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SUMMARY 

A new approximation to the dynamic structure factor S(k,w) is 

developed for large values of k. The approximation is intended to be 

used to describe<inelastid nUclear scattering of thermal neutrons 

from a target of-siDinless particles of a single isOtope. The 

approXiMation has the correct limit for large momentum transfer k, 

the impulse approximation. It.is calculable in practice if'the single-

particle momentum distribution,3the off-diagonal two-particle density 

matrix, and the 'two-body interadtion potentiar of the target particles 

are known. 

The approximation, which partially incorporates the effect of 

final-state interactions, is evaluated for a liquid 4lle target for 

momentum transfers of 14.3 R-1 , 28.6 	and 53.2 .R-1 . The experi- 

mental results of Mook, Scherm, and Wilkinson for the scattering of 

neutrons from superfluid and normal liquid helium are analyzed in 

terms of (A) a modified impulse approximation which includes final-state 

corrections only in the condensate contribution to the scattering and 

(B) the new approximation which -lincludes some final-state effects in 

both the condensate and non-condensate contributions to the scattering. 

These calculations substantiate a previous empirical assessment of the 

condensate portion of the scattering (this assessment yielded a 

condensate fraction of .024 + .01) and suggest that certain barely 

discernible features in the experimental scattering data are real 

structure in the condensate contribution to the scattering. These 

vii 



features appear to be attributable to the structure of the liquid 

and the interaction potential of the helium atoms. Other helium 

properties deduced from the data at 1.2 °K and 4.2°K are: the 

single-particle momentum distribution, the one-particle off-diagonal 

density matrix, and the mean kinetic energy of the helium atoms. The 

results for the single-particle momentum distribution indicate a 

preferential occupation of the states with momentum of approximately 

.7 271 . This feature is an entirely new result. 

' 
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CHAPTER I 

INTRODUCTION 

A-transition and Bose EinsteinTondensa -6ion  

Liquid helium at temperatures below 2.18°K exhibits many 

interesting properties; for example, the heat conductivity becomes 

imteaSUrablY - 14rge. A drab -tic chnge, such as the. one which occurs 

in liquid heliUM2.18 °K, indicates that the liquid has undergone 

. 	, 
a phase transition: This particular phenomenon inhelium is called 

the A-transition and the temperature at Which , (under -datUrated 

4- vapor pressUre) itOccurs is referred to as the A7point. The 

liquid at temperatures below the A-point is generally called either 

superfluid helium or He II. 

Many standard textbooks describe some of the curious 

phenomena associated with superfluid helium such as the fountain 

effect, and second sound. These phenomena are explained on a 

macroscopic level by the two-fluid model developed largely by Landau. 2  

Understanding the transition on a microscopic level has proved somewhat 

more difficult and'is not complete at present. 

The present understanding of the nature of the A-transition 

starts from the observation that naturally occurring helium is almost 

entirely composed of the isotope 41-1e. Forthermal energies He has a 

total spin of zero. Therefore at least on an atomic scale, i uid helium 

is a fluid composed of massive, Spin-zero bosons. The fact that a liquid 

1 



2 

,coUposedof 3Ne- ---atbm8-  (fermionS) does not undergo a•transition 
T;  

analogbus tb the -transitidn indicates thatithe explanation 

tran.sa. -Uri must closely involve the statistical properties 
- 

15eCuliar -6-o bosons. 

includes interaction, 

helium atoms. 

In the iiteratur 

have beenieMploye, 

• • 	'C subsequpnt ,, c1.3.scusson ,  

which aPpeor to 7:0a, 

assumption is tha. 

Treating liquid 

,,,, 	• 	, 
X-transition as Icbinci 

, 	. condensation1  as 

quantum "state i 

or a microscopic level., 

lone of the most drastic: assumptions 

atvely correct results. This 

elium47helium interactions may 11) 'ignored. , 

Twidips.on gas tentatively identifies the 

e ;onset of the Bose-Einstein 

lagOraliberbfbbsbrisLoccupying the 

toblem'whith 
rrtr, 	 r 

'  IrpseMbling the interactions' between 

forced to m*e,,some -s ,  

oWn for a many 

lifications. 

sets of simplifyingOsSumptions 

11 The 

as a 

1 
1'64 Se: +HCc - 1 

• 

where 13 = 1/(y), kb  'the Boltzkonn conStant, T the temperature, and 

a a constant to be determined fr4m: the condition that . 	, 

N = 2: N. 
1 

(2) 

where N is the total number of particles. The constant a is related 

(1) 
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to the chemical potential u  by the relation a = - Su. _ To be physically 

meaningful Ni  must be equal to or greater than zero. This implies 

that f3ci ,t a > 0 for all ci , including ei  = 0. Therefore, a must be 

positive. 

For a macroscopic system the discrete energy levels effectively 

pass into a continuum; equation (1) is replaced by 

N(E) 
g(d 	 

- 

where g(e) is the density ofatates. Therdensity of states for a 

spin-zero free-particle system is 

g(c) 
)-11

/2
V 	

2 

'2 .. 	:3 271-  
(10 

where is Planck's 'constant divided by 2w, m is the helium atomic 

mass, and V is the normalization volume. Replacing the sum in 

equation (2) by an integral and combining it with the above yields 

3  1/2 
. 	.  1/2 ' (2m. ). : V 	e  N = 	 de 

2w2P 3  0 	
exp(0 (5) 

The above integral may be reduced to 

(3 ) 



3/2 

0 ) 	(2.612) 
27 

1/2 
. 

	

.10 
— 

2 3m
3 

 .): 	
(y) 

 .3:/2 
 r E 	1D) 	(6) 2_  . . 

	

'Ir  14' 	 p=0 

where p is the number denSity and .r is the gaMma. function. The above 

equation seems to'contain a paradox when applied to high densities and 

low temperatures. The resolution of this paradox is the Bose-

Einstein condensation. To see the paradox consider a system with a 

fixed density at some temperature T. Equation (6) can be used to 

determine the value of a. Now consider a'proces0 in which the system ' s 

density is held constant while its temperature is lowered. The left— 

11 

hand side, LHS, of equation (6) remains constant in such a process. 

The factor (kbT)
3/2 
 on the right-hand side, RHS, decreases as the 

temperature drops. To compensate, E(e -pa /p3/2 ) mot increase; 

therefore, a must decrease. As noted before a must be positive. So 

as the temperature decreases (with the density fixed), a is forced 

towards its lower limit, zero. For a = 0 equation (6) becomes 

(7) 

which. seems to imply that- a system composed of free bosons with a 

density p cannot be cooled below a critical temperature T or, 

alternatively, a system of free bosons at a temperature T c  has a 

maximum density p c . This paradoxical behavior does not occur, as 

was first noted by Einstein. Its appearance comes from a mathematical 



oversight. 	wasol4ained by setting a = 0, but from 

equation (3) the occupation of the state c = 0 becomes infinite in 

the limit as a approaches zero. This 'infinity? was not treated 

properly in haphazard manipulations used to obtain equation (6). 

A correct treatment s verifies the following picture: In the thermo-

dynamic limit at any temperature above the critical temperature T c , 

defined in equation (7), the occupation of any microscopic state is 

zero. As the temperature drops, the population of the low lying 

states, especially E = 0, increases. At temperatures below T c  a 

finite fraction of the total number of particles has condensed into 

the single microscopic state with zero energy. This macroscopic 

occupation of the zero energy and momentum state will be subsequently 

referred to as the condensate. The non-zero momentum and energy 

states will be referred to as the non-condensate. The speculation 

that the A-transition in real helium coincides with the onset of a 

Bose-Einstein condensation can be aroused by using equation (7) to 

calculate the temperature at which a free boson system with the 

density of real helium would undergo the condensation. One finds 

Tc = 3.2°K, which is only 1 °K higher than the A-transition. 

As one would expect, the Bose-Einstein condensation has been 

studied with more attention to mathematical rigor than used in the 

above discussion. 5 Also, the connection between the A-transition 

and the Bose-Einstein condensation has been demonstrated with more 

realistic models than the free-particle model above. 3,4  

5 



6 

146-47trork._oo,ttet. and Bose-Einstein Condensation  

  

It is not unreasonable to insist that a connection between 

the X-transition and the Bose-Einstein condensation be observed 

experimentally before such a relationship can be considered to be 

established. A preliminary step would be to observe a macroscopic 

occupation of the zero momentum state in real helium below the . 

A-point. In the author's opinion, this has recently been accomplished 

by H. A. Mook, R. Scherm, and M. K. Wilkinson by the use of neutron 

scattering with large momentum transfer. 6  The primary aim of this 

work is to analyze this experiment-- sEnetual experiment is 

more fully discussed in Chapte.r=II. The follawing discussion develops. 

the connection between the helitm -moentum distribution .and the 

neutron scattering cross section for large momentum transfer. 7 

As developed in Appendix A, the inelastic scattering crosst 

section for neutrons on 
4
He liquid is given in the Born approximation 

bY
8 

.47-1117— S( k,w) (8) 

wherellk. =
1, 
 -Ilk

f 
 is the momentum transferred to the helium, 

e: - s f . is the 
	and g

b i
s the'helitm=atom cross' 

 

section Cab = 1 . 13 	 . 9  barns) 	The dynamic structure factor. Sck40 is 

the Fourier transform of the density--density correlation.  function 

S(kM: 



Li7

- -lost 
dt e 	) 

-co• 

where 

(0) ilt• -r.(t) 
NS(t, 	= E \e 	̀ e 

The average valUe of the-time,-dependent density-density correlation 

function in equation (i0) is in general taken over a canonical 

ensemble in equilibrium at temperature T. Equation (ILO) contains 

, 
theHeisenbergoperatorr.lt) defined for all j and t by 

lilt /-iHt In 
= e 	r.e 
	 (n) 

where H is the Hamiltonian of the liquid helium. It will be useful 

for later work to divide the density-density correlation function 

into two disjoint parts, the incoherent contribution  

7 

(9) 

(1o) 

NS. k t 
' 

E 

J 

, 

-ik•r .(0) ik•r . 
\ e (12) 

4 , 
and the coherent contribution S(  ,t) • 



-ik•r 
NS (it) = Z \e 

- 
ik•r.(t)> 

(12) 

8 

By this procedure one defineS -the incoherent and coherent contributions 

to the dynamic structure factor and to the scattering. 

It is not evident from examination of equation (8), (9), and 

(10) that there is any reasonably direct connection between the 

inelastic scattering cross section and the momentum distribution of 

the liquid helium. In general there is direct relationship between 

the two only when k and w` are large. For large k and w the helium-

helium interactions may be neglected and the coherent contribution 

may be dropped. That the coherent contribution is small for large k 

may be motivated by noting that for coherent scattering to occur the 

4- , 
position of the 1

th 
atom at t = 0,' ri0)', must be correlated with 

the position of the j
th 

atom at time t, r(;t), on a length scale l/k. 

In a liquid the distances between atoms are not well correlated over 

very short distances. This spec -ulation is substantiated by the 

experimentally determined fact that the zero th  sum rule for k 6 271  

is.„ exhausted by the incoherent contribution 

fc° 
S(ku.)) z: 1 =I dw -S.(k;w) 	(11 ) 

..00 

• That the helium:heli* interactions may be neglected when 

1  
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considering neutron scattering at large momentum transfers may be 

motivated
10 

by the following crude argument: It is known experi- 

mentally that the peak of the scattering occurs at an energy loss 
0_1 	0_1  

of 	= ,rek2/ (2m) for large k, 7 A 	k 14 A 1 . From the 

Heisenberg uncertainty relation AtAE fi, with the interpretation of 

At as the neutron-helium interaction time t nh and AE =-w , one has p 

nh 	'2 
	 (15) 

The other quantity of interest here is the typical time t  

helium-helium interactions in the liquid. This time may be estimated 

by dividing the mean free path of the helium 1/pa, where a is the 

helium-helium total cross section 35 A2 , by the velocity of the 

helium atom to which the momentum k has been imparted:V k  = .5k/m; 

this yields 

thh a 111/(Pik) 

	
(16) 

Combining equation (15) and (16) gives 

tnh a ("Y 
	t 
	

(17) 

0_1  
For k » 1.54A the heutron-helium interaction time is much shorter 

than the heliuh-helium interaction time. Under these conditions, 

the neutron does not have enough time to "see" , the-helium-helium 



A 	w .4 . 4 

k,t) = e ikt E \\e 
ik . Pj  t/m> 

10 

interaction. For scattering at a sufficiently large value of momentum 

transfer, the liquid appears, to the neutrons, as a collection of free 

particles. Neglect of the coherent terms and the helium interactions 

leads to the impulse approximation (to the Born approximation) S IA . 

From equation (10) and (11) the impulse approximation to the density-

density correlation function is 

IA ,4 	
iH 	 -iH tfrfi.> 

NS (k,t) = E 	Je ° 	e 	J e 	° 
j 

(18 ) 

where Ho  = E p. 
 

 . 
Equation (18) may be simplified by noting 

-ik.r.j  iHo  tt5 ik 4 r. 	H
o 
	k'/2m + .f.111:•;./m)tt 

= e (19) 

as can be verified by comparingrbhe time derivative of the right-hand 

and left-hand sides ofhp:eqUatiOn and noting the obvious equality 

at t=0. Inserting-equation (19) into equation (18)-and observing 

that (Ho 
4....2k2 /2m.+  --- tdt-p/m) commutes with Ho  yields 

(20)  

where w
k 
 =''' ,fik2g2m). The abOve equation may be written- as ,a sum 

over. momentum states by -using second quantization or an equivalent . 

 procedure. The result is 
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ik•pt/m 
SIA ( k,t) = e k E 

p 

where n±  is the singleTparticle momentum distribution, the 

expectation value of the number of particles in the momentum state p 

divided by the total number of particles 	Fourier transforming 

equation (21) in accordance with equation;(9) yields the impulse 

approximation to the dynamic structure factor 

En+  6(w  
p 

P 

_ 	_ 
2 	-4- -4- 

k,D )  
2m 	m 

(22) 

where (S is the Dirac delta function. For a macroscopic sample of 

liquid helium equation (22) become* 

,w) = + 1 (27) 
fdp n 

P 
wk  

. 
,k.p/m) 	(23) • 

where no  is thecondensate fraction, that fraction :of the total 

number of helium atoms which have undergone Bose-Einstein condensation 

and"np  is the non-condensate distribution. If the condensate 

fraction is sufficiently large and if a neutron scattering experiment 

could be performed at a sufficiently large momentum transfer to 

validate the impulse approximation, the experimenter should observe 

a distinct two-part scattering distribution: a sharp peak proportional 

to the condensate fraction superimposed in the center of a broader peak 



contributed by the non-condensate. Both of these 'conditions appear 

to be partially satisfied by the experiment being analyzed. 

12 
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CHAPTER II 

THERMAL NEUTRON SCATTERING EXPERIMENTS 

Description of Thermal Neutron-Scattering Experiments  

From the discussion in the Introduction, in particular Chapter 

I equation (8) and (23), it appears that one could determine if there 

is a significant Bose-Einstein condensate in superfluid helium by 

measuring the neutron inelastic scattering cross section from He II 

at sufficiently large monentum and energy transfers. This is 

correct, but practical experimental considerations make the design 

of an optimum experiment difficult. These considerations force a 

compromise between measurement accuracy and the size of the momentum 

transfer. 

To perform the envisioned measurements, one must measure the 

number of neutrons with a particular energy o f  which are scattered 

from an incident beam by the He II into a small solid angle 

In addition, one must know precisely the energy transfer -&0 and the 

momentum transfer ik. Atypical method used to obtain this information 

is indicated schematically in Figure 1. A collimated, monoenergic 

beam of neutrons is selected from a- nettron source and directed 

towardS the sample, in this case He II. The degree toHWhich the - - 

beam is collimated ,and .monochromatic determines the, experimental 

accuracy to which c. and'VL are' known. A neutron detector is 

positioned at some scattering angle 0 to intercept a portion of the 

13 



Neutron 
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Neutron 
Detector 

Scattering Angle 

Collimator 
Monochromator 

Sample 

Figure 1. Schematic of a Typical Neutron Scattering 
Experiment. 



scattered neutrons. The neutron-detector-Counts the number of 

scattered neutrOne which -possess a particular final energy e f. The 

measured values of e!-and A can then be used to calculate k. ----and, 

therefore, k = k
i 
 - kf.The detector must intercept a reasonably 

small solid-angle, since one wishes to determine the scattering into 

an infinitesimal solid angle d2'. An additional requirement is that 

the neutrons being counted by the detector must all have been 

scattered from some small region in the sample. If the detector 

accepts scattering from a large region in the sample, the value 

of the scattering. angle becomes imprecise, introducing errors in the 

values of kf  and k. 11 

A major problem in perforning such an experiment can be having 

an insufficient number of scattered,neutrons to count. The neutron 

source usually contains a broad spectrum of energies. Only a small 

fraction will have the correct energy and momentum direction to pass 

through the monochromator and collimator. The useable intensity may 

be further reduced because many , material samples are relatively 

transparent to neutrons. In the case of interest here, the mean 

free path of a neutron traveling through He II can be estimated by 

1/(pa), wtere p is the density - .022 273  and a is the neutron-helium 

total cross section - 35 2.2 . The result is -40 cm., meaning that a 

typical neutron can travel through -4o an. of the liquid before it is 

scattered. The neutrons which do scatter from the small volume being 

observed scatter into essentially 4T steradians. Finally, only a 

small fraction enter the neutron detector to be counted. 

15 



For many applications these "inefficiencies are overcome by 

using extremely high flux neutron sources, -31 particular, thermal 

neutrons available in nuclear reactors. Thermal neutrons are obtained 

by slowing down fission neutrons with moderators, e. g H20, D20, and , 	. 

graphite. Specially designed reactors produce a flux of about 10 19 

thermal neutrons m sec -1 . The neutronSaPProach thermal equilibrium 

with the moderating material. Their enegyfdistribution is approximate- 

16 

ly represented by a Maxwell distributionLaorresponding to:a temper- 
LI 

ature in the vicinity of 300°K to 400°K. I 7More specifically, denoting 

the flux of neutrons, irrespective of Airectiion but in the wave-

vector range ki  + aki , by N(ki )dki ,_then 

M 	2:riM 
(24) N( ki ) 

where n is the total flux ;  M is the neutrOnAnass, and (37 1/(1T9 

(T being the temperature of the moderator) ".1 :. For a typical installation, 

the peak in the distribution occurs at a neutron energy 

6. 	30meV .1 350°K, which corresponds to a wave-vector k 1  - 3.8 271 

 For many applications there is an abundance of neutrons available 

with energies around 30 meV. The flux available decreases roughly 

exponentially at higher energies and wave-vectors because of the fall-

off in the Maxwell distribution. Tbis fact introduces a practical 

limit to the size of momentum transfer obtainable with a thermal 

neutron source. 

In the application being disCilesed here, one is forced to 



compromise between Making the measurement at moderate momentum 

transfers with an uncertainty in the applicability of the impulse 

approximation (Chapter Iequation (23)1 and making the measurement 

at large momentum transfer with large experimental errors due to 

poor counting statistics. 

Experiment Performed by Mook, Scherm, and Wilkinson  

The following is a brief discussion of the measurement of the 

inelastic scattering of neutrons by liquid helium performed by H. A. 

Mook, R. Scherm, and M. K. Wilkinson. The authoritative reference 

is their article in Phys. Rev. A 6, 2268 (1972). The .balance of 

the effort will be directed towards the analysis of their experi-

mental results. 

The experiment -,was perforthed•using a triple-axis spectrometer 

at the high-flux isotope reaCt4.1oCated at the Oak Ridge NatiOnal 
4., 

Laboratory. .A triple-axis:spectrometer uses Bragg scattering from 

a crystal to select neutrons whose energies are in a very narrow band 

from the broad band of neutron energies emitted by the reactor. A 

second crystal is used in the neutron detector to analyze the energy 

of the scattered neutrons. 

The experiment was performed with a fixed incoming neutron 

energy of 182.47 + 0.07 meV and a fixed scattering angle of 135.00 

+ 0.02° , which gives a typical momentum transfer of 1 11.3 a-l. 

Since there were few neutrons available at this high energy, the 

counting rate at the detector was quite low, approximately one neutron 

count per minute at the peak of the scattering. The low counting 
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rate necessitated a long counting time, approximately five months, 

and'special attention to shielding to attain the desired accuracy. 

Care was taken to minimize errors introduced by multiple 

reflections in the analyzing crystals. The four-dimensional 

resolution ellipsoid associated with the triple-axis spectrometer 

was calculated and measured, with good agreement. The full width 

at half maximum of the energy resolution was determined to be 

approximately 2.1 meV. The data was also corrected for changes 

in the volume of the resolution ellipsoid and for the changes in 

efficiency of the analyzing crystal and neutron counter. In the 

final form in which it is presented, the data is proportional to 

the dynamic structure factor S(k, ) broadened by an energy resolution 

function with a full width at half maximum (FWHM) of 2.1 meV. 

The data taken with the helium at 1.2 °K (1°K below the A-

point) is shown in Figure 2. For comparison purposes, data was also 

taken 2°K above the A-point at T = 4.2 °K, shown in Figure 3. The 

data at 4.2 °K has been corrected for the difference in the helium 

density between 1.2 °K and 4.2°K. The data for both temperatures is 

presented in tabular form in Appendix B Table 	All data has been 

normalized to one run, which represents about 20 minutes counting 

time per point. 

The data taken at 1.2°K contains a subtile, but extremely 

intereSting,'feature. API5YoximateIy5.A04 abOv4d 5: - meVbelow the 

peak, there is an indication_pftructure in the curve. The-structure 

is more easily observed by eamining_the approximate energy derivative • 
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Figure2 S(k,w) for 
a 20-minute 
solid line, 

He at 1.2°K. (Abscissa, number of neutrons scattered during 
counting time. The circles are the experimental data, Ref. 3; 
empirical fit I(w). Refer to equation (2) and Table 1.) 
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Figure 3. S(k,w) for He at 4.2 °K. (Abscissa, number of neutrons scattered during a 
20-minute counting time. The circles are the eroerimental data, Ref. 3; 
solid line, empirical fit 1(w). Refer to ecuation (2) and Table 1.) 
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of the data; refer to Figure 3. An extremely pessimistic interpre-

tation of the experimental errors would have to be employed to 

explain away this structure. Since the data at 4.2°K does not 

contain an analogous feature, it is tempting to attribute this 

structure to a Bose-Einstein condensation. 

If the impulse approximation, Chapter I equation (23), is 

assumed to be exactly valid, one would expect the condensate contri-

bution to the dynamic structure factor to appear as a Gaussian 

function with a FWHM of 2.1 meV (the delta function condensate 

contribution broadened by the experimental resolution function). 

The condensate Gaussian would be centered at -00/(2m) z 106.9 meV, 

superimposed on the broader non-condensate contribution. The ratio 

of the area under the condensate to the total area under the curve 

would be approximately n o , the condensatefraction. The data will 

not support such an interpretation. TO this author, there appear 

to be three possible explanations: 

(1) The condensate fraction is too small at 1.2 °K . (possibly 

zero) to be measured by thisexpeiimental technique. 

(2) The impulse approximation is not valid for k = 14.3 R -1  

(3) The impulse' aijproximation is qualitatively valid at 

k = 14.3 271 , but requires some modifications. 

The third possibility was chosen. As to be substantiated in later 

calculations, the helium-helium interaction has a small effect on 

the rather broad non-condensate part of the scattering; therefore, 

the impulse approximation is valid for this part. Noting that in the 
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Figure 4. Absolute Value of the Slope of S(k,w). (Taken directly 
from measured data. The lines are smootkeUrves drawn 
through- the data points :lid not the result of an analytical 
fit to the data.) 
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impulse approximation the condensate is an "infinitely narrow" delta 

function, the helium-helium interactibnado significantly broaden 

the condensate. 

Assuming the above interpretation is correct one would expect 

thatthe ,condensate would be somewhat wider than the energy resolution 

function. Estimating the condensate,fraction reduces itself to 

resolving the dynamic structure factor into a two-part distribution 

with one part6'aicento .te- -0Ce condensate contftbUtiOn 'and the balance 

the non-condensate. Mook, Scherm, Wilkinson discuss three separate 

approaches to making this discrimination. The one discussed below 

yields the most quantitative results. 

In this technique, the data at 1.2 °K and 4.2°K were subjected 

to a least squares analysis. This analysis fit the energy dependence of 

the measured dynamic structure factor with the function 

I( ) .7. Ao  + Al
e 	 + A4e 
-(w-A2 )

2
/.A. 2 	

-(63-y
4
/A64 	

(25) 

+ A
7

e -(w-A8)`/A9 
2 

where A0 , Al  ,...,A9  were varied to obtain the best fit with the data 

taken with the helium at a temperature of 1.2 °K. The data at 1 .2°K 

was fit by a function of the same form except that A
7 
was taken as 

identically zero. The values obtained for these parameters are listed 

in Table 1. The first term in equation (25) was interpreted as the 



Table 1. Parameters foreastt,Squares Fit to Data,, 
(Refer to equatl. Paratheters giving peak 
heights are in. ,OoUntper run, Parameters -- 
represehtina'Peak widths or positions are, in meV.) 

Parameters 2? )4.2°K 

A0  12.90 12.90 

2:47, 11.97 

A2  106 .;22 106.22 

A3  20,76/2 (1n2) 1/2  23.28/2 (1n2)1 2  

A4 : 7-48 5.69 

A5  
5 1 " -1.'4 6 106.22 

A6  12.82/2 (1n2) 1/ 
 

13.48/2 (1h2) 1/4  

AT  1.60 0.0 

A8  106.22 - 

A
9  

4.92/2 (1n2)1/2 
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baCkground neutron count. The sum of the,second and third terms was 

taken as proportional to the non-condensate contribution to the 

dynamic structure factor. The fourth term (1.2 K:data only) was 

identified with the condensate contribution broadened by the helium-

helium interactions and the experimental resolution function. This 

interpretation of the data yields a condensate fraction of 2.4 + 1 

percent. This result is considerably smaller than the theoretical 

estimates of the condensate fraction, which range from 6 percent to 

3 12 13 25 percent.' 	' 



CHAPTER III 

THE EiqECT OF FINAL STATE INTERACTIONS. 
ON THERMAL NEUTRON SCATTERING 

Qualitative Discussion of the Effect of Interactions 

The central assumption in the Mook, Scherm, and Wilkinson 

estimate of the condensate fraction is that the impulse approximation 

0- is almost valid for a momentum transfer 	 1 
of 14.3 A 	In particular, 

it is assumed that the impulse approximation is correct in treating 

the neutron scattering as the sum of a narrow contribution from the 

condensate and a broad contribution from the non-condensate, but that 

the approximation is incorrect in predicting a zero width for the 

condensate part. There is experimental support for parts of this 

assumption. For example, the impulse approximation predicts that 

the peak of the scattering will occur at an energy transfer of 

draw ....t.2k2 /,(234),,  
that the width of.the-scattering will-be 

proportional to the momentum transfer k (for experiments performed 

at a'constant value of ), Experiments have been performed for 
. 	-- 

momentum t ; ransfers between 0_ and ,11 3 R71 . The experimental results  . 

, 	.4 	, 	 - 	,, 	 , '. 	- 	--,k 	o-1 show thattheimpu4se approximation is grossly inOerrOr for k.,-72 A , 

as one would expet sinCe 4 the apiproximationiS-intended fen- large k. 

For 'k > 2 R-1 , the measured peak positiotiand width rapidly approach 

the behavior predicted by the impulse approxiMation. Two independent 

6,14 
measurements' 	show that the actual peak of the scattering is within 
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1 percent of ek2/(2m) for k,. "A4.3 R-1 , the. measured position in 

the direction of lower energy tra!nsfer. In addition, there is 

qualitative agreement between,the shape of the measured dynami,d 

structure fracture and the impulse approximationtevaluated using a 

theoretical estimate of 	 momentum'distribution.15on. 	There is a 

sufficient difference between the two to indicate that the impulse 

improximation or the estimate of the momentum distribution is 

deficient. 

The assumption that the impulse approximation is "almost" 

correct is not indisputable. One obvious way to examine the validity 

of this assumption is to develop an approximation which appears to 

be superior to the impulse approximation for moderate values of the 

momentum transfer, such as 14.3 27 1 . There probably is no unique 

program which leads to an improvement over the impulse approximation; 

but for this new approximation to be useful in the present context, it 

is subject to a severe restraint. Its evaluation must involve only 

simple properties of helium and helium liquid. Only a few basic 

microscopic properties, such as the helium helium interaction and pair 

correlation function, are known with some confidence. 

In the next section, an approximation is formally developed 

which is proposed to meet these requirements. This approximation is 

initiated with the bias that the, impulse approximation becomes 

valid at sufficiently large momentum transfers. Since the impulse 

approximation completely neglects the helium-helium interaction, the 

proposed approximation will contain the interaction. The interactions, 



-w - (fik2/2M) -(k-pCM) is small - i. e., almost elastic collisions 

28 

in this- context,°are frequently referred to as final-state interactions. 

The form of the result may be motivated by recalling the impulse 

approximation 

IA -.)- S (k,,w) = E n (5(w 
p 
-4- 

2 	-›- .... 
- 	

) 
 2m 	m 

(1) 

and ascribing the following picture to it. The neutron strikes a 

single helium particle in the target. The struck particle has a 

momentum p initially. The collision is elastic and conserves the 

total momentum of the neutron andiielium atom. The delta function 

in equation (1) is the mathematical statement that kinetic energy 

and momentum are conserved in this,tWo-1bodY collision. This  = 

is true only to• the extent that the helium-helium interactions are 

negligible. At a more modest momentum transfer, the interactions 

, 
will haVe some 	'",Conceptually, , at thiSjlower7;value of k, one 

could still picture the neutron as strikfiag a single particle and 

replace the remaining, particles of the target by an effective 

potential. The presence of this potential would remove the requirement 

that the neutron-helium collision conserve momentum and allow for 

inelastic processes. A momentum state p would then contribute to 

the scattering not only at the precise value of the energy transfers 

which satisfies w - (fik2/2m) - (k4/m) = 0, but for all w fOr which 

which approximately satisfy conservation of the neutron-particle 
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momentum. In mathematical terms, the delta function in equation (1) 

would be replaced by a finite Width function R(k,w - (6k 2 /2m)-(k•phn)). 

The incoherent contribution to the dynamic structure factor would 

become 

S.(it,w) = 	 w - 
p 

(2) 

where the width of the function R would depend on the momentum 

transfer k and on the properties of the target, for example, the 

interaction potential of the helium particles. The width of R should 

decrease as k increases, approaching a delta function. Its width 

should also decrease if the interactions between the helium atoms 

were to weaken. 

Formalism , , for Inclusion of Final-State Interactions 16  

The R function incorporates the effect of final-state 

interactions. Starting -from the full density-density correlation 

function, including both coherent and incoherent terms, an expression 

will be developed for a slight generalization of the R function which 

is formally exact for all values of momentum and energy transfer. At 

a late stage in the development, the coherent terms will be dropped 

to obtain an expression for the R function for application to the 

liquid helium problem. This is done since the general formalism, 

including the coherent terms, may be applicableto other problems. 
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Since the intended application of this work is to neutron 

scattering at large momentum and energy transfers, an attempt will 

be made to motivate the formal manipulations by picturing the scatter- 

. 
ing as occurring between a neutron and the j 

th 
 target particle, e. g., 

a particular helium atom in the liquid. The procedure begins by 

noting that the Hamiltonians 'in Chapter'I equatiOn (11)which govern : 

the time dependence of S(k,t), contain no explicit recognition that 

a scattering event has changed theAnomentum of the j
th 

particle. To .....   
' 	

. 	,,... 

. 
incorporate the modified momentum and kinetic energy o' the th: 

.,,,.   
 N 	 k 

particle, the right-hand side of this equation is multiplied by 
--+ 	4 4- 

unity in the formelk.rje-11Yr i7romUe left and then inserted 

into Chapter I equation (10 (putting X =-1): 

4 .4- 
)-Ik-r. iHt 

NS'Oc ,t = E <e 	 e 	e 	e (3) 

Now make use of the identity 

-ik-r, iHt ik-r. 	iH't 
e 	J e 	e 	= e 
	

(4) 

where 

,4-  
H' E 1-Rr 	.. 	• 	, p. + k,  1" 	r ' 	' 17' p  1'  ... 	j 
H' = H + w + L. k 	j 
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4- 4- 
WithWic=k

2
/221,1,.= k.p./m, under the assumption that the 

J 	J 	 e ,  
Hamiltonian contains only kinetic energy and a velocity-independent 

- 	 , 
potential. The,above identify is a night generalization of the 

identity',displayed in Chapter.I equation (19). 	The -denpity-density 

correlation function now has the form 

, 	 iw 
NS (,t) = e 

j , Z 

-1(H--.  
J e (5) 

In the modified Hamiltonian equation ()), the momentum lost by the 

neutron is explicitly transferred to the j th  particle in the target. 

.th 4- 
The j particle, carrying its modified momentumP . + k, will move j  

in the medium of its neighbors and encounter varying potential 

energies. This will distort its trajectory from that of a free 

particle. The varying potential energy in its environment can be 

exhibited by using the relation 

e 
iHt + iL.t 	iL.t i I 1-1(r.-v t ) dt' 

J = e 	Te 	0 	j k 
	

(6) 

where 

4- 	4- 
vk  = k/m, 

- vk
t') E H(r 	r - v

k
t

' 

II 	

1" j 

- vkt) = 
-ip.vk 

 t' ip..v
k 
 t' 

' 	e 	
j 	j  

He 

;17 ) (7) 

 

   

   

    

    



	

Hr 	t . 

	

j 	k " 	U C;j k 

and T is the time-ordering syml?91. The Hamiltonian H(r j  - vkt), 

representing the motion of the struck particle, can be rewritten in 

terms of the original target Hamiltonian H as 

(8) 

(9)  

where 

U.(vk  t') = 	E  
' 	 4 4 

V(r - v-kt'' rmJ  ) - V(r., rm 
 ) 

mOi 

under the assumption that the interaction between the target particles 

is adequately described by a two-body potential V( ). The operator 

U.(vk  t") represents the change in the potential energy between -the 

th j struck 	particle, as it travels along a straight line, trajectory 

with velocity vk , and the other target particles represented by m. 

The density-density correlation function SUt;0 is now in the 

form 

iwkt  
-NS(11-,t) = e (10) 

4- 4- 	 rt 
-ik.(rj  - r1  ip..vk  t 	 0 + i 	U (vk  tldt' -iHt 

e 
	 j 

Te 
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The development to this point parallels another treatmenj r-of this 

problem. The previous treatment proceeded by expanding the .T product. 

The first term in this expansion is the'impulse approximation. The 

subsequent incoherent terms were shown to represent corrections to 

the impulse approximation ordered in increasing powers of (1/k). 

As noted in a previous paragraph, the natural picture to 

associate with the above procedure is of the struck particle traveling 

in a straight line. This suggests that difficulties may be encountered 

if the interaction between the target particles is strong for some 

configurations of the particles. For example, if the interaction 

contains a strong repulsive core as is characteristic of the helium- 
, 

helium2interaCtions,the,secOnd and higher order terms in t the expansion 

of equation (10) have contributions from configurations in which 

the struck particle can pass arbitrarily close to another particle in 

the target without allowing either particle to readjust its position 

to avoid a clese encounter. This can be avoided by ndting that the 

+iHt 
unitary operators , 'e- 	in equation -(10)?.temper the contributions 

from these unphysical encounters, between the struck particle and its 

neighbors by allowing the particle coordinates to evolve in time. 

The time evolvement of the target position coordinates can be made 

more explicit by use of the identity 

t 
Te iHt + i 1o 

j  U.(vk 
 tldt -  



(13) 
iwkt  

NS(it, t) = e 

	

t 	_ 
fdt' E' U 

	

, 	 . 	 . . 

	

o 	' 	J',14 , 

iv. 

311. 

t iH(t-t') 
i o e 	U.(v

k 
 t' 

j  
= Te 

-iH(t-t') 
dt' iHt 

e 

which can be interpreted as a resummation of the T. pilOduct in 

equation (10). A formal proof of this identity is given in Appendix 

C.
18 

The exponent on the right side of equation (11) is the integral 

of the difference in the potential the struck particle would have 

encountered as a typical target particle and the-potential it does 

encounter as the atypical struck particle 

-iH(t-t') 
e 	U.(v

k 
 t')e 	 = E U 

,m
(vkt ) 
	

(12) 

= E' V r:(t-t . 	, ,r(t,t1]_ITri(t-t"), r m(t-t")] 

where the term m = j is deleted from the sum E'. 

The function S(it,t) now has the form 

uu 
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For a realistic many-body system, the detailed accounting for the 

time evolvement of all target coordinates contained in U j,..ca ( kt) is 

an impossible task. In fact, it is apparent that the defining equation 

for S(k,t), Chapter I equation (10), appears very much simpler than 

the result expressed by, equation (13). The apparent simplicity of 

Chapter I equation .(10) is , deCeptive:'‘u This becomes clear when one 

inserts for r.(t) in Chapter d Ue0on (10) an exact result which 

follows from the Heisenberg eqii4ti0nOd motion: 

3p.(t) 
p., 	 E' 	) 

Dt 	 J 	J 

These yield the equation for the time dependence of the j th  target 

coordinate 

r.(t) = r.(0) 
	

(14) 

;j (0)t/m -, (1/ 

	

	dt- (t-t - ) E - 7C/
J
V[1"

J
(t'), r (t')] 

0 

inserting this expression for r 	in Chapter I equation (10) and 

accounting for the noncommutivity of the operators in equation (14) 

must yield an expression equivalent to equation (13). Incidentally, it 



is easy to see, by expanding Chapter II equation (10) and (13) in 

powers of k and comparing the terms linear in k, that (13) implies 

that r.(t) is properly given by its exact value expressed in 

equation (14). 

In equation (13) the impulse approximation still appears as an 

additive contribution to the dynamic structure factor. In order to 

obtain S(k,w) in the form given in equation (2) and to identify the 

function R, a cumulant-like expansion
19 

 is performed. The appearance 

of the T product complicates the standard'cumulant expansion 

procedure somewhat-; so the details of this procedure are sketched in 

Appendix D. Applying this expansiOn yields 

NS(it,t) = 	it,t)R(it,t) 

where 

ei ) iv 	. 
NS (k,t) 	E 	Noa 	

ji 	k
t.p

j - IA -÷ iw t 
e k 	(16) 
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where 



w
1 

= -e iwk
t 	

(18) 

t 
1 4lc 

E 	\e 	
, 	 v t")dt \ 

1-Te 	
k 	

/4/ s Jt,t) 
j,l,m 

The form of the second term, w2, in:the exponent. of equation '22) is 

given in Appendix D. 

For systems where it is appropriate to discard the coherent 

contributions 
j  0  1,  sIA(t,t) 

becomes  S
IA 

 (k,t), the impulse 

approximation to the density-density correlation function, 

[÷ 
NS

LA 
 (k,t) 

 

(19) 

 

and R(k,t) becomes• 

 

R(it.,t) = exp 	-E <(:e
1V
k j C1- Te 

j01  

dt".11. m  (;)/:k 
 t').1 o 	 ,  

< iv
k 	

, 

E 	e 	J • • • 

Equations (19) and (20) accomplish, at least formally, the objective 

stated in the beginning of this chapter. When equation (15) (with 
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j 	Z. terms discarded) is Fourier transformed to yield the incoherent 

contribution to the dynamic structure factor, the result is. 

S.(t,w) = },n}  R(k,w - wk -•) 
P P 

where= the ,  ftnction R(k,w - wk  - p•vk ) is the Fourier transform of 

R(it,t) 

(21) 

- p • v )t 
R(k,t) 	(22) 27R(k w - wk  -p.vk ) = 	dte 

co 

Equation (21) is still an, exact result for the incoherent part of 

S(t,w). It is still intractable when applied to a realistic 

many-body system. For such systems it is necessary to apply some 

approximation. Our interest is in scattering at large neutron 

momentum transfers, and we seek an improvement over the impulse 

approximation, which sets the exponent (w 1  + w2 
 + ...) in equation ,,-  

(17) equal to zero for all times. The first term w
1 

in the exponent 

th 
corresponds to the picture where the j particle is struck by the 

neutron and then the j th particle scatters off the other particles 

in the target, each treated singly. The succeeding terms w2 , 

in the exponent of equation (17) correspond to the scattering of the 

j particle by clusters Of two, three, 	 particles. One may 

expect that, at large momentum tranS.fers, a meaningful correction to the 



impulse approximation results from neglecting all higher-order 

cumulants and retaining only the term col  in the exponent of the 

function R( ,t) in equation (17). This approximation neglects 

th 
scattering of the j particle by clusters of two or more target 

particles. 

The=calculation ofj((t, Inow-,reAuced4 to.'da evaluation, of 

 

the cumulant w
1. 

This appears:to-1;1e a calculation of a two-body 

operator until one recognizes that eappearance of r.(t-t1. - and 

rm1t-tl,in equation (20) leaves one with a problem of the, same order 

of complexity 'as On exact calculation of S(k,t

- 

) Putther progress 

is made by noting:that'fOr large momentum transfers the time ;•   

evolvement of r.

▪ 

 (t-t1 - vkt -  is doMinated by -1".
k
t' and, therefore, 

+iH(t-t1 e- 	in equation (12) may be treated .  cavalierly. One might, 

for example, replace the time evolvement generated by the full 

Hamiltonian with a time evolvement generated by an appropriate two-body 

th 	 -t h 
Hamiltonian describing the' struck j particle and the m particle 

with which it is interacting- An even simpler, though more drastic, 

approximation is obtained by completely'neglecting the effect-of 

the factors e-+iH(t-t1  in giving the target particle locations a 

time dependence. This corresponds to the struck particle traveling 

along a straight line with the remaining particles frozen in their 

t = 0 configuration, a process reminiscent of the eikonal approximation. 

Neglecting the time evolvement generated by H reduces the calculation 

to one in which, the only information required about the target is the 

one-particle off-diagonal density matrix, the two-particle off- 
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diagonal density matrix, and the two--body potential. This follows 

from equation (20), which becomes 

4- 

• lpo 

(23) 

' 	dt-fv(I--ii ,14; ) — 	%)] 
. - 	lc e 	1-e- .9 	jk m  

exp 

  

E 

4- 4- 
/ ivk .p 4 ,-t>  

	

The expectation value \e 	- 	involves only a one-body 

operator and is thus reducible td a dna-particle density matrix . 

This reduction-,  is performed by,aVeraging over a single state To 

 for the target system; generalization to a canonical average is 

obvious. We have 

	

/pi  t\ 	ivk  
E 	e 	= N\ e 	/4= NIT*( 	-tc. 	T (rN ) T '

r ) e 	 N  d 	(2k) 

ffe, 

-,,,- 
iv .p.t 

The operator e 	shifts the coordinate r. appearing in T'(r -  ) 

by the amount y t, and the integration over the coordinates r
2 
 ,i.'.., 

 
'
V 

 
r introduces the one-particle density matrix p

1 
 vx. ---,r J defined by 

" 	-11 

' , 4- 	, 4- 	-, 	 * 	_.>. 	-4- 	 4- ; .2_,4--- ± 	---- 	÷ • 
p ' 	N 'T .:(1, , 7r 	r )T(171  , r_, , .4-, r )dT 	... dT-11. 	(25) 1 • 2' .." - 1\1. ' 	d 	N 	2 

`.• 	 , 



where 2' is the___ of the targct system, and we have used trans ; 

lational invariance of the wave function T
o to obtain the last 

equality. 

In a similar way, the expectation value in the numerator of 

the exponential in equation (23) involves only a sum of two-body 

operators and can be written in terms of a two-particle density 

matrix. The reduction is accomplished by writing the sum over j and 

m as N(N1) times the expectation value for a chosen pair, say 

particle 1 and 2. This term is then 

t 	 , 	 , 

iv
k
•p
1

-b 	11o [V(i.
1 
 -v
k 
 t' '  r2  )r2Mdt] N N 11. (141j1J4.6 (r . ' 	 1-e 	 To(r ).:11- 	(27), 

0 

t 
Ifb[v(i-1,1-vk(t-tl,r 2 

 = N(N-1.) j:VoqrN ) [1-e 

  

; 
r1+v 	r2

)dt' 
( -8) 

  

÷)d N x T 	+ vkt, 	 t 	-c.  o 1 kt  ' r 2" 11% 

Integrating over-:Coordinates r 3,, • • • ,, r Introduces the two-particle 

density matrix, defined by 

L 
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k p_r , 	• 	° r - 	 rN 
2 1 r 2' 

r 
 1 	2

) = N(N - 
	o 	 rN) 	(29) 

-i- 
x ‘11

o
kr

1
° r

2  r3 " 	r
N

)dT
3 	

dT
N '  

and yields for this term the result 

.4-  
2 	 r2 ) S kr , r

2' 
 • r + Vkt ,  1 	1 ( 30 ) 

• 0[ (r1+ vk 	r2 ) - V(r
1 
 + k  r2 

 ndt] dt1dt2  
->- 

- e 

Pitting r = r
1 

- r2 and again. a.SSiiming translational invariance, 

this becomes 

„.. 

p
2 
 (r 0; + v 

' ( 31 ) 

i [V(; + -Tr>.  (t-t1) -Vr+vkt)]dt' 
1 - e d-r 

substituting: 	 '(.26) and ( 31 ) into equation ( 	rields the 

function R(k, t) depending on the quantities ant i c apat ed above 



R(it,t) a exp (32) 

dT 
i 1 0 [V(1" + ;k(t - 	- V( t' + kt)]1 
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atom interactions in altering,tliPimpulse approximation'results for 

neutron scattering.at high momentum and energy transfer. Twomain 

approximations have been Made to'get to this result. The first 

consisted of the neglect of the time 'ev6lvement of the target particle 

+11-1(t-t1 coordinates (induced by the operators e- 	in equation (13)) 

while interacting with the struck. particle (moving with a velocity 

vk). The velocity vk  imparted to a target particle is much larger 

than a typical target atom velocity, so that for relatively soft 

collisions of target particles this neglect seems relatively safe. 

For strong, head-on collisions of the struck particle with other 

target particles, the readjustment of particle coordinates induced 

by the neglected operators e-+iH(t-t')  must have a large effect in 

preventing penetration into the hard-core region of the interaction, 

and here the approximation is dangerous. However , the situation 

encountered here is preferable to the one encountered in the expansion 

of the T product in equation (10.). For example, if one were dealing 

with a Lennard,Jones potential, the quantity. 

Equation,  (32) provides a usefal apprompation to the effect of target 

'1 1 



cf-  U.(vk  t')dt' = cf j  
o 

• 4 	, 
[V(1;,3 	

4 
vt', rm) - V(r

4 	
m 

., r )Jdt' 

collisions will be small, oscillatory contributions from hard 

e neglected terms describecorrelations 

mimicking the more physical picture in which the remaining particles 

will avoid ClOse encounters:through the:action  • 

The;2*econd approximationdOntained in the final expression 

for 1(k ,t) is concerned with truncating the cumulant expansion at the 

term in- equation (.17). 

expression 

between two or„more passive target particles' during their interaction 

with the stru8ktarget particle. Thus, the approximate 

414 

m4i 

in equation (10) and the equivalent quantity 

,f
-,4 

 [V(t + V(t - t')) - V(r
4 
 + vt)]dt' 

of equation (32) become undefined if the "trajectory" of the struck 

particle passes through the singularity of the-potential.- This 

.4 
divergence leads to an undefined expression for S(k,t) if evaluated 

from a finite number of terms from equation (10). In equation (32) 

the divergence occurs in the phase factor of an imaginary exponential 

and, therefore, yields a well-defined result if some sensible 

limiting procedure is used. A tempting speculation is that the rapid 

for R(I,t) contains multiple scatterings of the struck target 

particle by the remaining target :particles, with each of the passive 



target atoms treate'dindePend'entl'Y 'of each--other. 'This atiproination 

clearly requires that the correlation,.range between target atoms in 

the averaging state T be - considerably larger than the interaction 

range for a , pair of target particles. Although these conditions-' 

are not completely.eatisfed for,relatively dense systems, inclusion 

of such "shadowint effects" ieemia inordinately- difficult, reqUiring 

adding to R(k,t) terms involving three- and higher-particle density 

matrices. For experimental conditions under which corrections to 

the impulse approximation represented by R(k,t) are relatively small, 

the binary collision approximation employed here should provide a 

significant description of these final-state corrections. 
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Discussion of the Formal Results  

The formalism developed in the previous chapter promises an 

improvement over the impulse approximation through the partial 

incorporation of final-state effects. In the impulse approximation 

the helium atom which is "struck" by the neutron travels unimpeded 

through the liquid. In the approximation developed in Chapter III, 

the struck helium is influenced by neighboring atoms through a process 

which 4areminiacent ofpultgple'aa4ng1e acatterings-of the`struck 

helium by the other helium atoms'. its environment: As pointed out 

in that chapter, multiple single sda:ttering is not the only process 

which introdUces final-state :effec ts;' there is a hierarahyof 

processes in which the struck helium interacts. siMUltAneously'iiith 

pairs, triples;_quadruplea, etc: -., of it's  correlated neighbors. The 

decision to treat only the multiple single collision form is based 

partially on the intuitive assumption that the formalism is "well-

ordered". In particular, if ignoring the scattering of the struck 

helium by its neighbors (the impulse approximation) is a good first 

approxiMation and if the inclusion of multiple single scattering 

produces a small correction, then each succeeding, more complicated, 

process will contribute smaller and smaller corrections. 

From the results of Chapter III, the dynamic structure factor 



e 

v t 

i 	[V(; + ;)-V( + kt)]l] 

particle and two-particle off7diagonal density matrices, respectively. 

is given by 

At 
. S(it,W) = E• n R(Itw - wk  

P P  
(1)  

where n is the single-particle momentum distribution :(the fraction 

of atoms carrying momentum p), m is the helium mass, wk =
2 Pik /(2m), 

vk = Wn, and the function R 

V 	 -i(w-wkl-p7VE)tR(t,t)  
2tR(iZ, w 	wk  - 	 dte 

incorporates final-state effects. In the multiple-single-scattering 

approximation, the function R(k,t) may be evaluated from Chapter III 

equation (32). If the change of variable y = vk (t-t) is made, this 

equation becomes 

(2)  

R(k,t) = exp - fp 2  (x, 0 ; i' 4" . _%. , .0 ) 
-(: 



Assuming there is a Bose-Eins'tei4 oondensation 
, 

(n 00 

(6) 
IA -+ 	1  S (k,w) = 	.  

- 2 
1hr pvk 	I $2 

In the aboVe and subsequent equations, IA has been set equal to.unity. 

If the potential V(r) is well-behaved, then the flinction R(t,t) 

approaches unity for all time in the limit of large k.
20 

In this 

limit, R(k,w-wk-p-70 will become a delta function (refer to equation 

(2)) and equation (1) becomes 

IA S (k,w) = 
P 

which is the impulse approximitti64..6ed 

equation (22)'of that ch4;,*). 

equation (1) becomes 

SO4w 	1 	 r+ 	 ,* 
fdp3  n H(k,w - W - v -p) + n 	w - wk ) 	(5) 

(21-03p 	 k 	k 	o 

and the impulse approximation becomes 

where no is the condenSate fraction, Q = (w-w ) 	, and p is the 

helium number density. 

- wk . 	 v -p) 01) 



A slight generalization of the impulse approximation will 

increase the range of momentum transfer over which it is a good 

approximation. This modification is the replacement of the delta 

function condensate contribution by the R function 

sIA-4- 	1 
=  	dp pn t n R(k,w - wk ) 	( 7) 

- 

47r2 
pvk  Is21 	p 	o 

This appftaimation will beusefla,for - thode valiles of k •for which the

width of the R flifiction is narrow compared t -Ple04-147bh of  Flp ,  

allowing the replaeement of R by a delta function it e integrated 

term of equaticin (5) even though the condensate term may have 

measurable width. In subsequent discussion, equation (9) will be 

referred to as the impulse approximation. It includes the effect 

of final-state interactions on the condensate portion via the R 

function but neglects these effects in the non-condensate part. 

Recalling the basic premise made in the analysis of the con- 

densate fraction by Hook, Poherm, 	Wilkinson, one can=see that both 

equation (5) and equation (7) partially support this premise. These 

equations separate the dynami6' f- stetilre factor into a contribution 

from-the non-condensate, whichkaa:related -bathe non-condenaate 

momentum distribution n with p -V 0 and a contribution, frOm the'con, 

densate n 	 whichingeneral:has a nonzerb width. Two points , 

remain to be considered. The first iathd, plausibility of the Gaussian 

1  
condensate A7expL7(w-A8 )

2 
 /A92

J found by the least squares analysis 
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discussed 	 ,ThiS.  will be exalane 	Jewaluating'the 

theoretical estimate of the condenSate contribution, represented 
5 

by no 	wk), for the conditions:norresponding to the experiment o  

and then'eomparing the results to` the, assumed. Gaussian f'or'60, for, the 

condensate. This-will be done' in the next section : 02he second 

point is the pIaAsibilitYof theinon-Condensate portion of the dynamic 

structure factor. If one knew the single-particle momentum 

distribution and the R function, this could be accomplished by 

evaluating the integrated term in equation (5) for the experimental 

conditions. Attempts have been made-to evaluate the momentum distri-

bution from first principles, but it is difficult to gauge the validity 

of the results. Rather than trying this approach, the data will be 

analyzed to determine the momentum distribution which would produce 

the observed dynamic structure factor. The credibility of the momentum 

distribution so calculated then reflects on the credibility:ofthe' 

assessment of the non-condensate.portion of the data, at least within 

the framework of the approximations being used. 

Evaluation of  Final-State Effects  

The evaluation of the R function is the central problem of 

4- 4- 
this approach to the analysis of neutron scattering. R(k,i0-w k  -vk  .p) 

evaluated for p = 0 is proportional to the' condensate contribution 

to the dynamic structure factor; and, when properly convoluted with 

the momentum distribution (refer to equation ( '5)), it yields the 

nonrcondensate part. In order to evaluate the R function in ' a straight-

forward manner, it is necessary to select forms for the heliumrhelium 



ineq-u.s.lity yields 
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interaction potential V(r), the one-particle density matrix 
	

( 

and the two-particle density matrix p 2 (r,O;r + vkt, 0). 

The Lennard-Jones potential was used to represent the 

helium-helium interaction 

V(r) = 4c[(a/r)
12 

.4, (a/r)
6

] 
	

(8) 

with c = 10.22°K and a = 2.56 R. The selection of the two-particle 

density matrix was based on the following considerations. Viewing p 2  

a scalar product in (N2)-particle Fock space 

+ 	+ 
p kr, 0; r + v t, 	= <4) I (r) V (0): V 	1 1- 	) (P) (P o> 

where the helium is assumed to.b&in'the ground state 4)
0'  the Schwartz 

) T(;4t)T(1+t 0 	 Iii(0) 

Assuming that the ground state can be represented by an,everwhere 

positiYe„wave function, 0 2  is positive and the absolute value symbol 

may bexemoved, so that 

p
2 	0 ; 	+ 

k  t 0 ) < p 2  gj-/2 k/÷rgl 	) 	(10) "  



where g(r) is-the,pair correlation function. When t = 0, the inequality , 

in equation (10) becomes an equality; therefOre, one , expects 

2 1/2,--7>-. 1/2, 	' + p g kr)E kr + vkt) to be a good approximation to p 2 for small 

values of t and all values of r. 

4- 	4- 
For large values of (r) and r + vkt), p 2  shoUld approach the . 

Hartree-Fock approximation 

,4- 
p 2 kr,O; r + Vk  t, ) e 

,, 	 , 	, 
r, r 

->- + vkt) + p1(r'0)p1kO'r  + vkt) (11) 

, 
For most chOicesOf . (;) and (r' t` vkt), the 'direct term pp,  kr '  r + 1 	vkt)  

4- 	, 
will dominate the exchange term pl at,0) p 1 (0, + vkt), since 

pi (0,R) = pl (R,0) z pno for R > la (refer to Figure 10). If the 

exchange term is neglected, the approximation used for p 2  which agrees 

with equation (12) and (13) in their regions of applicability is 

-->- 	 1/2 	1/2 4- 	4- 
o2 " 

' (r 0. r + v
kt

, 	pg 	(r 	vkt) (r + v t) P1  lO, v t), 	(12) -  

where translational invariance has been used to replace p 1 (r,r + vkt) 

by p1 (0, vkt). Estimates indicate that g
1 /2 (r) is essentially 

zero for r 'z 2 2., then rises sharply to approach unity at r 3:11 , and 

exhibits rapidly damped oscillations about unity for r 3 R3 . To 

	

, 	,4- 
simplify the calculation somewhat, g

1/2 
 ( ) and g

1/2  kr + vkt) were 

replacedby unit step functions, Yipiging 



2 
	0; 	+ 	t, 0) 

	
(13) 

ky p 0 (1 11 - ro)e(I 4  ; tl 	r0 P 1 ( 0 , vkt)  

In„ equation (l3),r 0  is: treated as a ;parameter which may be adjusted 

slightly under the restriction that 0( ir I - r 0 ) remain a reasonable 

1/2 
approximation to g 	(r). Since only the ratio p

2
(r 9 0;r +•I'v

k
t, 0)/ 

p 1(0, 
, 

 yk t, appears in equation( 5 ),  the above approximation for p 2 

removes the need_ to cdhoos.ea af'diorilfcfor 
• a • 

, 	 "q7t1,-, 	• 
The above .tapp.roxithation-,to 	two-rpartiCled:ensity matrix, 

equation (13) , is most dairopriate for zero temperature because of 

the assumption that the •state of the• helium liquid is described by 

an everwhere positive -wa.,ed.11functipn.l',1 The H function calculated with 

this approximation will heliCoMpared -Vith data taken at a helium 

temperature of 1.2 K. 'Thd:a.ssumes t-hat taking p 2 to be everywhere 
•,) 	• 

positive at 1.2 °K introdubs an error which is not incommensurably 
- 	. 

large compared to the ,error:introduCed by 	other approximations 

used in obtaining equatiOn,   

Before proceedingi i118.il be useful to make some comments 

about R(t,t). 	By suit,ahleii*anipul.ationa of equation (3) it may be 

shown that 

, 	 4  

;•jtj!,H=;1, 

„ . 

,,1 '1,1'1 ,!ii,111-ilLiro,•, •',I [ i-- 	• I1 



( 15 ) R(k,t) E e 
-E(vkt) 

In'  Ur approximation E(vkt) is given by 

E(vkt) = p (fdr ()( 11'1 - ro )0( rA,  v
k
tl 	r

0
) 	(16) 

x 
-Act)] 

[..,'V t 1 k •-.,+; ...._. 	,,..; ..-- 	•,--; 
• k :---.0 

1 - e ' • • ' 

dyLV(r y)-V('r 

implying'that the real partcf RCk,t) is an even,, function of t and 

that the imaginary_part is a odd function of 	When Fourier trans- 

P 	 .4 
formed to yield R(k, v 0), the real part of R (k,t) will produce the 

even part (in SZ ) of R(k,:lv0) ?  and the imaginary part Will'yield the 

odd part of R(k, v1 0). If, in turn, R(k,

▪ 

 vk0) is convoluted with n 

inaccdrdange,with:equation-(3). to. produce the non-condensate contri,- 

- , 
bution to S(k',w), the primary effect of the even part of R(k, ITO) 

will be to modify the width of the dynamic structure factor, and the 

main effect of the odd part will be to change the peak location from 

that of the impulse approximation. 

Some } general observations about the shape of R(k,t) can be 

made more conveniently by considering the negative logarithm of R 



which. is obtained from equation (3). A simple physical picture may be 

associated with mathematical operations called for in the evaluation 

of equation (16). In this picture a helium atom is struck by the 

incoming neutron at its initial position r . The struck helium then 

travels along a straight line trajectory from its initial position r 

to its final position (r + vkt) at a velocity vk and in a time t. 

During its "flight", the struck helium interacts with a single helium 

located at the origin of the coordinate system. This interaction will 

be loosely referred to as scattering of the struck helium. A 

particular choice of initial position 1: will be referred to as a 

configuration. 

First note that the Lennard-Jones potential V(r') used in 

this calculation becomes highly repulsive as r' decreases below r o 

 (more precisely for rk.,  a = 2.556 R, but r0 	a). The potential 
is weakly attractive for r0  Srs R, where R is some distance beyond 

which the potential is insignificantly small for the purpose of 

this calculation (in actual computations R was taken to be 8 . 
though' its value depends, somewhat on k and t). Also, note that the 

unit step functions in equation—(18) remove all configurations for 

Which the,initi6,1 and/or final position is Within the core defined 

by , a sphere of radius rabdiitbe origin of the coordinaVS system. 

This means that for mrnall,7kt << 2r0 , the hard repuldive part of 

the potential does not contribute to the scattering. The value of 

ETV
kt)!IS therefOre small, being determined4bYihe weak attractive 

part of the potential. 



P E(vkt) 	 — k Re f(k, k) )`vktt (17) 

For the repulsive part of the potential to contribute, the 

4 
path of the struck particle from r 

4 	/4 
to 	+'v t) must pass completely 

through the core of radius r0 . As vkt approaches 2r0 , these 

configurations begin to contribute and soon to provide the dominant 

portion of the value of E(vkt). For large vkt ' as shown in Appendix 

E, E(vkt) is dominatedWa, term linear in vkt 

e 

is the real'part of the forward scattering dmplitude, both evaluated 
in the eikonal approximation, and C'is bounded. The term pa 

T
/2 

is just twice the reciprocal of a simple estimate of the mean free 

path. Therefore, this term is reminiscent of the results of phenomono-

logical arguments which yield 1/paT  as an estimate of the width of 

the condensate portion of the scattering. It should be noted that 

the factor 1/2 and the additive real part of C'will make the width 

of R(k,t) significantly different from the estimate 1/pa T . 

The value of E(vkt) 22 was determined by numerical integration 

where a is the total helium-helium cross section and Re f (k,k) 
T, 

of equation (16) for selected values of k, t, and r 0 ; the results 

for the real part of E(vkt) are shown in Figure 5; the imaginary 

part in Figure 6. 

The real part of equation (16) appears to be well behaved with 

small computational error. A smooth, curve has been drawn through 



L 

5.7 

Figlire 5. Real Part of 
k = 1.44 
14.3 a-- and 
and r = 2.5 0 

(The solid line evaluated oith 
and'rn  = 2.5 	long-dashed line, k 
ro  L'.11:1 ;  short-dashed line, k = n:6 R 
A. Errors indicated where significant.) 
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the computed points in Figure 5. The imaginary part of equation (1:0' 

is not as smooth and there is noticeable error in its evaluation at 

large values of vkt. For this reason, no attempt has been made to 

connect the computed, values of the imaginary part by a curve (refer 

to Figure 6). Where significant, the upper half. of the error bar 

(numerical error only) is shown fbr k = 28.6 	r0 
 = 2.5 R; and 

the lower half of the bar for k = 14.3 R -1 '  r0  = 2.5 R. A crude 

check of E in the region 8 J?, svkt s 10 R indicates that the slope 
of the real part.of E corresponds to a total cross section (according 

to equation (17)) of z 35 R2  for k = 14.3.E-1  and z 31 R2  for 

k = 28.6 R-1 , in rough agreement with the experimentally measured 

cross section. 23  

Figure 7 contains R(k, v0) for selected values 22 of k. Plotted 

in terms of 0 , the width of R(it, vk0 narrows rather slowly as a 

function of k. From equation (7), it is evident that the width in 

terms of 0 of the non-condensate contribution evaluated in the 

impulse approximation is independent of k. The practical implication 

of this is that if an experiment performed at a given value of k is 

repeated with a slightly higher value of k, one can only expect a 

very slight relative sharpening of the condensate portion over the 

non-condensate. This observation may be somewhat pessimistic since 

the Lennard-Jones potential used in this calculation is known to be 

somewhat more repulsive than the actual helium-helium interaction for 
s ■ 

small distances. 23 However We j donbt expect that the use of a more 

realistic pot.eptialwill -Change thTh result significantly. 
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Figure 7: :',R(k, v0) for ro  = 2.5 R. i:,The solid line evaluated for k = n14.3 R-1 ; 
long-dashed line, k = 28.6 -1 ; short-dashed line, k = 57.2 A-1. 
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On a more optimistic note, the functio R(t n. , vkQ) shown in 

Figure 7 exhibits a non-monotonic behavior as a function of S2. This 

characteristic is easily traced back to the short time behavior of 

the function E(vkt) defined in equation (15) and exhibited in Figure 

5 and 6. This behavior is radically different from the linear 

in vkt behavior given by equation (17) for long time. Clearly this 

occuralpecause the struck helium particle initially finds it self in 

an environment of other helium atoms strongly conditioned by the 

liquid's local structure. The struck helium can travel, on the 

average, some distance (' ,2 R to q,3 R) before suffering significant 

collisions with other helium atoms. 

Finally Figure M - n,this section presents the results for the 

condensate portion - 	tevaluated for the conditions correspond- 

ing to the;eXperithent of Moak, 8Aerm, and Wilkin!Son. The con-

densate part of S(k;w) was 61.qtaiiii&d from n ok 
 R(k, v'0) ass -liming that 

the condensate fraction is 24%. Figure 8 also contains the best 

fitting Gaussian form for the 'condensate ATexp [-(w-A8 ) 2/A92 ] 

(refer to equation (2) of - Chapter IT), and that portion of the data 

judged to be contributed by the condensate. The "condensate" part of 

the data was obtained by subtracting the first three terms of 

equation (2) Chapter II from the actual data. It is evident that 

if noR(k, visQ) were used in place of the "condensate" Gaussian in 

equation (2) of Chapter II, the best fitting value for the condensate 

fraction would not be substantially different from the previous 

estimate
6 
of 2.4 + 1%. The structure in the energy dependence of the 
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Figure 8. Condensate Contribution to the Dynamic Structure Factor. (The circles are 
the 'condensate' portion of the data (see text); solid line, theoretic=al 
estimate of condensate portion taking n = 2.45 and r = 2,5 R ;  long-dashed 
line, theoretical estimate taking n r, = 	 and and r = 	R ;  short-dashed 
line, best fit Gaussian with experiAental resolution removed.) ro 



in the -structure no 	
k
2) also has structure4whfch'is suggestive cif 

o  

0(lrl- ro ) and 0(1; + vk i  
tl-r 

o
) (used in equation (13)) would no longer 

Extraction of Helium Liquid Properties  

Based on the analysis of the experimental data in reference 

the results of the analysis in the previous section, one can 

that the condensate contribution to the dynamic structure factor 

full width at half maximum of approximately 5 meV at k = 14.3 R-1 

 the FWHM of the non-condensate part is roughly 16 meV. In the 

6 and 

judge 

has a 

while 

experimentally obtained dynamic structure factor i discernible in 

this figurd.in ,the vicinity of 101 meV and 111 ,  meV.. The function 

the data, but the structure in 4Jn R is located too far from the peak 

and is less dramatic. The structure in this evaluation of the con- 

densate:contiiibiltion 2'coUld:be,fiAdetOr re pronOunCedby OboOsing a 

significantly larger value for r o , but then the theta functions 

/.+N 	 .4' 

be a reasonable approximation to g
1/2 

 kr) and g
1/2 

 (r v
k' 

 t) respective- 

ly. A more precise evaluation of R, in particular the structure in 

its wine:., will probably require a more accurate approxitation to 

4 	4 4 	 • 
p 2 (r, 0; r + v

k
t, 0) than was used in this evaluation. 

formulation being used here, the non-condensate part of the dynamic 

structure factor is given by 

J 	
-4, 

S (k
' 
 w) = 	1 	dpi  n .R(k, v 2- v-p) 	(18) NC 

) P 	
k 
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From the above discussion, the FWHM of S NC  is approximately 16 meV 

while the width of R is roughly 5 meV. This suggests that the 

modified impulse approximation, equation (7), may be used with the 

recognition that the final-state effects implied by the width of R 

will be small, though not necessarily negligible. These final-state 

effects will be considered in the last section of this chapter. 

Using the impulse approximation, the extraction of the non- 

condensate contributions S NC from the experimental data provides an 

input from which the single-particle momentum distribution, the one-

particle density matrix, and the mean kinetic energy per atom in the 

helium liquid may be calculated. This is discussed in this section. 

Taking the partial derivative of the non-condensate part of 

equation (7) with respect to w at constant k yields 

, 2 	2 
Aim p Onc.2 	 Dus k 

(19) 

The experiment'wa conducted at a constant scattering 

angle of 135-'c% The momentum tranafe -  r',,ener transfer, and scattering 

angle are interrelated by 

k
2 OM = 2M{2e41 1/2

cos 0] ;4.0-  (20 ) 

where M is the neutron mass. Using Equation (18) d (120), a somewhat 

uninteresting exercise in partial derivatives leads to 
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, rf 

—41T py: -42 

= [i  .P,I\Tc ) 	) j. 	
H  

eNC' ak , 
'  

+ 

where 	w
k 

 (w- )/v 	As previously noted, the data, as presented 

in its final form in reference 6 and reporduced here, is proportional 

to the dynamic structure factor broadened by a resolution function 

with a FWHM of about 2.1 meV. 

For convenience, I chose to use the appropriate portion of the 

empirical fit (equation (2) of Chapter. II), rather than the actual 

data points, in the application of equation (21). The non-condensate 

part of the data -- - (10 , was identified with the non-condensate part 

of the dynamic structure factor S(8,0 through the relation NC 

2 ,c0 	 r 
CINC (u) a (ff) -1/2 ,./ 	de e 	 SNC (OM 

where 

INC (w) = Ale 	 Ale 

r= ,(2.1) 2/(4 1n2) represents the width of the experimental resolution 

function, and C is a dnAant to be determined by normalizing the 

single-particle*momentimiditribution Obtained from equation (21) 

by means of the relation 

(22)  

(23)  



E n = 1 
p p 

The following approximation to the aolutiOn of equation (22) 

was used. 

S
NC
(OM 	e 	 + P0101 

-(wA ) A' 
,2 	2 

3 
	

(25) 

where 

Al ' = AlA3/A3 	 (26) 

A 	_A„ 1/2 	 (27) 

66 . 

(24) 

•• 

; 4 
P(w) = A E 4 ' 	'  n=0 ''; 

• 

d2n 

dw2h 
e (28) 

As may be verified by"direct thihstitUtion, the—Gaussian term in 

equation (25) exactly reproduces the Gaussian in equation (22) after 

convolution with the resolution function. The polynomial P(w) 

approximately reproduces the term A llexp[-( -A5 )
4 
 /A6  ] of equation (22) 

after resolution broadening, as verified by numerical integration, 

The functionj(w) was obtained from the first five terms of an infinite 

series solution to an integral equation in the form of equation (22). 

This series solution is discussed in Appendix F. 



= 44 n e 
P 

(29) p 1 (0 

The use of equation (25) in equation (21) yields the single-

particle momentum distributions shown in Figure 9. Along with the two 

distributions obtained in this analysis, Figure 9 also contains the 

distribution found from a Monte Carlo calculation which assumed a 

Jastrow ground state wave function. 3 To facilitate.comparison with 

the Monte Carlo result, the n values determined from the experimental 

data have been normalized taking the helium density to be 0.022 atoms/ 

a-3  and the condensate fraction to be 0.11 at 1.2 °K. Evident from the 

figure is the large number of atoms carrying a momentum p z 0.7 R -1  

which are not present in the Monte Carlo calculations. The momentum 

distributions n determined from this experiment correspond to the. 

temperatures 1.2 °K and 4.2 °K, whereas the Monte Carlo calculations 

were performed for the ground state T = 0 °K. However, we do not think it 

likely that the differences in the n distributions at T = 0° K and 

T = 1.2 °K, shown in Figure 9, are due to this difference in temperature• 15  

Some insight into the possible source of this discrepancy is afforded 

by examination of p i (0,;), the off-diagonal one-particle density 

matrix, related to n by 

ip•r 

Fora the Monte -Carlo  calculations0,1") 	also related to the -•„ 	 1 
• 	-->•• 	.4- 	• 

asSumed form - of the ground state wave function- cf. 	r 	r ) by l' 2 , - 	' 	N 
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Figure 9. Single-Particle npmentum Distribution via the Impulse 
Approximation. (The solid line is the distribution obtained 
from 1,2°K data; long-dashed line, obtained from 4.2 ° K data; 
short-dashed line, the result of Monte Carlo calculation 
Re'. 3.) 



P (0,T) = 10 (0, r2 , . 	rN) 

x o (r' r ) dr2  ... dr 

Figure 10 compares values r . for p1 (0,r) from the experimentally 

determined n values with the Monte Carlo results. The excess atoms 
P 

0- carrying momentum "'
1 

 0.7 4-  in Figure 9 give rise to the dip in 

p1  (Q 	 1r) near r z 6 R, resulting in a non-monotonic p -  (0,r), con- 

trasted with the motiOtonically decreasing-p i  predicted by the 

computer studies. We believe that the monotonic behavior of pi(Or) 

is due to the use, in equation (30) of a Jastrow ground state wave 

function 

Y(rN ) 	 f(r;.) 
1 < i < j < N 

(30 

for which the assumed form of f(r) is a monotonically increasing 

function of r, i.. e„ f(r) =7 eXp-- Such an f(r) does not 

- 
account foryatKtractive interactions, which shOUld cause a "bump" 

in fcrT , at an r-value roughly-,corresponding to therangeof the 

attraction, 	g., f(r) 	[-(air) + (b/r)m], b > 0, miTi> 0. 

Graphical estimates of p 1 (0,r), ',frOm equation (30) indicate that the 

bump in ff('r)can" produc4 non=monotbnic p ( 	. It would be 

interesting to repeat the MOnte Carlo calcUlationS allowing for the 

effect of attractive interactions between the helium atoms
24 

to see 
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Figure 10. Off-Diagonal One-Particle Density Matrix via Impulse 
Approximation. (The solid line is the matrix obtained 
from 1.2 ° K data; long-dashed line, obtained from 4.2 ° K; 
short-dashed ]I110 is the result of a Monte Carlo calculation, 
Ref. 3.) 



if non-monotonic behaidor of`qp(0,r) resUlta: 

The mean kinetic energy4e'helLUM-atom is readily obtained from 

the momentum distribution by calcula ting the mean-squared momentum. ,  

This yields a mean kinetic energy pe7 atom of 12 °K/atom at a temperature 

of 1.2°K and 16°K/atom at 4.2 °K. OterJ estimates for this quantity, 

obtained from Plonte'Carldresults.for te , ground state3 ' 13  and from 

' 4 	4- 
experimental data at about l°K ranglfrom10.:6 °KAatom to 15.8°K atom. 5 	 ,e 

Final-State Effect s  on  the.Non-Condensate  

In the previous s*Ction final-state effects were ignored in 

obtaining the aingle-particle-Momentum distribution and related 

quantities. his-secltion Con-pains oa,!I discussi3on o'f the modification 

of previous results brought about by including the final-state effects 

embodied in the R function. 

The starting point is an expression for the non-condensate 

contribution to equation (5) 

1 
SET (IC 	= 	cf 1)2 dp 141 	in (k9 .7. g k 2  V 

4Tr
2
p 	0 	 • - 	

d 
1 

(31) 

which has been written in terms of polar coordinates with the change 

of variable f3 = cos0, 0 the polar angle. To obtain a formula 

analogous to equation (19), one takes the ,partial derivative of 

equation (31) with respect to w holding k constant, 



co 

2aS) 
pv 	 dp pn R(k, vk0 - vip) 
k&0  k 	0 

dp pn R(k, v 0 + p 	' k 	k 0 

The above equation can be -written-in a slightly more compact form by 

replacing p by pin the second integral and artifically extending 

the definition of n to negatiVe values by the prescription n
-P 

 = n . 

Equation (32) becomes 

J(' 
_00 dp pn R(k, 11' pvk acv 

2 	aS 
,  

(33) 

The analogous formula for constant scattering angle 0 is 

obtained by taking the partial derivative of equation (31) with respect 

to w for constant 0, using equation (20) to interrelate k, w, and 0. 

The result is 

(32) 

)4 ,Tr2 	, [ OS \ 	+ 1 	ak\  
Pvk 'aw 1 0 	k 	(o f .1  

= [-1 + v (Z) k Dw 0 (34) 

co 
x 	- 	pnp  R(k, vk0 - vg) + v 

2 
dp k 

 n 
p
R(k,v

k
0-vkp) 

+ 
k aw •  f:o 	p n

p
Rk 

a 

' 

GI 



where 

17c  R(k, vk2 - vg) 
v - V

k 
 p. k  

To , proceed with determining-n from the scattering data, one must I 	

determine or assume a form'for 3Rf3k. If onewished, DRiak could be 

calculated in . manner similar to the technique ued in the second 

section of this chapter. Theexpectation that the final-state effects 

will be small suggests thattesults of sufficient accuracy could be 

obtained by just assuming a convenOtt form for R(k;-viQ), rather than 
" 	 . ,-, . 	 . 	-. 

investing in a Icing, cumbersome evaluation oflOk. The author chose 

to assume a Gausgian formfor R(k, vkt) 

R(k, 	= e 
-(vit) 2/r 

(35)  

which when Fourier transformed yields 

-Q
2
r/4 

R(k, v
k
O) = e 

.vk 
(36) 

This form leads to a considerable simplification of equation (34). From 

the results of Section II, it is obvious that a r may be chosen to 

yield the correct width and qualitatively the correct shape to mimic 

the A(k, v
k  Q.- vk  ,p) evaluated in that section. From Figure 

7 it can 



be seen that :the width ofleR(k,' v t) ih terms of vt changes by No 
Q=1 	 1 approximately 8 percent as 	from k = 	tO k'goes ' 	 28.6 R. • It 

therefOre appears safe to -assume that 17 changes negligibly over 

the range of k values whieh are , si'gnificant for the experimental data 

being. ahalyzd. 4Taking - T as, independent:4  of k.and inserting equation 

, 
(36) into equation DLO yields 

2 'aeq )  87
'  

' 	1 
- 1 77 Pik [  aco . " -0-1-  :k Aw 6" 

( 37 ) LjL dp pnp  Ra", vk2-vkp 
3 	n v 	 + 

k Du) e [1 - 

where approximate equality is indicated to emphasiz6 that this 

equation is based on the assumed Gaussian form of R(it", v kt). 

The results of Section III may hdrif be reexamined using 

equation (37). In that section, the right-hand side (RIBS) of the above 

equation was identified as equal to 2n n  ,(refer to equation (21) and 

Figure 9) rather than the convolution of R with pn p . From the general 

shape of R,• one would expect that the convolution of R with pnp  would 

be broader with less well-defined features than pn p . This means, for 

example, that the actual single-particle Momentum distribution may 

have a noticeably sharper peak in the vicinity of p z .7 R-1  than 

indicated in Figure 9. 

It is somewhat easier to make-a quantitative correction for 

final-state effects on the previous assessment of the off-diagonal 

one-particle density matrix. The results for this density matrix, 



presented in Section III Figure 10, were obtained from 

r c°  
i51  (0;r) - 12  J 	d2 sin Or [RHS of equation (39)] 	(38) 

In the impulse approximation, the RHS of equation ( :37) is on2  (refer to 

equation (21)); and, in this approximation, 45", is quickly shown to be 

equal to the-off-diagonal density matrix=p0.,r„ . In the present 

approximation in which R.(k, vkt) is assumed:tbl.)ea Gaussian,,-the 

RHS of equation (37) is taken as 

00 

C.11C0 

dp Pnp  R( ' k v 2 r-  k - p );  

and equation (39) bedome 

01 (0, 	= 01 (0, r)R(k, Vkt = r) 

whee- 45"
1
(0,r) is the' result of 064,-ciculation,"contairied'in Figure 10 

, 	I 
and pi (0,r) 	the !1:-,t,:rue"idensity matrix'. Figure 11 presents the 

4 ,, results 'obtained forp i (0 r)- under, the assumption that%R(k, v kt) is 

a Gaussian with r = 53.5 	value of r being chosento give a fit 

to the experimental data comparable to the fit afforded by the con- 

densate (fourth). term;of,equation (2) of phapter II.. 	> 14 , 

Figure 11 has been drawn assuming that the condensate fraction 

no is .11. If a significantly smaller value had been chosen for n o 

(for example, no  = .021k, a value more consistent with the previous 
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Figure 11. Off-Diagonal One-Particle Density if:atrix Corrected for 
Final-State Effects. (The solid line is the matrix 
obtained from the 1.2 °K data, assuming a Gaussian R 
function (see text); long-dashed line, obtained from 
1.2°K data :ith no correction. for final-state effects.) 



results), then the resulting p i (0,r) would have negative values for 

rz 6 R. This would be incompatible with the assumption that the wave 

function of the helium is everywhere non-negative, a zero temperature 

assumption utilized in Section II to obtain R(k, vkt). Since p1(0,r) 

was evaluated from data taken at a temperature of 1.2 °K, the negative 

portions of the density might be ::a real temperature effect, implying 

significantdeviations'of' 1 -fr6i it's ground 6tate',shape due to 

, 
population of excited state's: Another, probably more plausible, 

explanation may be that lienegative values were artifiLaIly 

introduced by errors arising'frdin the finite accuracy of the data and 

the computational procedure used in the analysis. For''example, 

theoretical calculations indicate that n cc 1/p for small p. It is 

unrealistic to expect an experiment of the type being discussed to 

detect this feature. Adding a term to n which behaved like 1/p 

for small p would diminish the size of the negative values of the 

density matrix. 



CHAPTER V 

CONCLUSIONS 

It has been known for many years that the incoherent dynamic 

structure factOr for a system of non-interacting particles can be 

written as a sum of delta-function contributions from each single- 

4- 
p particle momentum state  weighted by the fraction of particles /1.--)- 

4- 
with momentum p 

IA S '(k,w E n-* 	(to — k2 / (2m) — t•P/m) 
(1 ) 

where in is the mass of the non-interacting particles. The formalism 

developed here and in Reference 21 shows that the effect of interactions 

between the particles is to broaden the delta-function contribution'  

from the state p into a contribution R(t, w - k 2/(2m) - t•P./m) with 

non-zero width. Since the evaluation of this function R appears to be 

intractable for a realistic many-body system, an approximation to R 

has been proposed which takes account of a certain class of final-

state interactions. The final-state interactions included in this 

approximation formally resemble multiple single scattering of one of the 

particles by its neighbors, evaluated_in an eikbnal-like approximation. 

The R function wasoevaluated using theLennard-Jones interaction 

and a crude approximation to the -twOpartiele density matrix with the 



perameters chosen to resemble superfluid helium. The result was 

compared with the assessment of the p = 0 contribution to the 

dynamic structure factor of superfluid helium obtained from the neutron 

scattering data of Mook, Scherm, and Wilkinson. The shape and width of 

the theoretically obtained and measured p = 0 portion are mutually 

supportive. In addition, both exhibit structure in their wings, 

although the agreement is only qualitative. The single detrimental 

aspect is a significant difference in the location of the peak of 

the two functions. No conclusion has been reached on the cause of 

this disparity. An auxiliary conclusion based on these results is 

that the impulse approximation equation (1) to the dynamic structure 

factor of superfluid 	 reasonable results for k > 1 4 R-1  

with only smala,final-state corrections. The final-state corrections 

to the impulse approximation are mnall for k = 14.3" R7' 'and decrease 
4  

slowly as k increases. T is implies that obtaining a significant 

improvement in the accuracy of -the impulse approximation for the 

analysis ofneutron Scatterihg'dataon-liquidhelium will:require the 

measurement of the scattering at extremely large momentum transfer, 

e. g., k z 50 R71 .. This appears to be beyond the present state of 

the art. 

The balance of the experimental data was analyzed to obtain 

the single-particle momentum distribution, one-particle density matrix, 

and the mean kinetic energy per helium atom. The results for the 

single-particle momentum distribution indicate a preferential 

occupation of the states with momentum p -z ,0.7 R-1 . This feature is 



. 	 , 
.. 	 , . 	. 	 . .,,,,,,,„:„,t  

an entirelylnew resUlt...., The preferential occupation in n causes the 
P 

one-iiarticle density matril&to, have damped oscillations in its value 

at large distances - 6 a. The -mean kinetic energy calculated from the 

data is in reasonable agreement with previous estimates, indicating 

- 
that' the fourth moment of the'r calculated from the data-has an 

acceptable value. 



APPENDIX A 

This appendix contains a derivation of the inelastic cross 

section of neutrons from a target of identical, spinless particles. 

Take the initial state of the total system, neutron plus 

target, to be 

ik 
> = L3/2e

i. 	
> (1).  (Ai ) 

where the neutron is in the box-normalized (volume L 3 ) plane-wave state 

-3/2 exp (111.) with energy E., and the target is in the initial 

state 14) i> with energy Ei . After the scattering, the system will be 

in the final state 

= L 3/2e f 	I 
f 
	

(A2) 

the neutron having 'been scattered into the state with wave-vector 

and the target having undergone a transition to a state ly with 

energy Ef . From first-order, time-dependent perturbation theory, the 

probability Wif  of a transition from state i to a state f is 



2 

if 
	<i1V1f>1 pf (e f  + Ef ) 	 (A3) 

Here, p f (cf + Ef ) is the density of final states, and V is the 

interaction which causes the transition. The interaction between a 

single target particle and the neutron will have a very short range in 

comparison to the wave-length of a thermal neutron, since the inter-

action occurs between the neutron and the nucleus of the target 

particle. It is, therefore, appropriate to represent the neutron-- 

 target interaction as.a sum of Fermi pseudo-potentials 

( ;Al.) 

where M is the neutron Mass; r. is the position coordinate. of the 
t. .th  

targetr.particle, sand b` is ,. they scattering• length which is related 

to the total cross section ab for the scattering of a neutron from a 

single target particle by 

2 
I (A5) 

Inserting eapiation (A3)' and (-A4) into equation (A2) yields 
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W  if 24 M = 	k 
a 	2 
b / 20 x2 

L 
 1/6 	

(A6) 

E 
itk. - k ).1;*. 

< f le 	1 	f 	(Pi'l 

2 

p
f
(6

f 
+ E

f ) (A6) 

Where the integration of the neutron coordinate .R has been performed. 

The density of final states which conserve energy is 

p
f
(e
f 
+ E

f
) = 27 
	da' de , (5( e. + E. - e - E f ) 
3. I& 

142 	il f  
f 	 (N7) 

where dS2' is the differential solid angle. 

Noting that the differential cross-section is given by W if 

divided by the incidea neutron - flux and that the incident flux is the 

incident neutron velocitylik./Mitimes the neutron density 1/L 3 , one 

finds from the above equations that 

2 	°b k 

f 
	

'71T1T- 

	
(A8) 

x 
ik.r. 

<4).le 
3 

I y 

	

E. 	E 

	

1 	f 
(S(w + 

- 
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where.k'= 	k
f 

and Xd = 	- 

Most usually, the experimentalists does not attempt to 

• determine the precise initial and final state of the target system. 

Instead he will measuretlie'total partial differential cross section 

for all possible scattering processes. This is obtained from equation 

(A8) by averaging over the initial, states and summing over the final 

states 

	

'd2a 	
a
b 	

k
f 

d2'dt - 

	

f 	; 40. (A9) 

4- -4- 

ik.r. 
E P. E 	E <c15 le 
i f j 

14) f> 
2 	E. 

+ 
E
f 

- 7-)  

where,  P. is the probability that the system is in state i initially. 

Equation (A9) may be made to appear simpler by first 

representing the delta -funation aa 

rm + 	E hOt 
dt e (Alo) 

and then using this to rewrite the squared matrix element as 



E <4> i  
J 

.4. 1r*. 
ilc•r . 	2 

e 	- 14).i>  I 	5(w 

4' 
Wt 	 . r. 

1 =dte 	E < i.I e 	'3 :41 
J u l 

Noting that 

iEft 	-ik.r -iEt/14 J e 	1 	I e 	e 

e 
-iHt/S 14)i> 

where H is the Hamiltonian operator for the target system; equation 

(All) may be represented in the form 
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ik.r. 
I E < c1) .le 	j  

1  

2 
6(6) + 	- Ef/X) 	 (Al2) 

	

- 4- 	 -4- 4.
. -iHt/$ co 	-iwt 	ilk.r 	iHt/1C -ik.r.  

= iHefw, dr e E. 	'3"I(pf>«pfl,e 	 Je 	1Y 
j,1 

When equation (Al2) is inserted into equation (A9), the• Sum over final 

states can be performed trivially by using the completeness relation 

1y<(Pf l = 1, with the result 
f 



( Pa5 ) dt e 	Vit it) 
• 

(Ai.6) 

k- 
d
2
a 	b 	f- 

d0 -de f 7 14711 TE 

. 
-iwt 	ik. r 	-.ii.. -1Ht/$ 1

e 	 J e EP 2-  - 	dwe 	E 	 14)i> P. 27 _co 	j,1 

Using standard terminology, the density-density correlation function 

, 
is defined as bkk,t) 

iHt/$ 	-iHt/$ 
S(it,t) = E P. E <4.I 

,
e 	e 	J e I -> 	(A14) (1) 2.  

and  its Fourier transform is called the dynamic structure factor 

Comparing equation tA13), ;and (A15) 

This equation appears in Chapter I equation .(8). 
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TLblo 2, The Function  

k14.3 rl 	 r .2.h a 
0 

v.t, () 
K 	 E(-„kt) 

1.5 

2.0 

3.0 

, 4.0 

5.0 

6.0 

8.0 

10.0 

vict 	(R) 

1.5 

2.0 

3.0 

4.0 

5.0 

6.0 

8.0 

10.0 	, 

	

.0050633 	, .0001860 .... 

	

.0108057 	+ 	.0005052 _ 

	

.0894199 	+.0001216 .... 

	

.2827610 	+ 	.0007541 

	

.6124557 	± 	.00033653 _ 

	

.9984127 	+ 	.0104911 

1.789)45 	+ 	.025166 _ 

	

2.60558 	+ 	.038383 

k=14.3 R-1  

	

.0032151 	+.000h02 

	

.00560 	+.00031 

.,04485 
- , 

	

.203638 	+ .000022 ..._ 

J1.9991 	+ 	.000239 

	

.88640 	, 	= 	.00474 
. 	q 	_ 

	

1.66917 	+ 	.00269 

	

2.47756 	+ 	.00506 

4. i( 	.010857 

+ i( 	.000102 

+ i( -.066365 

+ i( -.132535 

+ i( -.203699 

 + i( -.275342 

+ i( -.41707o 

+ if -.555588 

r
o
=2.5 R 

E(v t) 
k 

+ i( 	.000816 

+ i( -.010169 

+ i( -.079724 

+ i( -.160225 

+ i( -.2367 

+ i( -.32062 

+ i( -.)455 

+ i( - .593 

4. 	.000052) ____ 

+ 	.000201) 

+ 	.000105) ..... 

+ 	.000368) _ 

+ 	.000632) 

+ 	.001368) 

+ 

+ 	:::88: )) 

+ 	.000050) 

+ 	.00009)4) 

) 

+ 	.000352) 

+ 	.0021 	) 

+ 	.0028)4 	) 

+ 	.01 	) 

+ 	.015 	) 

vkt( 

2.0 

3.0 

4.0 

5.0 

6.0 

8.0 

10.0 

k=28.6 R-1  

) 

	

.0026167 	+ 	.000395 

.0152570 

	

.1368068 	+ 	.0005317 

	

.39161 	+.0011349 

	

,.728346 	+ 	.014289 _ 

	

1.404331 	+.007141 

	

2.0811995 	+ 	.3.161126 _ 

ro=2.5 R 

E(vkt) 

+ i( -.005005 

+ i( -.047793 

+ i( -.123967 

+ d( -.197043 

+ i( - .266276 

+ i( -.)409753 

+ i( -.5)49366 

+ 	.000104) 

) 

+ 	.00018 ) ..... 
+ 	.01108 ) 

+ 	.00548 ) 

+ 	.04917 ) 

+ 	.07544 ) 
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Table 2. (Continued). 

v
k
t (A) 

k=42.9 A-1  
IT'' , 	0 -ki

k 	) 

r0=2 . 5 	.A 

2.0 ,.0016898 + 	.0001263 + .0024584 ± .0000333 

3.0 .0053789 ± 	.0005033 + 1(- .0250815 ± .0001325 

4.0 .8991887 - 	.0004701 i(- .0951216 ± .0000732 

5.0 .3158323 ± 	.0009093 + .1636986 ± .0009487 

6.o .6193929 ± _0019012 + 	i(- .2324432 ± •001864 

8.0 1.2272486 + 	.0034674 + •3684)462 ± .003102 

10.0 1.836066 ± 	.0041142 + .504009 ± .004373 

v t (A) 

k=57.2 A-1  

E(vkt.) 

r 	2.5 

2.0 .0019992 .000137 5 + i(- .0032993 ± 

3.0 .0080329 .0002937 i(-1  .0331044 ± 

4.0 .1075794 .0004451 • i(- .1064559 ± 

50 .549725 .0007225 , + i(- .17335-39 ± 

6,0 %6689186 .0034939 + i(- .2355611 ± 

8.0 1.3132175 .0060384 + i(- .3589155 ± 

10.0 1.9600907 .011567& •(- .4818579 ± 

1 

.0000169 ) 

.0000147 ) 

.0003307 ) 

.0012142 ) 

.006597 ) 

.0172025 ) 

.0283641 ) 
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, 
Table 3. The Function R(h,v,0 EValuated at Constant 

k.2526 
 kThe 

values of 15. fi(k,v 	are tabulatj in A. units; r = 2.5 R.) 
• k 	 o 

 

ffV. v 	, 	-,;(k 
k , ' ko-1 

'k=14.3 A 	= 2 	A 

 

-1, 20 
-1.70 
-1.00 

.90 

.80 

.70 

.65 
- .6o 
- .55 
--.50 
.. ./ 1 5 

.4o 

.35 

.50 

.25 

.20 

.15 

.10 

.05 

.00 

.05 

.io 

.15 

.20 

.25 
7

• 

)0 
.35 
.40 
.45 

.50 
, . 55 
.60 
.65 
.70 
.80 

- .02863  - .0315 4 

- .07119 - .07932 
- .11718 - .13414 
- .15422 - 	.18275 
- .16123 - .20297 

- .10482 - .16099 

- .03793 - .10206 
.06511 - .00772 
.21373 .131311 
.41854 .32596 
.60100 .58855 

3.04-6h 
1.48356 
2.01995 
2.65011_ 

3.35895 

.93279 
1.37287 

2,56625 
13::'-'612+15 

4.11156 4.22302 
4.84820 5.1052] 
5.48512 5.90197 
5.92669 6.47083 
6.09022 6.67366 
5.93542  6.43878 
5.48198 5.8037c 
4.80304 4.89968 

3-99853 3.88973 
3.16503 2.90935 
2.37624 2.04251 
1.67742 1.32129 

1.08917 .75192 
.611175 .31 989 
.24696 .00542 

- .02661 .1355 
- .22027 - 	.55559 
- .34826 . /43797 

- .02607 - .02425  
- .07415 .07277 
- .13168 - .13062 
- .18660 
- .21750 - .2172; 
- .19027 - .19186  
- .13968 - .14323 
- .05574 - .06031 

.07757 .06660 

.26609 .24905 

.52563 .5007 4 

.87a76 .837 115 
1.32115 1.27691 
1.88958 1.83698 
2.5078 2.5)4'1'1 
3.41342 3.36717 
5.84116 4.32077 
5.29109 5.32818 
6.14680 6.26055 

6. 
6.92914 

.;g. '67, 
 6.58514 6.80241 

7.14244 

5.84116 5.98326 

1= 3 
4.88337 
3.72152 

2 .75789 2.65354 
1.88771 1.75520 
1.18062 1.04378 

	

.63135 	.50536  

	

.22106 	.11395 

	

- .07314 	- .15825 

	

.. .27552 	- .33661 

	

.3q982 	- .44260 

	

..:4i1-)883 	- .495 j 
- .48799 := 

	

.9, 	.1,1,30 	.41988 	 _ .411122 	: 

	

1.00 	_ .56427 	- .318b7 	- .30178 	- .27600 

	

1. 1 0 	- .26284 	- 0 (..'0889 	•-.1468 	-  .15756  

	

- .16405 	 ...05830 

	

1 .? r) 	 - .11022 
- .011110 

	

1,30 	- .08174 	 - .05232 	
: .08259 

- .42371 , 47818  
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Table Condensate Colltydb'Jtion-te 	 the Experimental 
Conditions of Mook, Seberm, &‘4.Vii1kAnson. (Condensate 
fraction taken to he  2t. 11%; 	 R(k,w) , the condensate 

L, 	,  contribution, E.:tkre:3sed 	14nit 	C 0 unT,s per 20 minute 

	

1 	• 
counting interval.) 

 

 

  

Energy w 
(meV) -0=0 0  a. 

n R k,w 
r c)=2 4 R 
0 	- 

97 - .03009 - .02811 
93 
00 

- .03811 
- .03842 

.03026 
- .02287 

100 .02229 .00175 
101 .02107 .05477 
102 .11091 .15148 
103 .26896 .31046 
104 .51656 .54819 
105 .85538 .86194 
106 1:22720 1.19482 
107 
108 

1.47954 
1.44340 

1..40950 
1.36137 

109 1.12254 1.06138 
110 .69914 . 67377 
111 .33676 .49611 
1.1.2 .09206 .11727 
113 .04519 .04195 
114 .10503 - .07109 
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Table 5. Non-Condensate Single-Particle Momentum Distribution
27 

Evaluated via the impulse Approxi mation. 

Momentum p 	n at 1.2 ° K Momentum p 	 n at 4.2 ° K 
( R-1 )  ( R-1 )  

.083_597 .278358 .083143 .242654 

.166786 .306380 •166279 .262231 

.250171 .353758 .249415 .295230 

.333560 .419877 .332557 .341309 

.416959 .500384 .415711 .398038 

.500374 .584115 .498884 .459139 

.583811 .651208 .582081 .513141 

.667277 .675728 .665309 .544045 

.750778 .636154 .748574 .535881 

.83 1+321 .531804 .831883 .481357 

.917911 .392675 .915242 .390269 

.931970 .367372 .929063 .371317 
1.01989 .244654 1.01603 .268552 
1.10783 .171489 1.10303 .191325 
1.19580 .13470 1.19007 .146443 
1.28380 .112884 1.27715 .122298 
1.37185 .096017 1.36429 .106441 
1.1,5995 .081594 1.45148 .093380 
1.54811 .068948 1.53874 .081733 
1.63633 .o578o0 1.62607 .071164 
1.72463 .048015 1.713 1+9 .061550 
1.81301 .09510 1.80100 .052846 
1.81254 .039555 1.8190o *.050980 
1.90469 .01938 1.91112 .042955 
1.99690 .025530 2.00330 .035897 
2.08918 .020208 2.09555 .029756 
2.18155 .015841 2.18788 .024470 
2.27400 .012302 2.28030 .019965 
2.36656 .009466 2.37283 .016165 
2.45922 .007219 2./465)16 .012990 
2.55200 .005458 2.55822 .010362 
2.64492 .004092 2.65120 .008206 
2.73797 .003042 2.74413 .006453 
2.76916 .002801 2.77486 .005981 
2.86659 .002050 2.87662 .004582 
2.96413 .001491 2.97846 .003493 
3.06381 .001078 3.08038 .002651 
3.15964 .000775 3.18241 .002004 
3.25762 .000554 3.28455 .001510 
3.35577 .00039)4 3.38682 .001133 
_5.45410 .000278 3.48924 .000848 
3.55262 .000196 3.59180 .000632 



Table 6. One-Particl Density Matrix` ' 5,2  
Approximation. 

r;i1uated via Ithpulse 
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p (0,r) at 14.2 °K p 1 (0 ,r) at 1.2°K 	
1 • 

( -3 ) 

r 

) 

0.001 
0.501 
1.001 
1.501 
2,001 
2.501 
3.001 
3.501 
4.001 
);.50L 
5.001 

6.031 
6.501 
7.001 
7.501 
8.001 
8.501 
9.001 
9.501 . 

10.001 
10.501 
11.00 -1 
11.501 
12.001 

.0219970 

.020472 1 

.0167036 

.01236147 

.00873689 

.00621908 

.00459965 

.00354098 

.002812129 

.002307337 

.001986381 

.001825687 

.001796807 

.001863837 

.001988661 

.002135939 

.002277142 

..0023929738 

.0024735940 

.0025175094 

.002529422 

.0025178208 

.0024925318 

.0024625590 

.0024349)499  

.0219832 

.0197575 

.0145508 

.00915143 

.00524222 

.00290662 

.00156527 

.000721777 

.000140819 
...000249961 
-.000474902 
-.000555237 
-.000524000 
...060422404 

-.000287937 
-.000152540 
-.0000393385 
.0000400297 
.0000832362 
.0000950127 
.0000838470 
.0600599873 
.0000329291 
.00000889558 

-.00000817188 
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6 28 
7: Experimentv2 	' 

Energy 
(meV) 

S(h).at 	1.2 ° K -  
(Neutron Counts : 

 per 20-Min. run) 

3(k,) 	at 4.2 ° K 
(Neutron Counts 
Der 

Experimental 
.Error 

Counts) 

. 
, 	 . 

72.73 12.8 13.1 .8 
79.00 13.4 13.6 .8 
85.16 14.7 .8 
89.30 15.3 15.0 .8 
93.41 17.8 18.4 .52 
95.51 19.1 20.3 .52 
97.56  21.6 22.4 .52 
98.59 24.4 24.2 .28 
99.60 26.7 26.0 .28 

100.62 28.8 27.3 .28 
101.61 250.2 28.5 .28 
102.72 31.8 29.7 .28 
1 0 5.80 315.4 30.4 .28 
104.88 34.0 .28 
105.78 34,3 31.0 .28 
106.81 34.2 .28 
107 , 914 33.8 30.5 .28 
108.94 33.0 30.0 .28 
109.90 31.8 29.3 .28 
110.98 30.1 28.5 .28 
112.03 28.9 27.3 .28 
113.07 26.3 25,6 .28 
114.08 23.8 24.2 .52 
116.16 20.1 21.0 .52 
118.24 17.5 18.2 .52 
122.37 114.8 15.7 .8 
228.55 13.4 14.i .8 
124.76 12.9 13.3 .8 



. 
iH(t - t) + 	q_ v,t )dt .  

o  t 0   
Te 	 U.(v t')dt': 

J k 

ft 
1  to  e 	U.(v j k = Te 

iH(t-t-) 	 , • -iH(t4 

APPENDIX C 

In this Appendix, an outline of the derivation of the following 

identity is given 

(c1) 

which, 

this identity will be shown by a direct ' iterative 

for t o = 0 is equation (11) of Chapter III. The validity of 
method. More 

, 	. 
sophisticated proofS of.  his identity arefpodsible (.for example, by 

differentiating both sides' 'of (C1) with respect to. t o and rearranging). 

Begin by defining the 'left side of, (C1) aS_ t( -t o ): 

iH(t-t
o 

+ i U.(vkt')dt' 
U(t-to ) = Te 

One Wishes to show that U(t-t
o
) can be rewritten as the right side of 

equation (C1) . The time derivatiyie„ of U 

(c2) 



digt,-t o ) 
U:(vk't)]U(t-t ) 	 ( 0) at 	 j'  

The equivalent integral equation for U is 

iH(t-t ) 	t 	t-t ') 
U(t-t o ) = e 	° + 	e 	U.ey t1U(t' -t o )dt' 	(04) 

to 

The iterated solution to equation (04) is 

U(t-t 	
= e iH(t-t o ) 	ill(t-t') 

U.(v t')e j k 	

ill(t"- t o ) 
dt 	(05) 

0 

r;b  iH(t-tA) 
+i

2 	
0e 	U.(vk t. )dt' 	e 	U.(v 

t 	
j k 

o 
• 

• 
• • 

iH(t-to) 
e 	 +... 

By manipulating the times appearing 

out the operator exp [iH(t4O)]: 

in the exponentiaISone can factor 



t iH(t-t") 	-iH(t-t') 
i 	e 	U.(vk  tle 	

dt' - (C6) 
j  u(t-to ) = 

t o 

U(t-to ) = Te 

t 	iH(t-t') 	 iH(t-t 
e to  (C7) 

U.(v t')e 	 eUt'64Q1 
j k 	 e 

ff. 
! 
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iH(t-t') 	-iH(t-t") 	' 	iH(t-t") .2 + 	 U.(v t')e 	dt". 	f dt"e 	U.(vkt' j k t
o 

:11-I(C=f,  
e 

-;Jf• il! 
!!!! 

The factorization of exp [iH(t-t o )] is possible in all higher orders, and 

the terms in curly brackets (C6) produce the time-ordered operator 

on the right side of (Cl): 

which completes the demonstration. 



APPENDIX D 

In this appendix an expansion is developed for a time-ordered 

operator which resembles the cumulant expansion of an exponential 

operator. The expansion will be applied to  

4- 4- 	4- 
1W t 	// -ik.(r, - 

NS(t, 	= e 	E \e 	 ` 

4- ill(t-t") 4- 

	

ip..vk 
 t i Ie 	U.(vk  t)e 	d'V>  
Te 

which may be rewritten as 

t = 

	

N 	iWk 	
) i; 	t iHt? 

	

S(, t) 	e 	
- 

E e 	1 	
1 k (D2) 

+iHt' 
t dt e 	E 11*, - v t, 	)- V( r-.  r )]e 

mof 	"1. 	k 	m 	m 
X Te e 

iHt 

The technique will be to find E(t), such that 

98 

(Dl ) 
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-E(t) 
e 

i ft.  at' E0m  (t") 	2  

iTe (D3)  

where 6 	E 0
m (t'), and 02 

are arbitrary operators later to be 

chosen so that equation (D3) can be applied to equation (D2). 

Taking the logarithm of eqUation(E3) yields 

= - 	Te f
t  dt' E o(t) 

E(t)  0 	 e  (D4) 

Introduce a parameter A and two Operators r ( -t) .  and 0m 	such that 

i ft0  dt -e (t - ) 
1 - r = Te 

t 
i 5 -t o  dt - em (t .". , x) 

1 - xr = Te m 

Note from equations (D5) and (D6) that the partial time derivative of 

equation (D6) is 

(D5)  

(D6)  
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t 	 t 
i' ft  . at - e(t') 	 ifto at -e(t - ,A) 

xem(t)Te 	° 	= e (t '  A)Te 	
m 

m  (D7) 

From the above three equations, the following properties of e m(t,X) 

may be deduced: 

em(t, o) = 0, 

em(t, a.) =em.(t), 

_ t 
dt -. a 

X1 	

1m = SITm' ( 	
ot)Te  D  

X=0 . 

2 
m 	- 

X=0 

Defining 

fto  
 = 20311.(t)Te 	
at-em(t-) 	Iftoat em  

t 	; 

1r 
1-Te 	 I L  (D11) 

: 11 

etc. 

E( t X) = - 

t 

m m 	e  
fto at' Ee 

0Te 2 (D12) 



by expanding in X in the closed unit circle. E(t) may then be obtained 

A=0 
(D13) LaLal 

f - , 3X
2 

I X=0 

,y- D E(t A) 
I 

E(t) = E(t , T + ---7,t-- 

(Dl4) 
<e rm  )  02> 

8
1
0
2 

-E(t) = Zn<8102)- : E 
m 
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one an see from equa:tiori' (D9) that E(t 	(t4) and from equation 

(D8) and (D12) that E(t,0) = -1/1 0102  . Assume E(t,X) is analytic 

E(t,X) in a Taylor's series about A = 0, evaluated at A = 1. 

With the use of equations (DI0) through (D12), the partial derivatives 

of E(t,A) with respect to A, evaluated at A = 0, may be obtained.. 

This allows one to rewrite equation (D13) as 

• • • 

2 2  

tDr (t ) ar 
. 	 s at 	dt 	 

];' t 	2 u 	u 

1  

E m (t )8 .  

.4 



where the first three terms of the Taylorts series, equation (D13), 

are shown explicitly. The final result is 

8 [Te 1 expf
1
w + w2  + .,.] (D15) • 

w1 
 _ = E \ elrm()E)2/<3162> 

102 

E 
m1Om2 

	

, 	ar (t )arm (-62  
2  

uf't,  
 1 	
dt 	; dt 

Dt 	9t2 1 
e 2 

2 

	

- — 	E r (t)e 

	

2 	1  
1 (DIG ) 

Identifyingthe8.operators to apPlTtheseresults.to (D2) yields the 

value for W1  quoted in equation (18),,thapter III. 



APPENDIX E 

This appendix contains a demonstration that the function 

E(
Ts7
it) = pfdr 3e(litl- r 	+ v't1 - r0  ) 0 	-k  (El) 

  

- - -vat + %0]1 

1- e 

t . 	k 
dy[V(1" + ;- 

7
k 

0 

  

which is defined in Chapter IV equation (16), is dominated by a term 

linear in vt for sufficiently large values of vkt• This result will 

be obtained by assuming that maximum range Rm  beyond which the potential 

is essentially zero, i. e., 

V(r) z 0 for r 	R „ 	m 

; 
Examininequatian (El), note_.that the phase factor in the 

imaginary exponential is obtained by integrating the potential along the 

line segment which connects the "initia,/" .  position to the final 

4 4 
position r + v t. If the initial position r is such that the potential 

, 
is zero along this whole line segment, then the Phase "faCtor'vanishes 

and this particular "configuration" makes no contribution to the value of 

E(vkt). Only those configurations for which part or all of the associated 
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(E2) 



1 O1 

line segment passes within a distance Rm of the origin will contribute 

to E(vkt). One may decompose the configurations which do contribute 

into the three disjoint classes illustrated in Figure 12. 

Consider Esr  and E sp ; the start",-and "stop" contributions to 

E(vkt), respectively; The evalUatIOn of each of these two requires 

the integration of''-a bounded function over a finite volume; therefore, 

both E sr..-  and  Esp  are bounded. .khowid 

'Real Part E 
sr  1 ' 	

'Real Part-: 

'Imaginary Part Esr l, 	'Imaginary Part Esp  I s 21-TRm
3/3 

Now considering the "through" contributions, rewrite this part 

in cylindrical coordinates (b,z,8) 

u co 

Et (vk
t) = 21-rs 	b db 	dze(11: 1 	r0  )0(11-  + vktl-r0 ) 	(E5) 

0 r  

v
k
t 

X 	 v 	0 3J 	dy[V(b,z+y) - V(b, z + vkt)] k 

where the integration is restricted to a volume V T  corresponding to 

through scattering (it is assumed that the potential is cylindrically 

symmetric about the z-direction). The theta functions are identically 

= S 270m3/3 (E3) 

(Elk) 



STOP 
E 

START 
E sr 
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Figure 12. ContributiOnsto -E(VI;t). (Drawn for v t > 
k, 	m (see teSt). Circles of radius Rm  „indicating, 

,maximum range of*V(r).) 



(E7) Etk (v t ) = 27rp 

rnnbc1b 
o 

Az t V(b, V 
k -co Az 1 e 

io6 

unity for through scattering and so .may-be dropped. The upper 

limit on the db-integration may be replaced by Rm , since the potential 

is zero outside that distance (refer to equation (E2)). By studying 

Figure 12, one may determine the appropriate limits on the d2-inte- 
, 

gration for the throUgh-contriblition. For v kt > 21i;m. , the result is 

where z-1-  - = -(Rm  -b2 )
1/2 
 and z7= 	vkt. This equation may be , 

 

simplified by noting that V(1; + vkt) is zero and that the limits on 

the dy-integration may be extended to + 00, since for through scattering 

the parts of the line segment r + y for y > vkt and for y < 0 pass 

through regions where the potential is zero. Applying these obser- 

vations and making the change of variables z 1  = z + y yields 

CO 

m 
x f bdbir 

0 z-- dvd 

E
t (v 

vk 
- e 

0 JO 

= 2wp 

v
k
t 

[V(b,z+y) - V(b,z+v t)] 

(E6) 
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Performing the dz-integration produces 

R
m 

cjn 	bdb 
0 

1 - 

i 
v 
k 

e x 	
•

2 

E (v 	= 2ixrp t 	k 

dz'V(b,z/) 
-= 

[ v
k
t - 2 R 

m - 

(E8) 

1/2] 

The total E(vkt) is now given by 

R 

E(vkt) = vkt 2wp 	
bdb 

0 
El 

cc 
iI 	d2 V(b,z)' 
v
k 

-= 
-e (E9)  

. az V(bz) 

- 2 	 0 2 2, 71-p cf m  bdb {2 m  -b )
1/2 

 111 
v
k .. 

-e 	} 
, 	,  

0 

+E +E 
sr 	sp 

As observed previou'sly,E and E are bounded (refer to - equation'(E3)' 

and (Elf). lh addition, the secondterm-in equation (E9) is bounded. 

Therefore, the above equation may be written as 

E(vkt) =vkt ?fp 

R
m 	(t/vk 	dz V(b4) 
bdb, .1-e 	 + C 	; (E•10) 

0 

where C is bounded for all values of v
kt. Converting the polar 

integration bdb into an integration over the cartesian coordinates dxdy 



(after having extended the limit on the bdb integration from Rm  to 

+*), equation (E10) becomes 
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„co() _co 

v 
— 

W W 

E(v) v tpjr r  axdy 	e 

1 I . dzV'.(x,y,;z 
oo 

 

The integral shown explicitly in equation (Ell) is simply related to 

the forward scattering amplitude f e (kk) evaluated in the eikonal 

approximation
29 

fe (k ik) 

4  '' ,ft 	— ' 1  . 	
; ,,,, 

, 	ab 
-- , F 	 i ' 1 .dz V(x,y - — 

7 	_00 dy  (El2) 

Expressing equation (Ell) in terms of-theYforwardscattering. amplitude 

yields 

E(v) = (vt)* irf(k,k,) + C k 	k 	e 
(E13 ) 

Application of the optical theorem 29  to (E13) produces the desired 

result, 

Pa   r 	wp  E(v 	= 	k 	+ i 	Re fe (k,,k)) + C 	(E14) 2 	k 



where T  is the helium,-helium.totalcrop's section and Re f e  (k;kO • 

is the real part of the forward scattering amplitude, both evaluated 

in the eikonal 'approximation. Recalling that C is bounded and 

recognizihg that it would be rather unusual for (y r  and Re fe (k;k) 

to both be identically zero, equation (1114) shows that for sufficiently 

large vkt the function E(vkt) will have its value determined by a linear 

function of vkt, as stated in Chapter IV. 
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APPENDIX F 

This appendix gives a non-rigorous derivation of the function 

P.(w) (refer to Chapter IV, equation (28), which approximately  

represents the deconvoluted formof- A4eXp --(40A5 )/A -0 in 

equation (22) 'of Chapter IV, a part of the'empireaI fit to the 

scattering data. P(w) is obtained by taking the first five termsOf 

the following series 

co 	n 2n z  --"-A -eiPt-[(w - ' VA6 ]-1 - 	(F?) 
'n=0 	, 4 -tiOn 	 5' 

This is in turn based on the claim that. 

co 	 2n Lim 	 pLa d FV(14  f(w) = 
' 

v 1
+ 

n=0 	 dw
2n (F2) 

is a solution to 

TN') = (1111 -1/2 ,1- 	dwf(Oe 	 (F3) 
,c0 

for sufficiently well-behaved fUnctions F(w). To demonstrate that 

equation (F2) is a solution to equation (13)' consider the function 
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R (w - 	 +Y)]-1.  ej14 - f-(w 	wt)2J[r:(1 + 1()]} 	(14) 

Expand R in a Taylor's series about y = O.' 

• 	 ! 

	

 
R ) 	 )/tr.(i+yY] J 	(F5 ) -= (lir) 	 ' 	 , 

where in this and subsequent equationawill be used as the summation 
 

index running from 0 to 00V Note that 

- 	 " 

7 
3  (1 + 	extp{-(u 	)/fr(1 + 1()]} 	(F6) Dy 

1 r a
2 

= (77) 77772  (1 	- 	exp'{-(w-w l )
2
gr(i + -y)]} 

(1) 

By an obvious inductive argument 

1 

(1 + 1)  2e .- 1-(w7w1 ) 2/1r(1 + 	 XF7) 

1 
r n

2n 

	

= („) 	
a 
	+ -0 	exp f- -(.0—wl)

2gr(i I)]} 
4 	w2n 

- 	3y 

3y
n  

Therefore 
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1 
R (w=wf) = .(7rT) 2  E — 
Y 	 n! 

r  # 
[-(w-w') 2 )11 (F8)  

As is well known, R forms a delta sequence as y approaches -1; there-

fore 

1 

(S(wWfl = Lim ( 	E — ()
fl 	

exp  . 	 - 	1 	9 
n! 	

2. 

@co
2n 

(F9) 

Treating F(w') as a known function, write 

dw 6(w-w') F(w) 	 (F10) 

Representing the delta function by the delta sequence given in 

equation (F9) yields 

1 
Lim 	

. 

	

F(0) = 	( ffr) 	 dw F(w) 
y4--1 	-= 

2n 	 2 
n a 	exp [—(w— w!) /r] 1 	r x E 

(F11) 

.,- 

A.Stliming that P(w) is sufficiently well-behaved to allow term-by-term 

integration, integrate by parts to obtain 



F (

w _ (70,1/2 

Lim 
dw { 	+ y-1 	n! 
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F(wv) = Lim  (7r) 
-1/2 	

(F12) 
-1 

x E 
n! 

2t 
- dw' {exp [-(w-w! 

2 	(3awnku)  

where it is assumed that the boundary terms vanish, i. e., 

-w2 

Lim 	r dmF( )e 	 = 0 
l wl4c0 	dwm  

for all integers m. Again aesi*ing that limit and summation may be 

interchanged with the integration operation 

(F13)  

2n 
d 	7(14):1:1 exp [-(w-w' ) 2/r] aw2n 

which demOnstrates that the expression in cur brackets, 

 

n 	_ 
f(w)  . Lim + E 1 (az, d2n  F(w)  

n! 	4' 
i(4-1 	 dw

2n 

 

(F14) 

is a solution to 
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F(w 	(Trr) -1/2 f dw f(w) exp [ (w-w 1 )
2
/11 	(F15) 

The above deriVation of the form of the deconvoluted function f( 

from the experimental data, F(w), is clearly not rigorous, since it 

has not been demonstrated that F(w) behaves ,smoothly enough to validate 

the interchange of orders of integration, summation, and limit. It is 

a simple matter to demonstrate that there exist pairs of functions 

F(w') and f(w) which simultaneously satis'fyeilUation .(F14) and (F15). 
• 

Rather than try to find the i'ufiCieritTcOnditionstOnV(dy) and attempt 
' 

a rigorous proof, the author chose to verify directlythat 

deconvolutionmethod disdussed abOVe' -Suited: the use for which it was 

designed, (refer to the discussion follOWing'equation (22) in Chapter 

IV) - in particular, that 

4 n d
211  - P( ) = A4 	

1

! 
E — (I) 	e 

n n=0 	 dw 
(F16) 

is an approximate solution (note that the series is terminated after 

five terms) to 

-1/2 (,- 	-(w-,02/r 
13 ((w) = (Trr) 	 de e 	P(c) (717) 



_ (w....A  )4/A 6 
where: 1 3  -= A14e 	5 	and r 	2 1: (V 1n2) and:' that the 

wl,!derivative of equation (F16) is an approxiMate polution to -the• 

w-derivative of equation (F17). , The adequacy of this approximate 

solution is illustrated graphically in Figure 13. Plotted in the - 
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1617A 
5 1 . z 10.25 nieV. 
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Figure 13. Energy Resolution. Correction. (The solid line is the 
w-derivative of Al exp-[(w-A.5)/A.6] 4 ; short-dashed line, 
w-derivative of 14w) equation (F16); long-dashed line, 
resolution broadened -derivative of P(w) where 
distinguishable from solid line.) 
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