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SUMMARY 

Nuclear receptors (NRs) are modular ligand-activated transcription factors that 

control a broad range of physiological processes by regulating the expression of essential 

genes involved in cell physiology, differentiation and metabolism.  These receptors have 

been implicated in a number of diseases, such as cancer and diabetes.  Due to their 

profound role in development and disease progression, much emphasis is being put forth 

into nuclear receptor based drug discovery.  Furthermore, due to the modularity of these 

proteins, there is also an emphasis towards engineering these receptors to bind novel 

small molecules, creating orthogonal ligand receptor pairs, in which the receptor only 

binds the synthetic ligand and the synthetic ligand is unable to bind the natural receptor.  

These orthogonal ligand receptor pairs have potential for applications in areas such as 

gene therapy and for the creation of biosensors. 

Chemical Complementation (CC) is a genetic selection based assay in yeast that 

was developed to aid in the discovery of these orthogonal ligand receptor pairs.  This 

system exploits the modularity and functionality of nuclear receptors.  This three-hybrid 

yeast assay has the nuclear receptor ligand binding domain fused to the Gal4 DNA 

binding domain (GBD), and a nuclear receptor coactivator fused to the Gal4 activation 

domain (GAD).  Upon binding of ligand, the nuclear receptor recruits the 

coactivator:GAD fusion protein, resulting in expression of a selection marker.  CC is a 

powerful tool for discovering and developing orthogonal ligand receptor pairs.  Due to 

several advantages, to include faster growth times and higher transformation efficiencies, 

we have attempted to extend chemical complementation from yeast to E. coli. 
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The bacterial chemical complementation system (BCC) was designed based on a 

bacterial two hybrid system in which the alpha subunit of RNA polymerase is fused to a 

nuclear receptor coactivator and the GBD is fused to a nuclear receptor and expressed in 

E. coli.  The Gal4 DNA binding domain binds its response element upstream of an 

essential gene. Ideally, upon binding of the appropriate ligand to the NR ligand binding 

domain (LBD), the LBD undergoes a conformational change, recruits the coactivator-

alpha RNA polymerase fusion protein, and activates transcription of an essential gene.  A 

new bacterial strain was engineered in which a Gal4 response element controls the 

expression of the HIS3 gene in the bacterial strain.   Once this strain was created and the 

background growth for this strain was reduced using various concentrations of 3-

amintriazole (a competitive inhibitor of the HIS3 gene), we were able to produce 

activation from our ligand independent control system.  However, bacterial chemical 

complementation did not produce ligand dependent activation. 

To obtain ligand dependent activation we investigated various aspects of the BCC 

system, including the use of various nuclear receptor-ligand pairs, various coactivator 

proteins, and smaller fragments of both the nuclear receptor and coactivator proteins.  

The inability to obtain ligand dependent activation using BCC is most likely due to 

inability to attain heterologous protein expression of eukaryotic proteins in E. coli.  

Protein chaperones and osmolytes were used to try and enhance heterologous protein 

expression, but no ligand dependent activation was achieved.   

In a second project designed to further NR based protein engineering and drug 

discovery, chemical complementation in S. cerevisiae was used to evaluate a library of 

charge reversal variants.   These variants were rationally designed in an attempt to gain a 
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better understanding of nuclear receptor function and structure and to produce an 

orthogonal ligand receptor pair.  A library of  retinoic acid receptor (RARα) variants were 

developed to alter the binding selectivity of the receptor from the natural negatively 

charged ligand, all-trans retinoic acid (atRA), to positively charged retinoid ligands.  

Single, double, and triple variants were constructed based on five residues in the binding 

pocket of RARγ known to stabilize the carboxylate of atRA.  Multiple variants were 

evaluated via chemical complementation with diverse activation profiles with the various 

amine based retinoids and atRA.  We were able to engineer two triple variants capable of 

activating with the ethyl amine retinoid but not the natural atRA ligand.  However these 

variants do not activate with the ethyl amine retinoid as well as RARα does.  With the 

data obtained from evaluating the tolerability of mutations by RARα, further 

developments towards engineering an enhanced ligand-receptor pair capable of activating 

with higher affinities of the amine based retinoids should be possible. 

In a third project CC was utilized to characterize tamoxifen and histone 

deacetylase inhibitor based dual inhibiting compounds as breast cancer therapeutics.   

The compounds were assessed for their ability to inhibit estrogen receptor (ER) activation 

and thus decrease cell proliferation associated with breast cancer.  The dual inhibiting 

compounds are composed of a covalently linked tamoxifen based moiety and a histone 

deacetylase inhibitor (HDACi) based moiety.  Both tamoxifen alone and HDACi alone 

have been found to decrease proliferation in breast cancer cell lines via ER and histone 

deacetylases, respectively.  However, covalently linking the two moieties can potentially 

create dual inhibiting compounds that act on various stages of the cell cycle to produce a 

more potent and effective drug to treat breast cancer.  Several dual inhibiting compounds 



 xx

were found to decrease the activation of ER, by its natural ligand estradiol, better than 

tamoxifen alone. Additionally, when tested in both ER positive and negative breast 

cancer cells, the compounds were found to decrease proliferation better than tamoxifen 

alone or the HDACi alone.  We have also established that covalent linkage of SAHA and 

tamoxifen enhances their anti-proliferative effects in MCF-7 cells. Overall, these 

compounds can have a profound impact as a potential therapeutics as an alternative 

method for breast cancer treatment.   
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CHAPTER 1 

NUCLEAR RECEPTORS 
 

1.1 Nuclear Receptor Structure 

Nuclear receptors (NRs) are ligand-activated transcription factors that control a 

broad range of physiological processes, including cell differentiation, proliferation, and 

maintaining homeostasis [1-4]. NRs control these processes by regulating the expression 

of genes that encode key enzymes, transporters, and other proteins involved in practically 

every facet of mammalian physiology. With the sequencing of the human genome, 48 

human nuclear receptors have been identified [6].  These proteins mediate the actions of 

steroid and non-steroid hormones, as well as fatty acids, vitamins, and other small 

molecules in the body [4, 7-10]. The modulation of transcription by NRs occurs through 

various mechanisms, including activation and repression [4, 11, 12].   

Nuclear receptors have been found to be involved in a vast array of reproductive, 

proliferative, and metabolic diseases including cancer, diabetes, and infertility [13-16]. 

The involvement of these transcription factors in disease makes them excellent drug 

targets.  Nuclear receptor ligands account for approximately 10% of all commonly 

prescribed drugs [2, 17, 18]. Some of these drugs include: the estrogen receptor ligand 

tamoxifen, which targets breast cancer [16], the glucocorticoid receptor ligand 

dexamethasone, which targets inflammatory disease [14], and the peroxisome 

proliferator-activated receptor ligand thiazolidiones, which targets type II diabetes [13].  

As a result of their implication in various diseases and their ligand controllability, there 

has been a large push towards research not only to discover ligands for numerous NRs 

but also to better understand their structure and function [19-29].   
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Nuclear Receptor Structure 

Nuclear receptors are modular proteins, containing five to six conserved domains 

designated A to F, which include an N-terminal domain, DNA-binding domain (DBD), 

the hinge region, ligand binding domain (LBD), and a C-terminal domain respectively 

(Figure 1.1).  The N-terminal A/B domains and the hinge regions are less conserved than 

the other domains, whereas the C-terminal F domain, which is contiguous with the E 

domain, is not present in all nuclear receptors.  All three of these domains have weakly 

understood functions. Although poorly understood, the N-terminal A/B domain has been 

found to contain an autonomous ligand independent transcriptional activation function, 

referred to as AF-1.  Additionally, A/B domains vary in length and sequence, have been 

shown to be post-translational modification targets, and have the ability to interact with 

co-regulators [30-36].  The D domain serves as a hinge between the DBD and LBD 

allowing for their rotation, conferring structural flexibility and minimizing steric 

hindrance between the DBD and LBD [37].  Little is known about the F domain, but is 

implicated in the regulation of ligand binding and dimerization [37]. 

The DBD and LBD (regions C and E respectively) are the most studied and most 

highly conserved domains and are able to function independently.  The DBD is 

responsible for binding DNA sequences called hormone response elements (HRE) [38]. 

Typical HREs contain two hexa-nucleotide motifs (generally AGGTCA) separated by 

several nucleotides.  DBD-DNA binding specificities are achieved by this spacing as well 

as the orientation of the half sites (direct-, indirect-, everted-, or inverted-repeats). The 

DBD is known to have a helix-loop-helix structure. Crystallographic studies as well  
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as nuclear magnetic resonance studies reveal that this domain is made of two cysteine-

rich zinc finger motifs, two α-helices, and a COOH extension [39, 40]. The DBD core 

contains several sequence elements, A, D, P, and T boxes, shown to not only contribute 

to binding specificities, but also to define the DBD’s dimerization interface and contacts 

with both the DNA backbone and flanking HRE residues [41]. The P and D boxes 

contain the two conserved zinc-fingers and determine sequence specificity and half-site 

spacing, respectively.  The C-terminal region of this domain contains a nuclear 

localization sequence responsible for nuclear entry and has also been suggested to contain 

a nuclear export signal [42].  

The LBD is functionally intricate and highly structured, with roles in 

dimerization, ligand recognition, as well as cofactor interactions [43]. Nuclear receptor 

LBDs have a common fold consisting of 12 α-helices (H1-H12) and a β-turn arranged as 

an antiparallel α-helical sandwich in a three layer structure [44] (Figure 1.2).  In most 

NRs, the first 3 helices make up one face of the LBD.  H6, H7, and H10 correspond to 

the other face, whereas H4, H5, the β-turn, H8, and H9 compose the central layer [37]. 

H12 corresponds to the activation function helix, AF-2 domain, known to mediate ligand-

dependent activation as well as coactivator recruitment. In addition to coactivator 

interaction the LBD can interact with corepressors as well.   

In spite of the LBDs conserved fold, the ligand-binding pocket varies greatly in 

size and ligand specificity.  Various hydrophobic, polar, and charged residues line the 

ligand binding pocket of different receptors.  Polar residues are mainly found at the deep 

end of the pocket acting as ligand anchoring points or playing roles in ligand positioning 

and specificity.  Overall, ligand specificity is determined by amino acid residues as well 
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Figure 1.1:  Nuclear Receptor Structure 

         
 

 
 
 

 
Figure 1.2:  Topology and Structural Framework of Nuclear Receptor Ligand 

                                 Binding Domain 
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as the shape and size of the binding pocket, leading to the various activation profiles and 

functions observed between NRs and their subtypes [45]. 

1.2 Nuclear Receptor Function 

Nuclear receptors regulate transcription using several distinct mechanisms, 

including DNA recognition, transcriptional activation, and repression. DNA binding is an 

essential step in NR function.  These receptors interact via specific DNA sequences, 

HREs, positioned upstream of target gene promoters.  The sequence of the HRE half 

sites, the spacing between the half sites, and the orientation of the half sites directs 

sequence specific recognition of DNA by NRs.   These proteins bind DNA as either 

monomers (such as the steroidogenic factor-1, SF1) [46], homodimers (such as the 

estrogen receptor, ER) [40], or heterodimers with the retinoid X receptor (RXR) (such as 

the retinoic acid receptor, RAR) [47]. These dimerization patterns dictate the response 

element specificity based from both the spacing between half-sites as well as response 

element orientation. For example, various RXR heterodimers bind to direct repeats (DRs) 

of the two half-sites with between one and five base pairs between them, termed DR1 

through DR5 [47-50]. The type of HRE dictates which target genes are regulated by what 

type of NR. 

Transcriptional regulation is controlled by the LBD and its ability to interact with 

coregulators.  These coregulators modulate transcription by participating in chromatin 

remodeling. In the absence of ligand, NRs are either present in the cytoplasm, such as 

steroid receptors [51], or in the nucleus constitutively bound to their respective HREs 

[52] and complexed with corepressors, which recruit histone deacetylases (HDACs) 

(Figure 1.3 A). The corepressors that directly interact with NRs include the NR 
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corepressor (NCoR) and the silencing mediator of retinoid and thyroid receptors (SMRT).  

These corepressors interact with NRs via a corepressor NR box (CoRNR box) [53]. This 

CoRNR box contains a LXXXIXXXI/L motif responsible for interacting with a 

hydrophobic groove on the surfaces of helices 3 through 5 on the NR LBD [54]. Either in 

the absence of ligand or when an antagonist ligand is bound, these NR bound 

corepressors, NCoR and SMRT, are involved in recruiting chromatin remodeling 

proteins, known as HDACs.  HDACs are enzymes that catalyze the removal of acetyl 

groups from lysines in histones causing a tighter association between the histones and 

DNA and preventing the access required for RNA polymerases to initiate transcription 

and express the gene of interest [55-58].  

The first step in transcriptional activation is the binding of an agonist ligand to the 

LBD.  This action activates the NR by inducing a conformational change in the LBD, 

mediated by helix 12 (AF-2 domain).  For cytoplasmic NRs, ligand binding additionally 

induces translocation from the cytoplasm to the nucleus, initiating regulation of 

transcription. The mechanism of this conformational change in the AF-2 domain has been 

observed by comparing the crystal structures of ligand bound (holo) and unbound (apo) 

receptors [12, 44, 59, 60]. Generally, upon agonist binding, H12 repositions against the 

core of the LBD, sealing the ligand binding pocket, contributing to the hydrophobicity of 

the pocket and stabilizing ligand binding while creating a surface for coactivator 

interactions.  In addition to the repositioning of H12, ligand binding also induces 

conformational changes that affect other helices in the LBD [12, 61]. In particular, the 

repositioning of H12 disrupts the hydrophobic groove between H3-H5, known to interact 

with corepressor proteins, not only producing a more compact structure, but also 
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producing surfaces on the LBD which favor coactivator binding and disrupt corepressor 

binding [62] (Figure 1.4).   

Ligand induced coactivator recruitment allows diverse families of coactivators to 

bind to NR LBDs.  The p160 and p300 family of coactivators are the first to be recruited 

to ligand activated NRs [63-65]. The p160 family of coactivators include the steroid 

receptor coactivator 1 (SRC-1) and the activator of thyroid and retinoic acid receptor 

(ACTR). These coactivators have been found to bind approximately the same 

hydrophobic groove as the CoRNR box, making contacts on the surface of H3, H4, and 

H12  through a highly conserved NR box containing LXXLL motifs [66, 67] (as opposed 

to the larger LXXXIXXXI/L motifs of the CoRNR box). The position of H12 is essential 

for coactivator binding (Figure 1.4).  With the repositioning of H12, the three turn helix 

motif of the CoRNR box no longer fits into the hydrophobic groove of the LBD.  This 

repositioning is now ideal for the two turn helix motif of coactivator LXXLL motifs to 

bind. Once coactivator is bound, H12 forms a charge clamp with H3, locking the 

coactivator in place [54, 68].  

In addition to interacting with the NRs, the p160 coactivators described above 

also interact with cAMP response element binding protein (CBP), also a member of the 

p160 family, and p300 family coactivators.  Both p160 and p300 coactivators act as 

histone acetyltransferases (HATs) [65]. HATs are enzymes which catalyze the addition of 

acetyl groups to lysines in histones, relaxing the tight association between  

the histones and DNA, allowing chromatin expansion and the access required for RNA 
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polymerases to initiate transcription and express the gene of interest (Figure 1.3 B). 

 In addition to transcriptional activation, nuclear receptors are also able to exhibit 

transcriptional repression.  Like activation, repression can be mediated by ligand binding 

of an antagonist small molecule as opposed to an agonist.  NR agonists are small 

molecules that bind and upregulate gene expression as described previously.  NR 

antagonists have the opposite effect, they bind causing a down regulation of gene 

expression [69, 70]. Antagonists bind the NR and block transcription activation through 

competitively binding to the same binding site as the agonist, but with a structure that 

sterically displaces H12, preventing coactivator recruitment and enabling corepressor 

binding (Figure 1.4).  Antagonists do not allow the agonist small molecule to bind 

resulting in no conformational change of the LBD and thus no coactivator recruitment or 

transcriptional activation.  Consequently, antagonist based transcriptional repression is 

mediated by a conformation of the receptor that prevents coactivator association and 

promotes association with the same corepressors involved in unliganded NR repression, 

NCoR and SMRT, repressing transcription via HDACs [71].   

Ligands that bind NRs and cause activation or repression are not always true 

agonist or antagonists. Some ligands can also be inverse agonists or partial agonists.  

Inverse agonists are synthetic compounds that reduce the basal levels of NR activation 

that occur in the absence of an agonist.  Whereas agonist and antagonist have distinct 

stable positioning of the AF-2 domains, inverse agonist cause the AF-2 domains to adopt 

an alternative position that does not obstruct the hydrophobic groove formed by H3 and 

H4 [72].  Partial agonists/antagonists are compounds that are potent but exhibit poor 
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efficacy in comparison to true agonist or antagonists.  This decreased efficacy is a result 

of decreased stabilization of the AF-2 domain [73, 74].  

With the continuing research to better understand NR function and structure, 

several developments into ligand discovery and design have been made.  Understanding 

NR structure has provided insights into protein engineering as a tool to design NR ligand 

selectivity.  This knowledge can not only enhance drug potency, by allowing researchers 

to designing specific ligands that activate receptors more effectively and at lower 

concentrations than wild-type ligands, but this knowledge can also aid in manipulating 

drugs to produce fewer side effects, by creating orthogonal ligands only capable of 

binding the receptor of interest.  Drug discovery targeted towards NRs has aided in the 

discovery and development of both agonists and antagonists as well as selective nuclear 

receptor modulators (SNuRMs). SNuRMs are drugs that display an agonist response in 

some tissues and an antagonistic response in others.  A common example of a SNuRM is 

the breast cancer therapeutic agent tamoxifen, which is generally an antagonist in breast 

cells, therefore used as a breast cancer treatment [75], but acts as an agonist in bone tissue 

and the endometrium, aiding in the prevention of osteoporosis but increasing uterine 

cancer risks [76, 77].  

1.3 Retinoid X Receptor 

The retinoid X receptor, RXR, plays important roles in numerous fundamental 

biological processes including reproduction, cellular differentiation, bone development, 

hematopoesis, and pattern formation during embryogenesis [18]. Structurally, RXR is 

similar to other nuclear receptors containing the variable A/B domain, DBD, hinge 

region, and LBD.  However, this nuclear receptor is also unique in comparison to other 
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nuclear receptors.  RXR is the only nuclear receptor known to form heterodimers with 

other member of the nuclear receptor superfamily [78-80].  Although, much research has 

been done to investigate RXR, there are still many unknown or controversial issues 

regarding RXR, including its true biological role and the existence of an actual 

endogenous ligand.  Despite its controversy, RXR is an essential NR due to its necessity 

as a heterodimerization partner with other NRs involved in various critical biological 

pathways. As a result of its implication in these various processes, RXR has been 

identified as a potential target for cancer therapy as well as metabolic diseases [81, 82].   

There are three RXR subtype: RXRα, β, and γ.  RXRα is expressed predominately 

in the liver, kidney, epidermis and intestine, and is the major RXR found in the skin [83-

85].  RXRβ is expressed widely and can be detected in all tissues [83, 85-87], whereas 

RXRγ is constrained to the muscle, pituitary, and parts of the brain [83, 85, 88, 89].  All 

three subtypes are heterodimerization partners with members of the subfamily 1 NRs, 

which include the retinoic acid receptor and the thyroid hormone receptor [17].  

Interaction of these subfamily 1 receptors with RXR is not only required for their 

function, but RXR also increases their DNA binding efficiency [90].  These RXR 

heterodimers bind an arrangement of response elements containing direct repeats with 

between 1 and 5 base pairs separating them (DR1-DR5) [78].  Due to RXRs wide 

distribution and the diversity of HRE it is able to bind, the amount of RXRs potential 

target genes is vast, further supporting the importance of RXR in various biological 

processes.  RXR has also been implicated to be involved in RXR specific signaling as 

well, due to its in vitro ability to form homodimers that bind DR1 response elements and 
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activate genes [90, 91].  Nevertheless, the physiological role of RXR homodimers has yet 

to be discovered.   

RXR heterodimerization partners are classified as functionally “permissive” or 

“nonpermissive” [92].  Permissive heterodimers are synergistically activated by both 

RXR agonists as well as agonists of the dimer partner either together or individually.  

Nonpermissive heterodimers cannot be activated by RXR agonists but only by agonists of 

the dimer partner [93].  RXR in nonpermissive heterodimers is still able to bind its 

agonist, however nonpermissive partners inhibit its activation. Interestingly, permissive 

partners have been found to bind ligands with a low affinity whereas nonpermissive 

partners tend to bind their ligands with a high affinity.  

RXR was originally described as an orphan receptor, a receptor whose 

endogenous ligand has not yet been identified [84].  Only after finding that it was 

activated by very high concentrations of all-trans-retinoic acid (at-RA), an isomer of at-

RA, 9-cis-retinoic acid (9cRA), was discovered to activate all three subtypes of RXR, 

RXRα, RXRβ, and RXRγ [83].  However, much controversy surrounds the existence of 

9cRA as a truly endogenous ligand.  Although 9cRA has been shown to be present in 

developing embryos and biosynthetic enzymes of 9cRA have been identified, 9cRA has 

not been clearly detected in mammalian cells and as a result cannot be concluded as the 

natural ligand for RXR [94, 95].  Phytanic acid and docosahexaenoic acid have been 

proposed as natural ligands for RXR [96-98], but neither have been proven to be  

true natural RXR ligands, leaving this issue controversial and in need of further 

investigations.   
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Figure 1.5:  Retinoid X Receptor Binding Pocket Residues and their interaction     
                     with 9cRA  

Figure Adapted from [5] 
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Although 9cRA has been defined as a RXR agonist, it is not a RXR selective 

compound because it also activates the retinoic acid receptors (RAR) with high affinity.   

Resultantly, synthetic compounds (rexinoids) that only activate RXR have become 

important in order to determine the role of these receptors.  Crystal structures of both 

RXR and RAR bound to various ligands have provided insight into the LBPs of both 

receptors [99, 100], thus providing a means to design specific ligands able to discriminate 

between the two receptors. The crystal structures have also provided insight into what 

residues within the LBP are essential for ligand binding.  RXR bound to 9cRA was one 

of the first nuclear receptor crystal structures to be solved, allowing researchers to 

determine the key interaction between the receptor and the ligand [101] (Figure 1.5). 

Structural analysis of NRs has allowed researchers to manipulate the LBP to bind 

unnatural ligands [22, 23].  

The ability of NRs to bind small molecules and regulate the expression of critical 

genes involved in various reproductive, proliferative, and metabolic diseases makes these 

proteins excellent targets for drug discovery [13-16].  As a result, significant research has 

gone into engineering NRs to respond to non-natural ligands.  To engineer these 

receptors, proteins libraries need to be created and assayed for binding and function.  A 

powerful assay for analyzing NRs is through the power of genetic selection.   
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CHAPTER 2 

THE POWER OF GENETIC SELECTION 

  

2.1 Genetic Selection 

Genetic selection is one of the most powerful tools used analyze proteins with 

novel functions, such as engineered NR responses to non-natural ligands.  In genetic 

selection, the survival of a host cell is linked to a desired entity, such as a desired 

macromolecule’s function [1-7].  The use of genetic selection in high-throughput assays 

has been shown to greatly benefit drug discovery, protein engineering, enzymology, and 

proteomics [8-10].  The use of high-throughput assays coupled with genetic selection to 

evolve proteins with new properties has also provided a powerful tool for understanding 

both protein structure and function [1-7]. 

 Analyzing variants of large combinatorial protein libraries can be done using two 

methods, genetic screening or genetic selection. When using genetic screening 

techniques, one must evaluate all variants of the library to determine which variants have 

the desired function.  In facilitated screening, functional variants will have a distinctive 

phenotype, however all members of the library, functional and non-functional, will 

always be present [11].  When using genetic selection techniques, since the survival of 

the host cell is linked to a particular function, only functional variants survive. This 

eliminates the need to evaluate all variants, functional and non-functional, allowing for 

easier analysis of large protein libraries.  Variants can be analyzed faster in genetic 

selection systems, due to the elimination of evaluating uninteresting variants, allowing 

for the analysis of much larger library sizes.  Using the best screening protocol in 
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Escherichia coli (E. coli), only 105 library members can be assayed, however, with 

selection, up to 1010 variants can be assayed in E. coli [12].   

One of the problems of genetic selection systems is that an appropriate selection 

strategy, choice of host and complementation strategies, must be developed for every 

application [13].  Thus, creating a generalizable selection method for various applications 

can pose to be a challenge for genetic selection.  However, with the use of various 

microbial strains and the development of more and more selection techniques many 

genetic selection systems have been developed [3, 7-9, 11, 12, 14-22].  Commonly in 

genetic selection systems, cell survival is linked to enzyme function.  In principle, any 

enzyme activity can be selected for, provided cell survival can be linked to the catalysis 

of the desired reaction.  One strategy for creating a selection technique is the use of a 

metabolic requirement for a desired enzyme activity. One such strategy is the use of 

chorismate mutase activity [23]. Briefly, chorismate mutase catalyzes the first step in the 

biosynthesis of phenylalanine and tyrosine [24].  To create a chorismate mutase based 

genetic selection system, the genes encoding the chorismate mutase were altered in E. 

coli, and as a result survival of the strain in media lacking phenylalanine and tyrosine 

requires an added source of the chorismate mutase.  This is usually accomplished by the 

transformation of a plasmid carrying the gene encoding this enzyme.  In selection 

systems containing a functional chorismate mutase, cells are able to survive in media 

lacking phenylalanine and tyrosine.   

Many genetic selection systems have been developed to evaluate numerous 

macromolecular interactions, ranging from protein-DNA or RNA, protein-protein, and 

protein-ligand interactions [9, 15, 18-20].  A popular genetic selection technique to 
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evaluate such interactions is the use to two and three hybrid systems, which will be 

discussed in the remainder of this chapter. 

2.2  Two Hybrid Systems 

With the advancements of genetic selection as one of the most powerful tools to 

both discover and analyze protein function, two-hybrid systems (particularly the yeast 

two-hybrid system, Y2H) have emerged as one of the most successful genetic 

selection/screening based methods used to evaluate protein function.  Protein-protein 

interactions play a crucial role in virtually every cellular process, including DNA 

replication, transcription and translation, as well as metabolism.  Additionally the 

alterations of these interactions are known to contribute to a variety of disease. With the 

advancements in the human genome project, the idea that understanding protein function 

requires an understanding of protein-protein interactions has lead researchers to look for 

proteins which interact with their proteins of interest.  The Y2H provides an efficient 

system to analyze such interactions.  

The basic idea of the two-hybrid method is to control the expression of a gene by 

splitting a protein into two halves that do not work independently but will work when 

brought together again, most commonly a transcription factor protein (TF) because it is 

capable of controlling the activation and/or repression of a particular gene of interest 

when functional.  The TF is generally split into two domains, a DNA binding domain 

(DBD) and an activation domain (AD).  When the two domains are expressed as fusion 

proteins, or “hybrids”, with two other proteins with a sufficient affinity for each other, the 

function of the TF is restored. The protein fused to the DBD of the TF is referred to as the 

“bait” (X).  The protein fused to the AD of the TF is the “prey” (Y).  If the bait and prey 
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proteins are able to interact, bringing together the DBD and AD of the TF, a functional 

TF will be reconstituted restoring the function of the TF (Figure 2.1) [25]. 

Genetic screening or selection is used to detect the reconstitution of the TF by 

transcriptional activation of a reporter gene.  The reporters usually generate a 

colorimetric or fluorescent readout (screening) or allows growth in selective media 

(selection). Two common examples of reporter genes include the LacZ and HIS3 genes. 

The LacZ gene is used as a screen and encodes β-galactosidase, an enzyme that 

hydrolyzes ortho-nitrophenyl-β-galactoside (ONPG) into ortho-nitrophenol (ONP), a 

yellow product.  The HIS3 gene is a selection marker which encodes for the enzyme 

imidazole-glycerolphosphate dehydratase.  This enzyme is crucial to histidine 

biosynthesis and allows cells lacking a functional HIS3 gene to grow in media lacking 

histidine. 

The first two-hybrid system was developed in yeast by Fields and Song almost 

two decades ago as a “proof-of-concept”  that transcriptional readout could be used as a 

tool to investigate protein-protein interactions [26].  They used the yeast TF, GAL4, and 

fused its DBD to a serine-threonine-specific kinase, SNF1, and the  GAL4 AD was fused 

to SNF4, a protein previously shown to interact with SNF1 and required for its maximal 

activity [27]. When both hybrid proteins where expressed in a yeast strain with the 

genomic GAL4 gene deleted, they were able to obtain transcriptional activation of a lacZ 

gene placed downstream of a GAL4 promoter.   Since this development, thousands of 

publications have used this system to characterize protein-protein interactions (reviewed 

in [28-31]. 

Generally, to characterize protein-protein interactions with two-hybrid systems,  
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  Figure 2.1:  General Yeast Two-Hybrid System 
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proteins of interest are fused to the DBD of GAL4.  This fusion is then used as “bait” to 

screen, or select, through libraries of “prey” proteins fused to the AD of GAL4.  If a 

variant from the library is able to interact with the bait protein, the DBD and AD will be 

brought together resulting in transcriptional activation of a reporter gene. Since the 

development of the Y2H by Fields, numerous improvements have been integrated which 

have increased is applicability.  With these improvements the Y2H has been shown not 

only to determine protein-protein interactions [32-35], but has also been used to analyze 

protein function, decipher protein networks, and to detect other protein-macromolecular 

interactions such as small molecules and RNA [8, 14, 15, 18, 34-37].  The remainder of 

this chapter will focus on adaptations of the Fields Y2H in both yeast and bacteria. 

Since the pioneering of the Y2H, this technique has been adapted, improved, and 

diversified.  Improvements to the Y2H include vector refinement [38] and new strain 

developments with various selectable markers [39]. With its adaptations, this system has 

also gone on to be used for a variety of applications including genome mapping and drug 

discovery. The reverse two-hybrid system (rY2H) and the yeast three-hybrid systems 

(Y3H) are two of the major Y2H variants used to probe protein-small molecule 

interactions essential for drug discovery. 

In addition to identifying protein-protein interactions it is also crucial to 

understand the regulation of protein-protein interactions as well as characterize structure-

function relationships. To do this, events which dissociate protein-protein interactions 

need to be investigated. Structure-function relations can be investigated by detecting 

mutations in either protein partner which will cause dissociation.  Regulatory 
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mechanisms can be investigated using small molecules to mediate dissociation of the 

protein partners.  Classical Y2H that employ positive selection does not account for these 

occurrences.  rY2H are able to detect mutations or small molecules that disrupt protein-

protein interactions. Reverse systems make use of yeast strains engineered for negative 

selection.  In negative selection, expression of interacting hybrid proteins results in the 

expression of a counterselectable marker which is toxic to the cells under specific 

conditions.  Under these conditions disruption of the protein-protein interactions, by 

mutations or small molecules, provides an advantage, generally cell viability.  

The Y3H extends the role of traditional Y2H to not only investigate protein-

protein interactions, but to detect protein-RNA and protein-small molecule interactions as 

well [37, 40, 41].  Whereas the rY2H assess the disruption of protein-protein interactions, 

Y3H allow researchers to screen, or select, for proteins which directly interact with other 

macromolecules such as RNA or a specific small molecule in vivo  [8, 37, 40-44]. In 

these systems, the RNA or small molecules serve as a bridge between the two interacting 

proteins.  

The Y3H has also become a popular tool for evaluate small molecules for drug 

discovery [37, 40].  Additionally, the use of small molecules to regulate gene expression 

has various clinical applications, specifically gene therapy.  The ability to use a small 

molecule to control gene expression in a dose dependent manner has even more 

implications and is an extremely valuable tool.  Multiple Y3H assays have been 

developed for evaluating small molecule-protein, specifically NRs, interactions [8, 15, 

36, 37, 45-52]. These assays have not only created tools for creating and developing 
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small molecule based regulators of gene expression, but have also become useful tools 

for enzyme and protein engineering as well [8, 45, 48, 51]. 

Y3Hs developed for protein-small molecule interactions, use the small molecule 

ligand as a bridge, or linker, between the bait and prey proteins. In most applications, 

binding the small molecule causes the two proteins to dimerize, resulting in 

transcriptional activation.  These small molecules are referred to as chemical inducers of 

dimerization (CID).  Cornish and colleagues developed aY3H which uses a genetic 

screen to link a heterodimeric small molecule to enzyme catalysis [53]. The Cornish Y3H 

consists of a heterodimeric small molecule which bridges a DBD-receptor fusion protein 

and an AD-receptor fusion protein.  This approach is generalizable because it can be 

adapted to essentially any enzyme simply by changing the substrate linking the bait and 

prey proteins. The Cornish group has been successful in using this Y3H to screen through 

libraries of CIDs as a means to characterize enzymes [53, 54] 

2.3 Chemical Complementation  

Creating a generalizable high-throughput assay for the detection of protein 

variants with improved or novel activity is a tool that would greatly benefit protein 

engineering. As discussed above, genetic screening as well as selection can be used to 

facilitate such searches for both proteins and/or ligands from these libraries.  Successful 

isolation of desirable proteins or ligands from these libraries depends both on the quality 

and diversity of the library as well as the power of the screen or the selection.  However, 

it is important to note that in a screening assay one must evaluate all variants, both 

functional and non-functional, whereas a selection assay links function of a protein to cell 

viability and only functional variants survive, eliminating the need to evaluate non-
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functional variants.  There are a lack of generalizable selections systems, thus to address 

this issue we have developed chemical complementation (CC), a system modeled after 

the Y2H, which uses genetic selection to link the survival of a cell to the presence of a 

specific small molecule in S. cerevisiae [14, 44]. 

CC can be compared to classic genetic complementation in that both systems use 

complementation, either by a gene or small molecule, to link genetic selection to survival 

of a yeast cell.  In classic genetic complementation, genetic selection is used to link the 

survival of the yeast cell to a functional gene that complements a non-functional gene 

(e.g. an auxotroph).  However, with CC genetic selection is used to link the survival of 

the yeast cell to the presence of a small molecule (chemical) through binding a nuclear 

receptor and activating transcription of a functional gene (Figures 2.2 and 2.3). 

CC is a three component system that comprises a human NR protein-GAL4 DBD 

fusion protein, a NR coactivator protein-GAL4 AD fusion protein, and a small molecule 

ligand.  Upon binding of its specific small molecule ligand, the nuclear receptor 

undergoes a conformational change recruiting the coactivator and activating transcription 

of a selectable marker (Figure 2.3). These hybrid proteins are expressed in the S. 

cerevisiae strain PJ69-4A. PJ69-4A is a third generation Y2H strain which contains 

separate GAL4 response elements (GAL4 REs) upstream of the genetic selection and 

screening genes, HIS3, ADE2, and LacZ [39]. The system was developed using various 

nuclear receptors-ligand pairs, to include RXR-9cRA, the pregnane X receptor (PXR) 

with paclitaxel, and the liver X receptor (LXR) with oxysterols.  

Because NR ligands can act as both agonists and antagonists, CC was also 

developed to select for antagonist ligands as well using negative selection [44].  NR  



 32

 

 

 

 

 

 

Figure 2.2: Genetic Complementation.  A gene compliments a gene 
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agonists are small molecules which bind, cause a conformational change, and activate 

transcription. Antagonists are small molecules which bind but prevent activation. Potent 

antagonists are able to displace agonist, resulting in an inactive NR conformation. CC 

uses positive selection to select for NR agonist. In negative chemical complementation 

(NCC), negative selection is used to select for antagonists.  To develop NCC, a new S. 

cerevisiae strain had to be constructed, BAPJ69, in which a negative selection marker 

(URA3) was put under the control of a GAL4 RE. The URA3 gene encodes for orotidine-

5’-phosphate decarboxylase, an enzyme required for uracil biosynthesis and allows cells 

to survive in media lacking uracil. However, orotidine-5’-phosphate decarboxylase also 

catalyzes the conversion of a non-toxic 5-fluoroorotic acid (FOA) into toxic 5-

fluorouracil [55].  With functional NR-agonist pairs, cells will die in media lacking uracil 

and containing FOA.  But, if a functional NR-antagonist pair is present, orotidine-5’-

phosphate decarboxylase will not be expressed, thus non-toxic 5-fluoroorotic acid (FOA) 

cannot be converted into toxic 5-fluorouracil, allowing cells to live under these 

conditions (Figure 2.4).  

The CC system developed in yeast is highly sensitive (producing growth at 10 nM 

ligand concentration), has zero background (no growth without ligand) and high dynamic 

range (growth density and time equivalent to Gal4 induced growth). This system offers a 

general method of engineering receptors that activate transcription in response to 

arbitrary small molecules. We have shown that yeast has proven to be a very efficient 

method for analyzing libraries for functional ligand-receptor pairs [8]. Schwimmer et al. 

utilized CC to screen libraries of mutant RXR variants to bind the synthetic ligand, 

LG335.  RXR wild-type (wt) binds its natural ligand, 9cRA, with and EC50 of 500 nM 
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Figure 2.4:  Negative Chemical Complementation  
 

Figure 2.3:  Chemical Complementation 
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 and the synthetic ligand, LG335, with and EC50 greater than10 µM.  Schwimmer et al. 

was able to successfully use CC to select through a library of approximately 400,000 

RXR variants to find the RXR variant, I268V;A272V;I310L;F313M, capable of binding 

and activating transcription with the synthetic ligand, LG335, with an EC50 of 40 nm and 

activating transcription with the wt ligand, 9cRA, with an EC50 greater than 10 µM.  CC 

is a powerful tool for analyzing NR-ligand interactions.  This system can be extended to a 

variety of applications to include drug discovery, protein/enzyme engineering, and 

deciphering and assembling biosynthetic pathways. 

2.4  Bacterial Two-Hybrid Systems 

The Y2H systems has also been expanded and adapted to other organisms and 

hosts, particularly E. coli. Before the development of the bacterial two-hybrid systems 

(B2H), protein-macromolecule interactions were studied by mainly using the Y2H and 

bacterial-based phage display methods [56-60].  The development of a B2H to analyze 

protein-macromolecule interactions has advantages over Y2H and phage-display 

methods.  First, B2H methods can facilitate rapid analysis of larger libraries than yeast, 

due to E. coli’s faster growth rate and higher transformation efficiency.  B2H can also be 

faster than phage-display methods and allow for the investigation of larger proteins not 

readily displayed on phage surfaces.   

B2H are either developed based on bacterial repressors, such as the bacteriophage 

lambda repressor (λcI), or transcriptional activation using RNA polymerase (RNAP).  

Repressor based systems typically use the LexA repressor or the λcI [61-64].  The λcI-

B2H was first developed by Hu and colleagues.  When bound to the λ operator, the λcI 

prevents expression of genes involved in the bacterial lytic program [62, 63].  This 
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repressor is only active in the dimer form and each monomer contains a DBD and a 

dimerization domain (DD) [65].  Hence, the DBD alone is unable to function as a 

repressor due to its inability to dimerize.  λcI-B2H was constructed similarly to the Y2H 

by fusing the bait protein to a λcI-DBD  and the prey protein to another λcI-DBD.  Only 

systems with a functional bait-prey interaction are able to form a functional λcI-DBD 

dimer, allowing repression of a LacZ gene downstream of λ promoter-operator [62, 63] 

(Figure 2.5). Resultantly, a decrease in ONPG to ONP conversion can be observed.  

Many groups have been able to use this system to analyze the dimerization of various 

proteins [63, 64, 66-68].   

A major drawback of using the λcI-B2H is that this system cannot be applied to 

screening for protein-protein interactions if the bait proteins are able to homodimerize. 

This situation would result in functional repression regardless of the presence of a prey-

DBD hybrid. As a result of this, the LexA-B2H was developed. This system works 

similarly to the λcI-B2H with the advantage that allows the system to overcome the 

limitation of not being able to asses bait proteins able to homodimerize [61].  In this 

system, instead of fusing the prey protein to the wild-type DBD of LexA, it is fused to a 

mutant form of the LexA DBD and controls a LacZ gene upstream of operator made up  

of half-sites for both the wild-type (wt) and mutant LexA DBDs. Resultantly, only 

heterodimers of the wt-DBD and the mutant-DBD are able to repress expression of LacZ.  

In contrast to repressor based B2H, there have also been a number of systems 

developed based on transcriptional activation using bacterial RNAP.  This approach was 

first developed by Hochschild and coworkers, after discovering that interactions between 
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Figure 2.5: Repression Based Bacterial Two-Hybrid System (B2H) 
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DNA-bound activators and the C-terminal domain of the α-subunit of RNAP resulted in 

the N-terminal domain of the α-subunit of RNAP being able to recruit the RNAP core 

enzyme and initiate transcription of numerous genes [62, 69]. To develop this system the 

DBD was fused to a “bait” protein while the “prey” protein was fused to the N-terminal 

domain of the α-subunit (Figure 2.6). Thus, if the bait and prey proteins are able to 

interact, the LacZ gene, located downstream of DBD binding site and lac promoter 

construct, will be activated. 

Joung and co-workers were able to developed a genetic selection based B2H for 

studying both protein-protein and protein-DNA interactions [12].  The Joung system was 

developed based off of the Hochschild genetic screen, where the LacZ marker was 

replaced with a HIS3 selection marker.  The HIS3 gene is a selection marker which 

encodes for the enzyme imidazole-glycerolphosphate dehydratase.  This enzyme is 

crucial to histidine biosynthesis and allows cells lacking a functional HIS3 gene to grow 

in media lacking histidine. Only cells with a functional protein-protein interaction will 

survive in media lacking histidine, thus allowing for the evaluation of libraries ~1010 in 

size as opposed to between 105-106 in size as observed with screens. Additionally, the 

Joung B2H is able to analyze protein-DNA interactions as well as protein-protein 

interactions.  In this system, instead of the standard two hybrid system, in which the 

“prey” proteins are assayed for their ability to interact with a “bait” protein, Joung and 

colleagues used “bait” and “prey” proteins previously known to interact, the Gal4 and 

Gal11p proteins, and created a system capable of selecting through large randomized 

libraries of zinc finger DNA- binding domain variants for their ability to bind tightly and 

specifically to desired DNA binding sites.   
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Figure 2.6: Activation Based Bacterial Two-Hybrid System 

Figure 2.7:  Wood’s Bacterial One-Hybrid Construct 
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Although the B2H is not as well defined as the Y2H, the B2H can have numerous 

potential applications for in vivo analysis of protein-macromolecule interactions. An  

application currently developed in E. coli involving genetic selection and a unique 

version of the bacterial one-hybrid system (B1H) has been developed by Wood and 

coworkers.  Wood and colleagues have developed a high-throughput assay to discover 

and characterize protein-small molecule interactions [21, 22, 70, 71]. In their optimized 

B1H, a single hybrid construct was developed which comprised the LBD of the estrogen 

receptor (ER) fused to a thymidylate synthase enzyme (TS), a stabilization domain (the 

inactive Mtu-RecA intein), and a solubilization domain (the maltose binding protein tag, 

MBP) (Figure 2.7).  When this construct is expressed in a TS deficient E. coli strain at 

34ºC without a NR interacting small molecule, the cells are unable to grow in media 

lacking thymine. However, when an interacting small molecule is introduced into the 

same cells expressing a functional construct, cells are able to survive in media lacking 

thymine.  Wood and colleagues hypothesize that this ligand induced growth is a result of 

the NRs conformational change induced by ligand binding. The fusion of the intein to the 

N terminus of the TS enzyme sterically blocks homodimerization, which is required for 

activation. The NR conformational changes cause a rearrangement of the intein structure, 

partially alleviating the blocked TS and enhancing TS function. Additionally, this system 

was able to evaluate both agonist and antagonist of ER, due to thymidylate synthases 

ability to function in both positive and negative selection.  The drawback of this system is 

that it cannot be easily adapted to evaluate interactions other than protein-small molecule 

interactions. 
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CHAPTER 3 

BACTERIAL CHEMICAL COMPLEMENTATION:  

ELIMINATING BACKGROUND 

3.1 Bacterial Chemical Complementation: Bacteria vs. Yeast 

Our lab previously developed chemical complementation (CC), a generalizable 

selection system in S. cerevisiae used to investigate protein-small molecule interactions 

[1, 2].  CC combines the function of nuclear receptors, ligand activated transcription 

factors that control gene expression, with the power of genetic selection.  This system 

uses genetic selection to link the survival of a yeast cell to the presence of a specific 

small molecule [1, 2].   

Briefly, CC comprises a human nuclear receptor protein, its co-activator protein, 

and a small molecule ligand.  The system is assembled based on the Y2H (Y2Hs 

reviewed in Chapter 2.2). Upon binding of its specific small molecule ligand, the nuclear 

receptor-GAL4 DBD and coactivator-GAL4 AD hybrid proteins associate and activate 

transcription of a selectable marker [1, 2] (Figure 2.3). The chemical complementation 

system developed in yeast is highly sensitive (producing growth at 10 nM ligand 

concentration), has zero background (no growth without ligand) and high dynamic range 

(growth density and time equivalent to Gal4 induced growth) [2, 3]. This system offers a 

general method of engineering receptors that activate transcription in response to 

arbitrary small molecules [4].  

Although chemical complementation in yeast has proven to be a very efficient 

method for screening libraries for functional ligand-receptor pairs, extending chemical 

complementation to bacteria has several advantages.  In principle, a B2H system can 
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facilitate the rapid analysis of larger libraries than could be evaluated in yeast. Bacteria, 

specifically E. coli, grow faster than yeast, 24 hours vs. 48-72 hours, and have higher 

transformation efficiency than yeast, 108-9 vs. 105 [5, 6].  In addition to the speed and 

transformation efficiencies of bacteria, some eukaryotic proteins or small molecules may 

be toxic in yeast. This toxicity is usually a result of these specific proteins or small 

molecules introduced into the Y2H having the ability to interfere with endogenous 

homologs in yeast. An excellent example that would also directly affect CC systems is 

small molecules that have fungicidal activity.  These molecules would make yeast an 

unusable host and the use of a system developed in bacteria essential.     

Yeast are simple eukaryotes that contain similar proteins and small molecules to 

higher eukaryotes, which is one of the appeals to having a yeast based two hybrid system.  

However, this characteristic may also cause unwanted side effects as well. Introducing 

higher eukaryote proteins into yeast may result in unintended interactions between the 

introduced proteins and the endogenous yeast proteins.  Bacterial based systems may 

possible overcome these obstacles.  Endogenous interference by small molecules could 

specifically be an issue for CC in yeast.  Some nuclear receptors tested in yeast, 

particularly the pregnane X receptor (PXR), have been found to be constitutively active.  

This constitutive activity is hypothesized to be due to endogenous ligand(s) binding the 

receptor and turning on expression of the selection marker, eliminating our ability to 

control expression with the desired ligand.  Bacteria could eliminate the constitutive 

activity observed in CC, because they have smaller genomes, less complex proteins, and 

greater evolutionary distance from higher eukaryotes.  Prokaryotes are much simpler in 
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their protein processing, thus decreasing the endogenous interference seen with simple 

eukaryotes like yeast.   

Most importantly, one of the main advantages to having a bacterial based CC 

system is that E. coli may be a better host for drug screening due to more permeable cell 

membranes as compared to S. cerevisiae, allowing small molecules to cross the 

membrane and enter the cell easier [7].  Permeability is essential since the CC assay 

requires the entry of various small molecules into the cell.  Based on the B2H developed 

by Joung and colleagues, a BCC model was devised.  This system has the capability to 

open dimensions for applications such as protein and enzyme engineering, deciphering 

biosynthetic pathways and drug discovery (explained further in Chapter 3.2). 

3.2 Developing the Bacterial Chemical Complementation 

Joung and colleagues engineered a bacterial two-hybrid genetic selection system 

(BTHS) controlling a HIS3 selective gene (Figure 3.1) Similar to the yeast two-hybrid 

systems, this system works via the interaction of two fusion proteins that leads to 

transcription of an essential gene.  The HIS3 gene is a selection marker which encodes for 

the enzyme imidazole-glycerolphosphate dehydratase.  This enzyme is crucial to histidine 

biosynthesis and allows cells lacking a functional HIS3 gene to grow in media lacking 

histidine.  Joung began by constructing an E. coli strain, KJIC, which contains a deletion 

in the hisB gene, a bacterial gene essential for histidine biosynthesis and cell survival. 

Joung’s BTHS was constructed using two fusion proteins; the human Zif268 DBDs fused 

to Gal11P protein and the Gal4 proteins dimerization domain (residues 50-97) fused to 

the alpha subunit of RNA polymerase.  Gal11P is a mutant of the Gal11 protein, a 

component of the RNA polymerase II holoenzyme, where P stands for transcriptional 
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   Figure 3.1:  Bacterial two-hybrid System (BTHS) 
 
 
 
 
 
 
 

 
  Figure 3.2:  Bacterial Chemical Complementation (BCC) 
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potentiator [8].  The Gal4 dimerization domain not only interacts with Gal11P, but is also 

a powerful transcriptional activator in S. cerevisiae cells bearing Gal11P [9-11].  This 

system uses the interaction between Gal11P and Gal4 to regulate expression of a HIS3 

gene [5].  

The use of the HIS3 selection marker as opposed to a screening marker, such as 

the lacZ gene, not only allows one to employ the power of genetic selection, but also 

allows one to evaluate libraries up to 108-9 vs. 105-6 in size [5].  The novelty of the BTHS 

is that it can be used to not only evaluate protein-protein interactions, but protein-DNA, 

and potentially protein-small molecule, interactions as well.  Joung and colleagues tested 

the BTHS by selecting zinc finger variants, from a large randomized library, that bind 

specific DNA targets in a single selection step [5].  We proposed to adapt this system so 

that mammalian nuclear receptors could be evaluated for their ability to activate 

transcription in bacteria in response to a specific ligand.  This system would be analogous 

to CC in yeast. 

To directly parallel the S. cerevisiae CC system, we adapted the Joung Zif268 

DBD-Gal11P fusion protein to contain the Gal4 DBD fused to the nuclear receptor RXR.  

Additionally, a known coactivator of RXR, either the activator of thyroid and retinoic 

acid receptor (ACTR) or the steroid receptor coactivator-1 (SRC-1), was fused to the 

alpha subunit of RNA polymerase (RNAP).  The reporter construct was also adapted to 

contain a Gal4 response element upstream of the lac promoter (Pwk) and HIS3 gene.  Both 

fusion proteins and the reporter construct were introduced into the E. coli strain KJIC and 

grown in histidine selective media with and without 9-cis retinoic acid (9cRA), the 

natural ligand for RXR.    
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Ideally, the Gal4 DBD will bind the Gal4 response elements (REs) and in the 

presence of the appropriate ligand, 9cRA, the ligand will bind the nuclear receptor LBD. 

The LBD will undergo a conformation change, and recruit the coactivator-alpha RNA 

polymerase fusion protein.  The alpha subunit of RNA polymerase associates with the 

RNA polymerase core enzyme (RNAP), recruiting the entire RNAP to the promoter and 

activating transcription (Figure 3.2).  This system would allow us to create a 

generalizable selection system in bacteria that could potentially be used for drug 

discovery, protein and enzyme engineering, as well as deciphering biosynthetic 

pathways.   

Applications of Bacterial Chemical Complementation 

As mentioned above, BCC can be used as an essential tool in a variety of 

applications.  To date, CC has been used as a very effective tool for protein engineering 

and analyzing NR libraries [4]. BCC, like CC, can not only be used as a very efficient 

method to analyze potentially large protein libraries, but will also allow us to obtaining 

insight into NR structure and function. When using BCC for protein engineering, NR 

libraries are rationally designed for a specific ligand and analyzed using BCC (Figure 

3.3A).  In addition to protein engineering, BCC can be used as a high throughput assay 

for drug discovery.  As mentioned in Chapter 1, NRs are involved in a number of 

diseases and small molecules which regulate these receptors make up 10% of 

pharmaceuticals today.  In this application, chemical complementation is used to analyze 

libraries of small molecules to select for those able to bind and activate a specific nuclear 

receptor.  Because BCC is a selection assay, one can analyze many compounds at one 

time and only those which are functional will have to be evaluated, as opposed to a 
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   Figure 3.3:  Applications of Bacterial Chemical Complementation 
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screening system in which all variants, functional and nonfunctional, are evaluated 

(Figure 3.3B).  For this assay a 96 well plate format can be used in which each well 

encompasses cells containing the BCC system and a different small molecule.  To select 

for potential agonists, only wells containing a small molecule able to bind and activate 

the nuclear receptor will grow in selective media.   

BCC can serve as a powerful tool for enzyme engineering as well.  This process 

involves creating libraries of enzyme variants capable of converting particular substrates 

into the enzymatic product of interest.  The production of the desired enzymatic product 

can be analyzed using BCC, opening a new dimension of assaying enzymatic libraries.  If 

the enzymatic product is produced, the product will bind the nuclear receptor associated 

with BCC and activate transcription of an essential gene.  This system requires one to 

have a nuclear receptor which has already been discovered, or engineered, to bind the 

enzymatic product.  This application, like protein engineering, would also give insight 

into the structure and function limitations of enzyme engineering (Figure 3.3C).  

Similarly to enzyme engineering, BCC can be used to decipher biosynthetic 

pathways as well.  Natural products account for one of the major sources for drug 

discovery by pharmaceutical companies [12].  An alternative approach to chemical 

synthesis of these natural products is through identification of biosynthetic pathways used 

to produce these natural compounds.  In order to biosynthetically produce these natural 

products, one must be able to identify the biosynthetic genes involved in producing these 

compounds from their natural source. Once identified, these genes can be introduced into 

a heterologous organism and serve as a “factory” for an alternative means of obtaining 

large amounts of these compounds.   
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To use BCC to decipher through possible genes involved in the biosynthesis of a 

particular natural product, the first step must be to engineer a nuclear receptor that will 

bind and activate transcription in response to the natural product of interest.  The next 

step would be to create cDNA libraries of possible biosynthetic gene clusters that could 

potentially convert the precursors into the desired product.  Cells containing BCC and the 

correct gene cluster will be able to convert the precursors into the product of interest, 

allowing cells to grow in media lacking histidine (Figure 3.3D).  Using BCC in these 

applications has the ability to open new dimensions in protein and enzyme engineering. 

Initial Results of Bacterial Chemical Complementation 

The expression and reporter vectors obtained from Joung, pBR-GP-Z123, pACL-

αGal4, and pF11-Z321-HIS3-aadA [5], were modified to create the expression and 

reporter vectors needed for bacterial chemical complementation. The expression 

plasmid/vector, pBR-GP-GBDRXR, contains the GBD-RXR fusion protein and an 

ampicillin resistance gene.  The pACL-αRNAP ACTR expression plasmid was designed 

to contain the alpha RNAP subunit-ACTR fusion protein and a chloramphenicol 

resistance marker. The pF11-Gal1p-HIS3-aadA reporter vector contained the Gal4 

response element upstream of weak lactose promoter (Pwk) and the HIS3 gene and 

contained both chloramphenicol and kanamycin resistant genes (Figure 3.4).   

As a control, the BTHS, containing the bacterial strain, KJIC F’ Z321 , and the 

expression vectors supplied by Joung, were successfully reproduced from the Joung 

manuscript [5] (Figure 3.5A).  Once the BTHS controls were reproduced, BCC 

expression and reporter vectors were introduced (transformed) into the strain, KJIC. The 

BCC cells were grown in media lacking histidine, without ligand, to determine the 
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   Figure 3.4:  Bacterial Chemical Complementation Expression and Reporter Vectors 
 
 
 
 
 
 

 
  Figure 3.5:  Initial Results of Bacterial Chemical Complementation 
                       (A) Bacterial two hybrid system Activation.   
                       (B)  Reducing Background of bacterial chemical complementation   
                       (C)  Results of bacterial chemical complementation with and without                     
                              Ligand 
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optimal concentration of 3-amino-1,2,4-triazole (3AT) needed to reduce the background 

caused by “leaky” expression of the HIS3 gene.  The HIS3 selective gene encodes 

imidazole-glycerolphosphate dehydratase.  In the absence of activation, there is low 

constitutive expression of the HIS3 gene from the weak promoter. This “leaky” 

background growth can be eliminated with the use of 3-amino-1,2,4-triazole (3AT), an 

inhibitor of imidazole-glycerolphosphate dehydratase [13].  Joung’s BTHS required 20 

mM 3AT to reduce the “leaky” expression [5] and yeast chemical complementation 

system requires 5 mM 3AT [14].   

Initially, 50 mM 3AT was needed to eliminate the background growth observed 

with the BCC system (growth observed without the presence of ligand) (Figure 3.5B). 

However, once the background growth was eliminated using 50 mM 3AT, the bacterial 

chemical complementation system based on RXR and 9cRA revealed no ligand-activated 

growth occurred above background growth (Figure 3.5C).  A functional BCC system 

requires (1) no background (discussed in the remainder of this chapter) and (2) ligand 

activated growth (discussed in Chapter 4). 

3.3  Results of Eliminating Bacterial Chemical Complementation Background 

Initial results from BCC revealed that the system required 50 mM 3AT to reduce 

background growth from the HIS3 gene in media lacking histidine. The use of 50 mM 

3AT to reduce BCC background was hypothesized to possibly be too stringent, especially 

in comparison to the BTHS which only requires 20 mM 3-AT [5].  This high background 

growth observed by the BCC system may indeed represent the maximal growth which 

can be observed by this system, with or without ligand, and any activation, or growth, 

observed as a result of the ligands activity cannot be seen.  In other words, the 
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background growth may represent the maximum threshold of activation capable.  As a 

result of this, we hypothesized that before we could see ligand activated growth, we must 

first find the cause of and reduce the high background observed with BCC. 

3.3.1  Effects of Expression Vectors on Background Activation 

We began investigating the cause of the high background seen in BCC by looking at each 

component of the BCC system to see if it was somehow causing expression of the HIS3 

gene in the absence of ligand.  To test the possibility that one of the vectors themselves 

may be producing a hybrid protein that is interfering with endogenous proteins, activating 

transcription, and causing the high background, both the BCC system and Joung’s BTHS 

were tested with each of the expression vectors, one at a time, and the reporter vector 

(Figure 3.6A).  Every system, whether it was full system, only the reporter, or the 

reporter with only one of the hybrid proteins, exhibited a high background, both in the 

BCC system and the BTHS (Figure 3.6B).  The reporter vector alone produced a high 

background, regardless of whether the expression vectors where present or not suggesting 

that the background growth was most likely not associated with the expression vectors 

and/or their resulting hybrid proteins, but rather the background may be a result of a 

problem with the strain, or reporter construct itself.   

3.3.2  Effects of Promoters on Background 

Since our results concluded that the background growth was not associated with 

the expression plasmids, but did indicate that the reporter construct plays a role in the 

high background (Figure 3.6), we hypothesized that the lactose promoter used upstream 

the HIS3 gene in our reporter may be the cause of the background.  In BCC, the 

controllable activation of the selective gene is dependent upon having a weak promoter.   
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    Figure 3.6:  Effects of Expression and Reporter Vectors on Background Growth.   
                        Vector systems evaluated Results of vector system on background growth 
 
 
 
 

 
     Figure 3.7:  Effect of BCC Promoters on Background Growth 
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When using a weak promoter, the affinity of RNAP for the promoter is very weak, 

resulting in low levels of activation. However, if the system is able recruit the RNAP core 

enzyme into the vicinity of the promoter, it will enhance activation.  If the promoter is a 

strong promoter, the RNAP will have a greater affinity for the promoter and not need to 

be recruited by our system in order to activate, causing enhanced expression of the 

selective gene, which in turn would cause the selective gene to be expressed even in the 

absence of a functional two-hybrid system resulting in a high background.  We 

investigated whether the strength of the lac promoter was causing our high background 

by replacing the lactose promoter with another known bacterial weak promoter, the 

arabinose promoter. 

The lactose promoter is a component of the lac operon, which is responsible for 

lactose metabolism and transport in E. coli.  The regulation of this operon, by the 

availability of glucose and lactose, was the first genetic regulatory mechanism elucidated, 

and is also a popular tool used by two-hybrid assays.  The lactose operon is one of the 

most intensely studied genetic regulatory systems and is extremely useful in genetic 

engineering. In order for RNAP to effectively bind the lac promoter and induce 

transcription of the downstream gene, a positive activator called the catabolite activator 

protein (CAP) must binds to a specific sequence immediately next to the promoter which 

helps RNAP to bind and activate [15].  The lac promoter, associated with the lac operon, 

is considered a weak promoter in that its -35 and -10 consensus sequences differ from the 

ideal -35 and -10 sequences and as a result RNA polymerase (RNAP) does not bind well 

to it.  Although many sources describe the lac promoter as a weak promoter, there are 

also sources which also describe the lac promoter as a medium strength promoter, and as 
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a result the amount of mRNA made and, hence, the amount of the protein products will 

be moderate.   

The arabinose operon is responsible for producing enzymes necessary for 

arabinose metabolism, and like the lac operon, is regulated by a dual positive and 

negative system via the use of arabinose.  The arabinose promoter is often used as an 

alternative to the lac promoter and has become very popular for controlling gene 

expression in E. coli [16].  This weak but tightly controlled promoter–regulator system 

has enabled growth of both soluble and insoluble heterologous proteins in high-cell-

density E. coli cultures [17].  For this reason, we decided to replace the lac promoter 

(Pwk) with the arabinose promoter (PBAD).   

When comparing BCC using the arabinose promoter vs. the lactose promoter we 

found that both systems worked fairly similarly. Both required 50 mM 3AT to reduce the 

background observed by the HIS3 gene in the absence of ligand (Figure 3.7). If the 

arabinose promoter was indeed a weaker promoter than the lac promoter it should require 

less 3AT to reduce the background.  However, our results indicate that the promoter is 

not the cause of the high background observed with BCC. 

3.3.3  Effects of Integrating the Reporter on Background Growth 

Our system, unlike the system reported in the Joung manuscript, used the reporter 

construct in vector form as opposed to integrated into the genome of the strain.  Using the 

unintegrated reporter in the BCC system, would result in a much higher vector copy 

number, as opposed to a single copy obtained when the construct is integrated into the 

strain.  Hence, the additional copies of the HIS3 gene would be present in the cell, which 

are all leaky, resulting in a much higher background in the absence of  
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  Figure 3.8:  Conjugation and Integration of the Reporter Construct into the KJIC Strain 



 63

 
ligand than would be observed if only a single copy of the reporter construct were 

present. 

To investigate whether integration of the reporter construct would reduce the high 

background we were observing, the reporter construct, containing the HIS3 gene under 

the control of a lactose promoter and the Gal4 promoter (Gal1p, containing two Gal4 

response elements), was conjugated into the F’ episome strain CSH100 and integrated 

into the KJIC strain using the method outlined by Whipple and colleagues [18] to obtain 

an E. coli KJIC strain referred to as KJIC F’ Gal1p 2RE.  Briefly, the conjugation method 

involves transferring the reporter construct from a customized plasmid onto an F’ 

episome in the CSH100 strain via homologous recombination.  The construct is then 

moved from the F’ episome to the KJIC strain through direct cell-to-cell contact, referred 

to as conjugation (Figure 3.8).  We then tested both the integrated BCC system, as well as 

the, integrated BTHS (this same system was previously tested in Figure 3.6A) to see if 

we were able to reduce the high background observed in the integrated system.   

We found that in the integrated systems, both the BTHS as well as the BCC 

required 20 mM 3AT to reduce the background caused by leaky expression of the HIS3 

gene (Figure 3.9).  After successfully reducing the high background, we went on to test 

whether or not we could obtain ligand activated growth with the conjugated BCC system.   

3.4  Materials and Methods 

Bacterial Strains 

E. coli strains, CS H100 (F’ lac proA+B+ [lacIq lacPL8]/ara- ∆[gpt-lac]5), KJIC 

(F-∆hisB463 ∆[gpt-proAB-arg-lac] XIII zaj::Tn10), and KJIC F’ Z321 were a kind gift 

from Dr. Keith Joung (Massachusetts General Hospital/Harvard Medical School).  The  
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       Figure 3.9:  Effects of Reporter Construct Integration on Background Growth 
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KJIC F’ Z321 strain contains the Zif268 binding site upstream of the transcription start 

site of a weak E. coli lac-promoter and controlling the HIS3 gene [5, 18].  The KJIC F’ 

Gal1p 2RE was constructed by conjugating the Gal1p-2RE-Pwk-His3-aadA construct 

from pF11-Gal1p-HIS3-aadA into the KJIC strain, via the CSH100 strain, using a 

previously described protocol [18]. 

Ligands 

9 cis-retinoic acid (MW=300.44 g/mol was purchased from Biomol (Plymouth 

Meeting, PA). 10 mM stocks of the ligand were dissolved in 80% ethanol:20% DMSO 

(4:1 v/v) and stored at 4ºC protected from light. 

Expression plasmids and Reporter Constructs 

pBR-GP-Z123, pACL-αGal4, and pF11-Z321-HIS3-aadA were kind gifts from 

Dr. Keith Joung (Massachusetts General Hospital/Harvard Medical School) [5].  To make 

pBR-GP-GBDRXR, the restriction site, HindIII, was inserted into the pBR-GP-Z123 

vector at the 5’ end of the zinc finger proteins, Z123, using site directed mutagenesis.  

Primers containing a HindIII site at the 5’ end and a AatII site at the 3’ end were designed 

to amplify the GBDRXR fusion gene (containing residues 1-151 of Gal4 and residues 44-

462 of RXR) from the pGBDRXR vector (previously constructed in our lab) and ligate it 

into the pBR-GP-Z123-HindIII vector using the HindIII and AatII restriction enzymes.   

To make pACL-αRNAP ACTR, primers containing a NotI site at the 5’ end and a 

AvrII site at the 3’ end were designed to amplify the ACTR gene (from start to stop) from 

the pGAD10BA ACTR vector (previously constructed in our lab) and ligate it into the 

pACL-αGal4 vector using the NotI and AvrII restriction enzymes. 
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To make pF11-Gal1p-HIS3-aadA, primers containing a EagI site at both the 5’ 

and 3’ ends were designed to amplify the Gal1p response elements (containing 2 

response elements) from the pGH1 vector, a kind gift from Dr. Philip James (University 

of Wisconsin, Madison), and ligated into the pF11-Z321-HIS3-aadA vector using the 

EagI restriction enzyme.  To make pF11-Gal1p-AraBAD-HIS3-aadA, the weak lac 

promoter (TTTACCA-18bps-TATGTT) was replaced with the arabinose promoter 

(CTGACG-18bps-TACTGT) via site directed mutagenesis.   

After digestion and standard ligation, each vector was transformed into 

Zcompetent (Zymo Research, Orange, CA) XL1-Blue cells and selected for growth onto 

LB plates with the appropriate antibiotics (50 mg/ml Ampicillin, 25 µg/ml of 

chloramphenicol, or 30 µg/ml kanamycin, respectively).  The resulting vectors were 

purified using QIAprep Spin Miniprep Kit (Qiagen Inc., Valencia, CA), diagnosed with 

restriction enzymes and sequenced for confirmation.  

Media 

Luria-Bertani Media (LB) media was made by dissolving 25 g of Luria broth 

powder in 1 L of distilled water. The pH was adjusted to 7.0 with either HCl or NaOH as 

appropriate and sterilize by autoclaving.  M9-His selective media was made according to 

the BacterioMatch® II Two-Hybrid System Vector Kit (Stratagene, La Jolla, CA)) with 

9cRA (10 µM) and antibiotics (50 mg/ml Ampicillin (Amp), 25 µg/ml of 

chloramphenicol (Chl), and 30 µg/ml kanamycin (Kan)).  3-amino-1, 2,4-triazole (3-AT) 

was purchased from Sigma (St. Louis, MO), dissolved in water to make 100 mM stock 

solutions, filter sterilized and stored at room temperature.  

Bacterial Selection Protocols 
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The BCC systems (consisting of pBR-GP-GBDRXR, pACL-αRNAP ACTR, and 

pF11-Gal1p-HIS3-aadA vectors) and the BTHS (consisting of pBR-GP-Z123, pACL-

αGal4, and pF11-Z321-HIS3-aadA) were transformed into Zcompetent (Zymo Research, 

Orange, CA) KJIC cells and selected for growth onto LB plates with the appropriate 

antibiotics, 50 mg/ml Ampicillin (Amp), 25 µg/ml of chloramphenicol (Chl), and/or 30 

µg/ml kanamycin (Kan), respectively.  Transformants were selected and grown in LB 

Amp, Chl, Kan media overnight. Transformed cells were washed and re-innoculated into 

M9-His selective with or without 9cRA with the appropriate antibiotics and plated in 96 

well plates.  Cells were grown at 37 ºC at 300 rpm for 24 hours to select for ligand 

activated growth.   

Expression vector systems (containing the pF11-Gal1p-HIS3-aadA vector and 

either the pBR-GP-GBDRXR or the pACL-αRNAP ACTR for BCC systems or pF11-

Z321-HIS3-aadA and either pBR-GP-Z123 or pACL-αGal4 for BTHS) were transformed 

like above but selected for with either Kan/Amp media or Kan/Chl media, respectively.  

The conjugated BTHS and BCC systems (consisting of pBR-GP-Z123 and pACL-αGal4 

and pBR-GP-GBDRXR and pACL-αRNAP ACTR, respectively) transformed into 

Zcompetent (Zymo Research, Orange, CA) KJIC F’ Z321 or KJIC F’ Gal1p 2RE  cells, 

respectively.  Transformants were selected for growth in minimal media lacking histidine 

(M9-His selective media made according to the BacterioMatch® II Two-Hybrid System 

Vector Kit (Stratagene, La Jolla, CA)) with the appropriate antibiotics either with or 

without 9cRA as described above.   

3.5 Literature Cited 
 

1. Azizi B, Chang EI & Doyle DF (2003) Chemical complementation: small-
molecule-based genetic selection in yeast. Biochem Biophys Res Commun 306, 774-780. 



 68

2. Azizi B, Chang EI, Schwimmer LJ & Doyle DF (2009) In Progress. 

3. Azizi B (2005) Chemical complementation a genetic selection system in yeast for 
drug discovery, protein engineering, and for deciphering and assembling biosynthetic 
pathways. In unpublished thesis (PhD). Georgia Institute of Technology, Atlanta. 

4. Schwimmer LJ, Rohatgi P, Azizi B, Seley KL & Doyle DF (2004) Creation and 
discovery of ligand-receptor pairs for transcriptional control with small molecules. Proc 
Natl Acad Sci U S A 101, 14707-14712. 

5. Joung JK, Ramm EI & Pabo CO (2000) A bacterial two-hybrid selection system 
for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci U S A 97, 
7382-7387. 

6. Serebriiskii IG, Fang R, Latypova E, Hopkins R, Vinson C, Joung JK & Golemis 
EA (2005) A combined yeast/bacteria two-hybrid system: development and evaluation. 
Mol Cell Proteomics 4, 819-826. 

7. Vaara M (1992) Agents that increase the permeability of the outer membrane. 
Microbiol Rev 56, 395-411. 

8. Barberis A, Pearlberg J, Simkovich N, Farrell S, Reinagel P, Bamdad C, Sigal G 
& Ptashne M (1995) Contact with a component of the polymerase II holoenzyme suffices 
for gene activation. Cell 81, 359-368. 

9. Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, 
Ptashne M & Wagner G (2001) Recruitment of the transcriptional machinery through 
GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 15, 
1007-1020. 

10. Dove SL & Hochschild A (1998) Conversion of the omega subunit of Escherichia 
coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev 
12, 745-754. 

11. Farrell S, Simkovich N, Wu Y, Barberis A & Ptashne M (1996) Gene activation 
by recruitment of the RNA polymerase II holoenzyme. Genes Dev 10, 2359-2367. 

12. Newman DJ & Cragg GM (2007) Natural products as sources of new drugs over 
the last 25 years. J Nat Prod 70, 461-477. 

13. Struhl K & Davis RW (1977) Production of a functional eukaryotic enzyme in 
Escherichia coli: cloning and expression of the yeast structural gene for imidazole-
glycerolphosphate dehydratase (his3). Proc Natl Acad Sci U S A 74, 5255-5259. 

14. Azizi B, Chang EI, Schwimmer LJ & Doyle DF (2005) Submitted. 



 69

15. Czarniecki D, Noel RJ, Jr. & Reznikoff WS (1997) The -45 region of the 
Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription. J 
Bacteriol 179, 423-429. 

16. Guzman LM, Belin D, Carson MJ & Beckwith J (1995) Tight regulation, 
modulation, and high-level expression by vectors containing the arabinose PBAD 
promoter. J Bacteriol 177, 4121-4130. 

17. Lim HK, Jung KH, Park DH & Chung SI (2000) Production characteristics of 
interferon-alpha using an L-arabinose promoter system in a high-cell-density culture. 
Appl Microbiol Biotechnol 53, 201-208. 

18. Whipple FW (1998) Genetic analysis of prokaryotic and eukaryotic DNA-binding 
proteins in Escherichia coli. Nucleic Acids Res 26, 3700-3706. 
 
 
  

 
 
 
 
  



 70

 
CHAPTER 4 

BACTERIAL CHEMICAL COMPLEMENTATION: 

OBTAINING LIGAND DEPENDENT ACTIVATION 

 

4.1  Optimizing Bacterial Chemical Complementation for Ligand Activation 

 After conjugating and integrating the Gal1p-HIS3 reporter construct into the KJIC 

strain, we were successfully able to reduce the high background initially observed with 

BCC when no ligand was present.  Despite the reduction in background growth, we were 

still unable to observe ligand activated growth above background (Figure 3.9).  Given 

that both the BTHS and the yeast chemical complementation system were functional, we 

conclude that the selection assay itself, as well as the interactions between the nuclear 

receptor and coactivator, should be capable of producing ligand activated growth.  To 

troubleshoot the lack of ligand activated growth, we compared BCC to both the BTHS 

and the yeast CC to determine the cause of the lack of activation. The remainder of this 

chapter will discuss the various nuclear receptor-ligand pairs and coactivators tested, the 

optimization of the Gal4 DBDs interaction with its response elements, and attempts to 

optimize the coactivator and nuclear receptor heterologous expression and folding to 

attain ligand dependent activation of BCC. 

4.1.1  Enhancing the Interaction Between GBD and Gal1p 

To determine whether the Gal4 DBD was successfully capable of binding to the 

Gal1p response element and enhancing transcription of an essential gene, a control 

system was constructed, similar to the BTHS control system, requiring an optimal GBD  
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 Figure 4.1:  Construction of the Ligand-Independent Control. 
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  Figure 4.2: Initial Results of Ligand Independent Control 
 
 
 



 73

 

in place of the Zif268 DBDs (Figure 4.1).  When the ligand independent control system 

was introduced into the KJIC F’ Gal1p 2RE strain, containing two Gal4 consensus 

sequences, and tested in histidine selective media, no transcriptional activation occurred 

(Figure 4.2).  

After further evaluating the lack of growth obtained with the ligand independent 

control system, previous work has shown that in mammalian cells, at least four Gal4 

consensus sequences are required for a functional Gal4 based system [1, 2].  CC also uses 

four Gal4 consensus sequences in the Gal4 RE.  Accordingly, we re-constructed the 

vector, pF11-Gal1p-HIS3-aadA, containing the Gal1p promoter with four response 

elements instead of two.  After integrating this reporter construct into KJIC to create a 

strain with four Gal4 REs, KJIC F’ Gal1p 4RE, the ligand independent control system 

was re-tested in histidine selective media.  The KJIC F’ Gal1p 4RE strain, containing 

four response elements, required 10 mM 3AT to remove background growth as opposed 

to the 5 mM needed for two Gal4 REs (Figure 4.3). The higher 3AT concentration is 

more than likely due to the increase in the number of response elements.  

At 10 mM 3AT, growth above background was observed in our control system 

when four RE’s were used, with an increase in OD630 from 0.045 to 0.200 (Figure 4.3). 

This confirmed that our system requires the use of four REs to be functional, meaning 

capable of producing ligand-independent growth. Nevertheless, when testing the revised 

BCC system with 9cRA, the ligand for the RXR nuclear receptor, ligand-activated 

growth still did not occur (Figure 4.4). Although we were able to optimize the interaction 

between the Gal4 DBD and its response elements, these results reveal that the interaction  
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  Figure 4.3:  Effects of Gal4 Response Elements on Ligand Independent Control. (A)       
                       Two Gal4 Response elements vs. (B) Four Response Elements 
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Figure 4.4:  Bacterial Chemical Complementation with Four Gal4 Response Elements 
 
 
 
 
 

 
Figure 4.5:  Bacterial Chemical Complementation with Various Nuclear Receptor-     
                     Ligand Pairs and Coactivators 
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between the Gal4 DBD and Gal4 REs were not the sole cause of the lack of ligand- 

activated growth.  

4.1.2  Optimizing the Various Components of the BCC system 

The BCC system was designed with the nuclear receptor RXR, the ACTR 

coactivator, and 9cRA, the ligand for RXR.  To determine if another coactivator, such as 

the steroid receptor coactivator-1 (SRC1) or the PPARγ coactivator-1 (PGC-1α), or 

another nuclear receptor-ligand pair were more optimal and capable of inducing ligand 

activated growth in our BCC system we constructed BCC systems using these various 

nuclear receptors and coactivators.   

Additional coactivators of RXR were tested; specifically SRC1 and PGC1α in 

addition to ACTR.  PGC1α is known to be a strong activator of mitochondrial function 

and resultantly are dominant regulators of oxidative metabolism in many tissues, 

specifically in tissues with high oxidative capacity, such as the heart, slow-twitch skeletal 

muscle, and brown adipose tissue [3, 4].  PGC1α is a coactivator for a variety of nuclear 

receptors including the peroxisome proliferator-activated receptors (PPARs), retinoid 

receptors, estrogen receptors, farnesyl X receptor (FXR), pregnane X receptor (PXR), 

and liver X receptors (LXR) to name a few [5-9].   

SRC1, also referred to as NCoA1, is a member of the p160/SRC coactivator 

family [10]. The function of the p160/SRC coactivator family members is to recruit 

coactivators with histone acetyltransferase activity (HAT), which will in turn assist in 

transcriptional activation [10-13]. SRC1, like PGC1, also activates a variety of NRs from 

the steroid receptors, such as the estrogen receptor, and retinoid receptors, to the various 

nuclear receptors which form heterodimers with RXR [14, 15].  ACTR, also referred to 
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as SRC-3/p/CIP/AIB1/RAC3/and TRAM-1, a member of the p160/SRC coactivator 

family,  is involved in normal animal development to include puberty, female 

reproductive function, mammary gland development, and is often overexpressed in many 

cancers, to include breast and prostate cancer [16-18].   

Both SRC1 and ACTR possess weak intrinsic HAT activities at the C-terminal 

region and have the ability to interact with the same nuclear receptors. Nevertheless 

several investigations suggest that these coactivators also have specific functions as well 

[19].  Specifically, ACTR exhibits greater promiscuity for various activators than the 

other members of the p160/SRC family, to include SRC1.  Interestingly, the majority of 

NRs activated by SRC1 are also activated by ACTR but with different affinities [20, 21]. 

The hypothesis that we were not obtaining ligand activated growth due to a less 

than optimal interaction between RXR and ACTR could not be concluded from the BCC 

results obtained when testing RXRα with the 3 coactivators described above.  We 

discovered that all three coactivators gave similar results; there was no ligand activated 

growth observed beyond background (Figure 4.5).  To further investigate this hypothesis 

we tested NR-ligand pairs, with varying EC50 values and fold activations, with various 

coactivators used. 

The following BCC systems were tested for their ability to induce ligand activated 

growth; the pregnane X receptor (PXR) and both ACTR and SRC1 with the ligand 

tocopherol (7 fold activation in cell culture [22]), the liver X receptor (LXR) and SRC1 

with the synthetic agonist T0901317 (T090) (EC50 of 20 nM [23]), and the estrogen 

receptor alpha (ERα) with SRC1 with estradiol (EC50 of 0.3 nM [24]).  PXR is primarily 

involved in the detoxification of foreign toxic substances and clearing them from the 
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body by regulating the cytochrome p450 gene, CYP3A4, which encodes an enzyme 

responsible for drug metabolism.  PXR, a type II NRs which heterodimerizes with RXR,  

is known to have a very promiscuous ligand binding pocket and as a result binds a large 

number of ligands to include rifampicin, paclitaxel, tocopherol, and various steroids and 

antibiotics, such as triacetyloleandomycin, used to treat pneumonia (Figure 4.6A). 

Tocopherol is a form vitamin E known to bind and activate PXR with fold activations 

comparable to rifampicin [22]. 

LXR is an important regulator of cholesterol, glucose, and fatty acid homeostasis.  

There are two identified isoforms of LXR, α and β, which are expressed in many of the 

same tissues, however, the distribution of each of the isoforms within the tissues is quite 

different.  LXRβ is expressed in almost all tissues and organs, while LXRα is restricted to 

the liver (where it is expressed the highest), kidney, intestine, lung macrophages, spleen 

and fat tissue.  LXR, like PXR, activates as a heterodimers with RXR.  However, this 

receptor is a permissive nuclear receptor in that it can be activated by 9cRA as well as its 

own ligands [25].  In general LXR is known to be activated by oxysterols and various 

synthetic ligands, to include T0901317 (Figure 4.6B). T0901317 is a synthetic nonsteriod 

based ligand containing multiple trifluoro functional groups that is commonly used to 

activate LXR in experimental studies [26]. 

The estrogen receptor (which is explained more extensively in Chapter 6.1) is 

responsible for regulation of growth, differentiation, and function in many tissues to 

include reproductive tracts, the cardiovascular system and mammary glands.  This 

receptor has two forms, α and β, which are activated endogenously by the hormone 17β-

estradiol (Figure 4.6C).  However, the ER, unlike LXR and PXR, are homodimers and  
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                Figure 4.6:  Nuclear Receptor-Ligand Pairs 
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are found in a multitude of tissues, to include breast, ovarian, bone, and prostate. Like 

other steroid receptors, ERs, unlike LXR and PXR which are found predominately in the 

nucleus, are cytosolic in the absence of ligand, and once ligand is bound translocate to the 

nucleus [27].   

After creating the BCC systems with the NRs and the coactivators described 

above, all systems failed to produce ligand activated growth above background (Figure 

4.7).  With the sustained inability to obtain ligand activated growth with the BCC system, 

we investigated one other component of the system, the alpha subunit of RNAP.  The 

RNAP core enzyme in E. coli is made up of six subunits; α1, α2, β, β’, ω, and σ (Figure 

4.8).  The alpha subunits both assemble the enzyme as well as recognize regulatory 

factors. Each subunit has a C-terminal domain (αCTD), which binds an upstream element 

(-40 to -70) of the promoter, and an N-terminal domain (αNTD), which binds the rest of 

the polymerase core enzyme. The β subunit has the polymerase activity responsible for 

transcription initiation and elongation.  β’ associates with the β subunit and binds DNA 

nonspecifically.  The ω subunit had been known to have no discernable function for 

awhile but is since been found to promote assembly, however is not required for 

transcription in vivo or in vitro [28, 29].  Lastly the sigma subunit of RNAP is responsible 

for enabling specific binding of the RNAP core enzyme to the promoter regions (-35 and 

-10 regions).  E. coli have seven sigma factors and each RNAP core enzyme has a 

specific sigma factor.  Different sigma factors are activated in response to different 

environmental conditions. The sigma70 (σ70) subunit is the principle sigma factor which 

transcribes most genes in growing bacterial cells. 
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 Figure 4.7:  Results of Various Nuclear Receptor-Ligand Pairs in Bacterial Chemical  
                   Complementation 
 
 
 
 
 
 
 

 
  Figure 4.8:  RNA Polymerase Core Enzyme and Subunits 
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The BCC system described to this point encompasses the alpha subunit of RNAP.  

This subunit has been used commonly in two-hybrid systems [30, 31], along with the σ  

and ω subunits of RNAP [32, 33].  Both the ω and σ subunits have been tested in two-

hybrid systems and were found to be successful in initiating transcription at various 

levels in comparison to the α RNAP subunit [32, 33].  To determine if another subunit of 

RNAP will have a greater affect on obtaining ligand-activated growth with the BCC 

system, we created a BCC system in which the coactivator protein was fused to the σ70 

subunit of RNAP.  The BCC system constructed using σ70 subunit of RNAP in place of 

the alpha subunit proved to not have an effect on ligand activated growth, with systems 

both with and without ligand having a 0.05 OD after reducing background with 5 mM 

3AT (Figure 4.9).  

In an attempt to obtain ligand activated growth, we tested the interactions of 

various components of the BCC system to see if they were causing our inability to obtain 

ligand dependent activation.  These interactions included the GBD-Gal1p, NR-

coactivator, and RNAP subunit interactions.  Another avenue would be to test if the 

ligand is able to pass through the cellular membrane in order to bind and activate the 

reporter gene. However since studies in yeast have confirmed that the ligands are capable 

of crossing their cell membranes to enter the cell [34] and the  E. coli cell envelope is 

known to be to be more permeable to small molecules than yeast [35], we assumed that 

the ligands were able to enter into the bacterial cells as well.  

4.2  Enhancing Heterologous Protein Expression and Stability 

After attempting to optimize the various components of the BCC systems and 

finding that none of the changes were capable of inducing ligand activated growth we  
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Figure 4.9:  Bacterial Chemical Complementation with the Sigma70 RNA Polymerase  
                     Subunit 
 
 
 
 
 

 
 
 Figure 4.10:  Evaluating Coactivator Fragments in Yeast Chemical Complementation 
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began to hypothesize that other factors may be contributing to the lack of ligand induced 

activation.  Although E. coli are generally easy to genetically manipulate these  

cells do have many disadvantages as a heterologous protein expression host.  Generally 

expression of recombinant proteins in E. coli can result in insoluble aggregates, known as 

inclusion bodies, of improperly folded and inactive proteins [36].  This occurs commonly 

with eukaryotic proteins which are particularly larger proteins that are post translationally 

modified, contain disulfide bonds, and/or are multimeric [36].   

Many nuclear receptors have been found to be difficult to express in bacteria, 

including the glucocorticoid receptor (GR), ER, FXR, and RXR [37-40].  Due to their 

posttranslational modifications and multimeric nature, nuclear receptors are 

characteristically difficult to express in E. coli and as a result many systems have been 

developed in an attempt to enhance their heterologous protein expression [37, 40]. Due to 

their multimeric nature, many NRs have been separated into their DBD and LBD in order 

to obtain recombinant expression. Once separated the DBDs give higher soluble 

expression.  However due to the significant hydrophobic regions of the LBD, including 

the ligand binding pocket and coactivator interaction surfaces, as well as post 

translational modifications, the LBDs tend to be prone to aggregation.  Additionally 

because of the extremely large size of the coactivator proteins used, these proteins may 

also have significant challenges in relation to soluble and functional recombinant 

expression.  

The remainder of this chapter will address the hypothesis that heterologous 

protein expression may be contributing to our lack of ligand activated growth. We first 

determine whether or not we were able to obtain soluble expression with our fusion 
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proteins in the BCC system and then we went on to attempt to enhance heterologous 

protein expression. 

4.2.1  Analysis of Fusion Proteins Solubility 

As mentioned previously, over-expression studies of nuclear receptors have 

shown that it is more feasible to obtain soluble protein expression when expressing the 

LBD alone as opposed to in conjunction with its DBD [40].  In addition some particularly 

larger eukaryotic proteins, such as the nuclear receptor coactivator proteins, fail to 

express well in E. coli [40-44]. Several studies reported that eukaryotic proteins are, on 

average, significantly larger than prokaryotic proteins [45, 46]. The full ACTR 

coactivator is approximately 1500 amino acids, which is an extremely large protein for 

bacteria to properly express. Furthermore, this coactivator has multiple post translational 

modifications making the protein more difficult for E. coli expression and folding.   

Therefore, instead of using the full RXR and ACTR proteins in the BCC system, 

we removed the RXR DBD from the GBD-RXR fusion protein and re-constructed the 

αRNAP-CoA fusion proteins to contain smaller ACTR or SRC-1 fragments. These 

smaller, approximately 250 amino acid, fragments contain LXXLL motifs from ACTR or 

SCR1 that have been previously shown to interact with the nuclear receptor [47].  Since 

these smaller fragments had never been tested for functionality in yeast CC, a system we 

know to be capable of producing ligand activated growth with the correct NR-

coactivator-ligand sets, we first tested these smaller coactivator fragments for function in 

chemical complementation in yeast.   

The coactivators were cloned into yeast expression vectors as fusion with the 

Gal4 AD.  In yeast, both the ACTR and SRC-1 fragment proteins show ligand-activated  
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      Figure 4.11:  Results of GBDRXRLBD and Coactivator Fragments in Bacterial  
                             Chemical Complementation 
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growth with RXR and 9cRA (Figure 4.10).  Unfortunately, when testing these smaller 

fusion proteins as well as the GBD-RXR LBD fusion protein (GRL) using BCC, again no 

ligand dependent activation was observed (Figure 4.11).  However this data did reveal 

that, this new BCC system, using the GBD bound to only the LBD of RXR, required 10 

mM 3AT to reduce the background (similar to the ligand independent control system), as 

opposed to the 5 mM required for the BCC system with the full RXR and ACTR fusion 

proteins.  This suggests that with the full RXR BCC system used previously, the GBD-

RXR construct may have had a soluble expressed GBD but an insoluble unfolded RXR 

protein attached to it.  As a result, the GBD would still be able to bind Gal1p, but was 

unable to initiate transcription and as a result blocked the promoter from endogenous 

RNAP binding, resulting in lower background.  This observation supports our hypothesis 

that the full RXR protein in the GBD-RXR fusion protein was not being expressed by E. 

coli and that perhaps the GRL fusion protein could increase recombinant expression. 

To determine whether these newly constructed hybrid proteins were expressing in 

the BCC system, we over-expressed both fusion proteins under the same conditions used 

to test BCC. Western blot results revealed that the GRL fusion protein does appear to 

produce soluble protein expression.  However, the αRNAP-LXXLL SRC1 fusion protein 

gave only insoluble expression (Figure 4.12).   

4.2.2  Enhancing Heterologous Expression and Folding with Chaperones 

In an attempt to enhance both folding and expression of our BCC fusion proteins 

in E. coli, we used the Chaperone Plasmid set from Takara Bio Inc to assist in protein 

folding.  Chaperones are proteins that assist the non-covalent folding and unfolding and  
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  Figure 4.12:  Expression of Bacterial Chemical Complementation Fusion Proteins 
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the assembly and disassembly of other macromolecular structures.  It has previously been 

shown that co-expression of molecular chaperones systems with “difficult” proteins can 

enhance solubility [48-51]. The Takara Chaperone set contains five plasmids with 

different types of chaperone systems combined in an attempt to enhance protein folding 

and expression.  These five plasmids containing various chaperone genes; the pG-KJE8 

plasmid which expresses the dnaK-dnaJ-grpE and groEL-groES chaperones, pGro7 

expressing only the groEL-groES chaperones , pKJE7 expression only the dnaK-dnaJ-

grpE chaperones, pG-Tf2 expressing the groEL-groES-tig chaperones, and pTf16 

expressing on the tig chaperones [52, 53].   

There are numerous families of chaperones, each with the ability to aid protein 

folding in a different way [52-54]. In E. coli many of these proteins are highly expressed 

under conditions of high stress, particularly when placed in high temperatures [54].  The 

DnaK-DnaJ-GrpE and GroEL-GroES chaperone systems are the best characterized 

folding modulators in E. coli.  The exact mechanism of how these chaperones works is 

not known, but they have been shown to assist in protein folding [53, 54]. GroEL/GroES 

may not be able to undo previous aggregation, but it does compete in the pathway of 

misfolding and aggregation. DnaK chaperones have been found to have a high affinity for 

unfolded proteins when bound to ADP, unfolded state, and a low-affinity when bound to 

ATP, folded state.  These chaperones are thought to crowd around an unfolded substrate, 

stabilizing it and preventing aggregation until the unfolded molecule folds properly, at 

which time it lose affinity for the molecule and diffuse away (Figure 4.13).   

Numerous laboratories have investigated and shown that over-expression of these 

chaperone proteins in conjunction with heterologous proteins in E. coli can facilitate  
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 Figure 4.13:  Possible Model for Chaperone Assisted Protein Folding in E. coli 
                       Revised from Nishihara, KM et al 1998 and 2000 [52, 53] 
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protein folding and enhance the production of functional proteins [54, 55].  The 

beneficial effect of higher intracellular concentrations of these chaperones, meaning 

folded functional recombinant proteins, is due to the facilitated folding of newly 

synthesized protein chains, leading to increased amounts of soluble protein vs. 

aggregated protein [53].   

Although these chaperones systems have had great success in assisting many 

proteins to fold properly, there is no guarantee that chaperone co-production will improve 

recombinant protein expression.  However, some of the recombinant proteins which have 

failed to express with the DnaK-DnaJ-GrpE and GroEL-GroES chaperone systems alone, 

are able to express when combining these proteins with additional chaperone-like factors, 

such as the E. coli trigger factor (tig) [53].  Tig is a 50 kDa protein that has been 

suggested to play a role in protein folding because of its association with nascent 

polypeptides and the 50S ribosome [56, 57].  Additionally tig has been found to associate 

with GroEL and strengthen its binding to proteins in order to facilitate protein folding and 

degradation [58]. 

In order to test the chaperone plasmids in with our BCC system, we first 

introduced the gene for the LXXLL SRC1-RNAP alpha subunit fusion protein into the E. 

coli genome. In the optimized BCC system described previously, the coactivator fusion 

gene is on a plasmid containing a chloramphenicol marker and the chaperone plasmids 

also contain chloramphenicol markers, eliminating the ability to determine which plasmid 

or whether both of the plasmids have been introduced into the cell.  As a result, the 

coactivator fusion gene was conjugated into the strain along with the reporter in the same  
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   Figure 4.14:  Effects of Chaperones on Bacterial Chemical Complementation 
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manner as described previously to produce the strain KJIC F’ Gal1p 4RE LX-S. The 

GRL fusion plasmid as well as each individual chaperone plasmid were then transformed 

into the KJIC F’ Gal1p 4RE LX-S strain and tested with and without 9cRA.  

Unfortunately none of the chaperone systems gave ligand induced growth above 

background (Figure 4.14).   

4.2.3  Enhancing Heterologous Expression and Folding with Osmolytes 

With the advancing problem of recombinant protein expression in E. coli, many 

tools and techniques have been developed in an attempt to increase heterologous protein 

expression [37, 40].  Once such technique to enhance protein expression is through the 

use of osmolytes.  Osmolytes are small organic compounds which can affect the stability 

of proteins [59].  When cells undergo osmotic stress, resulting in a loss of water, the cell 

maintenance of fidelity in reactions, such as protein folding, is challenged.  Reduced 

water activity is believed to be a critical factor for enzyme stability [60].  As a result, 

many cells upregulate their concentrations of specific organic small molecules, or 

osmolytes, to cope with the loss of water [61-63].  These osmolytes can counteract the 

deleterious effects of the water loss by favorably interacting with water and unfavorably 

interacting with the proteins backbone and side chains [64-66].   

Due to their nature, osmolytes can be denaturing or protecting. Denaturing 

osmolytes assist in push proteins folding equilibrium into the unfolded states whereas 

protecting osmolytes push proteins into the native, or folded, state [59].  Since denatured 

proteins have a more exposed backbone surface than native state proteins, protecting 

osmolytes stabilize proteins.  However since various osmolytes interact with the 
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backbones and side chains of proteins differently, each osmolytes impact on protein 

folding and stabilization varies. 

Various osmolytes have been discovered and tested for their ability to control 

protein aggregation.  Many of these organic osmolytes often accumulate in the cells 

cytoplasm, to include polyols, glycine, betaine, and proline.  These osmolytes are 

considered “compatible” because they do not interfere with the cells metabolism [67].  Of 

these compatible osmolytes, proline has interesting properties that make it an excellent 

solute to use to enhance protein folding in heterologous expression systems.  The first 

property is that proline has a remarkably high solubility in water, 7 M at ambient 

temperatures, making it easy to work and compatible for the cell.  Additionally proline at 

high concentrations, greater than 1 M, has been shown to enhance the solubility of 

hydrophobic compounds [68].   

Furthermore, proline has a distinct ability to solubilize proteins and has a more 

modest stabilizing effect than other osmolytes most likely due to its more favorable 

interaction with native state proteins side chains as opposed to its solvophobic 

interactions with the backbone [66, 69-71].  Because of these properties, proline studies 

have been done using proline at various concentrations in an attempt to promote 

solubility of difficult to express recombinant proteins [71-73]. 

Gierasch and coworkers investigated the use of proline as a chaperone for protein 

folding.  They proposed that proline acts as a protein aggregation protector because it has 

the ability to suppress early aberrant protein interactions that trigger aggregation.  They 

found that protein solubility in heterologous systems can be increased by supplementing 

the growth media with 300 mM of sodium chloride (NaCl), to increase the osmolality of  
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    Figure 4.15:  Bacterial Chemical Complementation in Proline Enhanced Media 
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the media, and 20 mM of proline to decrease protein aggregation and enhance soluble 

protein expression [72].  As a result, we tested BCC in media supplemented with 300 

mM NaCl and 20 mM proline.  However, the system tested with proline enhanced media 

reacted the same as without proline. Systems in both media required 10 µM 3AT to 

reduce background. We did not see an increase in ligand induced activation above 

background, the OD630 was found to be 0.05 both with and without ligand.  (Figure 

4.15).   

After further investigation into the literature, we found that some researchers 

found that proline as a protein folding chaperone, enhanced refolding of proteins in vitro 

when concentrations of at least 1.5 M proline were used [73].  Samuel and colleagues 

found that they were able to eliminate visual signs of aggregation of reduced and 

denatured lysozyme (r/d Lys) when adding proline at concentrations greater than 1.5 M, 

making proline a plausible protein folding chaperone. However, an ideal protein folding 

chaperone should not only prevent protein aggregation, but also restore it biological 

activity.  Samuel and colleagues found that higher concentrations of proline not only 

helped to overcome protein aggregation, but also helped a fraction of the refolded protein 

to regain its biological activity. 

With this, we proposed to increase the proline concentration in our BCC assay 

media to test if we were able to enhance protein folding and function of our recombinant 

proteins in order to obtain ligand activated growth with our BCC system.  However, the 

use of a higher concentration of proline in vivo, as opposed to in vitro, proved to be 

unsuccessful and difficult to tolerate by E. coli.  The bacteria do not grow as well with 

proline concentration greater than 1.5 M. The cells grow more slowly, requiring greater 
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than 48 hrs as opposed to 24 hours.  Additionally, these high proline concentrations cause 

the system to have higher background, requiring greater than 20 mM 3AT to reduce the 

leaky background as opposed to 10 mM previously seen using the media not 

supplemented with proline (Figure 4.16). 

The attempts to improve heterologous protein expression of the BCC fusion 

proteins in E. coli so to enhance ligand dependent activation of BCC, we optimized the 

construction of the BCC system by reducing the large size of the heterologous fusion 

proteins, thus using the RXR LBD fused to the Gal4DBD, instead of full RXR, and 

smaller LXXLL based fragments of the ACTR and SRC1 coactivators, instead of the full 

coactivators.  Additionally, we introduced chaperone proteins and/or osmolytes into the  

BCC system, however, none of the attempts to increase heterologous protein expression 

were successful, and as a result we still have a bacterial chemical complementation 

system unable to produce ligand activated growth. 

4.3  Summary of Bacterial Chemical Complementation 

Genetic selection systems have proven to be a powerful tool for evaluating 

macromolecular interactions, to include protein-protein, protein-DNA, and protein-small 

molecule interactions.  After our group successfully created a yeast two-hybrid based 

genetic selection system to evaluate protein-small molecule interactions, referred to as 

chemical complementation (CC), we wanted to create an analogous system in bacteria.  

Both CC  and BCC systems exploit the transcriptional activation function of human 

nuclear receptors so to link the survival of cells to the ability of these proteins to bind and 

activate an essential gene in response to a particular small molecule.  Such a system can 

be used as a critical tool in drug discovery, protein and enzyme engineering, as well as  
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      Figure 4.16:  Bacterial Chemical Complementation in High Concentrations of       
                             Proline Enhanced Media 
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many other applications.  Creating an analogous CC system in bacteria has many 

advantages, to include the rapid analysis of large libraries as well as the ability to 

evaluate small molecules not capable of being evaluated in yeast.  Developing BCC has 

shown to produce many challenges, to include high background activity and, more 

importantly, inability to obtain ligand activated growth.   

Although we have to yet to obtain a functional BCC system, we have been 

successful in creating a B2H E. coli strain, capable of being used to evaluate protein-

protein interactions using the Gal4 DBD. Currently B2H strains contain a lambda 

repressor binding domain, as opposed to the GBD, to evaluate protein-protein 

interactions [32, 33, 74].  We have created an alternative B2H strain capable of 

evaluating B2H systems analogous to many Y2H systems using the gal4 DNA binding 

domain.  The strain has currently been tested with the yeast Gal4 (dimerization domain) 

and Gal11p interacting proteins and found to produce activation above background with 

the His3 selective gene (from an OD630 of 0.05 to 0.20). 

4.4  Future of Bacterial Chemical Complementation 

Chemical complementation in bacteria holds great potential as a genetic selection 

tool for drug discovery, protein and enzyme engineering, as well as many other 

applications of biotechnology.  However, currently the system is nonfunctional most 

likely due to problems with heterologous protein expression in E. coli.  Although many 

attempts were made to increase recombinant protein expression, including reducing 

protein sizes and the use of chaperones and osmolytes, to create a functional system, a 

successful technique to improve heterologous protein expression must be developed.  

Such a technique could entail the use of other osmolytes or fusion tags, such as 
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thioredoxin or glutathione-S-transferase (GST).  Once functional, BCC, like yeast CC, 

can be used in protein engineering of nuclear receptors that bind and activate in response 

to specific small molecules, in drug discovery, to screen through libraries of compounds 

that will bind and activate a particular ligand, and in deciphering biosynthetic pathways. 

With the production of an alternative B2H strain, KJIC F’ Gal1p 4RE, we have 

been able to successful observe activation of the selectable marker using two yeast 

proteins previously found to interact, Gal4 and Gal11p, [32, 75, 76].  To prove that the 

strain is capable of evaluating mammalian proteins as well, we also intended to test the 

protein with two known interacting mammalian proteins,   

4.5  Material and Methods 

Bacterial Strains 

E. coli strains, KJIC (F-∆hisB463 ∆[gpt-proAB-arg-lac] XIII zaj::Tn10), and 

KJIC F’ Z321 were a kind gift from Dr. Keith Joung (Massachusetts General 

Hospital/Harvard Medical School).  The KJIC F’ Z321 strain contains the Zif268 binding 

site upstream of the transcription start site of a weak E. coli lac-promoter and controlling 

the HIS3 gene [31, 77].  The KJIC F’ Gal1p 2RE and KJIC F’ Gal1p 4RE strains were 

constructed by conjugating the Gal1p-2RE-Pwk-His3-aadA or Gal1p-4RE-Pwk-His3-

aadA , respectively, construct from pF11-Gal1p-HIS3-aadA into the KJIC strain, via the 

CSH100 strain, using a previously described protocol [77].  The KJIC F’ Gal1p 4RE LX-

S strain was constructed by conjugating the Gal1p-4RE-Pwk-His3-aadA—pUV5-

αRNAP-LX-S construct from pF11-Gal1p-HIS3-aadA---LX S.   

Ligands 
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9 cis-retinoic acid (MW=300.44 g/mol) was purchased from Biomol (Plymouth 

Meeting, PA). Tocopherol (MW=430.69 g/mol) was purchased from Cayman chemicals 

(Ann Arbor, MI).  T0901317 (MW= 481.3 g/mol) was purchased from Cayman 

chemicals (Ann Arbor, Michigan).  17-β-estradiol (MW=272.38 g/mol) was purchased 

MP Biomedicals Inc (Solon, OH). 10 mM stocks of the ligand were dissolved in 80% 

ethanol:20% DMSO (4:1 v/v) and stored at 4ºC.  9cRA was stored protected from light. 

Expression plasmids and Reporter Constructs 

Construction of pBR-GP-Z123, pACL-αGal4, pF11-Z321-HIS3-aadA, pBR-GP-

GBDRXR, pACL-αRNAP ACTR, and pF11-Gal1p-HIS3-aadA were explained 

previously in Chapter 3.  The chaperone plasmid set from Takara Bio Inc was a kind gift 

from Dr. Matsumura (Emory University, Atlanta, Ga).  The pF11-Gal1p-4RE-HIS3-aadA 

plasmid was made exactly like the pF11-Gal1p-2RE-HIS3-aadA plasmid from Chapter 3 

except with 4 Gal4 response elements instead of two. 

To make pBR-GP-GBDRXRLBD, pBR-GP-GBDPXR, and pBR-GP-GBDLXR, 

primers containing a HindIII site at the 5’ end and a AatII site at the 3’ end were designed 

to amplify the respective fusion genes.  The GBDRXRLBD fusion gene (containing 

residues 1-151 of Gal4 and residues 200-462 of RXR) was amplified from the pET28a-

GRL vector (previously constructed in our lab). The GBDPXR and GBDhLXRα fusion 

genes (containing residues 1-151 of Gal4 and the full PXR or hLXRα genes) were 

amplified from pGBDPXR and pGBDhLXRα, respectively, (previously constructed in 

our lab).  Once amplified, the genes were ligated into the pBR-GP-Z123-HindIII vector 

using the HindIII and AatII restriction enzymes.   
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To make pBR-GP-GBDERαLBD, the restriction site NheI was inserted into the 

pBR-GP-GBDRXRLBD vector at the 3’ end of the GBD using site directed mutagenesis.  

Primers containing a NheI site at the 5’ end and a AatII site at the 3’ end were designed 

to amplify the ERaLBD fusion gene (containing residues 295-596 of ERα) from the 

pSG5HEGO vector and ligated into the pBR-GP-Z123-NheI vector using the NheI and 

AatII restriction enzymes. To make pBR-GP-Gal11p:GBD, the restriction site NcoI was 

inserted into the pBR-GP-Z123 vector at the 3’ end of the Gal11p gene (in between the 

fusion of the Gal11p:Z123 fusion gene),  using site directed mutagenesis.  Primers 

containing a NcoI site at the 5’ end and a AatII site at the 3’ end were designed to 

amplify the GBD gene (containing residues 1-151 of Gal4) from the pGBDRXR vector 

(previously constructed in our lab) and ligated into the pBR-GP-Z123-NcoI vector using 

the NcoI and AatII restriction enzymes. 

To make pACL-αRNAP LXXLL ACTR and pACL-αRNAP LXXLL SRC1, 

primers containing a NotI site at the 5’ end and a AvrII site at the 3’ end were designed to 

amplify the LXXLL ACTR fragment (containing residue 594-821 of ACTR) and the 

LXXLL SRC1 fragment (containing residue 594-821 of SRC1) from the pGAD10BA 

ACTR and pGAD10BA SRC1 vectors (previously constructed in our lab), respectively, 

and ligated into the pACL-αGal4 vector using the NotI and AvrII restriction enzymes.  

The make pACL-σ70 LXXLL SRC1, the restriction site, SalI, was inserted into 

the pACL-αRNAP LXXLL SRC1 vector at the 5’ end of the alpha subunit of RNAP, 

using site directed mutagenesis.  Primers containing a SalI site at the 5’ end and a NotI 

site at the 3’ end were designed to amplify the Sigma70 RNAP subunit gene from the 

genome of the E. coli strain, KJIC, and ligated into the pACL-αRNAP LXXLL SRC1 -
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SalI vector using the SalI and NotI restriction enzymes.  To make pACL-αRNAP 

LXXLL SRC1-HA tag and pACL-αGal4-HA tag, the hemaglutinin (HA) tag epitope 

(YPYDVPDYA) was inserted directly after the SRC1 or Gal4 genes, respectively, and 

before the stop via site directed mutagenesis. 

To make pACL-αRNAP mPGC1, primers containing a NotI site at the 5’ end and 

a AvrII site at the 3’ end were designed to amplify the PGC1 gene (from start to stop) 

from the pGAD10BA mPGC1 vector (previously constructed in our lab) and ligate it into 

the pACL-αGal4 vector using the NotI and AvrII restriction enzymes. 

The make the yeast vectors, pGAD10BA- LXXLL ACTR and pGAD10BA- 

LXXLL SRC1, primers containing a BglII site at the 5’ end and a NotI site at the 3’ end 

were designed to amplify the LXXLL ACTR fragment (containing residue 594-821 of 

ACTR) and the LXXLL SRC1 fragment (containing residue 594-821 of SRC1) from the 

pGAD10BA ACTR and pGAD10BA SRC1 vectors (previously constructed in our lab), 

respectively, and ligated into the pGAD10BA ACTR vector using the BglII and NotI 

restriction enzymes. 

To make pF11-Gal1p-HIS3-aadA—LX S, restrictions sites PacI and AatII were 

inserted into the pF11-Gal1p-4RE-HIS3-aadA vector upstream of the Gal1p response 

element, using site directed mutagenesis.  Primers containing a PacI site upstream of the 

pUV5  promoter  and AatII site at the 3’ end  of the LXXLL SRC1 fragment were 

designed to amplify the pUV5-αRNAP-LX-S  fragment from the pACL-αRNAP LXXLL 

SRC1 vector (previously constructed in our lab) and ligated into the pF11-Gal1p-4RE-

HIS3-aadA -PacI/AatII vector using the PacI and AatII restriction enzymes. 
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After digestion and standard ligation, each vector was transformed into 

Zcompetent (Zymo Research, Orange, CA) XL1-Blue cells and selected for growth onto 

LB plates with the appropriate antibiotics (50 mg/ml Ampicillin, 25 µg/ml of 

chloramphenicol, or 30 µg/ml kanamycin, respectively).  The resulting vectors were 

purified using QIAprep Spin Miniprep Kit (Qiagen Inc., Valencia, CA), diagnosed with 

restriction enzymes and sequenced for confirmation.  

Bacterial Selection Protocols 

All BCC systems were tested for ligand activated growth by transforming the 

respective expression plasmids into the respective strains using the protocol described in 

Chapter 3.   

Media 

Luria-Bertani Media (LB) media was made by dissolving 25 g of Luria broth 

powder in 1 L of distilled water. The pH was adjusted to 7.0 with either HCl or NaOH as 

appropriate and sterilize by autoclaving.  M9-His selective media was made according to 

the BacterioMatch® II Two-Hybrid System Vector Kit (Stratagene, La Jolla, CA)) with 

the appropriate ligands (10 µM) and antibiotics (50 mg/ml Ampicillin (Amp), 25 µg/ml 

of chloramphenicol (Chl), and 30 µg/ml kanamycin (Kan)).  Proline enhanced M9-His 

selective media was made by adding 300 mM NaCl and 20 mM proline.  High proline 

concentrated media was made by adding 300 mM NaCl and either 1.5 M or 2 M proline.  

M9-His chaperone media was made by adding 4 mg/ml of L-arabinose and 10 ng/ml of 

tetracycline according to the Takara Bio Inc (Madison, WI).  3-amino-1, 2,4-triazole (3-

AT) was purchased from Sigma (St. Louis, MO), dissolved in water to make 100 mM 

stock solutions, filter sterilized and stored at room temperature.  
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Yeast Transformations and Selective Plates 

Synthetic complete (SC) plates were made as described previously 

[78]. Selective plates were made of SC media minus, either, leucine and tryptophan or 

minus adenine, leucine and tryptophan.  10 µM 9cRA was added to the plates after the 

media was cooled to about 50 °C. pGBDRXR and either pGAD10BA ACTR , 

pGAD10BA SRC1, pGAD10BA- LXXLL ACTR, or pGAD10BA- LXXLL SRC1 were 

introduced into PJ69-4A using the LiAc transformation method [79]. Cells were plated 

onto SC –Leu-Trp plates and restreaked onto SC –Ade-Trp.  Plates were incubated at 30 

°C for three days. 

Overexpressions and Western blots 

Whole cell lysates were prepared by growing the systems in LB media with the 

appropriate ligands overnight.  Cells were washed and re-innoculted into M9-His 

selective media and grown at 37ºC and 300 rpm for 16-24 hrs.  Cells were lysed using 

lysozyme and sonication. Proteins in the whole cell lysates were resolved on SDS 

polyacrylamide gels and transferred to nitrocellulose membranes.  Western blot analyses 

were done using either the antibody for RXR LBD Santa Cruz Biotechnolgoy Inc (Santa 

Cruz, CA) or for the HA tag , from Bethyl Laboratories Inc (Montgomery, TX).  

Immunodetection was done using the ECF Western Blotting Kit (Amersham Biosciences, 

Piscataway, NJ) according to the manufacturer’s instructions. 

4.6  Literature Cited 
 

1. Emami KH & Carey M (1992) A synergistic increase in potency of a 
multimerized VP16 transcriptional activation domain. Embo J 11, 5005-5012. 

2. Sadowski I, Ma J, Triezenberg S & Ptashne M (1988) GAL4-VP16 is an 
unusually potent transcriptional activator. Nature 335, 563-564. 



 106

3. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, 
Cinti S, Lowell B, Scarpulla RC & Spiegelman BM (1999) Mechanisms controlling 
mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. 
Cell 98, 115-124. 

4. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB & Spiegelman BM 
(2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma 
coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 
278, 26597-26603. 

5. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ & Edwards PA (2004) 
Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) 
regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 
18, 157-169. 

6. Vega RB, Huss JM & Kelly DP (2000) The coactivator PGC-1 cooperates with 
peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear 
genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20, 1868-
1876. 

7. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H & Evans RM (2003) 
Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent 
obesity. Cell 113, 159-170. 

8. Bhalla S, Ozalp C, Fang S, Xiang L & Kemper JK (2004) Ligand-activated 
pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator 
PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J 
Biol Chem 279, 45139-45147. 

9. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, 
Tontonoz P, Newgard CB & Spiegelman BM (2005) Hyperlipidemic effects of dietary 
saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120, 261-273. 

10. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP 
& O'Malley BW (1998) The steroid receptor coactivator-1 contains multiple receptor 
interacting and activation domains that cooperatively enhance the activation function 1 
(AF1) and AF2 domains of steroid receptors. J Biol Chem 273, 12101-12108. 

11. Jenster G, Spencer TE, Burcin MM, Tsai SY, Tsai MJ & O'Malley BW (1997) 
Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci U 
S A 94, 7879-7884. 

12. Bannister AJ & Kouzarides T (1996) The CBP co-activator is a histone 
acetyltransferase. Nature 384, 641-643. 

13. Ogryzko VV, Schiltz RL, Russanova V, Howard BH & Nakatani Y (1996) The 
transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-
959. 



 107

14. Heery DM, Kalkhoven E, Hoare S & Parker MG (1997) A signature motif in 
transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733-736. 

15. Henttu PM, Kalkhoven E & Parker MG (1997) AF-2 activity and recruitment of 
steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue 
conserved in nuclear receptors. Mol Cell Biol 17, 1832-1839. 

16. Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C & O'Malley BW (2000) The 
steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for 
normal growth, puberty, female reproductive function, and mammary gland development. 
Proc Natl Acad Sci U S A 97, 6379-6384. 

17. Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE & Robson CN (2001) 
Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J 
Cancer 85, 1928-1936. 

18. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter 
G, Kallioniemi OP, Trent JM & Meltzer PS (1997) AIB1, a steroid receptor coactivator 
amplified in breast and ovarian cancer. Science 277, 965-968. 

19. Xu J & Li Q (2003) Review of the in vivo functions of the p160 steroid receptor 
coactivator family. Mol Endocrinol 17, 1681-1692. 

20. Bramlett KS, Wu Y & Burris TP (2001) Ligands specify coactivator nuclear 
receptor (NR) box affinity for estrogen receptor subtypes. Mol Endocrinol 15, 909-922. 

21. Heery DM, Hoare S, Hussain S, Parker MG & Sheppard H (2001) Core LXXLL 
motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and 
selectivity for steroid and retinoid receptors. J Biol Chem 276, 6695-6702. 

22. Landes N, Pfluger P, Kluth D, Birringer M, Ruhl R, Bol GF, Glatt H & Brigelius-
Flohe R (2003) Vitamin E activates gene expression via the pregnane X receptor. 
Biochem Pharmacol 65, 269-273. 

23. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, 
Thoolen M, Mangelsdorf DJ, Lustig KD & Shan B (2000) Role of LXRs in control of 
lipogenesis. Genes Dev 14, 2831-2838. 

24. Kostelac D, Rechkemmer G & Briviba K (2003) Phytoestrogens modulate 
binding response of estrogen receptors alpha and beta to the estrogen response element. J 
Agric Food Chem 51, 7632-7635. 

25. Teupser D, Kretzschmar D, Tennert C, Burkhardt R, Wilfert W, Fengler D, 
Naumann R, Sippel AE & Thiery J (2008) Effect of macrophage overexpression of 
murine liver X receptor-alpha (LXR-alpha) on atherosclerosis in LDL-receptor deficient 
mice. Arterioscler Thromb Vasc Biol 28, 2009-2015. 



 108

26. Wojcicka G, Jamroz-Wisniewska A, Horoszewicz K & Beltowski J (2007) Liver 
X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid 
metabolism. Postepy Hig Med Dosw (Online) 61, 736-759. 

27. Htun H, Holth LT, Walker D, Davie JR & Hager GL (1999) Direct visualization 
of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution 
of the receptor. Mol Biol Cell 10, 471-486. 

28. Gentry D, Xiao H, Burgess R & Cashel M (1991) The omega subunit of 
Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. 
J Bacteriol 173, 3901-3903. 

29. Heil A & Zillig W (1970) Reconstitution of bacterial DNA-dependent RNA-
polymerase from isolated subunits as a tool for the elucidation of the role of the subunits 
in transcription. FEBS Lett 11, 165-168. 

30. Dove SL, Joung JK & Hochschild A (1997) Activation of prokaryotic 
transcription through arbitrary protein-protein contacts. Nature 386, 627-630. 

31. Joung JK, Ramm EI & Pabo CO (2000) A bacterial two-hybrid selection system 
for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci U S A 97, 
7382-7387. 

32. Dove SL & Hochschild A (1998) Conversion of the omega subunit of Escherichia 
coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev 
12, 745-754. 

33. Dove SL & Hochschild A (2001) Bacterial two-hybrid analysis of interactions 
between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional 
regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. J 
Bacteriol 183, 6413-6421. 

34. Schwimmer LJ (2005) Engineering ligand-receptor pairs for small molecule 
control of transcription. In. 

35. Vaara M (1992) Agents that increase the permeability of the outer membrane. 
Microbiol Rev 56, 395-411. 

36. Weickert MJ, Doherty DH, Best EA & Olins PO (1996) Optimization of 
heterologous protein production in Escherichia coli. Curr Opin Biotechnol 7, 494-499. 

37. Cura V, Gangloff M, Eiler S, Moras D & Ruff M (2008) Cleaved thioredoxin 
fusion protein enables the crystallization of poorly soluble ERalpha in complex with 
synthetic ligands. Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 54-57. 

38. Schoner BE, Bramlett KS, Guo H & Burris TP (2005) Reconstitution of 
functional nuclear receptor proteins using high pressure refolding. Mol Genet Metab 85, 
318-322. 



 109

39. Ohara-Nemoto Y, Stromstedt PE, Dahlman-Wright K, Nemoto T, Gustafsson JA 
& Carlstedt-Duke J (1990) The steroid-binding properties of recombinant glucocorticoid 
receptor: a putative role for heat shock protein hsp90. J Steroid Biochem Mol Biol 37, 
481-490. 

40. Mossakowska DE (1998) Expression of nuclear hormone receptors in Escherichia 
coli. Curr Opin Biotechnol 9, 502-505. 

41. Bourguet W, Ruff M, Bonnier D, Granger F, Boeglin M, Chambon P, Moras D & 
Gronemeyer H (1995) Purification, functional characterization, and crystallization of the 
ligand binding domain of the retinoid X receptor. Protein Expr Purif 6, 604-608. 

42. Leid M (1994) Ligand-induced alteration of the protease sensitivity of retinoid X 
receptor alpha. J Biol Chem 269, 14175-14181. 

43. Li C, Schwabe JW, Banayo E & Evans RM (1997) Coexpression of nuclear 
receptor partners increases their solubility and biological activities. Proc Natl Acad Sci U 
S A 94, 2278-2283. 

44. Chen ZP, Shemshedini L, Durand B, Noy N, Chambon P & Gronemeyer H 
(1994) Pure and functionally homogeneous recombinant retinoid X receptor. J Biol Chem 
269, 25770-25776. 

45. Zhang J (2000) Protein-length distributions for the three domains of life. Trends 
Genet 16, 107-109. 

46. Skovgaard M, Jensen LJ, Brunak S, Ussery D & Krogh A (2001) On the total 
number of genes and their length distribution in complete microbial genomes. Trends 
Genet 17, 425-428. 

47. Collingwood TN, Wagner R, Matthews CH, Clifton-Bligh RJ, Gurnell M, 
Rajanayagam O, Agostini M, Fletterick RJ, Beck-Peccoz P, Reinhardt W, Binder G, 
Ranke MB, Hermus A, Hesch RD, Lazarus J, Newrick P, Parfitt V, Raggatt P, de Zegher 
F & Chatterjee VK (1998) A role for helix 3 of the TRbeta ligand-binding domain in 
coactivator recruitment identified by characterization of a third cluster of mutations in 
resistance to thyroid hormone. Embo J 17, 4760-4770. 

48. Georgiou GV, P (1996) Expression of correctly folded proteins in Escherichia 
coli. Current Opinion in Biotechnology 7, 190-197. 

49. Guise AW, SM; Chaudhun, JB (1996) Protein folding in vivo and renaturation of 
recombinant proteins from inclusion bodies. Molecular Biotechnology 6, 53. 

50. Hockney RC (1994) Recent developments in heterologous protein production in 
Escherichia coli. Trends in Biotechnology 12, 456-463. 



 110

51. Wall JP, A (1995) Effects of overexpressing folding modulators on the in vivo 
folding of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology 6, 
507-516. 

52. Nishihara KM, K; Masanari, K; Hideki, Y; Takashi, Y (1998) Chaperone 
Coexpression Plasmids: Differential and Synergistic Roles of  DnaK-DnaJ-GroE and 
GroEL-GroES in Assisting Folding of an Allergen of Japanese Cedar Pollen, Cryj2, in E. 
coli. Applied Environmental Microbiology 64, 1694-1699. 

53. Nishihara KM, K; Hideki, Y; Takashi, Y (2000) Overexpression of Trigger Factor 
Prevents Aggregation of Recombinant Proteins in E. coli. Applied Environmental 
Microbiology 66, 884-889. 

54. Thomas JG, Ayling A & Baneyx F (1997) Molecular chaperones, folding 
catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to 
refold. Appl Biochem Biotechnol 66, 197-238. 

55. Wall JG & Pluckthun A (1995) Effects of overexpressing folding modulators on 
the in vivo folding of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6, 
507-516. 

56. Hesterkamp T, Hauser S, Lutcke H & Bukau B (1996) Escherichia coli trigger 
factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl 
Acad Sci U S A 93, 4437-4441. 

57. Valent QA, Kendall DA, High S, Kusters R, Oudega B & Luirink J (1995) Early 
events in preprotein recognition in E. coli: interaction of SRP and trigger factor with 
nascent polypeptides. EMBO J 14, 5494-5505. 

58. Kandror O, Sherman M, Moerschell R & Goldberg AL (1997) Trigger factor 
associates with GroEL in vivo and promotes its binding to certain polypeptides. J Biol 
Chem 272, 1730-1734. 

59. Street TB, DW; Rose, GD (2006) A molecular mechanism for osmolyte-induced 
protein stability. Proceedings of the National Academy of Science 103, 13997-14002. 

60. Lin TY & Timasheff SN (1994) Why do some organisms use a urea-methylamine 
mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide 
interactions with protein. Biochemistry 33, 12695-12701. 

61. Yancey PH, Clark ME, Hand SC, Bowlus RD & Somero GN (1982) Living with 
water stress: evolution of osmolyte systems. Science 217, 1214-1222. 

62. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting 
cytoprotectants in high osmolarity and other stresses. J Exp Biol 208, 2819-2830. 



 111

63. Record MT, Jr., Courtenay ES, Cayley DS & Guttman HJ (1998) Responses of E. 
coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends 
Biochem Sci 23, 143-148. 

64. Liu XF & Bagchi MK (2004) Recruitment of distinct chromatin-modifying 
complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in 
vivo. J Biol Chem 279, 15050-15058. 

65. Auton M & Bolen DW (2004) Additive transfer free energies of the peptide 
backbone unit that are independent of the model compound and the choice of 
concentration scale. Biochemistry 43, 1329-1342. 

66. Auton M & Bolen DW (2005) Predicting the energetics of osmolyte-induced 
protein folding/unfolding. Proc Natl Acad Sci U S A 102, 15065-15068. 

67. Brown AD & Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role 
of intracellular polyols. J Gen Microbiol 72, 589-591. 

68. Srinivas V & Balasubramanian D (1995) Proline Is a Protein-Compatible 
Hydrotrope. Langmuir 11, 2830-2833. 

69. Bolen DW (2004) Effects of naturally occurring osmolytes on protein stability 
and solubility: issues important in protein crystallization. Methods 34, 312-322. 

70. Bolen DW & Baskakov IV (2001) The osmophobic effect: natural selection of a 
thermodynamic force in protein folding. J Mol Biol 310, 955-963. 

71. Samuel D KT, Jayaraman G, Yang PW, Yu C (1997) Proline is a protein 
solubilizing solute. Biochemistry and Molecular Biology International 41, 235-242. 

72. Ignatova ZG, L (2006) Inhibition of protein aggregation in vitro and in vivo by a 
natural osmoprotectant. Proceedings of the National Academy of Science 103, 13357-
13361. 

73. Samuel D KT, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, 
Wang SL, Hwang KC, Chang DK, Yu C. (2000) Proline inhibits aggregation during 
protein refolding. Protein Science 9, 344-352. 

74. Liu Y, Buck DC & Neve KA (2008) Novel interaction of the dopamine D2 
receptor and the Ca2+ binding protein S100B: role in D2 receptor function. Mol 
Pharmacol 74, 371-378. 

75. Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, 
Ptashne M & Wagner G (2001) Recruitment of the transcriptional machinery through 
GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 15, 
1007-1020. 



 112

76. Farrell S, Simkovich N, Wu Y, Barberis A & Ptashne M (1996) Gene activation 
by recruitment of the RNA polymerase II holoenzyme. Genes Dev 10, 2359-2367. 

77. Whipple FW (1998) Genetic analysis of prokaryotic and eukaryotic DNA-binding 
proteins in Escherichia coli. Nucleic Acids Res 26, 3700-3706. 

78. Frederick M. Ausubel RB, Robert E. Kingston, David D. Moore, J. G. Seidman, 
John A. Smith, Kevin Struhl (1999) Short Protocols in Molecular Biology, 4th edn. 
Wiley John & Sons Inc. 

79. Guthrie C (2002) Guide to Yeast Genetics and Molecular Cell Biology, Part B In 
Methods in Enzymology. Academic Press. 
 



 

113 

CHAPTER 5 

LIGAND-RECEPTOR CHARGE REVERSAL VIA GENETIC  
 

ENGINEERING  
 

5.1  Engineering Nuclear Receptors and Orthogonal Ligand Receptor Pairs 

For decades, both chemical and genetic approaches have been applied to alter 

enzyme-substrate specificities and generate new ligand-receptor pairs [1-11].  Protein-

ligand engineering is a powerful tool for manipulating and studying biological systems.  

Nuclear receptors are excellent protein engineering targets due to their ability to use 

small molecules to conditionally control genes involved in various biological processes 

and diseases [12-15].  Thus, nuclear receptors are commonly engineered to alter their 

ligand-receptor interface to respond to new “unnatural” ligands, allowing control over 

various biological processes [1-11].  These newly reengineered receptors are capable of 

regulating various processes and are used to help develop new molecular tools to 

manipulate and study biological systems [1-11].  In the creation of new receptors with 

unique small molecule selectivities, it is important to also create functionally orthogonal 

ligand receptor pairs (OLRPs) [16]. Functionally OLRPs are those in which the mutant 

receptor is not activated by the natural ligand (or may have some affinity for the natural 

ligand but at concentrations higher than the physiological concentration [9]).  

Additionally functionally orthogonal ligands should have an adequately higher affinity 

for the reengineered receptor over the natural one [1, 6, 11] (Figure 5.1).    This is 

important because the ability for these OLRPs to function independently of the 

endogenous system allows one to specifically control only the genes 
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              Figure 5.1:  Orthogonal Ligand-Receptor Pairs 
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of interest. 

Many approaches have been used to create these orthogonal ligand receptor pairs 

with varying degrees of selectivity (reviewed in [9]) including directed evolution (via 

random mutagenesis) as well as rational design (via site directed mutagenesis).  Rational 

design of proteins based on structure-function relationships between ligands and 

receptors has gained increasing importance because of its potential to provide a general 

method to engineer these ligand-receptor pairs leading to a better understanding of 

protein structure and function [17, 18]. The ability to rationally design a specific protein 

for a specific substrate has obvious applications in medicine and agriculture, however 

doing so is an enormous challenge due to the complexity and poorly understood folding 

and structural aspects of proteins [19].    

Nonetheless, various methods using protein engineering have been developed to 

create such receptors.  One of the most popular methods is to alter the size of the ligand 

binding pockets, otherwise referred to as steric complementation strategy or the bump 

and hole method,  and modifications of this method [20]. This approach involves 

mutating a large amino acid in the binding pocket of the receptor to create a “hole”, 

which is complemented by the addition of a functional group or “bump” on the ligand 

[20].  One major downfall of using bumps and holes is that the modified receptors often 

retain a significant affinity for the wild-type ligand [20]. Although not all applications 

require that the newly engineered receptor not be able to bind the wild-type ligand, these 

receptors cannot be used in applications which require OLRPs.  The majority of 
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reengineered ligand-receptor pairs alter non-polar interactions, which generally result in 

modified receptors still having an affinity for the natural ligand [16].  

With the advancements in molecular modeling and x-ray crystallography as well 

as protein folding and molecular recognition studies [21, 22] the presence of polar 

interactions have been shown to play key roles in ligand-receptor selectivity.  Previous 

researchers have used these interactions to engineer new ligand-receptor pairs by 

reversing hydrogen bonding patterns [7, 11] and manipulated charged interactions, 

including ion pair neutralization, introducing new ion pairs, polar group exchange, and 

ion pair or charge reversal of various proteins (reviewed in [9]).  As a result, OLRP 

reengineering of polar interactions has enabled discrimination between natural and 

engineered “unnatural” ligands [8, 11, 23, 24]. Hwang and colleagues and Tedesco and 

colleagues, manipulated the hydrogen bonding interaction between the ligand and 

receptor to create OLRPs with GTPases and estrogen receptor alpha, respectively, to 

accept new ligands and discriminate against their natural ligands [7, 25].  Peet and 

coworkers  have also altered hydrophobic interactions in the binding pocket of the 

nuclear receptor, retinoid X receptor, to create a mutant that does not activate by wild-

type ligand, 9cRA, but does activate by the synthetic compound LG335 [5].   

Koh and colleagues have engineered OLRPs using a rational design strategy, 

called “polar exchange” [8-11, 18].  This involves replacing intra-molecular salt bridges 

with inter-molecular salt bridges between the ligand and receptor.  Thus, a carboxylate 

group was removed from the Glu353 residue of estrogen receptor and replacing it with a 

carboxyl group on the ligand.  This interaction retains a network of polar interactions 

similar to the native complex and differs in the covalent connectivity of key polar 
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functional groups [11].  In addition to polar exchange, the Koh group has also attempted 

to use charge reversal techniques to create OLRPs.  A S298D mutation in the retinoic 

acid receptor gamma (RARγ)  was made to change the specificity of the ligand from the 

negatively charged all trans-retinoic acid (atRA) to a positively charged retinol derivative 

[10]. However, the transcriptional activation by this variant was greatly reduced in 

comparison to wild-type RAR- atRA activation [10].  Charge reversal could potentially 

be an excellent method for protein engineering to develop OLRPs.  Charge reversal can 

exploit orthogonality in that the opposite charges engineered into the receptor makes 

binding to the natural ligand unfavorable.     

5.2  Motivation for Engineering Ligand-Receptor Charge Reversal 

The ability to rationally design a specific protein for a specific substrate has 

obvious applications in medicine and agriculture, including drug discovery and the 

production of genetically modified foods that resist pest and bacterial infection [26]. The 

complexity of proteins makes their engineering challenging, specifically due to the 

complex effects that combinations of binding forces, including electrostatic, steric, and 

hydrophobic effects, have on proteins structure and function [19].  Nonetheless, protein 

engineering of NRs can not only help to produce OLRPs for applications in medicine and 

agriculture, but also leads to a better understanding of protein function and structure 

because the mutational analysis helps to investigate the stability and tolerability of 

mutations.  By mutating the residues within the ligand binding pocket of nuclear 

receptors, we can investigate changes in both function and structure.  As mentioned 

previously, polar interactions play key roles in ligand-receptor selectivity and 
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reengineering of polar interactions, specifically via a charge reversal method, can enabled 

discrimination between natural and engineered “unnatural” ligands. 

Previous attempts at protein engineering using charge reversal include that of 

Kirsch and coworkers, who engineered an aspartate aminotransferase to accept arginine 

instead of its natural ligand, aspartate.  However, they were unable to produce a protein-

ligand pair that exhibited wild-type levels of activity [24].  Additionally, as mentioned 

previously, Koh and colleagues were able to engineer the retinoic acid receptor gamma, 

RARγ, charge reversal mutant, (S289D), to bind a positively charged guanidine retinoid.  

However, this variant yielded a modest 3-fold induction of a luciferase reporter in Hela 

cells [10]. A drawback to reengineering ligand-receptor recognition by charge reversal, as 

shown in the two examples above, is that the newly engineered pairs have markedly 

lower potencies and selectivities in comparison to the original pair [10, 24, 27-29].  

Hwang and Warshel suggest that charge reversal will never produce variants that have 

wild-type-like activity because these wild-type ligand-receptor interactions are stabilized 

by more than the amino acids in the immediate vicinity of the salt bridge. Altering only 

local residues leaves these other interactions intact and does not contribute additional 

stability to the reversed salt bridge [30].  In other words the active site environment 

designed by nature to stabilize the wild-type ion pair is not optimized for the reverse pair.   

Prior ion pair reversals involved altering a single residue in the binding pocket 

known to interact with the ligand [10, 24]. According to Hwang and Warshel, the overall 

potential of the pocket still favored the wild-type protein-substrate pairing, resulting in 

new protein-substrate pairs with lower potencies than wild-type.  An alternative approach 

to engineering OLRPs via charge reversal so to create ligand-receptor pairs with 
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selectivities comparable to the natural pair would be to design a favorable polarized 

environment around a charge reversal ligand-receptor pair as opposed to a single charge 

reversal residue-ligand contact. With this notion, and the information on ligand-receptor 

binding interactions often obtained from crystallographic structures, a favorable polarized 

environment around a charge reversal ligand-receptor pair can be created by changing 

multiple polar residues in the binding pocket that interact with and stabilize the ligand.  

Estell and colleagues engineered double mutants of subtilisin that interact with 

peptide substrates with charges opposite of those of the native substrates [31]. Although, 

they changed only two residues to create a more positively charged binding cleft, their 

charge reversal mutant not only had an increased affinity for the negatively charged 

substrate over the natural positively charged substrate but additionally had a potency with 

the new ligand similar to that of the wild-type subtilisin and its natural substrate [31].  

Due to the success of Estell and colleagues with a designed charge reversal variant, we 

created a designed library of retinoic acid receptor alpha (RARα) mutants and selected 

for variants that bind positively charged ligands, as opposed to the natural negatively 

charged ligand, all trans retinoic acid (atRA).  

RAR is a nuclear receptor that regulates embryonic development processes and is 

activated by retinoids like all trans retinoic acid, atRA (explained further in Subchapter 

5.3).  The crystal structure for RARγ and atRA was solved by Renaud and coworkers 

[32] which not only suggested an electrostatic guidance mechanism for ligand binding 

but also revealed the residues, specifically polar residues, involved in the ligand binding 

interactions between RARγ, and other isotypes of RAR, and atRA (which are needed to 

engineer charge reversal variants).   Resultantly, RAR is a great model to design an 
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effective charge reversal protein engineering method to create OLPRs, evaluate receptor 

structure and function, and to evaluate whether this method is consistent with Warshel’s 

hypothesis. 

5.3  Retinoic Acid Receptor 

Biologically active vitamin A metabolites, also known as retinoids regulate a 

variety of essential biological processes, to include cell development, differentiation, 

homoeostasis, and apoptosis, as well as their disorders [12, 33-35]. These compounds, 

such as atRA and 9-cis retinoic acid (9cRA), exert their pleiotropic effects through two 

families of nuclear receptors, the retinoid X receptors (RXR) (explained in Chapter 1) 

and the retinoic acid receptors (RAR).  RAR functions as a ligand dependent transcription 

factor by heterodimerizing with RXR.   RAR-RXR heterodimers work in the same 

manner as other type II nuclear receptors (NRs) [36].  In the absence of ligand, or in 

presence of an antagonist, RAR-RXR heterodimers recruit corepressors, NcoR and 

SMRT, and histone deacetylases (HDACs), which lead to inactive and condensed 

chromatin, preventing transcription.  Once an agonist ligand has bound, the NRs undergo 

a conformational change, releasing corepressors and recruiting coactivator proteins and 

histone acetyltransferases, leading to active expanded chromatin, and activating 

transcription [36-41].  Generally, RAR is considered a non-permissive RXR 

heterodimerization partner, in which RXRs are unable to be activated by agonists in the 

absence of RAR bound ligands [42].   

RAR has three isoforms, α, β, and γ and is activated by both all trans retinoic acid 

and 9-cis retinoic acid.  The DNA binding domain (DBD) as well as the ligand binding 

domain (LBD) of all three RAR isotypes are highly conserved within a given species, 
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94% - 97% and 84% – 90%, respectively.  Evidence that RAR isotypes have distinct 

physiological functions came from the observation that RARα is found to be present in 

most tissues, where as RARs β, and γ, are more selective [45].  

The crystal structure for RARγ and atRA, solved by Renaud and coworkers [32], 

revealed several key residues involved in the ligand binding interactions between RARγ 

and atRA.  One particular feature of this receptor is the electrostatic guidance mechanism 

for ligand binding.  The elucidation of this crystal structure also revealed what Renaud 

called a “mouse trap” mechanism in which ligand binding induces a conformation change 

within the receptor that repositions the α-helix 12, also referred to as the AF-2 domain, 

forming a transcriptionally active receptor (Figure 5.2A). These crystallographic studies 

revealed that the negatively charged carboxylate of atRA is stabilized by the positive 

potential at the surface of RARγ’s binding pocket. Residues K236, R278, and S289 in the 

binding pocket were found to anchor the carboxylate of atRA [32].  A cluster of 

positively charged residues, (K229, K236, K240, R274 and R278) near or at the surface 

of helices 3 and 5 (H3 and H5, respectively) also stabilizes the carboxylate (Figure 5.2B).  

K264 is at the entrance of the ligand binding cavity, and is proposed to attract atRA out 

of solution and guide it to the binding site.  Once ligand is bound, K264 also forms salt 

bridges with E414 and E417 to anchor H12, the AF-2 domain, and seal the cavity [32]. 

The results of this crystallographic study revealed positively charged residues 

involved in the ligand binding interactions between RARγ and atRA that work to 

stabilize this interaction.  Basic amino acids, such as arginine and lysine, have been found 

to be involved in retinoid ligand binding in various isotypes of the retinoic acid receptors 

[32, 46-48].  The residues in RARγ’s binding pocket that were found to anchor and  
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 Figure 5.2:  Crystal Structures of RARγ and RARα. (A) PDB rendering based on 2LBD      
 [32] with transcriptionally active position of the AF-2 domain of RARγ (B) Positively    
 charged residues in the binding pocket of RARγ, surrounding the carboxylate of atRA   
 (C) Overlay of RARγ (red) and α (green) (D) Overlay of Positively charged residues of   
 RARγ and α.  
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stabilize the carboxylate of atRA [32] are conserved in all three isotypes of the retinoic 

acid receptors [48].  Because of the implication of RARα in diseases [49-51] and the 

similarities in structure between RARγ and α (Figure 5.2 C & D) we chose RARα to 

investigate charge reversal engineering.  We created a library of RARα charge reversal 

mutants based on the RARγ residues found to be involved in producing the positive 

potential involved in stabilizing the natural negatively charged atRA ligand.  The 

remainder of this chapter will focus on the library design and results of charge reversal as 

a protein engineering method to investigate protein structure and function, and to 

possibly create OLRPs. 

5.4  Results of Ligand-Receptor Charge Reversal 

5.4.1  Design of Engineered Receptor Library for Charge Reversal 

With the high resolution crystal structure available for RARγ, giving insight into 

the residues involved in ligand binding and the use of substituted side chain atoms as 

opposed to backbone atoms that define the binding site, we chose RARα to design an 

effective charge reversal protein engineering method to evaluate protein structure and 

function.   To create our charge reversal ligand-receptor pair, we created a “positive 

potential” library of RARα variants based on the crystallographic data of RARγ bound to 

atRA.  This library consisted of single, double, triple, quadruple, and quintuple charge 

reversal mutants intended to bind positively charged ligands as opposed to the negatively 

charged atRA.  Changing the electrostatic potential and the charge of the binding pocket 

used to stabilize atRA, allows for the reversal of RARα’s binding pocket from an overall 

positive environment to a negative environment possibly creating a new positively 

charged ligand to bind more favorably than atRA.  Changing the overall charge 
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environment of the binding pocket, should in turn create a ligand-receptor charge reversal 

pair functionally comparable to RARα-wt and atRA.   

The charges of four basic residues (K229, K236, R274, and R278) and one neutral 

residue (S289) in the RARα binding pocket (residue numbering based on RARγ), were 

modified due to their ability to stabilize atRA directly or attribute to the positive 

environment involved in stabilizing the negatively charged ligand [32].  As mentioned 

previously, the K236, R278, and S289 residues have all been shown to be directly 

involved in anchoring the carboxylate of atRA.  Both R278 and K236 anchor the 

carboxylate of atRA by forming salt bridges, while the S289 residue forms hydrogen 

bonds with the carboxylate.  R278 not only forms a weak salt bridge with the carboxylate 

but also contributes to the hydrogen bonding network that anchors the carboxylate.  The 

K229 and R274 residues chosen do not directly interact with the carboxylate of atRA, but 

are suggested to be a part of the cluster of positively charged residues near the surface of 

the binding pocket involved in the stability and electrostatic guidance of the ligand [32]. 

Previous results which modified the corresponding murine RAR residue K229 to an 

alanine, reduced atRA affinity [46], suggesting that although this residue does not make 

direct contact with the ligand it does stabilize the ligand by maintaining a positive 

potential in the binding pocket. 

Site directed mutagenesis was used to modify the four charged residues to a 

glutamic acid (E) and S289 was modified to an aspartic acid (D).  We hypothesized that 

mutating at least two or more of these sites to negatively charged aspartic acids or 

glutamic acids will alter the overall potential of the binding pocket to allow positively 

charged ligands to bind and activate RARα.  Single, double, triple, quadruple, and 
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quintuple mutants were constructed via site directed mutagenesis and confirmed by 

sequencing (Table 5.1).  Five all trans retinoid based neutral and positively charged 

ligands were synthesized (courtesy of Dr. Stephan France, Georgia Institute of 

Technology, GA).  These ligands included two amides, an ethyl amide retinoid (EthAmD 

RA) and a dimethyl amide retinoid (DiAmD RA), and three amines, a dimethyl amine 

retinoid (DiAmN RA), an ethyl amine retinoid (EthAmN RA), and a triethoxysilane 

amine retinoid (SiOEth RA)  (Figure 5.3) [10].  Once synthesized, the variants and 

ligands were tested in yeast using chemical complementation to determine their activities. 

The hypothesis is that the positively charged amine compounds will have a decreased 

affinity for atRA and that the variants will have a higher affinity for the amine ligands. 

As mentioned in Chapter 2, CC is a generalizable selection systems in S. 

cerevisiae used as a tool for investigating protein-small molecule interactions [52, 53].  

This system uses genetic selection to link the survival of a yeast cell to the presence of a 

small molecule able to bind and activate RARα.  The CC system used to test the ability of 

the neutral or positively charged retinoids to activate RARα or its mutants was 

constructed using the following two fusion proteins: The Gal4 DBD is fused to the RARα 

wild-type or mutant ligand binding domains (GBD: RAR) and the human nuclear 

receptor co-activator, ACTR, is fused to the yeast co-activator Gal4’s activation domain, 

GAD (ACTR:GAD).  The GBD binds the Gal4 response element, regulating the 

transcription of the ADE2 gene.  If the ligand of interest is able to bind and activate 

RARα or its mutants, the LBD will undergoes a conformational change, recruiting the co-

activator, ACTR:GAD, fusion protein, and initiating transcription of the ADE2 gene. 

Thus, the yeast cells containing a functional ligand receptor pair survive in media lacking  
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Table 5.1:  Library of Site Directed Charge Reversal Variants 
 
Single 
Mutants 

Double 
Mutants 

Triple Mutants Quadruple Mutants 
 

Quintuple Mutants 

 
R274E 
K236E 
S289D 
R278E 
K229E 
 

 
R274E;K236E 
R274E;S289D 
R274E;R278E 
R274E;K229E 
K236E;S289D 
K236E;R278E 
K236E;K229E 
S289D;R278E 
S289D;K229E 
R278E;K229E 
 

 
R274E;K236E;S289D 
R274E;K236E;R278E 
R274E;K236E;K229E 
R274E;S289D;R278E 
R274E;S289D;K229E 
R274E;R278E;K229E 
K236E;S289D;R278E 
K236E;S289D;K229E 
K236E;R278E;K229E 
S289D;R278E;K229E 
 

 
R274E;K236E;S289D;R278E 
R274E;K236E;S289D;K229E 
R274E;K236E;R278E;K229E 
R274E;S289D;R278E;K229E 
K236E;S289D;R278E;K229E 
 

 
R274E;K236E;S289D;R278E;K229E 
 

 
 

 

 

 

   Figure 5.3:  Retinoid Ligands 
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adenine (Figure 5.4).   

5.4.2  Effects of Amide Based Retinoids on Charge Reversal Mutants 

RARα wild-type (RARwt) and all mutants were tested in CC with atRA, dimethyl 

amide (DiAmD RA), and the ethyl amide (EthAmD RA) retinoids (Table 5.2).    All the 

single mutants, most of the double mutants (except S289D;R278E and R278E;K229E), 

and one of the triple mutants (R274E;K236E;K229E) are activated by the EthAmD RA 

as well as by the natural ligand, atRA.  As shown in Table 5.2, the triple mutant 

R274E;K236E;K229E, activates at atRA concentrations as low as 1 µM, and EtAmD 

concentrations of 10 µM (Figure 5.5A).  The results also show that both the amide 

ligands activate wild-type RARα (Figure 5.5B) and none of the variant-amide ligand-

receptor pairs activate as well as the RAR wt with atRA.  The single variant K236E, 

activates at concentrations as low as 0.1 µM with the EthAmD RA, but RAR wt activates 

with concentrations as low as 0.01 µM with atRA (Figure 5.6).  Despite the fact that the 

fold activation was not as high as RAR wt with atRA, we were able to obtain activation 

with many variants and the amide ligand. 

 All of the quadruple and quintuple mutants, along with the two double mutants,  

S289D;R278E and R278E;K229E,  and the remainder of the triple mutants, are not  

activated by atRA or the amide ligands. However, all of the variants that were functional 

were activated equally by both atRA and  EthAmD RA, with the exception of 4 variants, 

single mutants S289D and R278E, double mutant R274E;K236E, and triple mutant 

R274E;K236E;K229E, which all have higher activation with atRA than the EthAmD 

(Table 5.2).  This inferred that generally, most of these mutations, individually or in 

combination, do not discriminate between the negatively charged ligand and a neutral  
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 Figure 5.4:  Retinoic Acid Receptor α Chemical Complementation 
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Table 5.2: Charge Reversal Variants Activation by Neutral Amide Ligands 
 

 

  
 
 
 
   

++++= activation as low as 0.01 mM 
+++= activation as low as 0.1 mM  
++= activation as low as 1 mM  
+= activation as low as 10 mM  
---=dead 
Blank= not tested 
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ligand.  In accordance with the hypothesis that the variants are intended to reduce the 

overall “positive” potential of the pocket believed to stabilize the negatively charged 

residues, many of our mutants do show a decreased affinity for the negatively charged 

wild-type ligand in comparison to RARwt.  For example, the triple mutant 

R274E;K236E;K229E  has a decreased activity with atRA in comparison to RARwt and 

atRA.  This variant is capable of binding and activating in response to atRA with 

concentrations as low as 1 µM, vs. 0.01 µM with RAR wt (Figure 5.7).   

From the results of this library we have observed that RARα is able to tolerate 

many of the “charge reversal” mutations.  The variants in this library were found to not 

only activate with neutral RA ligands, but many of these variants, although at a lower 

sensitivity as compared to RARwt, also retain activity with the natural negatively charged 

atRA in spite of the disruption of the salt bridges and/or hydrogen bonding between 

residues, K236E, R278E and S289D, and the carboxylate of atRA.   Conversely, the 

double, triple, quadruple, and quintuple variants that are no longer activated by the wild 

type ligand were excellent candidates for creating charge reversal ligand-receptor pairs 

with the positively charge amine based ligands.   

5.4.3  Effects of Amine Based Retinoids on Charge Reversal Mutants 

In addition to testing the neutral amide ligands, RARα wild-type (RAR wt) and all 

variants were tested in CC with the positively charged amine ligands, dimethyl amine 

(DiAmN RA), ethyl amine (EthAmN RA), and the triethoxysilane amine (SiOEth RA) 

(Table 5.3).  As was seen with atRA and the amide ligands, all of the quadruple and 

quintuple mutants were inactive with the amine ligands.  Additionally, all of the single 

mutants and many of the double mutants were activated better by atRA than both the  
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Figure 5.5: (A) Activation of R274E;K236E;K229E Variant with atRA and EthAmD RA 
                    (B) Activation of RARwt with Amide Ligands  
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DiAmN RA and the EthAmN RA.  Interestingly, the single mutant R278E, which is 

activated by atRA, albeit with a lower affinity than RARwt, shows no activation with the 

EthAmN RA (Table 5.3).  According to Renaud and coworkers, the R278 residues is 

oriented to form a weak salt bridge with the atRA ligand, but is also a part of the 

hydrogen bonding network needed to further anchor the carboxylate of atRA (Figure 

5.8A) [32].  The inability of the EthAmN RA to activate the R278E variant may be 

explained by the disruption of this salt bridge and hydrogen bonding network mentioned 

above.  This network is designed to stabilize atRA and when the arginine is modified to a 

glutamic acid, this network is disrupted decreasing the affinity for this mutant with atRA, 

which can be seen when we compare RAR wt to the R278E variant’s activity with atRA 

(Figure 5.8B).  However, the introduction of the glutamic acid alone does not re-establish 

a hydrogen bonding network capable of stabilizing the amine in the positively charged 

ligands.  Resultantly, this variant does not stabilize the positive ligand which can explain 

why no activation is seen with the EthAmN or DiAmN RA.  This hypothesis supports 

Hwang and colleges argument that wild-type ligand-receptor interactions are stabilized 

by more than the amino acids in the immediate vicinity of ligand. Altering only local 

residues leaves these other interactions intact and does not afford additional stability to 

the reversed salt bridge [30].   

Additionally, when comparing the activity of each of the single mutation charge 

reversal variants, we do observe that variants, R278E and S289D, which altered two of 

the carboxylate anchoring residues in RARwt, are less active with atRA than any of the 

other single mutants, confirming that these mutations are more important than the other 

mutations in stabilizing the ligand (Figure 5.9).  Accordingly, the S289D;R278E variant  
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   Figure 5.6: Ligand-Receptor Activation Profiles of K236E-EthAmD RA and RARwt-    
                       atRA 
  

 

 

Figure 5.7:  RARwt and R274E;K236E;K229E Activation with atRA 
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  Table 5.3:  Charge Reversal Variants Activation by Positively Charged Amine Ligands 
 

 
 
 
 
 

++++= activation as low as 0.01 mM 
+++= activation as low as 0.1 mM  
++= activation as low as 1 mM  
+= activation as low as 10 mM  
---=dead 
Blank= not tested 
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shows no ligand induced activation with atRA, inferring that this double mutation variant 
 
does disrupt the interaction with atRA.  However, although these mutations do disrupt the 

atRA-RAR wt interaction, the newly introduced aspartate and glutamate residues, 

respectively, do not work to bind and stabilize the positive amine ligands.  No activation 

has been seen with any variant containing the combination of both of these mutations and 

any ligand.  This combination of mutations may render the mutant completely inactive, 

but may also be a good starting point to introduce a new function into the receptor. 

There were two interesting triple mutants discovered.  The R274E;K236E;S289D variant 

and the K236E;S289D;K229E variant, which are not activated by either the atRA ligand 

or the a neutral amide ligands, but are activated by 10 µM of the positively charged 

EthAmN RA.  Although these variant receptors are orthogonal, binding only the EthAmN 

RA and not atRA, the EthAmN RA is not orthogonal and activates RARwt as well, and 

does so better than with the triple mutants. RARwt activates at concentrations as low as 

0.1 µM with the EthAmN RA, whereas the K236E;S289D;K229E and 

R274E;K236E;S289D variants, only activate at concentrations as low as 10 µM (Figure 

5.10).   

When designing the charge reversal library, we hypothesized that we would be 

able to create an OLRP, in which the charge reversed variants would not only bind the 

amine ligands in place of the natural atRA ligand, but the positively charged amine 

ligands would not activate (or would give very low activation) with RARwt, due to the 

overall charge potential of the binding pocket favoring the negatively charged ligand over 

the positively charged ligand (Figure 5.11).  However, we see a greater activation 

between the EthAmnN RA and RAR wt than with any of the orthogonal triple mutants 
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Figure 5.8:  (A) Stabilization of atRA by Positively Charged Residues in RAR wt 
                    (B) Activation of RARwt and R278E with atRA 
 

E 
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 (Figure 5.11).  To investigate RARwt’s ability to bind the EthAmN RA, we compared 

docking results of the RARwt-atRA and the RAR wt-EthAmn RA ligand-receptor pairs.   

At first inspection of the crystal structure resolved by Renaud and colleagues [32], 

we noted that the K236 residue had two orientations, the “up” confirmation, which 

pointed towards the solvent, and the “down” conformation, which is pointed into the 

binding pocket (Figure 5.12).  According to Renaud and colleagues, the “down” 

conformation of K236 forms salt bridges with the carboxylate of atRA, stabilizing the 

ligand.  As a result, we designed our library with the mutation of this residue based on the 

“down” conformation of the K236.  When docking atRA into both the “up” and “down” 

conformations of RARwt we found that both conformations dock atRA in approximately 

the same orientation (Figure 5.13A).  When in the “down” conformation, K236 forms a 

salt bridge to stabilize the carboxylate of atRA (Figure 5.13B).  However, in the “up” 

conformation K236 does not have any direct contacts with atRA  (Figure 5.13C).   

When docking the EthAmN RA ligand into RARwt in both the “down” and “up” 

conformations of K236, we find that the EthAmN RA docks in almost the same 

orientation with both K236 conformations (Figure 5.14A).  However in the “down” 

conformation, the amine group is oriented down and away from the K236 residue, as not 

to clash with this residue, and there are no polar contacts stabilizing the ligand suggesting 

that it may be unlikely that the ligand would be stable and activate in this conformation 

(Figure 5.14B).  In the “up” conformation of K236, the EthAmN RA orients fairly 

similarly to atRA.  Also in the “up” conformation, although R278 and S289 no longer 

interact with the ligand to stabilize it, there is a hydrogen bond between L233 and the 

EthAmN RA, which helps to stabilize the ligand (Figure 5.14C).  These results suggest  
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   Figure 5.9:  Activation of Single Variants by atRA 
  
 

 
Figure 5.10: Activation of RARwt, R274E;K236E;S289D, and K236E;S289D;K229E    
                       Variants by EthAmN RA 
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that although Renaud and colleagues claim that the K236 residue is oriented in the down 

conformation helping to stabilize the carboxylate of atRA [32], there is a possibility that 

the residue is  pointing “up” and out of the binding pocket, not making direct contact with 

the ligand but possible participating in stabilizing ligand via the cluster of positively 

charged residues surrounding the pocket.  To further validate this claim, all crystal 

structures of RARγ, solved with 9cRA and other agonists, orient K236 in the “up” 

conformation [54-56].   

If the K236 residue was oriented in the “down” conformation as Renaud and 

colleagues first suggested, docking results suggest that the EthAmN RA would not be 

able to activate RARwt.  However, docking results, as well as other crystallographic 

structures of RARγ, show that the “up” conformation of K236 is more feasible and would  

allow the EthAmN to not only bind in place of atRA, but this conformation would allow 

the ligand to make polar contacts with other residues in the binding pocket to increase 

stabilization. The experimental results from evaluating the single variants also support the 

argument that K236 does not directly interact to stabilize atRA.  Single variants, R278E 

and S289D, which are known to directly interact to stabilize atRA, both show a lower 

sensitivity for atRA as compared to the  single variants, R274E and K229E, which do not 

directly interact with atRA.  The K236E variant behaves similar to R274E and K229E 

single variants and not the R278E and S289D, suggesting that this residue is not directly 

involved in stabilizing atRA.  Ultimately we found that while we were able to create 

orthogonal triple mutants with the EthAmn RA, the ligand itself was not orthogonal due 

to its ability to still form polar contacts with other residues in the ligand binding pocket to 

help stabilize it.   
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Figure 5.11:  Positively Charged Potential Surrounding the Carboxylate of atRA. Neutral   
                        resides are shown in green, positively charged residues are shown in blue,    
                        and negatively charged residues are shown in red. 
 
 
 

 
 
Figure 5.12: “Up” and “Down” Conformations of K236 in RARγ  
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Figure 5.13:  Binding of atRA into Binding Pocket of RARwt in “Up” and “Down”     
                        Conformations of K236 
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5.5  Summary  and Future Work of Engineering Ligand-Receptor Charge Reversal 

Although our library of charge reversal RARα variants did not include an OLRP 

or a ligand-receptor pair capable of producing activation potencies equal to or better than 

RARα wt and atRA, the library did allow us to gain insight into the structure and function 

of RARα.  We discovered that the receptor was able to tolerate all the single mutations 

except the R278E mutation. In addition, we found that R278E and S289D were capable 

of decreasing the affinity of the receptor for the wild-type atRA ligand better than 

K236E, K229E, or R274E.  Lastly we noted that two triple variants 

(R274E;K236E;S289D and K236E;S289D;K229E) are capable of shifting the function of 

the receptor to bind the positively charged EthAmN ligand in place of atRA.  Most 

importantly, we discovered that our results are consistent with Warshel’s hypothesis that 

charge reversal is unlikely to be successful due to energetic barriers.   

We are in the process of further characterizing many of the charge reversal 

variants using docking studies, binding assays, and protein.  With this information and 

the experimental data that we have collected, we will have gained insight into both the 

structure and function of RARα and can create variants that better stabilize the positively 

charged ligands, thus possibly creating variants which are capable of better activating 

with positively charged amine ligands.  Additionally, now that we have a better 

understanding of RARwt’s binding pocket we can design positively charged ligands less 

likely to activated the wild-type receptor. 
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Figure 5.14:  Binding of EthAmN RA into Binding Pocket of RARwt in “Up” and   
                       “Down” Conformations of K236 
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5.6  Materials and Methods 

Yeast Strain 

Yeast strain, PJ69-4A (MATa trp1-901 leu2-3, 112 ura3-52 his3-200 gal4∆  

gal80∆ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ), was a kind gift from Dr. 

Philip James and Dr. Elizabeth Craig (University of Wisconsin, Madison) [57].  The 

strain contains the HIS3, ADE2, and lacZ genes under the control of different Gal4  

promoters. 

Ligands 

All trans retinoic acid (MW=300.44 g/mol) was purchased from Biomol Inc 

 (Plymouth Meeting, PA).  The ethyl amide, dimethyl amide, ethyl amine, dimethyl 

amine, and triethoxysilane retinoids were synthesized by Dr. Stefan France (Georgia 

Institute of Technology, Georgia). 10 mM stocks of the ligand were dissolved in 80% 

ethanol:20% DMSO (4:1 v/v) and stored at 4ºC.   

Expression Plasmids and Site-Directed Mutagenesis 

The pGAD10BA ACTR vectors, containing a tryptophan marker, were previously 

constructed in our lab and contain a Gal4AD fused to the full coactivator, ACTR [53, 58].  

To make pGBDRARα, containing a leucine marker,  primers containing a BsmI site at 

the 5’ end and an AflII site at the 3’ end were designed to amplify the LBD of RARα 

(containing residues 180-417 of RARα) from the pCMXRARα vector, a kind gift from 

Dr. Ron Evans (Salk Institute for Biological Studies, CA).  Once amplified, the gene was 

ligated into the pGBDRXR vector using the BsmI and AflII restriction enzymes.  Charge 

reversal mutants were introduced by site-directed mutagenesis using the QuickChange 

Kit (Stratagene, CA). 
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Yeast Transformations and Selective Media and Plates 

Synthetic complete (SC) plates were made as described previously [59]. Selective 

media and plates were made of SC media minus, either, leucine and tryptophan or minus 

adenine, leucine, and tryptophan.  pGBDRARα and pGAD10BA ACTR were introduced  

into PJ69-4A using the LiAc transformation method [60]. Cells were plated onto SC –

Leu-Trp plates and innoculated.   

Yeast Chemical Complementation Growth Assays 

Yeast quantitation assays were performed as previously described [58].  Briefly, 

cells were grown in SC-Ade-Leu-Trp media with the appropriate ligands in of 96-well  

microtiter plate at 30 °C and 150 RPM.  OD630 was measured at t=0, t=24 hours, and t=48 

hours to determine growth in Media lacking adenine.   

Docking 

AutoDock 4.0 [61, 62] was used to dock atRA and EthAmN RA into the binding 

pocket of RARγ.  atRA was removed from the PDB structure and redocked into RAR 

(PDB code 2LBD) [32]. Structure was prepared for Docking using UCSF CHIMERA 

[63] by removing the ligand and water molecules, adding polar hydrogens, and assigning 

Kollman united atom charges. Ligands were created using ChemBioDraw Ultra 11.0 and 

ChemBio3D Ultra 11.0. Then ligands were modified with the  AutoDockTools [62] by 

adding Gasteiger charges. AutoDock4.0 was used to perform docking simulations using 

default parameters. The K236 residues was altered using UCSF CHIMERA [63]. The 

structures with the lowest free energy of binding were analyzed.  
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CHAPTER 6 
 

TAMOXIFEN AND HISTONE DEACETYLASE INHIBTIOR BASED  
 

DUAL INHIBITING COMPOUNDS FOR BREAST CANCER 
 

THERAPUTICS 
 

6.1  Estrogen Receptor and Breast Cancer 

Breast cancer is the most common cancer in women in industrialized countries 

[2].  In the United States 1 in 8  women will develop breast cancer at some stage in their 

lives [3].  The estrogen receptor (ER) is known to play a very crucial role in breast cancer 

[4]. Over 75% of all breast cancer cases are considered ER positive breast cancers, 

characterized by over-expression of the ER, specifically ERα [5].  The over-expression of 

estrogen receptors, which results in an increase in cell proliferation, is proposed to be a 

result of an increase of cell division and DNA replication in mammary cells in the 

presence of estrogen.  These two processes can cause genetic mutations and contribute to 

the development of tumors by disrupting DNA repair, the cell cycle, and apoptosis [4, 6].   

As a result, drugs that affect the function of ERs are of great interest as breast cancer 

therapeutics. 

Estrogen receptors are nuclear hormone receptors that are activated by the 

hormone 17β-estradiol. These receptors are involved in a number of physiological 

processes, including regulation of proliferation and differentiation in reproductive tract 

tissues, the cardiovascular system, mammary glands and many other tissues in the body 

[7-10] (Figure 6.1A).  The estrogen receptor is a member of the type I family of nuclear 

receptors, which are normally located in the cytoplasm and translocated to the nucleus  
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Figure 6.1:  (A) Crystal Structure of Estrogen Receptor Alpha bound to Estradiol and (B)    
                     Estrogen Receptor Agonists  
 
 

 

PDB rendering based on 3ERT [1] 
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upon ligand activation [11] (there are also membrane estrogen receptors (mER) that will 

be discussed briefly later). For nuclear estrogen receptors, this uptake into the nucleus is 

dependent on a nuclear localization signals (NLS) found in the E domain/LBD of the 

receptor [12]. Generally this signal is blocked by heat shock proteins (hsp) that bind the 

receptor until the hormone is present [12]. Once the hormone binds, the receptor 

undergoes a conformational change in its ligand binding domain.  The heat shock 

proteins dissociate, and the hormone bound receptor enters the nucleus where it 

homodimerizes, binds DNA, and activates transcription of a target gene.    

The estrogen receptor has two isoforms, α and β, that are co-expressed in many of 

the same cell lines, and as a result can form heterodimers [13].  Although both ERs are  

widely expressed in different tissue types, there are notable differences between the 

expression patterns of the two.  ERα is found predominantly in breast cancer cells as well 

as the endometrium, hypothalamus, and ovarian cells.  ERβ on the other hand is found 

predominantly in endothelial, brain, heart, kidney, bone, lungs, intestinal, and prostate 

cells.  There are three naturally occurring estrogen ligands in humans known to bind and 

activate ERs, 17-β estradiol, estrone, and estriol.  The natural ligand 17-β estradiol is the 

most potent of these three estrogen compounds and binds both forms of estrogen, α and β, 

with the same affinity [14, 15].  However, other ligands have very different affinities for 

the two receptors.  Estrone (also an estrogen) binds preferentially to ERα.  ERβ binds 

preferentially to estriol (another estrogen) and genistein (an isoflavone derived from 

plants) [14, 15] (Figure 6.1B).   

In addition to the genomic nuclear estrogen receptors described above, it has also 

been discovered that there are membrane estrogen receptors (mERs) which aid in 
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eliciting the regulation of estrogen in a non-genomic, or extranuclear, mechanism [16-

20].  It has also been found that the regulation of estrogen by these mERs can cause cell 

proliferation through rapid signaling of signals such as cAMP and kinase activities [16-

18, 21, 22].   In breast cancer cells, this signaling results in crosstalk between the mERs 

and other proteins, such as the epidermal growth factor receptor (EGFR), which cause 

activation of the kinase cascades [22-24].  According to O’Malley and colleagues, these 

kinase cascades can in turn phosphorylate and activate coactivators in the cytoplasm, 

which then travel to the nucleus and help control nuclear estrogen receptors 

transcriptional regulation [24]. 

Selective estrogen receptor modulators (SERMs) are estrogen receptor ligands 

that have mixed agonist/antagonist functions in various tissue types [25].  These 

molecules regulate ER’s ability to act as a transcriptional activator or repressor in certain 

cell types by promoting the association of the receptor with either coactivator or 

corepressor proteins.  Therefore, the tissue specificity of these compounds may be 

associated with the availability of coregulators in specific tissue.  The ratio of coactivator 

to corepressor protein varies in different tissues [26].  A particular ligand may be an 

agonist in some tissues (where coactivators predominate) and an antagonist in other 

tissues (where corepressors dominate) [26]. An excellent example of a SERM is the 

compound tamoxifen.  Tamoxifen is generally an ER antagonist in breast cells, and is 

therefore used in  breast cancer treatment [4].  However, this compound is an agonist in 

bone tissue and the endometrium, aiding in the prevention of osteoporosis but increasing 

uterine cancer risks [27, 28]. 
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Today, both SERMs and aromatase inhibitors are used to treat breast cancer 

patients with ER-positive breast cancers [29]. The SERM tamoxifen has been used to 

treat breast cancer since the 1970’s.  This compound is the most widely prescribed 

hormonal agent used to treat breast cancer today [30].  Tamoxifen is a synthetic 

nonsteriodal antiestrogen that binds to the estrogen receptor and blocking the effects of 

estrogens, serving as an antagonist (reviewed in Chapter 1).  As a result tamoxifen is 

most effective on estrogen receptor positive breast cancers [30]. Typically, tamoxifen has 

above a 50 percent curative rate for estrogen receptor positive breast cancers in 

postmenopausal women, as opposed to approximately 10 percent or less in those with 

estrogen receptor negative breast cancers [31].  

Tamoxifen effectively inhibits ER positive breast cancers by arresting cells in the 

G0 and G1 phases of the cell cycle. In general, cells in the G0 phase of the cell cycle are 

easily stimulated to drive the cell cycle into the G1 phase by hormones such as estrogen.  

This shift from the G0 phase to the G1 phase is crucial in the control of cell proliferation 

in cancer.  To circumvent this effect tamoxifen reverses the effects of estrogen to 

decrease cell proliferation in breast cancer cells [32].  Tamoxifen prevents pre-cancerous 

cells from dividing but does not cause cell death, making it cytostatic rather than 

cytocidal [33].  Despite its positive effects, tamoxifen has many side effects as a result of 

its SERM activity [34].  Tamoxifen ideally can work as an antagonist in breast cancer 

cells while working as an agonist in other estrogen affected cells, having both good and 

bad effects.  For example, while antagonizing breast cancer cells, tamoxifen’s ability to 

act as an agonist in bone cells allows it to prevent bone loss by inhibiting osteoclasts, 

preventing osteoporosis [35, 36].  Tamoxifen also has the ability to act as a partial agonist 
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in other tissues, specifically the endometrium [34].  As a result, a significant side effect to 

tamoxifen is due to the fact that its SERM activity is linked to endometrial as well as 

uterine cancers in some women. 

In addition to the side effects of tamoxifen, patients treated with tamoxifen for ER 

positive (ER+) breast cancer have been known to develop resistance to tamoxifen therapy. 

Although the majority of breast cancer cases are estrogen receptor positive, there are also 

estrogen receptor negative (ER-)  breast cancers, in which proliferation is not associated 

with over-expression of the estrogen receptor.  In these cases hormone therapy is usually 

not effective resulting in a worse prognosis for patients with ER- breast cancers [37]. As a 

result, many researchers are developing alternative breast cancer therapeutics for both 

ER+ and ER- breast cancer.   

6.2  Motive for Dual Inhibiting Compounds as Breast Cancer Therapeutics 

As mentioned previously, tamoxifen is an effective tool to treat breast cancer. 

Despite its popularity, this small molecule has significant side effects, including 

contributing to endometrial and uterine cancers [34]. In addition, tamoxifen is also not 

very effective against estrogen receptor negative breast cancers, and when used 

therapeutically for up to five years, many previously tamoxifen sensitive breast cancers 

become tamoxifen resistant, thus requiring alternative therapies.  Consequently, new 

therapeutic strategies, such aromatase inhibitors and histone deacetylase inhibitors 

(HDACi) are being developed [38-41].  Aromatase inhibitors block the aromatase 

enzyme CYP19, which converts androgens to estrogens [42].  These inhibitors essentially 

“starve” the estrogen receptors from estrogen activation [41]. Aromatase inhibitors are 
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only used in post-menopausal women, where the major source of estrogen production 

occurs by means of peripheral tissues [29].      

HDAC Inhibitors and Cancer 

HDACi are an emerging class of therapeutics for the treatment of cancer because 

of their ability to arrest the proliferation of nearly all transformed cell types [43-45].  In 

general, HDACi are compounds that interfere with the function of histone deacetylases 

(HDACs).  HDACs, as well as their counterparts, histone acetyltransferases (HATs), aid 

in the control of gene expression by altering the interaction between DNA and histones.  

HATs work to uncoil DNA from histones by adding acetyl groups to their lysines, 

allowing DNA to be accessible to transcription machinery. HDACs coil DNA around 

histones by removing the acetyl groups from lysine residues on histone tails, leading to 

the formation of a condensed and transcriptionally silenced chromatin [46-49].  Although 

transcriptional control is the predominant function of HDACs, they have also been found 

to act on nonhistone substrates as well, including transcription factor and coregulator 

proteins [50].  Altering the acetylation of these proteins would affect both their function 

and stability, ultimately impacting various cell processes, including cell differentiation, 

proliferation, and death.  

HDACs have been found to remove acetyl groups from histones resulting in a 

chromatin conformation that prevents the transcription of genes that encode proteins 

involved in apoptosis [43, 50].  Both natural and synthetic HDACi have been shown to 

induce cell differentiation, apoptosis, and inhibit angiogenesis in many cancer cells [51-

53].  The mechanism by which HDACi promote cell death is complex and has not been 

fully deciphered.  In addition to turning on genes involved in apoptosis, the effects of 
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HDACi may be a result of the influence of HDAC on nonhistone substrates such as 

transcription factors.  Induced acetylation of these nonhistone proteins can ultimately 

result in altered transcriptional activity [45]. 

Various HDACi have been used in clinical trials to treat various cancers, recently 

the FDA approved the HDACi, suberoylanilide hydroxamic acid (SAHA), to treat T cell 

lymphoma [54].   Although these inhibitors alone have shown great promise as cancer 

therapeutics, combination therapy with other anti-cancer drugs seems to be more optimal 

in obtaining desired therapeutic effects.  Preclincal studies have shown that combination 

therapy has the potential to enhance cell death in vitro [55].   

HDAC Inhibitors and Breast Cancer 

To circumvent the decreased effectiveness of tamoxifen on acquired hormone 

resistant breast cancers and ER negative breast cancers, much attention has been directed 

towards HDACi as breast cancer therapeutics with the potential to reverse hormone 

therapy resistance [56].  The use of HDACi (both alone or in combination with other 

anticancer agents) to induce cell death in breast cancer has been previously investigated 

(reviewed in [56]). When tested alone in breast cancer cells, studies have shown that the 

effects of HDACi were reversible upon drug removal and that clinical concentrations of 

the HDACi have very little induction of apoptosis [44].  As a result, it has been suggested 

that HDACi could be more effective when used in combinations with hormone therapy 

[57-60]. 

HDACs are known to interact with ERs at various levels, including involvement 

in the expression of ER itself, in the expression of ER target genes, and in regulation of 

the binding of heatshock proteins to ERs via their acetylation (Figure 6.2).  Researchers 
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Figure 6.2: HDAC inhibitors, Estrogens, and Anti-estrogen effects on Estrogen signaling 
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have shown that HDACi sensitize ER negative breast cancer cells and heightens ER 

positive breast cancer cells to the effects of tamoxifen [57-65].  Kushner and colleagues 

found that the HDACi, trichostatin A (TSA), SAHA, and valproic acid (VPA) inhibit 

proliferation of  the ER α positive breast cancer cell line (MCF-7), in combination with 

10 nM 4-hydroxytamoxifen better than with either agent alone [57].  Jang et al reported 

that in the ER- breast cancer cells, MDA-MB-231, TSA sensitizes the cells to tamoxifen 

possibly by upregulating ER β expression [58]. 

To further enhance the effectiveness of HDACi and tamoxifen based combination 

therapy on breast cancer, it would be beneficial if one could selectively target HDACi 

into breast cancer cells.  Most HDACi, to include SAHA, are considered pan-inhibitors in 

that they non-selectively inhibit class I, II, and IV HDAC enzymes, which includes 11 of 

the 18 known human HDACs found throughout various cells and tissues in the body [44, 

45].  The ability to inhibit such a broad classes of HDACs can produce side effects, such 

as cardiac toxicity [66-69], and reduced potencies with these HDACi. To undertake the 

broad inhibition, we aim to develop a breast cancer therapeutic that will selectively target 

HDACi into breast cancer cells by covalently linking HDACi moieties to SERMs 

moieties.  By creating these dual inhibiting conjugates, we can potentially sequester 

HDACi into breast cancer cells via the binding of the SERM moiety of the conjugates to 

the ERα (since the ERα is present in 75% of breast cancers).  Additionally, because the 

dual inhibiting compounds contain independently anti-proliferative moieties, the SERM 

tamoxifen and an HDACi, these compounds are expected to act across various stages of 

the cancer cell cycle, targeting a larger population of cells, resulting in superior anti-
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proliferative activity in comparison to existing agents.  From these studies, our hypothesis 

is that a single compound that covalently links HDACi-like moieties to tamoxifen, should 

enhance the effectiveness and potency of our dual inhibiting compound in comparison to 

either of these inhibitors administered independently.    The Oyelere lab at Georgia 

Institute of Technology has designed and synthesized dual inhibiting HDACi-SERM 

conjugates that combine tamoxifen based moieties with the HDACi, SAHA, like 

moieties, referred to as DY-001-137, DY-001-138, and DY-001-148.  The remainder of 

this chapter will focus upon the effectiveness of these dual compounds on ERα activity 

and the anti-proliferative effects in ERα positive and negative breast cancer cell lines. 

6.3  Using Chemical Complementation to Assess Activity of Dual Inhibiting 

Compounds towards Estrogen Receptor 

To test whether our dual inhibiting compounds affect the transcriptional activity 

of ER α, the compounds were assayed using chemical complementation (CC).  As 

mentioned in Chapter 2, CC is a generalizable selection system in S. cerevisiae used as a 

tool to investigate protein-small molecule interactions [70, 71].  This system uses genetic 

selection to link the survival of a yeast cell to the presence of a specific small molecule 

via estrogen receptor alpha.  The CC system used here to test the effects of the dual 

inhibiting compounds was constructed using the following two fusion proteins: The Gal4 

DBD (GBD) was fused to the ERα ligand binding domain, ERaLBD, (GBD: ERaLBD) 

and the human nuclear receptor co-activator, ACTR, was fused to the yeast co-activator 

Gal4’s activation domain, GAD (ACTR:GAD).  The GBD binds the Gal4 response 

element, regulating the transcription of the HIS3 gene.  Upon binding of an agonist 

ligand, such as 17-β-estradiol, the LBD of the nuclear receptor undergoes a  
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  Figure 6.3:  Estrogen Receptor Based Chemical Complementation 
 

 

 

       

Figure 6.4:  Dual Inhibiting Compounds and Tamoxifen and SAHA 
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conformational change, recruiting the co-activator, ACTR:GAD, fusion protein. This 

event initiates transcription of the HIS3 gene allowing cells containing this system to 

grow in media lacking histidine (Figure 6.3).  Transcription of the HIS3 gene occurs only 

when an agonist can bind to the nuclear receptor’s LBD and recruits the co-activator 

fusion protein, required to initiate transcription.  Without activation of the nuclear 

receptor with an agonist, no transcription will occur and yeast will not grow in media 

lacking histidine [70, 72]. 

The three dual inhibiting compounds, DY-001-137, DY-001-138, DY-001-148 

(Figure 6.4), were tested in CC for their ability to induce ligand activated growth.  

Results show that while estradiol is capable of inducing ligand activated growth in CC, 

with an half maximal effective concentration (EC50) value of approximately 300 pM, 

none of the dual inhibiting compounds are capable of producing ligand activated growth 

at any ligand concentration (Figure 6.5).  CC can also be used to assess whether the small 

molecule is an agonist or an antagonist.  Since the compounds were found not to be 

agonists of ER α, to assess if the dual inhibiting compounds maintained the antagonist 

activity of tamoxifen, CC was employed using 300 pM 17-β-estradiol, the EC50 

concentration, and various concentrations of the dual inhibiting compounds.  As mention 

earlier, EC50 concentrations of 17-β-estradiol cause transcription of the HIS3 gene, thus 

growth of cells in media lacking histidine.  However, if compounds are antagonist, they 

will be capable of binding and displacing the agonist, 17-β-estradiol, not allowing 

transcription to occur, thus decrease the growth observed as a result of agonist activity 

(Figure 6.6).  In CC, the dual inhibiting compounds were not only capable of displacing  
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Figure 6.5: Growth Dose Responses of Estrogen Receptor alpha with Estradiol, DY-001- 
                    137, DY-001-138, and DY-001-148  
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Figure 6.6:  Estrogen Receptor Antagonist Chemical Complementation  
 

 

Figure 6.7: Inhibition of Estrogen Receptor Alpha by Tamoxifen, DY-001-137, DY-001-
138, and DY-001-148. Results expressed as OD630 and correspond to means and ±S.D. 
of experiments done in triplicate.* P < 0.005 vs. tamoxifen only determined by t-test 
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estradiol, but they also behave as a better antagonist than tamoxifen, beginning to inhibit 

estradiol induced growth with 10 µM and completely decreasing estradiol  

induced growth at 30 µM concentrations as opposed to 100 µM concentrations necessary 

for tamoxifen antagonism (Figure 6.7).  

 To quantify the decrease in ERα transcriptional activity in the presence of these 

compounds, the lacZ gene was utilized in place of the HIS3 gene in CC.  LacZ encodes  

the β-galactosidase (Bgal) enzyme.  When o-nitrophenyl β-D-galactopyranoside (ONPG) 

is added to the media, Bgal catalyzes the conversion of ONPG to galactose, a colorless 

compound, to o-nitrophenol (ONP), a yellow compound.  The amount of ONP produced 

can be measured by determining the absorbance at 405 nm (Figure 6.8).   These results 

correlate with those of the growth assays.  The dual inhibiting compounds display 

antagonist activity at 10 µM, resulting in a decrease in expression of the lacZ gene in the 

presence of 300 pM estradiol from 100% of the maximum response, when no dual 

inhibiting compound is present, to approximately 30% at 10 µM concentrations of the 

compounds..  At 10 µM, tamoxifen does not antagonize the effects of estradiol.  

Tamoxifen requires 30 µM concentrations to begin to antagonize the effects of estradiol 

(Figure 6.9A).  Results with ER β are similar to those seen with ER α (Figure 6.9B).  The 

dual inhibiting compounds are also more potent than tamoxifen with ERα in yeast, 

displaying half maximal inhibitory concentrations (IC50) of 6 µM as opposed to 18 µM 

with tamoxifen. 

6.4  Whole Cell Proliferation Assays in Estrogen Receptor positive and negative cells 

To determine whether the dual inhibiting compounds are able to decrease  
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Figure 6.8: (A) Agonist and (B) Antagonist β-galactosidase Assays using Chemical   
                    Complementation 
 

 

 

 

Figure 6.9: Estrogen Receptor (A) alpha and (B) beta Antagonist β-galactosidase Dose 
Response Curves with Tamoxifen, DY-001-137, DY-001-138, and DY-001-148. Results 
expressed as relative Bgal activities and calculated by setting the activity induced by the 
natural ligand E2 to 100%. Values represent mean ± standard deviation (SD) of 
experiments done in triplicate. *P<0.005 vs. Tam only determined by t-test.  
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proliferation in breast cancer cells, the compounds were tested in the ER α positive and 

negative cell lines, MCF-7 and MDA-MB-231, respectively, for anti-proliferative 

activity. The affinities of the compounds were compared to those of tamoxifen alone, 

SAHA alone, and equal amounts of tamoxifen and SAHA in both cell lines. To assess the 

ability of the each compound to decrease the proliferation of breast cancer cells, cells 

were grown in the presence of  respective compounds and cell viability was evaluated 

using the tetrazolium compound, MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)].  When MTS is introduced 

into the cell media, living cells are able to bioreduce this compound, using NADPH in a 

reaction catalyzed by a dehydrogenase enzymes,  into a soluble colored formazan product 

that can be quantified by taking the absorbance of the solution at 490 nm (Figure 6.10A). 

6.4.1  Effects of Dual Inhibiting Compounds in ER α positive Breast Cancer Cells 

The MCF-7 cells line was derived from a patient with metastatic breast cancer and 

has since been considered a well-characterized ER α positive control cell line useful for 

the study of the role of hormone therapy in breast cancer.  To test the effects of our dual 

inhibiting compounds in the MCF-7 cell line, cells were cultured in 96 well plates for two 

days before adding the dual inhibiting compounds, tamoxifen, or SAHA (at 

concentrations represented in the results).  The cells were treated with each drug for 72 

hours and effects on proliferation were evaluated using the MTS proliferation assay.  

When comparing the anti-proliferative effects of the dual inhibiting compounds, DY-001-

137, DY-001-138, and DY-001-148, to those of tamoxifen, we observed that all dual 

inhibiting compounds are more potent than tamoxifen in MCF-7 cells with  IC50 values of  

17 µM for DY-001-137, 14 µM for DY-001-138, and 7 µM for DY-001-148 compared to  
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Table 6.1: Half Maximal Inhibitory Concentrations (IC50) of Compounds in ER+ and ER-    

                           Cancer Cell Lines               
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Figure 6.10:  Effects of Tamoxifen, DY-001-137, DY-001-138, and DY-001-148 on 
viability of  MCF-7 Cells Using MTS Cell Proliferation Assay. (A) MTS Assay (B) 
Proliferation Dose Response Curves and Proliferation at 10 µM ligand.  Results 
correspond to means and ±S.D. of two to three experiments done in triplicate. * P < 0.005 
vs. Tam alone determined by t-test 
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24 µM for tamoxifen (P ≤ .005) (Table 6.1). In addition to the enhanced potency, we also 

observed that at 10 µM, the dual inhibiting compounds have an enhanced efficacy in 

comparison to tamoxifen.  Tamoxifen does not decrease cell proliferation at this 

concentration, but with DY-001-148 a 60% decrease in cell proliferation was observed, a 

40% decrease was observed with DY-001-138, and a 30% decrease with DY-001-137 

(Figure 6.10B). Furthermore, the DY-001-148 compound is found to have an enhanced 

potency in comparison to SAHA with an IC50 value of 7 µM  with DY-001-148 vs. 17 

µM with SAHA (Table 6.1).  Additionally, at concentrations above 10 µM, DY-001-148 

has better anti-proliferative activity than SAHA, decreasing proliferation by approximately 

95% when using 50 to 100 µM concentrations of DY-001-148, and only by approximately 60% 

when using that same concentration of SAHA (Figure 6.11).  

We also investigated if covalently linking the SAHA-like and tamoxifen-like 

moieties, as seen in the dual inhibiting compounds, was more effective than if we were to 

introduce equal amounts of SAHA and tamoxifen into the cell (not covalently linked).  

We found that at 10 µM, DY-001-148 is two times more potent than adding non-

covalently linked tamoxifen and SAHA and has an enhanced efficacy in comparison to 

non-covalently linked tamoxifen and SAHA, resulting in a IC50 of 7 µM and a 60% 

decrease in cell proliferation with the covalently linked DY-001-148 compound vs. a IC50 

of 14 µM  and a 40% with noncovalently linked tamoxifen and SAHA (P ≤ .005) (Table 

6.1 and Figure 6.12).  DY-001-137 and DY-001-138 show a lower efficacy than when 

adding equal amounts of tamoxifen and SAHA.  This may be a result of the variations in 

the SAHA like moieties of these compounds as compared to SAHA itself (Figure 6.4).   

Whereas, DY-001-137 and DY-001-138 have slight variations in their SAHA-like  
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Figure 6.11:  Proliferation of MCF-7 Cells in the presence of SAHA and DY-001-148. 
(A) Dose Response Curves and (B) Proliferation at 50 µM ligand.  Results correspond to 
means and ±S.E. of two to three experiments done in triplicate. * P < 0.005 vs. SAHA 
alone determined by t-test  

*
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Figure 6.12:  Proliferation of MCF-7 Cells in the presence of DY-001-148 and Equal 
amounts of Tam and SAHA. (A) Dose Response Curves and (B) Proliferation at 10 µM 
ligand.  Results correspond to means and ±S.E. of three experiments done in triplicate. * 
P < 0.005 vs. equal amounts of Tam/SAHA determined by t-test 
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moieties, the SAHA-like moiety in DY-001-148 is actually the same structure as SAHA 

itself.     

6.4.2  Effects of Dual Inhibiting Compounds on the Viability of ERα Negative Breast   

Cancer Cells 

The MDA-MB-231 cell line is a highly invasive breast cancer cell line and is a 

prototype for the study of hormone-independent breast cancer due to its low ER  

expression levels [73].  In MDA-MB-231cells, DY-001-137 and DY-001-138 show 

approximately the same potency as tamoxifen (Table 6.1).  DY-00-148,  IC50 value of 8 

µM, is observed to be more potent than tamoxifen, IC50 value of 24 µM, in MDA-MB-

231 cells (Table 6.1).  Furthermore, as expected, at 10 µM concentrations DY-001-148 

has an enhanced efficacy in comparison to tamoxifen with a decrease in cell proliferation 

of 45% versus no decrease with tamoxifen (Figure 6.13).    

In comparing the three dual inhibiting compounds with SAHA in MDA-MB-231 

cells, both DY-001-137 and DY-001-138 are less potent and have a decreased efficacy in 

comparison to the SAHA, probably due to the difference in the structures of the SAHA 

moieties.  DY-001-148, however, is more potent than SAHA in MDA-MB-231 cells, 

with IC50 values of 8 µM vs. 16 µM, respectively.  Furthermore, at 50 µM concentrations, 

DY-001-148 has an enhanced efficacy as compared to SAHA in these cells, with a 90% 

vs. 70% decrease in cell proliferation (Figure 6.14 & Table 6.1).  When evaluating the 

effects of covalently linking the SAHA-like and tamoxifen-like moieties, in MDA-MB-

231 cells, both DY-001-137 and DY-001-138 are less potent (IC50s of 17 µM and 14 µM, 

respectively) and have a decreased efficacy (15% and 20% decrease in cell proliferation, 

respectively, at 10 µM) in comparison to adding equal amounts of tamoxifen and SAHA  
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Figure 6.13:  Proliferation of MDA-MB-231 Cells in the presence of Tamoxifen, DY-
001-137, DY-001-138, and DY-001-148. (A) Dose Response Curves and (B) 
Proliferation at 10 µM ligand.  Results correspond to means and ±S.D. of two to three 
experiments done in triplicate. * P < 0.005 vs. Tam alone determined by t-test 
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non-covalently linked, (IC50 of 7 µM and 50% decrease in cell proliferation at 10 µM).  

DY-001-148 has roughly the same potency and efficacy as non-covalently linked 

tamoxifen and SAHA (Figure 6.15), indicating that the covalent linkage does not have a 

significant effect on activity in the ER negative breast cancer cell line, MDA-MB-231. 

6.4.3  Conclusions of Effects of Dual Inhibiting Compounds in Breast Cancer Cells     

Whole cell proliferation assays have confirmed that of all the dual inhibiting  

compounds tested, DY-001-148 is the most effective of the compounds and is more  

potent than both tamoxifen alone and SAHA alone in both cell lines.  The enhanced 

efficacy and potency of DY-001-148 in comparison to DY-001-137 and DY-001-138, is 

most likely a result of the SAHA moiety on DY-001-148 being a more effective HDACi 

than the SAHA derivatives in the DY-001-137 and DY-001-138 compounds.  At 10 µM, 

DY-001-148 has an enhanced efficacy in comparison to tamoxifen in both cell lines and 

an enhance efficacy in comparison to SAHA in MCF-7 cells.  All of these results suggest 

that the anti-proliferative effects observed are not a result of one moiety’s activity over 

the other, but both moieties in the compound are responsible for the decrease in 

proliferation observed. DY-001-148 also has an enhanced efficacy in MCF-7 cells in 

comparison to non-covalently linked tamoxifen and SAHA, suggesting that covalently 

linking the two compounds increases its effectiveness in MCF-7 ER+ breast cancer cells. 

The fact that the covalent linkage was found to increase efficacies and potencies in ER+ 

breast cancer cells and not ER- breast cancer cells supports the idea that the tamoxifen 

moiety is sequestering the dual inhibiting compounds into the ER+ cells resultantly 

increasing the effectiveness of the HDACi in these cells.  This phenomenon is most like 

not seen in ER- breast cancer cells because there is not an overexpression of ERα to 
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attract the tamoxifen based moiety that would resultantly sequester the dual inhibiting 

compounds into the cells. 

Interestingly, tamoxifen was found to have the same IC50 values in both MCF-7 

and MDA-MB-231 cells.  The IC50 value we calculated for tamoxifen in MCF-7 cells is 

consistent with that found in literature [74-76].  Generally, MDA-MB-231 cells, are 

supposed to be unresponsive to tamoxifen, however researchers have found that MDA-

MB-231 cells are sensitive to supra-physiological concentrations of tamoxifen [77-79].  

Groleau et al. reported IC50 values for tamoxifen, incubated for 72 hrs, in MCF-7 and 

MDA-MB-231 cells to be 16 µM and 40 µM respectively when using a MTT 

proliferation assay which are comparable to our values [74].   

To support the HDACi activity we observed in proliferation assays, the HDAC 

inhibition activity of the dual inhibiting compounds was tested by the Oyelere lab using 

the Fluor de Lys assay.  The Fluor de Lys assay measures the deacetylation of a substrate 

using fluorescence.  Essentially, if the substrate is deacetylated a substrate fluorophore is 

generated.  The ability of an HDACi to inhibit the deacetylation of the substrate by 

HDACs can be measure as a decrease in fluorescence.  The Oyelere lab found that the 

dual inhibiting compounds do not yield as low a Ki as SAHA but do show HDAC 

inhibition (Ki of DY-001-148 was approximately 350 nM and 57 nM with SAHA, data 

not shown). 

6.5  Summary of Dual Inhibiting Compounds as Breast Cancer Therapeutics 

Several laboratories have reported that varying HDACi enhance the effects of 

tamoxifen in ER+ breast cancer cell lines and sensitize tamoxifen resistant or ER- breast 

cancer cell lines to tamoxifen [57-65]. We hypothesize that the dual inhibiting  
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Figure 6.14:  Proliferation of MDA-MB-231 Cells in the presence of  SAHA, DY-001-
137, DY-001-138, and DY-001-148. (A) Dose Response Curves and (B) Proliferation at 
50 µM ligand.  Results correspond to means and ±S.D. of three experiments done in 
triplicate. * P < 0.005 vs. SAHA only determined by t-test  
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compounds studied, which contain both HDACi-like and SERM-like moieties, could not 

only potentially affect both ER+ and ER- breast cancers, based on previous work done  

with non-covalently linked HDACi and tamoxifen [57-65] but, due to the covalent 

linkage, these compounds could potentially selectively target ER+ breast cancers 

producing an enhanced breast cancer therapeutic than can treat over 70% of all breast 

cancers.  These compounds were found to not only successfully antagonize the effects of 

estrogen receptor and inducing anti-proliferative effects in both ER+ and ER- breast 

cancer cells.  Results with CC show that all three dual inhibiting compounds tested, DY-

001-137, DY-001-138, and DY-001-148, are not only capable of antagonizing the effects 

of estradiol in ER α and β, but are more effective than tamoxifen at doing so.  Whole cell 

proliferation assays corroborate the data obtained in yeast and reveal that we have created 

a single compound, DY-001-148, with anti-proliferative effects in both ER+ and ER- 

breast cancer cells lines and with a higher potency than with either tamoxifen or SAHA 

alone in ER+ cell lines.  We have also established that covalent linkage of SAHA and 

tamoxifen enhances the anti-proliferative effects of this compounds in MCF-7 cells. 

6.6  Future Work 

The dual inhibiting compounds tested serve as a starting point for creating other dual 

inhibiting compounds by covalently linking other HDACi-like moieties, such as 

Trichostatin A (TSA), to other known SERMs, such as raloxifene or ICI 164384.  Lastly, 

it would also be interesting to investigate how the expression levels of proteins known to 

be affected by HDACi, such as p21 and acetylated histones (H3 and H4), are affected by 

the dual inhibiting compounds.  We are also testing the effects of these compounds in non  
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Figure 6.15:  Proliferation of MDA-MB-231 Cells in the presence of DY-001-148 and 
Equal amounts of Tam and SAHA. Results correspond to means and ±S.D. of three 
experiments done in triplicate. * P < 0.005 vs. equal amounts of Tam/SAHA determined 
by t-test 
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ER overexpression cells to determine whether the covalent linkage of the HDACi to 

tamoxifen is truly capable of selectively targeting ER+ cells. 

6.7  Materials and Methods 

Yeast Strain 

Yeast strain, PJ69-4A (MATa trp1-901 leu2-3, 112 ura3-52 his3-200 gal4∆ 

gal80∆ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ), was a kind gift from Dr. 

Philip James and Dr. Elizabeth Craig (University of Wisconsin, Madison) [80].  The 

strain contains the HIS3, ADE2, and lacZ genes each under the control of Gal4 promoter. 

Ligands 

17β-estradiol (MW=272.4 g/mol) was purchased from MP Biomedicals, (Salon, 

OH).  Tamoxifen (MW=371.5 g/mol) was purchased from Sigma-Aldrich (St. Louis, 

MO).  Suberoylanilide hydroxamic acid (SAHA), DY-001-135, DY-001-136, DY-001-

137, DY-001-138, DY-001-148, and AO-002-004 were synthesized by Dr. Oyelere’s Lab 

(Georgia Institute of Technology, Georgia). 10 mM stocks of the ligand were dissolved in 

80% ethanol:20% DMSO (4:1 v/v) and stored at 4ºC.   

Expression Plasmids 

The pGAD10BA ACTR vector, containing a tryptophan marker, were previously 

constructed in our lab and contain a Gal4AD fused to the full coactivator, ACTR [71, 81].  

To make pGBDERαLBD, containing a leucine marker,  primers containing a NheI site at 

the 5’ end and SpeI site at the 3’ end were designed to amplify the ERαLBD fusion gene 

(containing residues 301-595 of ER α) from the pSG5-HEGO vector.  Once amplified, 
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the gene was ligated into the pGBDRXR vector using the NheI and SpeI restriction 

enzymes.   

Yeast Transformations and Selective Media and Plates 

Synthetic complete (SC) plates were made as described previously [82]. Selective 

media and plates were made of SC media minus, either, leucine and tryptophan or minus 

histidine, leucine, and tryptophan.  pGBDERαLBD and either pGAD10BA ACTR , 

pGAD10BA SRC1, or pGAD10BA- mPGC1a were introduced into PJ69-4A using the 

LiAc transformation method [83]. Cells were plated onto SC –Leu-Trp plates and 

innoculated.   

Yeast ER α Agonist and Antagonist Assays 

 Yeast quantitation and β-galactosidase assays were performed as previously 

described [81].  Briefly, in the growth assay, cells were grown in SC-His-Leu-Trp media 

with the appropriate ligands in of 96-well microtiter plate at 30 °C and 150 RPM.  OD630 

was measured at t=0, t=24 hours, and t=48 hours to determine growth in Media lacking 

histidine.  Β-galactosidase assays were performed by growing cells in SC-Leu-Trp media 

with the appropriate ligands in of 96-well microtiter plate at 30 °C and 150 RPM.  OD630 

was measured at t=0, t=24 hours, and t=48 hours.  After 48 hours, cells were lysed, 

ONPG was added, and once media in wells became yellow, OD405 was measured to 

quantify β-galactosidase activity. 

Cell Culture and MTS Cell Proliferation Assay 

MCF-7 and MDA-MB-231 cells were provided by Dr. Al Merrill (Georgia 

Institute of Technology, GA) and were routinely cultured in DMEM (Invitrogen, Grand 

Island, NY) with 10% fetal bovine serum (FBS) (Hycone, Logan, UT) and antibiotics.  
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For all experiments cells were grown in 96-well cell culture treated microtiter plates 

(Corning Inc., Corning, NY) with the appropriate ligand in triplicate for 72 hours.  MTS, 

CellTiter 96 Aqueous One Solution Cell Proliferation Assays (Promega, Madison, WI), 

were performed according to manufacturer’s instructions 
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