

oil with a viscosity of approximately 15 centipoises was used.

It will be shown in the Analysis of the Problem that the angular velocities

used by Eirich were much too high for stable flow in the viscometer annulus.

Therefore, the actual results which Eirich obtained for intrinsic viscosities of

his suspensions will not be given.
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WORK OF NAWAB AND MASON

The first significant contribution to the understanding of the viscosity

behavior of suspensions of rods was made by Nawab and Mason (15).

This work was done using rayon fibers suspended in castor oil (viscosity

25 poises). The physical properties of the fibers are listed in Table I.

TABLE I

PHYSICAL PROPERTIES OF FIBERS USED BY NAWAB AND MASON

Rayon fibers, 3.5 microns in diameter

Length-to-
Diameter

Ratio

43.2

75.3

113

173

240

356

Modulus of
Elasticity,
dynes/sq.cm.

26.4 x 1010

26.4 x 1010

26.4 x 1010

26.4 x 1010

26.4 x 1010

26.4 x 1010

Appearance of Fibers
During and After

Shearing

All particles straight

Some particles curved,
all rigid

Large fraction curved,
slight springiness

Large fraction curved,
increased springiness

Large fraction curved,
springy and flexible
rotations. Aggregation

Viscosity measurements were made in a coaxial cylinder viscometer with

rotating bob and fixed cup using shear rates from 9.9 to 93.3 sec. .Annulus

widths of 3.3 mm. and 12.3 mm. were used in the studies on Samples A, B, and C

to determine whether or not there was any wall effect. None was found. The

largest fibers and the smallest annulus width resulted in L/D and d/D ratios of

0.12 and 0.00106 where D is the annulus width.

Sample

A

B

C

Fiber
Lengths,

mm.

0.15

0.26

0.40

D

E

0.61

0.84

1.25F
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Nawab and Mason questioned the validity of the results obtained by Eirich,

et al. because of the possibility that they may have been affected by wall

effects, polydispersity, and aggregation. However, no mention was made of the

fact that Eirich's measurements were made in the regime of unstable flow.

Nawab and Mason, in considering their experimental results as compared to

the results predicted by Burgers' theory, stated that Equation (1) should be

corrected by a factor B as follows:

r = 1 + Bao c (16)

where B = (L/d)/(L/d)e, and where (L/d) is the "equivalent ellipsoidal" axis

ratio of a rod. This "equivalent ellipsoidal" axis ratio was arrived at by

Mason, et al. (22-24) as follows.

Jeffery (10) has shown that the period of rotation of an ellipsoid is

defined by:

TG = 2t (L/d + d/L) (17)

= 2iL/d for large values of L/d,

where T = period of rotation, sec., and

-1
G = velocity gradient, sec.

Mason, et al. measured the period of rotation for cylinders in a known velocity

gradient, calculated the "equivalent ellipsoidal" axis ratio (L/d) , and com-

pared these values with the known L/d values for the cylinders. The results of

the measurements are presented in Fig. 2.

An empirical correlation of the results presented in Fig. 2 is given by

Equation (18).



-15-

80

The lower limit has been placed on Equation (18) since Goldsmith and Mason

(26) have shown that as the rods become disks, (L/d)e increases with decreasing

L/d. The upper limit was used because no measurements have been made at larger

L/d ratios to confirm the linearity of the relationship.



Nawab and Mason state that Burgers assumed that (I/d)e/(L/d) = 1 when he

used Jeffery's equations for the behavior of ellipsoids to calculate sin e sin 20.

This is equivalent to saying that (/d) e should be used in Equation (11) since

this equation was derived for ellipsoids.

Table II is a comparison of the results obtained by Nawab and Mason with

those from Burgers' theory both uncorrected and corrected using the B factor.

TABLE II

COMPARISON OF EXPERIMENTAL AND THEORETICAL
INTRINSIC VISCOSITIES

Equation (14) Equation (15) Measured
Sample aoR pa a pa a v

o R oR oxy oxy o

A 3.5 5.8 -- 9.1 8.2

B 4.9 -- -- -- 15.2

C 6.6 14.2 -- 22.2 18.5

D 9.0 23.3 -- . 36.7 44

E 11.7 36.6 -- 57.5 76

Nawab and Mason pointed out that the approximate agreement between the

measured a and BC is fortuitous since it is known from measured distribu-
o oxy

tions of 0 and X (23) that the particles are not all aligned in the xy-plane.

.Mason and Manley (23) calculated the specific viscosity, Up = P - 1, for

suspensions of cylinders using measured values of K and Equation (19) and com-

pared this value with sp. calculated from Equations (1) and (14). The results

are given in Table III.

-16-
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where p(K)dK = fraction of particles with values of the orbit constant, K between

K and K + dK.

TABLE III

COMPARISON OF SPECIFIC VISCOSITIES CALCULATED FOR
RANDOM AND MEASURED ORIENTATIONS

2 d - sp/ sp

20.4 0.55

68.4 0.50

115.5 0.55

From Table III it can be seen that by using measured values for the orien-

tation of the particles, the values for Lp and therefore a should be about
sp o

half that predicted from the assumption of random orientation. Therefore, Nawab

and Mason's experimental values for cQ (see Table II) are more than four times

greater than those predicted by Burgers' theory when measured values for orienta-

tions of the particles are used.

Nawab and Mason suggested that one of the reasons for the large difference

between theoretical and experimental results could be that the fibers used in

Runs B, C, D, and E were curved and in C, D, and E were also flexible (see Table

I). In a later publication, Forgacs and Mason (17) showed that a very slight

fiber curvature has a tremendous effect on the period of rotation and therefore

on (L/d) and P. The results of this study are given in Fig. 3.

In the light of the above considerations, Nawab and Mason state that "the

importance of determining values of P, and in this connection (viscosity studies)

of working with perfectly straight particles is evident."
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Nawab and Mason conclude their discussion with the following remarks.

"While the experimental work described here is incomplete in many respects and

requires extension, it served to demonstrate the inadequacy of existing theories

of reduced and intrinsic viscosity of rigid rods."

WORK OF MYERS

Myers (9) studied the viscosity of suspensions of nylon fibers of axis

ratios varying from 20 to 160 and diameters of 16.79, 44.85, and 75.5 microns.

The volume concentration range varied from 0.00019 to 0.0278. The apparatus

used was a concentric cylinder viscometer designed by Myers (16, 19) to allow

measurements at low shear rates of the order of 0.5 sec.
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Myers compared his results with Burgers' theory and found little agreement

as can be seen from Fig. 4.

Myers showed that the studies made using the 16.79 p diameter fibers were

within the range of d/D and L/D, i.e., 0.00106 and 0.12, used by Nawab and Mason

(15), in which wall effects were found to be of no account and thus assumed that

wall effects were not present in his measurements using these particular fibers.

However, measurements using larger fibers did not fit these criteria.

Myers suggested that the relationship between a° and L/d given in parameters

of d/D came about due to the increasing wall effect with increasing fiber diameter

(see Fig. 4). The maximum values of d/D and L/D in Myers' study were 0.00333 and

0.268, respectively.

Myers criticized Nawab and Mason's (15) correction of Burgers' equations

using the factor B. He stated that this is an oversimplification of the true

reason for the difference between observed and theoretical results. In support

of his statement, Myers pointed out that Burgers' equation for the drag on a

cylinder in slow translation perpendicular to its axis underpredicts experi-

mental values (27). Since, according to Myers, the strength of the doublet

formed on cylinders in a linear velocity gradient was arrived at by the same

mathematical procedure as that used to determine the drag force on a cylinder

translating perpendicular to its axis, then there is little reason to believe

that Burgers' viscosity equation can be corrected merely by correcting the

orientation factor.

However, Burgers used an approximation (6, 28) in his calculation of the

resistance of a cylinder which was not used in his calculation of the strength

of the doublet. Burgers also pointed out that his estimation of the resistance
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of a cylinder in translation was expected to be low due to the approximation

made.

Therefore, it cannot be said, a priori, that Burgers' viscosity equation

is incorrect.

COMPARISON OF NAWAB'S AND MYERS' EXPERIMENTAL DATA

Figure 5 gives a comparison of Nawab and Mason's (15), and Myers' (16)

experimental data. As can be seen, there is little agreement between the two

studies. Both studies did show that the intrinsic viscosity, , increased

with increasing L/d.

THE PROBLEM

As was shown in Fig. 5, Nawab's and Myers' experimental studies were not

in agreement. Also, as was pointed out in the section on Past Experimental

Work, none of the experimental results have agreed with theoretically predicted

results.

Therefore, the problem was to determine the reasons for the differences

in the experimental results and why there has been no agreement between experi-

mental results and theoretically predicted results.
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ANALYSIS OF THE PROBLEM

In analyzing the problem it will be most enlightening to consider the dif-

ferences in the experimental methods compared with conditions assumed in Burgers'

theory.

The following questions will be asked and answered for each experimental

work being considered.

1. Were there inertial effects?

2. Were the fibers flexible?

3. Were the fibers curved or crooked?

4. Was there fiber-fiber interaction?

5. Were there wall effects?

The answers to these questions are given in Table IV. Where a yes or no

answer cannot be given or where clarification of the answer is needed, the

situation will be discussed later in the text.

TABLE IV

COMPARISON OF PAST EXPERIMENTAL METHODS

Eirich,
et al. Nawab and Mason

Yesa Noa

See Table I

See Table I

Yesa

No

Myers

Noa

Noa

Yes in all but
two cases

Yesa

?a

Explanation of these answers follows in Questions 1, 2, 4, and 5.

Question
Number

1

2

5

4

5

Yes

Yes



QUESTION 1

There are two types of inertial effects which are important in the systems

considered here, the first associated with the liquid itself and the second

associated with the flow of the liquid around the particles.

Taylor (29) showed that the streaming laminar flow in a concentric cylinder

viscometer with the inner cylinder rotating and the outer cylinder stationary

becomes unstable when the angular velocity of the inner cylinder reaches a certain

critical value, Wc , given by the following equation:

2 4

where

f = 1- 0.652 D/rl

l = radius of inner cylinder, cm.

r2 = radius of outer cylinder, cm.

= viscosity of the liquid, g./cm. - sec.

D = annulus width, cm.

p = density, g./cc.

Using Equation (20) it can be shown that, for stable laminar flow, Eirich

should have worked at angular velocities below 9.6 rad./sec. However, as

stated previously, Eirich actually worked at angular velocities ranging between

100 and 250 rad./sec. Therefore, it can be seen that Eirich's work was done

using unstable flow. For this reason, Eirich's work will not be considered any

further.

1



-25-

However, Nawab and Mason, and Myers, all worked at angular velocities below

X for their particular cases and therefore inertial effects connected with the
c

liquid were unimportant.

Consider now the possibility of inertial effects due to the flow of the

liquid over the fibers. There is no basis for comparison as to whether or not

inertial effects are important for the flow of the liquid along the axis of the

fiber. Therefore, some other basis must be used.

Myers (16) suggested that if it can be shown that inertial effects are not

important for the extreme case of a fiber held stationary in a liquid moving at

the maximum velocity used in a given study then it should be acceptable to assume

that inertial effects were not important in the actual viscosity measurements.

If this is done for the studies of Nawab and Mason, and Myers using as a criter-

ion for the absence of inertial effects that the Reynolds number, Re, based on

the diameter of the fiber, is less than one (30), it is found that for Nawab and

Mason's study, Re ~ 0.05 and for Myers, Re 0.25. Therefore, inertial effects

were not important in this case either.

QUESTION 2

To determine whether or not the fibers used in past studies were flexible

under the conditions of shear used in the viscosity measurements, Equation (21)

was used.

Eb(ln 2L/d - 1.75)

where E, = modulus of elasticity in bending, dynes/sq. cm.
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This equation, which predicts the shear rate necessary to buckle a rod, was

derived by Forgacs and Mason (31) using Burgers' equation for tne forces acting

on a thin rod in a linear velocity gradient. Equation (21) was also shown to

be approximately correct using dacron, rayon, and nylon fibers suspended in a

linear velocity gradient.

Except for the fiber samples listed in Table I which were known to be

flexible or bent due to the velocity gradient, using Equation (21), the other

samples used by Nawab and Mason, and Myers can be shown to be rigid.

QUESTION 4

The frequency of interaction was probably much greater in Nawab and Mason's

work than in Myers' work due to the higher shear rates used.

Also, all of the concentrations used by Nawab and Mason, and the vast

majority of those used by Myers, were relatively high for the particular L/d

ratios used and, therefore, fiber-fiber interaction would be expected to be

appreciable.

It should be noted, however, that all of the concentrations used in these

studies were well below those necessary for the formation of a continuous fiber

network (32).

QUESTION 5

As was pointed out earlier, Myers hypothesized that the presence of wall

effects caused the behavior shown in Fig. 4. However, this was not proved

absolutely.

Consider now the over-all picture represented by Table IV. For strictest

agreement with the assumed conditions in Burgers' theory, all questions should
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be answered No. As can be readily seen, none of the studies quoted were performed

under conditions which agreed with those assumed in Burgers' theory. The differ-

ences were: most of the fibers used were curved, in all cases there was consider-

able fiber-fiber interaction, and, in Myers' study there may have been wall

effects.

The questions that remain to be answered are, what are the magnitude of

these effects on the viscosity of suspensions of rigid rods and, if the condi-

tions assumed in Burgers' theory are more closely met, will there be better

agreement between theoretical and experimental results?

In order to answer these questions, the following study of the viscosity of

fiber suspensions was made.
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CHOICE OF VISCOMETER AND SUSPENSION

CHOICE OF VISCOMETER

In order to satisfy the condition of a linear velocity gradient, it was

necessary to make the viscosity measurements in a concentric cylinder viscometer.

The viscometer designed by Myers met all of the requirements. Although a thorough

discussion of this viscometer has been given by Myers (16, 19), a description will

be given here since an understanding of the viscometer is necessary in order to

follow the experimental procedures.

GENERAL DESCRIPTION OF MYERS' VISCOMETER

The viscometer consisted of a stationary outer cylinder and a rotating

inner cylinder. The inner cylinder was suspended from an air bearing by a

nylon cord. The air bearing was driven by a rotating magnetic field produced

by 6 electromagnets driven at a constant angular velocity of 1070 r.p.m. The

driver was an 1800 r.p.m. synchronous motor connected to the electromagnets by

a pulley system.

A diagram of the viscometer is given in Fig. 6.

Note that the upper part of the viscometer was separated from the lower

part by an air gap. This was done to prevent vibrations from the drive from

disturbing the air bearing. Note also that the air bearing was covered by a

Plexiglas shield to prevent air currents produced by the drive from affecting

the performance of the air bearing.

DESCRIPTION OF CYLINDERS

The inner cylinder was a hollow brass cylinder, 15.2 8-cm. long, 4.98-cm.

in diameter and closed at the top and bottom.
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Two outer cylinders were used. Both were made from glass tubing and were

18.5-cm. long. A 5.47-cm. diameter outer cylinder was used for calibration

purposes and wall effect studies. A 9.53-cm. diameter outer cylinder was used

for the remainder of the study.

Both outer cylinders were surrounded by water jackets. Water from a constant

temperature water bath was circulated through the jacket controlling the temper-

ature in the annulus to within 0.05°C.

A diagram of a water-jacketed cylinder is given in Fig. 7.

DESCRIPTION OF ELECTRICAL SYSTEM

The torque delivered by the magnetic drive was varied by changing the current

to the electromagnets. The current was supplied by a 6-volt storage battery

and varied by means of a rheostat. A 0-2 ampere d.c. ammeter which could be

read to the nearest 0.002 ampere was in series with the battery and electro-

magnets to measure the current to the electromagnets.

Before each viscosity measurement, an alternating current was passed

through the coils of the electromagnets to destroy any permanent magnetism

which may have set up in the cores due to passage of the direct current. This

was done by starting the flow of alternating current through the coils at 3

amperes and slowly decreasing the current to zero by means of a variable voltage

autotransformer.

A diagram of the electrical system is given in Fig. 8.

CLEANING AND CONTROL OF AIR TO AIR BEARING

The air supply for the air bearing came from a laboratory air line. The

air was fed through a pressure regulator which held the pressure constant at
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Figure 7. Water-Jacketed Cylinders
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30 p.s.i.g., a screen to remove large particles, and a filter to remove small

particles and water. A second pressure regulator was used as a final control

of the air to the air bearing. A U-tube manometer, using tetrabromoethane, was

placed between the second pressure regulator and the air bearing so that any

pressure changes could be detected.

CHOICE OF SUSPENSION

The choice of the suspension to be studied was governed by several factors.

First, the assumptions made in the theoretical section had to be met as closely

as possible. Second, there could be no physical or chemical effect of the sus-

pending medium on the fibers. Third, the suspension used had to be well dispersed.

These criteria were met in the following ways.

Inertial effects were eliminated by working at Reynolds numbers, based on

the diameter of the fibers, of much less than one. The Reynolds number was

calculated in the same manner as discussed in the analysis of the problem.

Straight, rigid cylinders were obtained by cutting nylon filament of circu-

lar cross section to the desired length.

For convenience in future discussions, fiber-fiber interaction will be

broken down into two types, hydrodynamic interaction and mechanical interaction.

Hydrodynamic interaction will mean the effect of one fiber's flow field on any

other. Mechanical interaction will mean physical contact between the fibers.

In order to minimize fiber-fiber interactions of both types, Mason's (33)

"critical concentration" for free rotation of the fibers was used as a guide.

To estimate this "critical concentration," Mason allowed a volume to each

fiber equal to a sphere of diameter equal to the length of the fiber. Therefore,
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for free rotation:

where

VE = the effective volume occupied by one fiber

n = the number of fibers per unit volume

Substitution for n in terms of concentration which now becomes the "critical

concentration," c gives

Therefore,

If Equations(l) and (14) are combined and c from Equation (25) is substituted-o

for c, it is found that:

Therefore, to obtain the highest possible relative viscosities and still

remain below the "critical concentration," fibers of small L/d ratio should be

used. However, there are also limitations to the smallness of the L/d ratio.

First, Burgers' derivation requires that L/d be much greater than one. Second,

if the L/d ratio of the fibers is too small, the effect of the ends of the fibers

might become important.

If ao from Equation (14) is plotted versus L/d the relationship given in

Fig. 9 results. It can be seen that below an L/d of approximately 10, Burgers'





theory begins to predict an increase in ao with decreasing L/d. Therefore, for

this study, fibers with L/d > 10 were needed to stay in the region where Burgers'

theory applies.

In a study of the translation of cylinders through a liquid, Han (27) showed

that the ratio of the experimentally determined drag force to that predicted

theoretically by Burgers (6), who neglected fiber end effects, was constant

until the L/d ratio of the fibers was smaller than 10. The deviation of this

ratio from a constant was attributed to fiber end effects. This was used as a

guide to the elimination of fiber end effects in this study.

Therefore, in order to make this study in the range of L/d where Burgers'

theory applies, prevent fiber end effects from being appreciable, and yet to use

an L/d ratio small enough to obtain a measurable relative viscosity below the

"critical concentration," it was decided to work with fibers with an L/d ratio

of approximately 20.

Wall effects were eliminated from considerations in the initial part of

this study by using a viscometer annulus width large enough to give L/D and

d/D ratios small enough to be in the range that Nawab and Mason (15) showed

wall effects to be absent.

Studies made at E. I. du Pont de Nemours and Company (34) showed that

nylon shortened only 3% in tetrachloroethane (TCE) after 1000 hr. at 70°F.

and only 2% in paraffin oil (PO) after 10 hr. at 210°F.

Myers (16) stated that no swelling or shrinkage of his nylon fibers could

be detected after soaking in a mixture of TCE and PO for 24 hr. at 23°C. Myers

also found that nylon fibers remained well dispersed in a mixture of TCE and PO.
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Since TCE and PO have different densities, one greater and one less than that

of nylon, the density of the solution could be adjusted to prevent floating or

settling of the fibers.

For the above reasons, a mixture of TCE and PO was chosen as the suspending

medium for the nylon fibers.
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EXPERIMENTAL PROCEDURES

FIBER PREPARATION AND CHARACTERIZATION

The nylon fibers used in this study were cut from Du Pont nylon yarn.

CUTTING PROCEDURE

Straight Fibers

The straight fibers were prepared from the nylon yarn by the following

procedure.

The yarn was wound on a circular wheel two feet in diameter so that the

strands were nearly parallel. The fiber bundle thus obtained was cut from the

wheel, and laid into a trough formed by a piece of steel channel closed at both

ends. At each end, bolts, through the sides of the channel, held the fibers

below the top of the trough. The ends of the fiber bundles hung over the ends

of the trough and weights were attached to keep the fibers straight. Fischer

Tissuemat Wax (m.p. 54-56°C.) was then poured over the fibers filling the

trough. After the wax had hardened, the block of wax containing the fiber

bundle was removed from the trough and cut into several smaller blocks. The

desired fiber lengths were then cut using a microtome. The majority of the

wax was removed by melting the wax and filtering the suspension. The remaining

wax was removed by extracting the fibers with pentane in a Soxhlet for 8 hours.

Curved Fibers

The curved fibers used were cut from the same nylon yarn used for the

straight fibers. The fibers became curved due to the cutting procedure. The

procedure was as follows. The nylon yarn was wound on the wheel as before.

The fiber bundle was glued to chipboard and removed from the wheel. A cutter,
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made from razor blades held in a parallel array by threaded drill rods and nuts,

and spaced by washers or shim stock, was forced through the fiber bundle using

a hydraulic press.

This was the same procedure used by Myers (16) to cut all but his shortest

fibers.

MEASUREMENT OF FIBER LENGTHS

Fiber lengths were determined by projecting the images of the fibers on

to the screen of the fiber length measuring apparatus (35) developed by the

Finnish Pulp and Paper Research Institute. This magnified the fiber lengths 50

times. The images on the screen were then measured with a scale to the nearest

millimeter. At least 100 fibers were measured and the average length determined.

MEASUREMENT OF FIBER DIAMETERS

Fiber diameter measurements were made using a microscope with a 43X objec-

tive lens and a Dyson image-splitting eye-piece (36). The resulting total

magnification was 1700X. Approximately 30 fibers were measured to obtain an

average diameter.

OPERATION OF THE VISCOMETER

In order to determine the torque-angular velocity relationship for a solu-

tion or suspension, the following operational procedure was followed.

1. The outer cylinder, containing the solution to be measured, was centered

on the base of the viscometer by means of the two bolts shown in Fig. 6.

2. Water from the constant temperature bath was started to circulate

through the water jacket and the solution was allowed to come to the desired

temperature.
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3. The air pressure to the air bearing was adjusted to an amount just neces-

sary to "float" the bearing. This pressure was determined by passing an electric

current through the male and female portions of the bearing while the air pressure

was being increased from zero. When the current ceased to flow, indicated by an

ammeter in the circuit, the male portion of the bearing was "floating." Experi-

ence showed that it was necessary to increase the air pressure by 2 cm. of tetra-

bromoethane over the amount just necessary to support the bearing for proper

performance of the viscometer.

4. The electromagnets were demagnetized using the procedure described on

p. 30.

5. The motor driving the electromagnets was started.

6. A small direct current was supplied to the electromagnets which de-

livered a low torque to the inner cylinder.

7. The inner cylinder was allowed to come to an equilibrium angular veloc-

ity and the time per revolution was measured to the nearest 0.1 sec. with a stop-

watch. Measurements were made for several revolutions and the results averaged.

One revolution was determined from the passage of a light beam, reflected

off a mirror on the shaft of the air bearing, past a given spot.

8. The average time per revolution and the current to the electromagnets

were recorded.

9. The current to the electromagnets was increased and steps 7-8 were

repeated until the desired range of torques had been covered.

During the operation of the viscometer, periodic checks were made of the

angular velocity of the magnetic drive, and the spacing between the magnetic



drive and the air bearing. The angular velocity of the magnetic drive was

measured using a stroboscope, and the air gap spacing was measured using a

feeler gage. A change in either of these quantities required correction of the

change and recalibration of the viscometer.

CALIBRATION OF THE VISCOMETER

The viscometer was calibrated using the small (4.98 cm. diameter) cup and

a known viscosity sucrose solution (approximately 33% by weight).

The solution was prepared using reagent-grade sucrose and distilled water

and was deaerated for approximately 15 minutes.

The concentration of the solution was determined by weighing a sample of

the solution, evaporation of the solution to dryness in a vacuum oven at 50°C.,

and weighing the residue. The viscosity of the solution was determined from

tables given by Bates (37).

Having prepared the sucrose solution, calibration of the viscometer was

then accomplished by determining the angular velocity of the inner cylinder for

several different currents to the magnetic drive over the range.from 0-2 amperes.

The torque delivered by the magnetic drive was then determined using Equation

(27).

where

T' = torque, dyne-cm.

h = inner cylinder length, cm.

b1 = angular velocity of inner cylinder, rad./sec.

r1 = radius of inner cylinder, cm.

r2 = radius of outer cylinder, cm.

-41-
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Thus, by plotting torque versus current, a calibration curve such as that

shown in Fig. 10 was obtained.

The calibration of the viscometer was checked periodically as a matter of

course. Also, if there was reason to believe that the calibration had changed,

the viscometer was recalibrated.

PERFORMANCE OF THE VISCOMETER

Values for the torque delivered by the magnetic drive were determined from

the current to the drive using a calibration curve such as the one shown in Fig.

10. The angular velocity was determined from the time per revolution of the

inner cylinder.

Figure 11 gives an example of the reproducibility of the viscometer.

The solution being tested was a TCE-PO solution (sp. gr. - 1.14). The

apparent viscosities (T/w) obtained for Runs 1, 2, and 3 were 102.3, 102.3, and

102.6 dyne-cm.-sec., respectively. The slopes were figured by least squares

with a prescribed intercept of zero. The data for these runs are given in

Appendix II, Table X.

Below torques of approximately 10 dyne-cm., the data deviated from linear-

ity indicating a loss in precision. For this reason, the data taken in this

study were obtained at torques above 10 dyne-cm.

Note that at high angular velocities, the torque-angular velocity re-

lationship in Fig. 11 becomes curved. This was due to instability of the flow

in the annulus, i.e., the formation of Taylor vortices (29).

Only the data in the linear portion of the curves were used in calculation

of apparent viscosities.
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Figure 12 gives an example of the reproducibility of the measurements using

nylon fiber suspension. The fibers being used in these particular runs were

16.9 p in diameter with an L/d ratio of 19.2.

The following apparent viscosities were found for these runs: Runs 4A and

B, 97.3, 97.0; Runs 5A and B, 108.1, 108.0 dyne-cm.-sec. The data for these

runs are given in Appendix II, Table XI.

In general, the precision of the measurements was found to be within + 0.25%.

DETERMINATION OF INNER CYLINDER END EFFECTS

Before the relative viscosity of a solution or suspension could be deter-

mined using the large (9.53 cm. diameter) cup, the effect of the ends of the

inner cylinder had to be known.

End corrections were determined for both the top and bottom ends of the

inner cylinder.

The procedure for the correction of the effect of the bottom end of the

inner cylinder has been discussed by Oka (38) and used by Lindsley and Fischer

(39), and Myers (16) in their work with concentric cylinder viscometers. This

procedure is as follows. The liquid level in the cup was varied and the appar-

ent viscosity at each liquid level was plotted against the height of the liquid

on the inner cylinder. A line through all points except the one obtained with

the inner cylinder submerged was extrapolated to zero height. The intercept

was the end correction for the bottom end of the inner cylinder for this one

particular liquid.

The correction for the effect of the top of the inner cylinder was found

by subtracting the apparent viscosity obtained with the liquid level just at
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the top of the cylinder from that obtained with the cylinder submerged 4 mm.

below the surface.

Determinations of the end corrections were made using several liquids of

different viscosities. The relationships found are given in Fig. 13.

The top end correction was then plotted versus the apparent viscosity of

the liquid obtained with the inner cylinder submerged and the bottom end correc-

tion was plotted versus the apparent viscosity obtained with the liquid level

just at the top of the inner cylinder. The end correction curves determined in

the above manner are shown in Fig. 14.

Since Myers (16) showed that the end correction depended only on the appar-

ent viscosity of a solution or suspension and not on the presence or absence of

fibers, only pure solutions were used to make the end corrections in this study.

PROCEDURE FOR MAKING A VISCOSITY-CONCENTRATION STUDY

GENERAL PROCEDURE

A suspension of the highest concentration desired to be studied was prepared

and the apparent viscosity was determined. The concentration was then reduced

and the apparent viscosity determined. This procedure was followed until the

desired concentration range had been covered.

DETAILED PROCEDURES

Preparation of Fibers

Before each series of viscosity-concentration runs was made, the fibers to

be used were washed thoroughly with carbon tetrachloride and dried overnight in

a vacuum oven at 50°C.





BOTTOM END



-50-

Preparation of Suspension

The quantity of fibers necessary to make the highest desired volume concentra-

tion to be studied was weighed and added to a TCE-PO solution. The suspension was

stirred, deaerated for approximately 15 minutes and allowed to stand for two hours

to determine whether or not the fibers would remain suspended. If the fibers

floated or settled, either TCE (sp. gr. = 1.60) or PO (sp. gr. - 0.9) was added

to adjust the solution density to that of the fibers.

The suspension was again deaerated, and transferred to the viscometer.

Determination of the Apparent Viscosity

Before each viscosity determination, the suspension was mechanically stirred

while in the viscometer using a small teflon propeller connected to a stirrer by

means of a long, thin spring.

The apparent viscosity was then determined in the manner outlined in the

sections on Operation and Performance of the Viscometer.

Procedure for Changing Concentration

The concentration was changed by siphoning out of the viscometer annulus

into a weighed bottle, a quantity of suspension which contained approximately

the amount of fibers desired to be removed. The suspension remaining in the

viscometer was then diluted to the original volume with pure solution, thus

yielding the next lower concentration to be measured.

Determination of Volume Concentration

Since the solution and the fibers were of equal densities, the volume frac-

tion was equal to the mass fraction and therefore the volume concentration could

be determined by weighing the suspension and the fibers.
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The weight of the fibers was determined after filtration from the suspension,

washing with carbon tetrachloride, and drying at 50°C. in a vacuum oven overnight.

Determination of Changes in the Viscosity
of the Suspending Medium

Since a two-component solution was being used as the suspending medium, it

was necessary to determine and correct for any changes in the viscosity of the

suspending medium before relative viscosities were calculated.

Changes in the viscosity were determined by taking a sample of the filtrate

from the concentration determinations and measuring the efflux time in a capil-

lary viscometer. The densities of the suspending mediums were determined by

weighing 25 ml. of solution in a specific gravity bottle.

The viscosities of the solutions were proportional to the efflux time

times the density.

CALCULATION OF RELATIVE VISCOSITIES

The relative viscosities of the fiber suspensions were calculated in the

following manner.

1. The apparent viscosities obtained for each concentration were corrected

for the effect of the top end of the inner cylinder using the lower curve in

Fig. 14.

2. The resulting apparent viscosities were corrected for the effect of the

bottom end of the inner cylinder using the upper curve in Fig. 14.

3. The apparent viscosities corrected for end effects were then corrected

for changes in the viscosity of the suspending medium by multiplying them by the
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ratio of the density times the efflux time for the pure solution to the density

times the efflux time for the suspending medium.

4. The corrected apparent viscosities for each concentration were then

divided by the corrected apparent viscosity for the pure solution to obtain the

relative viscosities.

An example of this procedure is given in Table V.

FIBER ORIENTATION DETERMINATIONS

In order to best evaluate Burgers' theory, it was necessary to determine

the actual orientations of the fibers while under conditions of shear similar

to those used in the viscosity measurements.

The orientation measurements were taken from photographs made of the suspen-

sions under shear over the range of concentrations used in the viscosity studies.

The following is a description of the apparatus and techniques used in

obtaining and analyzing these photographs.

APPARATUS

The design of the viscometer used in this study prevented photographing the

suspensions under the actual conditions of flow used in the viscosity measure-

ments. Therefore, it was necessary to find a similar apparatus on which a

microscope and camera could be conveniently mounted. The concentric cylinder

apparatus (40), designed at the Pulp and Paper Research Institute of Canada for

the measurement of the flexibility of pulp fibers, fit the requirements very

well. This apparatus produced conditions of flow which were essentially the same

as that produced by Myers' viscometer except that the velocity gradient was

slightly more linear due to the larger radii of the cylinders.
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The apparatus consists of two concentric cylinders of radii 10.14 and 12.70

cm. which rotate in opposite directions. The angular velocities of the cylinders

could be independently varied. Due to the counterrotation of the cylinders, a

plane of zero velocity existed in a suspension under shear between the two

cylinders. A microscope could be mounted to the apparatus in such a way that

the field of view could be moved vertically, radially, or through an arc of 120 °

concentric with the cylinders.

Since a detailed description of the apparatus itself is given in reference

(40), only the camera and lighting arrangement will be discussed here.

Figure 15 is a diagram of this arrangement. The copper sulfate heat filter

was placed between the light source and the lower cylinder to prevent convection

in the annulus. The light was only used while focusing the microscope and

exposing the film.

The angular velocities of the cylinders were adjusted to obtain a shear

rate of 0.371 sec. in the annulus. This shear rate was within the range

covered by the viscosity measurements, and within the range of stable flow.

PHOTOGRAPHIC PROCEDURE

After each concentration change, the suspension in the annulus was thoroughly

stirred and the cylinders were set into motion. Ten minutes were allowed for the

system to come to equilibrium. Using the Microipso, the camera was focused 3 mm.

below the surface of the suspension at the plane of zero velocity. This was

approximately the maximum depth at which the microscope could be focused before

the image became blurred. However, at this position, the particles at the sur-

face of the suspension were out of focus.
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Figure 15. Camera and Lighting Arrangement
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After the camera was focused, the room lights were turned off and four ex-

posures were made. Shutter speeds, varying from 1/100 sec. at the lowest concen-

trations to 1/40 sec. at the highest concentrations, were used. This procedure

was followed for each concentration.

The microscope, Microipso and camera resulted in a magnification of 6.67

times on the film. This was determined from photographs of a micrometer slide.

Positive prints, 3-1/8 by 4-1/2 in., were made from the negatives resulting

in a total magnification of the fibers of 23.5 times.

ANALYSIS OF THE PHOTOGRAPHS

The purpose of making the photographs was to determine a value for the

4 2
orientation factor sin 0 sin 20 in Burgers' theory which would represent the

actual orientations of the fibers. Therefore, for each fiber, the angle 0 (see

Fig. 1) was measured to the nearest 5° using a protractor, and the projected

length on the xy-plane (i.e., the length of the fiber in the photograph) was

measured.

Sin 0 was determined by dividing the projected length of a fiber raised to

the fourth power by the average of the true lengths of the fibers raised to the

fourth power.

From the values for 0 and sin 0, sin 0 sin 20 was determined for each

fiber. Fifty to 100 fibers were measured to determine sin 0 sin 20 at each

concentration.

A more complete description of the analysis of the photographs is given

in Appendix III.
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RESULTS AND DISCUSSION

Throughout this study, nylon fibers of L/d 20 were used. The data and

discussions presented in the first five sections pertain to well-dispersed sus-

pensions. A discussion of some data obtained using flocculated suspensions is

given in the last section.

DISCUSSION OF THE TORQUE-ANGULAR VELOCITY RELATIONSHIP

Questions have often been raised as to the type of shear stressshear rate,

or torque-angular velocity relationship exhibited by suspensions of rigid rods.

A brief discussion is given of this relationship, so that the reader will have a

better understanding of the behavior of the suspensions discussed in later sec-

tions.

At the low concentrations used in this study, all of the data obtained

using the well-dispersed suspensions indicated Newtonian behavior, i.e., the

shear stress was directly proportional to the shear rate.

However, at volume concentrations of approximately 1/2 that necessary for

the formation of a continuous fiber network, i.e., ~0.05 for fibers of L/d =

37.5 (32), Myers (16) found a torque-angular velocity relationship similar to

the low shear rate behavior of Ostwald-Philippoff (OP) liquids (41).

Figure 16 gives an example of the behavior of an OP liquid.

Note that there is a first Newtonian regime followed by a non-Newtonian

regime and a second Newtonian regime. The viscosity obtained from the first

Newtonian regime is always greater than that obtained from the second Newtonian

regime.
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Merrill (41) has stated that suspensions of rigid rods or ellipsoids are

of the OP type even at very low concentrations. It should be made clear that

this is only true when the particles are so small that their orientations at

low shear rates are governed by Brownian motion. In this case, the particles

remain randomly oriented due to Brownian motion until the shear rate becomes

large enough to overpower this effect. These two conditions would be found in

the first Newtonian and second Newtonian regimes, respectively. The transition

period would be in the non-Newtonian regime.
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For suspensions of fibers large enough not to be affected by Brownian motion,

it has beenpredicted theoretically by Jeffery (10) and confirmed experimentally

by Trevelyan and Mason (22) that the period of rotation of the fibers times the

velocity gradient is constant [see Equation (17)]. Thus, there would be no

effect due to shear rate on the average orientation of the particles and Newton-

ian behavior would be obtained.

Unless otherwise noted, all of the viscosity data obtained or quoted in this

study represent the behavior of suspensions of low enough concentration and large

enough fibers so that the suspensions behaved in a Newtonian manner.

THE EFFECT OF CONCENTRATION ON THE ORIENTATIONS
OF THE PARTICLES

From the results obtained by Mason and Manley (23) for the orientations of

straight, rigid rods in a flowing suspension (see Analysis of the Problem), it

was obvious that the actual orientations of the fibers in the suspensions studied

had to be known before a logical comparison could be made between experimental

results and Burgers' theory. It was also necessary to know whether or not the

orientations of the fibers changed with the volume concentration so that a mean-

ingful presentation of the experimental data could be made.

4 2
Therefore, the orientation factor, sin e sin 20, of Equation (2) was

determined by the method described in the Experimental Procedures at several

volume concentrations over the range up to 0.007. The results of these deter-

minations are presented in Table VI.

Note that the concentration range covered by these measurements included

concentrations on either side of the previously discussed "critical concentra-

tion" of 0.0037 for these fibers. From examination of Table VI, it seems that
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the data may be divided into two ranges. Below a concentration of 0.0042, which

is close to the "critical concentration," the orientation factor remained essen-

tially constant except for the value at c = 0.00212. Also note that the values

of the orientation factor in this concentration range were in good agreement with

that found independently by Mason and Manley using different techniques for the

measurements. However, in the higher concentration range above the "critical

concentration," there were sharp changes in the orientation factor.

TABLE VI

VALUES OF THE ORIENTATION FACTOR AS A
FUNCTION OF CONCENTRATION

d = 43.1 microns, /d = 20.3

Volume
Concentration

2 4 2
x 10 sin 0 sin 20

0.0026 0.0510

0.106 0.0555

0.212 0.0687

0.318 0.0527

0.424 0.0535

0.504 0.0881

0.557 . 0665

0.663 0.0575

From the data of Mason and Manley (23).

Below the "critical concentration," the fiber centers are at least one

fiber length apart. Therefore, it would not be expected that there should be

sharp changes in the orientation factor such as that at c = 0.00212. In support

of this reasoning, consider the results of Trevelyan (42), and Mason and Manley

(23).



Trevelyan found from observations of suspensions of straight glass fibers in

a linear velocity gradient that there was no appreciable mechanical interaction

between fibers until the concentration was in the range of the "critical concen-

tration." In a study of the variation of X = f(K) (see Fig. 1),. Mason and Manley

showed that in the concentration range where mechanical interactions are not

appreciable, hydrodynamic interactions sometimes increased and sometimes de-

creased X and K. Thus, from the results given in Table VI, the changes in X and

K must compensate, causing the orientation factor to remain essentially constant.

Since, from the above discussion, sharp changes in the orientation factor

below the "critical concentration" would not be expected, the data were tested

to see if there was a real difference between the value obtained at c = 0.00212

and 'the remaining points at and below c = 0.00424. Using the t-test to determine

the significance of the difference between means of each sample, it was found

that the difference was not statistically significant. The 95% confidence level

was used as the criterion for significance.

From the reasons discussed above, it was concluded that the orientation

factor remains constant below the "critical concentration." Therefore, the

arithmetic average of the first five values of the orientation factor in Table

VI, i.e., 0.0563, will be used in subsequent discussions of the viscosity behavior

in the concentration range below 0.0042.

On the other hand, at concentrations well above the "critical concentration,"

the fiber orbits overlap considerably. This would lead to increasing mechanical

interactions between the fibers which might cause significant changes in the

orientations of the particles. A statistical comparison of the value of the

orientation factor obtained at c = 0.00504 showed that there was a significant

difference between this value and the remaining values. In this range, the
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viscosity data must be examined together with the variations in the orientation

factor.

Before an explanation is given of the sudden rise in the orientation factor

between concentrations of 0.0042 and 0.0050, consider the orbit of a freely ro-

tating rod for different values of the orbit constant.

In a suspension where mechanical interaction is not appreciable, the orbit

constants of fibers will be distributed between zero and infinity. However,

using fibers of L/d ~ 20, Mason and Manley (23) found that approximately 60% of

the fibers will have orbit constants below 0.4.

Table VII gives an example of how the relationship between t and e changes

with the orbit constant, K, for fibers of L/d = 20.3.

TABLE VII

AN EXAMPLE OF THE CHANGES IN 0 WITH 0 FOR SEVERAL
VALUES OF THE ORBIT CONSTANT

K 01 1 02 2

o 90.0 90 90.0

10 o 89.6 90 84.3

1 o 86.1 90 45.0

0.5 0 82.2 90 26.6

0 0 o 0 o 0

The values of 0 and 0 were determined from Equation (9) after substituting

[1/(L/d)e] 2 for (b/a)2 . (L/d) as determined from Equation (18) was 14.8.

As can be seen, for large values of K, 0 changes very little as 0 moves

through 90 ° . However, for relatively small values of K, there is quite a large

change in 0 with 0.



Consider this behavior in terms of the orientation factor sin 4 sin 20.

For fibers with relatively small orbit constants, large values of sin4 0 will

2
fall at small values of sin 20 and vice versa. On the other hand, for large

4
values of the orbit constant, large values of sin will fall at large values of

sin 20.

In measuring the angles 0 and 0 from the photographs, it was found that at

concentrations of 0 to 0.00424, small values of sin 0 fell at large values of

2
sin 20 indicating small values of the orbit constant, in agreement with the

results of Mason and Manley (23). However, at a volume concentration of 0.00504

which is well above the "critical concentration," large values of sin e fell at

large values of sin 20 thus indicating a general shift of the fibers toward

orientation in the xy-plane, or toward higher values of the orbit constant.

Therefore, the fact that the orientation factor at a concentration of 0.00504

was higher than at lower concentrations was probably due to a shift in the

orbits of the particles.

This same general behavior was also found by Arlov, et al. (43) using a

suspension of pulp fibers of concentration, relative to the "critical concen-

tration," approximately equal to that used in this study.

It seems that since hydrodynamic interactions between the fibers at low

concentrations had no significant effect on the orientation factor, the shift

in the orbits of the fibers between concentrations of 0.0042 and 0.0050 probably

was due to a rapid increase in mechanical interactions. As the concentration of

the fibers increased above 0.004, the formation of groups of two or three fibers

increased rapidly. These groups generally formed when one fiber in the process

of rotating through values of 0 of 350-50 ° collided with another fiber which was

essentially aligned in the direction of flow. These two fibers would then rotate

-63-
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together for a short while, usually less than one-half rotation, and separate.

It was not uncommon for a third fiber to be trapped in such a group at high

concentrations. One would not expect these groups to rotate in any regular

manner as do individual fibers and, therefore, the effect of such mechanical

interactions on the orientation factor cannot be predicted a priori. However,

the measured values of 0 and e indicated a gradual decrease in the orientation

factor as the concentration increases beyond 0.005.

Although the measurements indicated the changes in the orientation factor

discussed above, the author has been unable to determine the basic causes of

this behavior.

However, with this background of the general behavior of the fibers with

concentration changes, a more logical discussion of the effect of concentration

on the relative viscosity can be made.

THE RELATIVE VISCOSITY-CONCENTRATION RELATIONSHIP

Two sets of fibers were used in this portion of the study. These sets were

composed of straight, nylon fibers, 16.9 and 43.1 p in diameter with /d ratios

of 19.2 and 20.3, respectively.

Viscosity measurements were made over a concentration range from 0 to 0.009

which included concentrations well above and well below the "critical concentra-

tion" of approximately 0.004 for these fibers.

The results of the viscosity measurements are given in Fig. 17.

Note that the total change in the relative viscosity over the concentration

range covered was only approximately 5%. Thus, although the scatter in the data

seems relatively large, actually it is quite small.



-65-



-66-

The viscosity-concentration relationship presented in Fig. 17 represents

two new and significant findings.

First, there is a low slope at low concentrations which is much smaller than

has been found previously.

Second, there is an abrupt increase in the viscosity in the concentration

range from 0.0042 to 0.0050 followed by a slight decrease and a second increase.

A discussion of the viscosity-concentration relationship between concentra-

tions of 0 and 0.0042 will be given first, followed by a discussion of the

viscosity behavior at high concentrations.

DISCUSSION OF THE RELATIVE VISCOSITY-CONCENTRATION
RELATIONSHIP AT LOW CONCENTRATIONS

One of the primary objectives of this study was to determine the effect of

concentration on the relative viscosity at concentrations where fiber-fiber

interactions are negligible.

From the behavior of the orientation factor (Table VI) and the relative

viscosity (Fig. 17) over the concentration range from 0 to 0.0042, it seems

that this has been accomplished.

The initial slope of the viscosity-concentration relationship in Fig. 17

which represents the intrinsic viscosity,. , of the suspensions was found by

least squares analysis to be 1.98. This value of Ca is approximately 1/3 as

large as the lowest a value previously found (16) for suspensions of fibers of

this L/d ratio.

The value for ao is also lower than predicted by Burgers' theory assuming

random orientation of the fibers. This was expected since Equation (12),
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corrected using Mason's 3 factor, predicts a value for sin 0 sin 20 of 0.088

as compared to that of 0.0563 found from measured fiber orientations.

To compare the experimentally determined a with Burgers' theory in the form

4 2
obtained before attempts were made to predict sin 0 sin 20, the experimentally

determined value for the orientation factor (0.0563) was substituted into Equation

(2) and a was calculated. The a value obtained was 1.95 as compared to 1.98

found experimentally. As can be seen, the agreement was very good. Using the

value of 0.0510 for the orientation factor as found by Mason and Manley, Equation

(2) gives a value of 1.78 for a

Therefore, it can be concluded that if the orientations of the fibers are

known, Burgers' theory can be used to predict the viscosity of a well-dispersed

suspension of straight, rigid rods within approximately l0% if the conditions

assumed in the theory are met.

It can also be concluded that below a volume concentration of 0.004 for

fibers with an L/d ratio 20, fiber-fiber interactions do not contribute signif-

icantly to the viscosity of the suspension.

It is now possible to modify Burgers' theory to predict the intrinsic

viscosity of suspensions of straight, rigid rods taking into account actual

orientations of the fibers. This can be done, using the results of Mason, et al.

(22-24), as follows:

From Equation (12) of Burgers' theory,

for random orientations of the fibers. Trevelyan and Mason (22) showed that L/d

for an ellipsoid is equal to 1/(L/d) for a cylinder where (L/d) is given by
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Equation (18). Therefore, Equation (28) becomes:

4 2

Now, from the results of Mason and Manley given in Table III,

random

Therefore,

By combining Equations (2), (18), and (31), the following expression is obtained

for

This concentration limit is used since the "critical concentration" seems

to agree very closely with the concentration at which fiber-fiber interactions

become appreciable.

DISCUSSION OF THE RELATIVE VISCOSITY-CONCENTRATION
RELATIONSHIP AT HIGH CONCENTRATIONS

Examination of Table VI and Fig. 17 reveals that the sudden increase followed

by the slight dip in the relative viscosity came over the same concentration range

as did the increase and decrease in the orientation factor. It is obvious, there-

fore, that changes in the orientations of the fibers were at least partially re-

sponsible for the changes in the relative viscosity. However, a comparison of

the relative viscosities calculated using values of the orientation factor given
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in Table VI with the experimentally determined relative viscosities shows that

the change in the orientation factor is not nearlylarge enough to account for

all of the change in the relative viscosity. This comparison is given in Fig.

18.

In order to obtain a better method of representing the experimental data,

it will be beneficial to consider methods used in the past to explain the vis-

cosity behavior of suspensions at relatively high concentration.

It has been found that, in general, experimental viscosity-concentration

relationships for suspensions can be represented by equations of the form:

Values for k have been theoretically predicted for spheres (9), ellip-

soids (10), and cylinders (6). The term kl c, as derived by Burgers, takes

into account increases in the viscosity due to increases in the average shear

rate caused by the suspended particles.

2
The term k2 c has been added to include the effect of particle inter-

actions which can be either hydrodynamic or mechanical interactions, or both.

Both types of interaction would lead to additional disturbances of the

suspending fluid and therefore to an increase in the dissipated energy which

would be reflected by an increase in viscosity.

Frisch and Simha (44) state that the interaction term can also be written

k3(k c) . Simha (45) found from theoretical considerations that k = 0.73 for

purely hydrodynamic interactions between randomly oriented, rigid rods. For

the system under consideration here, this would be 0.73(aoc) , which is negli-

gible at the low concentrations used in this work. Thus, if Simha's prediction
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of the effect of hydrodynamic interactions is correct, even to an order of magni-

tude, the results obtained in this study must have been due to some other effect.

The most likely other effect is mechanical interactions. No theory has been

proposed for rigid rods to account for this effect.

Since Burgers' theory was only intended to apply over a concentration range

where fiber-fiber interactions can be neglected, a more general equation for

larger ranges of concentration formed by addition of a second term to Equation

(1) would not be appropriate. A better way to achieve the same purpose would

be to write an equation intended to apply only over certain designated concen-

tration ranges.

Equations (34) and (35) are relationships of this type.

where, in each case, the second term is considered only when c > c .

Equation (34) ignores completely any effect which the orientations of the

fibers would have on interaction. In Equation (35), it is assumed that the

interaction term is of the same form as that applying to freely rotating fibers.

It is probable that neither of these assumptions is exactly correct. However,

since no better-predictions of the effect of particle orientations on inter-

action have been made, attempts were made to correlate the data using these

relationships.

The intrinsic viscosity, a , was determined from Equation (2) using measured

values of the orientation factor, and values of k" and k' were determined by

trial and error to give the best fit of the experimental data. A comparison
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of the relative viscosities given by Equations (34) and (35) with those obtained

experimentally is presented in Fig. 19.

As can be seen, Equation (34) seems to give the better fit over the whole

range, whereas Equation (35) fits better in the region of the "bump" and dip.

Therefore, it seems that the orientations of the fibers should be taken into

account in the interaction term to predict the changes in the relative viscosity

with concentration.

THE EFFECT OF THE WALL ON THE RELATIVE VISCOSITY

Before the experimental results obtained in this study are presented,.a

review of what these effects might be and how they might come about is in order.

Nawab and Mason (15) have suggested three ways in which the walls might

affect the flow of suspensions. These are as follows:

1. When a suspension of spherical or nonspherical particles is sheared,

"pseudo-slip" is predicted to occur as the result of hydrodynamic interaction

between the particles and the wall. This effect is equivalent to interposing

a particle-free liquid layer between the suspension and the wall.

2. Due to particle geometry, there is a minimum distance of approach of

a particle center to the wall. For a rod, this distance depends on d, L/d

and the orbit of the particle.

3. Phase separation, i.e., "plug flow," has been observed in suspensions

of pulp fibers.

Vand (18) has calculated this first effect for spheres. In regard to this

effect, Vand states that "in the region of high concentrations, considerable

slip at the wall might develop" in both Couette and Poiseuille flow "due to the

layers of low viscosity along the walls which might finally overshadow the effects
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of shear inside the suspension, making the measurements useless. It should be

noted that this slip is quite distinct from the phenomenon of 'plug flow'----as

it develops even in the region of concentrations where the suspensions behave in

bulk as a true Newtonian liquid."

If pseudo-slip does occur as predicted by Vand, the measured apparent vis-

cosities would be lower than would be obtained for a uniform suspension in

contrast with the results of Myers,(16).

Mason (46) found that Vand's correction is necessary if viscosity measure-

ments of suspensions of spheres are made in a capillary viscometer when the

particle size is an appreciable fraction of the dimensions of the viscometer.

However, Sweeny and Geckler (47), and Eveson, et al. (48) did not find

this effect when viscosity studies of suspensions of spheres were made in con-

centric cylinder viscometers. Eveson varied the annulus width-to-particle

diameter ratio from 110:1 to 5:1 and found no evidence of wall "slip" or any

other wall effect.

Goldsmith and Mason (49), in a study of the flow of suspensions of rigid

rods [mean (L/d)e = 20.8] through tubes, investigated the second effect listed

above. They compared the period of rotation of rods whose centers were within

a distance L/2 of the wall with the time the rods spent between 0 = -4° and +4° .

It was found that interaction with the wall was confined to these low values of

0 where the particles spent 90% of their time. Measurements showed that when

the rods were aligned at right angles to the flow, no contact with the wall

occurred. As in Couette flow, it was found that the particles do not migrate

away from the wall but hold their positions indefinitely. This is in agreement

with the theoretical findings of Jeffery (10) that there would be no force normal
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to the wall on a particle to cause it to move away from the wall. Therefore,

there should be no time effect affecting the wall effects.

No wall effect of the third type, i.e., "plug flow," suggested by Nawab

and Mason was found in the studies quoted or in this study.

A fourth type of wall effect which was not mentioned by Nawab and Mason is

that due to purely hydrodynamic interactions between the particles and the wall.

This effect has been predicted by Brenner (8) for a particle translating or

rotating near a boundary. However, Brenner's theory was derived for the case

of a particle moving with respect to the fluid and the wall. In the case of the

motion of rigid cylinders in a linear velocity gradient, this criterion is met

only for that component of the motion of the fluid directed along the axis of

a cylinder as it rotates.

Brenner showed that the drag on a particle in finite boundaries as compared

to that in an infinite medium could be expressed by Equation (36).

where

F = actual drag on a particle

F = drag on a particle in an infinite medium

U = velocityof the particle

H = distance of the particle from the wall

K' = an experimentally determined constant

The constant, K', has been found to be of the order of magnitude of one to

two for spheres in translation relative to various boundaries.



The effect of the wall on the rotation of a particle has been shown by

Brenner to be:

where

L and L = the couple exerted on a particle in a bounded and unbounded
medium, respectively

= angular velocity of the particle

K" = an experimentally determined constant found to be one or less than
one for spheres

Thus, the effect of the wall on rotation will be much less than the effect

on translation.

Equations (36) and (37) can be used for any particle to determine F or L

if F or L are known.

As was stated previously, the first part of this work was done using an

annulus width of 22.8 mm. which resulted in maximum d/D and I/D values of

0.00189 and 0.0385. These values were in the range of d and I/D where Nawab

and Mason found no wall effect. In order to determine the magnitude of the wall

effects discussed above, the annulus width was decreased from 22.8 mm. to 2.45

mm. and viscosity measurements were made on suspensions of the 43.1 pt diameter

fibers of L/d = 20.3. These fibers and this annulus width resulted in L/D and

d/D values of 0.358 and 0.0176. The results of these measurements are repre-

sented by the triangles in Fig. 17. As can be seen, there was no detectable

wall effect of any kind.

The following thoughts are presented as possible explanations for the

absence of wall effects.
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It was felt that the strength of the doublets formed due to the rotation of

the fibers in a suspension might be affected to approximately the same degree as

the drag force on a cylinder in translation between two walls.

Therefore, F/F was calculated using Equation (36) for a fiber of the size

used in this wall effect study. It was assumed that the fiber was translating

perpendicular to its axis between two walls a distance H apart. The value of H

was picked so that L/H = L/D = 0.358.

Equation (38) was used for F

This equation was derived by Burgers (6) and corrected by Han (27). Han showed

that the factor 4/3 was necessary for agreement with experimental results.

F/F was found to be 1.06. Thus, the effect of the wall resulted in an

increased drag of only 6%.

If the strength of the doublet formed due to the rotation of the fibers is

increased by this amount, there should be an increase in the relative viscosity

at the highest concentration used in this study of only 0.3%. At lower concen-

trations, the effect would be even less. Therefore, if this estimation of the

effect of hydrodynamic interaction between the fibers and the wall on the vis-

cosity is correct even to an order of magnitude, it is likely that the effect

would not have been detected.

Another possible explanation for the absence of wall effects can be obtained

from the work of Goldsmith and Mason (49). Since it has been shown that inter-

action with the wall is confined to the part of the orbit between 0 = -4° to +4°
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where the disturbance to flow is at a minimum, even a large effect on rotation

would have a very small effect on viscosity.

A third possible reason for the absence of wall effects is as follows.

Nelson (50) suggested that it is possible that the flow field produced by

any one fiber is sufficiently masked by the flow fields of the other fibers that

it is never "felt" by the wall.

Consider now the significance of the absence of wall effect in this study.

In Myers' study (16), the most extreme cases of L/D and d/D were 0.268 and

0.00333 as compared to the most extreme case in this study of L/D = 0.358 and

d/D = 0.0176. Thus, Myers' values of /D and d/D fell into the range covered

by this study where it has been shown that wall effects are negligible. It can

be concluded, therefore, that wall effects were probably not important in Myers'

study. If wall effects were not responsible for the increase in a with d at

constant L/d (see Fig. 4) as found by Myers, then there must have been some

other reason.

As was shown in the Analysis of the Problem, Nawab and Mason's, and Myers'

work differed primarily in the amount of fiber-fiber interaction, the possi-

bility of wall effects, and the degree of fiber curvature.

The effect of fiber-fiber interaction was probably one of the reasons why

the work of Nawab and Mason, and-Myers did not agree with theory. However, it

does not explain why viscosity measurements made by Myers on suspensions of

fibers with the same L/d ratio did not agree.

The absence of wall effects only eliminates one of the possible explanations

of this behavior.
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The effect of fiber curvature on viscosity is the only one of the three

variables mentioned earlier which has not been considered.

THE EFFECT OF FIBER CURVATURE ON THE RELATIVE
VISCOSITY OF A FIBER SUSPENSION

As was stated previously, Forgacs and Mason (17) showed that a slight curva-

ture of the fibers had a tremendous effect on the period of rotation of the fibers.

They suggested that, due to the change in the rotational behavior, there would

also be a significant effect on the contribution to viscosity. However, the

magnitude of this effect in the absence of other effects such as fiber flexibility

was not demonstrated.

In all cases where either photographs were available or the actual samples

used could be obtained, it was found that the fibers used by Myers (16) in his

viscosity studies were curved except for those 16.79 p in diameter with an L/d

of 23.1 and the glass fibers. The most probable reason for this is that all of

the fibers used by Myers, except those mentioned below, were cut by the parallel

razor blade technique which has been found in this study to permanently deform

nylon fibers. The 16.79 p diameter, L/d = 23.1 fibers were microtomed from wax,

as was done to obtain the straight fibers used in this study.

In order to determine the magnitude of the effect of fiber curvature on

viscosity, two viscosity-concentration studies were made using curved fibers.

Again, Newtonian behavior was found.

The results of the viscosity measurements made using these curved fibers

as compared to the results obtained with straight fibers are given in Fig. 20.

The curvature of these fibers, as defined by the angle 7 (see Fig. 3) was 176 °.

As can be seen, the effect of this slight curvature is quite large. If these





data are fitted to Equation (39) below, an a0 value of 3.57 is obtained as

compared to an ao of 1.98 obtained using straight fibers of comparable L/d.

r = + ac + ac 2 (39).

The most probable reasons for the effect of fiber curvature on viscosity

are given below.

Consider the simplified system of a fiber rotating in the xy-plane of a

linear velocity gradient (Fig. 21).

Figure 21. Curved Fiber in a Linear Velocity Gradient

As the fiber becomes curved, there will be a greater difference in the

velocity of the fluid flowing past the two sides of the fiber than there would

be for a straight fiber. This will result in more drag on the fiber, tending

to make it rotate, and therefore the fiber will remain in the direction of flow

for a shorter time. Since the fiber is also shortened due to the curvature, by

the same reasoning, it will spend a longer time oriented perpendicular to the

direction of flow. Thus, the result will be a shift from a preferred orientation

-81-



-82-

in the direction of flow toward a more random orientation with increasing fiber

curvature.

This reasoning agrees with the qualitative observation by Myers (16) when

a viscosity study was done using fibers with extreme curvature. Myers stated

that the fibers seemed to have no preferred orientation.

It should be pointed out here that Equation (15) does not predict a maximum

value for a . Equation (15), taking into account Nawab and Mason's B factor,

predicts the maximum value for a which can be obtained using straight, rigid

fibers in a suspension dilute enough so that the fibers follow the motion of

the fluid. In the case of straight fibers, the fluid will cause the fibers to

have a preferred orientation in the direction of flow. If there exists a situa-

tion, such as fiber curvature, which would cause the fibers to approach a more

random orientation in the xy-plane, then a value for ao larger than that given

by Equation (15) would be predicted.

The value of ao for random orientation in the xy-plane can be obtained

from Equation (2). For this case, sin 4 = 1, and averaging sin2 20 from 0

to n gives:

It is interesting to note that all of Myers' a values fall well below

those predicted by Equation (40).

Thus far, only the effect of fiber curvature on orientation has been con-

sidered. There will also probably be an effect on the strength of the doublet

formed on the fiber. Tchen (7), has shown that the drag coefficient for a

straight ellipsoid translating through a fluid in a direction parallel to its
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axis can be expressed as follows:

(41).

For an ellipsoid bent into a half-circle and translating as shown in Fig.

22, the drag coefficient is:

(42).

Figure 22. Curved Ellipsoid Translating Through a Fluid

Since the difference in the drag coefficients for these two extreme cases

is only ~30%, then the difference between the doublet strength formed by the

presence of straight fibers, as compared to that formed with fibers of slight

curvature, might be small.

An attempt has been made to correlate the values of ac obtained by Myers

(16) when using curved fibers by taking into account the effect of fiber curva-

ture. Curvature measurements were made either from photographs presented by

Myers or from the actual samples he used. Following Forgacs and Mason (17),



the angle y was measured and attempts were made, without much success, to

correlate the data based on 7 only. It seemed more reasonable to base the

correlation on the ratio of the length of the fiber to the maximum amount of

the fiber which would lie across the velocity gradient when the fiber is aligned

in the direction of flow. For a straight fiber, this would be, L/d. For a

curved fiber, this would be L/(h + d cos 1/2E), where h and e are defined by

Fig. 23. The value of h was obtained from 7 and L through the following relation-

ships:

Figure 23. Definition of h and E



In order to eliminate from consideration the effect of L/d on a , it was

decided to use the ratio of the experimental values of intrinsic viscosity, aoE'

to the theoretical values, aoT as a basis of comparison.

If aoE/CoT is plotted versus L/(h + d cos 1/2 ), the relationship shown in

Fig. 24 results. The values for the variables used to obtain this correlation

are given in Table VIII. The values of aoT used in this correlation were calcu-

lated using Equation (32).

VARIABLES USED

Sample L, d,
No. mm. p

680-.6a 0.60 16.79

680-1.0a 0.98 16.79

680-2.73a 2.73 16.79

260-2.42a 2.53 44.85

260-4.0 a 4.23 44.85

260-6.0 6.08 44.85

43.1b 1.00 43.1

16.9b 0.34 16.9

TABLE VIII

IN THE CORRELATION INVOLVING FIBER

L/d

35.5

58.3

162.6

56.2

94.3

135.6

23.2

20.1

aoE

7.07

9.08

22.24

10.59

16.08

19.85

3.57

3.57

aoT

2.50

3.54

8.08

3.55

5.43

7.11

1.82

1.64

"oE/oT

2.82

2.56

2.76

2.98

2.96

2.82

1.96

2.18

CURVATURE

7 L/(h + dcosl/2E)

178 31.0

175 35.7

165 26.4

169 24.0

162 20.2

165 25.6

176 18.9

176 17.1

.Myers' study.
This study.

The primary point set forth in Fig. 24 is that as fiber curvature decreases,

a E/aoT approaches one, thus showing the importance of fiber curvature. Since

L/(h + d cos 1/2c) cannot be greater than L/d, there must be side curves breaking

off the main curve and going down to the abscissa as shown. The steepness of the

side curves leading up to the main curve shows the large effect which a slight

curvature has on the viscosity.
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The fact that the curve for any given L/d rises rapidly and then tends to

level off agrees qualitatively with the results of Forgacs and Mason (17) for

the effect of fiber curvature on the rotational behavior of fibers (see Fig. 3).

The number beside each point in Fig. 24 is the I/d ratio of the fibers used

to obtain the point. Above a certain degree of curvature, the relationship

presented depends only on L/(h + d cos l/2e) and not on L/d. The amount of fiber

curvature necessary to make ooE/aoT a function only of L/(h + d cos l/2E) seems

to depend on L/d, decreasing with increasing L/d. This can be seen from Table

VIII and Fig. 24 by comparing the results obtained from Sample 43.1 in this study

with Sample 680-.6 in Myers' study.

It is probable that as L/(h + d cos l/2E) gets smaller, the main curve of

Fig. 24 will begin to rise rapidly. This would be due to a closer approach to

a random orientation as well as an increase in the fluid drag on the fibers due

to increased curvature.

As L/(h + d cos l/2e) increases, the main curve will probably approach the

abscissa asymptotically. Thus, a slight curvature seems to have a much greater

effect on the contribution to viscosity for fibers of small L/d than for those

with a large L/d.

It can be seen from the discussion above that fiber curvature has a very

significant effect on the contribution to viscosity of the fibers. Since the

majority of the fibers used by Myers were curved, this is probably the primary

reason why better agreement with Burgers' theory was not found.



-88-

DISCUSSION OF PAST EXPERIMENTAL WORK
IN RELATION TO THIS WORK

In the previous discussions, it has been demonstrated that two experimental

conditions must be met which are of utmost importance if one is interested in

obtaining the intrinsic viscosity of suspensions of rigid rods. These are: (1)

It is necessary to work at concentrations below the "critical concentration" for

the particular fibers used. (2) It is necessary to use straight, rigid rods.

The difficulty of meeting this first requirement with fibers of L/d > 20

can be readily seen from Table IX where the relative viscosity at the "critical

concentration" is given for several values of L/d.

TABLE IX

PREDICTED VALUES OF THE RELATIVE VISCOSITY
AT THE "CRITICAL CONCENTRATION"

L/d c x 102-i - -o

10 1.500 1.0162

20 0.375 1.0063

35 0.123 1.0021

50 . 060 1.0013

100 0.015 1.0009

200 0.006 1.0006

Equations (1) and (32) were used to calculate 1r at values of c deter-

mined from Equation (25).

All of the concentrations used by Nawab and Mason (15) were far above the

"critical concentrations" for the fibers used. Also, in many cases (see Table

I) the fibers used were either curved or flexible. Therefore, no agreement
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between their study and this study or their study and theory would be expected, and

none was found.

In Myers' study, the majority of the viscosity measurements were made on sus-

pensions whose concentrations were above the "critical concentration." Also, as

was pointed out, most of the fibers used by Myers were curved. However, three

viscosity measurements were made on suspensions whose concentrations were near

the "critical concentration." Two of the measurements were made using 16.79 p.

diameter fibers of L/d = 23.1 which have been shown to be straight. The other

was made using 44.85 p diameter fibers of L/d = 22.2. It is not known whether

these fibers were curved or straight.

A comparison of the results obtained by Myers using these fibers with the

results obtained in this study is given in Fig. 25.

As can be seen, there is approximate agreement within the three sets of

data at low concentrations. However, at higher concentrations the two curves

obtained by Myers begin to separate rapidly with the resultsof this study

falling between the two.

It should be noted that Myers did not present his data as shown in Fig. 25,

but represented the data obtained using the 16.79 p diameter fibers by a straight

line and the data obtained with the 44.85 p diameter fibers by a curved line.

.Myers questioned the results obtained with the 16.79 p fibers (51). He felt

that the relative viscosities at the high concentrationsshould have been larger

and that a curved relationship should have been obtained with these fibers also.

However, Myers could give no explanation for this difference in behavior.

It is doubtful that the 44.85 fibers were significantly curved since the

data obtained with these fibers follows more closely the relationship found with

straight fibers in this study than does the data obtained using the 16.79 p fibers.
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One possible explanation for the difference in the two sets of data is as

follows. Although Myers used a solution of tetrachloroethane and mineral oil as

a suspending medium for his fibers, no corrections were made to account for changes

in the viscosity of the suspending medium during a series of runs. Depending on

the procedure used in handling the suspending medium in the dilution process be-

tween runs, appreciable changes could take place in the viscosity. Such changes

in the viscosity of the suspending medium could have accounted for the differences

in these runs.

It can be concluded from the above discussion that the primary reason for

the lack of agreement within past experimental results, and between past experi-

mental results and theory, was the failure of the experimenters to work with

straight fibers and at low enough concentrations to prevent significant fiber-

fiber interactions.

THE BEHAVIOR OF FLOCCULATED SUSPENSIONS

During the course of this study some viscosity measurements were made using

flocculated suspensions. Although these measurements are of little value as far

as the primary objectives of this study are concerned, i.e., for comparison with

past work and theory, they are of interest themselves.

The term flocculation, as used in this discussion, means the formation of

spherical aggregates of fibers, the aggregates being distributed throughout the

suspensions. This is not to be confused with the formation of a continuous fiber

network, such as that described by Wahren (32), since the concentration range

covered in this part of the study is the same as that used in the first part of

this study.
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The flocculation that occurred in this study was not purposely caused. It

was found that the flocculation which occurred in the TCE-PO was due to impurities,

believed to be rust and/or water, in the TCE. In an effort to find a deflocculated

system, a series of viscosity measurements was made using glycerol-water as a sus-

pending medium. The glycerol-water solution was adjusted to a pH of ~10 since

Myers stated that a minimum of flocculation would be obtained at this pH. However,

the fibers flocculated more in the glycerol-water than in the contaminated TCE-PO.

No attempt was made to determine the mechanism of the flocculation. It was

found that by purification of the TCE by fractional distillation, a well-dispersed

suspension could be obtained.

GENERAL BEHAVIOR

At the start of each viscosity measurement, the suspension was stirred to

disperse the fibers and a low torque was applied to the inner cylinder. The

fibers immediately began to flocculate as the flow began and the flocs continued

to grow until an equilibrium floc size was reached. The growth of the flocs

caused the angular velocity of the inner cylinder to decrease (increasing vis-

cosity) until an equilibrium floc size was reached. The angular velocity of

the inner cylinder then remained constant. As the torque was increased, in-

creasing the angular velocity, the flocs broke down slowly until another equilib-

rium floc size, smaller than before, was reached. This general behavior is the

same as that found by Hubley, et al. (52) for suspensions of cellulose fibers.

A typical plot of torque versus angular velocity is given in Fig. 26.

The general shape of the curve in Fig. 26 is that of an Ostwald-Philippoff

liquid. This non-Newtonian behavior was expected since the suspended particles

(in this case the individual flocs) actually changed in size with increased shear.



0.3 0.4 0.5

ANGULAR VELOCITY, RAD./SEC.

Figure 26. Torque-Angular Velocity Relationship
for a Flocculated Suspension

-93-

70

50

4



This is to be contrasted with the Newtonian response found using the well-dispersed

systems where the particle shape and contribution to viscosity are not affected by

shear rate.

It is impossible to tell from the data taken on these flocculated suspensions

whether or not there was a true first Newtonian regime. However, the non-Newtonian

regime and the second Newtonian regime are well defined in Fig. 26.

Although the curve in Fig. 26 shows no indication of curvature in the second

Newtonian regime, it is felt by the author that as the shear rate continues to

increase, the flocs would continue to break down until a well-dispersed system is

obtained. At this point, it seems that there should also be agreement with the

viscosity of a well-dispersed suspension. To the author's knowledge, this be-

havior has never been found. If this type of behavior did take place, there

would also be a second non-Newtonian regime and a third Newtonian regime.

All of the torque versus angular velocity curves obtained using flocculated

suspensions were of the same general shape as Fig. 26. However, as the concen-

tration decreased, the torque-angular velocity curves approached straight lines,

i.e., became less non-Newtonian.

THE EFFECT OF CONCENTRATION ON THE RELATIVE VISCOSITY

Figure 27 shows the effect of fiber flocculation on the relative viscosity-

concentration relationship. The slope in the second Newtonian regime was used in

determining the relative viscosities. A comparison is made between the floccu-

lated suspensions and the well-dispersed suspensions represented by the initial

slope of Fig. 17 shown as a broken line.

As would be expected, the flocculated suspensions yielded higher viscosities

at any given concentration than the well-dispersed suspensions.
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Figures 28, 29, and 30 show separately the viscosity-concentration relation-

ships found for each case shown in Fig. 27.

As can be seen, the "bump" in the viscosity-concentration curve was also

found with the flocculated suspensions. However, there seems to be a tendency for

the "bump" to shift toward lower concentrations with increasing flocculation. A

possible reason for this shift is as follows.

In the flocculated suspensions, some of the fibers were bound in flocs while

others were moving freely in the space between the flocs. From visual observa-

tion, the percentage of free fibers seemed to increase with decreasing concentra-

tion. Also, as the tendency to flocculate became stronger, lower and lower

concentrations were necessary before any considerable percentage of the fibers

became free.

Thus, if the "bump" in the viscosity-concentration relationship is a func-

tion of the orientation of the fibers as was suggested previously, then the

position of the "bump" would depend on the percentages of the fibers in the suspen-

sion which are free to assume orientations and would move to lower concentra-

tions with increasing tendency to flocculate.
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CONCLUSIONS

The primary purpose of this study was to gain a general insight into the flow

behavior of fiber suspensions so that a better evaluation of Burgers' theory and

concepts could be made and to determine the effect of the wall and fiber curvature

on the relative and intrinsic viscosities.

Measurements of relative viscosity and fiber orientations showed that at

volume concentrations below approximately 0.0042, for straight, rigid nylon fibers

of L/d ~ 20, fiber-fiber interactions were negligible. In this concentration range,

intrinsic viscosities determined from the slope of the relative viscosity-concentra-

tion relationship agreed with Burgers' theory (6) within 10% when measured values

of the orientations of the fibers were used in the calculations. This is the

first time that Burgers' theory has been shown to be correct within the error of

experimental measurements. Also, this result is to be contrasted with results

of past workers (15, 16) where it was concluded the Burgers' theory was in error

by a factor of at least three.

The study of the effect of concentration on the relative viscosity yielded

two other new findings. First, there was a sudden increase in the relative

viscosity as the concentration increased beyond 0.0042 followed by a slight de-

crease and a second increase. This behavior was found to be at least partially

due to an increase and decrease in the orientation factor over the same concen-

tration range. It was hypothesized that this viscosity behavior was also partially

due to increasing fiber-fiber interactions. Second, it was found that the begin-

ning of the rapid rise in the relative viscosity at a concentration of approxi-

mately 0.0042 agreed closely with the "critical concentration" for free rotation

of the fibers as predicted by Mason (33).
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The effect of the wall on the relative viscosity was found to be negligible

even for fiber length and fiber diameter-to-annulus width ratios of 0.358 and

0.0176. This was of particular interest since L/D and d/D ratios several times

smaller than these have been used to explain anomalous viscosity behavior.

Slight fiber curvatures (y = 162 - 178° ) were found to have a large effect on

the relative viscosity leading to increases in ao of 2 to 3 times that expected

for straight fibers. For fibers of these small curvatures, this behavior was most

probably due to the effect of curvature on the orientations of the particles.

A relationship between fiber curvature and the ratio of the experimental to

the theoretical intrinsic viscosity was obtained. It was found that above a

certain degree of curvature, the above ratio is dependent only on the degree of

curvature and not on the length-to-diameter ratio of the particles.

From the above findings, it was concluded that the primary reasons for the

inconsistencies in the results of the past experimental works were due to the

fact that fibers of different degrees of curvature were used. The most probable

reason for the lack of agreement between past experimental studies and theory was

that curved fibers and too high concentrations were used.

Measurements on flocculated suspensions showed that the suspensions were

non-Newtonian. The shear stress-shear rate relationships were similar to that

of an Ostwald-Philippoff liquid. Also, the relative viscosity at any given con-

centration was higher for the flocculated suspensions than for the well-dispersed

suspensions, the difference depending on the degree of flocculation.
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SUGGESTIONS FOR FUTURE WORK

An investigation of the causes of the changes in the orientation factor found

in this study would be of interest. Knowing the causes of these changes, one might

obtain an explanation for the magnitude of the viscosity changes over the same

concentration range.

This problem might be approached by observing individual fibers involved in

interactions with other fibers. By prolonged observation, one might be able to

determine whether or not there is any characteristic behavior of interacting

particles as a function of concentration such as a tendency to cause changes in

the average orientation in some preferred direction.

A significant contribution would be to predict theoretically the effect of

fiber curvature on the rotational behavior in a linear velocity gradient and on

the viscosity of suspensions of curved fibers. The mathematical procedure

developed by Burgers (6) and Tchen (7) might be applied.

In the area of the flow of flocculated suspensions, a study of the shear

stress-shear rate relationship over very large ranges of shear rate, including

the very low range covered in this study, would be of help in the study of the

flow of flocculated suspensions. Simultaneous measurements of the number of

flocs per unit volume and floc size distribution, possibly using the method of

Hubley (52), would be necessary for understanding of the system being studied.

It would also be of interest to know if there is a third Newtonian regime at

very high shear rates as was suggested in this study.
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NOMENCLATURE

a

A_1 , A2

b

c

c
-o

d

D

e

E

F

F

F

F

F , F , F
-x/ -y z_

-J-
g

G
-e

G
-o

h

h

H 2

H

k

k', k"

Kl' 2' -

K

= major semiaxis of an ellipsoid, or half length of a cylinder, cm.

= adjustable coefficients

- minor semiaxis of an ellipsoid, or radius of a cylinder, cm.

= volume concentration, cc./cc.

= "critical concentration" for free rotation of the fibers

= fiber diameter, cm.

= annulus width, cm.

= one half the distance between the origin of the forces in a
doublet, cm.

= modulus of elasticity in bending, dynes/sq. cm.

= force, dynes

= body force per unit volume of fluid, dynes/cc.

= actual drag on a particle, dynes

= drag force on a particle in an infinite medium, dynes

= components of body force F,

= body force per unit volume, dynes/cc.

= effective shear rate in a suspension of rigid rods, sec.

= shear rate or velocity gradient in a pure solution, sec.

= length of inner cylinder, cm.

= distance used in defining the curvature of a fiber, cm.

= distances from the center of a rod to the xz-plane, cm.

= distance from a wall of a particle in translation, cm.

= velocity gradient, sec.

= empirical constants

= constants

= constant of integration called the orbit constant
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K', K"

L

L

L

(/d)e

M

n

0

P

P

r

r

-2

Re

t

T

T'

U

-p

v , v, v-x -y -_

Vi

-AX-
VX i

x, y, z

= experimentally determined constants

= distance along the axis of a rod from the center out, cm.

= fiber length, cm.

= couple exerted on a particle in a bounded medium, dyne-cm.

= couple exerted on a particle in an unbounded medium, dyne-cm.

= "equivalent ellipsoidal" axis ratio

= doublet strength, dyne-cm.

= number of rods per unit volume

= origin of a co-ordinate system

= pressure, dynes/sq. cm.

= point on a rod

= ( + y2 + 2)1/2

= radius of inner cylinder, cm.

= radius of outer cylinder, cm.

= Reynolds number, dVxP/i

= time, sec.

= period of rotation of a rod or ellipsoid, sec.

= torque delivered to the inner cylinder, dyne-cm.

= translational velocity of a particle, cm./sec.

= velocity of a point on a rotating fiber, cm./sec.

= velocity components in the x, y, and z directions, cm./sec.

= velocity components in the x', y', and z' directions, cm./sec.

= components of vp

= volume of a fiber, cc.

= effective volume occupied by a fiber while rotating, cc.

= uniform velocity of the fluid in the x-direction, cm./sec.

= rectangular co-ordinates, cm.
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_', y', z' = rectangular co-ordinates, cm.

a Q= intrinsic viscosity of a fiber suspension

a-, ~= empirical constant

ao~ -= experimentally determined intrinsic viscosity

a R = intrinsic viscosity of a suspension of randomly oriented rods

aeoT = theoretically predicted intrinsic viscosity

a = intrinsic viscosity of a suspension of rods oriented in the
oxy xy-plane

PffB = ratio of actual to "equivalent ellipsoidal" axis ratio

, e = angles used in defining the curvature of a fiber

0, 0, = angles defining the orientation of a rod in a linear velocity gradient

It i= microns

= viscosity, dyne-sec./sq. cm.

ep, ~= effective viscosity of a suspension of rods

pr= relative viscosity

sp = specific viscosity determined from theory

sp , = specific viscosity calculated using measured values of K

p = fluid density, g./cc.

T = shear stress, dynes/sq. cm.

C, 1b = angular velocity of the inner cylinder, rad./sec.

X u= critical angular velocity for stable flow in the viscometer
c annulus, rad./sec.

RQ ~ = angular velocity of a suspended particle, rad./sec.
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APPENDIX I

BURGERS' DERIVATION OF AN EQUATION FOR THE VISCOSITY
OF A SUSPENSION OF RIGID RODS

Burgers (6) was concerned with the effect of rigid rods suspended in a

liquid on the apparent viscosity of the liquid. The following is a discussion

of how Burgers arrived at an equation to describe this effect.

The assumptions made by Burgers at the start of his derivation are given on

page 7 in the Theoretical section.

If a rigid rod is placed in a liquid in flow described by the equations:

v =G y
x O0

vy =0 (45)

v =0
z

the rod will translate, rotate, and spin about its axis.

Burgers assumed that there would be no slip of the liquid at the surface of

the rod and also that there would be no inertial effects connected with the rod

or the liquid. Therefore, the center of the rod would move at the same velocity

as the fluid. By taking the origin of a co-ordinate system at the center of the

rod, the velocity imparted to a point, P, on the rod in the liquid can be ex-

pressed by:

vp = Go £ sin 0 sin 0 (46)

where 0 and 0 are defined by Fig. 1, and £ is the distance between the center of

the fiber 0 and P.

'1,
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Using the relationships for spherical co-ordinates, Equation (46.) can be

broken down into three components, one tending to decrease 0, one tending to

increase 8, and one along the axis of the particle, as follows:

v~ = G £ sin 0 sin20 (47)
0 ~o

V8 = G £ sin 0 cos e sin 0 cos 0 (48)

vy = Go sin2 9 sin 0 cos 0 (49).

Since the rod follows the motion of the fluid as described by Equations (47)

and (48), it will not disturb this motion. Therefore, there will be no effect

upon the viscosity of the liquid which is directly connected with these rotational

components. However, as Burgers stated, "actually there is a small effect, con-

nected with the fact that the thickness of the rod is not infinitely small."

On the other hand, the component of velocity along the axis of the rod does

have a pronounced effect on the suspension viscosity. As assumed, the fluid

adheres to the rod, and since the rod cannot follow the motion of the fluid

directed along its axis, a disturbance of the fluid motion will result.

In order to determine the disturbance of the liquid, Burgers considered the

case of a rod immersed in a field of flow with the velocity:

v =kx' (50)
x

x', y', and z' being rectangular co-ordinates with the x' axis along the axis of

the rod. The equation of continuity requires that there will also be components

v , and v ,. However, since the rod has been assumed to have a very small diam-
-Z z

eter and since vy, and vz, are proportional to the diameter, these components will

be practically zero at the surface of the rod and therefore will be neglected.
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In order to obtain an expression for v ,, Burgers turned to Oseen's (3)

solution of the Navier-Stokes equation for the effect of an arbitrary force on

the velocity of a fluid. The form of the Navier-Stokes equation used in this

case was that pertaining to a fluid of constant density, p, and constant vis-

cosity, p, and can be expressed as follows:

where

g = any body force per unit volume

p = fluid density

p = pressure

. = Newtonian viscosity coefficient

t = time

There will be similar expressions for the y and z directions.

with similar expressions for the y and z directions.
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The unique point about Oseen's solution of the Navier-Stokes equation is

that he took inertial effects into consideration to some extent by linearizing

the inertial terms, (v.V)v. This was done by using V i + v for v and neglect-

ing terms of second order in v , v , and v . Here, V i is the undisturbed veloc-

ity of the fluid in the x-direction.

In vector form, the result of this simplification of Equation (51) can be

written:

p(V i -)v = -vp + p? v + F (52)

where F = some body force per unit volume.

Consider the case of the action of a single force of given constant magnitude

acting at a point Q, taking the origin of the co-ordinate system x, y, z at Q.

Suppose that the fluid originally had a constant uniform velocity V i. The force
2x7

then produces a disturbance of this motion by superimposing upon it a field of

motion with the components v , v , and v . For the case where the force is small,

Oseen, using Equation (52), arrived at the following expressions for the velocity

components:

whereF , F , and F are the components of the applied force taken per unit volume

and * is given by Equation (56).
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case of Stokes' problem [see Lamb (5) p. 598]. To show this, it is only necessary

to let the radius of the sphere approach zero while the product of the radius times

the translational velocity of the sphere is kept constant. Nelson stated that

"this procedure, while physically unrealistic is nevertheless mathematically

correct."

Thus, Burgers could have used Stokes' method (complete elimination of inertial

effects) and arrived at his same result.

Now that expressions have been obtained for the velocity components, consider

again the case of a rigid rod in a velocity gradient.

Burgers stated that a system of forces f(l) dl distributed along the axis

of the rod must be found, which will produce a velocity -k x' = -v , along the

surface of the cylinder in order to satisfy the condition of absence of slip at

the surface of the rod. Here, I is the distance along the axis of the rod.

Since it has been assumed that v , and v , are negligible, only the compon-

ent v , will be considered.
-x

Now by replacing F with Y f(Q) d , r with [(x' - J )2 + b2 11/2 and x with

(x' - A), then Equation (60) becomes:

where a = L/2, and b = d/2.

To solve Equation (63), Burgers assumed that f(l) could be expressed as

follows:

f(£) = -8qt(ka[A1(£/a) + A2(A/a)3] (64)

where A and A are adjustable coefficients.-Zl -2
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By substitution of Equation (64) into Equation (63) and integrating, values

for A and A2 can be obtained.

The system of forces obtained in this manner can be compared to the formation

of a doublet of magnitude given by Equation (65).

+a

Substitution of f(L) from Equation (64) into Equation (65) and integrating

yields:

Now by substitution of the values found for A1 and A, Equation (66) becomes:

From Equation (49), it can be seen that k has the value G sin e sin 0 cos 0.

Therefore, the strength of the doublet M, becomes:

To determine the effect of a doublet of the magnitude given by Equation (68)

on the velocity gradient, Burgers again used Equations (53)-(55).

For this case, Burgers wrote the doublet strength as M = 2Fe; and F , F,

and F as F sin 0 cos 0, F sin 0 sin 0 and F cos 8.

Also, Burgers stated that for this case, * must be written as follows:

I = -2e (or/ox) sin 0 cos 0 + (ar/~y)'sin 0 sin 0 + (or/az) cos 0 (69).



-117-

Again by substitution for i into Equations (53)-(55) and integration, the

following results are obtained:

v = -(M/8T)(x/r3)(l - 3R2 /r 2 ) (70)

v = -(M/8N)(y/r3)(1 - 3R2 /r 2 ) (71)

v = -(M/8gn)(z/r3)(1 - 3R2 /r 2 ) (72)

where R = x sin 0 cos 0 + y sin 0 sin 0 + z cos i.

As before, the expression for v will be the only one of interest. To deter-
-x

mine the disturbance of the motion produced by the rod, v is integrated over a
-x

plane y = + h (where H2 may be arbitrarily great) as follows:

+co

-o

where v is given by Equation (70).
-x

The particle also produces changes in the velocity gradient av /dy, but

these changes are partly positive, and partly negative so that the integral over

y = + 2 is zero as shown below:

Again, v is given by Equation (70).

Since the shear stress, r, over a plane parallel to the xz-plane is given by

T = v(av_x/ay + v y/ax), it is obvious that the disturbance of the motion produced

by the rod does not change the total value of the frictional force, JI T dx dz

transmitted across the plane y = h2
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If these same calculations are made for a plane y = - h-, it will again be

found that the total value of the shear stress transmitted across the plane does

not change, but that there is a decrease of velocity, the integral of which has

the value, - (Mj/2p) sin 0 sin 0 cos 0.

The difference between the velocities at the two planes will therefore be

increased by an amount, the integral of which has the value (M/p) sin 0 sin 0

cos 0. Now, for n rods per unit volume, the difference between the mean veloc-

ities at the two planes, found from integrating (Mn/i) sin 0 sin 0 cos 0 from

y = + h to y = - h is (Mn/i) sin e sin 0 cos .(h1 + 2h). Therefore, the

mean shear rate between the two planes increases from the original value G , to

the value:

G = G + (Mn/p) sin 2 e sin 0 cos 0 (75)

where G = effective shear rate.
-e

Now since the tangential stress across y = constant is constant, then:

where pe = effective viscosity of the suspension.

Rearrangement of Equations (75) and (76) gives:

/>e = 1 + (Mn/pGo) sin 2 0 sin 0 cos 0 (77).

By taking the reciprocal of Equation (77), multiplying numerator and denomin-

ator by [1 - (Mn/pG ) sin 2 sin 0 cos 0], and assuming the resulting squared term

is small compared to one, the following expression for the relative viscosity, pr'

is obtained:
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Substitution of M from Equation (68), and L/2 for a and d/2 for b gives:

TL3n 4 2 2
1r + 6(ln 2L/d - 1.80) sin e sin os (79)

or,

= 1 + aQ c (80)r o

where

= (Ld) 2 4 2
o 6(ln2L/d - 1.80) sin e sin 20 (81)

and c = volume concentration = nr(d /4)L.

In order to obtain an average value for the expression sin 4 sin 20, Burgers

considered the motion of the particles in the suspension.

The velocity components given by Equations (47) and (48) will cause a rota-

tion of the cylinder as follows:

If Equation (82) is integrated, the result is:

where

t = time the cylinder has been in motion

t = initial time.

If Equation (84) is correct, at t = infinity, 0 would be 0° , i.e., all the

particles would be aligned in the direction of flow and remain there. Of course,

this is not the case, as Burgers realized. The reason for this result is that
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throughout his derivation, Burgers assumed that the cylinders were infinitely thin.

For any real situation, the cylinders would not be infinitely thin and, therefore,

when they come into a position parallel to the direction of flow, they would con-

tinue to move because of the difference in the drag force on the two sides of the

fiber.

Due to this result, Burgers turned to Jeffery's (10) equations for the motion

of ellipsoids in order to obtain an expression for sin 0 sin 20.

The remaining parts of this derivation have been presented on pages 8 through

11 of the Theoretical section.

1
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APPENDIX II

EXPERIMENTAL DATA

TABLE X

REPRODUCIBILITY MEASUREMENTS ON A TCE-PO SOLUTION
(See Fig. 11)

Run 1
Angular

Torque, Velocity,
dyne-cm. rad./sec.

4.3 0.0447
7.7 0.0760

11.4 0.112
15.3 0.150
20.2 0.197
25.6 0.251
31.9 0.314
38.1 0.369
44.4 0.433
52.1 0.511
59.8 0.584
71.1 0.667
81.4 0.725
91.7 0.760
99.1 0.792

Run 2

Torque,
dyne -cm.

4.1
7.0

10.6
14.5
18.7
23.8
29.8
36.8
44.3
52.0
61.6
67.8
77.5
89.8

Angular
Velocity,
rad./sec.

0.0423
0.0687
0.104
0.142
0.184
0.233
0.292
0.362
0.436
0.509
0.598
0.661
0.706

0.776

Run 3

Torque,
dyne-cm.

4.5
7.7

11.0
14.7
20.0
24.6
50.5
36.8
45.6
52.0
61.5
69.9
79.4

TABLE XI

REPRODUCIBILITY MEASUREMENTS ON FIBER
(See Fig. 12)

SUSPENSIONS

Run 4B

Torque,
dyne-cm.

10.5
14.5
19.0
24.4
30.5
36.8
44.5
52.2
59.9

Angular
Velocity,
rad./sec.

0.0457
0.0760
0.108
0.144
0.193
0.240
0.298

0.358
0.444
0.511
0.596
0.661
0.708

Run 4A

Torque,
Dyne-cm.

10.6
14.7
19.0
24.3
30.0
36.3
44.1
52.1
59.8

Angular
Velocity,
rad./sec.

0.110
0.159
0.198
0.250
0.311
0.374
0.452
0.524
0.571

Angular
Velocity,
rad./sec.

0.110
0.150
0.198
0.250
0.315
0.377
0.455
0.530
0.573
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I

TABLE XI (Continued)

REPRODUCIBILITY MEASUREMENTS ON FIBER SUSPENSIONS
(See Fig. 12)

Run 5A
Angluar

Torque, Velocity,
dyne-cm. rad./sec.

10.7 0.102
14.5 0.135
18.7 0.177
24.4 0.227
30.2 0.284
36.o 0.336
43.8 0.402
51.4 0.471
60.7 0.548
69.4 0.607

Run 5B
Angular

Torque, Velocity,
dyne-cm. rad./sec.

10.9 0.103
14.7 0.137
19.2 0.180
24.3 0.224
30.2 0.282
36.8 0.339
44.3 0.409
52.0 0.479
60.8 0.564
68.o 0.595

A

I
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TABLE XII

RELATIVE VISCOSITIES AS A FUNCTION OF CONCENTRATION
FOR SUSPENSIONS OF STRAIGHT, NYLON FIBERS

(See Fig. 18)

d = 16.9 p L/d = 19.2

Volume
Concentration

x 102

0.000
0.074
0.143
0.242
0.338
0.444
0.587
0.664
0.770
0.834

Relative
Viscosity

1.0000
1.0009
1.0014
1.0072
1.0048
1.0107
1.0307
1.0295
1.0440
1.0533

Volume
Concentration

x 102

0.000
0.104
0.164
0.209
0.307
0.392
0.472
0.514
0.671

d = 43.1 p,, /d = 20.3

1.0000
1.0072
1.0101
1.0151
1.0230
1.0284
1.0264
1.0228

0.513
0.552
0.575
0.602
0.618
0.642
0.701
0.723

TABLE XIII

WALL EFFECT DETERMINATION
(See Fig. 18)

d = 43.1 p, L/d = 20.3

1.000
1.002
1.016

0.578
0.761

Relative
Viscosity

1.0000
1.0052
1.0051
1.0065
1.0067
1.0052
1.0228
1.0319
1.0300

0. 000
0.363
0.410
0.443
0.473
0.493
0.473
0.508

1.0260
1.0242
1.0208
1.0221
1.0253
1.0266
1.0408
1.0436

0.000
0.276
0.467

1.026
1.045
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TABLE XIV

DETERMINATION OF THE EFFECT OF FIBER CURVATURE
(See Fig. 21)

d = 16.9 PX, ._/d = 20.1

Volume
Concentration

x 102

0.000
0.105
0.159
0.184
0.213
0.250
0.278

Relative
Viscosity

1.000
1.003
1.007
1.015
1.016
1.019
1.023

d = 43.1 A, L/d = 23.2

Volume
Concentration

x 102

0.000
0.181
0.322
0.360

TABLE XV

EXAMPLE OF THE TORQUE-ANGULAR VELOCITY RELATIONSHIPS
OBTAINED WITH FLOCCULATED SUSPENSIONS

(See Fig. 27)

Torque,
dyne-cm.

2.33
4.26
7.11

10.2
11.8
14.2
15.8
18.2
20.4
23.7
26.2

Angular
Velocity,
rad./sec.

0.012
0.028
0.052
0.081
0.098

. 119
0.137
0.16i
0.181
0.209
0.234

Torque,
dyne-cm.

28.9
31.8
35.0
38.3
42.5
46.5
50.5
54.6
58.8
62.2

Angular
Velocity,
rad./sec.

0.261
0.288
0.321
0.349
0.384
0.423
0.459
0.498
0.533
0.567

Relative
Viscosity

1.000
1.013
1.028
1.034
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TABLE XVI

RELATIVE VISCOSITY-CONCENTRATION DATA FOR
FLOCCULATED SUSPENSIONS

(See Fig. 28-31)

d = 16.9 , ,L/d = 19.2

Suspending medium was TCE-PO

Volume
Concentration

x 102

Curve I

0. 000'
0.051
0.107
0.166
0.227
0.306
0.378
0.445
0.544
0.619
0.729
0.913
1.072
1.226
1.428

Relative
Viscosity

1.000
1.000
1.001
1.003
1.007
1.017
1.025
1. 00
1.039
1.067
1.061
1.065
1.073
1.100
1.121

Volume
Concentration

x 102

0.000
0.072
0.102
0.138
0.185
0.245
0.325
0.377
0.436
0. 511

Curve II

1.000
1.002
1.005
1.006
1.009
1.014
1.026
1.024
1.032
1.046

Curve III

Suspending medium was
glycerol-water

0.000
0.041
0.077
0.111
0.128
0.155
0.182
0.228
0.283

1.000
1.011
1.024
1.056
1.074
1.125
1.175
1.184
1.241

Relative
Viscosity
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APPENDIX III

DETERMINATION OF THE ORIENTATIONS OF THE FIBERS
IN A FLOWING SUSPENSION FROM PHOTOGRAPHS

The major complication which arose in analyzing the photographs came about

due to the relatively large depth of focus of the microscope being used. Because

of this feature, there was no sharp contrast between fibers in focus and a little

out of focus. Of course, in measuring the angles 0 and 0, it was necessary to

measure only those fibers in some predetermined degree of focus. This was almost

impossible to do objectively, particularly for those fibers aligned in the direc-

tion of flow.

In order to overcome the subjectivity of this type of measurement, the

orientations of all clearly distinguishable fibers were measured if 0 was 5°

or greater.

The number of fibers between 0 = 0 and 5° was determined by the following

method.

Using Equation (3) derived by Jeffery (10), Mason and Manley (23) solved

for the distribution of 0 and showed that the fraction of particles having

orientations between 0 and 0 can be expressed as:

From Equation (85), the fraction of the fibers having values of 0 between

0 and 5° was determined. Knowing this fraction and the number of fibers having

values of 0 = 5° or larger, the total number of fibers to be used in the average

was determined.

Using this method of determining the total number fibers to be considered,

the subjectivity of the measurements was removed. However, this method was
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based on the assumption that the distribution of 0 is not influenced by concentra-

tion. It was felt that this was a good assumption since Mason and Manley showed

that interactions between fibers sometimes increased and sometimes decreased the

period of rotation. Therefore, for a large number of rotations of a single fiber,

or for a large number of fibers, the net result would be no change in the distri-

bution of 0.

The average value of sin4 sin 20 was determined by the following method.

The angle 0 was measured to the nearest 5° using a protractor.

It can be seen from Fig. 1 that sin 0 is equal to the projected length of

the fiber on the xy-plane divided by the actual length of the fiber. Therefore,

to determine sin 0, the projected length of the fiber was measured, raised to

the fourth power, and divided by the average of the actual fiber lengths raised

to the fourth power.

From the values determined for 0 and sin4 , sin 0 sin 20 was determined

for each fiber.

The average value of sin 4 sin 20 for each concentration was then deter-

mined by summing the individual values and dividing by the number of fibers

measured plus the number between 0 = 0 and 5° .
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APPENDIX IV

THE VISCOSITY OF SUCROSE AND GLYCEROL SOLUTIONS

It was reported by Myers (16) that 33% sucrose and 55% glycerol solutions

increased in viscosity by approximately 17% after being left undisturbed in the

viscometer for 2 hours. Larger increases were found after longer times. Myers

found that the viscosity could be returned to approximately its original value

by vigorous stirring.

A study of this effect showed that the apparent viscosity of these solutions

could be reproduced within 1% after the solutions had been standing for 2, 12,

and 24 hours. Determinations were made with the inner cylinder both submerged

and exposed, and also both submerged and exposed with a film of mineral oil over

the surface to prevent evaporation and surface effects.

No explanation can be given for the results of Myers.
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APPENDIX V

GENERAL COMMENTS CONCERNING THE USE OF MYERS' VISCOMETER

The following comments are presented for the benefit of those who might

use Myers' concentric cylinder viscometer.

It is suggested that the viscometer be mounted on a very rigid base,

preferably a large concrete block, and that the magnetic drive be given more

support than it now has to eliminate changes in the spacing between the drive

and the air bearing.

A six-volt storage battery such as the one used as the current supply to

the magnetic drive has, from full charge, a current versus time relationship

as shown in Fig. 31.

TIME

Figure 31. Current versus Time for a Six-Volt Storage Battery

Therefore, after charging, the battery should be allowed to deliver a

small current (0.2 ampere) for approximately 15 minutes so that the current

will be essentially constant with time during operation of the viscometer.
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At times, a piece of lint may become lodged between the male portion of the

air bearing and the Plexiglas shield, the air bearing mount or the cover of the

outer cylinder causing erratic behavior of the viscometer.

Once, oil from the bearings of the magnetic drive got between the brushes

and the slip rings causing large fluctuations in the current to the drive.

For proper performance, the d.c. ammeter should not be mounted in the

instrument panel of the viscometer but should be mounted horizontally.

It was found that a leather belt between the magnetic drive and the motor

was much more satisfactory than a rubber one. Rubber belts (large O-rings)

sometimes slipped and often cracked and broke.

The air bearing should be thoroughly cleaned and polished about every 8-10

months. It was found that "Brasso," an ammonia-base metal polish, worked well.

After polishing, the bearing was washed with acetone to remove lint and particles

left from the polish.


