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In the THM modeling of multiphase medium, the coupling effects of skeleton, 
suction, and temperature have been integrated via the concept of state surfaces of void 
ratio and degree of saturation. Based on proposed formulation, a fully coupled 
numerical model for the behavior of soil deformation, water flow, air flow, heat flow 
in unsaturated soil has been developed and integrated in a finite element code θ-Stock 
by the first author. This program is conceived with this idea that it will be able to 
analyze the response of a soil in different states of humidity to mechanical, thermal 
loading, and also damage phenomena. Damage model is dedicated to unsaturated 
brittle rocks. It mixes phenomenological and micromechanical concepts and is 
formulated based on the use of independent state variables. The expression of the 
liquid permeability is modified in order to represent the influence of fracturing on 
interstitial fluid flows. The final matrix form of established field equations of the 
proposed model for unsaturated case 



April 5, 2011 13:52 WSPC/245-JMM S1756973710000266

24 B. Gatmiri et al.

has been encoded for this particular purpose, in a finite element program which had
been developed for dry and saturated soils previously.

Keywords: Multiphase porous media; finite elements method; damage; thermo-
hydromechanics; root water uptake; pollutant transport; soil–atmosphere interaction.

1. Introduction

In compacted fills or in arid climate areas where soils are submitted to wetting–

drying cycles, fine-grained soils are not saturated with water, and contain some air.

Due to capillary effects and soil–clay adsorption, the pore water is no more positive

and is subjected to suction. It has been shown that a multiphysical approach should

be used in different scales from nano to macro in order to model the behavior

of soil skeleton in clayey soil or clay rocks. The problem becomes more difficult

when considering the coupling effects in multiscale and multiphase modeling. In

unsaturated soils, various researchers demonstrated that the effective stress concept

was not satisfactory to describe the volume change behavior of unsaturated soil.

The main problem is observed when an unswelling unsaturated soil is loaded and

soaked. The soil shows a volume decrease (collapse), whereas effective stress analyses

predict a swelling.

A fully thermohydromechanical (THM) coupled model for saturated soils has

been implemented in the finite element software θ-Stock by the first author. The

formulation of effective stresses is based on an extension of the Biot’s theory. The

elastoplastic Cam–Clay model has been modified to include suction and temper-

ature effects, by introducing state surfaces for the void ratio and the saturation

degree.1–4

Various constitutive laws have been used in THM model, such as the incremental

elastic formulation suggested by Coleman and Fredlund. Matyas and Radhakrishna

proposed a state surface concept in order to describe the changes of volume and

degree of saturation as a function of mean net stress and suction. Lloret and Alonso

and Gatmiri and Delage proposed mathematical expressions for these surfaces, in

the framework of nonlinear elastic behavior. The elastic and nonlinear stress strain

behavior was based on a Kondner–Duncan hyperbolic model.

The θ-Stock code described in this paper is derived from this approach, with

some modifications. The numerical resolution is fully coupled and a different expres-

sion of the state surface is adopted in order to ensure compatibility between the

state surface and the hyperbolic stress–strain model. Relevant equations, numerical

algorithms, and two graphic tools for pre- and post-processing for the finite element

models are described. Their main options are summarized as well.

Also, the θ-Stock code deals with the modeling of the behavior of the massif

neighboring a nuclear waste repository before waste disposal. Risks of radionuclide

percolation have to be assessed in order to ensure the safety of nuclear waste repos-

itories. It is thus necessary to characterize the EDZ (excavation damaged zone)

surrounding storage galleries.5–8
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During the excavation phase, the soil can be damaged by tensile fractures. Pore

water is drained toward the drift. Drainage may be accelerated by the growth

of permeability induced by the existence of a connected crack network. Once the

support has been built, water remains trapped behind concrete. Around the gallery,

the soil is generally almost saturated. Suction in the soil mass tends to reverse the

orientation of the water flow. The back pressure exerted by the support induces

compressive stresses which tend to close the fractures. The presence of water can

trigger the precipitation of minerals contained in the host plastic clay, generating

a chemical healing. When waste is disposed in the tunnel, heat solicitations induce

an increase of suction, and the resulting tensile stresses may fracture again the

geological barrier. As the temperature decreases, drying effects weaken, leading to

a possible resaturation. The suction increase is equivalent to a compressive loading,

since it diminishes tensile stresses. A second mechanical healing process may be

considered.

Physically, the damage concept must represent the degradation of elastic prop-

erties and the increase of permeability due to the growth of connected porosity.

Mathematically, the formulation has to be compatible with the existing develop-

ments implemented in θ-Stock.

In this paper, a two-dimensional model for soil–atmosphere interaction devel-

oped by considering the mass and energy balance equations is presented. This model

is integrated in θ-Stock. The exchange of moisture and heat between a multiphase

soil and an atmosphere layer is simulated. Considering the latent and sensible heat

transport equations and consequently the moisture exchange (evaporation and con-

densation), equations are developed by taking into account climatic measured fac-

tors such as wind, temperature, precipitation, humidity, and radiation. The model

of boundary conditions is coupled with a system of equations incorporating THM

behavior for multiphase medium integrated in θ-Stock.

On the other hand a set of equations was presented to calculate the rate of root

water uptake in each point of unsaturated soil. Geotechnical engineers usually do

not pay attention to the change of moisture content and groundwater level of the

projects and assume that the soil condition will always remain unchanged after the

time of study. Indeed, soil–atmosphere interaction can severely change the moisture

content of the soil. For instance, heavy rainfall, evapotranspiration, and change in

groundwater table can have significant effects on the moisture condition in the

soil. Among the above-mentioned parameters, transpiration from vegetation’s leaf

surface is of most significance. This model has been integrated in finite element

code of θ-Stock in order to carry out a fully coupled simulation of the effect of

vegetation water uptake in unsaturated porous media.

After a brief description of thermohydromechanical behavior of unsaturated

media, the extension of THM models to thermohydrochemomechanical (THCM)

models is discussed for the general conditions. Pollutant transport in soil has

become a major issue of concern in recent years. The problems in the environmen-

tal geomechanics often involve the study of heat, mass, and contaminant transport
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in a number of engineering situations. Increased awareness of the damage caused

by industrial activities, coupled with the need of development of a sustainable

industrial society have highlighted the importance of this subject. The pollutant

transport normally takes place in the unsaturated soil and in the presence of heat

changes due to climate changes or radionuclear waste disposal. This paper gives

the governing equations of the thermohydrochemomechanical behavior in order to

evaluate the change of chemical concentration in a multiphase medium.

Theoretical and numerical developments for this complex formulation are

presented and the integration of it in θ-Stock software is described.

2. Unsaturated Porous Media Under Heating

The model presented in this paper is a model in which two basic theories have been

modified and combined in order to describe a fully coupled behavior of unsaturated

porous medium under heating. On one hand the nonlinear theory of isothermal

behavior of unsaturated soil under coupled effects of net stress and suction via the

concept of state surface of void ratio and degree of saturation based on previous

works of the first author2,9,10 is modified and extended to nonisothermal behavior.

On the other hand the Philip and de Vries’ theory of heat and moisture transfer is

modified in order to consider the deformation of skeleton and to be presented in a

new form, suction-based formulation, which is more suitable for combination with

deformation theory of unsaturated soils. The basic assumptions considered in this

development are the following:

• The medium consists of superposition of three continuous media.

• The poroelastic medium constituting the skeleton is isotropic and nonlinear.

• Quasi-static conditions and small transformation are considered.

• Fluids and solid grains are compressible.

• Energy transfer by all phases, and phase changes between liquid and gas are

considered.

• Generalized Darcy’s law is valid for motion of water and dry air.

• Fourier’s law is considered for conductive heat flow.

• Solid and pore water densities are pressure- and temperature-dependent.

• Air and water permeabilities depend on matrix suction, strain level, and

temperature.

• Void ratio and degree of saturation state surfaces are temperature-dependent.

• Thermal expansion coefficient of mixture depends on suction, stress, and

temperature.

• Dissolving of air in water is considered.

• Vapor pressure and thermal gradient are considered.

• The state variables are the net total stress σ − Pa, matrix suction Pa − Pw, and

temperature T which leads, in numerical formulation, to five degrees of freedom.

• Creep phenomenon is neglected.
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2.1. Theoretical formulation

2.1.1. Moisture phase movement equation

The moisture has been consisted of vapor and liquid. The term liquid transfer will

be used for the transfer which occurs exclusively in liquid phase, and all transfer

in excess of the liquid transfer is named vapor transfer as they are used by Philip

and de Vries.11

2.1.1.1. Vapor transfer

The equation of vapor diffusion in porous media according to Krischer and Rohnal-

ter12 and Philip and de Vries11 can be given as follows:

qvap = −D0 · ν · α · a · ∇ρv (1)

in which qvap is the vector of vapor flux density, kg ·m/m2s; D0 is the molecular

diffusivity of water vapor in air, m2s; ν is themass flow factor introduced to allow for

the mass flow of vapor arising from the difference in boundary conditions governing

the air and vapor components of the diffusion system; it is given by the expression:

ν = Pg/(Pg − Pv) where Pv is partial pressure of vapor. Also, α is a tortuosity

factor; a is volumetric air content which can be expressed by a = n(1 − Sr) with

n the porosity and Sr degree of water saturation; ρv is the density of water vapor,

kg ·m/m3.

Krischer and Rohnalter12 have given an expression for evaluation of D0:

D0 =
244× 10−7

Pg

(
T

273

)2.3
, (2)

with Pg in bars, and this equation givesD0 in m/s. The dependence of the coefficient

of diffusion of vapor on the porosity of a soil is investigated experimentally by

Penman.13

For a limited range of values of n(0.0 < n < 0.7) he has proposed to reduce this

coefficient by a factor of 0.66n. The tortuosity effect is incorporated in this factor.

To find ρv, the following thermodynamic relationships can be introduced:

ρv = ρ0 · h , (3)

h = exp

[
ψ · g
R · T

]
, (4)

where ρ0 is the density of saturated water vapor, kgm/m3; h is relative humidity; R

is the gas constant (R = 4.615× 106); and ψ is thermodynamic potential of water

in soil.

Another relationship for relative humidity is proposed by Geraminegad and

Saxena14:

h =

[
1 +

(
θ

0.04ρ0

)−4.27
]−0.42

. (5)
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Based on Philip and de Vries,11 in further development, it is supposed that ∂h/∂T =

0, and for density of saturated vapor ρ0, the following relationship which is given

by Geraminegad and Saxena14 is used:

1

ρ0
= 194.4 exp(−0.06374T + 0.1634× 10−3T 2) . (6)

The final θ-based formulation of vapor velocity equation can be given as follows:

V =
qvap
ρw

= −DTv∇T −Dθv∇θ , (7)

whereDTv is thermal vapor diffusivity andDθv is isothermal vapor diffusivity which

are given as follows:

DTv =
D0

ρw
· ν · n · h (∇T )a∇T · dρ0

dT
θ < n , (8)

Dθv =
D0

ρw
· ν · n · ρ0hg

RT

∂ψ

∂θ
θ < n (9)

in which

(∇T )a
∇T =

1

3

[
2

1 +BG
+

1

1 +B(1− 2G)

]
, (10)

B =
λa+ λv

λw
− 1 , (11)

G =





0.3333− 0.325
n− θ

n
0.09 < θ < n ,

0.0033 + 11.11 θ

(
0.33− 0.325

n− 0.09

n

)
0 < θ < 0.09 ,

(12)

λa = 0.0258w/mK ,

λv = D0 · ν · h · hfg ·
dρ0
dT

, (13)

λw = 0.6w/mK ,

where hfg is latent heat of vaporization of soil water,

λv is vapor thermal conductivity,

λa is air thermal conductivity,

λw is water thermal conductivity.

This form will be converted to suction-based formulation.

2.1.1.2. Liquid phase transfer

A generalized Darcy’s law for unsaturated soil can be considered as follows:

U =
qw
ρw

= −K∇(ψ + z) , (14)

U is liquid velocity, qw is vector of fluid flow, ρw is density of fluid,K is permeability,

ψ is capillary potential, and z is elevation (gravitational potential).



April 5, 2011 13:52 WSPC/245-JMM S1756973710000266

Environmental Impact Assessment with θ-Stock Finite Element Program 29

The final θ-based form of fluid motion in unsaturated porous media:

U =
qw
ρw

= −DTw∇T −Dθw∇θ −Dw∇Z , (15)

where DTw is thermal liquid diffusivity,

DTw = K(θ, T )
ψr(θ)

σr

dσ(T )

dT
, (16)

DθW is isothermal liquid diffusivity,

Dθw = K(θ, T )
σ(T )

σr

dψr

dθ
, (17)

DW is gravitational diffusivity,

Dw = K(θ, T ) . (18)

2.1.1.3. Total moisture transfer

The total moisture movement in unsaturated soil due to temperature gradient and

its resulting moisture content gradient is equal to the sum of the flows which take

place in phases, vapor and liquid. Thus,

q

ρw
= −DT∇T −Dθ∇θ −Dw∇Z , (19)

where DT is thermal moisture diffusivity and is equal to DTv +DTw, Dθ is isother-

mal moisture diffusivity, and is equal to Dθv +Dθw.

2.1.2. Moisture mass conservation

A suction-based formulation of moisture movement equation can be found:

nSrβT
∂T

∂t
+ nSrβP

∂pw
∂t

+ (ρw − ρv)n
∂Sr

∂t

+(Srρw + ρv(1− Sr))
∂n

∂t
+ n (1− Sr)

∂ρv
∂t

= div(ρwDw∇z) + div(ρwDθ∇T ) + div(ρwDp∇(Pw − Pg)) +Qm (20)

with

DPw = K(θ, T )
σ(T )

σr · γw
, (21)

DPv =
D0

ρw
ν · n ρvg

RT · γw
· σ(T )
σr

, (22)

DP = DPw +DPv, (23)

DP = K(θ, T )
σ(T )

σr · γw
+
D0

ρw
ν · n ρvg

RT · γw
· σ(T )
σr

, (24)



April 5, 2011 13:52 WSPC/245-JMM S1756973710000266

30 B. Gatmiri et al.

in which surface energy can be written as

σ(T ) = −75.882 + 0.165T , (25)

where T is temperature in degree Celsius and σ is surface energy in dyne/cm2.

2.1.3. Gas flow equation

Considering the Darcy’s law and Pg as a function of temperature (Pg = Pg(T )),

the gas flow equation can be given as

Vg =
−Kg

γg

∂Pg

∂T
∇T −Kg

(
∇
(
Pg

γg

)
+∇Z

)
, (26)

where Vg is vector of gas velocity, qg is vector of gas flow, ρg is density of gas, Kg

is air permeability, Pg is gas pressure, γg is specific weight of gas, ∇Z is elevation,

and

Kg =
bγg
µg

[e(1− Sr)]
c , (27)

where b and c are the constants. In Eq. (27), gas permeability is assumed to be a

function of water content and it does not depend on temperature.

2.1.4. Mass conservation of air

The governing differential equation of mass conservation of air in a control volume

of an unsaturated porous media can be given as

∂

∂t
[nρg(1− Sr +HSr)] = −div(ρgVg)− div(ρgHU) + ρw div V , (28)

where H is Henry constant which is equal to 0.02.

The first term of the right-hand side is related to gas flow due to gas pressure

gradient and the second term denotes the motion of dissolved gas in the liquid while

the gas loss by vapor condensation is presented by the third term.

2.1.5. Heat flow

Total flow of latent and sensible heat in an unsaturated porous medium is given

based on Philip and de Vries theory as

Q = −λ grad T + [CTwρwU + CTvρwV + CTgρgVg] (T − T0)

+ ρwhfgV + ρvVghfg , (29)

where λ accounts for Fourier heat diffusion coefficient and can be evaluated by

following proposition:

λ = (1 − n)λs + θλw + (n− θ)λv . (30)

Through this equation which gives the upper limit of heat conductivity in unsat-

urated porous media, the continuity between saturated and unsaturated case is
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ensured. In this equation, ρs is density of solid grain, ρw is density of liquid, ρv is

density of vapor, ρg is density of gas, CTs is specific heat capacity of solid, CTw

is specific heat capacity of liquid, CTv is specific heat capacity of vapor, CTg is

specific heat capacity of gas, T0 is an arbitrary reference temperature, and hfg is

latent heat of vaporization.

In Eq. (29), the first term denotes the conductive heat flow, the second term is

related to the convective heat flow in liquid, vapor, and gas, and the two last terms

denote the latent heat related to evaporation.

2.1.6. Energy conservation equation

Energy conservation equation in a porous medium can be expressed by

∂ϕ

∂t
+ divQ = 0 , (31)

in which Q is heat flow and ϕ is the volumetric bulk heat content of medium which

can be defined by

ϕ = CT (T − T0) + (n− θ)ρvhfg , (32)

where CT is the specific heat capacity of unsaturated mixture and can be

written as

CT = (1− n)ρsCTs + θρwCTw + (n− θ)ρvCtv + (n− θ)ρgCTg . (33)

2.1.7. Solid skeleton

Strain increment due to total net stress changes in unsaturated soil is generally

presented by an expression such as

dε = D−1d(σ −mPg) , (34)

where D is an elastic stress–strain relationship matrix.

By combining the strain increments due to suction changes d(Pg − Pw) and

temperature increment dT , the constitutive law of solid skeleton in unsaturated

porous medium can be presented by

d(σij − δijpg) = Ddε− Fd(pg − pw)− CdT , (35)

where

F = DD−1
s with D−1

s = βsm, in which

βs =
1

1 + e

∂e

∂(pg − pw)
and mT = [1 1 0] ,

C = DD−1
T with D−1

T = βtm, in which (36)

βt =
1

1 + e

∂e

∂T
.
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Assuming nonlinear elastic behavior, using Kondner–Duncan (hyperbolic) model

isothermal tangent elastic modulus with a hyperbolic variation can be given:

For loading:

EL = KLPatm

(
σ3
Patm

)n

(1−RfSr)
2 . (37)

For unloading:

Eu = KuPatm

(
σ3
Patm

)n

, (38)

with Sr = (σ1 − σ3)/(σ1 − σ3)ult stress ratio, σ1 and σ3 principal stresses, Patm is

atmosphere pressure, KL and Ku are modulus numbers (dimensionless), n and Rf

are constants.

Considering the effect of the heating, the above equations become

Loading:

E = (Ei + Et) (1−RfSr)
2 . (39)

Unloading:

E = Ei + Et , (40)

with

EL = KLPatm

(
σ3
Patm

)n

, (41)

Et = m1 · T . (42)

To calculate the bulk modulus, the volumetric strain can be taken into account via

void ratio state surface which depends on stress, suction, and temperature. Using

the same approach for determination of state surface of void ratio which is used by

Gatmiri,1,3 and Gatmiri and Delage,36 a new formulation of void ratio state surface

is proposed as follows:

e =
1 + e0

exp

[
A

Kb(1−m)

]
exp[ce(T − T0)]

− 1 ,

A =

[
a

(
σ − pg
patm

)
+ b

(
1− σ − pg

σc

)(
pg − pw
patm

)]1−m

,

(43)

where ae, be, and ce are constants, and σe is the preconsolidation stress. Through

this equation the compatibility with nonlinear behavior of soil is ensured.

Besides stress–strain behavior coupled with temperature, the description of cou-

pled state of volumetric moisture content with temperature of unsaturated soil is

also necessary under the stress and suction effects. On the basis of experimental

data the following state surface of degree of saturation is proposed:

Sr = 1− [as + bs(σ − pg)]× [1− exp(cs(pg − pw))] exp(ds(T − T0)) , (44)

in which as, bs, cs, ds are constants.
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To evaluate the elastic tangent modulus E given by Eq. (39), the shear strength

should be defined considering the influence of suction and temperature on the

cohesion and friction angle. The lack of reliable information about the effect of

temperature on the shear strength of the soils leads, for instance, to consider an

approximate evaluation of shear strength variation under heating based on the sug-

gested formula for the friction angle variation under the temperature change given

by Houston et al.15 such as

ϕ(T ) = ϕ0 exp(0.002T ) . (45)

Based on experimental results of CERMES, the following equations can be proposed

for the effect of suction:

τrup = C(s) + σntgϕ(s) , (46)

with

C(s) = C′ +m2(Pg − Pw) , (47)

ϕ(s) = ϕult + (ϕin − ϕult)

(
1− (Pg − Pw)

(Pg − Pw)ult

)
, (48)

where m2 is a constant, ϕin is the initial friction angle, and ϕult is the friction angle

under final suction. The parameters of this model are described in detail by Gatmiri

et al.16,51

2.2. Material properties

2.2.1. Heat transfer parameters

Since the soil components consist of solid skeleton, air and water, the thermal behav-

ior of soil is affected by their respective properties and the influence of temperature.

The most important thermal properties are thermal conductivity of soil.

With the assumption of parallel flow in solid and moisture phases, one can find

λ = (1 − n)λs + θλw + (n− θ)λv . (49)

This equation is used in this study, and implicitly the continuity of moisture is

assumed.

The other thermal parameters considered in the development of the model are

CPs, CPw, CPv, and CPg, the specific heat capacity of solid, water, vapor, and gas,

respectively, which are involved in the following term:

CT = (1− n)ρsCPS + θρwCρw + (n− θ)ρvCPV + (n− θ)ρgCPg , (50)

where CT is the specific heat capacity of the mixture.

The latent heat can be considered temperature-dependent as it has been con-

sidered by Geraminegad and Saxena14; since the effect of temperature on the latent

heat is negligible, in this study, it is considered to be constant.

The thermomechanical coupling is done via the coupling matrix in which the

term of C = DD−1
T is involved. The vector of DT is calculated from void ratio

changes under heating.
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2.2.2. Fluid and air flow properties

The main fluid and air flow parameters are water and air permeability of porous

media. The anisotropic flow water is considered in this study. It is obvious that

according to the deposition manner of sediments in nature, the horizontal water

permeability is usually more significant in water flow. Both water and air perme-

abilities depend strongly on water content and void ratio of medium. The effect of

volume change of skeleton on the permeability is introduced via void ratio state

surface, and the effect of water content is introduced by the degree of saturation

state surface where both of them are temperature-dependent. The expression used

in this study has the following form:

Kwz = Kwzo

[
Sr − Sru

1− Sru

]b(
νr
νT

)
, (51)

with saturated soil water permeability Kwzo = a · 10αe, Sru is residual degree of

saturation, e is void ratio, Sr is degree of saturation, and a, b, and α are constants.

νT is dynamic viscosity of water at any temperature and υr is dynamic viscosity at

any arbitrary reference temperature.

The effect of temperature on the water permeability is introduced by considering

the change of water dynamic viscosity due to temperature variations. A formula

has been derived by the best fitting of the experiment values given in Gatmiri.9

Other expressions are listed as follows:

νT = exp(−0.0181218T )× 1.54158× 10−6 , (52)

νT = 0.6612× (T − 229)−1.562 , (53)

νT = 1.74− 0.05T + 0.001T 2 − 0.0000175T 3 . (54)

Air permeability depends on suction too:

Kg = c
γg
µg

[e(1− Sr)]
d , (55)

where γg is specific weight of gas, µg its viscosity, and c, d are constants. The value

of µg according to Kaye and Laby is given as 1.846 × 10−2 kPa · s. It is assumed

that heating has no effect on gas permeability.

3. Damage

Two dissipation phenomena can occur in the soils usually forming the geological

barrier: plastic deformation and fracturing. Plastic strains are generated by sliding

microscopic mechanisms. Material damage grows with the size of microcracks. It

would thus be restrictive to identify the plastic and the damaged zones. Moreover,

degraded material properties may be partially recovered by crack closure. On the

contrary, plastic deformations are irreversible. It thus seems necessary to introduce

new variables to model damage.

Since damage may be reversible through the healing process, it might be nec-

essary to introduce two damage variables. To model the closure of tensile fractures
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in concrete subjected to compressive stress, Frémond uses distinct damage vari-

ables for tension and compression.17 A parallel can be drawn with elastoplastic

theories involving softening. In their study of granular rock materials, Vardoulakis

and Sulem define a plastic state variable to model the hardening due to friction. In

addition, they introduce a back pressure acting as a confining stress to represent

the softening behavior related to cohesion. In the same way, rock joint models that

do not take gouge production into account overestimate dilatancy effects.

Fracturing induces strain localization. A local formulation may be inadequate

to determine the size of the damaged zone and to describe the post-localization

behavior. If localization occurs, static partial differential equations (PDE) may

lose their ellipticity, while in dynamics, PDEs may turn nonhyperbolic. The dissi-

pated energy tends to zero, which is physically absurd, since the damage activity

increases in the softening regime. The post-localization solution depends on the

mesh refinement. Therefore, it may be necessary to resort to a nonlocal or to a

gradient-enhanced theory. In a nonlocal formulation, it is assumed that the damage

computed at one material point also affects its neighbors. The extent of this zone of

influence determines the size of a unit cell whose characteristic dimension is defined

as an internal material length. A homogenization on the unit cells provides the

macroscopic stresses and strains. The weighting functions may include parameters

controlling the size of the set of integration points used in the averaging process.

The main difficulty of this technique is to find realistic values for the material inter-

nal length and the controlling parameter. A second regularization method consists

in introducing the gradient of the state variables. It has been used in plasticity

frameworks,17 and in plasticity models coupled to damage. In these formulations,

the free energy generally depends not only on strain and damage, but also on the

strain gradient and the damage gradient. Material length may appear when the

theoretical framework is based on the development of averaged quantities in Taylor

series. The introduction of gradients imposes stronger regularity requirements in

the weak formulation used in the finite element method.

Four options may be adopted: a micromechanical approach, a phenomenological

model, a formulation combining micromechanical and phenomenological considera-

tions, and a representation of damage based on the introduction of specific damage

and healing strains. Introducing specific deformations dedicated to the modeling

of damage and healing is perhaps the easiest way to introduce fracturing in the

model implemented in θ-Stock. Indeed, the THHM elastoplastic model is based on

an additive breakdown of strains, involving plasticity terms due to suction and tem-

perature. Like in the model of Hou,18 damage irreversible strains and healing-related

strains may be introduced. The main difficulty of this theoretical framework lies

in the formulation of the yield functions, which may couple plasticity and damage

processes.

The first part of this section is dedicated to the presentation of the main types of

damage models available in the literature. The second part recalls the main issues

related to flow models in multimodal and multicontinuum systems. The third part
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examines the challenges that one has to face when modeling damage in porous

media. A new thermohydromechanical damage model has been developed in Arson’s

thesis19 and implemented in θ-Stock.20 The model framework has been explained

in Refs. 21–23. In the fourth part of this section, a numerical simulation resorting

to this model is presented.

3.1. Types of models

3.1.1. Micromechanical models

The micromechanical approach consists in modeling the influence of local damage on

the macromechanical behavior. Damage variables have a physical meaning related

to the degradation of elastic properties or to the characteristics of the fracture

network. It is assumed that stresses are redistributed due to a decrease is the

effective material area.

Generally, effective stresses are defined by means of an effective stress operator24:

σ̂ =M(Ω) : σ , (56)

where the damage variable Ω can be a tensor. For second-order damage variables,

the effective stress operator of Courdebois and Sidoroff is often adopted:

σ̂ =M(Ω) : σ = (Id− Ω)−1/2 · σ · (Id− Ω)−1/2 . (57)

The effective stress concept is often combined to the principle of equivalent elastic

energy (PEEE) to compute the damaged rigidity tensor De(Ω). This approach

consists in postulating that the elastic energy of the intact material subjected to

the effective stress σ̂ is equal to the elastic energy of the damaged material subjected

to the real stress σ:

We(σ̂,Ω = 0) =We(σ,Ω) . (58)

The development of equality (58) results in

1

2
σT : (De(Ω))

−1 : σ =
1

2
σT : M(Ω)T : (D0

e)
−1 :M(Ω) : σ , (59)

De(Ω) = M(Ω)−1 : D0
e :M(Ω)−T . (60)

The definition of an effective stress provides a framework to determine the damaged

mechanical properties of the material. However, damage remains an abstract notion,

represented by its influence on behavior laws.

In many models, cracks of close orientations are gathered in families. Suppos-

ing for example that the material is fractured in three principal directions ni, the
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damage variable can be written as a diagonal tensor whose eigenvalues di represent

crack densities:

Ω =
3∑

i=1

dini ⊗ni . (61)

The crack density di depends on the number of cracks belonging to the ith family

and on the radii of each of these cracks. In hydromechanical problems, it is often

useful to define the characteristic crack opening e. Shao and his coworkers25 con-

sidered that if k fractures damaged the representative volume element in all the

possible directions n of space, the irreversible strain caused by damage should be

εd =
k

4π.VREV

∫

SREV

πe(n)r(n)2n⊗ ndS . (62)

In expression (62), the 1/4π coefficient indicates that the surface integral is scaled

by the solid angle Bazant26 proposed to take fracture interactions into account by

defining crack opening as a function of the energy release rates Fj of every crack of

the REV, weighed by interaction coefficients λij specific to each couple of fractures:

ei =

k∑

j=1

λijFj . (63)

3.1.2. Energetic approaches

Energetic considerations are particularly suited to model dissipative phenomena

such as damage and plasticity. Thermodynamic potentials are given specific forms.

The resolution of the problem of maximum dissipation makes it possible to deduce

the behavior, flowing, and hardening/softening laws. The model is thus automati-

cally thermodynamically consistent.

3.1.3. Thermodynamic framework

At a local point x, the internal energy U of the studied system depends on entropy

S(x), strain variables E(x), and on parameters representing irreversible or dissi-

pative processes νi(x). The first law of thermodynamics means that the variation

of the internal energy is equal to the work of deformation diminished of the heat

provided to the exterior of the system:

U̇(S(x), E(x), υi(x)) = Σ(x) : Ė(x)−∇ · q(x) . (64)

Σ(x) is the generalized stress tensor and q(x) is the heat flux vector. Due to the

occurrence of irreversible processes, entropy production always exceeds the quantity

of heat transmitted to the exterior:

T (x)Ṡ(x) ≥ −∇ · q(x) , (65)
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where T (x) is the temperature of the medium. Combining Eqs. (64) and (65) leads

to the Clausius–Duhem Inequality (CDI):

T (x)Ṡ(x) ≥ U̇(S(x), E(x), υi(x))− Σ(x) : Ė(x) . (66)

The partial Legendre transform of the internal energy relatively to entropy is defined

as the Helmholtz free energy F (T (x), E(x), υi(x)):

U(S(x)), E(x), υi(x))− F (T (x), E(x), υi(x)) = T (x)S(x) , (67)

T (x) =
∂U(S(x), E(x), υi(x))

∂S(x)
,

S(x) = −
∂F (T (x), E(x), υi(x))

∂T (x)
.

(68)

The free energy of Gibbs G(T (x),Σ(x), υi(x)) is the partial Legendre transform of

the free Helmholtz energy relatively to the strain variable:

F (T (x), E(x), υi(x)) +G(T (x), Σ(x), υi(x)) = Σ(x) : E(x) , (69)

Σ(x) =
∂U(S(x), E(x), υi(x))

∂E(x)
=
∂F (T (x), E(x), υi(x))

∂E(x)
, (70)

E(x) =
∂G(T (x),Σ(x), υi(x))

∂Σ(x)
= −

∂U(S(x),Σ(x), υi(x))

∂Σ(x)
. (71)

3.2. Hydraulic properties of an undamaged porous medium

Many flow theories are based on van Genuchten–Mualem model.27 To represent

the global hydraulic behavior of the representative elementary volume (REV), an

equivalent medium has to be defined. The equivalent hydraulic properties of the

REV are deduced from a homogenization technique.

Using van Genuchten–Mualem model we study that the fractured porous

medium amounts to considering that cracks and matrix pores are all connected and

form a unique network, of space-variable pore size. Moreover, a Bell-type relation

is assumed between the nondimensional water content θ(h) and pressure head h:

θ(h) = [1 + (αh)n]−m , (72)

in which the nondimensional water content is defined as

θ(h) =
θw(h)− θwr

θws − θwr
. (73)

θwr and θws are the residual and satiated water contents, respectively. α is the

pore size for which pore density is maximal. The α parameter thus gives an idea

of the more frequent pore size characterizing the material. m and n control the
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distribution extent toward a fine or coarse medium. Resorting to Mualem’s integral

formula, the relative water permeability is defined as

kR(θ(h)) = [θ(h)]1/2




∫ Θ(h)

0

1

h(x)
dx

∫ 1

0

1

h(x)
dx




2

. (74)

The integration scheme imposes that

m = 1− 1

n
, 0 < m < 1 . (75)

Taking the inverse of relation (74) leads to

kR(θ(h)) = [θ(h)]1/2[1− (1− [θ(h)]1/m)m]2 . (76)

3.3. Hydromechanical couplings in a fractured porous medium

Continuum damage mechanics describes the degraded mechanical behavior of the

rock mass. Flow network theories predict water transfers, considering hydraulic

parameters only. The main issue in modeling the excavation damaged zone (EDZ)

is thus to combine hydromechanical and damage concepts in a single theory. The

aim of the following section is to propose a fully coupled hydromechanical damage

model, which would be in conformity with the formulation adopted in θ-Stock.

3.3.1. Introducing damage in hydraulic properties

Some damage models introduce a damage dependency in the expression of perme-

ability.25,28 But the given formulas generally involve mechanical parameters only.

In fact, the computed permeability reduces to the intrinsic component of absolute

permeability. It is possible to define the absolute permeability of an unsaturated

damaged medium as the product of a damaged intrinsic permeability with a van

Genuchten–Mualem type relative permeability27:

Kabs(ε,Ω, θ) = krel(θ) kint(ε,Ω) . (77)

The relative permeability krel(θ) is only related to interstitial fluids, and does not

depend on damage. The intrinsic permeability kint(ε,Ω) characterizes the damaged

solid part of the medium, and takes irreversible fracturing and path orientation into

account. In θ-Stock, the strain dependency falls down to a porosity (n) dependency.

For an undamaged unsaturated material subjected to isothermal conditions, the

intrinsic permeability is defined as

kint(n,Ω = 0) = k0 · 10αk·eId , (78)

k0 is a reference permeability and αk is a material parameter. e is the void ratio,

defined by a state surface depending on stress and suction.1
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To extend the model to a damaged unsaturated material, it is proposed to split

the intrinsic permeability as follows:

kint(n,Ω) = k1(n
rev,Ω) + k2(n

frac,Ω) , (79)

where nrev represents the reversible evolution of volumetric deformations, including

crack closing. As the damage model induces a dependency between strains and

damage, the reversible component of the intrinsic permeability k1 depends not only

on reversible porosity nrev, but also on damage Ω. By analogy with the formulas

adopted in θ-Stock, the following expression is chosen:

k1(n
rev,Ω) = k0 · 10αk·erevId , (80)

where erev is the void ratio deduced from the computation of reversible

deformations. nfrac refers to the porosity generated by fracturing. Damage is defined

by means of a formula similar to expression (61). It is thus assumed that three main

families of cracks damage the REV chosen to study the bedrock. Following the rea-

soning of Shao and his coworkers,25 it is supposed that cracks are penny-shaped

planes of radius rk, of opening ek, and of normal direction nk, in which the intersti-

tial liquid flows in the direction parallel to the plane. Applying the Navier–Stokes

formulas to compute the celerity of the flow in the fracture network (vfracw ) provides

vfracw = −
(

1

12µw
· π
a3

·
3∑

k=1

r2k · e3k · (δ − nk ⊗ nk)

)
· ∇pw , (81)

µw is the dynamic viscosity of the interstitial liquid, a is the characteristic dimension

of the REV, and pw is the interstitial liquid pressure. Like in the other behavior

models programmed in θ-Stock, the liquid transfer is assumed to be diffusive, and

the Darcy law is adopted:

vfracw = −k2(nfrac,Ω) · ∇
(
pw
γw

+ z

)
, (82)

in which γw is the volumetric weight of the interstitial liquid, and z denotes the

vertical coordinate, oriented positively upward. Equations (81) and (82) result in

the following expression for the irreversible component of the intrinsic permeability:

k2(n
frac,Ω) =

γw
12µw

· π
a3

·
3∑

k=1

r2k · e3k · (δ − nk ⊗ nk) . (83)

3.3.2. Extending damage models to unsaturated materials

Damage modeling in unsaturated materials is frequently based on Biot’s theory.

Most approaches combine a micromechanical definition of damage Ω with a
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postulate on the expression of the free energy F (ε,Ω).25 The constitutive relation

has the following general expression:

dσ = d

(
∂F (ε,Ω)

∂ε

)

ij

− b[Swpw + (1− Sw)pg] · Id . (84)

b is Biot’s hydromechanical coupling parameter, pg is the gas pressure, and Sw

denotes the liquid saturation degree. Adopting such a representation of stress makes

it possible to uncouple poromechanical and damage effects in the constitutive stress

relation. Capillarity effects on deformation are neglected. Damage growth is yet syn-

onymous of fracturing increase. Defect initiation or crack aperture generates a rise

of pore size at the scale of the global network of the equivalent medium. Bigger

pores induce smaller capillarity effects, and consequently, a weaker rigidity.3 Con-

versely, suction is work-conjugated to the partial porosity of the liquid phase, which

originates hydraulic effects in the mechanical behavior. That is why a formulation

based on net stress and suction might be more satisfying from a conceptual point

of view. To the authors’ knowledge, only one formulation based on net stress and

suction has been proposed so far to model damage in unsaturated porous media

(apart from the authors’ model19): Lu and his coworkers29 proposed to split total

stresses σa in a relatively damaged part σd and a relatively intact part σi:

σa = (1− ω)σi + ωσd . (85)

ω is a scalar damage variable supposed to depend on suction s and deviatoric

strains εs:

dω = L1(εs, s) : dε+ L2(εv, s)ds . (86)

εv refers to volumetric strains. Contrary to a mere effective stress concept, the dam-

aged regions of the material are still subjected to stresses, even if these damaged

stresses σd do not follow the same stress/strain relations than the undamaged

stresses σi. Lu’s research team assumed that the damage threshold was reached

before the plastic threshold. Accordingly, they affected a nonlinear elastic behavior

law to the intact stresses and an elastoplastic Barcelone-like behavior law to the

damaged stresses:

dσi = De : dε+Dseds , (87)

dσd = Dep : dε+Dsepds , (88)

where De and Dep are respectively the elastic and elastoplastic mechanical rigidity

tensors, and Dse and Dsep are respectively the elastic and elastoplastic suction

rigidity tensors. Considering Eq. (85), the evolution of total stresses writes

dσa = (1 − ω)dσi + ωdσd + σrdω , (89)
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in which the stress difference σr = σd − σi represents the transition between rela-

tively intact and relatively broken states. The increment of total stress is determined

by combining Eqs. (86)–(89). Supposing that strain and suction change consistently

during loading in the relatively intact and relatively damaged regions, it is possible

to simplify the constitutive relation into a general expression of the type:

dσa = Dedmg : dε+Dsdmgds . (90)

Dedmg and Dsdmg denote the elastoplasticity damage rigidity tensors associated

with strain and suction respectively. The model of Lu and his coworkers29 can easily

be extended to anisotropic damage. However, the approach is merely micromechan-

ical and thermodynamic requirements are not considered.

In θ-Stock, the behavior laws of unsaturated media are formulated in net stress

σ′ = σ − pg · Id and suction s = pg − pw. Corresponding to the chosen stress state

variables, strain components are defined as follows2,3:





dε = dεM + dεS ,

dεM = De
−1 : dσ′ ,

dε
S
= Ds

−1 · ds ,

(91)

De is the standard stiffness tensor, and Ds is defined as a rigidity associated to

suction. To adapt this breakdown to damage modeling, an inelastic deformation εd

related to damage has to be added, and it is assumed that the elastic strains also

depend on damage:





dε = dεe
M

+ dεe
S
+ dεd ,

dεe
M

= De(Ω)
−1 : dσ′ ,

dεe
S
= Ds(Ω)

−1 · ds .

(92)

The elastic strains are known if the damaged rigiditiesDe(Ω) andDs(Ω) are known.

Damaged stress variables may be defined for net stress and suction,22 by resorting

to Cordebois and Sidoroff operator (Eq. (57)). Then, applying the principle of

equivalent elastic energy for the mechanical deformation energy and the capillary

deformation energy makes it possible to compute De(Ω) and Ds(Ω).
22 To get the

inelastic strain component, it is necessary to express ε
M

explicitly, which implies

getting the corresponding stress/strain relationship. In other words, it is necessary

to postulate the form of the free energy of the solid skeleton. One way to build the

model is to split damaged mechanical potentials and poroelastic potentials. This is

not the choice that has been done by the authors, but such an approach has been
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adopted by Shao research team.25,30 Adapting this approach to the framework of

mechanical and capillary strains, such a postulate writes:




F (ε
M
, εe

S
,Ω) = F ed(ε

M
,Ω) + F pe(εe

S
,Ω) ,

dε = dεe + dεd = dεe
M

+ dεe
S
+ dεd ,

dε
M

= dεe
M

+ dεd ,

(93)

F ed(εe
M
,Ω) is related to the degraded mechanical behavior of the material, and

F pe(εe
S
,Ω) corresponds to the poroelastic aspect of the model. The thermodynamic

conjugation relationships write:




σ′ =
∂F ed(ε

M
,Ω)

∂ε
M

,

s =
dF pe(εe

S
,Ω)

dεe
S

= Ds(Ω)
−1s ,

(94)

F ed(ε
M
,Ω) needs to be postulated. Once it is done, the derivation of the first

equation in Eq. (94) may be combined to the second equation in Eq. (92) to set a

relationship between the increment of inelastic strains and the increment of damage.

The damage evolution law may be obtained by using a simple damage evolution

function and resorting to an associated flow rule.31

Following the reasoning usually adopted in the models programmed in θ-Stock,

it may be assumed that the deformation related to suction (εe
S
) is isotropic.3,4 It is

expressed as

dεe
S
= βs(s,Ω)

−1 · Id · ds . (95)

The rigidity associated to suction Ds(Ω) is thus represented by a scalar modulus

βs(s,Ω). In fact, only the knowledge of the volumetric part (εeS)v of the deformations

related to suction is needed to obtain the corresponding stress/strain relationship:

dεe
S
=

1

3
· d(εeS)v · Id =

1

3
· [d(εe)v − d(εeM )v] · Id . (96)

d(εeM )v can be deduced from εe
M
. The resulting expression is of the following type3:

d(εeM )v = K(σ′,Ω)−1dp′ (97)

in which K(σ′,Ω) is the degraded compressive modulus and p′ is the mean net

stress. The requirements on Gibbs free energy G(σ′, s,Ω) reduce to a relation of

the form

d(εe)v = d

(
∂G(p′, s,Ω)

∂p′

)
. (98)

By analogy with the model presented by Jenab,4 the following formula is proposed:

∂G(p′, s,Ω)

∂p′
=

∫
K(σ′,Ω)−1dp′ +

ks
1 + e0

· ln
[
ŝ+ patm
ŝg + patm

]
. (99)
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ks is a compression modulus associated to suction effects in the reversible domain,

e0 is the initial void ratio, and patm refers to the atmospheric pressure. A damaged

suction ŝ is defined, in the same way as damaged stresses (Eq. (56)). ŝg is the

biggest damaged suction ever submitted to the material. It is the equivalent of a

consolidation stress. Equations (93) and (97)–(99) lead to

d(εeS)v =
ks

1 + e0
· 1

ŝ+ patm
·
∂ŝ(s,Ω)

∂s
· ds . (100)

As explained earlier, the expression of the damaged suction ŝ(s,Ω) can be deduced

from a relation of the type of Eq. (56), which enables the full calculation of expres-

sion (100). Equations (92), (96), and (100) sum up the framework of a hydromechan-

ical damage model for unsaturated porous media that could easily be implemented

in θ-Stock software.

3.4. A heating test simulated with the THHMD model in

unsaturated conditions

The modeling framework presented in the previous paragraph is close to the

developments of Gatmiri on state-surface models. Another strategy to model

thermohydromechanical damage in unsaturated porous media has been proposed

in Refs. 19 and 21–23. The model, (named “THHMD model”) is based on the same

basic assumptions on independent state variables and strain decomposition, but the

free energy is split in a different way. Moreover, temperature effects are accounted

for, in particular, the potential phase changes are modeled. In the sequel, a numeri-

cal application of the THHMD model is presented. This test comprises the study of

thermohydraulic behavior of bentonite which is placed around the nuclear wastes

as a cover. It is inspired by the works of Pintado et al.32 A thermal source is

installed between two cylinder-shaped bentonite samples with diameters of 38mm

and heights of 76mm which are both wrapped in isolate foam. Since the provided

geometry and loading are both symmetrical and the calculations are performed

through axial symmetry, the thermal source is modeled through the boundary con-

dition of Newman applied to the nodes of the external boundary of the sample. To

consider the effects of the isolate foam, a thermal current of zero is exerted on the

external lateral boundary.

Loading falls into two conditions, preliminary and boundary. The temperature

at all nodes is 22 ◦C for the preliminary conditions while the air pressure is equal

to atmospheric pressure. In case of boundary conditions, degrees of freedom are

considered unbounded and there are no limiting conditions. Boundary conditions

include two stages of heating and recovery. During the heating stage which lasts

for 1 week, a constant temperature is applied to the top of the sample, while it is

30 ◦C for the bottom sections and an adiabatic process for the external sides (in

order to simulate the effect of the applied isolating layer). Air cannot penetrate

the external sides at this stage. Recovery stage which takes up to 7 weeks is when

the heat source is shut down. During the recovery stage which lasts for 1 week, a
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zero temperature is applied to the upper boundary, while it is 30 ◦C for the bottom

sections and an adiabatic process for the external sides. The external boundaries

are impenetrable to both water and air.

The lab test of Pintado et al. is simulated by resorting to the elastic part of the

THHMD model. The results are compared to the reference experimental data pub-

lished in Ref. 32 to assess the model performance in solving multiphysics problems

(Figs. 1–5). The study of numerical results shows that no rise in the temperature

occurs after a period of 100 h. The temperatures calculated by θ-Stock after arriv-

ing at the thermal balance are nearly similar to those measured in the tests by

Pintado et al. Prior to the thermal balance, the calculated temperatures at each

moment were lower than tests results. This difference may be justified through the

selection of thermal capacity modulus of rigid framework. Cps is constant in the

THHMD model and it is equal to the value resulting from Pintado et al.’s test at

49 ◦C. The thermal capacity modulus at temperatures below 49 ◦C is much larger

than the values derived from the test which shows the high thermal inertia causing

slow transfer of heat. As a result, this difference is more obvious at the beginning

of the test since the difference between the numerical and lab thermal capacities is

much larger.

It can be concluded that the algorithm implemented in θ-Stock for the THHMD

model gives satisfactory results in complex thermohydromechanical configurations.

The next step is to validate the model when damage occurs. In the absence of

reference data regarding cracked bentonite samples, only sensitivity analyses are

Fig. 1. Comparison of two thermal conductivity modulus.
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Fig. 2. Thermal contours of Pintado test — Numerical results by θ-Stock.

Fig. 3. Thermal contours of Pintado test — Experimental measurements.
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Fig. 4. Water content variations after a week of testing — Numerical results by θ-Stock.

Fig. 5. Water content variations after a week of testing — Experimental measurements.
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possible at this stage. Such parametric studies have already been done on less

complex problems (involving temperature and pore pressure degrees of freedom

only) and reported in Ref. 23.

4. Soil Surface Moisture Changes Due to

Soil–Atmosphere Interaction

This part of work is based on developments done in PhD works of Hemmati in

ENPC33 and Hemmati and her coworkers.34,35

The computation of soil–atmosphere water fluxes (e.g., infiltration, evapotran-

spiration, runoff, precipitation, and interception) is required for the analysis of

numerous problems in geotechnical, geoenvironmental engineering, and hydrology.

Direct measurement of evapotranspiration is difficult or expensive at field scale;

hence numerous equations exist to estimate it. Evapotranspiration includes evap-

oration of water from the soil and other surfaces and transpiration through plant

stomata. Energy balance models provide a good presentation of estimating evapo-

transpiration, but are subject to large sensitivity to input variables, especially air

temperature, humidity, and wind speed. Solar radiation plays an important role in

estimating evapotranspiration. Incoming solar radiation is partially reflected, with

the reminder absorbed by wetland water and vegetation. The remaining net radi-

ation is partially intercepted by the vegetative canopy, and drives transpiration

in plants. The second portion of net radiation is absorbed by wetland water, and

drives evaporation. Convection and diffusion carry water away from the surface,

and transfer heat from air to the wetland. Water content variations in clayey soils

can give rise to significant soil deformations by shrinkage or swelling. The induced

settlement is usually nonuniform and can thus result in damages to buildings, espe-

cially in case of light buildings, constructed on shallow foundations which are not

adequately designed to support these differential settlements. This phenomenon is

more important in long drought periods with greater changes in soil water con-

tents. A set of equations of this part are integrated in θ-Stock by Hemmati33 and

Hemmati and her coworkers.34,35

4.1. Energy balance equations

The water transfer through soil surface occurs via two mechanisms: infiltration

(positive flux) and evaporation (negative flux):

Inf = P − (ET +Roff + Iint e) , (101)

where Inf is the infiltration, P is the precipitation, Roff is the runoff, ET is surface

the evapotranspiration, and Iint e is the interception. The amount of precipitation,

runoff, and interception are “known” inputs which can be evaluated by direct mea-

surement at field scale.

The principle driving force for evapotranspiration (ET) is solar radiation. A good

share of that radiation is converted to the latent heat of vaporization. Therefore, the
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energy balance is the proper framework to interpret and predict not only evapora-

tive processes, but also wetland water temperature. A modification of the Penman36

approach is described. It is to be noted that there are many other versions of the

energy balance. Several of these have been evaluated for green crops, because of

importance of irrigation requirement in arid regions.37

The total energy balance equation can be expressed by

Rn +WE = G+H + λET , (102)

where Rn is the net radiation, G is the soil heat, H is the sensible heat, and the

term λET is the latent heat flux. The convective heat transfer from the soil surface

to the air can be expressed by

H = ρacpDta∆T = ρacp
(Ts − Ta)

rah
, (103)

where ρa is the air density, cp is the specific heat of air, and rah is the aerodynamic

diffusion resistance. The latent heat flux is given by

λET =
λερa
pa

Dv ∆Pv =
λερa
pa

(Pvs − Pva)

rv
, (104)

where λ is the latent heat for vaporization of water, pa is atmospheric pressure,

ε is the ratio of molecular masses of water and dry air, and rv is vapor diffusion

resistance.

Since the soil surface temperature Ts and soil surface vapor pressure Pvs are

unknown, different methods try to solve the problem by modifying the above equa-

tions in order to make them independent of these parameters and use only the

meteorological data. These simplifications may cause no problem to the evaluation

of the potential evaporation in some methods such as the Penman method, but

for the calculation of the actual evaporation, the effect of soil conditions like soil

saturation and soil temperature should not be neglected.

4.1.1. Net radiation in potential conditions

Extraterrestrial radiation is depleted by the clear atmosphere and by cloud cover.

The remainder reaches the soil–plants system. Plant transpiration partially inter-

cepts it. The other portion reaches the wetland. A fraction α, the wetland albedo,

of this amount is reflected. The absorbed part by the surface called net radiation

is in potential condition. Net radiation in potential conditions can be obtained by

Rn = (1− α)Rg + εs
(
εa σT

4
a − σ T 4

sp

)
, (105)

where α is the surface albedo; Rg is the incoming solar radiation; εs is the air

emissivity; σ is the Stefan–Boltzman constant; Ta is the air temperature at reference

height; εs is the surface emissivity; and Tsp is the surface temperature in potential

conditions.



April 5, 2011 13:52 WSPC/245-JMM S1756973710000266

50 B. Gatmiri et al.

The albedo factor is

α =




1−

(
1− θ

θfc

)2

θ ≤ θfc ,

1 θ > θfc ,

(106)

where θ is the volumetric soil water content of the top soil layer; and θfc is the

volumetric soil water content at field capacity.

4.1.2. The convective heat transfer from the water to air and latent

heat flux for vaporization

The convective heat transfer from the water to air can be expressed by

H = ρaCaDta∆T , (107)

where ρa is the density of air; Ca is the specific heat of air; and Dta is the heat

diffusivity in air.

Latent heat flux for vaporization is

λET = hfg
ρa
Pa
εDv∆Pv , (108)

where hfg is the latent heat for vaporization of water; Pa is the atmospheric pres-

sure; and ε is the ratio of molecular masses of water and dry air.

The latent heat for vaporization of water is given by

hfg = 4.186 (607− 0.7T ) , (109)

where T is the water temperature.

4.1.3. Wind energy

Wind energy is expressed in the form

WE =
1

200
ρaZ U

3 , (110)

where Z is the thickness of air layer, and U is the air velocity.

The value of WE is approximately 2% of net radiation in potential conditions;

hence, it can be neglected. Then Eq. (102) reduces to

Rn = G+H + λET . (111)

4.2. Mass balance equations

The net soil–atmosphere moisture flux is a function of some of the key compo-

nents of the hydrology cycle, namely, precipitation, actual evaporation, runoff, and

interception. The net soil–atmosphere flux may result in either infiltration (positive

flux) or exfiltration (negative flux).
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The total mass balance equation can be expressed by

I = P − (Roff + E + Iint e) , (112)

where I is infiltration; P is precipitation; Roff is runoff; E is surface evaporation

and Iint e is interception.

4.3. Model verification

A 17 months period of the experimental site of Mormoiron, instrumented by BRGM

is modeled. Soil parameters are available from experimental tests.38 Daily climatic

data is available for Carpentras Station by Météo France. The soil settlements and

soil temperature are measured by BRGM using extensometers and probes. The void

ratio state surface, presented in Fig. 6, is calculated based on shrinkage curve. The

degree of saturation state surface (Fig. 7) is determined using the water retention

curve of the soil. Water permeability is a function of void ratio and degree of

saturation. Permeability of saturated soil is considered to be about 10−9m/s.

The daily meteorological data such as wind speed, air temperature, precipita-

tion, air relative humidity, and radiation are used to calculate the boundary con-

ditions. The calculated soil heat flux (G) as thermal boundary condition and the

infiltration rate (I) as hydraulic boundary condition are presented in Figs. 8 and 9.

The calculated settlements are then compared with the available in situ results,

and good concordance can be observed in Fig. 10.
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5. Root Water Uptake Effect in Multiphase Porous Media

Roots of trees are like pumps that extract moisture from their root zone and deliver

it to the atmosphere through the surface of leaves in the form of water vapor. When

water demand of a tree is not met through rainfall or irrigation, it desiccates its

nearby soil and creates matric suction and settlement in its root region. Moreover,

it should be indicated that vegetation can have pleasant geotechnical effects too.

As we noted above, root water uptake produces matric suction in the soil which

increases the shear strength. This characteristic has increased the use of trees in

stabilizing slopes, railways, etc. Hence, it seems necessary to study the effects of

root water extraction on soils.39

To study the root water uptake phenomenon we need to have a set of math-

ematical formulas to calculate the amount of moisture that the root system can

extract from the soil. There are numerous root water uptake models available in

the literature. Investigators in the fields of irrigation, agriculture, soil salinization,

hydrology, and soil science have been very interested to propose root water uptake

models. These models can be categorized into two groups. In the first group of

models, roots are assumed as individual hollow cylindrical infinite sink terms; in

these models water flow is radial toward the root; the models of this group are

called microscopic models. Philip seems to be the first author who suggested such

a model.11 Many other investigators tried to improve and modify his model. Never-

theless, there are some difficulties and shortages in using microscopic models; they

are just applicable to steady-state water flow problems and also, it is very difficult

or even impractical to quantify the characteristics of roots in such models.

These problems made investigators to think about macroscopic models — the

second category, in which the root system is assumed as a unit, continuous sink

term that can extract moisture nonuniformly from each differential volume of soil.

This sink term should then be entered in the mass conservation equation of mois-

ture. Gardner40 seems to be the first to propose a macroscopic model. His model
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was then extended by numerous investigators. Although macroscopic models are

different in terms of the dimension of the models (1D, 2D, and 3D), the root sys-

tem geometry and the root distribution function, they have the same approach.

The macromechanical approach is the framework adapted in this paper to study

the effect of soil–atmosphere exchange by vegetation in porous media, while the soil

is unsaturated. A set of equations of this part are integrated in θ-Stock by Najari

and Gatmiri.41,42 A 2D root water uptake model is implemented and validated by

Hemmati,33 Hemmati and Gatmiri,43 and Hemmati et al.44 considering the evap-

otranspiration from soil surface. Evaluation of soil surface evapotranspiration is

explained in Sec. 4.

5.1. Root water uptake formulation

To study the phenomenon of root water uptake in unsaturated soils we need to know

the amount of moisture that the root system of a tree can extract from each point of

the soil. Two assumptions, which are based on observations and field measurements,

are applied to reach a mathematical formula that calculates the rate of root water

uptake:

• The rate of root water uptake (S) in each point of the soil is proportional to the

length density of root (β) in that point:

Smax(x, y, z, t) = Cr × β(x, y, z, t) . (113)

It should be noted that root length density is defined as the length of root existing

in each unit volume of soil (LL−3).

• The amount of water that the root system uptakes can be divided into two parts:

one part is used in the trees metabolism and what remains enters the atmosphere

through the surface of its leaves as water vapor. The second assumption which is

based on exact field measurements is that the first part of water is negligible in

comparison to the second part. Thus, the whole amount of water extracted from

the soil is delivered to the atmosphere.40 Therefore, potential transpiration equals

the integral of maximum rate of root water uptake on the root zone volume:

Tp =

∫
Smax(x, y, z, t)dv . (114)

By entering Eq. (113) in Eq. (114), we have

Tp =

∫
Crβ(x, y, z, t)dv = Cr

∫
β(x, y, z, t)dv , (115)

Cr =
Tp∫

β(x, y, z, t)dv

, (116)

⇒ Smax(x, y, z, t) =
β(x, y, z, t)∫
β(x, y, z, t)dv

Tp , (117)

Smax(x, y, z, t) = D(β)× Tp , (118)



April 5, 2011 13:52 WSPC/245-JMM S1756973710000266

Environmental Impact Assessment with θ-Stock Finite Element Program 55

in which D(β) is called distribution function. Hence, we reached a relationship

(Eq. (118)) to calculate the rate of root water uptake in each point of the root

zone, while the soil does not restrict the water availability.

There are different assumptions for the shape of root zone in the literature.

Some researchers assume the root zone cylindrical, while some others like Indraratna

et al.39 assume it as an inverted cone. The formula which is proposed by the authors

of this study is
(

z

zmax

)ξ
+

(
r

rmax

)ξ
= 1 , (119)

where zmax is the maximum depth of root in the soil, and rmax is the maximum

radial distance of root from the tree trunk. For ξ = 1, Eq. (119) becomes an inverted

cone. Also, when ξ → ∞, the relationship becomes cylindrical. Thus, ξ is used to

model the real shape of root region for each type of tree. The shapes of root zone

for four different values of ξ are depicted in Fig. 11.

There are different propositions for root length density (β). Feddes et al.45

assumed β constant in his one-dimensional simulation:

D(β) =
β0∫ zmax

0

β0dz

=
β0

β0zmax
=

1

zmax
. (120)

Prasad46 proposed a linear relationship for root length density:

D(β) =
α(zmax − z)∫ zmax

0

α(zmax − z)dz

= 2

(
1

zmax
− z

z2max

)
. (121)

He finally concluded that using the linear relationship is not suitable for a rep-

resentative modeling. However, some other investigators proposed exponential

relationships for the change of root length density in depth:

β(z, t) = βmaxe
−fz ⇒ D(β) =

βmaxe
−fz

∫ zmax

0

βmaxe
−fzdz

=
e−fz

∫ Zmax

0

e−fzdz

. (122)

It has been found that exponential relationships give better results. Therefore, in

this paper an exponential relationship for root length density is chosen.

Fig. 11. Different normalized shapes of rooting zone: (a) ξ = 0.6; (b) ξ = 1; (c) ξ = 2; and
(d) ξ = 5.
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When a single tree is planted in a homogeneous soil, the problem is axisymmet-

ric. In this situation, using exponential relationship for root length density variation

in r and z directions, the rate of maximum root water uptake can be calculated

from

β(r, z, t) = e−kz|z−z0|−kr|r−r0| ⇒Smax(r, z, t) =
e−kz|z−z0|−kr|r−r0|

∫

V

e−kz |z−z0|−kr |r−r0|dv
Tp , (123)

where k1 is a constant controlling the root length density variation in z-direction

and k2 is a constant determining the radial root length density distribution. Fur-

thermore, (r0, z0) is the coordinate of the point in which the maximum root length

density exists:

∇Smax(r, z, t)|r=r0,z=z0 = 0 . (124)

Potential transpiration (Tp) is a meteorological parameter which is always reported

in m/s, while this parameter should be entered as m3/s in Eq. (129). Therefore, we

should multiply Tp by πR2, where R is the radius of foliage of the tree. The value of

R is as much as rmax when the soil is homogeneous and there is no water restriction.

The parameter rmax is a very good estimation of the parameter R. Moreover, in the

above formula, the rate of root water uptake does not become zero at the boundary

of the root zone. This problem can enter error in the calculations. In order to correct

the two mentioned problems we modify Eq. (123) as below:

Smax(r, z, t) =

e−kz|z−z0|−kr |r−r0|
(
1−

(
z

zmax

)ξ

−
(

r

rmax

)ξ
)

∫∫∫

V

e−kz|z−z0|−kr|r−r0|
(
1−

(
z

zmax

)ξ

−
(

r

rmax

)ξ
)
rdθr dx dz

× πR2 × Tp . (125)

When we have a row of trees, the problem becomes two-dimensional plane strain

and the rate of root water uptake would be

Smax(x, z, t) =

e−kz|z−z0|−kx|x−x0|
(
1−

(
z

zmax

)ξ

−
(

x

xmax

)ξ
)

∫∫
e−kz|z−z0|−kx|x−x0|

(
1−

(
z

zmax

)ξ

−
(

x

xmax

)ξ
)
dx dz

× 2R× Tp . (126)

5.2. The restricting effect of soil suction on root water uptake

The equations for the rate of root water uptake, which are presented above, are

valid while there is no water deficiency for the tree. When the amount of water

for the tree is restricted, root water uptake makes the soil unsaturated and matric

suction is produced. This matric suction reduces the water-absorption capability of
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the root. This is a completely known and fully investigated phenomenon and there

are various relationships in the literature to take it into account. The relationship

proposed by Feddes et al.47 is more common and easier to use. Furthermore, it is

validated by numerous investigators and has become classic in this field of study;

therefore, we have chosen it to use in this study. Hence, the real value of S becomes

S(x, y, z, t) = Smax(x, y, z, t)× f(ψ) , (127)

where f(ψ) is called the reduction factor:

f(ψ) =





0 ψ < ψan ,

1 ψan < ψ < ψd ,

ψw − ψ

ψw − ψd
ψd < ψ < ψw ,

0 ψw < ψ .

(128)

This reduction factor is depicted in Fig. 12; ψn and ψd are respectively the minimum

and maximum matric suctions between which the water extraction takes place

without any restriction. Also, ψw is the wilting point matric suction where the root

water uptake is not available for values greater than it. The range of wilting point

matric suction is 1.55–3.1MPa.

5.3. Potential transpiration rate

To calculate the rate of potential transpiration Tp of a type of tree, first we should

calculate the reference evapotranspiration of a 12 cm tall grass (ET0) from Penman–

Montieth formulation in that region. The parameters that are used to calculate this

item are: maximum and minimum daily temperatures, daily due point temperature,

Fig. 12. Reduction factor function (restricting effect of soil suction on root water uptake).
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solar radiation on grass, wind velocity at 2m height, albedo, the day of year, and

elevation. Then we should multiply ET0 into basal crop coefficient (Kcb) to calculate

potential transpiration rate of our specific vegetation (Tp):

Tp = KcbET0 . (129)

Reference crop coefficient (Kcb) varies for each type of vegetation and for each

season of the year and is reported in agricultural and irrigation references. When

the vegetation loses its leaves during nongrowing period, the Kcb value becomes

zero. The process of Tn calculation is applicable for every tree and every region

around the world.

5.4. Model verification

To evaluate the proposed formulation, first, we model a problem which is related to

the effect of water uptake of a row of trees, solved by Fredlund and Hung.48 In this

problem water is not extracted by the root zone; it is applied as water flow boundary

condition. This water flow starts from 1m depth with the value of 15mm/day and

decreases linearly to zero at 3m depth. It is assumed that groundwater table is at

15m depth. It should be noted that the problem is a two-dimensional plain strain

condition. Also, we just need to model half of the problem due to the symmetry. In

Fig. 13 the water retention curve proposed by Fredlund and Hung is given.

The water permeability relationship, Fredlund and Hung used for their unsatu-

rated soil model, is presented below:

k =
ks

1 + a

(
ψ

ρwg

)n , (130)

where a and n are 0.001 and 2, respectively. ks which is the permeability of saturated

soil is 5.79 × 10−8m/s. The soil is a normally consolidated clay with unit initial

void ratio and Poisson’s ratio of 0.3.

The problem is modeled with rectangular four-noded element mesh and is solved

for a one-year period with 365 equal time steps. The matric suction results of our

Fig. 13. Water retention curve (reproduced after Fredlund and Hung37).
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Fig. 14. Comparison of matric suction results: Reproduced after Fredlund and Hung37 (left) and
current model (right).32

Fig. 15. Comparison of the settlement results: Reproduced after Fredlund and Hung37 (left) and
current model (right).32

finite element model and Fredlund and Hung simulation after one year of root

water uptake are depicted in Fig. 14. Furthermore, Fig. 15 compares the settlement

results of the two models. Although the unsaturated soil formulations of the two

models are not the same, the results satisfactorily agree with each other. The slight

disparities seen in Figs. 14 and 15 between the results of the two models are because

the model proposed by Gatmiri and coworkers uses the concept of state surfaces of

void ratio and degree of saturation. Moreover, θ-Stock employs Philip and de Vries’

theory for heat and moisture transfer. Although many efforts have been made to

the calibration of the model, this little disparity seems inevitable.

5.5. Simulation of a single gum tree in unsaturated soil

This problem is related to measurements done in the vicinity of a large single

spotted gum tree in Holden Hill, Adelaide, by Jaksa et al.49 In November 2000, some

boreholes were drilled along a line on radii of 2.2, 5, 10, and 20m, up to the depth

of 4m. Specimens were taken out from each 0.5m depth interval. These specimens

were used to measure total suction with transistor psychrometer technique. Also,

the moisture content of specimens was measured, using oven drying method. The

whole results are presented by Jaksa et al.49
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Table 1. Values of the parameters used in the simula-
tion of the single gum tree.30

Parameter Value Comments

Tp 9mm/day After Indraratna et al.
rmax 17m 10 < rmax < 20
zmax 9m After Indraratna et al.
R 15m After Indraratna et al.
r0 8m Within the proposed range
z0 3m After Indraratna et al.
Kz 8 Calibrations
Kr 5 Calibrations
ξ 3 Calibrations
ψan 4.9 kPa After Indraratna et al.
ψd 40 kPa After Indraratna et al.
ψw 3000 kPa After Indraratna et al.

To verify the proposed formulation, the suction around the tree is modeled.

Hence, the tree is let to extract water from its root region until it reaches equi-

librium condition. As reported by Indraratna et al.,39 the groundwater table is

at 61.2m depth. We analyze a cylinder with radius of 20m and depth of 20m

in order to model the two-dimensional axisymmetric single tree water uptake

problem (the soil is assumed to be homogeneous). We assume that the amount

of water inflow equals the amount of moisture evaporated from the soil sur-

face. The parameters used in this modeling are given in Table 1. Using the val-

ues of Tn and R we can simply calculate the amount of water that this tree

can extract from the soil while there is no water restrictions; a 6.4m3/day dis-

charge is very significant. Figure 16 shows the water retention curve suggested by

Indraratna et al.39 for the problem. Furthermore, Indraratna et al. suggested a

relationship to calculate the soil permeability in this problem which is presented

below39:

K = ks × S3
r , (131)

Fig. 16. Water retention curve used for this simulation32 (reproduced after Indraratna et al.30).
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Fig. 17. Comparison of matric suction change results of present study32 and the results of simu-
lation done by Indraratna et al.30

where ks = 5 × 10−9m/s. Also, as suggested by Indraratna et al.39 the void ratio

is assumed to be unity, and the Poisson’s ratio of 0.3 is applied in the simulation.

The state surfaces of void ratio and degree of saturation are calibrated based on

the available known parameters for the stress range of the problem.

It is observed in the numerical simulation that after one year of root water

uptake, the matric suction value in different points of the soil near the tree reaches

equilibrium condition and the changes become negligible during time. Hence, the

matric suction results of one-year period simulation could be a good estimation

of the reality. Matric suction change results obtained from the authors’ model is

presented in Fig. 17 in comparison with the results of the same simulation done

by Indraratna et al.39 Also, Fig. 18 depicts the measured total suction around

the tree, reported by Jaksa et al.49 Note that Fig. 18 is produced by Indraratna

et al. doing interpolation between four measured values for each depth interval. It

should be pointed out that both in this study and in the study by Indraratna et al.,

it has been assumed that the volume of moisture evaporated from the soil surface

equals the volume of water inflow. Moreover, in both studies, temperature variation

during time is neglected. These assumptions are made because of the lack of field

measurements.

It can be seen that numerical simulation procedure, proposed by the authors,

has been successful in estimating the trend of suction production around the tree.

The maximum change in suction has occurred at 3m depth and in lateral distance

of 8m from the tree axis, which is within the range determined by Jaksa et al.; this

is what was expected from the simulation, and is confirmed by the measurements.
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Fig. 18. Total suction change measurements32 (reproduced after Jaksa et al.30).

The trend shows that the matric suction changes most significantly at (r0, z0),

where we have maximum root water uptake, and the change reduces as it nears the

tree axis. Also, at a lateral distance of 20m from the tree trunk the matric suction

has not experienced any changes both in the simulation and in the measurements.

Although it seems that the formulation presented in this paper has been more

robust than that of Indraratna et al.39 in modeling the trend and magnitude of

suction change around the tree, there are some discrepancies between the simulation

and the measurements. First, in the measurements, the suction change is much

lower near the tree trunk than it is in the simulation. The probable reason for this

difference is proposed by Indraratna et al. as the suction-reducing effect of irrigation

near the tree trunk which is neglected in this study. The second disparity is that

the real change of suction at lower depths is less than what is estimated by the

authors’ model. Soil heterogeneity would be the first reason. Moreover, we have

neglected the effects of irrigation and water rainfall on reducing the matric suction.

And finally, most importantly, it should be noted that water retention curve and

unsaturated soil permeability relationships proposed by Indraratna et al.39 are just

approximations for typical clay soils and are not measurement based.

6. Thermohydrochemomechanical Coupling

In this part an extension of the above-mentioned model is presented in order to

include the chemical effects and their interactions with the other phases. In this
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extension the advection, dispersion, diffusion of contaminant, and some basic chem-

ical interactions between the liquid phases and soil are considered. The governing

equations in terms of soil displacements, water and air pressure, temperature, and

nonreactive water solute concentration of contaminant are written. The final non-

linear partial differential equations are solved by finite element method. A set of

equations of this part are integrated in θ-Stock by Ghasemzadeh and Gatmiri.50

6.1. Field equations

Equilibrium equation and constitutive law can be written as mentioned before.

With a new term related to the rate of concentration of pollutant (LCdC):

d(σij − δijpg) = Ddε− Fd(pg − pw)− CT dT − LCdC , (132)

LC = DD−1
c with D−1

c = βcm in which βc =
1

1 + e

∂e

∂(C)
,

where σ is stress tensor, pg is pressure of gas; pw is pressure of water, and the other

terms are defined in Eq. (36). In this modeling, the state surface concept already

used in THM modeling has been extended to include chemical solute concentration

coupling effects with the other variables. The state surfaces of void ratio (e) and

degree of saturation (Sr) are therefore of the form

e =
1 + e0

exp[ [A]1−m/Kb(1−m)] exp(ce(T − T0))
− 1 ,

A = ae

(
σ − pg
patm

)
+ be

(
1− σ − pg

σc

)(
pg − pw
patm

+ ξ
Pos

Patm

)
,

(133)

Sr = 1− [as + bs(σ − pg)][1 − exp(cs(pg − pw))]

× exp(fs(C − C0)) exp(ds(T − T0)) , (134)

σc is preconsolidation stress, Kb, m, ae, be, ce, ζ, as, bs, cs, ds, fs and ds are the

parameters of void ratio and degree of saturation state surfaces.

Chemical species transport and their interactions with the other phases can be

expressed in mass conservation equation as

∂(θC)

∂t
=

∂

∂xi

(
D
∂(θC)

∂xj

)
− ∂

∂xi
(viθC) + qrCr +

∑
Rn , (135)

∑
Rn = −ρb

∂Cs

∂t
−K1θC −K2ρbCs , (136)

where C is the concentration of contaminant; Cs is the concentration of contam-

inant in solid phase; vi is water velocity in direction i; qr and Cr are discharge

and concentration of source; D is dispersion coefficient; ∆b is bulk density of soil;

and K1 and K2 are decay coefficients of solved and adsorbed concentration. Dif-

ferent geochemical models are used to express the relation between Cs and C as

linear sorption, Freundlich sorption, Langmuir sorption, and Lungmuir two-surface
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Table 2. Necessary parameters relevant
to Arands et al. (1997) experiment.39

Parameter Value

Temperature (◦C) 21
Diffusion of toluene (m2/s) 4.2e−6
Water content (w%) 6.7
Relative density (Gs) 2.52
Porosity (n) 0.5

sorption. Dispersion coefficient (D) is a function of molecular diffusion (Dm) and

hydromechanic dispersion:

D = Dm + a(θ)v , (137)

where v is mean velocity of water.

6.2. Physical modeling by Arands et al. (1997)

Arands et al. (1997) investigated the transport of two pollutants named toluene

and nitrobenzene through the unsaturated soil. In this paper, toluene transport is

chosen to be numerically analyzed using the θ-Stock software.

To establish the experiments, an apparatus was built by Arands et al. (1997).

A cylindrical soil sample with a height of 16 cm and diameter of 7.5 cm was

remolded and placed inside the apparatus chamber. Then, adequate amount of

toluene solvent was provided inside the reservoir of apparatus. Solvent vapor along

with air was blown through the unsaturated porous soil and the solvent was splashed

over sample surface with a specific rate. Consequently, the solvent flow through

unsaturated soil was established in both liquid and vapor phase.

Some necessary parameters relevant to soil sample and experimental medium in

Arands tests are provided below.

6.3. One-dimensional modeling of pollutant transport through

unsaturated porous medium

A one-dimensional numerical model is developed and analyzed using data men-

tioned in Table 2. The geometry of model has been shown in Fig. 19. Displacement

of nodes in x- and y-directions and temperature for all nodes are restricted in this

model.

The upper and the lower sides of the model are isolated from water flow. A

pollutant concentration of 5.4mol/m3 has been injected to the model from the

right side.

State surfaces for void ratio and degree of saturation are introduced to a software

based on physical conditions of experiment.

The results of both Arands’ experiment and numerical analysis of θ-Stock code

are presented in Fig. 20 through the concentration–time graph.
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Fig. 19. Geometry of the problem.
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Fig. 20. Concentration–time graph — Model based on Arands et al. (data from Ref. 39).

7. Conclusion

The software for the finite element analysis of multiphase porous media was pre-

sented and discussed.

The exchange of moisture and heat between a multiphase soil and an atmo-

sphere layer is simulated. The latent and sensible heat transport equations and

consequently the moisture equations are considered. The climatic measured factors

such as wind, temperature, precipitation, humidity, and radiation are taken into

account.

A set of equations have been integrated in finite element code of θ-Stock in order

to carry out a fully coupled simulation of the effect of vegetation water uptake in

unsaturated porous media. The results of the simulations showed that trees have the

potential to severely change the soil moisture and matric suction; this change is at

a lateral distance from tree trunk. Also, they can make settlement in their vicinity
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which would have destructive effects on their nearby structures especially during

drought periods that atmospheric precipitation does not suffice the vegetation water

demand.

A mixed damage model based on the use of independent state variables (net

stress, suction, and thermal stress), combining phenomenological and microme-

chanical concepts is presented. Giving a description of the thermohydromechanical

phenomena occurring in the EDZ in a rigorous thermodynamic and mathematical

frame is a challenge which is formulated in θ-Stock.

In this paper after a brief description of governing equations of THCM behavior

of multiphase porous media, the transfer of chemical solute concentration in an

unsaturated deformable medium was studied by using the θ-Stock finite element

code.

In each part the results of numerical modeling are compared with the available

experimental test results in order to validate the model.
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vides pour un modèle non linéaire élastique des sols non saturés — Code U-Dam,
Proc. Unsat. Soils, eds. E. E. Alonso and P. Delage (1995), pp. 1049–1056.

2. B. Gatmiri and P. Delage, A formulation of fully coupled thermal-hydraulic-
mechanical behavior of saturated porous media — Numerical approach, Int. J. Numer.
Anal. Meth. Geomech. 21 (1997) 199–225.

3. B. Gatmiri, Analysis of fully coupled behavior of unsaturated porous media under
stress, suction and temperature gradient, Final Activity Report of CERMES (1997),
p. 58.

4. B. Jenab-Vossoughi, Etude numérique de la modélisation thermo-élasto-plastique des
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