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SUMMARY

A new approximation to the dynamic structure factor S(k,u) is
developed for large valuegﬁdi k. The approximétion is intended to be

used to descrLbe 1nelast1c nuclear scatterlng of thermal neutrons

o Jhe Pl i

from a target oﬂ splnless partlcles of a 51ngle 1sotope. The

P _—

approxunatlon has the correct llml't for large momentu.m tra.nsfer k,

tne 1mpulse approx1mat10n: It 1s calculable in practice 1f the 51ng1e-

particle momentum distributloﬁ,“the off-diagonal two-particle density

matfii;ééﬁg fﬁéiiwﬁ-b35§:kﬁté;: %ioﬁﬁpstentiéf%of’fhé %é}éét particles
are known. |

The approximation, which partially incorporates the effect of
final-state interactions, is evaluated for a liquid uHe target for
momentum transfers of 1k4.3 R_l, 28.6 R_l, and 53.2 R L. The experi-
mental results of Mook, Scherm, and Wilkinson for the scattering of
neutrons from superfluid and normal liquid hglium are analyzed in
terms of (A) a modified impulse approximation which includes final-staﬁe
corrections only in the condensate contribution to the scattering and
(B) the new approximation whichiincludes some final-state effects in
both the condensate. and non-condensate contributions to the scattering.
These calculations substantiate a previoué ;mpirical assessment of the
condensate portion of the scattering (this assessment yielded a
condensate fraction of .024 + .01) and suggest that certain barely

discernible feabtures in the experimental scattering data are real

structure in the condensate contribution to the scattering. These
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features appear to be attributable to the struecture of the 1iQuid
and the interaction potential of the helium atoms. Other helium
properties deduced from the data at 1.2°K and 4.2°K are: the
single~particle momentum distribution, the bne;ﬁarticle off=-diagonal
density matrix, and the mean kinetic energy of the helium stoms. The
resilts for the single-particle momentum distribution indicate a
preferential occupation of the states withimomentum of approximately

7 8L, This feature is an entirely new result.
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. CHAPTER I s

" . INTRODUCTION

instein. ‘Condensation -

Liquid helium at temperatures below 2.18% exhibits many

interesting properties; for examﬁle, the heat conductivity becomes

imméasﬁiéhlyj}é?gf A drastic chdnge, such as‘the one which oQburs

in liquid heldm st 2.18°K, indicates that the liguid has undergone

a phase transition}: This pérticular phenomenon in helium is called

the A-transition and the'temperatpre atwWhich:(underjégtﬁxétéd

!y
vapor pressure) it?éccurs-is referred to as the ‘A-point. The
liquid at temperat??es beIOW'the‘A-pointzis generally called either
superfluid helium ér He II.

Many standard textbooks describe some of the curiocus
phenomeﬁa associatéd with superfluid helium such as the fountain
effeet, and secondésound. These phenomené gre explained on a
macroscoplce level ﬁy the two-fluid model developed largely by Landau.2
Understanding the éransition on a microscopic leyel has proved somewhat

more difficult and'is not complete at present.

The présent understanding of the nature‘of-thefx—transitiOn

starts from the observation that naturally occurring helium is almost
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where 8 = lV(kBT), kb'tﬁé ﬁoitzﬁ%hp conéﬁaht, T the temperature, and
s - ‘ N .

o a constant to be deteﬁmined fkimithe condition that '

(2)

=
1]
He
=
e

where N is the total rnumber of particles. The constant o is related

‘o_njé of the most drast:_d asSumptions

Qf‘kébn gas tentdtivelf identifies the




to the chemical potential u by théﬁrelation u‘=:;"3u., To be-phygi@all&
meaningful N, must-be equal fo-or‘greater than zero. This implies |
that Bei,i_a > 0 for all ei, including Ei = 0. Therefore, o must be
positi&e.”

TFor a macroscopic system the diéérete.energy levelsveffECtively

pass into a continuum; equatibn (1) is replaced by

f‘fN (e) = e+o) - 1

whefevgﬁé) is the density'of?sfaées. Théfﬁgnsity“of states for a

spin-zero free-particle system is’
< h T 7 - ;
! By ez

gle) = (2] ()
2w

where #iis Planck's -constant divided by 2w, m is the helium atomic
mass, and V 1s the normalization volume. Replacing the sum in

equation (2) by an integral and combining it with the above yields

12 [ ,
N (Em;3),, v s el/2 L :
W= & s rw-1
ont3 o xp(Be +7a) =

The above ihtegral may be reduced to




;“~( _3)1/2 , e .7H

o em”) 3/2 3V 2 ~pa; 3/2y .
=~ (&5 T)7° T(5) = (e /p7'7) (6)
’ 2ﬂ2ﬁ3 o 2_ =0 ° & '

where p is‘the mimber deﬁSity and T is the:géﬁma function. The above
equation seems to contain a paradox when applied to high densities and
low temperatures. The resolﬁ$ion of this;paradox is the Bose~
Einstein condensstion. To see the paradox consider a system with a
fixed density at some temperature T. Equation (6) can be used to
determine the value of a. Now consider a“prpdess in which the gystem's
density is held constant while its teﬁpéiature is loﬁered; The left-
hand side, LHS, of equation (6) remainslcoﬂstantrin such a process.
y3/2

The factor‘(kBT on the right-hand side, RHS, decreases as the

temperature drops. To compensate, Z(e-pa/p3/2

) must increase;
therefore, o must decrease. As noted before o must be positive. 8o
as the temperature decreases (with the density fixed), o is forced

towards its lower limit, zero. For « = O equation (6) becomes

3/2 |
) (2.612) o

. ks, T
p = (==

¢ 2W;M2

which seems to imply that a system composed of free bosons with a
density pé canébt.ﬁe'cooled.béiow a dritical temperature Tc or,
alternatively, a’systém of free bosons at a temperature Tc has a

maximum_d@nsity"pé.‘ This para@px;cal behavior does not occur, as

was firsf noted by Einstein. Its: app€arance comes ‘from a mathematical




overs:t.gh'ﬁ Equation /(T) was obta.lned by setting o = 0, but from

equatlon (3) the occupatlon of the state e =0 becomes infinite in

" : E

the limit as o approaches zero. This '1nf1n1ty Was not treated
properly in haphazard manipulations used to obtain equation (6).

p)

A correct treatment verifies the following picture: In the thermo-
dynamic limit at any temperature_g@pve_the critical temperature Tc’
defined in equation :(7), the occﬁpétibn of any microscopic state is
zero. As the temperature drops, the:poPﬁlation of the low lying
states, especially € = 0, increases. :Aﬁ temperatures below Tc»a
finite fraction of the total numbéruof particles has condensed into
the single microscopic state with zgro energy. This macroscopic
occupation of the-zero'energy and momentum state will be subsequently
referred to as the condensate. The non-zero momentum and energy
states will be ;eferred to as the non-condensate. The speculation
that the A-transition in real helium coincides with the onset of a
Bose-Einstein condensation can be aroused by using equation .(7) to
calculate the temperature at which a free boson system with the
density of real helium would undergo the condensation. One finds

Tc = 3.2°K, which is only 1°K higher than the A-transition.

As oné:wouldieXpect, the Bose-Einstein condensa$ion‘ha$46een
studied with more attentipn to mathematical rigor than used iﬁ the
above discussiori.5 Also, the connectidn betweén the A-transition
and the Bose-Einstein condensation has been demonstrated with more

3,k

realistic models than the free—particle medel above.




Condensation

r—

Newtyon Seettering and Bose:Binstein

It is not unreasonable to ipsistAthat;a connection  between
the -A-transition and the Bbseeﬂinstein cbpdggsation be observed
experimentally before such a relatiogship'cén.be considered to be
established. A preliminary Stép would ﬁq to observe a macroscopic
occupation of the zero momentum-state in real helium below the
CA=point. In the autho‘r's opinion; this has recently been accomplished
by H. A. Mook, R. Scherm, and M. K. Wilkinson by £he use éf neutron -
scattering Withjlargégmomentum.tranéféf:6‘ The primary aim of this
work is tb analyzeith;s experiment. - The actual egperiment-is
more fully discussed in ChapterlII. The following discussion develbps
the connection between thé helium‘momeﬁtuﬁ distribution -and the
neutron scattering cross section for large momentum.transfer.T

As developed in Appendix A, the inel@stié scattering crossz -
section for neutrons pﬁ-hHe'liqpig:is given in the Born approximation

oy

d'¢g. " ThTf o : ) ‘)

dQde

whéfgfh§~=‘hﬁi ‘;ﬁfé'is the momentUm,franSférrea to the helium, Tiw =

b is‘%ﬂé:ﬂeliumeafém cross-

e - gf,is theﬁgnefgy't}ansfef, and o
section (cb = 1.13 barns).” The dynamic structure factor S(k,w) is
the Fourier transform of the density--density correlation'functioh

S(k,t):




(9)

where .
S R ., N g > .
. S -;k:rico).lk-r.(t)>>
ns(k, t) = = <\e A c e J . (20)

The average value of thg»t;me:depéndent density—déﬁsity correlation
function in equation (10) is in general taken over a camonical

ensemble in equilibrium at temperature T. Equation (10) contains

the Heisenberg operator ;j(t) defined for all j and t by

iHt /M,y ~1Ht /N

(11)

where H is the Hamiltonian of the liquid helium, It will be useful
for later work teo divide the density-density correlation funetion

inte two disjoint parts, the incoherent contribution Si(ﬁ,t)

and the coherent contribution‘Sc(E;t) ’ f )




( EFHO 230 N
e e

Nsc-(ﬁ,ét) = I (x2)

RS
L

By this prdcédure one defiriéé.;f’thve;‘ifglc:oiierent and coherent contrib‘utions’
to the dynamic structure factor énd to thetgcattering.

Tt is not evident from examination of equation (8), (9), and
(10) that there is any regsonably di?ect connection between the
inelastic .scattering cross sectiop'apd'thé momentum distribution of
the liquid helium. In general there isja direct relationship between
the two only when k. and w"are large. For large k and w the helium-
helium interactions may be neglected and the coherent. contribution
may be dropped. That the coherent contribution is small for large k
may be motivated by noting that for coherent scattefing to occur the
position of the 1P atom at + = o,'?i(o); must be correlated with
the position of the jth atom gt time t, ;ﬁ(t), on a length scale.l/k.
In a liquid the distances between atoms afe not well correlated over

very short distances. This speculation -is substantiated by the

‘experimentally determined fact that the zero’™ sum rule for k 3 6 8%

is. exhausted by the incoherent contribution

- . -—C0

fw dw 5(k ) ),5\'1 =f duw Sl(k,w) - ()

ERLE I

B N - N
;

;hgliumyﬁéli,“

fiﬁét@tﬁg intéractions may be heglected:when




considering neutron sgattering at larée momentum transfers may be
motivatedlo by the following crude argument: It is known -experi-
mentally that the peak of the scattering occurs at an energy loss

e x g2 2 o °.1 o1
of ﬁmp =4k~ /(2m) for large k, T A~ sk < 1% A”~. From the
Heisenberg uncertainty relation AtAR 2 fi, with the interpretation of

At as the‘neut;on—helium interaction time tn

h andAAg =*QP , one has

The other quantity .of interest here is’ the typical timejtﬁh between

r

helium-helium interactions in the liquid. - This time may be estimated
by dividing the mean freelpath of the helium 1/p0, where o is the
helium-helium total cross section = 35 A2, by the veloecity of the
helium atom to which the momentum k has been imparted;ik ='ﬁk/m;g

this yields

tyy, = n/(pofk) - (6)

Comﬁinipg equation (15) and (16) gives

t . = (inﬁi) £

nh k (17)

hh
O_l‘ )

For k >> 1.5L4A the neutron-helium interaction time is much shorter

than the helium-hélium interaction time. Under these conditions,

the neutron does not have enough time to "see" the- helium-~helium
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interactibn;v For scattéring ét é-sﬁfficiently large value ofvmomentum
transfef, the liquid appears, to the neuﬁrons, as a collection of free
particles. Neglect of the coheréht terms and the helium interactions
leads to the impulse approximation (to the Born approximation) gth,
From equation (10) and (11) the impulse approximation to the density-

density correlation function is

s < ~iKoF, iH t/6 1K-7, -iH.Ot/'ﬁ>
NSTHE,t) = £ Ne | Ye e Je (18)
J
where Ho =T ng/(Bm)4 Equation  (18) may be simplified by noting

i

-i¥K.¥, iH t/8 ik, i(H #2k°/2m + 483 /m)t /4
j ot i o T

e e e e (19)

as can-be Veyifieg:by;éé-al i ;»hé:timé}&erivative of the right-hand

and left-hand sidés.of§€he;éaﬁati9n and noting the obvious equality

at t=0. 'Inségfigg*ggugtion;(lQ) inte equation (18) and observing

that (HO + ﬁ2k2/2m7+'ﬁﬁrp/m)'dommu?es with HO yields

h IA, : iwkf <: iK+p, t/m I
e NS (kat) = e - ) e J S (20)
7.,.1}' L . . j , "’ | . |

cgtes

where w
.k

#’ﬁkgl(ém);l Theiébave'éqﬁétion may be w?itténﬁggjngum
over mdmentﬁm-states“by“using‘gébpnd quantization or an equivalent

procedure. The result is
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(21)

5

where n_ is the singlé%partiplé?mém@ﬁtﬁmiéistributiéh, the
P . " , 5
expectation value of the number%oﬁupartigges‘in the momentum state 5

divided by the tetal pumber of particlesfy. Fourier transforming
equation (21) in accordance with equation! (9) yields the impulse

approximation to the dynamic S£rﬁctﬂfe'faptor

2 > >
IA > _ Ak%  kep
s k,w) = Z?+ S(w -5 ) (22)
3P

vhere 8 1is the Dirac delta function. ﬁb} a macrogbopic‘sam@le'of

liquid helium equation (22) becomésiz

o

Vherenné is the'c;ﬁdénsate"fraétiéﬁ,that fraction;ofxihé total
number of hel{um atoms wﬁich héve undergone Bose-Einstein condensation
and’nP is the noﬁ-condgnsate distribution. If the condensate

fraction ié'sufficiently large and if a neutron seattering experiment
could be perfdrméd‘éf a sufficiently large momentum transfer to
validate the impulse:app}oximation, theuexperimenter should obserﬁé

a distinct two-part scattering distribution: a sharp peak propértional

to the condensate fraction superimposed>in the center of a broader peak
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~contfibut¢d by the nonrcondensate.."Béth of these conditions appear

to be partially satisfied by the experiment being analyzed.
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- CHAPTER II
THERMAL NEUTRON SCATTERING -EXPERIMENTS

Descxiption offTherﬁal NeutrongscattbringlExperiments

From the discussion in the Introduction, in particular Chapter
I equation (8) and (23), it appears that one could determine if there
is a significant'Bose—Einsfein,coﬁaensate’in superfluid helium by
measuring the neutron inelastic_scatteringrcross section from He 1T
at sufficiently large momentum and.energy transfers. This is
correct, but practical experimental considérations make the desgign
of an optimum experiment difficult. These considerations force a
compromise between measurement accuracy and the size of the momentum
transfer.

To’peﬁform the envisioned measurements, one must measure the
number of neutrons with a particular energy €p which are scattered
from an incident'beam-byathe He II into a small solid angle "aqer,
In addftion, one must know precisely the energy traﬁsfer ﬁw’and the
momentum transfer ﬁk} A typical method used to obtain this inﬁormation
is indicated échematicéily in Figﬁfe‘l.‘ A colliméted,i?@ﬁééﬁé%%i?i

beam of neutrons is selected from a neutron source and directed

towards tﬁe’sample, in this
/

casé He II. The degree to%ﬁhich the -
beam i$ gollimated and ﬁpnﬁch?@ﬁéfi#i&etérminés thebexgériﬁeﬁﬁal
accuracy to which éi*@n&fﬁi 'afé'knoﬁn. A néu%ron-detggtor is

.positioned at some scattering angle 6 to intercept a portion of the




Neutron , Newtron
Source

Detector

Collimator
Monochromator

Scattering Angle

Figure 1. Schematic of a Typical Neutron Scattering
Experiment.

1k
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scattered neutrons. The heutron~aetectorvéounts the number of

scattered neutrons which possess a particular final energy €. The
' . L i

measured values of e%*and 8 can then be used to calculatg'ké and,

therefore, k= Ei - ﬁf' The detector must intercept a reéébhabl&
small solid-angle, since 6ne;wishes to determine the scatt%ring'into
an infinitesimal solid angle d4Q”. Ah'adgitional requireméhtbis thét
the neutrons being counted by the deted¢tor must all have been
scatteréd from some small region-in the‘sample,- If the détector
accepts scattering from & large regibn“ih the sample, the value

of the scattering angle becomes imprecise, introducing errors in the
values of hf_and k.ll

N L
4

A majorjprohlémﬁin per%orming’such:aﬁ:expé}iméhéiééh hefhaving
an insufficient number of scattered;heﬁtrons to count. The neutron
.source usﬁél;y contains a broai?spéctrum of energies. Only a sﬁall
fraction Wilf have the correct.energydaﬁd momentum diregtion to pass
through the.ménochromatofiand collimator. . The useéhle intensity may
be further reduced because many materlal ;amples are relatively
transparent to neutrons. In the case of 1nterest here, the mean
free‘path of a neutron traveling through He II can be estimated by
1/(po), where p is the density ".O?E‘ﬁ-s and o is the neutron~helium
total éross&section’“35 32. ’The'result is ~h0 cm. meaning that a
typical neutron can travel through ~40 cm. of the liguid before 1t is
scattered. The neutrons which do scatter from the small volume being
observed scatter into essentially Um steradians. Finally, only a

small fraction enter the neutron detector to be counted.
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g

g i
For many applications these 1neff1c1enc1es are overcome by

using extremely high flux neutron s ‘:,icular, thermal

neutrons available in nuclear react nmal neutrons are obtained
by slowing down fission neutrons wi - H 0, D Oitand

graphite. Specially de51gned reactors produce a flux of about 10 12

thermal neutrens m -2 sec l. Tﬁé neﬁfronwéapproach thermal equilibrium

with the moderatiﬁg,material. Thelrlenergy dlstrlbutlon is approximate-

ly represented by a Maxwell digtr%butlonﬁgonnespondlng to-a temper-

ature in the vicinity of 300°K to L400°K.
the flux of neutrons, irrespective of ,d.j.jrécti%on but’ in the wave-

vector range k; + dk,, by N(ki)dki,,then

’nhﬂ’flh (

™M

3

) L (2L)

(k) - oM exp(- ‘

where n is the total flux, M is the neutron.mass, and B = l/(ka)

(T belng the temperature of the modefator)E:jFor a typical installation,

the peak in‘the<disﬁribuﬁionfoccurs at a ne fron energy
g ~ 30meV -~ 350°K, which corresponds“fb a“g%&e—vegtor ki ;_3,8 3_1.
For many applications there 1s an abundanpexof neutrons availsble .
with energies around 30 meV. The flux available decreases roughly
exponentiall& at higher energies and wave—vegtors because of the fall-
off in theiMaxwellm@igtfébuﬁiqg.; This factﬁ}nﬁrodu&és;a’pragtiggl‘
limit to the size of momentum transfer obtalnable with a thé;mal

neutron'soyrce.

In the application being'diséﬁéséduhere, one is forced to =

Mbée specifically, denoting
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compromise-between~making the measurement at moderate momentum
transfers with an uncertainty in the applicability of the impulse
approximation (Chapter I EQuatlon (23)) and making the measurement

at large momentum transfer with large experimental errérs due to

poor counting statisties.

ExﬁerimentﬂEerformed by Mook , i Scherm, and Wilkinson

The following is a brief discussion of the measurement of the
inelastic scattering of neutrons by liquid helium performed by H. A.
Mook, R. Scherm, and M. K. Wilkinson. The authoritative reference

is their article in Phys. Rev A 6, 2268;(1972) The balance of

the effort Wlll be d1rected towards the analys1s of the1r experi-

mental results.

' The experimentﬁwas'perform” ,1ng a tr1p1e-ax1s spectrometer
at the hlgh-flux 1sotope react 1ocated at the Oak Rldge Natlonal

o 4 B r~3

Laboratory A trlple—axls‘spectrometer uses Bragg scatterlng from

=

a crystal to select neutrons Whose energles are in g very narrow band

from the broad band of neutron energies emitted by the reactor. A
second crystal is used in the neﬁtron detector to analyze the energy
of the scattered neutrons.

The experiment was performed with a fixed incoming neutron
energy of 182.47 + 0.07 meV and a fixed scatterihg angle of 135;06
+ 0.02°, which gives a typical momentum transfer of 1L.3 ﬁ_l.
Since there were few neutrons available at this high energy, the
counting rate at the detector was quite low, apprfoximately one neutron

count per minute at the pesk of the scattering. The low counting

o e R - e e T




rate necessitatéd a long counting time, approximately five months,
and special attention to shielding to attain the desired accuracy.

Care was taken to minimize errors introduced by multiple
reflections in the analyzing crystals. The four-dimensional
resolution ellipsoid associated with the triple-axis spectrométer
was calculated and measured, with good agreement. The full width
at half maximum of the energy resolution was. determined to be
approximately 2.1 meV., The data was also corrected for changes
in the volume of the resolution ellipsoid and for the changes in
efficiency of the analyzing crystal and neutron counter. In the
final form in which it is presented, the data is proportioﬁal to
the dynamic structure factor S(k,w) broadened by an ener'gj resolution
funétion with a full width at half maximum (FWHM) of 2.1 meV.

The data taken with the helium at 1.2°K (1°K below the A-
point) is shown in Figure 2. For comparison purposes, data was also
taken 2°K above the A-point at T = 4.2°K, shown in Figure 3. The
data at 4.2°K has been corrected for the difference in the helium
density between 1.2°K and 4.2°K. The data for both temperatures is
presented in tabular form in Appendix B Tablelﬁ? All data has been
normalized to one run, which represents about‘éO‘minutes counting
time per point. .

The data taken at 1.2°K contalns a Subtlle, bt extremely
1nterest1ng, feature.lApprox1matelv:5 ﬁeV abovetand 5 meV below the

peak, there is an 1nd1catlogdpf structure in the curve. The~structure

is more easily observed by exami -the approximate energy derivative

e 18
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Figure 2. S{k,w) for He at 1.2°K. (Abscissa, number of neutrons scattered during
a2 20-minute counting time. The circles are the experimental dats, Ref. 3;
solid line, empirical fit I(w). Refer to equation (2) and Table 1.)
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Figure 3. 8(k,w) for 'He at L.2°K,
20-minute counting time,
solid line, empirical fit I{w). Refer to ecuation (2) and Table 1.)

(Abscissa, number of neutrons scattered during a
The circles are the exverimental data, Ref. 3;
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of the data; refer to Figure 3. An extremely pessimistic interpre-
tation of the experimental errors would have to be employed to
explain away this structure. Since the data at 4.2°K does not
contain an analogous feature, it is tempting to attribute this
structure to a Bose-Einstein condensation.

If the impulse approximation, Chapter I equation (23), is
assumed to be exactly valid, one would expect the condensate contri-
bution to the dynamic structure factor to appear as a Gaussian
function with a FWHM of 2.1 meV (the delta function condensate
contribution broadened by the experimental resolution function).
The condensate Gaussian would be centered at'ﬁ2k2/(2m) * 106.9 meV,
superimposed on the broader non-condensate contribution. The ratio
of the area under the condensate to the téotal area under the curve
would be approximately n_s the conde£§é¢égfraction. The data Will

Esd

not support s@?h an interpretation. To this author, there appear

to be three ﬁossible explanations: R i
(1) The condensate fractién is too small at l.2dK3(poséibly
zero) to be measured by this%expeii@éhtal technique.

(2) The impulse approxiﬁéfion is not valid for k = 14.3 R_l.

o o
Bl

EA('?))':"'ll‘ﬁe iﬁiulse'apﬁfgxima%goﬁ}ié qualitatively‘valia ;t
k = 1k.3 Xﬁl, but requires some modifications.
The third possibility was chosen. As to be substantiated in later
calculations, the helium-helium interaction has a small effect on

the rather broad non-condensate part of the scattering; therefore,

the impulse approximation is wvalid for this part. Noting that in the
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impulse approximation the condensate is an "infinitely narrow" delta

function, the helium-helium interactidnéﬁdo significantly broaden

E

E o aie ey
3 % ¥

the condensa@é'

T el
s

Assuming thé above interpretation is.goffééﬁifqne,wouldsexpect
thatvphexcondensate would beisgméyha@iwider than the eng}gy résdlution
funcfionQ Estimating the cogdepégtgjﬁraction reduces itself to

resolving the dynamic structure fééfor into a two-part distribution

- ) . P L
; -~ a n

with one part takén'to be-the condénsat® contiibiitton and the balance

the non-condensate. Mook, Scherm, Wilkinson discuss three separate
approaches to making this discrimination. The one discussed below
yields the most quantitative results. |

In this technique, the data at 1.2°K and 4.2°K were subjected

to a least squares analysis. This analysis fit the energy dependence of

the measured dynamic structure factor with the function

AL
—(w-8,)%/88  —(w-A.) /A
I(w) = A+ Ae 2 3. Ape > 6 (25)

2,, 2
-(w-Ag)"/A
+ A_e 8779

7

1 ,...,A9 were varied to obtain the best fit with the data

taken with the helium at a temperature of 1.2°K. The data at 4.2°K

where AO’ A
was fit by a function of the same form except that AT was taken as
identically zero. The values obtained for these parameters are listed

in Table 1. The first term in equation (25) was interpreted as the




Table 1. Parameters fi

2y

Quare§ Fit to Data,
. Paraméters giving peak

(Refér to equ
i per run. Parameters. :.-

heights are

representing peaﬁ”y dths or positions are in mevV.)
Parameters - E 4.2°K
AO 12.90
Al 11.97
A2 106.22 -

23.28/2 (1n2)

. 7.8 5.69
T106.22 106.22
?Vie.82/é (1n2)/ 13.48/2 (1n2)*/*
1.60 0.0
106.22 -
h.92/2 (1m2)Y/2 -
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background neutron count. The sum of the . second and third terms was-
taken as proportional to the non~condensate contribution to the

dynamic structure factor. The fourth term (1.2°K data only) was

identified with the condensate contribution broadened by the helium- -

helium interacﬁions and the experimental resolution function. This
interpretation of the data yields a condensate fraction of 2.ﬁ +1
percent. This result is considerably smaller tﬂan the theoretical
estimates of the condensate fraction, whieh range from 6 percent fo

25 percent.3’h’12’13
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CHAPTER III

THE EFFECT OF FINAL STATE INTERACTIONS .
ON THERMAL WEUTRON SCATTERING

Qualitative Discussion of the Effect of Interactions,

The ceéentral assﬁmption in the Mook, Scherm, and Wi;kinson
estimate of the condensate fraction is that fh@-impulse approximation
is almost valid for a momentum transfer of 1L.3 Kpl. In particular,
it is assumed that the impulse approximation is correct in treating
the neutron scattering as the sum of a narrow contribution from the
condensate and a broad contribution from the non-condensate, but fhat

the approximation is incorrect in predicting a zero width for the

- condensate part. There is experimental support for parts of this

assumption. For example, the impulse approximation predicts that
the peak of the scattering will occur at an energy transfer bf

4h)='ﬁ?k?/(2@)%mand%thq¢ the width of, the-scattering will-be .

. G

proportional to the momentum t:gnsfer k (for experiments performed

at a‘constant value of k). Expéiime@t§ have been performed for

R

moméhfﬁ%}tragsfers between Oﬁéhqflh;3 gfl. The experimgn@aljréSults

TR Yo e . —
show that thevimpulse approximation is grossly im‘error. for kg< .2 s l,
T Lw . L - s e

CLER

as one would expéc¢t sincef he aébroéim@tionqééwihté%déd for large k.

For k > @ K_l, the measured peak positfbﬁfand width rapidly apﬁfoach
the behavior predicted by the impulse approximation. Two independent
1
b

measurements6 show that the actual peak of the scattering is within




o7

the dlrectlon of lower energy tran=fer. In addltlon there 1s

2% o
“ofe o

structure fractufe and::the 1mpulse approx1matlontévaluated u51ng a

theoretical estlﬁate of the,momeﬁtum dlstrlbutlon;is There 1is a
suff1c1ent difference between the tﬁb toulndlcate that the impulse
iﬁproximation or the estimate of the momentum distribution is
deficient,

The‘aésumption that the impulse approximation is "alﬁost“
co‘rrect; is not 1r¥disputable ..’ One obvious ﬁay to examine the valildity
of thils assumption is to develop an approximation whiech appears to
be superior to the impulse approximation for moderate values of the
momentum transfer, such as 14.3 X-l. There probably is no unique
program which leads to an improvement over the impulse approximation;
but for this new approximation to be useful in the present context, it
is subject to a severe restraint. Its evaluation must involve only
simple properties of helium and helium liquid. Only a few basic
microscoplc properties, such as the helium~helium interaction and pair
correlation function, are known with some confidence.

In the next section, an approximation is formally developed
which is proposed to meet these requirements. This approximation is
~initiated with the bias that the;iﬁ@ﬁlse approximation'becomes
valid at sufficiently large momeﬁtum transfers. Since the iﬁpulse
approximation completely neglects the helium=helium interaction, the

proposed approximation will contain the interaction. The interactions,
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in this context, are frequently referred to. as final-state interactions.
The form of the result may be motivated by recalling the impulse-

approximation

¥
v

1h

(1)

a8
n, §(w = o
P .

Lo R A

and ascribing the following picture to it. The neutron strikes a
single-helium particle in the target. The struck particle has a

-5
momentum p initially. The collision is elastic and conserves the

total momentum of . the neutren and helium.atem.. The delta function

s £, “d S - By .e s

p

in eguation (1) is the mathematica;‘statemént that kinetic'energy=
and momentum are conserved in tﬂls;thﬁﬁbdiﬁ=collision. This
is true only to.the extent théﬁ_gﬁé‘ﬁelium—helium intergctfbﬁ%jare

g

negligiblé;‘vﬂi a.more modesthmémentﬁm.transfera.yyp

1teractions

s o %,

will have somé{efﬁect.:“Conéépﬁﬁéégy,séx thiéﬁlpwef?value<of k, one

could still pictuﬁe the neutron as strs

Y

ing a single particle and
replace the remaining‘particles‘ofvthe target by an effective
potential. The presence of this potential would remove the requirement
that the neutron-helium collision conserve momentum and allow for
inelastic processes. A momentum state 5 would theh contribute to

the scattering not only at the precise value of the -energy tranéfefs
which satisfies w - (ﬁke/am) - (kﬁp/m) = 0, but for all w for which

W - (ﬁk2/2m) ~(k+p/m) is small - i. e., almost~elastiC~coilisions

which approximately satisfy conservation of the neutron-particle
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momentum In mathematical terms the delta function in equatlon (1)
would be replaced by a finite width functlon R(k,0 - Gﬁk /2m) (kep/m)).
The incoherent contribution to the dynamic structure factor would

become

(2)

where the width of the function R would depend on the momentum
transfer k and on the properties of the target, for example, the
interaction potential of the helium particles. The width of R should
decrease as k increases, approaching a delta furiction. Its width
should alse decrease 1f the interactions between:the helium atoms

were to weaken.

The R function incorporates the effect of final-state
interactions. Starting from the full density-density correlation
function, including both coherent and incoherent terms, an expression
will be developed for a slight generalization of the R function which
is formally exact for all values of momentum and energy transfer. At
a late stage in the development, the coherent terms will be dropped
to obtain an expression for the R function for application to the
liquid helium problem. This is done since the general formalism,

including the coherent terms, may befépﬁiicable to other problems.

i
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Since the intended application of this work is to neutren

scattering at large momentum and energy transfers, an attempt will

be made to motivate the formal manipulations by picturing the scatter-

ing as occurring between a neutron and the jth target particle, e. g.,

a partlcular helium atom in the llquld The procedure beglns by

#on 1

notlng that the“Hamlltonlans in Chapter T - equatlon (ll)‘twh eh govern -

the time dependence of s(kit);-ée“tg'p no explicit recogniticn that

a scaftering event has changed-the\momEntum of the jth particle. To

1ncorporate the modlfled momentum mld klnetlc energy of the Jt%}
7 e 3 ‘3 “‘T

particle, the~r1ght—hand 51de ©f this, equatlon 1s multlplled by
S -4 :
k -’. - b
ke Tie -3k rJ‘Afrom_the left and then inserted

unity in the form e

into Chapter I equation (10) (putting M =1):

ey < 1k (7,7 ) K7
NS(k,t) = & e J e J
3,l

>‘ﬁ§§iﬁéﬁelgée of the identity .

—ik.%. iHt ik-r, CiH’t
e Je e J=e (l)

where

K = H(Z,,
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with Wy =vk2/2m, Lj ='§-g./m, under the asSumption that the
L4
Hamiltonian contalns only kinetic energy and a ve1001ty—1ndependent

a z

potential. The above 1dent1fy is a sllght generallzatlon of the
1dent1ty dlsplayed in Chapter I equatlon (19 The den51ty—den51ty

correlatlon function now has the form '

e e 4fi)ﬁf-iﬁ$:>f
NS(¥,t) = e © 3 <:e R J e (5)

Tn the modified Hamiltonian equation (4), the momentum lost by the

neutron is explicitly transferred to the jth particle in the target.
.th . . . R > >,

The j particle, carrying its modified momentum pj + k, will move

in the medium of its neighbors and encounter varying potential

energies. This will distort its trajectory from that of a free

particle. The varying potential energy in its environment can be

exhibited by using the relation

igt + iL.t  iL.t i 4 H(?.—?kﬁ ) at”
e J o= e J Te ‘_o' J (‘61)

where-
gk = ﬁ/m,
HE - T67) = HE e, 7y = Tt B B eees By (T)




and T is-the time=ordering symbol.  The Hamiltonian H(;ﬁ -v.t),

representing the motion of thq?gtr'v

(8)

where
o - L > >
Uj(vkt ) = Ii V(r'j -t ) - V(rj, r, ) (9)
m#

under the assumption that the interaction between the target particles
is adeguately described by a two-bedy poﬂéntial V(r). The Qpergtor
Uj(vkt‘) represents the change inlthe potential energy beﬁween"the
struck jth_particle, as it travels along a straightii?ﬁéjﬁ?adé&fé?y

with velocity 3£, and the other target particles reé}eseﬁﬁed ﬁg m.

The density-density correlation function S(ﬁ;ﬁl-is now in the

form

, i, t
S(E,t) = e k (10)

, b -
iEﬁ.?ﬁt it + 1 70 U (v et)ar” ~im
Te e
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, The development to this point parallels anoﬁher'treatmén%lm“of:this
problem. The previous treatment proceeded. by expanaing the T product;
The first term in this expansion is the impulse approximaﬂﬁon.-rThe
subsequent incoherent terms were shown to represent corrections to
the impulse approximation ordered‘in increasing powers of (1/x).

As noted in a previous paragraph, the natural picture to
associate with the above procedure is of the struck particle traveling
in a straight line. This suégests that difficulties may be encountered
if the interaction between the térget particlés is strong for some
configurations of the particles. For example, if the iﬁteraction
contains a strong repulsive core as is characteristic of the helium-

Fogds

S S T :
erms in, thé expansion
b

. e ROt L £ agde 0 Radn to T
helium Anteractions, thesecend aﬂdjh;gper;ordeg

of equation (10) have cdntributioﬁé]from configurations in which

the struck particle can pass arbltr' y ‘close to another partlcle in

the target w1thout allowing elther‘partlcle to readgust 1ts p051t10n

to avoid a close epcounter. ThlS can be}av01ded by notlng that the

4
unitary operatorsf?—;Ht in equatlon (lOi temper the contrlbutlons

o

from these unphysieal encounters between’the struck particle and its
neighbors by allowing the particle coordinates to evolve in time.
The time evolvement of the target position coordinates can be made
more explicit by use of the identity
t :
igt + i1 U (v, t7)at”
o Jj 'k

o (11)

|
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'
s
e

which can be interpreted as a resummation of the T product in
equation (10). A formal proof of this identity is gilven in Appendix
C.18 The exponent on the right side of equation (11) is the integral
of the difference in the potential the struck particle would have

encountered as a typical target parﬁicle and the.potential it does

encounter as the abypical struck particle

1H(t-t ") ~iH(t=t")
e U.(v.t")e =

where the term m = j is deleted from the sum I“.

The function S(l-{*,‘t) now has the form

I -3 0 e ‘
o Ot iuUj-",m(Yl'tj;tA:)-‘g%r

B




For a realisfic3manijng'system3 the detailed accounting for the
time evolvement of all target coordinates contained in Uj~m(vﬁt) is
2
an impossibie task. In fact, 1t is” apparent that the defining equation

for S(k,t), Chapter I equation (lO), appears very much simpler than

the result expressed by equatlon (l?)

The apparent 31mpllclty of

Chapter I- equatlon;(lo)

inserts for ;g(t) in Chapter.I

.

ap. (L) . ‘.
. - T2 s T e (T Ty
i —3%-—— [pj, H] = -1 35 T V(rj, rZ)

z

These yield the equation for the time dependence of thejth target

coordinate
T (t) = 7.(0) ” (1)
J J
-+ ) v —)- - - .
+ py(0)t/m — (:Um)fo at” (t=t") § vivlr (87), v (87)]

;inserting this expression for ;ﬁ(t) in Chapter I equation (10) and
accounting for the noncommutivity of the operators in equation (1)

must yield an expression equivalent to equation (13). Incidentally, it
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is easy to see, by expanding Chapter II equation -(10) and (13) in
powers of k and comparing the terms linear in k, that (13) implies
that ;5(t) is properly given by its exact value expressed in
equation (14).

In equation (13) the impulse approximation still appears as an
additive contribution to the dynamic.strucﬁure factor. In order to
obtain S(X,w) in the form given in equation (2) and to identify the
function R, a cumulant-like expansionl9 is pérformed. )The appearance
of the T product complicates the standard cumulant expansion
procedure somewhat; so the details of this procedure are sketched in

Appendix D. Applying this expansion yields

> ~IA, > >
Ns(k,t) = 87 (k,t)R(k,t) .. (15)
where
> > o> -> >
. ik-(r.-r,) iv t-p.)) . o
nstA(®,8) = 3 <e J Uk 3/ 1ot (16)
. “ B "’%{vj)“z:‘ . B A ~: :_,, . 3 N K
and e L
R{e,b) =exp log +wy + .01 mpf i 0 (2T)
» *u- ’é;“: |
where
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iw, t
w = © (18)
K. (7, -7,) iv.tep oy ft{r'-< (v. t°)at
* T <e 3L e L l:l—Te °© ’?m""fm k :l>/ SIA(I{),t)
Jsl.m , :
The form of the second term, w?; infthe:exponeht.of equatioﬁ (22) is

4

given in Appendix D,

For systems where it is apipropri‘éte to discard the cc!rherent

contributions j # Z, SIA(I{),-t) becomes SIA(K,‘t), the impulsé

epproximation to the density-density correlatien function ’

L

R G :
L LAV D, dw N\ :
st (E ) = 2<ek 3D (19)

R(X,t) = exp

Equations (19) and (20) accomplish, at least formally, the objective

stated in the beginning of this chapter. When equation (15) (with




j # 7 terms discarded) is Fourier transformed to yield the incoherent

contribution to the dynamic structure factor, the»fesult is

Ty > s i {
Si(k,w) = In, R(k,w - W, = p-vk) (21)
PP
3 M e 5> > .
nenynction*R(k,w - W - p-vk) is the Fourier transform of

w: = DTt
PR @ ) (22)

Equation (21) is still an exact result for the incoherent part of
S(k,w). It is still inffactablej whemappiied to. a realistic
many=body system. For such systems it is necessary to- apply some
approximation. Our interest is in sea’éte-ring at large neutron
momentum transfers, and we seek an improvement over the impulse
approximation, which sets the exponent (wl':rwz + ...) in equanion

(17) equal to zero for all times. The firsﬁ term wl in the exﬁonent

corresponds to the picture where the jth particle is struck by the
neutron and then the jth particle scatters off the other particles

in the target, each treated singly. The succeeding terms w2, w3, .o

in the exponent of equatlon (17) correspond to the scatterlng of the

jJ"C partlcle by clusters of two thrce,.... partlcles. One may
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impulse apprqximation results from neglecting all higher-order

cumilants end retaining only the term w, in the exponent of the

1
function R(z,t) in equation (17). This approximation neglects

scattering of the jth particle by clusters of two or more target”

particles.

PN e il 2 - R P .
(§3t)&; noéw-reduced: o ‘dn. evaluation of
Sl Y "g e . i-,i PR e Fen! }~ ) . *y e 2

the cumulant w,. This appears.tos-be a calculation of a two-body
ol ‘

. THe?é%leulation of §

1

-

B

operator until one recognizes tHat hgﬁapbearance of ;j(t—t ) and

Béne y{th a problem of thg;saﬁe;order

of compleﬁitj"%§ éﬁ‘exagp caleulstion of S(Eig)ﬂ' Fu% er prggf%ss

R B . LR e

evolvement of ?.(t—t’) - zkt' is domingted by 3kt' and, therefbre;
eiiH(t_te) in equation (12) may be treated cavalierly. One might,

for example, replace the time evolvement generated by the full
Hamiltonian with a time-evolveﬁent generated by an appropriate two-body
Hamiltonian describing the struck jth particle and the mth particle
with which it is interacting. An even simpler, though more drastic,
approximation is obtained by completely“ngglectiﬁg the effect of

the factors eilH(t'"gG )

in giving the target particle locations a

time dependence. This corresponds to the struck particle traveling
along a straight line with the reméining particles frozen in their

t = 0 configuration, a process reminiscent of the eikonal appr@ximation.
Neglecting the time evolvement generated by H reduces the:calcﬁiation

to one in which. the onlky information required about the target is the

one-particle off-diagonal density matrix, the two-particle off-
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diagonal density matrix, and the two-body potenfial. This follows

from equation (20), which becomes

R(k )%=

£ . ] -
~ > > T (T T 2 R
) < 1vk th [1_6-‘_,1._ o dt ‘[‘V(rj vkt,rm) V(r‘j’ I'm)]:|>
JL.m . . . o L N L .
iV DLt
1 *P ..
z <:e “# J >>

J&Xp

Lol

iv; -p.,.‘>. : .
The expectation value <:e k3 ,f' involves- only a one-body

operator and is thus reducible t@;a one-particle density matrix.
This reduction- is performed by4a%eraging over'a single state ¥
for the target system; generalization to a canoﬁical average is

obvious. We have

:; - . D " e £
iV .p. >> << iv .pf:> L/?ie‘ 1V, _«P.
5 <:e K53 /- mMe B /=p Wo(rN) e K7 Wo(rN)dTN (24)

TR LA SR .
The operator e ° shifts the coqrdinate‘rJ appearing in W'(r')

by the amount vkt and the 1ntegrat10n ‘over the coordlnates r2,s3..,

Ty introduces tﬁg.oge-pa:tlcle den51ty matrix plér‘ &;’) deflned by
L T T o |t o > 4
pl(_rl':'__zf(%ri )= NI‘PO (I‘l;; I‘2, . N)‘P( S I‘2, .:., TN)de ce e d.’E-N (25)
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i

The result is -

where Q7 is fhén%olume of %he‘£;fgq$;éxg§em, agd we have used tran§7;
lational invariance of the wave funcéion ?O to obtain the last
equalitff

In a similar w%y, the expectation value in the numerator of
the exponential in equation (23) involves only a sum of ‘two-body
operators and can be written in terms of a two-particle density
matrix. The reduction is accompiished by writing the sum over J andv
m as W(N-1) times the expectation value for a chosen pair, say

particle 1 and 2. This term is then

Pt Itv(-t,)-v(,)lws
new-1) J k(e W Pl[- R 1t ]‘Po(rm)arN (27)

= N(N-1) ;gi(rN)[:l_ei'o[ (rl+vk(tnt )y r )-V(r +v t 34 )dt:J ‘(%ﬁi?

- > -

Cx ¥ (r + v tq

N
X 2, cesy rN)dT

3o tees Ty introduces the two-particle

density matrix, defined by




h2

> >, > -y =

> > )
pplrys Tp3 117 T

N(W=1) ) ¥* (rl, 4 3,..., 'y (29)

> L, >, >

Y
X o
Wo(rl s Tp™s Tys vee TN)dT3 ee. 4t

N

and yields for this. term 'the result

> > o > >
c/;z(rl’ ryy T+ vkt,;rz) (30)

t
ST 2 T (raes) D) L ow(E >, > -
x{; i el 0[V(rl+ vk(t t7), r2) . V(I.l + v, rz)]dt:} ar,dr,

N B . ane @ty ‘
] o A T 2 4 W
G b - : R P RS et

ER

Putting r = ry =T, and agaln translational invarience,

this becomes

[V(Z + (67 )) - %E* + +tt)]dt']
x [:1 . o T+ A -

function R(k t) dependlng‘on the quantities anticapated above:
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po (7,05 ¥+ W8, 0)

e (o
R(k,t) = exp ey {0

(32 )L

t
[: o[V(r+v(t-t))-v(r+vt)]d]
WX | lme o L o Jar

) LR

Equation (32) provides a useful approx1matlon to the effect of target

?é«

hef,

atom.lnteractlons in alterlng 1mpulse approx1matlon results “for

neutron scatterlngtat hlgh momentum and energy transfer. TWOﬁmaln

R " Fr e e

approx1matlons have been made to get to this” result The first

consisted of the neglect of the tlmeﬁevoltement of the target particie
coordinates (induced by the operators eingt-t{) in ‘equation (13))
while interacting with the struck particle (moving with a velocity
3%). The velocity 3£ imparted to a target particle is much larger
than a tyﬁical target atom velocity, so that for relatively soft
collisions of target particles this neglect seems relatively safe.
For strong, head-on eollisions of the struck particle with other
target particles, the readjustment of particle coordinates induced
by the‘neglectedvoperators eiiH(t_t’) must have a large effect in
preventing penetration into the hard-core region of the interaétion,
and here the approximation is dangerous. However, the situation
encountered here is preferable to the one encountered in the expansion

of the T product in equation (10). For example, if one were dealing

with a Leinard-Jones potential, the gquantity




b

t t . .
5 . -> > .. '*f_ > > L
u/\ Uj(vkt )at -g/ﬁo i [v(rj - 7t7, ) V(rj, r )ldt

m?

in equation (10) and the equivalent quantity

t
S - 00 - VG Te)las

of equation (32) become undefined if ihé "trajectory” of the struck
particle passes through the singularity of the“potential.- This
divergence leads to an undefined expression for'S(f,t) if evaluated
from a finite number of terms from equation (10). In equation (32)
the divergence occurs in the phase factor of an imaginary exponential
and, therefore, yields a well-defined result if some sensible
limiting procedure is used. A tempting speculation is that the rapid
oscillatofy contributions from hard collisions will be small,
mimicking the more physical picture in which the remaining particles
AiH(t-t7).

will avoid ¢loseé encounters’through theraction (of &=

PO

ntained in the final expression

FRN

¢

g > ' i W .
for B(k,t)‘is concerned with truncaggng‘the cumulant expansion at the

i

neglected terms deseribeicorrelations

T

¥

r more passive target particlesduringtheir interaction
ek S8ive barget part 2 T :

=

with the str&%kﬁﬁargeﬁwpértiklél “Thus the'apﬁfoximateiexpreSSion
for R(K§t) contains multiple scatterings of the struck target

particle by the remaining target “particles, with each of the passive

)
14
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target%aﬁ%ﬁsgtreate&j

inﬁeﬁendehtly of ‘eath.-other

Cleal‘ly I'equires that the Co:ri"ren

the averaging state Wbibé;

s

lusion

systems, inc

0 ) RS - &

of such "shadd%iﬂé,effeggéh“Eéems'ﬁﬁérain%tely'difficult, requiring
adding to R(f,t) terms i%volvingath;ée—n;nd higher;paréicle‘density
matrices. For experiment;l conditions under which corrections to
the impulse approximatidn?represented by R(f;t) are relatively small,

the binary collision approximation employed here should provide a

significant description of these final-staté corrections.




CHAPTER IV
‘3ﬁ5ﬁ¥813 OF THE EXPERIMENTAL RESULTSZl

Discussion of the Formal Results

The formalism developed in the previous chapter promises an
improvement over the impulse approximation through the par£ial
incorporation of final-state effects. In the impulse approximation
the helium atom which is "struck" by the neutron travels unimpeded
through the liquid. In the approximétion developed in Chapter III,
the struck helium is influenced by neigthring atoms through a process
helium by the other helium atgmg_iq i£s environment. As pointed out

in that chapter, multiple singléiséa$7§ring is not the only process

whicﬂ“int%odubes final—state%éffég%si‘there is a hieraréhxiof ' 

processes in which the struck helium interacts simil'tanéouslywrith
_~ o PR N '.: R ‘1 e o

pairs, triples;wiéadruplés,Aétcg; of i€§ corréié%éd neighbors. The
decision to treat only the multiple gﬁﬁél% collision form is based
partially on the intuitive assumption that the formalism is "well-
ordered". In particular, if ignoring the scattering of the struck
helium by its neighbors (the impulse approximation) is a good .first
approxiqbQibn and if the inclusion of multipie single scattering
produces a small correction, then each succeeding, more complicated,
process will éontribute émaller-and smaller corrections.

From the results of Chapter III, the dynmamic structure factor




is given by
.3
_ 2R
R , > Ji
S(k,w) = sz n R(E,0 = w -i—) (1)

where np is the single-particle momentum :distribution (the fraction
of atoms carrying momentum p), m is the helium mass, W = ﬁkz/(Em),
vy = hk/m, and the function R

>

; —:’k) f —1(w- w, =D kafl)t N

2WR(K, Q - w - R(k,t) (2)

incorporates final-state effects. In the multiple-single-scattering
approximation, the function R(K;t) may be evaluated from Chapter IIT

v. (t=t) is made, this

equation (32). If the change of variable y = «

equation becomes

> > >
, oy, 05 T 4. Vb, 0)
R(k’t) = exp - ) -~ > ‘-’:‘ 4. (3)‘
L . p4 (0,3 £7) -
' l ’ 'k

W}kt
N [1 ) ei I [V(Z + 3)=v(F + ?kt)]:‘

R e G b

wherejpi@O; %g%)?ah&‘ pg (x ] oF 31 vkt§”®) ‘are the' 11qu1d's one-

)':“gonal den51ty matrices, respectlvely

e




In the above and subsequent equations, Y has been set equal ténunity.
If the potential V(r) is well-behaved, then the function R(X,t)
approaches unity for all time in the 1limit of large k.20 In  this
limit, R(k,m—mk-§E§%) will become a delta function (refer to equatién-

(2)) and equation (1) becomes

! - ER
- W —-,,Sy;l-'p) | (W)

which is the impulse approximation .derived in Chapter ®

equation (22) i

5f that chapter). ~ ' . i
?'K

Assuming there is a Bose;ﬁiﬁé%eiﬁ,gondensation (nO #0),

equation (1) becomes

1

S(i,w) = —
(2m) o

f3 > _ -~ > > )
dp npR(k,m - 0, —Tkap) + nOR(k, w - mk) (5)

and the impulse approximation becomes

E,u) = ——_u”é Y p + n 8w =) T T (6)
TPV |Q| !

g

where n_-is the condensate fraction, Q = (m—wk)/v , and p is the

helium number density.




A slight generalization of the impulse approximation will
increase the range of momentum transfer over which it is a good
approximation, This medification is the replacement of the delta

function condensate contribution by the R function

—_— c}ﬁ dp pn_ + n R(k,w - w,_) (7)
hr? PV, [ P © k

term of equation (%) even though the condensate term’may have

measurable width. In subsequent discussion, equation (9) will be
referred to as the impulse approximation. If includes the effect
of final-state interactions on the condensate portion via the R
function but neglects these effects in the non-condensate part.
Recalling the basic premise made in the analysis of the con-

densate fractlon by Mook Scherm, ancl Wllklnson _one .can‘see that both

;
v o 4 3 i

equatloﬁ (S) and equatlon (7) partlally support thls premlse. These

N

equations separate the dynam1C‘sﬁfuct”

e factor into a contribution

from: the non—condensate, Whlch41P
Lo

b

momentum dlstributlon np with p’f @, and a contrlbutlon friom the con-

20

ted to. the non—condenéatowé

)>wh1ch 1n general has a nOn-zero w1dth Two points

W

remain to be considered. The fiFst ¥§1the‘plau31b111ty of the Gaussian

densate n R(k w

condensate ATexp[—(w-A8)2/A92] found by the least squares analysis




discusbed fn¥Chapte? IT; (THis will be ex Evaluating the
theoretical estimate of the cqu¢ﬁ$ate contribution, represented

by nong,w— wk), for the condition

?n?esponding to the experiment

and fheﬁ*qqpﬁaring the resulﬁg=§b£ph§:éssﬁmed»Gaussia§‘fth‘fofgﬁhe

g L
N ot
E 1 P S

PR AT . e S oo
- condensate. This will be done in the next seetion.. *The second

point is the plaus1b111ty ';-‘:of?"thé?;;‘qdﬂi:—cé;d?nsa}ge%\or%ion of the dynamic
structure factor. If one knew theﬁsihg é4partidle momentum
distribution and the R function, this could be accomplished by
evaluating the integrated term in eqy@tion (5) for the experimental
conditions. AttegptsAhave been made:ﬁg*evalggteLthe,mogentumndistrir
bution frem first primeciples, bﬁt~iﬁ is difficuit to gauge the validity
of the results. Rather than trying this approach, the data will be: .
analyzed to determine the momentum distiibution which would‘préduce

the observed. dynamic structure factor. The-credibility Q?_Ehélméménﬁhm
distribution so calculated then refiects on the credibilit&:ofitﬁg;
assessment of the non-condensate portion of the data, at leést Wi%hin

the framework of the approximations being used.

Evaluation of Final-State Effects

The evaluation of the R function is the central problem of
this approach to. the analysis of neutron scattering. R(ﬁ,ﬁpwkfgk;g)
evaluated for p = 0 is proporticnal to -the condensate contribution
to the dynamic structure factor; and, when properly convoluted with
the momentum distribution (refer to equation (5)), it yields the

non-condensate part. In order to evaluate the R function in a straight-

forward manner, it is necessary to sélect forms for the helium-helium




s

interaction potential V(r), the one-particle density matrix ‘pl(O,gkt),
. . . > -
and the two-particle density matrix p2(r,0;r +‘vkt,'0).
The Lemnard-Jones potential was used to represent the

helium-helium interaction
: 12 6 ‘

v(r) = bel(a/r)™ = (o/r)7] A (8)
with ¢ = 10.22°K and ¢ = 2.556 ﬁﬁ. The selection of the two-particle
density matrix was based on the following considerations. Viewing Py
as a scalar product in (N-2)-particle Fock space

+ +
> > > N g e R
rolE 03 F %, 0) = poly () (04 Fep) wOo)

where the helium is assumed-to bé 3@ ﬂhg ground state ¢0, the Schwartz

inequéality, yields

dimg e 5T

oyl <Kot V) w0k ¥ @) ] og > (9)

> "'?ﬂh-*""—>-- ] 1/2
<i¢olw+(0) v+ v, 6)¥(T + T t) ¥(0) I_fé>

Assuming that the ground state can be repfesented by anteverwhere
positive, wave function,7p2 is positive and the absolute value symbol

may be;ﬁemoved, so that

> > >
pz(r, O; r + th,‘o) <p




where g(r) is the.pair correlation finé

in equation (10) becomes an equality; therefore, one:expects
ngl/zﬂz)gl/z(g + 3£t) to be a good approximation to p, for small
values of t and all values of r.
, - G A )
For large values of (r) and (r + vkt), p, should approach the

Hartree~Fock approximation

> > > U T S > > e .
pg(r,o; T+ vkt;O) 2 ppl(r, T+ vkt) + pl(r;O)pl(O,r + vkt) . (11)

> et T S > > >
For most choices“of (r) ‘and (r't~vkﬁ), the direct term ppi(r, T+ vkt)
will dominate the exchange term pl(?,o) pl(O, T+ 3£t), since
p(0,R) = p (R,0) = pn_ for R 2 ¥} (refer to Figure 10). TIf the

exchange term is neglected, the approximation used for Po which agrees

with equation (12) and (13) in their regions of applicability is
L > . > - 1/2,»~ 1/2,» . - ->
po(T,0; T + Wk, 0) = pg / (r)g / (r + v t) p,(0, v, %), (12)

where'trénslational invariance has beén @sed to replace pl(?;; + 3£t)
by Dl(O, gﬁt). Estimates indicate thatvgl/gfr) is essentially

zero for r g 2'3, then rise5<sharply to approach unity at-ruﬁfSiﬁ,nand
exhibits rapidly damped oscillations about unity for r 2 3 33. " To -
simplify the calculation somewhat, gl/ECr) and gl/g(? +‘$£t)vwere

replaced /by wnit:sted functions,Fiélding

on. When t = 0, the ineduai g




0,(F, 05 7 + ¥ %, 0) (13)

2 o 0([F] - z)o(|F 4 ¥, 5] = x ) (0, ¥,5)

In equation (13), ro I is: treated as a-parameter which may be adjusted
slightly under the restrlctlon that 6(lr| - Ty ) remain a reasonable

approximation to gl/ (r) ince onlJ the ratio p2(r 0; T v s 0)/

P (O v t) appears in equatlon

removes the need to ccho S

The abov‘e e-‘app;r%x ‘n'i
equation (13), is mosté ‘]
the assumption that tf’f_e‘;
f‘u.ﬁc'taon.

an everwhere positive lW Ve i The R function calculated with

this approximation W111 }

shown that

(14)
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formed to yleld R(k, v Q) the realipart of R(k t) Wlll produce the

even part {(in @ ) of R(k";

0dd part of R(k, Vi 9)

1nﬁacco%dan9’ "equatlon 3J to produce the non—condensate contri-

bution %Q S(K,w) the primary effect of the ;ven part of R(k, ¥ Q)
will be to modify the width of the dynamic structure factor, and the
main effect of the odd part will be to change the peak locatioﬁ'from»
that of the impulse api)roximation.

Some general observations about the shape of R(K,ﬁ) can be

made fiore conveniently by considering the negative logarithm of R

-'E(vkt)
R(k,t) = e (15)

Ifi our approximation E(vkt) is given by

E(v,t) = p .fdrs o(|x]- ro)‘@(|;{+ vt - r,) (16)

ay[V(F + ¥)-V(F + ¥,2)]

1 - e‘
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which is obtained from equation (3). A simple physieal picture may be
associated with mathematical operations called for in the evaluation
of equation (16). In this,picture a helium atom'is struck by the
incoming neutron at its initial position T . The struck helium'then
travels along a straight line trajectory from its initial position T
to its final position (? + gkt) at a velocity gk and in a time t.
During its "flight", the struck helium interacts with a single helium
located at the origin of the coordinate system., This interaction will
be loosely referred to as scattering of the struck helium.' A
particular choice of initial position ? W:Lll be referred to as a
confighration.

First note that the Lennard-Jones potential V(r®) used in
this caléulation becomes highly repulsive as r” decreases below Ty
(more precisely for r & o = 2.556 &, but ry * o). The potential
is weakly attractive for Ty s r s R, where R 1s some distance beyond
which the potential is insignificantly sma;l for the purpose of
this caleulation (in actual computations R was taken to be 8 &

thbﬁéh its value depends somewhat on k and t) Also, note that the

unit step functlons in equatlon (18) remove’all eénfigurations for

,whlch»thehr
:by a sphere of radius rO abd“ he erlgln of the coordlnate 8ystem.
This means. that for smallav f,‘»‘ the hard repu151ve part of

the potentlal does not contrlbute to the scatterlng The value of

(V't) i's therefore small belnb determlned by the weak attractlve )

part of the potential.




55;

For the repulsive part of the potential to éontribute, the
.
path of the struck particle from T to (¥ ikat) must- pass completely

through the core of radius rye As v t approaches 2?0, these

k
configurations begin to contribute and soon to provide the dominant

portion of the value of E(vkt). For large vkt, as shown in Appendix

E, E(vkt) is dominaté%%ﬁEWQ;term linear in vt

S

Vel

Re f(k

, ) Mt % ¢ (a7)

[y

where o_ is the total helium-helium cross section and Re fe(k,k)
is tHe real part™of the forwar

3 :

d;ségi%érihghﬁmﬁii%%dé; ﬁoti evaluated
in the eikénal approximation, and C'is bounded. The term ch/Q
is just twice the reciprocal of a simple estimate of the mean free
path. Therefore, this ferm is reminiscent of the results of ﬁhenomono—
logical arguments which yield 17p0T as an estimate of the width of
the condensate portion of the scattering. It should be noted that
the factor 1/2 and the additive real part of C'will make the width
of Rlk,t) significantly different from the eStimate:l/chJ

The value of-E(vkt)22 was determined by numerical integration

of equation (16) for selected values of k, t, and r.; the results

05
for the real part of E(vkt) are shown in Figure 5; the imsginary
part in Figure 6.

The real part’ of equation (16) appears to be well behaved with

small computational error. A smooth curve has been drawn tﬁrough
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REAL PART OF E (v,t)
&

a

‘Real Part_of B(v;t), - (The solid line evaluated with
k = l#.i 5 andr = 2,5 A; long-dashed line, ¥ =-

14.3 87 and ﬂ‘da%ﬂﬁ; short—dashed line, k = 28.6 gL

and ro = 2.5 A7 Errors indicated where significant.)




MAGINARY PART OF E(vz)
e

|
R
o

]

Figure 6.

58

shown. )

| i 1 i ] I
r-Y
. c 4 —y
[<]
2
A
©
- ’T
n
a
[«
: ; ]
1]
5
Q
] -
g
&
i [ |
i
H 1 ¢ § 2 1
2 4 3 8 ¥ 12
it (A)
Imaginary Part of E(v, t). (Whe circles are evaluated for
- ) ? — k - Fs .
ko= 14,3 A and 1 2 5 A¢ lower half of error bar
shown triaqgles, E = A and r., = 2.k ﬁ; squares,
k= 28.6 87" and Ty = 2 5 %J upper half of errcr bar




&

the computed points in Figure 5. The imaginary part of equation (16):

is not as smooth and there is noticeable error in its evaluation at
large values of vkt. For this reason, no attempt has been made to
connect the computed values of the imaginary part by a curve (refer
to Figure‘G); Where significant, the upper half of the error bar

(numerical error only) is shown for k = 28.6 X_l, r, = 2.5 2; and

0

the lower half of the bar for k = 14.3 8%, r_ = 2.5 2. A crude -

0
check of E in the region 8 K s"vkt s 10 ﬁ indicates that the élope

of the real part . of E corresponds to a total cross section (aécording
to equation (17)) of = 35 82 for k = 14.3 8% and = 31 82 for

k = 28.6 R_l, in rough agreement with the experimentally measured

. 2
cross section. 3

Figure 7 contains R(ﬁ, vkﬂ) for selected values—o of k. Plotted
in terms of & , the width of R(K, ka) narrows rather slowly as a
function of k. From equation (7), it is evident that the width in
terms of Q@ of the non-condensate contribution evaluated in the
impulse approximation is independent of k. The practical implication
of this is that if an experiment performed at a given value of k is
repeated with a slightly higher value of k, one can only expect a
very slight relative sharpening of thé condensate portion over the
non-condensate. This observation may be somewhat pessimistic since
the Lennard-Jones potential used in this calculation is known to be
somewhat more repulsiv tygn the sctual helium-helium interaction for

small distances.23

However we .do not expect that the use of a more

realistic poténtialwill fhange this fesult significantly.

e g
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Figure 7. 'R(k, v, 2) for r, = 2.5 K. (Tne solid line evaluated for k =.14.3 &°7;
lcng-dashed lineé, k = 28.6 l; short.-daghed line, k = 57.2 JQ."J-.
Q= (m—mk)/vk-)
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' On a more optimistic note, the furctioan(ﬁ, vkﬂ) shown in
Figure T exhibits a non—monotonic behavior as a function of Q. This
characteristic is easily traced back to the short time behavior of
the fUnctlon E(v t) defined in equetion (15) and exhibited .in Figure
5 and 6 This behavior is radically different from the linear
in v, t behavior given by equation (17) for long time. Clearly this
occursrbecause the struck helium particle initially finds itself in
an environment of other helium atoms strongly conditioned by the
liquid's local structure. The struck helium can traVel,lon the
average, some distance (’\.:2 R to a3 R) vefore suffering significant

collisions with other helium atoms.

Finally Figure & im.this section presents the results for the

'aﬁéd:for tﬁeﬁeonditions correspond-

iHg to $hewé§periﬁent of Mook, Séﬁérm;:and*Wilkiﬁéen. The con-

denséké part of S(k,w) Wab\bbﬁéiﬁ%d from noR(k, f&ﬂ) assuming that

the condensate fraction is 2 h%. Figure 8 also contains ﬁhe best
fitting Gausgéian form for the condensate ATexp (m—A ) /A ]

(refer to equablon (2) of Chapter II) and that portlon of the data
judged to be contributed by the condensate. The "condensate" part of
the deta was obtained by subtracting the' first three terms of
equation (2) Chapter II from the actual data. It is évident that

if noR(k, ka) were used in place of the "condensate" Gaussian in
equation (2) of Chapter II, the best fitting value for the condensate

fraction would not be substantially different from the previous

estimate6 of 2.4 + 1%. The structure in the energy dependence of the

———
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“n R(k v Q) also has structure«whlch is suggestive ‘0

“structure fact‘ “is discernible in

t,<‘*~‘¥

thls flgure 1n;the v1c1n1ty of lOl meV and lllfmen. The function -

N

Qhe“structure in

the data, but the structure‘lnw' R 1s located too far from the peak

and is less dramatic. The structure in this evaluation of the con-
- 4 &, '*.T\.' PRI

T L e T T T ST At s T R AT
densate contFibution eguld be ‘made,;more pronouneed by choosing a

significantly larger value for r , but then the theta functions

o(|r|~ ro) and 6(|¥ + $£t|—ro) (used in equation (13)) would no longer

l/2(;«) and gl/z(? + %ﬁt), respective-

ly. A more precise evaluation of R, in particular the structure in

be a reasonable approximation to g

its wing®, will probably require a more accurate approximation to

pz(?, 03 ? + gkt, 0) than was used in this evaluation.

Extraction of H?lium Liguid Properties

Based on the analysis of the experimental data in reference
6 and the results of the analysis in the previous section, one can
Judge that the condensate contribution to the dymamic structure factor
has a full width at half maximum of approximately 5 meV at k = 1k4.3 R_l
while the FWHM of the non-condensate part is roughly 16 meV. In the
formulation being used here, the non-condensate part of the dynamic

structure factor is given by

810 0) = —4 J;p3 n_ Rk, vsz - v.-D) (18)




ne 1S abproximately 16 meV

while the width of R is roughly-5 meV. This suggests that the

From the above discussion, the FWHM of S

modified impulse approximation, equation (T), may be used with the
recognition that the final-state effects implied by the width of R-
will be small, though not necessarily negligible. These final-state
effects will be considered in the last section of this chapter.
Using the impulse approximation, the extraction of the non-

condensate contributions S from the experimental data provides an

NC
input from which the single~particle momentum distribution, the one-
particle density matrix, and the mean kinetic energy per atom in the
helium liquid may be calculated. This is discussed in this section.

Taking the partial derivative of the non-condensate part of

equation (7) with respect to w at constant k yields

(19)

. £y .
The experiment was conducted at a constant scattering
angle of 1359 The momentum transfer).énergy transfer, and scattering
; .. . . ,

j;ngleﬁaréhihferrelated by -

“ g

RS

2 Ty, R
Lo ! ® w1
U . .

kz(e,w) = 2M{2€i--[}.

(1% o/e,) %05 0] =} (20)

uninteresting exercise in partial derivatives leads to

6l




=awﬁgie Qf=?(w-wk)/vk. As previously noted, the data, as presented
in its final form in-Feference.6 and reporduced here, is proportional
to the dynamic structure factor broadened by a resolution function
with a FWHM of about 2.1 meV.

For convenience, I chose to use the appropriate portion of the
empirical fit (equation (2) of Chapter II), rather than the actual
daka poihts, in the application of equation (21). The non-condensate
part of the @éfggiﬁég@)ﬁwas identified with the non-condensate part

of the dynamic structure factor‘SNC(G;w) through the relation

/2 7 ~(w-e)?/T,
CINC(:w) 2 (qT) f de e : SNC(G;w) (22)
where
S )2/A 2 : -(w—,A')l‘/A' 4
Ipolw) = Ae 2 3 + Mye > 6 (23)

P=,(2;l)2/0h 1n2) represents the width of the expérimeﬂtal resolution

function, and C is a édﬁ?fént to be determined by normalizing the
single-particle%ﬁomentum%di%ﬁfibutign obtained from equation (21)
B&'means,oftﬁ%é'réiation

.

' - ;/L 7l

(e1)
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n =1 ' (2h)

The following approximation to the solution of equation (22)

was used.
. —(m-AQ)g/Aéz
Solfsw) = Cla” e 7 4+ Plw)] -(25)
where
A= AA/Ay (26)
(27)
" (28)

Cw .

i
L ¥

Agkﬁéy%béfveri%ie QbY”Hi;eéﬁ}§§%Sti :ioh, £ﬁg“éa;ééién té}m in
equation (25) exgétly repréduces the Gaussian in equation (22)fafter-
convolution with the resolution function. The polynomial Plw)
approximately reproduces the term’AhexP[—(w—As)h/K6h] of equation (22§
after resolution broadening, as verified by numerical integration.

The functionJEPCw) was obtained from the first five terms of an infinite

series. solution to an integral equation in the form of eguation (22).

This series solution is discussed in Appenhdix F.
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The use of equation (25) in equation (21) yields the single-
particle momentum distributions shown in Figure 9. Aleng with the two
distributions obtained in this amalysis, Figure 9 also contains the
distribution found from a Monte Carlo calculation which assumed a
Jastrow ground state wave function.3 To facilitate. comparison with
the Monte Carlo result, the np values determined from the experimental
data have been normalized taking the helium density to be 0.022 atoms/
3-3 end the condensate fraction to be 0.11 at 1.2°K. Evident from the
figure is the large number of atoms carrying a momentum p = 0.7 ﬁ-l
Which are not present in the Monte Carlo calculations. The momentum
distributions np determined from this experiment correspond'to the.

temperatures 1.2°K and 4.2°K, whereas the Monte Carlo calculations

were performed for the ground state T = 0°K. However, we do not think it

likely that the differences in the np distributions at T = 0°K and

T = 1.2°K, shown in Figure 9, are due to this difference in temperature.
Some insight into the possible source of this discrepancy is. afforded
by examination of pl(O;;), the off-diagonal one-particle density

matrix, related to np by

Fy :
p,(0,.7) =1g- Ine (29)

For: ‘the Monte ;Carlo calculatlons, 0. (O,r) is also related to the
l

assumed. form-of the ground state Wave functlon ¢ (r ?2,,.., ;ﬁ) by

15
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Figure 9.

Single~Particle Momentum Distribution via the Impulse
Approximation. (The solid line is the distribution obtained
from 1.2°K date; long-dashed line, obtained from L.2°K data;
short-dashed line, the result of Monte Carloc calculation

Ref. 3.)




p,(0,r) = Lf;)O(O, Ty +ees Tp) (30)
x ¢O(r, Tpy oo rN) dr, ... dr

Figure 10 dompares values ¢for pl(O;r)Afrcm'the experimentally
determined np valﬁes with the Monte Carlo results. The excess atoms
carrying momentum ~ 0.7 ﬁ-l in Figure 9 give rise to the dip in
pi(O;r) near r * 6 R, resulting in a non-monotonic pl(O,r), con-
trasted with the mgﬁbtonically decreasing'pl”prcdicted by the
computer studies. We believe that the moﬁptonic behavior of pl(O,r)
is due to the use, in equation (30) of a Jastroﬁ ground state wave

function

£(r..)

m 1
1<i<jznW J

for which the assumed form.of f(r) is a monotonically inereasing

function of r, i. e., fo) =?ék§x17(a/r)§

s
3

Such an f(r) does not

L EEE

[

account forr ttractlve 1nteract10ns, whlch should cause a "bump"

“13 er) at an r-value roughly correspondlng to the range of. the

at%factlon e. g., flr) = eXp [ (a/r)5 + (b/e)"], b > 0, mi> 0.

Graphical estimates of pl(O r)ﬁfrom equation (30) indicate that the

bump in f(r)

zqan“produqe a non—monotonlc pl(Ohrg; It would be
interesting to repeat .the Ménte Carlo calculations allowing for the -

effect of atbractive interactions between the helium a,‘toms2h to see
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Figure 10.

Cff=Diagonal One~Particle Density Matrix via Impulse
Lpproximation. (The solid line is the matrix obtained

frem 1.2°K data; long-dashed line, obtained from L4.2°K;
short-~dashed line is the reszult of a Monte Carlo calcidation,

FRef. 3.)
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if non—monotonic béHaViOr—ofkp(ﬁgr)gfééﬁifé?

The mean kinetic energy: atom is readily obtained from .

the momentum distribution by calc 1 e mean-squared momentum.: -

oﬁﬁof 12°K/atom at a temperatufe

of 1.2°K ‘and 16°K/atom at M.QQK..'bthér eg%imates for this quantity,

obtained from Monte Carl esu;ts,fo??t%eigrou%g‘state3sl3 and from

g Final-State

b

In the previous m‘tiOQ,ffinal—state effects were lgnored in

st T
Yo

obtaining the single-particle momentum distribution and related

fega L I I VCR SR iy 0 T TSt S M v i JoE e .
quantities. :-Thiggsection contédins@hidiscussion  of the modification

of previous results brought about by including the final-state effects
embodied in the R function.
The starting point is an expression for the non-condensate

contribution to equation (5)

@ 1
2 ‘ : .
Syelksw) = ———;—-fo p dp npf dgR(k,v, @ - v,DB) (31)

s hwtp -1
which has been written in terms éfspolar coordinates with the change
of variable B =5cose, 8 the polar angle. To obtain a formula
analogous to equation (19), one takes the partial derivative of

equation (31) with respect to w holding k constant,




T2
s B & R(k, v, Q - v 23

o0

4ijpo dp ooy, R(k, v+ vkp) \

) [
The above equation can be written in a slightly more compact form by
replacing p by =p-in the second integral and artifically extending

: \
the definitien of np to negative values by the prescription n_

=n . |
p !
Bquation (32) becomes
” 2 28
Iw dp pn R{k, v, @ =" vp) = =brov, ﬁ)k (33) :

. 1
The analogous formula for constant scattering angle 0 is
, ' |
obtained by taking the partial derivative of equation (31) with respect

. /|
to w for constant 6, using equation (20) to interrelate k, w, and 6.

||
The result is

+ X

; A : [ [
o, [(2E nedky 1 . 2k TR |
e pvk’ [(-5;)-)9 k S&.{“ (Bm)e] - ['-l TV ( w)e ] (3)4') |

/|
=] s

. L ) ,
X ‘jp—medP 2 R(k, v 0 - v,p) + v (fr-“ df—wdp = npR(k,kakap) ;




where

22 =z 2 gk, V@ - vkp)

Vi Q- Vp-

TO»procééd‘with determini‘ng»n:p from the scattering data, one must
determine or assume a form for 9R/9k. If one wished, 3R/0k could be
caiculat%ﬁ}inféf%épne%;é%mil@éfio:théﬁﬁeé%nigﬁé§u§ed];gjth§ second
section of this chapter. The expectdtlon that the final-state effects

Wlll be small suggests that results of sufficient aceuracy could be

obtalned by Just assuming a convenlent form for R(k, v Q), rather than

1nvest1ng in a long, cumberscme evaluatlon of: aR/ak The author chose

to assume a GausSian form " for R(k, vkt)

~(v )%/
Rk, vkt) = e (35)

which when Fourier transformed yields

R(k, VKQ) = = e (36)

This form leads to a considerable &implification of equation (3k). From

the results.of Section II, it is obvious that a I' may be chosen to
yield the correct width and qualitatively the correct shape to mimic

the R(ﬁ, v, 5 - vkp) evaluated in that section. From Figure T it can




(36) 1nto equatlon (3&) ylelds

~CO
fl dppn R(k v, =V, D

where approximate equality =~ is indicated to emphasize! that this
equation ie based on the assumed Gaussiam form of E(K, v.'t).

The results of Section III may;ﬁ%% be reexamined using
equation (37). In that seetion,athemrigh&-hand side (RHS) of the above
equation was identified as equal to fng krefer to equation (21) and
Eiguref9) rather than the convolution of ? with pnp. From the general
shape of R, one would expect that the con%olution of R with pnp would
be broader with less well-defined features than pnp. This means, for
example that the actual 31ngle—part¢cle momentum distribution may
have a noticeably sharper peak in the vicinity of p 3[.7 K " than
indicated in Figure 9.

It is somewhat easier to make -a quantitative correetion‘fdr
final—stateieffects on the previous assessment of the off-diagonal

one-particle density matrix. The results for this density matrix,




S e

TS0
presented in Bection III Figure 10, were obtained from

5l(o;r) =-Q%5 Jf dQ sin Qr [RHS of equation (39)] (38)
, ’_l,-n- -0

In the impulse approximation, the RHS of eguation (37) is ng (refer to
equation (21)); and, in this. approximation, §, is quickly shown to be

equal to the -off-diagonal density matrix p(O r). In the present

approximation in which R(k, vkt) is as sumed to‘be a Gaussian, the

RHS of equation (37) is taken as

=]

c/:w dp on,, R(k, v, 8 - vkp),

and equation (39) becomes’

5,(0, v) = ¢ (0, r)R(k, v, & = r)

:Qterm :0f", equatlon (2 of Chapter T ey
- i vg- -.a &

;,:‘v ;. e [

Flgure 11 has been drawn assuming that the condensate fraction
n, is .11. If a significantly smaller value had been chosen for nO

(for example, nO = ,024, a value more consistent with the previous
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Figure 11.
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Of f-Diagonal One-Particle Density ¥atrix Corrected for
Final=-3tate Effects. (The solid line is the matrix
obtained from the 1.2°K data assuming a Gaussian R
function (see text); long-dashed line, obtained from
1.2°K data with no correction for final~stabe effecis.)




results), then the resulting pi(O;r) would have negative‘valﬁes for:

2 6 8. This would be incompatible with the assumption that the wave
function of the helium is everywhere non-negative, a zero temperature
assumption utilized in Section II to obtain R(k, vkt). Since pl(O;r)

was evaluated from data taken at a temperature of 1.2°K, the negative

':-{'"ri o

&

portions of the den51ty mlght be -8 real temperature effect, implying

51gn1f1cant dev1atlons of pl Frdm 1ts ground state ,Shape due to

JpopuI%tlpn‘of exc1ted sta@és:{-ﬁhgﬁher, probably more plau51ble,
;xﬁiﬁnation may be that i i egat;ve values were art1f1c1a11y
introduced by errcrs arisiﬁg‘"*{ﬁro‘fxig‘the finite aceuracy of the data and
the computatlonal procedure used 1n Lhe analy51s., For*example,
theoretical calculatlons 1nd1§ate thdt nP o« 1/p for small p. It 1is
unrealistic to expect an experiment of the tjpe being discussed to
detect this feature. Adding a term to nP which behaved like i/p

for small p would diminish the size of the negative values of the

density matrix.

T




CHAPTER V
CONCLUSIONS

Tt has been known for many years that the incoherent dynamic
structure factor for a system of non~interacting particles can be
written as a sum of delta-function contributions from eacl single-

particle momentum state E weighted by the fraction of particles n>

‘ >
with momentum p

ng §(w - k2/(2m) - ﬁ-g/m) (1)

o R2a]

where m is the mass of thé"non_interacting particles. The formalism

developed here and in Reference 21 shows that the effect of interactions
between the particles is to broaden the delta-function contribution:

from the state p into a contribution R(ﬁ, w - k2/(2m) - ﬁ-g/m) with

non-zero width. Since the evaluation of this function R appears to be

intractable for a realistic many-body system, an approximation to R

has been proposed which takes account of a certain class of final-

state interactions. The final-state interactions included in this

approximation formally resemble multiple single séattering,of'one of the
g ¥ 05 N .

I T ) ;
particles by its neighbors evaluatedrin an eikbg%l—likemapproximation.

i v s =
W .

The R fimction was¥evaludted using the-Lennard-Jones interaction

W

and a c?uQE“épﬁroximation tgﬁ%héiﬁwgﬁpartible densifyﬁmétrix with the

s




parameters chosen to resemble superfluid helium. The result was

compared with the assessment of the p = 0 contribution to,ﬁhe

dynamic striucture factor of superfluild helium obtained from. the neutron
scattering data of Mook, Scherm, and Wilkinsoen. The shape and width of
the theoreticélly obtained and measured p = 0 portion are mutually
supportive. In addition, both'exhibit'stfuctUre in their wings,
although the agréement is only -qualitative. The single detrimental
aspect is a significant difference in the location of the peak of

the two functions. No conclusion has been reached on #Hefcause“of

this disparity.. An auxiliary conclusion based on these results is

that the impulse approXimation equation (1) to the dynamic structure

¢ £$m1W£11QY#§;d ?easona%ié%results for k » 14 &1

factor of superfiluid hel
. o sy e Uit R -
with only éma;l;fin%l—state corrections. The -final-state corrections

the
+

ﬂfb thé'impulse approximatféne&newgmall for k = lh.3?gé%¥and!decrease

T S

slowly as k increases. ﬁpms implies that obtaining a significant

1

improvement in the accuracy>ofﬁéﬁe'impulse'approximation for the
analysiéaoféhéG£;0n gg;t gf£ﬁggdatgfgﬂ'iiquiﬁﬁhéiiuﬁ‘will?fequire the
measurement of the scattering at extremely large momentum transfer,
€. &, k 50 Xfl, This appears to bé beyond the present state of
the art,

The balahce of the expefimental dsata was analyzed to obtain
the~single—§article’momentum distribution, one-particle density matrix,
and the mean kinétic energy per hellum gtom. The results for the
single-particle momentum distribution indicate a preferential

occupation of the states with moméhtum p =0T R_l. This feature 1is
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i, ' E } ke B /; T l g ) ‘
an entirely;new results The preferential occupPation in np causes the
R . N £0 AYh } . . = f i .

ﬁf“éne—pfafi!!tyiiéle density n'lan:-r-i;;fj £o. have! damped oscilla%iong:fih Ats value

Ee ‘mean kinetic energy calculated from the

at large distances ~ 6 R.7°

data is in reasonable agreement Wwith previous estimates, indicating

foufith menerit of vHe'xi caleulated fromithe dat

that! th

acceptable value,
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APPENDIX A.

£

This appendix contains a derivation of the inelastic cross
section of neutrons from a target of identical, spinless particles.

Také the initial state of the total system, neutron plus

barget, to be

ik, R
3> =173RE [ $; > (A1)

where the neutron is in the box-normalized (volume L3) plane-wave state

173/2 oxp (iﬁgiﬁf’with energy €., and the target is in the initial
state l¢i> with energy Ei, After the scattering, the system will be
in the final state

3/2e f

f>=1" |¢f > (42)

the neutron having been scattered into the state with wave-vector +f’

and the target having undergone a transition to a state |¢f> with

energy Ef. From first~order, time—dependent perturbation theory, the

probability Wif of a transition from state i to a state f is

‘?f‘f’




D
W= %71 | <i|¥ > pole. + B.) (A3)

Here, pf(ef;+ Ef) is the density of final states, and ¥ is the
interé.ctiorgwhich causes the tramsition. The interaction between a
single tarééf particle and the neutron‘wiil have a very short range in
cgmparisoﬁ to the wave-length of a thermal neutron, since the inter-
action occurs between the neutron and the nueleus of the target‘li”
particle, It is, therefore, appropriate to represent the neutroﬁ-f

target interaction as.a sum of Fermi pseudo-potentials

v =‘2§4 T b z 83(;:‘{' - -,'.R’) v (‘A)-l-)
. N AT": . ,j P ‘

3y 4 T :
indi1edith hich is related

to the total cross section O for the scattering of & neutron from a
single target particle by

2

o, = br [v] (#5)

Inserting equation (A3) and (A4) into equation (A2) yields

P 82:




(46)
> pglep + By (46)

where the integration of the neutron coordinate R has been performed.

The density of final states which conserve energy is

. 3 Mk

= I‘!_ .’._f. i - - F ATY
pplep + Bp) = (31 pre a7 e, 8(e; + By - e, - Bp) (A7)

where dQ” is the differehtial solid angle.
Noting that the dlfferentlaJ Cross: sectlon is given by W: iF
rl
d1v1ded by the 1nc1dent neutron flux ‘and that the incident flux is the

rncldent=neutron veloclty'ﬁk./N}tlmes the neutron density l/L , one
3 ;M :

#:Finds from the above?gquaﬁions that R

.

- . o k.. . . e
A T : . (48)
1
iv.7, 2 E,
] s aple D lop | olos g - )
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wheréﬂf‘é Eufi ¥_“and MwA: N M Lo
. f . £
Most usually, the experlmentallsts does»not attempt to

1

determine the prec1se’1n1t1al and final state of the target system.

Instead he will measUre;the“total partial differential cross section

for all possible écétﬁeﬁingég;pce$se§, ‘Thisuisxbbtainéd from equation

gy YW, e Poen ¥

(48) by averaging over the initial. states and summing over the final

states

3 _ b Cf ‘
awrde, Wk K (89)
> >
ik-r Ei Ef
* P,z |z< e |¢>I o+ = - )

i e

where P, is the probability that the system is in state i initially.
Equation (A9) may be made to appear simpler by first

representing the delta fimction as.

© -iw + B./R - E/R)t
it e 7¥ £ (410)

and then using this to rewrite the squared matrix element as




4?85

iR 2 ' E, . E
| = <¢;le | ° 6. | 8(w - 1) (A11);

D
iE t /% —ikurj —iEit/M

T .
= )‘><<P,flet ‘e e |¢,i>
Noting that
Amp/h | am | -Am/E o -iE/
<¢f|e L= <¢f$ei Crand. ge e ’"|¢&>? e - |¢i>

where H is the Hamiltoenian opeﬁatbr for the target system; equation

(Al1l) may be represented in the form

1K, 2
| : <. le % el 6w+ B /4 - B /) (a12)
L e - iE.7, iHG/E -iK.T, -iBE/H
= 5?‘/_‘00_&1‘ e jzi s le |¢‘f><¢‘f|e' e Je ]¢-i>

When equation (Al2) is inserted| into equation (49), the sum over final
states can be performed trivialiy by using the completeness relation

z $:><9 f] = 1, with the result ‘
£n
|
|
|
|

e e




ag _ b E ‘f&
dn“de ¢ L kl g
. % it ?iﬁ.?l”iﬂt/yi'-"ii.?. —iHt /%
IP, = f dwe I <4, |e e e Je 6. >
. 12w . i i
t et Jsl

Using standard terminology, the density-density correlation function

is defined as"é(fgt)

T iHG/f -ik.7, ~ilt/h
e e Je |¢_> (ﬁlh)

s(k,t)

‘and its Fourier transform is called the dynamic structure factor

s(k,o)
IR A T L N -
S (I yw) =57 J_m at e:‘ .5:~“S(k5t) (A;B)
R (A16)

This equation appears in Chapter I equation (:8).
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Tible 2. The Function R(¥ t).

k=14.3 §7% S or =2k ]
vt (R) | B(v,t)
1.5 .0050633 + .0001860 + 1{ .010857 + .000052)
2.0 .0108057 + .0005052 + i{ .000102 + .000201)
3.0 L089k199 + .o0001218 + i -.066365 + .000105)
L.0 .2827610 + .00075k41 +i( -.132535 + .000368)
5.0 6124557 -+ .00033653 + 3( -.203699 +  .000632)
6.0 .998L127 -+ .0LOLYL + 1( -.275342 + .001368)
6.0 2.78945  + 025166 + i( 4417070 + .000286)
10.0 2.60558 + .038383 + i( -.555588 + .00158¢)

k=14.3 £ r =2.5 &
vi o (R) E(v,t)
1.5 ~0032151 + .000402 + i( .000816 + .000050}
2.0 .00560  + .,00031 + i( -.010169 + .000094)
3.0 204485 + i( -.079724 )
5,0 ..203638 + .000022 .. +i( -.160225 + .000352)
5.0 ko991 + “.f900239 ) ' +m‘i( -.2367 + .0021 ¢ )
6.0 -~ .886LC '_4_‘_ . 00kTY +i( -~32062. + .0028Y )
8.0 166917 + .00269 . + 1( ~.b55 + .01 )
10,0 = 247756 + .00506 +1( -.593 & 015 ¢ )

k=28.6 871 , r =2.5 8
vkt(fi) . . - E(v,t)
2.0 ° 0026167+ .000395 + i( =.005005 "+ . .000104)
3.0 .0152570: + i( -J04T793 )
.0 .1368068 + .0005317 + 1( -.123967 -+ .00018 )
5.0 .39161  + .0043Lg + i ~.197043 + .01108 )
6.0 :.728346 + .01L289 +4( -.266276 + .00543 )
8.0  1.h0k331 + .0071k1 + 1( -.409753 +  .0Lo1T )
10.0  2.08L995  + .116L26 o+ i( ~05h9866 +  Lo7shh )




Table 2.

(Continued).

(55}
\O

e o 5-1
o (3 k=h2.9 A
2.0 L0016898 0001263
3.0 L0053789 * 0005033
I.0 89091887 ¥ .ocok70l
5.0 3158323 1 ,0009093
6.0 6193929 T 0019012
g.0 1.2272486 F ,003LETh
0.0 1.836066 t oob1ikz
k=572 271
v, b (A
2.0 0019992t 0001375
3.0 .0080329 ¥ .00029%7 .
4.0 107579k L00CkL5T
5.0 - .3h(9725 t .0007225
6.0 ;~l.668§186 Y L 003h93%9
8.0 ' 1.31%32175 * .008038k
10.0 1.9600907 .011567éf

B{v.
+
+

+-

+ + o+

+

+ 1(~ 3580155

k

rp=2.5 A

i(- 002458k
i(~ .0250815
i(- .0951216
i(~ .1636986
i(- .2324h32
i{- ,368LhA0
i(- .50L009

"
&
i
©n
1

i(- .0032993
i(- .C3310k,
i(- 1064559
i(- 1753519
i(- 2355611

i(- .h4818%79

[ L s ks

+

1

o+ i

+

-

.0000333
0001325
.0000732

0009587

.001864L
.003102
00373

oY)

.0000169
.00001 k7
0003307
.0012142
.0062597
0172005
.0283641

et N el e e S A

St e’ et e’ S et NS




Table 3.

The Function R(k,v

,0) Evaluated at Constant k.

90

25,26

values of v?ﬁ(kﬂv‘ﬂ) are tabulated in A units; r = 2.5 &.)
. ¥

k

2 FV R(h v, 8) v, Rik,v, 0)
(2 el 3 gL k;rzwrl
21,20 - 02863 - 0315k - 02607 02425
~1,10 - 07119 ~ .079%2 - 07415 - LOT2TT
-1.,00 - .11718 - L13hik - 13168 - 13062
- .90 - J15hep - 18275 - .18660 - .18580
- .80 - .16123 - 20297 - 21750 - 21725
- .70 - 10482 - 16099 - 19027 - .19186
- ,65 - 03793 - 10206 - 13968 - 1323
- 60 L06511 - 00772 - L0557k - 06031
~ .55 21375 131324 L0757 06660
~ .50 41854 32596 26509 .24905
- .h5 69100 .58855 .52563 50071
~ L ho 1.0Lko6k .93279 87176 83745
- .35 1. 48356 1.37287 1. 3211q 1.27691
- W30 2.01995 1.32151 1.86958 1.93698
~ .25 2.65011 2.,5868% 2.50((8 2,552k
- .20 3.356895 3.36245 3.41340 3.30717
- .15 4,11156 L, 22702 5.84116 L,32077
- .10 4 .8L820 5.10521 5. ?9103 5.32818
- .05 5.48512 5.90197 6.14680 6.26055
.00 5.90669 6.47081 -6,73750 6.9291h
.05 6.09022 6.67366 6.90612 - 7.141hh
.10 5.93542 6.43878 6.5851k 6.80241
15 5.48198 5.80370 5,84116 5,98326
.20 L. 8030k L. 89968 I, 8ho52 1,88%37
.25 3.99853 3.88973 . 3, 76602 3,72152
.30 - 5,1650% 2.90935 2.75789 20,6535
.35 2. 3762k 2.04151 L. 88771 1.75520
o 1.677h2 1.%2129 1.18062 1.04378
45 1.08917 75192 651)5 ,50536
.50 L6145 31989 .22106 11395
.55 24606 L0052 - 0731k - .15825
€0 - 02661 = .213555 - 27552 - .3%661
.65 - 22027 ~ 235559 - 39582 - Jhotp
(e - 24826 - L3797 - h0885 - hg383
.80 - 237l - 7818 - 48799 - 4850k
.90 - L4306 11488 - Jh1h22 - 3060k
1.00 - .36k - 31867 - 30178 - 27600
1,20 - .2628L 20889 - 18468 - 15756
L.20 - 16405 - WL11022 - 08259 - 05830
1,30 - 0817k ~ 05232 - 0050k ~ .01k10
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Cond saLx

fvaotlon ttken L

contribution,

Q.

r!tbe Experimental

(CondenbatL

per 20 minute

(ol n R(k,m), the condensate

Bnergy o n Rik,w) n Rik,w)
(me?ﬁ r =2.5 rg=2.h P
o7 - .03000 - 02811
98 - 03811 - 03026
99 - 03842 - 02287
100 - 0222 .00175
101 L02107 Mol rard
102 .11091 15148
105 26896 . 31046
104 51656 54819
105 Qﬁfzg .8619L
106 1020720 1.19482
107 1. 47950 1.40950
108 1. 443ho 1.36137
109 1.12254 1.0613%8
110 6991k L7377
11 33076 L9611
112 ,09206 11727
113 - ,04519" .0k195
11k - 10503 - .07h09
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Table 5. MNon-Condensste Single-Particle Momentum DistributionQ7
Evaluated via the Impulse Approximation.
Momentum p n_ at 1.2°K Mementum p at L4.2°K
&L (27
.083397 L2783 58 .0831L43 .2Lo65L
..166786 .30638 .166279 262231
250171 .555758 2holzs .295230
. 333560 419877 . 332557 .341309
.416g959 .500%84 415711 . 398038
L. 50037k 584115 . hyB8slL 159139
.583811 .651208 .582081. .51%1k1
667277 675728 665309 . 5hhoks
750778 636154 74857k .535881
. 834321 .53180L .831883 481357
.917911 . 392675 915242 . 390269
931970 367372 029063 L3T1317
1.01989 .2LL65h 1.0160% ., 268552
1.10783 L7158 1.10303 .191325
1.19580 .135703 1.19007 L1h6hh3
1.28380 L.112884 1.27715 .122298
1.37185 .096017 1.36h29 106441
1.45995 .081594 1,45148 093380
1.54811 .068948 1.53%87h .081733
1.63633 .057800 - - 1.62607 07116k
1.72463 .0L8015 1.71349 .061550
1.81301 .039510 1.80100 .052846
1.81254 039555 1.81900 ".050980
1.90k469 .031938 1.91112 .0k2g55
1.99690 .025530 2,00%30 .035897
2.08918 .020208 2,09555 .029756
2,16155 .015841 2.,18788 .02kh70
2.27h00 .012302 2.28030 . 019965
2.36656 . .009L66 2, %7283 .016165
2.h5922 .007219 2, 46546 .012990
2.55200 .005h58 2.55822 .010362
2,6hh92 .004092 2.65110 .008206
2.73797 003042 2, 74h13 006453
2. 76016 .002801 o, 77486 .005981
2.860659 .002050 2, 87662 .00L582
2.96413 L001491 2,07846 .003493
3,06181 .001078 3. 08038 002651
%.15964 000775 3,182h1 .00200k4
3.25762 000554 3,28455 .001510
3.35577 00039k 338682 L001133
% L5h10 .000278 3, 4892k .000848
%, 55060 3,59180 . 000632




Table 6.

’ I e
s v T . . dD
One-Particle Density Metrix
Approximation.

Tviluated via Impulse

Xe!
Ty

r pl(O,r) aE 1.2°K pl(O,r) at . 2°%K
(%) (87) (27
: 0219970 .021687%2
gy L0200 721 L0197575
1.001 0167035 ,0145508 ‘
sy L012%6147 .00915143
i.ggl .00873689 .ooseugze
Py .00621908 -00290662
i°301 . 001459965 00156527
2 501 .00355008 .000721777
[ ool .002812129 000140819
;’Epl L002307357 -,000249961
= ool 001986381 -.oooh7u99§
5‘%21 .001825687 -.ogggS?ééé
o L001796807 -.00052%
é'?i? .001863837 -.000L2240k
o2 .001988661 - Q00287937
7-001 .002135939 - 000152550
27/0} .0022771k2 -.0000%93385
8.001 . 0023929738 .0000400297
g'ggi .002L735940 . 0000832362
T 00251775094 0000950127
9'5”1 ,002529422 .00008384T70
}8‘221 00251768208 . 0000599873
Y 0024925318 0000329291
}f'901 0024625590 . 00000889558
ii“ggi .0024349L0g -.000008171.88

i

e
- -0
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Table. 7. Experimental Duata
Energy S{k,u) at 1.79K S(k,w) at 4.2°K | Experimental
(meV) . (ewtron Counts . (Neutron Counts . - - Error
per 20-Min. run) per 20-Min.. run) - )+ Counts)
72.73 12,8 13,1 B
79.00 13.4 .« 1%.6 B
85.16 \ 14,7 .8
89.30 15.3 15.0 .8
g%, 43, 17.8 18.h .52
95.51 1.1 20.3 .52
G7.56 21.6 22.4 52
98,59 oL o2 .28
99.60 26,7 26,0 .28
100.62 28.8 27,3 .28
101.61 30,2 28.5 .28
102,72 318 29,7 .28
103,80 3%, L 30,k .28
104,88 34,0 .28
105,78 34,3 31.0 .28
106,81 34 .2 .28
107.94 33,8 20,5 .28
108.94 33.0 30.0 .28
109,90 31.8 29,3 .28
110.98 20.1 28.5 .28
112,03 28.9 27.3 .28
113,07 26.% 25,6 .28
114,08 23,8 ol 2 .52
116.16 20.1 21,0 .52
11.8.24 17.5 18.2 52
122,37 1%.8 15.7 .8
128,53 13,4 14,1 .8
134,76 12.9 13.3 .8
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APPENDIX C

In this Appendix, an outline of the derivation of the following

identity is given

(c1)

.2

= 0 is equatlon (ll) of Chapter III The validity of

}thms 1dent1ty will be shown by a direct | 1terat1ve method. More

=

sophisticated proofs of thls 1dent1by are p0831ble (for example by
/f""‘f\*
L f

dlfferentlatlng both 81des of (C1) with respect to. t and rearranglng)

-

. .
' Begln by. defining the left 91de of (Cl) ag;q(t-to):

(c2)

One wishes to show that U(t t=t ) can be rewrlften
l

equation (Cl). The time derivatiye of U 1

}
|
i
;
l
i
{

asﬁihe right side of

:;.i-ih-,—m., S—




du(?_'to.)
at

= i[H + Ujgvkt)‘]U(t-’Go)

The equivalent integral equation for U is

iH(t-t‘o) t  iH(t-t")

U(t-to) =e + i e Uj (vkt yu(t -to)dt

The iterated solution to eguation (ch) is

iH(t-to) £ iH(t-t*) iH(t - t‘o)
U(t-t‘o)' = e + i e Uj(vkt-")e at~

(03)

(Ch)

(c5)




AT

The factorization of exp [iH(t—té)] is possible in ali?higher orders, and
the terms in curly brackets (C6) produce the time-ordered operator

on the right side of (Cl):

. ;t 1H(t-t") -iH(t-t")at”
i, e Uj(vkt e

which completes the demonstration.

L

T
it
i
|
|
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APPENDIX D

In this appendix an expansion is developed for a time-ordered
operator which resembles the cumulant expansion of an exponential

operator. The expansion will be applied to S(K;t),

e .
. 1wkt <i -ik.(r; - rz)
Ns(k, t) = e I e ' (p1)
J.l
. + iH(t-t") -iH(t-t")
ip,. vt 1fte U, (vt%)e dv>
e J Te o J
which may be rewritten as
|
|
i
(D2)

The technigque will be to find . E(t), such that




99

t ‘
—E(t) j’ i T, at” ze (t7) % '
e =<<:e {;el to m ™ 92:>> (D3)

where 6., I 6 (t*), and 6, are arbitrary operators later to be
o >

chosen so that equation (D3) can D

2
e applied to equation (D2).

3 £y

:Takiﬁg‘thexi%gariéﬁm*é§g Mw_tibn?ipgs:yields

Sy
V‘Et
i fg at”zr e (t7)
S w8 (Dk)
ke i, N = e .

Introduce a parameter A and thpréféfbréhrﬁ(t)~and em(t;x), such that

t
S ’ - -
Lot - it dt em(t ) (D5)
-T =Te D5
r t -
1 Tt at7e (t7,1)
1~ A, =Te" (D6)

Note from equations (D5) and (D6) that the partial time derivative of

equation (D6) is
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t ' t
o' _r - “ VOI. rl “
i, at-e(t”) ilt dt em(t_,x)

A0_(t)Te =6 (t,\)Te  ° (D7)

From the sbove three equations, the fcollowing properties of eﬁ(t,l)

may be deduced:

<D
—

ct
“

é
~

1

o

“

D
g
~
o+
-
Ko
l
D
g
~
c[.
°

ot _
3T atce ()
0 m

= ?eﬁCt)Te

etc.

Defining

t B
: i Te ) att ze (t7mh) :> S
E_(,vt:,:.)\) = =In elTe i 62 ' I (D12 )
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”.5hé €aﬁ.§éé'%r6m eq E(t,1) and from equation

(D8) and (D12) that E(t,0) —'—Zn 6,8, - Assume E(t,2) is énaiﬁic

in A in the closed unit c1rcle.‘ E(t) may then be obtalned by expandlng

E(t;x) in a Taylor's series sbout A = 0, evaluated at A =

E(t) = B(t,0 V+ ——’“—BE(SE)} «
T : A=0 RPN

With the use of equations (D10) throughi(Dl2), the partial derivatives

" 1
of E(t,A) with respect to 1, evaluatedgat  A = 0, may be obtained.

A

This allows one to rewrite equation (D13) as

<elrm(~t) 0 >

" (D1k)
9,8

_E(t) Zn<6162 - ;m
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where the first three terms of the Taylor's.series, equation (DL3),

are .shown explicitly. The final result is

+ ...] (D15)

b= -k <é‘913m(%°)5’2>/<9192>

£ t II'J:L 1 m 2 DT
W, = ) <9 f P dt I; dt — ——— 05 * ¥ 849

P+

<91 irm(}t)92>‘,’,,~.,/<9192> (D16)

Identifying the Sj operators to apply.these results to (D2) yﬁeldé the

\apter TIT.

value for w, quoted in “equation (18).6%
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APPENDIX E

This appendix contains a demonstration that the function

(v W) = ‘}Pdr 36 (|7|- r0)®(|? + ykt| - 1) (E1)
v, t
i T GlvE Y - vE + Tt)]
Vk 0
l--¢

which is defined in Chapter IV equation (16), is dominated by a term

linear in vkt for sufficiently large values of vkt. This result will

be obtained by assuming that maximum range Rm beyond which the potential

is essentially zero, i. e.,

V(r) *0for rz2 Rmt‘fﬁx} (E2)

Examlnlng equatlon (£1), note that the phase factor 1n the a

imaginary- exponentlal is obtained by 1ntegrat1ng the potentlal along the

line segmeﬁt,which connects the "ihitlal" p051t10n T to the flnal

position ; + ;ﬂt. If the 1n1tlal p051t10n r 1s such that the potentlal

S

is zero along thi% whole 11ne segment then the phase factor'vanlshes
and this particular "configuration" makes no contribution to the value of

E(vkt). Only those configurations for which part or all of the associated
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line segment passes within a distance Rm of the origin will contribute
to E(vkt), One may decompose the configurations which do contribute
into the three disjoint classes illustrated in Figure 12.

Consider E_ and ESP; the "startgmang "stop" contributions to

E(vkt), respectively. The eva;uati§hfpf e?ch of these two requires

the integration of“albgundéd function ové;”a fiﬁitenyqiume; therefore,

both E__ and E__ are bounded. A bYound “is
sr- . Usp s

|Reel Part B_|, [Real Par‘tESP P gﬂpRm3 /3 (E3)

K

ERH ; i
woam o s
w3 : AR

| Imaginary Part Esrl’ | Imaginary Part Espl $ 2ﬂpRm3/3 (EM)

Now considering the "through" contributions, rewrite this part

in cylindrical coordinates (b,z,8)

E, (v t) = 2nf[0 b dbfw azo(|7| - ry)o(|¥ + v t]-r,)  (B5)

th

< ‘l’_k »IO“ ay[V(v,zy) - V(b, z + v )]
1l --c¢e

where the integration is restricted to a volume VT corresponding to

through scattering (it is assumed that the potential is cylindrically

symmetric about the z-direction). The theta functions are identically
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START

sr

'2 . o i.' S

i

' Figure 12.  Contributisns to E(vt). (Drawn for vt > 2R
’ (see test): Circles of radius R 5. indicating.
- maximum range of V(r).) -
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where z. = (
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wmity for throughlgé@t€é§ihg and so may-be dropped. The7ﬁbpér , v

limit onéﬁﬁgidb—integration may be = ced by R, , since theﬁﬁo%gntial

is zero outside that distance‘(refer biéqﬁgiion (E2)). By stﬁdying

Figure 12, one may determlne the approprlate llmlts on the dz=-inte-

) gratlon for the through contrlbutlon.ﬁ For v;t“> 2R the resultvls

k

= 27p (E6)

dy [V(v,z+y) - -v(b,z+vk:t)]

[

b )l/2 and z . = zh - v, b This equation may be - jﬁtf

simplified by notlng that V(7 + v t) is zero and that the limits onA}-
the dy—integration may be extended to *+ =, since for through scattering
the parts of the line segment ; + ; for y > v, t and for y < 0 pass
through regioné where the potential is zero. Applying these obser-

vations and making the change of variables z" = z % y yields

E (v t) = 27p (ET)

o«

i o7 .
= I &Z'V(b,z')

+
R b4 , k- —o
Xfm'bd“bf az|1-e
0 -z
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Performing the dz-integration produces

Et(vkt) = 2%p (E8)
i 7 azv(b,z")
Ry Ve 7% 5 - 1/2
X bdb |1 - e JLvt -2(R" - 17)
g k m
-0
The total E(vgt) is now given by
R iy dz V(b,z) |
m Vk‘ - .
E(v,it) = v, t 2ﬂpc]~ bdb | 1 - e (E9)
k k 0
° L g i)
- 2mp f bab * {2(r 25%) P (1me !
0
+ B + B

As observed previoﬁgly;;Esr and ESP are bounded (réfervtofequationﬂQEBY
and (BY4). “Ih_iddition, the second term-in equation (E9)>is bounded.
Therefore, the above equation may be writtén as

n (/v ) T2, dz v(bsz): .

E(vt) = vt 2np  bab. ‘l-e £C - Ci(E0)

where C is bounded for all values of vkt. Converting the polar

integration bdb into an integration over the cartesian coordinates dxdy
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{after having extended the limit on the bdb integration from R to

" +®), equation (EI0) becomes

®

0 () i .'-dZV"(.X,y-‘ ,’Z)‘:
. ’ i k ==
E(vk»“t) = vk'tpf mfm dxdy [1 - e

|-

The integral shown explicitly in equation (Ell) is simply related to
the forward scattering amplitude fe(k;k) evaluated in the eikonal

29

approximation

My

odg V(Xsy;?)f

-y _ ik o
fe(k,'k) H')_F -

O3

-

yields o

E(vkt) = (vﬁtjﬁkﬁl i;f:(k,k,)i+ ¢ ’ (E13)

29

Application of the optical theorem™ to (E13) produces the desired

result,

PO Ty
B(vt) = (vt) (5 + 1 42 Re £ (k) + C (B1})
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where o_ is the helium-helium total cross section and Re fe(k;k;)

is the real part of the forwardnscattering amplitude, both‘evalﬁated

in the eikonaliépproximation. Recalling that C is bounded and
recognizing that it would be rather.unusual,for'oT and Re fe(k;k)

to both be identically zetro, equation (HIY) shows that for sufficiently
large vkt fhe function E(vkt) will have its value determined by a linear

function of vkt, as stated in Chapter IV,

£ & &
? k) e
. } W
,
B
1.
P
w R 5 = :
hed LR = =
7 :
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. : APPENDIX F

This appendix gives a non-rigerous derivation of the function

:ﬁﬁQJ “(refer to Chapter IV, equation (28), which approximetely — .

représénts the deconvoluted form Of?Au?XPA{JF(@J

i

equation (22) “of Chapter IV, a part of the empirical fit to the
scattering data. P(w) is obtained by tsking the first five terms ‘of

the following series

e (Ll - A/ (R

. © SyEin d2TF(w)
) = M (R L Flw). (F2)
.nl i 2n
Yyel n=0 dw
is a solution to
Y~
= = W)
: “1/2 7 . r |
) = 7 [ artae (F3)
-0
for sufficiently well-behaved functions F(w). To demonstrate that ‘L
equation (F2) is a solution to equation (P3) consider the function ?«
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R (0 - ) = [ + T et oo = w)?/IT(L +4)1F  (Fh)

Expand RY in a Taylor's series about y = 0.'

i3

S [

s 4) 2extpin(a —s)3/I0(1 + 7)1} (%6)
T 32 , _-:_l—‘ o, oy
= () = (@ + )" 2 exp {-(w-w")/[T(1 + y)]}

IN

By an obvious inductive argument

o™ -5 . 2
“— (1 +y) Zexp {-(w-w)/Ir(1 + )11
oY
W - %' : 2 ST
= () o (1 + ) exp {~(0-w')"/[T(1 + ¥) 1}
P 3]
Therefore




&

As is well known, RY forms a delta sequence as y approaches -1; there-

fore

1 2n

. n
§(w=u!) = Lime,ry=2 3 %T-(Iﬁo 2 5o eXD [= (0" )2/T] (F9)
’ Y1 : dw

Treating F(w') as a known function, write

Flw') = dw §(w-w?) Flw) (F10)

-—C0

Representing the delta function by the delta sequence given in

equation (F9) yields

Flor) = M8 () Efm aw Flw) (F11)
Y1 o
en 2
n 3 expf=fws w')7/r]
*.2 %ﬁ'(%z) ™

ﬁﬁgéuming that F(w) is sufficiently well-béhaved to allow term-by-term

‘integration, integrate by parts to obtain
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. V2 ]
Flo') = " (qT) (712)
y~1
1 oar 2 . . _.QhF( )
* 1oy ) f_m aw {exp [-(u-w') /”}'d';;)gn“

where it is assumed that the boundary terms vanish, i. e.,

2
-

Lim T _qmFrElm) 0

|w|+w dw

for all integers m. Agafn assuming that limit and summation may be

interchanged with the integration operation

P(u') = (a0)H2 : (713)
cae o7 Lim o n 2n. ‘
o 7 . 'y F (- zx ' 2 ‘
‘2 J:m dw { ‘Y‘*-l‘+ z %l—,-(l)l:;) 4 Fw) dzég) } exp [=(w=w')/T]

which demonstrates that the expression in curly brackets,

. 2
fo) = MR 4 p Lol SE) (FLY)
yor=1 dw

is a solution to
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Flo') = (nr)"1/2 f o £(w) exp [~(u-u”)2/T]  (F15)

The above derivation of the form of the deconvoluted funetion flw)

from the experimental data, F(w), is clearly not rigorous, since it

has not been demonstrated that F(w) behavesismoothly enough to validate’fg

the interchange of orders of integration, summation, and limit. It is
a simple matter to demonstrate that there exist pairs of functions
F(w') and f(w) which 31multaneoule satlsfyﬁequatlon {F1L) ana (F15).

Rather than try to flnd the’suffjc}ent condltlons onF(w") and attempt

11‘

a rigorous proof the author chose to verlfy dlrectly that the i
deconvolutlon*method dlscussed above sulted the use for which 1t was
de31gned (refer to the discussion fol;owlng'equatlon (22) in Chapter

IV) - in particular, that

. o,k
n .2n =(w=-£_)"/A
e 2 6 - (F16)

is an approximate solution (note that the series is terminated after

five terms) to

-1/2 o« -(m-e)2/P
I3Cm) 2 (qT) d[~ de e P(e) {ra7)

Q-
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S = m-A-B')l‘/AtSlL
@%ﬁné; 133=7A£e - _ 8 aﬁg* T

wi&erivative of equation (F1T). T""__:;?The adequacy'of'thls approx1mate

solutlon is illustrated graphlcally in Flgure 13 Plotte@ 1n@ﬁhe;

f%gure as a solid line is the fifst derivative with respect to enérgy

-

loss w of the term 13. The" correspondlng derlvatlve of the. "
I b

nvolutlon of thls te:
llne 1n the flgure.
P@w), is tested by ¢

Gaussian resolution

dﬁ(w)/dw 50 convolutﬂ',

gﬁaphically indistinguishable fi:

|m‘f_A5| 2 10.25 meV.




=
(o)

L.
¥

COUNTS per meV

TR T SR WEUUNN WU N |

Figure 13.

s 7 & g 10 12 13
ENERGY, {rmeV)

Energy Resolution Correction. (The solid line is the
w~derivative of Alexpw[(w~A5)/A6] ; short-dashed line,
w-derivetive of Plw) equation (F16); long-dashed line,
resoiubion broadened w-derivative of P(w) where
distinguishable from solid line.)
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Potential V(r)+=: he[(a&r)‘Z;(G/r)G] where o and e are constants.

The claim that‘R(k +) approacheS*unltygfor all times for sufficiently

large k may not "be valid for this potentlal because of the singular—
ity of the potentlal at r = 0. If desired, one. could-avoid this
problem by choosing a bounded: potential to represent the hellumr
helium interaction. In the author S oplnlon, one is relieved. of
the necessity of resolv1ng this point by the observation that the
potential V(r) becomes physically meanlngless for sufficiently

small r. For practical purposes one only needs to be convinced
that for sufficiently large k, R(k,t) will remain close to unity

for la.rge tg;me interval about™t = 0. The Fourier transform

R(k, v.Q - vy .p) will then have a narrow width. When the width of

X
R(k, vkﬂ - vk.p) becomes narrow. compared to the width of np,
R(k, ﬁkﬂ - 3%55) may be replaced by a delta.function to some

reasonable ‘approximation (assuming R is not pathological).
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(authors: L. J. Rodriguez, H. A. Gersch, and H. A. Moock).

Numerical values tabulated in Appendix B.
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_ . : - : : 3.
The helium number density has been taken.to be -.022" gtoms per Kaf

The values of R(k, v,R) were obtained by Fourier transforming an
approximation to R(k t) = expl-E(v. 4)].:.The approximation used
for R(k,t) was obtained by linesr 1nterpolat10n of E(v,t) between
the tabulated valies (refer to: Table 2) and a linear extrapolatlon
of E(v 1) beyond ‘the largest tabulated value of b

The condensate” fractlon was taken!tobe;: 11 at 1.99K% [ This was
done to fa0111tate comparison Wit ults of a Monte Carlo
calculatlon Reference 3. The éo ‘fraction was taken 'as
identically zero at a helium temperat f L.2%K.

; o the dynamic structure
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rox1mate1y 2.1 meV.n The
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