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SUMMARY 

The objective of this dissertation is to study the light-matter interaction phenamena at 

nanoscale in the presence of plasmonic nanostructures and metamaterials. Using the 

principles of nano-optics, a range of  plasmonic nanodevices are developped for molecular 

sensing, nonlinear optics and surface plasmon lasing. This theoretical and experimental 

investigation is further extended by studying the effect of plasmon tunneling in sub-

nanometer distances and light-matter interaction in atomically thin semiconductors adjacent 

to plasmonic nanostructures. 

More specifically, chemically synthesized plasmonic nanocube dimers and chains are 

studied for ultrasensitive molecular sensing using the wavelength shift of their localized 

surface plasmon resonance. The effect of interparticle spacing and relative orientation of the 

nanocubes in the nanocube chains has also been analyzed. The band-edge lattice plasmon 

waves in plasmonic nanoantenna arrays have been studied and utilized for surface-enhanced 

Raman spectroscopy. Superchiral spectroscopy at the molecular level is demonstrated using a 

novel three-dimensional chiral metamaterial. Furthermore, surface-enhanced second 

harmonic generation in coupled plasmonic nanostructures that support sharp Fano-type 

resonance features, is studied theoretically and experimentally. Finally, a plasmonic 

nanolaser incorporating a plasmonic nanocavity and a monolayer of transition metal 

dichalcogenide is developed. 
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CHAPTER 1. 

INTRODUCTION 

1.1 Plasmonics and Light-Matter Interaction 

Nearly all optical phenomena can be described as some form of interaction between 

matter and photons with energies in the range of     to      . In bulk materials, these 

interactions can result in many different near-field and far-field effects depending on material 

properties and the frequency of the incoming light. With optical nanostructures, whether 

photonic or plasmonic, the electromagnetic waves can be manipulated in a more 

sophisticated manner to implement functionalities that cannot be achieved in homogenous 

media. For instance, the law of diffraction limit, first formulated by Abbe [1], states that an 

optical beam with the wavelength   propagating in a homogenous medium with the refractive 

index   and converging with an angle  , cannot be confined in a spot with a radius smaller 

than            ⁄  (see Fig.    ). This law defines the resolution limit of the far-field optical 

microscopes, but in near-field scanning optical microscopy (NSOM) [2], this resolution limit 

is lifted using a nanoscale tip that excites and collects the light via evenancemt cooupling. 

The evanescent fields that exist in the near-field of the NSOM tip are not limited by the 

diffraction limit of the propagative waves in far-field microscopy. 

 In the realm of integrated photonics, the cut-off frequency, which is directly related to 

the diffraction limit, determines the minimum feature size of photonic devices, perpendicular 

to the direction of propagation (~    ), including waveguides and resonators (see Fig.    ). 

This is the first advantage of plasmonic nanostructures. Since the surface plasmons are quasi-

two-dimesnional (at the interface between metal and dielectric), it is possible to obtain a 

confined resonant or guided optical mode with much smaller dimensions in plasmonics, 
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enabling the design subwavelength optical devices  such as waveguides, cavities, couplers, 

modulators, etc. As an example, Fig.     shows four silver nanoantenna arrays, each 

containing a large array of plasmonic resonators with dimensions below       . The visible 

colors in this figure are the direct result of resonant optical modes of the nanoantennas that 

are tuned at different wavelengths in the visible range of spectrum. 

Aside from the overall compactness of the plasmonics devices, the sub-wavelength 

dimension of plasmonic elements allows the design of a new class of photonic nano-devices, 

known as plasmonic metamaterials and metasurfaces1. At the core of each plasmonic 

metamaterial or metasurface is a plasmonic subunit known meta-atom, with an optical 

functionality that either not does not exist or is not pronounced in natural materials. Since the 

overall dimensions of the plasmonic meta-atoms are smaller than the operating wavelength, 

the incident light percieves a sufficiently dense 2D or 3D array of these meta-atoms as a 

uniform layer with designer optical properties, such as chirality, negative refraction, 

focalization with ultrathin layer, etc, which cannot be achived with homogenous media. 

The second advantage of the plasmonic nanostructures is their superiour 

electromagnetic field confinement or localization compared to dielectric nanostructures. 

Higher field confinement results in higher energy density or field enhancement in the vicinity 

of plasmonic nanostructures, which is critical in enhancing a host of different optical effects 

arising from light-matter interaction. As an example, plasmonic nanostructures tend to be 

much more responsive to any perturbation in their surrounding enviroment, which can be 

used in high-sensitivity molecular sensing. In molecular sensing based on the measurement 

                                                   
1 There is no universally accepted definition for the term metamaterial. In literature, other types of photonic 

structures composed of dielectrics sub-units or multiple layers of thin films are also categorized as optical 

metamaterials. Here, we are focusing on plasmonic metamaterials. 
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of resonance wavelength (    ) in an optical cavity, which is a perturbation-based sensing 

method, the magnitude of perturbation, i.e.     - shift induced by a molecule is directly 

proportional to the energy density at the point in space where the molecule is located. On the 

other hand, the minimum amount of perturbation that can be resolved by a noise-limited 

measurement system is proportional to its Q-factor 1. Even though, the plasmonic 

nanocavities typically have lower Q-factors compared to their photonic counterparts (due to 

the high absorption of the available plasmonic materials), the much higher enhancement in 

energy density more than compensates for the lower Q-factors. As a result, perturbation-

based plasmonic sensors tend to have higher sensitivities and detection limits compared to 

their photonic counterparts.  

 

Figure 1  - Confinement and light-matter interaction. (a) Airy disk [3] generated by focusing a laser 

beam on a flat surface. The diameter of the smallest disk is        ⁄ ;             being the 

numerical aperture of objective lens used to focus the light. (b) Scanning electron microscope (SEM) 

image of the coupling region between a silicon nitride (     ) micro-resonator and a       

waveguide designed to operate at        . This SEM image shows the typical dimensions of 

dielectric photonic components. (c) Dark-field optical micrograph of nanoantenna arrays with 

                                                   
1 The Q-factor of a resonance is defined as        , where    is the center frequency and    is the 

full-width at half-maximum (FWHM) or the bandwidth of the resonance. 
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varrying lengths, showing different scattering colors which are due to the difference in      of the 

nanoantennas (d) A single atomic layer of      , a two-dimensitonal material that we study in this 

dissertation 

Energy localization is also critical in another class of light-matter interaction effects 

involving generation of light through different optical processes, including spontaneous 

emission, stimulated emission and nonlinear generation of light. For instance, spontaneous 

emission processes, including fluorescence, Raman and photoluminescence, occur at two-

steps: a) the molecule (or atom) absorbs a photon from the incident light and transitions to an 

excited state; b) the excited molecule relaxes to the ground state, and radiates a photon with 

slightly lower energy. Since, both of these two steps scale quadratically with the field 

enhancement, optical resonators can be used to enhance spontaneous emission. The overall 

emission enhancement is relatively modest in the case of dielectric resonators, but significant 

in the case of plasmonic nanocavities (in excess of    ), giving rise to new emission-based 

sensing techniques, such as surface-enhances Raman spectroscopy, which can be performed 

at the molecular level.  

In the case of stimulated emission, the high localization of the energy density not only 

increases the efficiency of the emission process, but can induce an optical effect known as 

population inversion, with much lower excitation power threshold. This is the main premise 

of surface plasmon lasers, also known as spasers [4-6] and is particularly important when the 

gain material1 is geometrically confined in a very small area, e.g. 2D materials with only a 

single (or few layers) of atoms. In general, given the quasi-2D nature of surface plasmons, 

plasmonic nanostructures are a great fit to enhance any type of light-matter interaction in all 

low-dimension materials, including the 2D materials.  

                                                   
1
 The gain material is the medium that undergoes the emission process. 
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A nonlinear optical processes is another example of light-matter interaction processes 

that strongly depend local energy density. Typically, high intensity excitation (or pump) 

lasers are needed to observe most nonlinear phenomena, given small nonlinear susceptibility 

of common materials. In general, there are two routes to reduce the intensity levels needed in 

nonlinear optics: a) utilization of high-Q free-space or intergrated photonic cavities which 

provide many more passes of the pump through the nonlinear medium, b) high localization of 

energy density, which can be achieved in plasmonic nanostructures, for instance. In the case 

of nonlinear optical effects that are bound to the surface, such as surface second harmonic 

generation, the quasi-2D nature of surface plasmons provides an additional advantage similar 

to the case of light-matter interaction in low-dimensional materials. 

 

1.2 Organization of the Thesis 

This thesis is organized in eight chapters. This brief introduction is continued with the 

theoretical background pertinent to plasmonics and light-matter interaction that are used 

throughout the thesis in Ch.  . In particular, some relevant terminology such as plasmon, 

polariton and exciton are defined in this chapter. The conditions for having surface plasmons 

are derived and some of the basic plasmonic elements and their optical properties are 

introduced. Additionally, fundamental optical properties of two-dimensional materials are 

reviewed with a special focus on 2D transition metal dichalocegnides, which we shall see 

again in Ch.  .  

Chapters     are dedicated to the molecular sensing as an important application of 

nanoscale light-matter interaction. In Ch.  , a linear perturbative molecular sensing method is 

discussed based on monitoring the localized surface plasmon resonance wavelength of 
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plasmonic nanocavities, with a particular focus on plasmonic nanocube chains, as an example 

of highly sensitive plasmonic sensors. The optical properties, performance characteristics, 

and sensitivity of this coupled nanocavity system are studied, first in the purely classical case. 

The effect of plasmon tunneling at sub-nanometer gaps is also discussed at the end this 

chapter. In Ch.  , surface-enhanced-Raman spectroscopy is discussed as another sensing 

method based on detecting the Raman fingerprint of the molecules. A novel bilayer 

plasmonic nanostructure is introduced in this chapter, and I explain how lattice plasmons and 

Fano resonance in this system can be utilized for SERS-based sensing. In Ch.  , I focus on 

superchirality and chiroptical spectroscopy, as a linear sensing method extended in the two 

spaces of polarization and wavelength to harvest more data. A new chiral metamaterial 

specifically designed for sensing is introduced in this chapter, and I explain how the on-

resonance chiral interaction between a chiral biomolecule and chiral metamaterial can be 

utilized for sensing. 

Chapters     are dedicated to the application of nano-optics to the light-matter 

interactions involving the generation of light by several different optical and electro-optical 

processes. In Ch.  , I focus on nonlinear plasmonics and discuss plasmonic nanostructures 

that can be used to enhance a host of nonlinear optical processes including high harmonic 

generation and four-wave mixing. The special case of quasi-phase-matching of lattice 

plasmons is discussed in more detail as a means to increase the conversion efficiency in 

surface-second-harmonic generation. In Ch.  , I focus on surface plasmon lasing in two-

dimensional materials. A plasmonic nano-laser is presented that can achieve stimulated 

emission of plasmon-polaritons in a monolayer transition-metal dichalcogenides; a very 

promising class of 2D semiconductors.  
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Finally, in Ch.  , we present a summary of our main contributions and discuss potential 

next steps and new directions that can be undertaken to expand our findings on each topic 

discussed in this dissertation.   
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CHAPTER 2. 

FUNDEMENTAL CONCEPTS AND THEORETICAL 

BACKGROUND 

This chapter is dedeciated to the the review of the theoretical background and 

fundamental concepts of plasmonics and nano-optics, as well as the light-matter interaction 

in 2D materials. In section    , we start by defining plasmon as an important quasiparticle 

that has given its name to field of plasmonics. We continue by deriving the condition for the 

existence of surface plasmons, and their key optical properties and introduce plasmonic 

waveguides and nanocavities as the fundamental building blocks of plasmonic 

nanostructures. Plasmonic material platforms and their most common applications are 

reviewed in section     . In section    , some basics of plasmonic metamaterials are reviewed 

with a special focus on the most recent developments in the field. Finally, the basic properties 

of a few 2D materials of interest in nano-optics and their potential applications are reviewed 

in section    . 

 

2.1 Fundamental Concepts of Plasmonics  

2.1.1 What are Surface Plasmons? 

The first observation of plasmons is believed to be done in early twentieth century by 

Robert Wood, when he saw unusual patterns, when shining a metallic grating with polarized 

light, which is now known as Wood’s anomaly [7]. However, the proper explanation of this 

phenomon took effect decades later, when Pines and Bohn showed that the free electrons in a 

metal can undergo collective oscillations due to Coulomb interaction and this collective 
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oscillation can interact strongly with light [8].  They introduced the concept of plasmon as the 

quanta of  electron oscillation in a free electron gas, such as the one in metals. The name of 

this quasiparticle was chosen due to the resemblance of the electron oscillation in an electron 

gas to the movement of charged particles in a plasma. Later, Ritchie also predicted the 

formation of plasmons at the boundary of metals and dielectrics with much lower energy 

compared to the bulk plasmons [9]. In the field of plasmonics, we usually deal with this type 

of plasmons called surface plasmons, which are confined to the boundary of conductive 

media. Most properties of plasmons and surface plasmons can be described using classical 

electrodynamics. One notable exception is the plasmon tunneling effect, discussed in the next 

chapter. 

Beyond a certain frequency, the electron gas in a conductive medium, can sustain 

charge density oscillations, meaning that the electric charge density      has oscillatory time 

dependence [10] .  From the Maxwell’s equations, the wave equation inside a medium can be 

written as: 

 
       (

 

 
)
 

            (2.1) 

where,   is the angular frequency,      is the electric field,   is the speed of light and      

is the complex dielectric constant or relative permittivity1. The permittivity itself can be 

written in terms of the frequency-dependent conductivity of the medium,     . 

 
        

       

 
 (2.2) 

      
  

     
 (2.3) 

                                                   
1
 Relative permittivity or dielectric constant is the permittivity of the material divided by the permittivity of 

the vacuum; i.e.              . 
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where    
    

 
 is the zero-frequency conductivity from the Drude model, with  ,   and   

being the electron density per unit volume, electron charge and electron mass, and   being the 

electron relaxation time. At high frequencies (optical frequencies for most materials), we 

have     , and thus the Eq.     can be rewritten as: 

        
  

 

  
 (2.4) 

where    √         is the the plasma frequency. From the Eq.    , when      is 

positive (    ), the electric field insides the medium becomes oscillatory, and the 

material becomes transparent. Plasma frequency for most metals is in the ultraviolet range. 

Below   ,      is negative and the electric field inside the medium decays exponentially. At 

this range, coherent oscillation of the electron gas can occur at the boundary of the 

conductive medium, known as surface plasma oscillation, and the surface plasmon is the 

quanta of this oscillation. This is the range that is commonly used in plasmonics, where we 

have surface plasmons propagating across the interface with quasi-2D confinement 

perpendicular to the surface [11]. Plasmons (and surface plasmons) can interact with photons 

and form a new half-light half-matter quasi-particle known as plasmon polariton. Surface 

Plasmon Polaritons (SPPs) in particular can be excited very efficiently using optical beams1. 

Figure     shows a common method for the optical excitation of SPPs using the attenuated 

total reflection of an optical beam and the evanescent fields at the reflection region in a 

dielectric prism, known as Kretschmann-Raether configuration. The dispersion relation for 

the SPPs excited using this method is shown in Fig.    . 

                                                   
1
 Surface-plasmons can also be also excited by electron beams. In fact, electron energy-loss spectroscopy 

has very ofthen used to to study the properties of surface plasmon. In this thesis, however, we focus on the 

optical excitation of surface plasmons. 
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Figure 2  - Excitation of surface plasmons on a thin metallic film. (a) attenuated total reflection in 

Kretschmann-Raether configuration for the excitation of SPPs on a thin metallic film. (b) dispersion 

of SPPs propagating at the interfaces of a thin Au film (      thickness) with air cladding layer and 

      substrate calculated numerically using Finite-Difference Time-Domain (FDTD) method.      

in this figure is the real part of transverse wave-vector,         .  

2.1.2 Surface Plasmon Dispersion Relation 

The thin metal film shown in Fig.     supports two SPP waves; one at the interface of 

the metal and cladding (dielectric medium on top with the permittivity of   ) another at the 

interface of metal and substrate (bottom dielectric with permittivity of   ). The transversal 

and longitudinal electric field of a surface plasmon can be written as: 

 ⃗          ⃗  
                     ⃗  

                     (2.5) 

where  ⃗  
  is the electric field vector at      (   has discontinuity at    ),    and    

being the k-vector in transverse and longitudinal direction and      is the step function. As 

mentioned earlier, the electric field in the longitudinal direction,   , is evanescent (decays 

exponentially in  -direction), which means that    needs to be imaginary. From the 

conservation of energy, we have: 

  (
 

 
)
 

   
                        (2.6) 
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Additionally, from the Maxwell’s equations, the dispersion relation for the plane 

surface of a semi-infinite metal, can be found as: 

    

  
 

    

  

   (2.7) 

By substituting      and      from Eq.     into Eq.    , we can find the parallel  -

vector: 

   (
 

 
)√

    

     

 (2.8) 

Now, assuming real    and complex    (     
    

  ), the real and imaginary parts of 

 -vector can be written as: 

  
  (

 

 
)√

  
   

  
     

 (2.9) 

  
   (

 

 
)√(

  
   

  
    

)

 
  
  

    
   

   (2.10) 

In order for   
  to be real, as it was previously assumed, we must have: 

  
    (2.11) 

   
      (2.12) 

Equations         are the necessary condition for the existance a SPP at the interface 

of two madia.  Finally, by substituting Eq.    , into Eq.    , we can obtain the closed-form 

dispersion relation of     . The most important feaure is the overall trend of dispersion 

curve. At small   
 , the dispersion approaches the light-line for the dielectic medium  , 
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  √   , but it remains on the left side of the light-line, meaning that the SPP is non-

radiative. For large   
 , the dispersion relation approaches the surface plasma frequency,    , 

for the interface between the media   and  , defined as: 

      
  

√    
 (2.13) 

At this limit, we have   
        . As, we approach      , the group velocity1     of 

the      decreases and beyond      , the interface does not support a confined surface-

plasmon. Similarly, we have          √     for the      wave propagating at the 

bottom interface. 

The excitation of SPP waves using Kretschmann-Raether configuration, as shown in 

Fig.    , can be explained using the dispersion relation. Let’s assume an excitation beam 

with frequency    enters the prism and undergoes attenuated total internal reflection. The 

two straight lines shown in Fig.    ,     and    , are the light-lines for the two dielectrics 

with the permittivities    and   . Two SPP modes can also be seen tangent to the     and     

at low values of   
  and approaching       and       at high   

 . These are the numerically 

calculated dispersion relations for the two SPPs propagating at the top and bottom interface 

of the metal,      and     . For an infinitely thick metal, these dispersion relations can be 

found from Eqs.     and    , wheras in a thin film, the coupling between the two SPP waves 

alters the dispersion relations. The impinging light cannot directly excite      at the top 

surface, since there is a momentum mismatch between the momentum of      , at    and the 

momentum of the excitation beam propgating inside bottom dielectric,    (     ). 

                                                   
1
 Group velocity for a propagative wave with the k-vector    is defined as the slope of the dispersion curve; 

i.e.          
 . 
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However, this excitation beam can excite     , as      and     have an intersection at 

        meaning that they are momentum and frequency matched.      is excited indirectly 

using the evanescent coupling between      and     , which does not require momentum 

match, and in fact,      is the dominant mode of the thin film. 

2.1.3 Surface Plasmon Propagation Length and Skin Depth 

As we saw in the derivation of the dispersion relation, the parallel  -vector, for SPP is a 

complex number, and the real part of  -vector,   
 , determines the dispersion relation of the 

SPP. The effect of the imaginary part,   
  , is the attenuation1 of the SPP wave, as it 

propagates along the interface of the conductive medium. In order to quantify this 

attenuation, we define the propagation length,   , as: 

   
 

   
  

 (2.14) 

   can be used as a figure-of-merit to quantify the absorption and radiation loss in any 

plasmonic or photonic waveguide. For the   -air interface,          in visible range 

(        ) and           at NIR (         ). The value of    can be increased 

several folds with better waveguide designs, but the numbers are much smaller than what can 

achieved with dielectric waveguides. Nonetheless, plasmonic waveguides and nanostructures 

are still appealing, as SPPs allow many optical processes to occur within a fraction of their 

  , due to their high energy-confinement and field-enhancement. Confinement or localization 

of electromagnetic fields in plasmonic structures stems from the extremely small skin or 

penetration depth of the SPPs. Using Eqs.     and    , we can find the longitudinal wave 

vectors, at either side of the top interface: 

                                                   
1
 The origin of this attenuation is ohmic loss or absorption of the conductive medium. 
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     √  (
 

 
)
 

   
            (2.15) 

Since, the SPP dispersion is on the left side of the light-line; i.e.      √      , and 

  
   , both      and      are imaginary, leading to evanescent waves in the longitudinal 

direction. Three characteristic wavelengths can be defined for SPPs:  two longitudinal 

wavelengths,      and one transverse wavelength,   :  

   
  

    
    (2.16) 

     
  

|    |
             (2.17) 

At very large      (dispesiona aapproaching    ),    and      are very small. Small    

means that the group velocity    is very small and the SPP wave is quasi-stationary. Small 

     means small skin depth and high electromagnetic field confinement. 

2.1.4 Surface plasmons Group Velocity and Density of States 

Group velocity    and density of states (DOS) are two other useful quantities that help 

us estimate the impact of photonic and plasmonic nanostructure in nanoscale light-matter 

interaction processes. Group velocity is defined as the velocity of a wave packet propagating 

across a medium or nanostructure. Mathematically,    for a wave-packet with wave-vector 

    
  is defined as the slope of the dispersion curve: 

            (2.18) 

This is different from the phase velocity, which is only defined for one frequency 

component; i.e.       , but on a homogenous and non-dispersive medium    and    are 
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equal. A smaller    means that the optical wave propagates with a lower speed across the 

nanostructure, and hence has more time to interact with the material, which often leads to a 

more pronounced light-matter interaction effect. 

Despite all its merits, group velocity has the limitation of only being defined for 

propagative waves. DOS is a more generalized definition that can be used for both 

propagative and resonant modes. DOS at the frequency of   ,      , is defined as the 

number of channels1 (or states) per unit volume per energy interval (or frequency interval) 

available to be occupied by external fields [12,13]:  

      ∑           

   

 (2.19) 

where      is the dispersion relation,   is the band number, and   is the wavevector. Both 

DOS and group velocity are global quantities defined for the photonic bands 2 of a medium or 

nanostructure as a whole. Local density of states (LDOS),      ̅ , on the other hand is a 

local version of DOS defined for every point  ̅ in space, using the following equation: 

         ∑        
            

   

      ∑           

   

 (2.20) 

where          is the amplitude of the eignemode3 at point   . In simple terms, LDOS is a 

measure of spectral density for specific frequencies and specific locations in space. In a 

uniform homogenous medium with the refractive index  , it can be shown that:       ̅  

                                                   
1
 The total number of states occupied by SPPs (or photons) is DOS times the Bose-Einstein distribution 

since SPPs (and photons) are bosons; i.e.               with      [              ]  , where 

   is the Boltzmann constant and   is the temperature . 

2
 DOS can also be defined for a single photonic band, i.e.        ∑            . Hence the total 

DOS is the sum of DOS over all supporting bands of the structure,       ∑        . 

3
 Eigenmodes or simply modes of a medium or structure defined by       are the eigenfunctions of the 

wave equation (Eq.    ) , i.e.                                and ∫               
       . 
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         . It can also be shown that the LDOS of one propagative mode (one 

band),        ̅  is inversely proportional to its group velocity1: 

           ∫
  

   
         

 
 

|   ( ⃗ )|      

  (2.21)  

where        is the energy,  ⃗  is the 3D  -vector,        is the constant-energy (or 

constant frequency) surface of band   in 3D  -space and   
   

( ⃗ )      ( ⃗ )   is the group 

velocity of the band   at the wavevector  ̅. Total LDOS is the sum of    over all supported 

bands, i.e.       ̅  ∑        ̅  . Derivation of the LDOS for most nanostructures of 

interest is rather involved, even for most basic geometries. Figures       illustrate the 

qualitative curves for the dispersion relation and LDOS for the two simple plasmonic 

waveguide and nanocavities, namely metal-dielectric interface [14,15] and a metallic 

nanosphere [15,16]. For most practical nanostructure, the LDOS needs to be calculated 

numerically.  

In the case of a metallic slab of   , similar to a metallic film shown in Fig.    , the 

dispersion curve of the main SPP band (solid red and dashed blue curves), shown in Fig.     

starts tangent to the light-line for small    and reaches a high-energy limit of          for 

high values of   . The optical loss inside the metal results in the appearance of the band 

above    , which is highly radiative (specially the part that is on the left side of light-line) 

and does not have many practical applications. The part of this band that is on the right side 

of the light-line is sometimes called quasi-bound SPP band [17]. As we approach    ,   , 

which is the slope of the dispersion curve, decreases monotonically. In a metal slab, due to 

the geometrical symmetry, LDOS only changes by changing the height  , form the surface of 

                                                   
1
 In 3D  -space, the definition of    in Eq.      should be replaced by   ( ⃗ )    ⃗    ⃗  . 
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the metal. As we see in Fig.    , by increasing the height, LDOS decreases, as we expect. 

Also, since LDOS is inversely proportional to   , its maximum occurs at     . 

Now, let’s consider a simple plasmonic nanocavity: a metallic nanosphere. In a 

confined geometry such as nanosphere, the plasmon oscillates locally around the surface with 

a frequency known as localized surface plasmon resonance (LSPR) frequency. This 

oscillation frequency can be tuned by modifying the size and shape of the nanoparticle. 

Mathematically, the solution of the wave equation for a metallic nanosphere results in the 

quantization of dispersion relation with discrete LSPR modes shown in Fig.    . The 

condition for the existence of SPPs on a spherical surface are given by              

    , where    and    are the permittivity of the plasmonic material and dielectric 

environment [11]. Hence, this condition will only be satisfied for discrete values of   

       and their corresponding    (or   ), e.g. dipole resonance with    , quadruple 

resonance for    , etc. Moreover, for each quantum number  , there are      degenerate 

LSPR modes with eigen-frequency   . Each group of these degenerate LSPR modes results 

in a peak in LDOS curve, as it can be seen in Fig.    . In more complex nanoparticle 

geometries, this degeneracy can be lifted or decreased. 
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Figure 3  - Qualitative representation of dispersion relation and LDOS of an infinite metal slab and a 

metallic nanosphere (image reproduced with permission from Ref. [15]). (a) Energy   vs. in-plane  -

vector    dispersion relation for an infinite metal slab in case of lossless metal (blue curves) and lossy 

metal (red curves). (b) Energy   vs. angular momentum   for lossy metallic nanosphere (c) Energy   

vs. LDOS for the same metallic slab at two different height in air:      (red curve) and       away 

from the metal surface (blue curve). (d) Energy  , vs. LDOS for a metallic nanosphere at two 

different radial distances from the surface in air:      (red curve) and       (blue curve) away 

from the surface. 

2.1.5 Plasmonic Waveguides and Cavities 

Almost all plasmonic and photonic nanostructures are composed of two fundamental 

building blocks: waveguides and cavities (or resonators). Among the quantities introduced so 

far, the propagation length   , and group velocity   , are the two useful figure-of-merits for 

the propagative modes in waveguides. The quality factor   and resonance lifetime   can be 

used for the resonant modes in optical cavities. LDOS is the only quantity that we have seen 

so far, which can be used for either type of structures. However, as we saw in the previous 

section, calculation of LDOS can be quite cumbersome for complex nanoastructures. For 
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most applications, the electric field enhancement factor, defined as       | ⃗     | | ⃗  |, 

where  ⃗      is the electric field vector at location   , and  ⃗   is the electric field of the 

excitation plane wave, can be used as a more intuitive and simple to calculate alternative.  

In general, the values of   and LDOS, in the vicinity of plasmonic nanostructures, 

aremuch higher than their photonic counterparts. On the other hand, photonic structures have 

higher    and  . For instance, Figs.       shows the distribution of   at the cross-section of 

an    slit, as an example of a plasmonic wavguide with large   , and a       slot waveguide, 

which is very often used in sensing applications due to its large field enhancement. The 

maximum value of   is several times larger in    slit, as it can be seen from these figures. 

Figures     shows the distribution of   at a horizontal cross-section of a nanocube dimer, as 

an example of plasmonic nanocavity with large field enhancement. As we can see from this 

figure, the maximum value of   in high electric-field regions, called hotspots, can reach a 

remarkable value of      , which is orders of magnitude higher than the      in the 

vicinity of a photonic resonator, such as the     microdisk shown in Fig.    . On the other 

hand, the practically achieved values of  -factor is between    to     in plasmonic 

nanocavities, but it can be in excess of     in photonic cavities. 
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Figure 4  - Distribution of electric field enhancement factorin a few plasmonic and photonic 

waveguides and resonators of interest. (a) Au slit of       width and        height,      

             (b) SiN slot waveguide, gap size: 40 nm, SiN width (one side): 250 nm, SiN height: 

250 nm,          . (c) (d) SiN microdisk of       radius and        height, first transverse-

electric mode (    ), m-number:    ,               

Energy confinemenet in photonic and plasmonic structures can be quantified using the 

optical mode volume   , defined as: 

   
 

  
   

∫       
     (2.22) 

For waveguides, the integration in Eq.      should be perfomed over the cross-section 

perpendicular to the direction of propagation, and for the resonators, over the entire space.    

is the generalized energy density defined as    
 

 
  (   

  

 
  ) | ⃗ |

 
  for a lossy media 

[18], where      are the real and imaginary part of dielectric constant and   is the damping 

constant from the Drude model and   
    is the maximum of    over the integration space. 

The mode volume in photonic nanostructures is limited by the diffraction limit; i.e.          
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in waveguides and          in resonant cavities, where   is the largest dielectric constant. 

Photonic crystal waveguides and resonators can get very close to this diffraction limit [19]. 

The SPP modes in plasmonic nanostructures can however confine light much below this 

diffraction limit [20]. 

 

2.2 Plasmonic Material Platforms 

As we saw in the previous section, the generation of SPP requires at least one material 

with negative real permittivity,      , which we here call a plasmonic material. A material is 

desirable for plasmonic applications, if it can provide a large propagation length,    and small 

skin depth     . Considering the simple case of the SPP at the interface of thin film with two 

dielectrics considered in previous section, this requires small   
   and large     , according to 

Eqs.     ,     . Large      infers small      according to Eq.     , and hence small    , for a 

fixed frequency  . So overall, we need small   
  and small   

  , which would be possible if, 

   
   is large and   

   is small from Eqs.       .  So, we are searching for a material with small 

  
   to have low ohmic loss, and large    

   to have high field confinement. Unfortunately, 

these two criteria don not occur simultaneously in natural materials. Ultimately, the choice of 

the plasmonic material also depends on application. As a rule of thumb, for near-field light-

matter interaction applications, we can define                   , as the frequency-

dependent figure-of-merit of the material platform [21,22]. In the case of plasmonic 

nanocavities, another important aspect is the tunablity of LSPR resonance. For instance, in 

   nanorods, the LSPR resonance can be easily tuned at wavelengths above       , by 

slightly changing the length. But, due to the large dispersion of       below       , all 

geometrical dimensions need be to scaled down significantly to achieve a high-  LSPR 
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resonance. In practice, the realization of nanoantennas with such small dimensions could be 

difficult with current fabrication technology. In Table  , we have listed the generalized 

Drude parameters of the four most frequently used plasmonic materials:   ,   ,    and   . 

Noble metals (visible and NIR):    and    are by far the most commonly used 

materials in plasmonics in visible and near NIR range.    is also sometimes used as a low-

cost CMOS compatible alternative [23]. In almost the entire visible and NIR range (    to 

    ),    has the lowest loss and the highest   , but unfortunately, it is prone to oxidation, 

especially in thin layers. As a result, for long-term use, plasmonic devices made out of    

need to be covered by a protective layer. This is not desirable in near-field light-matter 

interaction applications, since in SPP waves,   and LDOS both peak at the interface of 

plasmonic material and decay rapidly with the distance. Hence, we most often resort to    in 

these applications, despite its inferior performance compared to   .  

Aluminum (NUV and visible): In near ultraviolet (NUV) and low visible range (    to 

      ),    is a good choice for near-field plasmonics, even though it is even more prone to 

oxidation than    [24-26]. The he most common plasmonic application of    is in high 

chromaticity color filters due its low cost and high tunablity in the visible range [27,28].  

Graphene (MIR): Among the 2D materials, graphene is a good candidate in mid-

infrared (MIR) region (  to      ) [29,30]. This range of spectrum is particularly suited for 

biosensing based on infrared spectroscopy, as the vibrational resonance of most biochemicals 

lie in this range. Therefore, graphene can be used to develop plasmonic biosensors based on 

surface-enhanced infrared absorption (SEIRA) spectroscopy [31,32]. Moreover, the 2D 

electron gas in graphene allows for some interesting properties for the surface plasmons that 
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cannot be found in bulk materials, such as  -polarized SPPs [33], and novel properties with 

potential applications in quantum plasmonics [34-36].  

Table 1 - Generalized Drude parameters for the four most common plasmonic material platforms. 

This model is only valid up to the interband transition limit,        
1
. 

       (eV)   (eV)        (eV) 

   3.7 9.2 0.02 3.9 

   6.9 8.9 0.07 2.3 

   6.7 8.7 0.07 2.1 

   0.7 12.7 0.13 1.41 

Specialized material platforms: Apart from metals highly doped semiconductors with 

an appreciable free carrier concentration, e.g. doped   , can also support SPPs [37]. Even 

though, the    of doped semiconductors is typically low compared to the metals, these 

materials have some niche applications in the MIR range [38-40]. Another alternative 

platform for plasmonics is the class of materials known as “topological isolators”, including 

      ,                      etc. Topological insulators have been intensively studied in the 

recent years, due to ability to support gapless Dirac surface states at the surface that are 

protected from backscattering into bulk via time-reversal symmetry [41]. These metallic 

surface states can also be used for plasmonics in UV, visible and THz range, with some 

evidence that they can even outperform noble metals in certain ranges, which opens the door 

for some novel applications such as plasmonic spintronics [42-44].  

Alternate material platforms: The ohmic loss of common material platforms is one of 

the main obstacles in the field of plasmonics, especially in applications such as optical 

                                                   
1
 This model is the generalized form of the Drude model (Eq.    ) losses due to interband effects [22]: 

          
          , where    is the contribution of interband transition to permittivity, and 

      is the damping constant of the electron gas. 
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interconnects and metamaterials. Theoretically, even though, it is not possible to have a 

material with purely real permittivity at all frequencies (a lossless plasmonic material) due to 

causality, it is possible to have this condition satisified in some frequency ranges. The 

theoretical electronic bandstructure for such as material with no loss due to interband or 

intraband transitions in     
       to      

     energy range is depicted in Fig.   (   in this 

figure the Fermi level) [45]. As a result, there has been a significant effort in developing low-

loss and CMOS compatible material platforms [22,45,46] with some modest level of success. 

The most prominent examples are     [47] with    approaching Au in NIR, but still inferior 

to Ag. Transparent conductive oxides, including Indium Tin Oxide (ITO) and Aluminum 

Zinc Oxide (AZO), are other examples of these newly developed materials [48,49]. ITO, in 

particular, has found niche applications as a plasmonic platform for NIR and MIR range, 

especually appealing due to the possibility of electrical tuning and ultrafast all-optical 

switching [50-53].  

 

Figure 5 - Electronic bandstructure of potential plasmonic material with no interband and intraband 

transition losses. A material with such electronic band-structure can sustain loosless SPPs in the 

energy band between     
       to      

    . 

The quality of material deposition or chemical synthesis also significantly affects the 

optical loss in plasmonic materials. For instance, chemically synthesized single crystalline 

   and    nanoparticles tend to show higher quality factors compared to lithographically 
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fabricated nanoantennas, which are typically polycrystalline. Also, the quality of  electron-

beam deposited   ,   ,    and    films, which are typically used in lithographic fabrication 

of nanoantennas can be easily improved by some optimization during the deposition process 

[54].  

As a final note, the ohmic loss in plasmonic materials can be a desirable effect in 

certain application including, photothermal therapy [55-62], local-heating, electric-plasmonic 

tweezing, heat-assisted optical  or magnetic data recording, photothermal chemical catalysis, 

thermoelectric energy generation, and local self-limited welding [63-65]. 

 

2.3 Basics of Plasmonic Metamaterials 

At the macroscopic level, the optical properties of a linear reciprocal medium is 

governed by three complex and frequency-dependant paramters: permittivity  , permeability 

 , and “bianisotropy”,  . In an anisotropic material, these parpamtera are polarization 

dependant tensors. An example of an anisotropic material is 2D black phosphorus, which we 

will discuss in section    . The electric displacement field  ⃗⃗ , the magnetic flux density  ⃗ , 

electric field  ⃗ , and magnetic field  ⃗⃗ , induced as the result of the light-matter interaction in a 

material can be described by the two following equations [66,67]: 

 ⃗⃗    ̿ ⃗  
 

 
   ̿ ⃗⃗  (2.23) 

 ⃗  
 

 
   ̿  ⃗   ̿  ⃗⃗  (2.24) 

where   is the speed of light and      denotes the transpose operator. Since the 

magnetoelectric effect in most materials in natre is quite weak,  , which is responsible for the 
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cross-coupling between electric and magnetic fields, is often very small. Many biomolecules 

and macromolecules, however, exhibit measurable “chirality”, a special case of bianisotropy, 

which we will discuss in Ch.  , where   is non-negligilble. Valley polarization splitting 

discussed in the next section is also another example of chirality in 2D crystals.  

Setting   aside, if we write the complex permittivity and permeability as           

and          , we can classify materials based on the sign of    and   . In transparent 

dielectrics, we have         . In “electric plasmas”, which occur in non-magnetic metals at 

optical frequencies, we have           . The negative value of    indicates that the 

direction of induced electric field (inside the material) is opposite to the direction of incident 

field. Materials with         , and hence       are called negative-index materials (NIM) 

and are not frequent in nature, but          can be obtained in carefully designed 

metamaterials, leading to exotic properties, such as negative refraction [68-71], and 

backward propagation [72,73]. Finally, in “magnetic plasmas”, also not found in nature at 

optical frequencies, we have           , meaning that the direction of the induced 

magnetic field  (inside the material) is opposite to the direction of incident magnetic field. 

Materials in the first and third category (       ) can sustain propagative waves, whereas 

the electromagnetic fields inside the materials in the second and third category (       ) 

are evanescent. However, propagative surface waves can exist at the boundary of two 

materials from the first and second category (surface plasmons), or two materials from third 

and fourth category. At optical frequencies, the vast majority of materials belong to first and 

second category with       . One primary goal in the design of metamaterials is to reach 

areas of   -   parameter space that are not accessible in natural materials. 
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Additionally, we can categorize materials based on the imaginary parts of permittivity 

and permeability,    and   , or more commonly, based on the imaginary part of refractive 

index   , with      inferring an optical loss and     , an optical gain in an active 

medium1. In Ch.7, we will disucss the application of gain materials for lasing. In the domain 

of metamaterial research, gain materials are sometimes used to overcome the optical loss that 

is one of the primary limitations of plasmonic metamaterials in certain far-field applications  

[74-76]. Another interesting application of gain media is in designing a new class of 

nanostructures where parity-time (PT) symmetry is broken using a tailerd network of gain 

and loss [77,78]. PT-synthetic metamaterials could be used in a range of applications, 

including unidirectional devices or isolaters, shown in Fig.     [79] [80] and single-mode 

lasers [81,82]. 

 The macroscopic description of light-matter interaction that we have discussed so far, 

only provides an insight into the “average” behavior of a medium upon excitation with light. 

At the microscopic level, the light-matter interaction process is more complex and involves 

several consecutive steps. First, the incident light excites atoms (or molecules) inside the 

medium. As a result, electric and magnetic dipoles,    and  ⃗⃗  are created at the location of 

atoms described by: 

    ̿  ⃗⃗  ⃗     ̿  ⃗  (2.25) 

 ⃗⃗     ̿   ⃗   ̿  ⃗   (2.26) 

where  ̿ is electric polarizability,  ̿ is magnetic susceptibility and  ̿ is the mixed electric-

magnetic dipole polarizability. Subsequently, these electric and magnetic dipoles radiate 

                                                   
1
 This simple classical model of a gain medium is not sufficient, for describing many light-matter 

interaction effects in a active media. A quantum model for optical gain is provided in Ch.   to describe 

effects such as spontaneous and stimulated emission. 
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electromagnetic energy with a delay or phase retardation. The overall field inside the medium 

are the net result of radiation from theses dipoles, plus the unabsorbed incident light and is 

not uniform at the atomic scale. However, since at optical frequencies, the wavelength is 

often much larger than the average distance between the atoms and molecules inside the 

medium (     ), the incident light does not experience the non-uniformity of the fields and 

“perceives” the material as a homogenous medium [83].  

The basic idea behind the design of metamaterials for far-field applications is quite 

similar to the process that occurs in natural materials at the microscopic scale. If we can 

design sub-wavelength elements, called “meta-atoms”, with desirable optical properties, and 

repeat these fundamental building blocks with a periodicity that is quite small compared to 

the wavelength of the incident light, at the far-field, the meta-atoms can be modeled by 

effective electric and magnetic dipoles, whose net radiation can result in designer optical 

functionalities that are not accessible with natural materials. It is for this reason that 

metamaterials are traditionally regarded as “artificial materials”, rather than photonic or 

plasmonic devices. However, increasingly the boundary between the metamaterial and 

photonic research is becoming blurred and many metamaterial concepts are being employed 

in the design of novel photonic devices [84].  

Another category of metamerials are designed for near-field applications and change 

the properties of local electromagenetic fields in the vicinity of the nanostructures. Prominent 

examples of this class of metamaterials, which are more pertinent in near-field light-matter 

interaction applications, include hyperbolic metamaterials with hyperbolic or indefinite 

dispersion [47,85], and chiral metamaterials which generate enhanced chiral fields in their 

near-field [86,87]. Hyperbolic metamaterials can be used to modify the LDOS locally for 

applications, including the enhancement of sponstanous emission and decay rate of quantum 
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emittors [88-90] to sub-diffraction-limit imaging [91-93]. Figures       shows two examples 

of hyperbolic metamaterials used for sensing applications [94,95]. Chiral metamaterials are 

discussed in detail in Ch.  .  

 

Figure 6  - Two examples of metamaterials designed for sensing applications. (a) multilayer grating 

coupled hyperbolic metamaterial with integrated microfluidic channel [94], (b) Gold nanorod array 

hyperbolic metamaterial [95] 

Tranditionally, most metamaterials are designed using plasmonic subnits, owing to the 

sub-wavelength nature of plasmonic elements in a 3D configuration. However, despite the 

great promises of 3D plasmonic metamaterials, many of their expected applications, 

particularly their far-field applications, did not materialize for two reasons:  ) the optical loss 

inherenet to plasmonic structures,  ) the difficulties in scaling down the 3D structures to 

operate at optical frequencies [96]. Therefore, two main directions have emerged in 

metamaterial research: metasurfaces (or 2D metamaterials) [97] and dielectric metamaterials 

[98]. Metasurfaces, which can be regarded as the optical analog of 2D materials, can be 

fabricated more easily and typically induce less absorption loss, since they are composed of 

only one interaction layer. Phase gradient metasurfaces are an important sub-category of 

metasurfaces, in which the phase and amplitude of the scattered wavefronts are tailored by 

spatially varying the shape of meta-atoms in a larger unit-cell. An example of these 

metamaterials is shown in Fig.     [99]. Different functionalites including negative 

(a) (b) 
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refraction [68,100], manipulation of the polarization [101], focalization of the light using a 

flat lens [102,103], and the generation of optical vortex [104], have been realized using 

phase-gradient metasurfaces. The second trend is designing meta-atoms using high refractive 

index dielectrics. Even though, the dielectric meta-atoms typically have larger dimensions, 

which reduces the degree of freedom in manipulating the wavefront, they induce less optical 

loss, which is particularly desirable for the design of transmissive devices [105-107]. Figure 

    shows an example of a dielectric metasurface (silicon-based) designed for simultaneous 

control of phase and polarization [108]. 

 Finally, the researchers have mostlt utilized the linear response of active and passive 

meta-atoms to design metamaterials with various functionalities, so far. An emerging 

approach is to utilize the inherent material nonlinearity as a new degree of freedom to 

manipulate the flow of light. For instance, non-reciprocal propagation of light (optical diode) 

has been demonstrated using a flat nonlinear metamaterial, shown in Fig.     [107]. The 

nonlinear effects in plasmonic and photonic devices are discussed in more detail in Ch.  .  

 

Figure 7  - New developments in metamaterials research. (a) A plasmonic phase-array metasurface 

[99]; the unit-cell is composed of all the antennas colored in white. (b) A dielectric metasurface for 

(a) (b) 

(c) (d) 
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simulanous control of phase and polarization [108], (c) A dielectric metasurface with non-rcepirpocal 

optical response (optical diode) utilizing the Kerr nonolinearity of silicon [109].  (d) A non-reciprocal 

meta-device based on parity-time-symmetry 

 

2.4 Light-Matter Interaction in Two-Dimensional Materials 

Two-Dimensional (2D) crystals or “van der Waals” materials are a new class of low-

dimesional materials composed of a single or a few layers of atoms. These materials exist in 

nature in bulk in the form of individual layers bonded together by weak van der Waals forces, 

and can be separated into single or several layer islands by mechanical exfoliation [110]. 

They can also be grown on a substrate using chemical vapor deposition (CVD) and other 

growth technics [24]. Due to the quantum confinement effect, electronic and optical 

properties of 2D materials differ significantly from their bulk counterparts, similar to other 

low-dimensional materials. Generally, there are two approaches to enhance light-matter 

interaction in 2D materials: through their integration with plasmonic and photonic structures, 

or by using their intrinsic polaritonic surface waves. In the rest of this section, the electronic 

and optical properties of a few 2D materials with great potential in photonic and plasmonic 

applications are reviewed. Our primary focus will be on transition-metal dichalcogenides, 

which we will see again in Ch.  .  

2.4.1 Graphene, Hexagonal Boron Nitride and Black Phosphorous 

The first discovered 2D material was graphene [111], which is a 2D arrangement of 

carbon atoms in honeycomb lattice with many intriguing electronic and photonic properties. 

It is a semi-metal with zero bandgap and an unusual electronic bandstructure, qualitatively 

shown in Fig.    . Its electronic bandstructure has two so-called Dirac points at   and    

points of symmetry, where valance band (VB) and conduction band (CB) meet [112,113]. 
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Near the Dirac points, the energy dispersion is linear1, i.e.       , and hence the electrons 

in graphene mimic relativistic particles with zero mass, Dirac Fermions, and have ballistic 

transport with an effective speed of            [114,115]. As a result of this ballistic 

transport, electrons in graphene have light-like behavior with straight-line trajectory as well 

as refraction and reflection across boundaries [116]. Also, as a result of the ballistic transport, 

graphene has a very high electron mobility [117,118]. The Fermi level    of graphene, which 

is naturally at the intersection of VB and CB in pure samples, can be easily adjusted via 

chemical doping or electrostatic gating. Given these two electronic properties and the 

availability of epitaxial graphene at the wafer-scale, graphene is a great platform for high-

speed electronics and a potential successor to silicon [119,120]. As discussed earlier, 

graphene is also an excellent plasmonic material for the MIR range. The electrostatic tuning 

of the    can also be used for developing efficient and compact electro-optic modulators, 

switches and adaptive filters [121-123], through the integration of graphene with photonic 

and plasmonic devices.  

Since the discovery of graphene, other 2D materials with varying electronic and optical 

properties have been isolated from the bulk, and in many cases have been successfully grown 

using CVD and other technics. Among the insulators, 2D hexagonal Boron Nitride (   ) 

shown in Fig.    , also known as “white graphene”, is a remarkable example [124,125], 

which has found applications as the isolation or encapsulation layer for other 2D materials 

[126], and as the interlayer spacer in vertical heterostructures of 2D materials [127,128]. 

Additionally, room-temperature single photon emission has been observed from atomic 

defects in 2D     at around      [129,130] opening new a avenue in quantum optic 

                                                   
1
 In most materials, the energy dispersion near the bandgap can be approximated by:           , where 

   is the effective mass of electrons (or holes) in CB (or VB), and   is the electron momentum. 
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applications, such as quantum computing [131,132] and quantum key distribution [133-135]. 

One of the limitations of traditional solid-state single photon source has been the weak 

outcoupling efficiency of the single photon emission from the source, which can be vastly 

improved with 2D materials sources such as     [136]. Lastly,     also supports 

hyperbolic phonon polaritons in MIR range, which we will discuss in section      . 

Another intriguing 2D material is black Phosphorous (Black P), which is a 

semiconductor with small direct bandgap (    to      depending on number of layers) [137]. 

Its energy bandgap can be further tuned by mean of chemical doping [138], mechanical strain 

[139], and most interestingly by applying a relatively modest transverse electric field due to 

the  Stark effect [140]. Owing to this small tunable bandgap, Black P is suitable for 

developing broadband and tunable photodetectors in NIR and MIR range [141,142] and 

possibly other electro-optic devices. As another consequence of its low direct energy 

bandgap, it has some metal-like behaviors. It has high electron mobility  , making it suitable 

for electronic and optoelectronic application [137] and it supports SPPs [143]. As another 

fascinating property of Black P is its in-plane anisotropy [144], which is a direct result of its 

atomic structure with “puckered” hexagonal lattice shown Fig.    . This unique property of 

Black P can be used to develop plasmonic devices with intrinsic anisotropy [145,146]. 

 

Figure 8 - Atomic structure of graphene,     and Black P [147] (Image reproduced with 

permission). (a) Graphene: in-plane hexagonal lattice of   atoms (b) h-BN: atomic structure is 

similar to graphene, but with two dissimilar atoms (c) Black P: puckered hexagonal lattice of   

atoms. 

 

(a) (b) (c) Graphene h-BN Black P B 

N 
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2.4.2 Two-Dimensional Transition-Metal Dichalcogenides 

Transition-metal dichalcogenides (TMDCs) are another class of 2D materials with a 

hexagonal atomic structure (1H) 1. The electronic properties of TMDCs range from metallic 

in      and      to semiconducting in      and     (  being a chalcogenide such as  , 

   and   ) [150]. Semiconducting TMDCs are particularly appealing for electronic and 

photonic applications, due to their complementary material properties to graphene. Despite 

all its merits, graphene has one main shortcoming, which is the lack of energy bandgap (Fig. 

   ). For many optoelectronic applications, such as lasing, photodetection, photovoltaics, 

field-effect devices with large on-off voltage ratio, a semiconductor with a bandgap in visible 

and NIR range, such as semiconducting 2D TMDC is favourable. In single layer, these 

TMDCs have a direct bandgap in the visible and NIR region (1 to 2   ) with two valleys at   

and    points of symmetry (Fig.    ), even though their bulk counterparts are indirect 

semiconductors (Fig.9   ) [151]. Similar to Black P, the direct bandgap in these materials 

can be tuned using mechanical strain [152], alloying several TMDC [153] and by applying a 

transverse electric field [154]. 

 

Figure 9 - Qualitative electronic bandstructure of graphene and TMDCs. (a) Electronic 

bandstructure of graphene (b) electronic bandstructure of bulk TMDCs and (c) Electronic 

bandstructure of monolayer TMDCs. 

                                                   
1
 Less common octahedral atomic structures (1T and 1T’) with semi-metallic properties are also observed 

in some TMDCs [148,149].  
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As a result of this direct bandgap, semiconducting 2D TMDCs exhibit relatively large 

values of quantum yield in photoluminescence (PL) process [155,156], which can be further 

improved by chemical passivation of structural defects [157,158]. At room temperature, PL 

in semiconducting TMDCs is dominated by the contribution of (Mott-Wannier) exciton, a 

quasiparticle composed of an electron in CB and a hole in VB loosely bound together by the 

Coulomb force (Fig. 7.b). Due to the quantum confinement, the exciton binding energy   , in 

semiconducting 2D TMDCs is significant (    to     ) and much larger than their bulk 

counterparts (Table  ). At low temperature, the contribution of trions1 (or charged excitons) 

becomes significant, as well. Also, as a result of the direct bandgap, the quantum efficiency2 

of the photocurrent generation process in these materials is quite high [159,160]. There is a 

substantial interest in developing on-chip light sources such as photodiodes, and 

photocurrent-based devices such as photovoltaic cells and photodetectors using 2D TMDCs 

[161-164]. The absorption and PL in 2D TMDCs can be further enhanced by their integration 

with photonic and plasmonic nanostructures [165-168] and with sufficient enhancement 

optically pumped lasing can be achieved [169-171]. This application of 2D TMDCs is further 

discussed in Ch.  . In another vein, tunable single photon emission in natural and artificial 

atomic defects in 2D TMDCs is also observed similar to 2D     [172-175]. 

Another property of hexagonal 2D TMDCs is the valley-polarization, which can be 

accomplished using the helicity of the light. As a consequence of the honeycomb lattice with 

broken inversion symmetry (Fig.     ), electron-states at the valleys of the hexagonal 2D 

TMDCs have an additional spin-like quantum number, known as pseudospin [176]. In other 

                                                   
1
 Trion is a charged quasiparticle composed of two electrons in CB and one hole in VB (negative trion) or 

one electron in the CB and two holes in the VB (positive trion). 
2
 “Quantum yield” in PL is defined as the ratio of the number of photons emitted to the number of photons 

absorbed by the material and the “quantum efficiency” in photocurrent generation is the number of 

electrons collected divided by the number of photons absorbed. 
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words, there are two degenerate minima for the CB (or maxima for the VB) in momentum 

space, that are inequivalent.  Selective population of one valley, called “valley polarization, 

can be accomplished optically using circularly polarized light [177-179]. Through the 

selective control of valley pseudospin, it is possible to develop electronic and optoelectronic 

“valleytronic” devices to transfer and process data, in much the same way that the spirntronic 

devices rely on the selective control of electron spin [180-183]. 

 

Figure 10 - Properties of valley excitons in 2D TMDCs. (a) Atomic structure of hexagonal 2D TMDCs 

[147] (Image reproduced with permission). (b) Excitonic transitions and the valley-polarization 

splitting in semiconducting 2D TMDCs.     and     are the energy bandgap for electrons with 

positive and negative pseudospin.    

Phase transition is another useful property of 2D TMDCS [184]. Transition from a 

semiconducting (1H or 2H) to a semi-metallic (1T or 1T’) crystalline phase has been 

observed in some 2D TMDC, which can be triggered by temperature [185], strain [186], 

electrostatic gating [187,188] and by the hot-electron generated by plasmonic nanostructures 

under intense optical pumping [189]. The dynamic control of structural phase transitions in 

2D TMDCs has applications in data recording, as well as low power and reconfigurable 

electronic and photonic circuits. Mott transition is another type of phase transition that has 

been observed in the semiconducting 2D TMDCs, in which the material undergos a transition 

from an insulating phase to conductive electron-hole plasma, under intense photo-excitation 

[190]. Potentially, the Mott transition in 2D TMDCs can be used in applications such as all 
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optical switching and modulation. Some TMDCs also exhibit phase transition into material 

states with exotic properties such as superconductivity and charge density waves [191]. 

2.4.3 Polaritons in Two-Dimensional Materials 

In section    , we showed that the interface between a conductor   and a dielectric   

can sustain a SPP wave, if   
    and    

     . The nature of this surface wave was 

described as the coherent oscillation of electrons in conductor bound to its interface with the 

dielectric material. These conditions can be satisfied in a variety of materials, where the 

coherent oscillation of polarization charges, including electrons in the metals, but also 

phonons in polar insulators [192-194], excitons in semiconductors [195-197], magnons in 

ferromagnets (or antiferromagnets) [198,199], and cooper pairs in superconductors [200-202] 

can result in the formation of polaritons. All these surface waves can be used to confine light 

in sub-wavelength scales and hence are excellent vehicles for enhanced light-matter 

interaction.  

Two-dimensional materials can also support surface polaritons [203,204]. As we 

mentioned earlier, graphene is an excellent platform for plasmonics in NIR and MIR. Black P 

also supports anisotropic plasmon polaritons from NIR to MIR range [143]. MIR phonon 

polaritons with hyperbolic dispersion have been observed in 2D    , which can be used as 

an alternative to the hyperbolic SPPs in plasmonic hyperbolic metamaterials [205]. The 

excitons in 2D TMDCs can also strongly couple to the photonic modes either intrinsic to the 

TMDCs or an external photonic or plasmonic structure and form exciton polaritons [166,206-

209], which can be potentially condensated to form Bose-Einstein condensates (BEC) among 

other applications [210]. Finally, hybrid polaritons have been also observed in 2D material 

heterostructures or heterostructures composed of a 2D material and plasmonic 
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nanostructures. In Ch.  , we discuss exciton-plasmon coupling in more detail. Another 

prominent example is plasmon-phonon polariton in graphene-    heterostructures, with 

increased polariton propagation length and the possibility of electrical tuning [211,212]. 

Table 2 -  Material classification, energy bandgap, main polariton type and field-effect mobility,     

(at room temperature) , exciton binding energy,   , radiative lifetime,   , and workfunction      for 

a few 2D materials of interest:     ,      ,    ,     , Graphene, hexagonal Boron Nitride (h-

BN) and Black Phosphorus (Black P). Data extracted from the following reference, a: [151], b: , c: , 

d: [213,214], e: [111], f: [137], g: [215], h: [216], i: [217], j:[218], k: [219] at     , l: [220] at       , 

m: [221] (computational), n: [222] (computational), o: [223], p: [224] 
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CHAPTER 3. 

MOLECULAR SENSING USING PLASMONIC NANOCUBES 

Plasmonic nanocavities can be fabricated using lithographic techniques, discussed in 

Ch.    , or gorwn chemically under controlled conditions in different shapes and sizes 

[225-229]. Chemically synthesized plasmonic nanoparticles are typically single crystalline 

and hence have higher Q-factor, which together with sharp edges and nanometer-sized gaps 

can lead to intense hotspots. For sensing applications, these nanoparticles can be used in the 

colloidal form or dispersed on a substrate using a variety of techniques such as Langmuir–

Blodgett method [230,231]. However, controlling the location and orientation of 

nanoparticles after immobilization on a substrate is quite challenging unlike lithographically 

fabricated nanoantennas. Thus, more complex geometries and functionalities can be achieved 

using nanolithography. Another advantage of chemically grown nanoparticles is that they can 

be injected into living organisms for in situ or in vivo labeling [232] or photothermal therapy 

applications [62]. 

The resonance wavelength      of a nanoparticle is highly dependent on its material 

composition and geometry. Figure      shows the tunablity range for the nanoparticles 

composed of   ,    and   , as the three most common material platforms in plasmonics 

[25]. In the NIR range, the plasmon resonance in all three metals is quite tunable, but as we 

approach the interband transition, not only the ohmic loss is increased, but also the tuning of 

plasmon resonance becomes challenging. Generally, the LSPR resonance can be tuned down 

to        in    nanoparticles,        in Ag nanoparticles and        in    

nanoparticles. More complex geometries can improve the tunablity of the LSPR resonance in 

plasmonic nanoparticles (Fig.     ), and increase the figure-of-merit defined as    ⁄ . For 
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instance, nanorods with high aspect ratios are more easily tunable and provide larger field 

enhancement  , and larger LSPR wavelength shift in response to a perturbation, compared to 

nanodisks and nanospheres [233,234]. Another way to increase   significantly and to 

introduce new degrees of freedom for tuning the LSPR resonance, is incorporating dielectric 

gaps in the design of nanocavities [235] through ligand or DNA mediated self-assembly of 

colloidal nanoparticles into chains, e.g. dimer, trimer, tetramer, etc. [236,237], 2D lattices 

[238,239] or inhomogeneous superstructures [240,241]. 

 

Figure 11  - Tuning surface plasmon resoannce in plasmonic nanoantennas. (a) Tunabilty range of 

the three most common material platforms, i.e.   ,    and    (Image reproduced with permission 

form Ref. [25]) (b) Tunabilty range of nanoparticles with different shapes (Image reproduced with 

permission from Ref. [226]) (b) 3D representations of the hotspots in a face-to-face AgNC dimer with 

      edge length and      dielectric gap (   ), the red and yellow isosurfaces shows the regions 

of space     and     maximum   at      

Historically, plasmonic nanoparticles were first used in biosciences as ultra-bright 

labels for imaging applications [232,242], but later, label-free biosensing has emerged as one 

of the primary applications of plasmonic nanoparticles, besides photothermal therapy. In this 

chapter, we focus on the molecular sensing using LSPR wavelength shift in plasmonic 

nanoparticles and in the next two chapters; we expand to two other sensing modalities, 

(b) 

(c) (a) 
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surface-enhanced Raman spectroscopy and metamaterial-enhanced chiroptical sensing, 

mainly lithographically fabricated plasmonic nanostructures. 

 

3.1  Label-Free Biosensing Using Plasmonic Nanocavities 

Most biosensing techniques employ some type of fluorescence or radio labeling scheme 

to record molecular binding events. There is however a significant amount of interest in 

label-free detection of biomolecules [243], due to their lower assaying costs and superior 

scalability and multiplexing potential. Most label-free detection methods, such as acoustic 

devices and field-effect transistors (FETs),  have not been able to achieve the detection limit 

of label-based methods such as ELISA [244] employing fluorescence tags, but integrated 

photonic and plasmonic cavities can even surpass ELISA both in terms of detection limit and 

sensitivity. Label-free optical biosensing has been shown using high-Q photonic 

microcavities [245-247]. Low    plasmonic nanocavities can achieve similar or lower 

detection limits, approaching single molecule detection [225,248-250], in much more 

compact geometries, and with lower fabrication and instrumentation costs. Measurement of 

LSPR resonance wavelength shift is the first plasmonic sensing modality that we discuss in 

this dissertation. This is an evolution of the surface-plasmon resonance (SPR) [251,252] 

measurement method with significantly improved sensitivity and detection limit. In the rest 

of this section, we introduce the necessary terminology and definition used in molecular 

sensing using photonic and plasmonic cavities.  

3.1.1 Sensitivity Factor of a Nanocavity 

For the case of single-molecule detection, the sensitivity of an optical resonator    can 
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be found from the first-order perturbation theory [253]:  

   (
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 ̅ 

  
     ̅  ̅   

 

    

  (3.1) 

   ∫   ̅   ̅  ̅      ̅ (3.2) 

where    is the total electromagnetic energy stored inside the cavity, and     is the excess 

polarizability of the molecule; i.e.           (   and    are the polarizability of the 

target molecule and the analyte). For a single layer of molecule uniformly coated on the 

surface of the resonator, the sensitivity    can be found by integrating the right hand side of 

Eq.     over the sensing area    [254]: 
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Similarly, for a small perturbation in a volume, the bulk sensitivity is found by 

integrating the right hand side of Eq.     over the sensing volume    [19,255]: 
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where          is the confinement factor, i.e. the fraction of energy stored in the sensing 

region, with    ∫    ̅   ̅  ̅      ̅
  

 being the energy stored in the sensing region.    is the 

refractive index of the analyte in the sensing region, and     is the small perturbation in   . 

For a bulk refractive index change, the bulk sensitivity factor    is defined as the 

wavelength shift per unit refractive index change (       ⁄ ): 
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In the case of single-molecule and single-layer molecular detection,    and    are 

described as a function of electric polarizability   , which is a microscopic quantity, 

whereas bulk    and    are functions of    √       , a macroscopic property of material. 

These two quantities are related by Clausius–Mossotti relation: (           ⁄       ⁄  

[256]. A very common scenario in sensing applications is a thin multi-layer film of molecules 

that does not cover the whole sensing region    [257,258]. In this case, the wavelength shift 

can be approximately described by: 

      (        ⁄ )     (3.6) 

where    is the sensitivity factor, and    is the characteristic decay length of LSPR 

resonance [259]. For a thin film,    is the skin depth defined in Ch.  , but in the case of the 

LSPR resonance, it is simply a measure of average penetration of the field within the sensing 

volume, and it is closely related to   .  

Going to back to the case of single molecule detection,    can be rewritten as    

 
 

 
       

           
 ⁄ . Thus, to maximize   , it is necessary to:  ) reduce   , which is 

why plasmonic nanocavities are so effective,  ) increase the ratio           ⁄ , which occurs 

when the molecule is at the hotspot. Now, considering a single layer of molecules, to increase 

  , we should find a strategy to increase the ratio      , meaning that we need to pull the 

electrtomagnetic energy out of the resonator into the analyte. This is also valid for single 

molecule and bulk sensitivity and can accomplished by incorporating dielectric gaps in the 

nanocavity design, for instance in closely spaced nanoparticle chains.  

Ultimately, the detection limit of a molecular sensor is also dependent on the signal-to-

noise ration (SNR) of the measurement apparatus and the minimum   , it can detect [260]. 

Generally, the minimum detectable    is inversely proportional to the resonance linewidth 
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and hence proportional to Q-factor. As a result,      is the overall figure-of-merit for a 

molecular sensor based on resonance wavelength shift. As we will see in the next chapter, the 

linewidth of plasmonic nanoparticles can be further decreased using Fano-type coupling, 

which further increases the detection limit in label-free biosensing. For chemically 

synthesized plasmonic nanoparticles, it is more convenient to measure the absorption, 

scattering and extinction cross-sections (    ,      and     ) in colloidal form, and 

sometimes the ratio             is used as the figure-of-merit, where      and      are the 

scattering and extinction efficiencies of the nanoparticle [233]. In the simple case of a 

nanosphere,              . The same relation holds between      and     , and between  

    , and     ,  in a nanosphere [261]. 

 

3.2 Ultrasensive Molecular Sensing Using Plasmonic Nanocube Chains 

Gold and silver nanocubes (NCs) [262,263] and their derivatives: nanocages [264] and 

nanoframes [265] are among the most sensitive chemically-synthesized plasmonic 

nanoparticles due to several factors: their high Q-factor, low    and sharp edges resulting in 

intense hotspots. These plasmonic nanocavities exhibit hight sensitivity in molecular sensing 

based on the shift of     , which can be conveniently tuned in a wide range based on the 

application, and high field enhancement at the hotspots, which can, for instance, be used in 

surface-enhanced viberation spectrocopy, discussed in the next chapter. By arranging the 

nanocubes in a 1D arrays with nanometer sized gaps, the sensitivity and field enhancement 

can be futher improved. In this section, we present a quantitative study of plasmonic 

nanocube chains in two different orientations: face-to-face (F-F) and edge-to-edge (E-E). The 

optical properties, and performance factors of NC chains with different lengths and 
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orientations are compared in two important regimes:  ) large gap size,        , where 

electromagnetic coupling is the dominant effect,   ) sub-nanometer gaps,        , where 

the effect of plasmon tunneling is significant, in addition to the classical electromagnetic 

coupling. 

3.2.1 Classical Electromagnetic Coupling 

In the first part of our study, chains of    and    plasmonic NCs with edge length 

of         and gap size of           are considered. With this separation gap, 

classical electromagnetic coupling is dominant, in both F-F and E-E configurations. The 

spectral response of this system, i.e. absorption, scattering or extinction cross section,  

depends on the number of NCs, the type of metal, and the NC orientation. For instance, 

Figs.        show the extinction spectrum of F-F and E-E    NC chains with three 

different lengths: dimer (   ), trimer (   ) and tetramer (   ). Our first 

observation is that      increases as we increase the length of NC chain.  

 

Figure 12 - Extinction spectra of plasmonic NC chains of different lengths in F-F and E-E 

configurations. (a) Extinction spectrum of F-F    NC dimer, trimer and tetramer, (b) Extinction 

spectrum of E-E AgNC dimer, trimer and tetramer 
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The overall trend of      vs. the refractive index of the surrounding medium is 

shown in Figs.        for different lengths and configurations. Since the perturbation 

   is considered to be small relative to the refractive index of the surrounding medium, 

these curves are approximately linear, according to the first-order perturbation theory. 

The slope of these lines is the sensitivity    defined in Eq.    . 

 

Figure 13 - Sensitivity factor    of plasmonic NC chains of different lengths in F-F and E-E 

configurations. (a,b)    NC chains in E-E and F-F configrations, (c,d)    NC chains in E-E and F-F 

configrations. 

Interestingly, an increase in the number of NCs in the 1D array results in an increase in 

  , and overall orienting the NCs in E-E configuration results in higher   , relative to F-F 

configuraiton, with a few exceptions (Fig.   ). For instance, F-F    NC tetramer shows 
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(c) (d) 
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lower    than F-F    NC trimer. Besides the spectral response, the electric-field 

distribution, and the peak enhancement factor at the hot spots are also affected by changing 

the type of metal, the length of chain and configuration of the NCs.  

 

Figure 14  - Evolution of the sensitivity factor    vs. the length of NC chains. (a)    of E-E and F-F 

   NC dimer, trimer and teteramers, (b)    of E-E and F-F    NC dimer, trimer and teteramers  

The peak enhancement factor      which occurs at      can be used as a measure of 

performance in molecular sensing based surface-enhanced viberational spectroscopic 

technics. Figures        show the electric-field distribution of    NC dimer, timer and 

tetramer at     , as an example. Overall, an increase in the number of NCs results in an 

increase in     , and E-E configuration tends to result in higher confinement of electric-field 

and higher enhancement compared to F-F configuration. 

(a) (b) 
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Figure 15 - Normalized electric-field distribution of    NC chains in E-E configuration. (a) Dimer, 

(b) Trimer and (c) Tetramer 

3.2.2 Plasmon Tunnelling Effect in Nanocube Chains 

So far, we have only discussed the optical response of NC chains with        . 

With sub-nanometer separation distances, the electrons (and plasmons) can tunnel through 

the dielectic gap, producing a tunneling current that significantly alter the optical response of 

the plasmonic system [266-269], and hence the the classical model is no longer sufficient to 

predict the resonance spectrum and field distribution. Aside from the gap size, logal topology 

of the junction, i.e. material type, shape and scale, also affects the plasmon tunneling 

[270,271]. This effect can be used in reverse direction for the tunneling-induced generation 

of SPPs [272]. It is possible to generate wide-band surface plasmons, by applying an 

electrical voltage across a sub-nanometer gap in a plasmonic junction [273], AFM tip [274] 

or dimer nanoantenna [275], which act as high-  hotspots enhancing electrical generation of 

SPPs. In this section, we discuss the effect of plasmon tunneling on the optical resposne of 

NC chains with        , where the effect of quantum tunneling becomes prominent 
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particularly in smaller nanoparticles. This is a very important consideration in practical 

plasmonic sensors as the common method of dispersing chemically synthesized nanoparticles 

on substrates naturally creates chains with very small gaps, as it can be seen in Fig.   . 

Experimentally, it is also possible to control the separation gap between nanoparticles by 

coating them with chemical ligands of various lengths [276-278].  

 

Figure 16 - Naturally dispered AuNCs on a surface tend to create face-to-face sub-nanometer gaps. 

(a) Transmission electron microscope (TEM) image of face-to-face NC assemblies with sub-

nanomater gaps, (b) Oblique SEM image of the assembly with     tilt. 

For this study, a quantum corrected model (QCM) [279,280] was implemented within 

the FDTD framework to approximate the effect surface plasmon tunneling at the junctions 

between NCs. We performed a set of simulations for    NC dimers, trimers and tetramers 

with the edge length of        , the separation gap           and the radius of 

curvature at the edge        . The first set of simulations are pure electromagnetic 

simulation using FDTD method, which does not account for the effect of plasmon tunneling. 

Next, QCM was used to approximate the effect of tunneling on LSPR resonance by assuming 

a virtual conducting medium,    Jellium, of        width between the NCs. The electric 
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permittivity of the tunneling channel is calculated using the modified version of Drude 

model, we saw in Ch. . 

 (    )     
  

 

 (     (  ))
 (3.7) 

where   ,    and    are the parameters for an equivalent Drude metal placed within the 

junction, which would produce the same current density, as it can be obtained by solving the 

1D electron tunneling in a metal-dielectric-metal quantum barrier for a given barrier width    

[281]. The real and imaginary parts of this complex permittivity for           is plotted in 

Fig.   . This approximation is only true if the radius of the curvature is large compared to the 

gap size and the Fermi electron wavelength. For NCs with extremely sharpe edges or sharp 

AFM tips, this model can potentially break down.  

 
Figure 17 – Permitibity of the    Jelliom used to estimate the effect of plasmon tunneling in QCM 

simulation. (a) Real and (b) imaginary part of the permittivity of the Au Jellium for the case of 

       separation gap. 

The effect of plasmon tunneling between two relatively large NCs in F-F orientation 

has been reported previously [282]. The quantum tunneling manifests itself as the damping of 

the dimer plasmon resonance in electron energy loss spectroscopy (EELS) measurements, as 

the gap size is reduced below     ,. This is in direct contradiction with classical model, 

which predicts monotonic increase in the intensity of the dimer resonance. The second effect 
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of quantum tunneling is the appearance of a distinct mode at sub-nanometer gaps, called 

tunneling charge transfer plasmon (tCTP) mode. From our calculation, the effect of quantum 

tunneling on the the optical response of the NC chains is stronger in E-E configuration, which 

is due to the higher localization of the electric-field at the corners, where most of the 

tunneling occurs. Figures        show the transmission spectra of dimer, trimer and 

tetramers    NCs in E-E and F-F configurationsin a square lattice array with the periodicity 

of        at each direction (effectively uncoupled). As it can be seen in these figures, at 

large wavelengths a significant damping of the main LSPR modes can be observed due to the 

quantum tunneling, and the amount of damping is more significant in E-E configuration. 

 

Figure 18 - Effect of plasmon tunneling on the optical response of NC chains. (a-c) Transmission 

spectra for NC dimer, timer and tetramer, respectively, with the        air gap and corner radius 

of 5 nm in E-E configuration, (d-f) Tranmission spectra of NC chains with the same length and 

separation gap with F-F configuration (blue curves: classical model, red curves: quantum-corrected 

model). 
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Plasmon tunneling also alters the electric field distribution profiles. For instance, Fig. 

   shows the electric field modeprofile of the the main LSPR band for E-E    NC trimer at 

its resonace wavelength             from the QCM model. 

 

Figure 19 - Electromagnetic field distribution calculated for the E-E oriented    NC trimer at 

       separation distance from the QCM model. 

In general, quantum tunelling induces a shift on      and reduces the overall absorption 

cross-section of the plasmonic chain at resonance wavelengths as it can be seen in Figs. 

      .  As for electric-field distribution, the plasmon tunneling reduces the electric-field 

confinement at hot-spots. One final comment on the effect of plasmon tunneling is that even 

though, this effect generally reduces the absorption (or scattering) cross-section and the 

intensity of electric field at     , it does not necessarily result in less sensitive sensors. The 

introduction of a biomolecule in the small air gap between the nanocube can change the 

height of the energy barrier between the two metal junctions and may even potentially lead to 

an increase in the sensitivity in the quantum-tunneling based biosensor compared to the 

classical sensors.  
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CHAPTER 4. 

APPLICATION OF LATTICE PLASMONS IN SURFACE 

ENHANCED RAMAN SPECTROSCOPY 

Spectral analysis of large biomolecules is invaluable in a number of applications, 

including medical diagnostics and label-free biosensing. Spectroscopic techniques, such as 

Raman, coherent anti-Stokes Raman scattering (CARS) and infrared absorption (IRA) 

spectroscopy, based on optical processes shown Figs. 10a-c, are of particular interest for non-

destructive spectral analysis based on vibrational levels of molecules which can be associated 

to first-order molecular structures, i.e. the atomic composition and molecular bonds. It has 

been shown that the vibrational spectroscopy of proteins can be useful in diagnosing a 

number of diseases, including many types of cancer [283-286]. Raman spectroscopy and 

CARS1 in particular are very useful for in-vivo and in-situ analysis of biological specimen 

using visible and NIR excitation [287,288]. However, most diagnostic experiments using 

vibrational spectroscopy techniques have been performed using traditional viberational 

spectroscopy, which requires a large number of molecules. Development of assays suitable 

for vibrational spectroscopy using single or few molecules could lead to a substantial 

decrease in the amount of specimen necessary for these experiments, which is crucial in 

many applications, such as real-time spectral analysis [289] and early diagnostics of hard-to-

cure diseases using trace biomarkers [290]. Surface-enhanced counterparts of vibrational 

spectroscopy techniques, SERS [291-294], SECARS [295-297] and SEIRA [298,299], rely 

on the amplification of Raman emission or enhanced IR absorption of molecules at the 

                                                   
1
 CARS is a nonlinear spectroscopic technique, in which the four-wave mixing (FWM) between a Stokes 

photon and two pump photons are utilized to generate one anti-Stokes photon; i.e.                     

with           . The details of FWM, as a third-order nonlinear process, are discussed in Ch. . 
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hotspots of plasmonic nanostructures. In this section, we focus on SERS as the most versatile 

surface-enhanced vibrational technique.  

 

Figure 20  -  Optical processes used in vibrational spectroscopy. (a) Stokes Raman emission, (b) 

Coherent anti-Stokes Raman emission, (c) Infrared absorption between the vibrational levels of the 

molecule 

 

4.1 Collective Resonance of Nanoantennas and Lattice Plasmons 

In previous chapter, we saw the effect of near-field coupling between plasmonic 

nanocavities at very small separation distances relative to the resonance wavelength,     , 

which results in localized gap modes. At distances comparable to     , nanocavities are still 

coupled resulting in a slight extension of localized modes within the dielectric region. 

“Collective resonance” or “lattice resonance”, occurs once the nanocavities are placed in a 

periodic array, with a period   comparable to     . The main signature of collective 

resonance is linewidth narrowing and the appearance of sharp non-Lorentzian resonance 

features in properly designed arrays [300,301]. This type of asymmetric resonance lineshape, 

which is now called Fano resonance, was first observed by Ugo Fano in quantum mechanical 

study of auto-ionization states of atoms [302], and was later also observed in various classical 

systems with different types of wavefunctions. The origin of Fano-resonance is the 

constructive and destructive interference between a narrow resonance and broad spectral line 
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(a wide resonance or a continuum), resulting in a distinct asymmetric lineshape as shown in 

Fig.   , described by the following equation: 

      
         

 

      
    

 (4.1) 

where      is the intensity at frequency  ,    and   are the parameters determining the 

position and width of the Fano resonance, and   is the so-called the Fano parameter, 

describing the degree of asymmetry in lineshape. In classical optics, the first observation of 

this asymmetric lineshape was the Wood’s anomaly in metallic gratings, which was later 

explained by Fano resonance [303]. In the domain of integrated photonics and plasmonics, 

Fano resonance is observed in various coupled dielectric structures [304,305], semiconductor 

nanostructures [306], plasmonic metamaterials [307,308] and coupled nanoantenna arrays 

[309-312], which is the main focus of this chapter. In nanoantenna arrays, the collective 

resonance, which is a Fano-type resonance, is the result of interference between the 

nanoantenna scattering (broad resonance) and the Bragg scattering (sharp resonance), and can 

be used to increase the detection limit in refractive index sensing as discussed in the previous 

chapter [313,314].  

At near-field, these collective resonant features are accompanied by lattice plasmon 

(LP) waves [315,316], propagative Block waves that are direct result of coupling between 

nanoantennas, with properties such as high  , narrow linewidth, and efficient coupling to 

radiative modes (high excitation and collection efficiency), which make them attractive in a 

number of light-matter interaction applications. In this chapter, we will discuss the 

application of lattice plasmons in SERS. 
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Figure 21 - Fano resonance in optics. (a) the two interfering spectral lineshapes, (b) general form of 

Fano lineshape, Eq. 4.1 with               , black curve:        , black curve:   
        

 

4.2 Emission Enhancement by Purcell Effect 

Raman emission is a two-step process: i) absorption of the photon at     , ii) emission 

of another photon at a wavelength shifted according to the vibrational band of the molecules, 

   . The enhancement in absorption process,     , can be well described by the electric-field 

enhancement factor, i.e.      at     . In principle, the enhancement in radiative rate of the 

molecule or emission enhancement factor,    , in the vicinity of a nanostructure also known 

as Purcell effect, can be found using Fermi’s golden rule, which involves the calculation of 

the partial LDOS describing the field and frequency overlap between a quantum emitter and 

eigenmodes of the nanostructure [12]. For an isolated optical cavity, this calculation reduces 

to the Purcell Factor,        [317]:  
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where    is the position of the quantum emitter (molecule),      is the field that the emitter 

experiences at location   and   is the angle between the quantum emitter and cavity 

polarization. As we see from Eq.    , once again      is the main figure-of-merit for the 

optical cavity in Purcell effect, similar to the case of molecular detection discussed in the 

previous chapter. Numerically, it is often more convenient and more precise to place an 

electric dipole at the location of the molecule, with polarization of interest and then calculate 

the total emitted power of the dipole in closed surface in presence of the nanostructure, 

          and its absence,       , with            . Then, the emission enhancement factor 

in direction   can be found from [318]: 

      
         

      

                     (4.4) 

 

4.3 Surface-Enhanced Raman Spectroscopy Using Lattice Plasmons 

A number of plasmonic structures can in essence provide the sufficient field 

enhancement in their hotspots for low concentration SERS-based spectral analysis [319-321]. 

In practice, however, the reported values for the average field enhancement in these 

structures are fairly modest partially due to the large variation of the field profile over the 

sensing area.  Moreover, in the case of large biomolecules, the non-uniformity of the 

enhancement profile could result in the non-repeatability of the experiments due to 

substantial size of the biomolecules relative to the hot-spots. The conventional route to SERS 

is to use the LSPR resonances in an array of isolated nanoantennas. The high absorption (and 

scattering) cross section of nanoantennas near the resonance frequency results in a large 

enhancement of the Raman signal collected from the molecules located in the intense 
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hotspots. However, there is a practical limit to the intrinsic nanoantenna cross-sections, 

determined by nanoantenna geometry and composition.  

A promising approach to improve the SERS enhancement is to use the LPs in a 

periodic nanoantenna array. Previously, LPs inside a nanoantenna array were used to enhance 

the stimulated emission, leading to lasing action [322] by increasing LDOS at the band-edge. 

However, this effect is very narrow-band and is not suitable for the enhancement of the wide-

band Raman emission spectra. Our approach is to utilize the band-edge LPs at the excitation 

wavelength to increase the net absorption cross section of the array. Additionally, the two 

interacting layers of the nanostructure shown in Fig.   , create intense hotspots in the 

vertically oriented gaps, which are coated selectively with molecular probes to form the 

sensing area. These two provisions collaboratively result in a large SERS enhancement over a 

large bandwidth, rivaling and potentially surpassing most nanofabricated SERS arrays. The 

rather uniform distribution of the SERS enhancement over the sensing area renders the 

structure particularly suitable for large biomolecules, such as proteins. 

An array of gold nanodisks, stacked on an array of nanoapertures via supporting 

dielectric nanopillars, constitutes our nanostructure, illustrated in Figs.   , 24.a. The 

dielectric nanopillars, composed of hydrogen-silsesquioxane (HSQ), act as the sensing area 

in SERS experiments. In order to maximize the light-matter interaction, the periodicity of the 

structure is selected such that a band-edge LP with near-zero group velocity is induced at the 

close vicinity of the excitation wavelength,     , as a direct consequence of the lateral 

coupling between the nanoantennas. Additionally, the structure is designed to confine the 

LSPR modes at the Fano resonance wavelength in the vertical gap between the two layers, 

providing a large and fairly uniform enhancement profile over the dielectric nanopillars due 

to the vertically oriented gap modes. We found that the highest enhancement factor occurs, 
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when the LP band-edge coincides with the resonance peak of LSPR resonance peak of the 

individual nanoantennas.  

 

Figure 22 -  Scanning electron microscope image of bilayer nanoantenna array with 45 degree tilt, 

the inset shows a close-up view of one unit-cell 

The nanostructure shown in Fig.    has three distinct LSPR modes: a primarily disk 

mode at        and two vertical gap modes at        and       , in which most of the 

energy is confined in the vertical gap between the nanoantenna and the nanoaperture (Figs. 

24.d-f). Both of these two gap modes provide a large field enhancement with relatively 

uniform distribution over the dielectric surface as it can be seen in Fig.     . In addition, the 

mode at       , coincides with the band-edge of the second LP mode      near the pump 

wavelength. This Fano-type plasmonic resonance is very narrow band, but it has a large 

absorption cross section and field enhancement at the resonance peak. Hence,       is an 

excellent candidate for enhancing the narrow-band pump signal at       . The second gap 

mode has a considerably larger bandwidth and contributes to the enhancement of the emitted 

Raman signal.  
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Figure 23 - Distrubution of the enhancement factor at different wavelengths, (a) Scgematic view of 

the bilayer nanoantenna including all geometrical parameters (b)   at      over the nanopillar 

height, as the sensing area, (c) 3D distribution of vertical gap mode (red) and horizental LP mode (d-

f) the three LSPR modes of the bilayer unit-cell 

Table   shows the critical optical properties of the three LSPR modes: resonance 

wavelength,     , resonance lifetime,      and mode volume,   . 

Table 3 - Optical properties of the three LSPR modes of the structure shown in Fig.    from FDTD 

simulations. 

              

      668 nm 13.04 fs             

      781 nm 16.50 fs             

      937 nm 15.63 fs             

This nanostructure has two LP modes, each one with a band-edge at normal incidence 

that can be adjusted in a wide frequency range by changing the lattice constant Nanopillar 

radius also has a minor effect on the LP band-edge. On the other hand, the resonance peaks 

of the LSPR modes can be adjusted in a wide frequency range by changing the nanopillar 
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radius and to some extent the lattice constant. Thus, the proposed structure can be tuned to 

operate within a wide frequency gamut for the simultaneous enhancement of the excitation 

and emission signals. In our structure, the second LP band-edge, shown in Fig.      is used 

to enhanced the pump, as it can be excited more efficiently with the normally incident light 

and can be adjusted more easily. 

 

Figure 24 - Tuning of the LP band-edge by change the periodicity. (a) Band-digram for the array 

with         , (b) Band-diagram for the array with          (optimal design), (c) Band-

diagram for the array with         . 

To assess the performance of our structure in SERS-based molecular sensing, we have 

calculated the local excitation and emission field enhancement spectra,      and     

respectively, using separate FDTD simulations. Figure      shows the spectrum of      

under the normal incidence at two fixed points shown in Fig.      (       : mid-pillar 

height,        : mid-disk height). The emission field enhancement,     for the three field 

components at         is shown in Fig.     . In contrast to most reported works in 

plasmonic sensing, we use the dielectric surface of the nanopillars for the immobilization of 

the target molecules to lower the amount of analyte necessary for the coating of the 

nanostructure, which is an important consideration in many biosensing applications. The 

results shown in Figs.        depict close to the worst case, i.e. the smallest      and     

over the sensing areas. Nevertheless, the total enhancement factor in this worst-case scenario 
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is comparable to the maximum enhancement factor in bowtie nanoantennas, which are one of 

the best performing nanofabricated nanoantennas, with air gaps as small as       [323-325]. 

The enhancement factor in our structure is higher at points that are closer to the surface of the 

nanopillar and / or are closer to the top nanodisk or the bottom nanoaperture as it can be seen 

from Fig.     . Most notably, the high Raman enhancement is present all over the sensing 

area, whereas in bowtie nanoantennas, the SERS hotspot is concentrated at a very small 

region between the two triangles of the nanostructure. 

 

Figure 25 - Excitation and emission enhancement factor spectra. (a) Two points      away from the 

surface of disk and nanopillar, (b)      at point A (solid curve) and point B (dashed curve), (c)     

calculated at point A for an x-polarized dipole (blue curve), y-polarized diplole (red curve) and z-

polarized dipole (green curve) 

To demonstrate the high sensitivity of our device experimentally, nanoantenna arrays 

with different radii and periodicities were fabricated on a silicon wafer with a thick thermally 

grown      layer on top. A protein, namely streptavidin, was coated on the dielectric 

nanopillars by immersing the sample in an aquatic solution with the controlled concentration 

of       . Prior to the immobilization of streptavidin, the dielectric surface was 

functionalized using a process involving two self-assembled monolayers (SAMs), a layer of 

3-aminopropyl-triethoxysilane (APTES) to provide free amine groups and and a second SAM 

of NHS-biotin, as the linker to trap the protein molecules. The SERS spectrum of each array 

was collected using a Raman spectrometer and a near-infrared excitation laser at       . 
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Figure      shows the Raman spectra acquired from the arrays with the lattice constants 

varying from     to        and with the fixed pillar radius of      . As expected from the 

simulations, the best Raman signal, shown with red curves in Figs.       , was acquired 

from the array with the periodicity of       . The variation of the SERS signal with the 

nanopillar radius, at a fixed lattice constant is less prominent with the strongest signal 

acquired from the array with       radius as it can be seen in Fig.     . Our simulations 

had predicted that the band-edge of LP2 should coincide with the second localized SPP 

resonance in the array with       nanopillars and the periodicity of       , which was 

confirmed with the experiments.  

It should be noted that fabricated nanoantennas have slightly different geometry, from 

the ideal structure. Close inspection by scanning electron microscopy (SEM), has revealed 

that the fabricated nanoantennas are mushroom-shaped, see Fig.   , with rims slightly 

extended outside the supporting nanopillars due to the nature of the electron beam deposition. 

This should also affect the geometry of the nanoapertures at the bottom of the nanopillars. 

Despite this non-ideal shape, a good agreement between the theoretical prediction and the 

experiment was observed, suggesting that performance of our nanostructure is not sensitive 

to the impact of the fabrication imperfections on the topology of the nanoantennas. 
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Figure 26 - SERS spectra acquired from nanostructure with the overall desing of Fig.      and 

varying periodicity and pillar radius. (a) Measuremetns from arrays with pillar radius fixed at 

     , and lattice constant varying from     to       . (b) Measurments from arrays with fixed 

lattice constant of       , and nanopillar radius varying from    to       

In summary, we have desinged a novel bilayer plasmonic substrate for chip-scale 

SERS-based spectroscopic analysis of large biomolecules. Through the optimization of the 

horizontal coupling of the nanoantennas in the array, we were able to drastically improve the 

Raman scattering cross-section of the nanoantenna array. The vertical coupling between the 

two layers further increases the energy confinement in the vertical gaps and provides a more 

uniform enhancement profile over the dielectric nanopillars. By opting for the dielectric 

nanopillar as the immobilization surface, the target molecules are more efficiently excited 

and all contribute significantly to the overall collected Raman signal. In other words, all the 
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target molecules are bound to the surface coating at the hot-spots. These two effects 

collectively result in a large improvement in the overall efficiency of the SERS-based assay. 

In experiments, we have successfully acquired the SERS spectrum of streptavidin, as an 

example of a large biomolecule, at the concentration of        using the optimized 

nanoantenna array, which to the best of our knowledge, shows a five-fold improvement 

compared to the previously reported plasmonic works [326]. Although we have used radially 

symmetric nanoantennas in this work to keep the sensitivity of the array to polarization as 

low as possible, the idea of using LP modes to increase the scattering cross section can be 

applied to other nanoantenna geometries to achieve even higher SERS enhancements. Our 

fabrication process is a great advantage in this regard, since higher aspect ratios and smaller 

gap sizes can be achieved using this method as compared to fabrication processes based on 

the lift-off or ion-beam milling. 
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CHAPTER 5. 

CHIRAL METAMATERIALS AND CHIROPTICAL 

SPECTROSCOPY 

Optical activity is an intrinsic property of chiral molecules and chiral assemblies, that is 

usually quantified by polariometric techniques, such as circular dichroism (CD) 

spectroscopy. CD spectroscopy provides a quick and facile insight into the large-scale 

structure of the molecular systems, i.e. secondary and tertiary structures, in contrast to the 

vibrational spectroscopy techniques, discussed in previous chapter, which are typically more 

useful to anlayzse the first-order atomic structure of molecules, i.e. material composition and 

atomic bonds. Most biologically relevant molecules, including proteins, sugars, and nucleic 

acids, possess optical activity in the UV and low visible range of spectrum [327-329]. Some 

organometallic molecules, such as chlorophylls and certain synthetic anti-cancer compounds, 

have large chiral response in the high visible and NIR range [330-333]. 

The underlying optical process in CD spectroscopy is chiral light-matter interaction, 

which is the interaction between the light with helicity and the chiral molecules [334-337]. 

This optical process is typically very weak in natural materials, hence, the standard CD 

spectroscopy usually involves precise polariometric measurements of a large number of 

target molecules in bulk or in high concentration solutions. However, chiral light-matter 

interaction can be quite strong in metamaterials. Furthermore, the interaction between the 

light and chiral molecules can be significantly enhanced in the near-field of chiral 

metamaterials. This property of chiral metamaterials can be ustilized for chiroptical 

spectroscopy at the molecular level, which is particularly useful in biomedical applications. 

Aside from sensing, photonic and plasmonic chiral nanostructures can be used for 
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polarization beam splitting [338-340], generation of optical orbital angular momentum [341-

344], generation and detection of chiral light [345-349] and spin current generation [44,350]. 

 Before delving into the details of this metamaterial-based spectroscopic technique, we 

first discuss the basics of chirality, and chiral light-matter interaction in section    . Then, in 

section    , we see how the enhanced chirality in the vicinity of metamerials can be used for 

biosensing applications. 

 

5.1 Chirality in Materials and Metamaterials 

5.1.1 What is chirality? 

Chirality, also known as optical activity or circular bireferengence, is a type of 

bianisostry, described by Eqs.        , where the  ,   and   are scalars, i.e.  ⃗⃗       ⃗  

   
    ⃗⃗  and  ⃗     

    ⃗       ⃗⃗  
1. When an electromagnetic wave propagates through a 

medium, its electric component induces electric dipoles parallel to the electric field and the 

magnetic component induces magnetic dipoles parallel to the magnetic field. Additionally, in 

a chiral medium (   ), electric dipoles are induced by the magnetic fields and the magnetic 

dipoles by the electric fields. As a result, the net electric and magnetic fields inside the 

medium are slightly rotated. The polarization eigenstate are no longer linear, but rather 

circular polarization (CP) of the light [66]. Hence, two values of refractive index    can be 

assigned to the material, denoting the refractive index of the material for a plane-wave with 

right-hand circular (RHC) and left-hand circular (LHC) polarizations and          can 

                                                   
1
 Equivalently, from Eqs. 2.25,26, the electric and magnetic dipole moments in a chiral medium can be 

described      ⃗     ⃗  and  ⃗⃗    ⃗     ⃗ , where  ,   and   are scalars. 
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be used as a meaure of material chirality. 

Metamaterials can also have optical activity, just like natural material. Physically, a 

molecule or structure  is chiral, if it stays distinguishable from its mirror image upon any 

rotation or translation in space. Perhaps, the most intuitive example of chiral metamaterials is 

a 3D spiral shown in Fig.     , which is resonant at a certain frequency for one CP [340]. 

However, resoanant spiral at visible frequencies have very small dimensions and are 

exteremely difficult to fabricate, hence, different designs have been proposed for meta-atoms 

that are easy to fabricate and at the same time have strong chirality. One systematic approach 

to design metamaterials with strong chirality at optical wavelengths that are also feasible to 

fabricate, is using the Burn-Kuhn (BK) model [351]. Figure      shows an example of BK 

type chiral metamaterial, which are generally composed of two vertical layers. In section    , 

we see the design of a BK type chiral metamaterial, which requires only one-step 

lithography. 

 

Figure 27 – Two examples of chiral metamaterials, (a) Au helix antennas as an example of a chiral 

metamaterial (image reproduced with permission from Ref. [340]) (b) A Born-Kuhn type chiral 

metmaterial (image reproduced with permission from Ref. [351]); the dark and bright features in the 

microscope image are on two separate levels 

5.1.2 Circular Dichroism, Ellipticity and Optical Rotary Dispersion 

The strength of chirality in a medium (material or metamaterial) can be quantified by 

the difference in its absorption, reflection or transmission, in response to RHC and LHC 

(a) (b) 
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light, which is called circular dichroism (CD). For instance, using the transmission as the 

linear response, which is used in the standard definition of CD in spectropolarimeter, we can 

define absorbtivity as              , where    is the intensity of impinging light and   is 

the intensity of the light leaving the material. The ratio        is the transmittacnce of the 

medium. According to Beer-Lambert law, for a medium with length  , which contains 

optically active molecules with concentration  , we have      , where   is the decadic 

absorption coefficient [327]. In a chiral medium    are different and                  

is defined as the CD.  

Another method to quantify the strength of chirality is to measure ellipticity using 

linearly polarized light. An impinging linearly polarized light can be devided into two RHC 

and LHC beams with the same intensity. Since the abosptivitiy of the chiral medium is 

different for the RHC and LHC beams, the outgoing intensities would differ and hence the 

sum of the two components would no longer have a linear polarization, but an elliptical 

polarization.  Ellipticity   describes the shape of this ellipse, i.e.             ⁄   with   

and   being the length of the small and large axes of the ellipse, respectively. It can be shown 

that              ⁄           [328]. Many spectropolarimeters produce CD 

spectrum in the units of ellipticity (    ), even though they actually meaure differential 

absorptivity.  

Finally, the measurement of optical rotary dispersion (ORD) is the third method to 

quantify chiroptical properties, which involves measuring the rotation of a linearly polarized 

light traveling through a medium. This rotation angle is usually reported in terms of specific 

rotation [ ], which is the total rotation  , devided by the length of the medium  , and 

concentration of the chiral substance  ; i.e. [ ]     ⁄ .    
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5.1.3 Chiral Light-Matter Interaction 

The quantities defined in the previous section all pertain to the far-field response of the 

chiral media. For an electromagnetic wave, the chirality pseudoscalar,       can be defined 

for every point in space as a local measure of chirality [336]: 

      
  

 
  ⃗         ⃗      

 

   

  ⃗         ⃗      (5.1) 

For a CP plan-wave, the value of   is constant at every point    in space; i.e.        

   for RHC plane-wave and            for LHC plane-wave. Chiral metamaterials can 

localy enhance the chirality of electromagnetic waves, which is sometimes called 

superchirality [86]. Similar to the enhancement in electric field,      , we can also define an 

enhancement in chirality,               . The absorption rate of a molecule at point    , 

under the excitation with electromagnetic fields, depends on the local electric energy density 

      , local magnetic energy density,        and the local chirality,      , according to the 

following equation [335,352]: 

      
 

  

                      
 

  

         (5.2) 

where   ,    and    are the imaginary parts of electric polarizability, magnetic susceptibility 

and mixed electric-magnetic dipole polarizability, respectively. As a result, the absorption 

rate of a chiral material with     is different for RHC and LHC light and the CD spectrum 

measured from the material is described by: 

       
 

  

            
 

  

          (5.3) 
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in which                 -        ,                     , and we have ignored the 

second term in Eq.      since    is negligable in most materials. Hence, the effect of local 

chirality enhancement,  , will be directly reflected in the CD measurements. This property of 

locally enhanced chiral light can be used in chiroptical spectroscopy [87,353]. In principle, 

since   is a pseudoscalar (as opposed to    which is a non-negative scaler), it is possible to 

perform chiroptical sensing even with a non-chiral nanocavity. However, chiral 

nanostructures are more efficient for chiroptical spectroscopy, since    is usually larger in 

chiral metamaterials. 

5.1.4 Planar Chirality 

As we state earlier, a chiral metamaterial by defition needs to be asymmetric in all three 

dimesions, so that it would be distinguishable from its mirror image across any plane. 

However, there are a family of metasurfaces that are asymmetric only in the horizontal plane 

and there is no substantional vertical asymmetry in their design, aside from the difference in 

the refractive index between the substrate and the cladding. Even though, these structures are 

not chiral in strict terms, they can generate locally enhanced chiral fileds, albeit not as 

strongly as 3D chiral nanostructures, and hence can generate a CD upon the attachement of a 

chiral material [87]. This phenomon is sometimes known as planar chirality [354,355].  

As we stated earlier, a chiral material or metamaterial should be distinguishable from 

its mirror image across any arbitrary plane. In fact, any chiral structure has a dual structure, 

which has exactly opposite CD and mirrored   distribution in space. The two structures are 

called enantiomers. Opposite enantiomers of chiral materials are often found in nature with 

sometimes slightly different chemical properties, and they are usually denoted by     

(dextro-: right-handed / laevo: left-handed) or     (Rectus: right, or Sinister: left) 
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nomenclatures. To avoid confusion, in this manuscript, the     notation is used for the chiral 

molecules and the     notation is reserved for chiral or planar chiral metamaterials. Figure 

28 shows two enantiomers of a chiral metasurface designed for generating valley current in 

TMDCs.  

 

Figure 28 – Two enantiomers of a chiral metasurface designed for valley current generation. 

 

5.2 Chiroptical Sensing Using an On-Resonance Chiral Metamaterial 

As we stated earlier, in the close vicinity of a chiral nanostructure, the perceived optical 

activity of a biomolecule could be greatly amplified, due to the interaction with the locally 

enhanced chiral fields. Nonchiral plasmonic nanoparticles can modestly enhance the 

measured CD of chiral molecules [352,356-358], simply on the premise of their local electric 

and magnetic resonances. However, a greater enhancement of molecular CD can be achieved 

in the presence of locally enhanced chiral fields, existing in the vicinity of a chiral 

metamaterial [87,353,359,360]. Chiral nanostructures preferentially interact with LHC or 

RHC light, depending on the wavelength and the nanostructure design, and can also enhance 

the measured optical activity of molecules within the local fields [355,361-365]. The 

amplification of the apparent chiral response of molecules using these plasmonic 

nanocavities can be employed in chiroptical sensing, which has several advantages over other 

(a) (b) Enantiomer D Enantiomer L 
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plasmonic sensing modalities [225,366], such as, the possibility of differentiating 

enantiomers or chiral isomers, identification of secondary and higher order molecular 

structures, lower sensitivity to nonchiral perturbation in the environment, etc.  

While planar chiral metamaterials can locally enhance chiral fields, chiral 

metamaterials with 3D arrangement have typically stronger enhancement of local chirality. 

Previously, off-resonance chiroptical sensing has been demonstrated using a planar chiral 

metamaterial [87]. It was shown that optically active biomolecules can be detected using 

planar chiral metamaterial by studying the disparity in the resonance shifts induces on the 

two enantiomers. The measured change in CD, in this experiment, was fairly modest due to 

the small chirality of the proposed planar metasurface, as well as the mismatch between the 

chiral resonance of the metamaterial and that of the target molecules. It has been suggested 

that in order to achieve a significant CD, at least a bilayer nanostructure, with three-

dimensional arrangement of plasmonic nanoantennas is needed [86,362]. However, these 

nanostructures usually are hard to fabricate at small scales, due to the alignment error in 

consecutive lithographic steps, and often need a dielectric cap layer to preserve their strong 

chiral response. Upon the removal of the cap layer, which is an essential part of their design 

but undesirable for sensing, their chiral response is greatly attenuated.  

In this section, we present a new three-dimensional chiral metamaterial that can be used 

for sensing applications without the limitations of the previous nanostructures. We show that 

the interaction between the metamaterial presented here and biomolecules with significant 

chirality in the same range can result in a large change in the chiroptical response of the 

overall system, beyond what could be achieved with a planar nanostructure. In addition this 

chiral metamaterial can be realized using a simple fabrication process with one-step 
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lithography, that preserves the scalability of the embossed nanostructures, which is crucial in 

practical applications at shorter wavelengths. 

In order to explain the origin of the chirality in our embossed nanostructure, we can use 

the BK model [351,367,368], in which a bilayer nanostructure comprised of two closely 

spaced nanoantennas at an angle and in two vertical levels is presumed. The key feature of 

this design is the vertical separation between the two nanoantennas, which induces a phase 

difference between the two scattered waves with two different polarizations and creates 

chirality. The strong coupling between the two nanoantennas generates two hybrid plasmonic 

modes, called bonding and anti-bonding modes, which interact differently with RHC and 

LHC light.  However, the realization of this bilayer nanostructure would require stringent 

lateral alignment, similar to other multi-layer stacked metamaterials [74,369,370], albeit to a 

lesser degree since the structure has only two layers. As a result, it becomes more difficult to 

scale down the nanostructure to shorter wavelengths, where most molecules of interest show 

significant CD response. To solve this problem, we take advantage of the optical properties 

of a self-aligned vertical nanoantenna- nanoaperture stack, to design a BK-type embossed 

chiral metamaterial with a one-step lithography process, developed previously for the 

fabrication of plasmonic nanostructured used for surface-enhanced Raman spectroscopy 

[371].  

Figure      illustrates one of the two enantiomers of the proposed chiral metamaterial 

        with all geometrical dimension. Figure      shows the fabricated metamaterial 

using our self-aligned fabrication technique. This nanostructure can be decomposed into two 

subunits,      and     , each having an arc-shaped plasmonic nanoantenna stacked on a 

nanoaperture via a dielectric nanowall, similar to the structure we saw in the previous 

chapter. The nanoantenna-nanoaperture system has two LSPR modes. The first resonant 
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mode has a lower      and its electric field modeprofile is mostly concentrated around the 

nanoantenna and second mode has higher      and its electic-field is mostly concenterated 

around the nanoaperture in the other. By matching the resonance of the nanoantenna mode in 

one nanoantenna- nanoaperture stack      with the nanoaperture mode of the other stack 

    , we can get the same effect as having two nanoantennas at two vertically separated 

layers, as presumed in the BK model. The dual nanostructure,        , is the mirror image 

of the structure shown in Fig.      versus any plane perpendicular to the     surface. 

Evidently, the local field distribution of         with LHC incident light is also the mirror 

image of the local field distribution of         in response to the RHC light.  

Figures        show the electric-field  distribution in the vicinity of     ,      after 

resonance turing separately and the complete met-atom,        , at their resonance 

wavelengths, in response to RHC light, over the cylindrical surface S shown in the inset of 

Fig.     . As it can be seen in these figures, in     , the field is mostlt concentrated near the 

nanoantenna, whereas in     , the field is predominantly concentrated around the 

nanoaperture. This difference in the local distributions of the fields of      and      and the 

coupling between the two subunits results in the large CD response of the overall 

nanostructure. 
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Figure 29  - Design and fabrication of the bilayer chiral metamaterial. (a) Geometrical dimensions of 

a unit-cell of the embossed metamaterial (       ). The inner and outer radii of the two concentric 

arcs are 60 nm and 90 nm, respectively. The two arc-shaped nanoantenna-nanowall-nanoaperture 

stacks,      and     , have the opening angles of      and    , respectively, and the separation 

angle between the two arcs is    . (b) Top-view scanning electron micrograph (SEM) of the 

embossed chiral nanostructure (       ). The inset is an oblique close-up view of         at 45° 

tilt. (c) Electric-field distribution of the nanoantenna mode in     , in isolation, over the cylindrical 

surface   shown in the inset of Fig. 1.a at the wavelength of λ = 801 nm (log-scale). (d) Similar E-field 

distribution for the nanoaperture mode of     . (e) Electric-field distribution for complete         

at            (resonance wavelength of         in response to RHC light).  

In Figs       , we have illustrated the distribution of the chirality enhancement 

factors,   at             (   peak for enantiomer D) under RHC and LHC excitation. As 

it can be seen from these figures, there is a large difference in the spatial distribution of the 

meta-atom in response to RHC and LHC light. The local chirality for RHC light is largely 

enhanced around the larger nanoantenna and the smaller nanoaperture, as it is expected from 

our design. Closer to the surface of the metamaterial, the enhancement in chirality is stronger, 
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with the overall maximum of      and minmum of      , showing a substantial 

improvement over the values reported by planar chiral metamaterials [87]. Figure      

shows the difference in the enhancement of local chirality,   , on a cylindrical surface      

away from the outer radius of the         in air (       ) under RHC and LHC 

excitation at   . Figure      illustrates the difference in local energy density, i.e.    , over 

the same cylindrical surface. From Eq.     , we can rewrite CD in terms of         and 

      :  

   
 

  

               
 

  

        (5.4) 

where      and    are the electric energy density and chirality peduodscalaer of the RHC or 

LHC plane-wave with unit electric field,               and         . Hence, both 

    and    affect the change in the    of metamaterial induced by chiral molecules. 
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Figure 30 - Distribution of the chirality enhancement,  , and field enhancement,  , factors. (a,b) 3D 

distribution of ϒ, in the vicinity of Enant D, excited with RHC and  LHC polarized light incident on 

the surface from the top. Blue and red surface shows the areas with          at             , 

respectively (RHC resonance wavelength). (c,d)     and     over a cylindrical surface of radius 

      (     away from outer surface of the nanopillars and nanoantennas)  

To further investigate the potential of the proposed chiral nanostructures for sensing, 

two separate arrays of         and         are fabricated on a silicon substrate with a 

    -thick      layer on top, and used for the spectral analysis of chiral molecules. The 

details of our fabrication process are similar to the structure shown in the previous chapter. 

Traditionally, the transmission-mode CD spectrum is used to quantify the chiral response. 

Most often the chiral biomolecules of interest are dissolved at low concentration levels 

resulting in partially transparent solutions. In a chiral metamaterial, since the asymmetry in 

the transmission is accompanied by the asymmetry in the absorption and reflection, all three 

components of the linear response can be used to characterize the chiral response [372]. In 

the context of chiroptical sensing for instance, reflection-mode ORD has been used before to 
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detect chiral biomolecules [353]. For this structure, we choose to use the asymmetry in 

reflection response, as a measure of the chiral response of the coupled metamaterial- 

biomolecule system, due to stronger linear response of the designed material in reflection-

mode. We used a polarization-resolved reflection measurement setup shown Fig.    to 

measure the reflection-mode CD spectrum of the fabricated metamaterial before and after 

coating with the chiral biomolecules. Two sets of linear polarizers and quarter-wave-plates 

were used to generate RHC and LHC light beams in the illumination path and separate the 

two polarization components of the reflected light in the collection path.  

 

Figure 31 - Schematic diagram of the polarization-resolved reflection setup. In this setup, the outputs 

of the white-light source and a supercontinuum laser are collimated and combined using a non-

polarizing 50:50 beam-splitter. In the output, another 50:50 beam-splitter is used to direct two 

portions of the reflected light to the camera and the spectrometer. Two sets of linear polarizers and 

quarter-wave-plates are used to generate RHC and LHC light beams in the illumination path and 

separate the two polarization components of the reflected light in the collection path. 
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The chiral response of the two enantiomers of the embossed nanostructure obtained 

from numerical simulation (FDTD) and experimental measurements are shown in Fig.   . 

The blue and red curves in Figs.        are the differential reflectance, i.e.         , for 

        and        , respectively, with    being the reflection coefficients for RHC and 

LHC excitation.  Both simulation and experimental results in show strong chirality that can 

be utilized in   -based spectral analysis of chiral biomolecules with high sensitivity. The 

small asymmetry in the numerically calculated    spectra of         and        , in 

         is caused of the linear biriferegence in a square lattice arrangement of chiral meta-

atoms, making the eigen-polarizations of the metamaterial slightly elliptical [340,364]. In 

applications that symmetric responses from the two enantiomers are needed, this asymmetry 

can be greatly reduced by arranging the meta-atoms in a    or   configuration [373], but in 

chiroptical sensing, we are interested in the perturbation of the linear chiral response of the 

nanostructure, in response to near-field chiral interaction with an optically active molecule. 

Hence, we can ignore the small linear biriferegence of the metamerial. 

The measured differential reflectance,   , of the the two enantimers in Fig.      show 

two anomalous dispersions with opposing polarities. This type of anomalous dispersion, also 

known as Cotton-Mouton (CM) effect [374], is the characteristic of chiral media, in which 

the CD or equivalently    undergoes an abrupt change in the vicinity of an absorption band 

[375-377]. In the measured spectra shown in Fig.     , the distance between these two CM 

transitions is enlarged due to fabrication-induced variations, and consequently the    

lineshape is slightly different from simulation. Nevertheless, both enantiomers show a strong 

chirality and can be used for   -based spectral analysis, independently. 
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Figure 32 - Differential reflectance,   , of         and         prior to coating with the chiral 

biomolecules. (a)Nnumerical simulations,  (b) Measurements.  

To perform chiroptical sensing, we first coated the surface of the two nanostructures by 

a monolayer of two naturally occurring organometallic molecules, Chlor A and Chlor B, and 

a thin non-chiral layer of ALD oxide, as the control experiment. The concentration of the 

solvent is chosen such that a monolayer of chlorophyll would be formed via surface 

adsorption [378]. These molecules are the main components of the light harvesting 

complexes, found in plants and micro-organisms and are responsible for absorbing the 

sunlight and directing it to reaction centers to carry out photosynthesis [379]. Besides their 

strong absorption, Chlor A and Chlor B exhibit large CD responses in visible and NIR range, 

with two CD resonance dips at          and         , respectively (Fig.     ). 

These spectral features fall in the wavelength range that our bilayer nanostructures also show 

strong chirality and the locally enhanced chiral fields can greatly amplify the apparent CD of 
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the biomolecules bound to the surface. We define the reflection-mode circular dichroism, 

    as: 

                     (5.5) 

in conformity with the definition of CD in standard transmission-mode CD spectroscopy. The 

chiral interaction between the meta-atoms and the biomolecules results in an amplified 

asymmetry in the absorption in response to RHC and LHC light. We define the differential 

   ,     , as the difference between the     spectra acquired from the coated 

metamaterial,    
      , and the uncoated metamaterials,    

  , i.e.         
       

   
  . As we saw in section    , the differential CD can be expressed as a function of local 

energy density and local chirality, which is basis of chiroptical sensing.  

The adsorption of a chiral molecule on chiral meta-atoms is also typically ensued by 

opposing shifts on the CD response collected from the two enantiomers of a chiral 

metamaterial. This asymmetry in the CD response shifts has been previously used for 

superchirality-based sensing [87,353]. In on-resonance chiroptical sensing method, however, 

only one enantiomer with strong local chirality is adequate to perform spectral analysis based 

on the measured     . Figures        show the measured change in     of         and 

       , coated by         and        . These results are in agreement with this analytical 

prediction, as         and         have similar non-chiral electrical permittivity and 

surface adsorption properties, and the difference in the large     acquired from the two 

samples can only be attributed to the optical activity of these molecules. Both enantiomers of 

the nanostructure show a large change of several degrees in the     in response to the 

adsorption of the chiral molecules, which a substantial improvement over the previously 

reported sensing devices that only show a    change in the range of a few millidegrees [87], 
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and paves the way for precise CD-based spectral analysis for chiral molecules at very low 

concentration levels. The measured      of the        -coated sample is stronger than the 

spectrum acquired form the Chlor A-coated sample, which we attribute to the more than four 

times stronger    of         in the NIR wavelength range, as it can be seen in Fig.     . 

Furthermore, for the samples coated with either molecule, we observe opposite behaviors 

from enantiomers   and  , which is expected from dual chiral metamaterials, and the      

spectra corresponding to         (blue curves) have a blue shift with respect to the spectra 

acquired from         (red curves).  

Chlor A and Chlor B were coated on the nanostructure by immersing the sample in high 

concentration solutions. Two identical samples were soaked in        solutions of Chlor A 

and Chlor B in pure methanol at room temperature and in dark, for       . At this 

concentration level, chlorophylls are believed to form a monolayer on the surface of the 

nanostructure [378]. Consequently, the sample is cleaned in pure menthol to remove 

unattached residual molecules. The presence of self-assembled monolayer of chlorophylls 

was confirmed by performing surface-enhanced Raman spectroscopy (SERS) [61] from the 

metamaterial using a        near-IR laser with approximately         incident power. 

Figures      shows the result of a control experiment that we performed by depositing 

     of      using atomic layer deposition (ALD). As it can be seen from this figure the 

differential CD spectra is quite week in the case of non-chiral molecules. Finally, we have 

done the same experiment with two opposite enantiomers of a synthetic organometallic 

compound, chiral subphthalocyanine, with strong chirality in the high visible and NIR range 

[380], see Fig.     . Figure      shows the      spectra acquired from the metamaterial 

coated with                     (solid curves) and                     (dashed 
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curves). The difference between the      acquired from   and   compounds can again be 

only attributed to the optical activity, since the non-chiral polarizability and surface 

properties of the two enantiomers are exactly the same. Interestingly, in the range of 

             , the absolute value of      is higher for both enantiomers coated with R-

subphthalocyanine compared to the case they are coated with S-subphthalocyanine. In the range 

of              , however, we observe the exact opposite behavior. Overall the shift for both 

metamaterials is in the same direction in the range of              , as expected. The     

                   were coated on the metamaterials using Langmuir-Blodgett Method 

[381]. The presence of these two compounds on the metamaterials was also confirmed by 

SERS measurements. 
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Figure 33 - Metamaterial-Enhanced chiroptical sensing results. (a) CD spectrum of          (blue 

curve) and         (red curve) at the concentration of        in methanol, (b) CD spectrum of 

                    (blue curve) and                     (red curve) at the 

concentration of approximately         in chloroform, (c)     spectra acquired from         

(blue curve) and         (red curve) coated with        , (d)     spectra acquired from         

(blue curve) and         (red curve) coated with        , (e)     spectra acquired from         

(blue curve) and         (red curve) coated with      ALD     , (f)     spectra acquired from 

        (blue curves) and         (red curves) coated with                      (solid 

curves) and                     (dashed curves).  

In contrast to the previous works, which use the difference in resonance shift induced 

by the chiral molecules on two opposite enantiomers, we have opted to use the entire      

spectra in both enantiomers independly, since this approach provides a more quantitative 
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measure for spectral analysis. In addition, the refractive index of the target molecules in this 

range has frequency dispersion, in addition to circular dichorsim. Hence, modeling the 

change in   , by a simple wavelength shift,    , as it had been done previously, would not 

be accurate, in our case. 

In conclusion, we have demonstrated chiroptical spectral analysis of chiral 

biomolecules at the molecular level using an on-resonance chiral metamaterials. Using these 

metamaterials, we measured the differential    spectra from a monolayer of optically active 

biomolecules with very similar atomic compositions and enantiomers of a synthetic 

compound, and showed that we can distinguish them from the acquired     . The values of 

     reported in this work, show a very large improvement over the non-resonant 

experiments, performed using planar chiral metamaterial, nanoparticle assemblies or non-

chiral nanoparticles, owing to the large chirality of the nanostructures and the spectral 

matching between the     spectra of the metamaterials and target molecules. Similar 

experiments can be performed with other biomolecules that exhibit large CD response in the 

visible and NIR wavelength range, including organometallic compounds with significant 

pharmaceutical applications, including          and           based anti-tumor drugs 

[331-333], and            with important applications in optogenetics [382-386]. Two 

stereoisomers of a chiral compound can also be differentiated at the molecular level using 

this sensing method. Finally, given the scalability of this nanostructure, alternative metals 

such as    and    can be used to design metamaterials that have strong CD in low visible 

and even UV ranges of the spectrum, opening the door to the spectral analysis of natural 

supramolecules and molecular assemblies using chiroptical spectroscopy at the molecular 

level.  
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CHAPTER 6. 

NONLINEAR PLASMONIC NANOSTRUCTURES 

Nonlinear optical effects are the key underlying processes in a host of advanced 

photonic functionalities, such as ultrafast pulse generation [387,388], photon entanglement 

[389], all optical signal processing [390,391], optical comb generation [392], supercontinuum 

generation [393,394], generation of optical solitons [395,396], as well as spectroscopic 

techniques such as Raman and CARS, discussed in Ch.  , and nonlinear imaging technique, 

including second-harmonic microscopy [397,398] and stimulated Raman scattering 

microscopy [399]. These effects stem from the direct photon-photon interaction, which is 

only mediated by the material, unlike resonant scattering processes such as fluorescence, 

which result from consequent material absorption and emission. Since nonlinear effects do 

not rely on material absorption and emission with relatively long lifetimes (       ), they 

are typecially much faster than fluorescence and PL and are quite suitable for ultrafast 

switching and modulation applications.  

Compared to flourescence,  at low intensities, nonlinear effects are quite weak in most 

materials, but since they scale superlinearly with electric field amplitude, the conversion 

efficiency in nonlinear processes can become comparable with fluroresence, with sufficient 

field enhancement. As we saw in previous chapters, plasmonic nanostructures can provide 

extremely high values of field enhancement, and hence are ideal platforms for nonlinear 

optics, particulary in applications that are not susceptible to material loss.  

This chapter is dedicated to the nonlinear optical effects in plasmonic nanostructures, 

with a specific focus on the effect of phase or excitation angle in coupled nanostructures, 
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which is often overlooked in nonlinear plasmonics literature. We first start with a brief 

classical description of nonlinear light-matter interaction in section    . In section    , we 

review nonlinear effects in plasmonic nanostructures. In section    , we discuss the effect of 

phase-matching in second-harmonic generation using a bilayer coupled nanostructure. 

Finally, in section    , we present our preliminary experiemental results showing the effect of 

lattice-plasmon band-edge and phase-matching on second-harmonic generation. 

 

6.1 Classical Description of Nonlinear Light-Matter Interaction 

For a nonlinear medium the time-domain wave equation, i.e. generalized time-domain 

version of Eq.    , can be written as: 

     ⃗  
  

  

  

   
 ⃗      

 

   
 

  

   
 ⃗     (6.1) 

where  ⃗     is the induced dipole moment (or induced polarization) per unit volume. In a 

lossless isotropic material with no frequency dispersion, the dipole moment,  ̅   , can be 

found from:  

 ⃗         
    ⃗         

    ⃗          
    ⃗        (6.2) 

The first term in Eq    ,  ⃗            
    ⃗     , is the linear induced dipole moment, 

and      is the linear susceptibility, which is in the order of unity  (dimensionless)  in natural 

materials (          in a linear material). The second term  ⃗            
     ⃗      is the 

second-order induced dipole moment, and      is called second-order susceptibility, which is 

in the order of          ⁄  . Similarly, the third term,  ⃗            
     ⃗      is the third-
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order induced dipole moment, and      is called third-order susceptibility, in the order of 

           ⁄  , and so on [400,401]. In optical frequencies, however, many materials of 

interest are dispersive, lossy or anisotropic. In the case of second-order nonlinearity, the 

          components of nonlinear polarization at the frequency   ,                    , 

induced by two overlapping electric fields with frequencies    and   , with         , 

is: 

  
   

         ∑    
   

                         

  

 (6.3) 

where           refer to the Cartesian components of electric field and nonlinear 

polarization. The degeneracy factor   is the number of distinct permutations of the 

frequencies    and   . In second-harmonic generation (SHG), where we have      , 

   , whereas in sum-frequency generation (SFG) and difference-frequency generation 

(DFG),      , and hence    . In this generalized case     
   

 is a complex tensor relating 

the complex amplitude (phasor) components of electric field and polarization, hence the 

relative phase of the two electric-field components        and        has an impact on the 

nonlinear response. Similarly, for the case of third-order nonlinearity, also known as Kerr 

nonlinearity, we have: 

  
            ∑     

                                      

   

 (6.4) 

In third-harmonic generation (THG), we have         ,         and hence 

    again, but in four-wave mixing (FWM), in the most general case, we have       

   and             , and    . It is also possible to use third-order nonlinearity, 

and a DC voltage to produce second harmonic with a nonlinear process known as electric-
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field induced second-harmonic (EFISH), using      
   

             , which is especially 

interesting for the high-speed electrical control of the second-harmonic signal [402,403]. 

Nonlinear optical processes have various applications in integrated photonics and 

plasmonics. All optical modulation and switching, using career-induced nonlinear effects, 

such as two-photon absorption, free-carrier dispersion, etc., as well as Kerr nonlinearity,  

have been demonstrated in photonic waveguides and microcavities  [391,404,405], and 

plasmonic nanostructures [406] [407,408]. Ultrafast electro-optic modulation of second 

harmonic signal using the EFISH  process has been shown using plasmonic nanocavities 

[409,410]. Generation of ultrashort pulses in deep ultraviolet (DUV) and extreme ultraviolet 

(EUV) [411-414], nonlinear near-field imaging using FWM at a metallic nanotip [415-417] 

and surface-enhanced coherent anti-Stockes Raman (SECARS) spectroscopy, which we 

discussed in Ch.  , are among other applications of nonlinear effects in plasmonic 

nanostructures.  Other notable optical processes demonstrated using photonic and plasmonic 

nanostructures include generation of frequeuncy combs [392], optical solitons [418,419] and 

optical supercontinuum [420,421] with many potential applications. 

 

6.2 Nonlinear Plasmonics 

6.2.1 Second-order Nonlinearity in Plasmonic Nanostructures 

From the Lorentz model of the atom, which describes an atom by an anharmonic 

oscillator, it can be deduced that second-order nonlinearity vanishes1, i.e.       , in 

centrosymmetric media (a medium with inversion symmetry) [400]. The break of inversion 

                                                   
1
 In general, all even-order nonlinearities vanish in a centrosymmetric medium. 
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symmetry can occur due to the asymmetry in atomic structure, which results in “bulk” 

second-order nonlinearity. For instance, the atomic structure of hexagonal TMDCs shown 

Fig.      lacks inversion symmetry, hence 2D TMDCs with an odd number of layers show 

strong second-order nonlinearity [422-426]. Inversion symmetry can also be broken at the 

boundary of two media, leading to surface second-order nonlinearity, which is especially 

strong at the boundary of metals and dielectrics. This type of second-order nonlinearity is 

particularly useful in molecular sensing. The adsorption of any molecule at the surface, 

Fig.     , can significantly change the surface second-order susceptibility,   
   

, and hence 

the SHG collected from the surface can be used to record molecular binding and even the 

orientation of molecules at the surface [427-429].  

Most plasmonic nanostructures are composed of   ,    and    which have 

centrosymmetric atomic structures. Hence,   
   

 is the primary source of second-order 

nonlinearity intrinsic to plasmonic nanostructures, in the absence of other nonlinear materials 

[430-433]. Plasmonic nanostructures can also be used to enhance the external second-order 

nonlinearity of other materials in their local field [434-437]. Additionally, the asymmetric 

distribution of local fields in plasmonic nanocavities [438-440], e.g. in asymmetric nanocup 

shown in Fig.     , and magnetic resonance in a magnetic metamaterials [441,442] is also 

known to be other sources of second-order nonlinearity unique to plasmonic nanostructures.   

6.2.2 Other Nonlinear Effects in Plasmonic Nanostructures 

  ,   ,    and graphene, as the most common plasmonic materials, have relatively 

large      and third-order nonlinear processes have been shown using intrinsic      of 

plasmonic nanostructures made of these materials [443-448]. Similar to the case of second-
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order nonlinearity, plasmonic nanostructures can also be used to enhance the third-order 

nonlinear response of other materials [449-451]. 

 

Figure 34 - Bulk second-order nonlinearity vs. surface second-order nonlinearity. (a) Atomic 

structure of monolayer hexagonal TMDC from the top: the crystal lattice has no inversion center 

(image reproduced with permission from Ref. [452]) (b) Breaking  inversion-symmetry at the 

interface of two materials, e.g. Au and air. (c) Breaking inversion symmetry at the nanoantenna-level 

in asymmetric nanocup (image reproduced with permission from Ref. [438]), (d) Two-photon 

photoluminescence process  

Two-photon photoluminescence (TPPL), shown in Figs     , is another commonly 

observed nonlinear process in plasmonics, which is due to the interband transition in metals 

[453,454]. As a result of the bright and broadband TPPL in the visible region, plasmonic 

nanoparticles are sometimes used as imaging tags [455],[242] or as two-photon gain 

materials [456]. Besides TPPL, hot-electron intraband transition, i.e. the radiative decay of 

hot-electrons induced within the metal [457], is another optical process that results in the 

emission of the light continuum in visible and NIR range [458,459]. The hot-electrons 

generated in plasmonic nanostructures can also be transferred to other material for 
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applications such as photodetection [189,460,461], photon upconversion [462] and structural 

change in phase-change materials [189]. 

 

Figure 35 - Typical acquired spectrum in SHG measurements from plasmonic nanostructures. This 

particular spectrum has been acquired from an    nanoantenna array with a femtosecond laser 

tuned at       . The wide-band spectrum centered at        corresponds to the TPPL of    and 

the sharp peak at        (precisely     of the pump wavelength) is the second harmonic signal. 

6.2.3 Phase-Matching and Quasi-Phase-Matching 

From the coupled wave equation for SFG, it can be shown that the intensity of second 

harmonic (SHG is a special case of SFG) in a medium depends on the wavevector mismatch, 

         , where    and    are the momenta of the pump and SHG signals with 

frequencies    and       , according to                       , with   being the 

interaction length [400]. Hence, the efficient generation of the output field requires that 

    , or equivalently             known as phase-matching condition. But, this 

condition is difficult to achieve in normal materials due to frequency dispersion of the 

refractive index. In nonlinear crystals often used in free-space nonlinear optics, the most 

common procedure is to use the material biriferegence, i.e. dependence of refractive index on 

the direction of polarization, to achieve phase-matching.  

Quasi-phase-matching is an alternative technique that can be used whenever phase-

matching is not feasible, which relies on the periodic structuring of the material to 

  

  SHG 
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360 nm 

TPPL 
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compensate for the momentum mismatch. The basic idea is that in a nanostructure with 

periodicity,  , the grating wavevectors,        ⁄ , with            is added to the 

momentum of the pump photons and hence the modified wavevector mismatch is: 

           
  

 
 (6.5) 

By setting      and assuming first-order interaction (    ), which is desirable in 

most applications, the optimal period of the nanostructure would be               for 

SHG. The quantity          is often called the coherence length of nonlinear process and 

depends on the material and pump frequency. Quasi-phase-matching can be achieved for 

other second and third order nonlinear processes in a similar fashion. Alternatively, quasi-

phase-matching can be explained using photonic bandstructure, which is discussed in the 

next section. For simplicity, we refer to quasi-phase-matching as phase-matching, in the rest 

of this chapter. 

 

6.3 Phase-Matched Nonlinear Plasmonic Nanostructure 

The effect of phase-matching (or  -matching) between the fundamental and nonlinear 

output signal is often ignored in plasmonic nanostructures, since the interaction region in 

plasmonic nanostructures is usually quite small (~20    in visble), and the two waves 

experience a small change while propagating through this region. However, in certain 

plasmonic nansturctures, including structures that support LP waves, the fundamental and 

output signal can propagate through the medium over several periods and the effect of  -

matching on the amplitude of the nonlinear signal can become significant. Previously, LPs 

have been used to control and enhance high harmonic generation [432,440,442,463,464] 



 96 

[465] and four-wave mixing [466] in plasmonic nanostructures. However, a comprehensive 

study of the effect of phase-matching in nanostructures that support propagating LP modes is 

lacking in literature, and is the subject of our study in this section. Figure    shows the 

schematic view of the nanostructure, we have chosen for this study, which is quite similar to 

the structure used in Ch.  , but coated with a dielectric cladding, PMMA or flowable oxide 

(FOx), to increase the sharpness and hence the   of the Fano resonance peak associated with 

LP modes.  

 

Figure 36 - Schematic view of bilayer nanostructure used to study the effect of phase-matching 

between the excitation light and LP waves and between the fundamental and second-harmonic LP 

waves 

Dispersion of this nanostructure with         ,          and FOx cladding, i.e. 

            and             for fundamental mode and second-harmonic, respectively, 

are shown in Figs.       . 

 

z 
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Figure 37 - Band-diagram of the nanostructure at the sweeping range of the excitation pump and the 

SHG signal. (a) band-diagram at the fundametnal mode frequency range for          (c) band-

diagram at the SHG range for         . The straight white lines are light-line of      and    . 

To satisfy the quasi-matching-condition, we should find points in the dispersion where 

        and        . To find these points, we have superimposed            and 

           in Fig.   . The bands marked by blue lines show the dispersion relation of the 

fundamental mode stretched by a factor of 2 in the direction o f   , i.e.           ; all the 

other bands show the dispersion relation fo the second harmonic signal compressed by a 

factor of 2 in the direction of frequency; i.e.            . The phase-matching occurs at the 

two intersections, which are approximately at:  )             and            

(         ) and  )             and            (         ). We expect to 

see two peaks in angle-resolved SHG generation, which we discuss in the next section, 

corresponding to these two phase-matched   and frequency combinations. 
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Figure 38 - Quasi-phase-matching between FM and SH LP modes for         . The bands 

shown by blue line show the dispersion relation of the fundamental mode stretched by a factor of 2 in 

the direction o f   , i.e.           ; all the other bands show the dispersion relation fo the SH signal 

compressed by a factor of 2 in frequenc; i.e.            . The phase-matching occurs att the 

intersection of the two dispersions, where          and       , shown by blue dots. 

 

6.4 Preliminary Experimental Results 
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The first prominent effect in SHG using a periodic nanostructure is the effect of LP 
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hence the normally impinging excitation efficiently couples to LP mode. At the LP band-

edge, the dispersion relation is also quite flat indicating small   . Hence, the LP waves in this 

region are essentially stationary and can induce a large enhancement in SHG. Figures        

show the SHG measurement and simulation results for three different array with the 
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Fig.     . There is a notable difference between the measured reflection spectra of Fig.      

and the simulated results of Fig.     , which is the significant widening of Fano resonance at 

the LP band-edge. This effect is well-documented in literature and is attributed to the 

sensitivity of this type of resonance to refractive index asymmetry between the substrate and 

cladding and can be improved by better refractive index matching [300].The results presented 

in this part show the effect of band-edge LPs at the pump frequency in SHG enhancement, 

but SHG can also be enhanced by the band-edge LPs at the second harmonic frequency, 

which we will see in the next section. 

 

Figure 39 -  Linear and nonlinear response of the bilayer array at normal incidence. (a) SHG signal 

collected from the array with                      and         , (b) Simulation results 

for the SHG signals collected from these arrays. (c) experimental reflection spectra of these array 

under normal incidence, (d) Simulated reflection spectra 
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6.4.2 Effect of Phase-Matching between Fundemental and Second-Harmonic LPs 

In order to investigate the effect of phase-matching on the intensity of the second 

harmonic signal, we need to be able to change the excitation angle. Figure    shows the  

schematic view of the angle-resolved SHG measurement setup. First a tunable femtosecond 

            laser is used to generate the excitation pulse with peak intensity sweeping from 

    to       . An attenuator with the optical density of      is used to reduced the 

pump power. The size of the beam coming out of the pulsed laser is reduced using a narrow 

slit placed placed immediately after the attenuator.  

The key component of this setup is a moving mirror mounted on a micrometer 

controlled stage, which makes a lateral translation    of  the laser beam with respect to the 

center of the objective lens. The refraction of the laser beam by the objective lens (   

     and magnification of    ) turns this lateral translation into an excitation angle   and 

hence the    of the excitation light can be controlled. In the collection path two dichroic 

mirrors are placed, which can be activated independently to divert all or part of the second 

harmonic signal plus the reflected pump towards the spectrometer or the imaging camera. In 

the part of the collection path ending to the spectrometer, a short-pass filter is placed to filter 

out the reflected pump before the spectrometer to reduce the stray light.  



 101 

 

Figure 40 - Schematic view of angle-resolved SHG measurement setup. The moving mirror is used in 

this setup to translate the narrow-beam coming out of the slit off the center of the objective lens. This 

lateral translation is turned into the excitation angle or    after  

The results of angle-resolved SHG measurements are presented in Fig.   , which 

shows the amplitude of the SHG signal measured with the pump wavelength varying from 

    to        and the excitation angle from   to       . Four important features can be 

seen in this heatmap:  ) Peak in SHG due to LP band-edge over the second harmonic,    ) 

Two peaks in SHG due to phase-matching,    ) Peak in SHG due to second LP band-edge 

over the fundamental mode,   ) Peak in SHG due to first LP band-edge over the fundamental 

mode. 
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Figure 41 - Evolution of SESHG signal vs. excitation angle and pump wavelength,  (a) Intensity of the 

SH signal acquired from angle-resolved SHG measurements, showing four important features:  ) 

Peak in SHG due to LP band-edge over the SH,    ) Two peaks in SHG due to phase-matching,    ) 

Peak in SHG due to second LP band-edge over the FM,   ) Peak in SHG due to first LP band-edge 

over the FM, (b) Evolution of the SESHG peak at 470 nm near the first fundamental mode lattice 

plasmon band-edge, (c) Evolution of the SESHG peak at 440 nm near the second fundamental mode 

lattice plasmon band-edge, (d) Evolution of the SESHG peak at 420 nm near the QPM wavelengths, 

(e) Evolution of the SESHG peak at 390 nm near the second harmonic lattice plasmon band-edge.  
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CHAPTER 7. 

PLASMONIC LASING IN TWO-DIMENTIONAL 

SEMICONDUCTORS 

One of the most prominent optical properties of semiconducting 2D TMDCs, as we 

discussed in Ch.    is the high photoluminesence quantum yield dominated by Mott-Wannier 

excitons in their direct bandgap [155,156]. This spontaneous emission process can be 

enhanced through the Purcell effect, discussed in Ch  , by embedding 2D TMDCs within 

photonic or plasmonic nanostructures [165-167]. A more attractive case would be the 

observation of stimulated emission or lasing in 2D TMDC by their intergration in integrated 

optical cavities, which could be used as an on-chip coherent light source. Even though, lasing 

action has been shown with some level of success in TMDCs embedded within photonic 

crystal cavities and microdisk resonators [169-171], development of compact and low 

threshold plasmonic nanolasers has been elusive thus far.  

In this chapter, we discuss a novel plasmonic laser composed of a 2D TMDC integrated 

within a plasmonic nanocavity. We start by an introduction into theory of lasing in section 

     In section    , the results of our measurements for temperate-dependent PL of two 

different monolayer TMDCs, which constitute the gain medium of our proposed nanolasers 

are presented. In section    , we discuss two topics that are crucial for the design of our 2D 

TMDC-based nanolaser: surface plasmon lasers, also know as spasers, and plasmon-exciton 

interaction in plasmonic nanostructures coupled to semiconductors. In section    , we present 

the design and fabrication of an optically-pumped nanolaser incorporating a monolayer      
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as its gain medium, and finally in section    , we discuss the design and fabrication of our 

proposed electrically pumped TMDC-based plasmonic diode laser. 

 

7.1 Population Inversion, Stimulated Emission and Lasing Action 

For most gain media, the lasing action in a photonic or plasmonic cavity can be 

described by the four-level quantum system depicted in Fig   . The molecule or atom in the 

gain medium is assumed to be initially at ground state, | ⟩. The excitation field or pump 

induces the absorption of a photon with energy      and the medium transitions from | ⟩ to 

the excited state, | ⟩. After a fast non-radiative transition from the | ⟩ to the upper laser level 

| ⟩, a photon with energy      is emitted and the gain medium transitions to the lower laser 

level | ⟩. Another fast non-radiative transition occurs at the end, from state | ⟩ to the state 

| ⟩. The time evolution of the population density of molecules or atoms at different energy 

levels can be described by the “rate equation” model [467]. The rate equations for this four-

level system can be written as:  

  ̇                 (7.1) 

 ̇                           ⁄  (7.2) 

  ̇                           ⁄  (7.3) 

  ̇                 (7.4) 
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where    is the population level for state | ⟩ 1,   is the pumping rate,        
   is the rate of 

transition from state | ⟩ to | ⟩ (    is the transition lifetime),   is the laser cross-section and   

is the laser intensity (    ). The absorption and spontaneous emission processes are taken 

into account by adding the terms               ⁄  in Eqs      . “Population 

inversion” occurs when      . At the steady state (  
̇   ) and weak-pumping regime 

(         ), it can be shown that in the four-level system described by Eqs.      , the 

relative population inversion ratio defined as     
     

 
 

 

     
 , assuming             

and small  . 

 

Figure 42 - Four-level quantum model of the lasing action. | ⟩ and | ⟩ in this model are  ground and 

excited states associated to the absorption prcess with energy     . | ⟩ and | ⟩ are the laser states 

associated to the emission process with energy     .  

In a photonic or plasmonic cavity, it can be shown that the simplified rate equations for 

the carrier (exciton) population,  , and photon population,  , can be written as 2 [468,469]: 

 ̇                   (7.5) 

                                                   
1
 An additional condition is the conservation of total population density, i.e.     ⁄    with      
        . 

2
 To simplify the equations, we have ignored the effect of exciton population density where the gain 

medium becomes transparent    , as well as the non-radiative decay rate of excitons    , in Eqs.      . To 

take     into account, the term       should be replaced by             in both equations, and     can be 

taken into account, by changing the second term in Eq.     into           . 

| ⟩ 

| ⟩ 

| ⟩ 

| ⟩ 

 𝜔𝑒𝑥  𝜔𝑒𝑚 

ground state 

excited state 
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 ̇                          (7.6) 

where   is the pumping rate, (total)     is the spontaneous emission rate (equal to     in the 

four-level model),      
      is the spontaneous emission coupling factor with    

  being 

the rate of spontaneous emission into the cavity (  is a figure-of-merit of the cavity), 

     
   is the decay rate of photons in the cavity (   is the lifetime of the cavity resonance), 

the term       in Eqs.       represents the “stimulated emission”, it is proportional to     

with the coefficient  , and   is the cavity confinement factor.  

Stimulate emission is a key effect leading to the lasing action (also used in optical 

amplifiers), in which photons in the cavity induce the decay of electrons from excited state to 

ground state. Whereas, in spontaneous emission, the transition occurs without the influence 

of external radiation [467]. The “lasing threshold” is the onset of lasing action, defined as the 

condition for which the stimulated emission equals the spontaneous emission; i.e.      . 

The lasing action is often preceded by the amplified spontaneous emission or Purcell effect. 

Once the lasing threshold is surpassed, the stimulate emission will be dominant, and the 

spontaneous emission will be greatly suppressed (it is responsible for the weak and 

broadband background emission of the lasers). This leads to “linewidth narrowing”; one of 

the signatures of lasing action in optical cavities, meaning that in continuous-wave (CW) 

lasers the FWHM of the laser-line is much smaller than FWHM of the cavity resonance. As a 

result of the cavity resonance, the laser emission also has high spatial and temporal (or 

phase) coherence, i.e. the fields have strong correlations at different locations and at different 

instances of time. The linewidth of a CW laser is related to its temporal coherence. A narrow 

linewidth is an indication of high temporal coherence. 
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7.2 Temperature-Dependent Photoluminescence of 2D TMDCs 

An integral part of any laser is a gain medium which converts the electrical or optical 

pump to emission photons with sufficient quantum yield (QY) to initiate lasing action. In a 

TMDC-based nanolaser, the intrinsic PL of the TMDC would be the source of spontaneous 

emission, so it is crucial to characterize the PL spectra of the monolayer TMDCs to design 

our TMDC-based nanolasers. In TMDCs, as any other semiconductor, the energy bandgap 

and hence the PL is highly temperature dependent [470]. In general, by decreasing the 

temperature, three main effects can be observed in the PL of TMDCs:    The peak intensities 

increase significantly, which shows an increase in QY,    the PL peaks generally become 

sharper, which means narrower gain profile for the laser,    For the direct-gap luminescence 

peaks associated with excitons and trions, a monotonic blue-shift is usually observed.  

We have measured the PL spectra of two monolayer TMDCs,      and       grown 

using CVD technic [471-473]. Figures        show the PL of these two TMDCs at room 

temperature (blue curves) and at      (red curves). As we can see in Fig     , three main 

peaks can be observed in the PL curve of      at low temperatures:  ,   , and  . Based on 

the available reports in literature, we assign    to the A-exciton which is the main excitonic 

level in TMDCs and   to the B-exciton, which is a signature of multi-layer TMDCs 

[155,474]. We also speculate that the peak L could be assigned to either bound excitons, 

whose energy has been reduced by the additional binding defects either due to impurity or 

due to the substrate [475]. For      , an additional peak,    is observed, which can be 

assigned to negative trions [476]. Figures        show the progression of PL in      and 

      by decreasing the temperature, showing an increase in QY, sharpness and a 

monotonic blueshift for exciton and trion energies, i.e.   ,   , and   peaks. 
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Figure 43  - Temprature-dependant gain profile of 2D      and      . (a) PL of monolayer      

at        and      (b) PL of monolayer       at        and     , (c) Tempreature dependedance 

of PL spectum of  monolayer      (d) Tempreature dependedance of PL spectum of  monolayer 

      

 

7.3 Plasmon-Exciton Coupling and Plasmonic Nanolasers 

Low threshold and compact lasers with high direct modulation speeds are of particular 

interest in applications such as high speed communication, information processing and 

optical interconnects. Lasing action has been previously demonstrated in large integrated 

photonic microcacvities, such as microdisk and microrings [477-479] with high Q-factor, but 

low field confinement, resulting in relatively high lasing thresholds. The lasing threshold can 
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be to some extent improved using PhC cavities with smaller optical mode volume    and 

simultanously high Q-factors  [480,481]. However, the overall footprint of PhC microcavities 

is still quite large and the    in these resonators is still bound by the diffraction limit. In 2D 

materials which is the focus of this chapter, lasing has been observed using both microdisk 

resonators [169,171] and PhC microcavities [170].    

Surface plasmon lasers, also known as spasers, can potentially reach lower lasing 

thresholds in much smaller footprints [4,482]. Besides the potential applications in integrated 

photonic and plasmonic circuits, spasers can be used as ultrasensitive active plasmonic 

sensors, utilizing the high sensitivity of the stimulated emission of plasmons to the 

environment [483,484] or as high-contrast labels in biological imaging. [485]. Lasing action 

has been demonstrated in a number of different plasmonic nanostructures [5,322,486-490] 

using bulk semiconductors or organic dyes as the gain medium.  

 

Figure 44 - Lasing action in low-dimensional materials. (a) An example of a plasmonic laser 

comprosed of a     nanowire coupled to a    film (Image reproduce with permission from Ref. [5]). 

(b) An example of TMDC-based laser composed of a monolayer     coupled to     microdisk 

(Image reproduced with permission from Ref. [169]) 

Demonstration of surface plasmon lasing in 2D materials has however been elusive 

thus far and the value of Purcell enhancements reported in literature from plasmonic 

structures such as plasmonic nanoantennas has been less than expected. [491-493]. This 

could be attributed to the strong coupling between excitons in TMDCs and plasmons in 

(a) (b) 



 110 

nanoantennas and the formation of plasmon-excitons, also known as plexcitons [494,495]. 

One of the signatures of strong exciton-plasmon coupling is vacuum Rabi splitting (VRS)1 , 

which has been observed in high      microcavities coupled to low-dimensional materials, 

such as quantum dots and quantum wells [496,497].  

Strong exciton-plasmon coupling and VRS has also been observed in plasmonic 

nanoantennas coupled 2D semiconductors [498-501]. While the strong-coupling between 

excitons and plasmons or photons can be attractive for quantum applications, including the 

generation of single photons [502], entangled photons [503], exciton-polariton condensates 

[197,208] or the development of quantum logic devices [504], for the purpose of lasing, the 

system needs to operate in the Purcell enhancement or weak coupling regime. In fact, it has 

been shown that the strong coupling between excitons and photons can lead to the inhibition 

or quenching of spontaneous emission [502,505].  

 

7.4 Monolayer TMDC Plasmonic Nanolaser 

This section is dedicated to the design and demonstration of a plasmonic nanolaser 

composed of a monolayer TMDC embedded within a plasmonic nanocavity. Although, 

modest enhancement of spontaneous emission in 2D TMDs has been demonstrated 

previously using a variety of plasmonic nanostructures, the reported numbers of enhancement 

factor has been consistently below what is predicted by theory and achieving stimulated 

emission has proven to be elusive. This could be due to a number of reasons:    the hybrid 

excitonic-plasmonic systems would operate in strong coupling regime, which is not ideal for 

                                                   
1
 Vacumm Rabi splititng occurs when the coupling strength between two same energy oscillators, e.g. 

plasmons and exciton, exceeds their mean decay rates and as a result the coupled system has two 

eigenstates with a splitting in energy.  
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lasing,  ) the thermal effects at the hotspots of plasmonic nanostructures, limiting the pump 

power,  ) the saturation of the optical gain in small regions of TMDCs, resulting in an 

insufficient optical gain to compensate for the intrinsic loss in plasmonic nanostrcutre. As we 

saw in Ch.  ,  the Purcell factor  , of a quantum emitter weakly coupled to a photonic or 

plasmonic cavity, depends on both quality factor and the confinement of electromagnetic 

fields (  ). In a plasmonic nanostructure, the Q-factor is typically quite modest, and the field 

confinement at hotspots plays a more significant role. However, extremely high field 

confinement can result in strong coupling with excitons and plasmons as we discussed in the 

previous section, which deviates the system from the Purcell enhancement regime, or 

undesired thermal or gain saturation effects. 

 Here, we present the lasing action in a monolayer TMDC embedded within a 

plasmonic nanocavity that avoids all these shortcommings using a careful design that 

balances the two key elements in Purcell enhancement: Q-factor and   , as we will describe 

in the rest of this chapter. 

7.4.1 Design and fabrication of the Plasmonic Nanocavity 

Figure    illustrates the basic design of plasmonic nanoslit-nanogroove (NS-NG) 

nanocavity comprised of a deep V-shaped nanoslit (NS) sandwiched between two sets of 

shallowly-etched nanogroove (NGs) all carved inside a thin layer of   . The highest value of 

PL enhancement reported from TMDCs has been reported from a NG structure, which is the 

basis of our design [165]. Each individual NG in the left and right halves of the nanostrcutre 

supports a relatively wideband local resonance that is confined to its edges, but is loosely 

coupled to the resonant modes in the adjacent NGs resulting in a laterally propagative LP 

mode in the absence of the nanolsit. The NS in the middle of the nanocavity has a larger 
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depth and is etched to the bottom of    layer in order to electrically isolate the two parts of 

the nanocavity, which is needed for electrical pumping, as we will discuss in the next section. 

Due to the larger size, resonance wavelength is larger in the NS compared to NGs, and hence 

the laterally propagating LP mode at the NS resonance wavelength is partially reflected by 

the two periodic NWs, serving as two Bragg reflectors confining the light to the NS in the 

middle of the cavity. As a result, using smaller loosely coupled plasmonic nanocavities, a 

larger plasmonic cavity can be designed with narrower linewidth, at the cost of a slight 

increase to the overall mode-volume. 

 

Figure 45 - Schematic view of NS-NG plasmonic nanocavity, showing the fixed design paramaters: 

   thicknes         , groove depth           and slit depth          , and the design 

paramaters used in optimization: Bragg reflectros perdiocity   and groove depth   . 

The plasmonic nanolaser is formed by transferring a layer of TMDC on top of the 

nanostructure shown in Fig.   . The critical geometrical parameters in this structure are    

film thickness   fixed at       , NG and NS period  , NS depth also fixed at        (for 

electrical isolation), NG depth   , NG width    fixed at       , and NS width    also 

fixed at       . The valuse of    and    are chosen based on the minimal lateral feature 

size that could be practically achieved in focused-ion beam (FIB) milling of   .  

The first step is the design of the nanolaser is to optimize the nanocavity such that its 

strongest resonance peak would have an excellent spectral overlap with the gain profile of 
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TMDC (low temperature PL lineshape) and high values   at its high gain region. For 

instance, for     , the low temprature PL peaks at       , so defining a gain bandwidth of 

     , we optimize the cavity such that it would have strongest resonance with the range of 

             . Similarly, the high temperature gain region for      is chosen to be in the 

range of              . 

Setting fixed geometrical parameters aside,    and   are the two design paramters for 

optimizing the cavity resonance, and choosing the enhancement factor at point A (middle of 

NS and         above the top    surface) shown in Fig.   ,    as the optimization 

parameter, we optimize the nanocavity with the presence of TMDC, which is assumed to be 

       thick with the complex refractive index extracted from Ref. [506], by sweeping the 

values of   and   , and recording the maximum of    in the gain region from numerical 

simulations. In the case of     , this optimization problem results in the heatmaps shown in 

Fig.       , corresponding to the high temperature (HT) and low temperature (LT) PL gain 

regions. From these two heatmaps, we conclude that for monolayer      the NS-NG 

nanocavity with          and          is optimal and at HT, and the cavity with 

         and          is optimal at LT.  
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Figure 46 - Optimization of NS-NG nanolaser with monolayer      as the gain medium. (a) 

Heatmap of total enhancement factor    at         in        for the cavity with optimized design 

parameters to operate at       :         ,         . The gain region of monolayer      at 

       is assumed to be              . (b) Heatmap of the total enhancement factor    at         

in        for the cavity with optimized design parameters to operate at     :         ,    

     . The gain region of monolayer      at      is assumed to be              . 

The spectral response of these optimized resonators is shown in Figs.       . The blue 

curves in these figures show the spectral response for the unloaded cavities (without     ) 

and the red curves correspond to the loaded cavities (with a monolayer     ). The dashed 

curves in the two figures show the (qualitiative) gain profile of single-layer      at their 

respective temparatures. In the case of cavity designed for the nanolaser operating at       , 

the Q-factor and   are higher in the loaded cavity, compared to the unloaded cavity (  
  

     
     compared to            ), which at first look seems counter-intuitive, 

given the lossy nature of TMDCs. But, it should be noted that the optimization has been 

performed for the loaded cavities, hence the nanocavity that is optimal with TMDC could be 

sub-optimal without it, so it is in fact possible to have a lower Q and   in the unloaded with 

the unloaded cavities. In the case of the cavity designed for the nanolaser operating a     , 

however, Q and   are lower in the case of loaded cavities (  
       

     compared to 

           ). The      layer also induces a red-shift in the      from     to        
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for the cavity designed for        operation, and from     to        for the cavity 

designed for operation at     .  

PL in 2D TMDC orginate from the bright in-plane excitons to the most part [507], which 

only respond to the in-plane components of the electric field1. Hence, only the in-plane 

compenent of electric-field will affect the PL enhancement and lasing. The distribution 

profile of the lateral enhancement factor,              at the               and at the 

excitation pump,             are shown in                (the spectra of             

are for the total enhancement factor, i.e.  ). 

 

Figure 47 - Spectral response and    distribution of the     -loaded nanocavity. (a) Total 

enhancement factor   at         in        for the cavity with optimized design parameters to 

operate at       :         ,         (             ,     
          ) (b) Total 

enhancement factor   at         in        for the cavity with optimized design parameters to 

operate at     :         ,         (             ,     
       ), (c)    distribution 

                                                   
1
 Dark excitons with out-of-plane effective dipole have also bveen observed in some TMDCs such as     

and     , which can couple to out-of-plane compenent of the electric field [508-510]. 
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profile at               for the cavity design of          (Optimal design for      at     ) (d) 

   distribution profile at            , for the cavity design of          (Optimal design for 

     at     ) 

The fabrication of the NS-NG plasmonic nanocavity, shown in         , has been 

performed using FIB milling (FEI Nova Nanolab 200 FIB/SEM). First, a       -thick layer 

of    is deposited on a silicon wafer with      of thermal      grown on top. Then, two 

aligned patterns are etched consequently on the thin gold film: first pattern forming the deep 

NS, shown in Fig.     , and the second patten the NGs of the left and right Bragg reflectors. 

The triangular shape of the NS and NGs is due to the natural etching profile of FIB, the 

lateral dimension of NS and all NGs is       , which was chosen based on the practical 

resolution limit of FIB.  

 

Figure 48   Fabrication of the NS-NG plasmonic nanocavity using FIB milling. (a) SEM image of the 

NS-NG cavity fabricated for nanolaser operating at       , using monolayer CVD     . (b) Dark-

  𝜇𝑚  
  

   𝜇𝑚  
  

Bragg 
  

NS-NG Cavity 
  

    𝑛𝑚  
  

(a) 

(b) (c) 



 117 

field optical micrographe of the same structure and a Bragg, (c) Up-close SEM view of the NS etched 

deeply next to NG Braggs  

The last step in the fabrication of the plasmonic nanolaser is the transfer of TMDCs, 

which has been accomplished using two different methods, based on the type of TMDC 

layer. In the first method, discussed in this section, the wet-transfer of CVD-grown 

monolayer TMDC was done physically under an optical microscope.  

First, by immersing the      substrate in buffer oxide etchant (BOE) solution, the 

     flakes are released, which float on the surface of the solution. Then, a flexible 

polycarbonate sheet with a small opening window was prepared and used to fish an 

appropriately sized flake from the solution. After taking out the polycarbonate sheet from 

BOE, the flake was fixed in its place using tapes and was gently immersed in water to 

remove BOE. The small window carved within the polycarbonate sheets makes the      

flakes float on air with no VdW attachment to the polycarbonate sheet which is useful for 

material transfer. Next, the polycarobonate sheet was put on top of the substrate containing 

nanocavity under an optical microscope to aligned the      flake with the nanostructure. 

Finally, the      flake is detached from the polycarbonate sheet using a tweezer and the 

sample was baked at       for        to evaporate water and activate the VdW force 

between the TMDC and the top surface of the nanostructure. An SEM image of the sample 

after NS-NG cavity designed after the transfer of CVD-grown monolayer      using this 

method, is shown in Fig.   . This method is only useful with large TMDC flakes that are 

seen in CVD-grown 2D TMDCs. In the case of exfoliated TMDCs, the monlayer regions 

tend to be very small and a different method is used for material transfer, which we will 

describe in the next section. 
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Figure 49 - SEM image of      plasmonic nanolaser after material transfer. 

While the nearfield enhancement factor spectra shown in       , are useful to 

predict the Purcell factor of the cavity, in practice the cavity resonance needs to be 

characterized using its far-field spectral response, i.e. reflection or transmission. 

Figures        show the simulated reflection spectra of       nanolasers designed to 

operate at        and     . 

 

Figure 50 - Reflection spectra of the designed     -based plasmonic nanolasers. (a) Reflection 

spectrum of the laser desinged to operate at       , (b) Reflection spectrum of the laser desinged to 

oeprate at     . 
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7.5 Electrification of Monolayer TMDC Plasmonic Nanolaser 

While optically-pumped plasmonic lasers have been demonstrated using a number of 

nanostructures and material platforms, electrically-pumped plasmon lasing has been so far 

out of reach. In this section, we proposed an electrically-pumped monolayer semiconductor 

plasmonic diode laser using Schottkey-barrier junction between    and TMDC, building on 

the design optically-pumped nanolaser presented in the previous section. An integral part of 

any semiconductor diode laser is a light-emitting diode (LED): a heterostructure or junction, 

in which the radiative recombination of electrons and holes, or electroluminescence occurs.  

7.5.1 Two-dimensional TMDC light-emitting diodes 

LEDs were among the first optoelectronic devices that have been demonstrated using 

2D TMDCs. Two main heterostructures types have been proposed to create LEDs in 2D 

TMDCs [511]:    vertical heterostructures,  ) lateral heterostructures. Since chemical doping 

of 2D TMDCs is difficult, the heterostructures are typically formed using two different 

materials or by applying electrostatic gating in a sheet of a TMDC to modify the Fermi levels 

locally to form lateral heterojunctions.  

In the vertical heterostructure design typically either two different types of TMDCs, or 

one TMDC and a different 2D or bulk material, e.g. graphene,         or doped   , are 

stacked vertically to form a vertical     junction shown in Fig.      and the photons are 

generated by the vertical transfer and recombination of the electron and holes [164,452,512-

514]. However, in lateral heterostructures design, shown in Fig.     , typically only one type 

of TMDC is used, and electrostatically-configured lateral     junction is fromed using two 

independent voltage gates to tune the Fermi level locally and form a horizental     

junction   [162,515,516]. In pronicple, lateral heterostructures of two different 2D TMDCs 
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can also be used to make LEDs [517,518], but to this date there is no report of such LED 

device.  

 

Figure 51 - Two different type of LED designs using 2D TMDCs. (a) LED design using a vertical 

heterostrcutre (image reproduced with permission from Ref. [511]), (b) LED design using horizental 

heterostrcutre (imege reproduced with permission from Ref. [511] 

Aside from lateral and vertical heterostructures, 2D LEDs have been designed using 

single defects in monolayer TMDC sheets [519], and by using the metal-semiconductor 

Schottky-barrier junction between the contact metals and the TMDCs  [163,520-522]. In this 

method, which is particularly suitable for plasmonic devices, the electroluminescence occurs 

due to the hot carrier process. At high bias voltages, the electrons injected into the conduction 

band experience a strong band bending at the TMDC-metal contact shown in Fig.   , and 

excitons are generated via impact excitation. This type of junction has been previously used 

for photodetection using plasmonic nanostructures [460,523] and has been shown 

theoretically to be also suitable for electrically-pumped amplification of surface plasmons at 

the levels that can fully compensate for the propagation loss and achieve stimulated emission 

of SPPs with relatively small values of threshold current [524-526]. 

For instance, for the case of    nanocavity and monolayer      , which is studied in 

the next section, given the workfunction of    (            [521]) and       ((     

        from Table  ), the Schottkey-barrier height     is approximately         , 

meaning that light emission occurs due to the scenario depicted in Fig.      (     ). 

(a) 
(b) 
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Figure 52 - Metal-semscondcutor Schottkey-Barrier diode in    and 2D TMDC (   ) junction. (a) 

Schottkey-Barrier diode with      and        ,    and    being the    and TMDC (   ) 

voltage, (b) Schottkey-Barrier diode with      and         

 

7.5.2 Design and fabrication of       plasmonic diode laser 

First, we modify the nanocavity design presented earlier for optically-pumped 

plasmonic lasing to for       as our 2D TMDC of choice. Similar to the case of     , we 

optimize the NS-NG plasmonic nanocavity by searching over the space of periodicity   and 

NG depth   , and keeping all other parameters fixed. Figure    shows the heatmaps for    at 

        shown in        for the two nanocavities designed to operate at      and       . 

At     , the high gain region of       is chosen to be in the range of              , and 

at        in               range. This optimization results in two solutions in both cases, 

one of which is chosen by comparing the quality factors. 

(a) (b) 
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Figure 53 - Optimization of NS-NG nanolaser with monolayer       as the gain medium. (a) 

Heatmap of the total enhancement factor    at         in Fig.    for the cavity with optimized 

design parameters to operate at       : 1)         ,        , 2)         ,        . 

The gain region of monolayer       at        is assumed to be              .  (b) Heatmap of 

the total enhancement factor    at         in Fig.    for the cavity with optimized design 

parameters to operate at     : 1)         ,        , 2)         ,        . The gain 

region of monolayer      at      is assumed to be              . 

The spectral response of the optimal NS-NG nanocavities designed for the operation at 

the HT and LT are shown in Figs.       , respectively, showing a high Q-factor resonance 

with high    and an excellent spectral overlap with the gain at respective temperatures. The 

distribution profile of the lateral enhancement factor,              at             and 

at the excitation pump,             are shown in Figures       . 
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Figure 54 - Spectral response and    distribution of the      -loaded nanocavity. (a) Total 

enhancement factor   at         in Fig.    for the cavity with optimized design parameters to 

operate at       :         ,         (           ,   
          ) (b) Total 

enhancement factor   at         in Fig.    for the cavity with optimized design parameters to 

operate at     :         ,         (         ,   
       ) (c)    distribution profile at 

            for the cavity design of Fig.      (Optimal design for       at     ) (d)    

distribution profile at            , for the cavity design of Fig.      (Optimal design for       

at     ) 

Fabrication of the plasmonic nanocavity has been slightly modified to electrically 

isolate the two halves of the nanocavity for electrical pumping. Frist,    pads are formed 

using EBL lithography (EBL resist: PMMA   , thickness       ), deposition of         

as the adhesion layer and           using electron-beam evaporation and lift-off process. 

Then, the same two-step FIB milling has been perfomed using the alignment marks created in 

the previous steps to etch the NS and NGs. Figures        show the SEM images and  

optical micrographs of the final NS-NG nanocavity prior to       transfer. 
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Figure 55 - Fabrication of the 2D TMDC plasmonic diode laser. (a) SEM image of the NS-NG 

plasmonic nanocvity fabricated for operation with       at     , (b) Optical micrograph of the 

same structure, (c) Clos-up SEM on the NS and adjacent NGs 

For electrically-pumped nanolasers, we have used exfoliated       flakes, which tend 

to have higher QY compared to CVD-grown flakes, but are smaller in size. The alignment 

precision of the wet transfer process, described in previous section, is not sufficient for small 

monolayer regions of exfoliated TMDCs, and hence we have chosen to used a different 

method; dry transfer using a micromanipilator under optical microscope [527]. First, a thin 

layer pf polycarbonate  (PC) is prepared by dripping a drop of PC solution (Sigma Aldrich, 

6% dissolved in chloroform) on a glass slide, putting another glass slide on top and 

separating the two glass slides by sliding them on top of each other. Then, an adhesive tape 

with an openning window is attached on the PC film to pick up the film. A piece of 

polydimethylsiloxane (PDMS) is prepared and attached on a second glass slide by plasma 

(a) 

(b) (c) 
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  𝜇𝑚  
  

   𝜇𝑚  
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activation. Then, the adhesive tape is put on top of the second glass slide, in a way that it is 

attached to bottom glass from the two sides, the PC film is between the tape and PDMS, and 

the open window is aligned on top of the PDMS exposing the surface of PC for material 

transfer. The prepared PDMS-PC-tape stack is then put on a third substrate containing 

exfoliated TMDCs (   substrate with        thermally grown     ) and the sandwhich 

layer is heated to       to partially melt PC film and make it sticky. Next, the two substrates 

are detached and flakes of TMDC are picked up in the opening widnow, where there is a 

direct contact between PC and TMDC substrate. At the next step, the stack (now containing 

the TMDC flakes) are put on top of the target substrate containing plasmonic nanocavities 

under a precise microamnipulator to align the monolayer regions of a flake with the 

nanocavity, and the sandwhich is heated to       to completely melt the PC and transfer the 

TMDC flakes and melted PC to the target substrate. Finally, after wating for the target 

substrate to cool down, the PC is removed by immersing the sample in chloroform. Figure    

shows a microscope image of plasmonic nanolaser after the dry transfer process. 

 

Figure 56 - Optical micrograph of the       nanolaser after dry transfer of the single-layer 

material. 

Figures        shows the numerically calculated reflection spectra of       -based 

plasmonic nanolasers designed to operate at        and     . 

  𝜇𝑚  
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Figure 57 - Refflection spectra of the desinged      -based plasmonic nanolasers. (a) Reflection 

spectrum of the laser desinged to oeprate at       , (b) Reflection spectrum of the laser desinged to 

oeprate at     . 

 

7.6 Lasing Action in monolayer TMDC-Loaded Plasmonic Nanocavities 

So far, we have seen the passive response of the designed nanolasers at low excitation 

power only considering the complex refractive index of the TMDCs. In order to model lasing 

action in the nanostructure, we have implemented  the four-level quantum system shown in 

Fig.    for the the optical gain (or PL) of TMDCs, within the FDTD framework (Lumerical 

Inc.). Figure    shows the population density, i.e.        , of the      plasmonic 

nanolaser at levels | ⟩ to | ⟩ in          , when the structure is excited with a CW 

pump at             and with         power assuming a spot size of 

approximately      (                  ). The inset shows the Rabi oscillation [467] 

between photons and excitons (between levels | ⟩ and | ⟩), which is the signature of 

stimulated emission.  
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Figure 58 - Population levels of the      plasmonic nanolaser at levels | ⟩ to | ⟩ for       
       . The inset shows the Rabi oscillationbetween between levels | ⟩ and | ⟩. 

            shows the evolution of the emission spectrum from the      plasmonic 

nanolaser for by changing the excitation power      of the CW pump with              

linearly from      to         assuming again a spot size of approximately      (excitation 

laser intensity      from      to           ) . The radiative transition lifetime from level 

| ⟩ to level | ⟩,     is assumed to be        extracted from        . The fast nonradiative 

transitions from level | ⟩ to level | ⟩,     , and from level | ⟩ to level | ⟩,     are set at     . 

The QY of the      is assumed to be   . The saturation carrier density    for both      

and       is approximated to be at           [528].                show the electric 

modeprofile at               (                  ) at the three stimulated emission 

peaks with        ,    ,       .  
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Figure 59 - Active numerical simulation of the monolayer      plasmonic nanolaser with optical 

pumping using a CW laser polarized in x-direction with            . (a) Evolution of emission 

spectrum by changing the pump power from      to         (b-d) Emission modeprofile with 

              (                  ).  

Similar numerical simulations have been performed for the monolayer       

nanolaser, assuming           ,             ,      ,              and a CW 

pump at            . Figure      shows the evolution of the emission spectrum from 

      plasmonic nanolaser for by changing the excitation power      of the CW pump 

linearly from      to         . 
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Figure 60 - Active numerical modeling of the monolayer       plasmonic nanolaser with optical 

pumping using a CW laser polarized in x-direction with           . (a) Evolution of emission 

spectrum by changing the pump power from      to         (b-d) Emission modeprofile with 

             . 
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CHAPTER 8. 

EPILOGUE 

8.1 Brief Summary of Contributions 

The objective of this thesis was to develop a new class of plasmonic nanostructures and 

metamaterials for nanoscale light-matter interaction applications including: sensing, 

spectroscopy, nonlinear optics and lasing in monolayer TMDCs. To this end, we set out by 

studying various types of plasmonic nanostructures and metamaterials to have a global view 

of the advantages and shortcomings of each nanostructure and its potential applications. We 

then used this understanding to design and experimentally demonstrate several plasmonic 

nanodevices for different applications. During these investigations, we focused on practical 

applications in which plasmonic nanostructures can either outperform the existing solutions 

or can uniquely solve unaddressed practical needs. We believe this thesis provides a strong 

foundation for future research endeavors in nano-optics for a range of applications that could 

benefit from enhanced light-matter interaction in nanoscale.      

The first part of this thesis was dedicated to the application of plasmonic nanostructure 

in molecular sensing, which included the design, and experimental demonstration of 

plasmonic biosensors with three different modalities: LSPR resonance wavelength shift, 

surface-enhanced viberation spectroscopy and chiroptical spectroscopy. Our first study was 

on the theoretical investigation of one-dimensional arrays of chemically synthesized 

plasmonic nanocubes with sub-      dielectic gaps as a practical platform for molecular 

sensing based on resonance wavelength shift and suface-enhanced viberational spectroscopy. 

We performed a comprehensive performance anlaysis of nanocube chains with different 
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lengths, orientations and material compositions, concluding that the edge-to-edge 

configuration is favorable in most cases. Moreover, we expanded upon this study by 

considering plasmon tunneling in sub-     dielectric gaps, as an important consideration in 

practical applications.  

Next, we focused on lattice plasmons and Fano resonance in strongly coupled 

plasmonic nanoantenna arrays. We designed and experimentally demonstrated a plasmonic 

biosensor for surface-enhanced Raman spectroscopy, which utilizes lattice plasmons in a 

lithographically fabricated bilayer nanoantenna array. We first developed a unique 

nanoantenna geometry and fabrication method with the two main advantages of    scalability 

of the fabrication method,  ) efficiency in the amount of analyte needed for sensing by 

limitng the sensing area to the vertical gap between the two layers. Then, we showed that by 

tuning the lattice plasmons in the nanoantenna array, such that their band-edge coincide with 

pump wavelength, we can get the maximum enhancement factor in SERS. 

Our third developed nanodevice was a chiral plasmonic metamaterial that was used to 

detect and differentiate chiral biomolecules at the molecular level. We showed that the 

locally enhanced chiral fields of this plasmonic metamaterial can be utilized to amplify the 

chiroptical response of the chiral molecules, which was manifested in the large change in 

circular dichroism spectrum acquired from the device. One the of key aspects of our design is 

the fabrication of 3D chiral metamterial with one-step lithography, which renders the 

structure scalable to low visible and UV wavelength, where most biomolecules of interest 

show significant chirality. Chiroptical sensing using this nanodevice was experimentally 

demonstrated on several chiral molecules. 
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The second part of this thesis was dedicated to the plasmonically-enhanced generation 

of light, including two sub-areas: nonlinear plasmonics and plasmonic lasing. In the 

nonlinear work, we investigated the effect of quasi-phase-mathing and lattice plasmons 

band-edge on surface-enhanced second harmonic generation. Theoretically, we predicted that 

with proper geometrical parameters, it should be possible to achieve the quasi-phase-

matching condition for discrete sets of pump wavelength and excitation angles. Then, in 

experimental studies, SESHG signal was collected from a bilayer nanoantenna array similar 

to the nanostructure used for SERS with different excitation wavelengths and excitation 

angles. The collected signal showed clearly the effect of lattice plasmon band-edge on both 

fundamental mode and second harmonic, as well as some evidence of the quasi-phase-

matching predicted by the theory. 

Next, we designed monolayer semiconductor plasmonic nanolasers using a new 

plasmonic nanocavity based on slits and grooves. The designed nanocavities were optimized 

to operate near the bandgaps of      and       as the gain media and a theoretical study of 

the optically-pumped lasing using an active model of the hybrid nanostructures was 

performed. The two nanolasers were fabricated using a combination of EBL, FIB milling, 

wet and dry transfer of      and      . In the end, we discuss how the Schottky-barrier 

diode in the metal-semiconductor junction in the fabricated nanostructures can be used to 

demonstrate electrically-pumped lasing. 

Considering the extraordinary potential of the field of plasmonics in miniaturization of 

on-chip optical devices, lowering their power consumption and improving their other 

performance metrics, the concepts presented in this thesis can open new avenues in 

developing a new generation of plasmonic biosensors, light sources, photodetectors, etc. 

However, despite the scientific breakthroughs over the last decade, the field of plasmonics is 
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not mature enough for large-scale commercialization. Major practical and technological 

challenges remain to be resolved, specifically in terms of material development and 

nanofabrication, to facilitate the wide-scale adoption of plasmonic nanodevices in industry. 

 

8.2 Future Directions 

Based on the concepts and nanodevices presented in this thesis, we evision the next 

steps and new directions, which we have detailed underneath for each work. 

Molecular sensing using nanocubes: the next step in molecular sensing using 

nanocubes would be developing a fabrication method to realize 1D arrays of nanocubes with 

controlled geometry and orientation in a robust and repeatable fashion. This could be 

accomplished using a combination of nanolithography and chemical synthesis of nanocubes 

to overcome the challenges faced in fabricating small nanocubes using nanolithography and 

in placing the checmically synthesized nanoubes in precise locations [529]. A polymer 

template can be prepared using EBL to trap chemically synthesized nanocubes and form the 

nanocube chains with a high degree of control on location and orientation. The realization of 

these nanocube chains would enable experimental measurement of performance parameters 

in sensing applications. As for the nanocube chains with sub-     dielectric gaps, EELS 

measurements together with high resolution AFM measurements need to be performed on 

individual arrays to confirm the theory due to the unrepeatability of sub-    gaps even with 

EBL, and the high sensitivity of plasmon tunneling to the gap size. 

Molecular sensing using lattice plasmons: the next step in molecular sensing using 

lattice plasmons could be expanding into new sensing modalities. The sharp Fano signature 



 134 

of lattice resonance in a nanoantenna array can be used for ultrasensitive detection of 

molecules using resonance wavelength shift, potentially with the naked eye. Additionally, 

other surface-enhanced vibrational spectroscopy technics, including SEIRA and SECARS 

can also be implemented using this concept, each one having unique application scenarios 

and advantages over SERS. 

Chiroptical spectroscopy: several next steps and new directions can be evisioned for 

chiroptical spectroscopy using chiral metamaterials. First, some theoretical aspects of chiral 

light-matter interaction in the presence of chiral metamaterial are not yet completely 

understood and merits further investigation. Secondly, given the scalability of the 

nanostructure devloped and large appeal of chiroptical sensing in low visible and UV range, 

the next step could be scaling down this design by switching to other plasmonic materials 

such as    or    to be able to detect a range of chiral biomolecules, including proteins, 

DNA, sugars, etc. The third direction can be combining chiroptical spectroscopy with SERS 

to develop the plasmonic analog of chiral Raman spectroscopy [327], which can provide new 

insights into the molecular structures, not attainable by SERS and chiroptical spectroscopy 

separately.  

Nonlinear plasmonics: the next step in nonlinear plasmonic could be targeting a new 

application. One interesting application for SESHG could be the nonlinear sensing of 

molecules given the sensitivity of surface nonlinearity to adsorption of molecules. More 

studies can also be done on the hot-carrier induced light generation, which we observed in 

our experiments and its potential applications. We can also envision the extension of this 

work to other nonlinear processes, possibly by integrating a material with large Kerr 

nonlinearity, such as ITO or a semiconductor to demonstrate THG and FWM. 
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Plasmonic lasing: experimental demonstration of optically-pumped plasmon lasing in 

2D TMDCs is the next logical step in this works. Then, we can explore electrically-pumped 

lasing using the Schottky-barrier diode between the 2D TMDCs and   . The same concepts 

can be used to develop plasmonic optical semiconductor amplifer using optical and electrical 

pumping of a plasmonic waveguide coupled to 2D TMDCs. 

Finally, new applications can be envisioned based on the concepts and nanodevices 

developed in this thesis. For instance, many new novel structures can be implemented using 

the combination of high-Q chemically synthesized nanocubes and lithographic fabrication of 

templates. The high sensitivity of lattice resonance in plasmonic nanoantenna array can be 

used for ultrafast switching by photocarrier generation in semiconductors such as ITO. The 

locally enhanced chiral fields of the chiral metamaterials can be used to generate valley 

currents in TMDCs and lastly, the Schottky-barrier dioide proposed for electrical-pumping of 

the TMDC-based nanolaser can also be used high sensitivy photodetection in TMDCs. 
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APPENDIX A.  

A.1. Theory of Resonant Metamaterial Enhanced Chiral Light-Matter Interaction 

In this section, we provide an analytical treatment of the differential CD response of a 

chiral metamaterial induced by an optically active molecule in its near field. The perturbation 

in the electromagnetic field energy    induced by a chiral molecule is described by: 
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Where        ⃗      ⃗  and  ⃗⃗      ⃗      ⃗   are the electric and magnetic dipole 

moments of the the molecule,    
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 and         ⃗    ⃗   are the electric energy 

density and chirality pseudoscalar at the position of the molecule,    is the electric 

polarizability,    is the mixed electric-magnetic polarizability (i.e., chirality) and    is the 

magnetic susceptibility which is negligible in most materials.  

The circular dichroism of the metamaterial with a resonant plasmonic mode is a result 

of the difference between RHC and LHC resonance wavelengths. The perturbation by the 

dielectric and chiral polarizability of molecules at a specific frequency bound to the 

metamaterial surface can be estimated by the shift in the resonant modes corresponding to 

RHC and LHC modes. 

Assuming a weak perturbation of electronmagneietic fields, small   , we can use the 

linear approximation to find the change in complex frequency, i.e.    (
  

  
) , where    is 

the total energy confined by the chiral resonator (in our notations, we use      for an 

infinitesimal perturbation and      for the subtraction of two quantities or spectra).  This 
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change in frequency for the chiral resonant modes shift can be decomposed into two real and 

imaginary components; i.e.             . The real part     shows the shift in 

scattering and the imaginary part      denotes the change in the net absorption of the chiral 

molecules. Using the linear approximation, we have      (
  

  
)   
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)  

    in terms of the real and imaginary parts of    and   . 

The change in the CD of the chiral resonator is proportional to the change in the 

resonance frequency of the RHC and LHC modes of the resonators,        
     

  

   
      

       
     

     
      

     , where   
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, with    

being the reflection of the RHC and LHC excitation beams, respectively.  Assuming that the 

sensitivities of the RHC and LHC resonances in response to the attachment of molecule are 

approximately the same, we have   
    

     and   
     

      , and     can be 

rewritten as           
     

           
      

    or:  

      ( (
   

  
)  

  (
  

  
)   

 )      ( (
   

  
)  

   (
  

  
)   

  ) (A.2) 

where       
    

  and         . Assuming that RHC and LHC resonances are 

reasonably close,     is quite small, while the difference in chirality pseudoscalar    of the 

two resonance modes can be quite large. So, their absolute values add up (          

    ). Therefore, while       , the effect of the      on     is the dominant factor. 

An equivalent argument for dominance of chiral permittivity on differential CD can be 

done using the far-field linear response. The change in differential reflectance due to the 

attachment of molecule can be written as                      , where     

       
     

  is the change in reflectance after coating in response to RHC and LHC light. 
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The RHC and LHC reflections can in turn be rewritten in terms of the total change in the 

electric permittivity of the environment    , as                 . Assuming that     
 

 are 

reasonably close, for a small perturbation in    , we can assume similar sensitivity to RHC 

and LHC light, i.e.                          , and hence               

     ⁄            . A non-chiral perturbation, i.e.        , would result in, and 

              hence      .  
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