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Abstract— We have developed an approach that can be used 

by mission designers to determine whether or not a performance 

guarantee for their mission software, when carried out under the 

uncertain conditions of a real-world environment, will hold 

within a threshold probability. In this paper we demonstrate its 

utility for verifying multirobot missions, in particular a 

bounding overwatch mission. 

I. INTRODUCTION 

Deploying a team of autonomous or semi-autonomous 
robots to search for and locate a Chemical, Biological, 
Radiological, or Nuclear explosive threat provides the 
advantages of keeping human personnel remote from danger 
and also freeing the robots to make progress in the absence of 
regular supervisory communications. However, the extreme 
risk to the general population makes it incumbent on the 
designers of such missions to be able to give realistic 
performance guarantees of mission success.  We have 
developed an approach that can be used by mission designers 
to determine whether or not a performance guarantee for their 
mission software, when carried out under the uncertain 
conditions of a real-world environment, will hold within a 
threshold probability. The paper builds upon our previous 
work in single robot missions [5][11].The contribution of this 
paper is the verification for multi-robot missions. 

Our prior work, based on a process algebra methodology, 
addresses the verification of behavior-based robot programs 
without the discretization step seen in some work [7] and the 
computational complexity of a traditional model checking 
approach [6]. However, that work was single robot; The 
multirobot problem is more difficult since the robots can be 
interleaved in any order, introducing combinatorics which 
greatly complicate verification [18]. However, we show in 
Section IV that by leveraging the termination conditions of a 
recursive process definition our prior approach can be 
extended to handle multirobot mission verification. Our 
approach to verification does not include explicit search of all 
possible interleavings. We present the verification of a two 
robot, bounding-overwatch scenario using the new theoretical 
contribution. In addition to the verification of the performance 
guarantee for this example, we also present an experimental 
validation of this mission, and show that our prediction is 
consistent with the validation results. 

II. PRIOR WORK 

Several methods have been developed to address the issue 
of general purpose software verification. Model-checking [6] 
is based on an exhaustive exploration of the states that can 
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result from execution of the software. A critical issue in model 
checking approaches is potential state space explosion. 
Another approach is deductive verification [16] where 
properties are proved about the software using automated 
theorem proving techniques. An important issue to address for 
theorem proving techniques is how the assertions to be proved 
are generated.   

Verification of robot mission software adds challenges to 
the general software verification problem. A robot program 
does not execute based on static inputs, but rather interacts 
with an asynchronous and concurrent environment model in 
an ongoing fashion. Because the end result of robot behavior 
involves motion and action in the physical world, there may 
be a necessary continuous nature to some aspects of the 
problem. The lack of full information about the nature of the 
environment in which a mission is to be carried out means that 
significant uncertainty must be modeled or verification results 
will not be realistic. 

Brahman [3] uses model checking to automatically verify 
safety and system failure properties of programs specified 
with the MDS (Mission Data System) architecture. Using 
hybrid automata to address continuous spaces, she leveraged 
MDS to structure the problem to limit state explosion. Napp 
and Klavins [15] introduce a guarded command language 
CCL for programming and reasoning about multirobot. They 
address uncertainty by adding rates and exponential 
probability distributions to CCL, and address the multirobot 
issue by inspecting stochastic population properties. 

Automatic controller generation [1] shares some of the 
characteristics of automatic verification. The starting point is 
a natural language description of the desired behavior [7] and 
the objective is to generate a correct-by-construction 
controller, typically exploiting model-checking techniques. 

Multiagent systems (MAS) verification is addressed by 
Kouvaros et al.[18] in a model-checking framework. They 
address the combinatoric implications by restricting attention 
to systems where checking a (small) finite number of agents 
suffices to prove general properties. In contrast, we leverage 
the structure of behavior-based missions that are the input to 
our systems to address the combinatorics. 

III. VERIFICATION SYSTEM ARCHITECTURE 

Robotics has been considered as a key technology area to 
safeguard our society against attacks with weapons of mass 
destruction (WMD) [4]. However, due to the high-risk nature 
of counter-WMD (C-WMD) missions, failure cannot be 
tolerated. A robot team’s success in a C-WMD mission has to 
be ensured before execution such that the robots would “get it 
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right the first time”. We now review the framework that we 
developed to serve this purpose [12]. 

The verification framework is built upon MissionLab, a 
behavior-based robot programming environment [13], Figure 
1. MissionLab is a user-friendly environment for designing 
multi-robot missions. The front-end of MissionLab is a 
usability-tested graphical robot behavior programming 
interface, where robot programs are created as finite state 
automata (FSA). The back-end of MissionLab provides a 
library of primitive behaviors (e.g., GoToGoal) that can be 
assembled into higher-level complex missions (e.g., a 
biohazard search behavior) in the form of FSAs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Verification System Architecture 

The core of the verification framework is VIPARS 
(Verification in Process Algebra for Robot Schemas), a 
process algebra based approach to verifying robots’ mission 
success. To initiate the verification of a multirobot mission, the 
robot programs in MissionLab’s CNL (Configuration Network 
Language) representation [14] are translated to PARS 
(Process Algebra for Robot Schemas), the language 
understood by VIPARS. The robot operator also needs to 
provide VIPARS with models of the robots, the sensors each 
robot is equipped with, and the environment the robots are to 
operate in, along with the performance criteria that the mission 
is required to meet. VIPARS then provides the operator with a 
performance guarantee for the mission based on how well the 
provided performance criteria were met.  

By inserting VIPARS into the traditional program-execute 
loop of robot programming, it effectively forms a feedback 
design loop whereby the operator can iteratively refine the 
robot program based on information provided by VIPARS 
(e.g., time criterion is not met). Importantly, for critical 
missions such as C-WMD, operators can avert failures by not 
undertaking missions that are likely to fail. 

IV. FORMAL MODEL 

The MissionLab program, environment models, and 
performance criteria are all uniformly represented in PARS.  

A. PARS 
A brief overview of PARS is given here; for more details 

see [8]-[12]. The semantics of a process in PARS is a port-
automaton extended with duration and partitioned end-states 

(separate abort and stop). A process C with initial parameter 
values u1,u2,…, in port connections i1,i2,…, out connections 
o1,o2,…, and final result values v1,v2,… is written: 

 Cu1,u2,… (i1,i2,…)(o1,o2,…)v1,v2,…

The variables of the process are initialized by u1,u2,… 
The final result values v1,v2,…can be used to initialize other 
processes. The input and output connections indicate how C 
communicates with other, concurrent process. 

Processes are either basic or composite, where a 
composite process is defined as a composition of other 
processes. A (conditional) sequential chain is composed using 
the ‘;’ operator; a sequential chain will terminate once each 
process in turn stops, or if any process aborts. Other 
composition operations include parallel-max ( ‘|’ ) and 
parallel-min (cf. LOTOS  disabling[2]) ( ‘#’ ) compositions. 
Further notation is explained as it is used in later sections. 

B. CNL to PARS 
In MissionLab a designer specifies the robot mission using 

as Finite State Automaton (FSA) (example is shown in Figure 
5). Each state in the FSA involves the execution of a behavior 
which may result in many sensing and motor actions and 
interaction with the environment. Hence verification must 
occur at a greater level of the detail than the FSA.  

 

 

 

 

Figure 2:GoToGuarded Move CNL Network 

Behavior states in the FSA are translated into more 
detailed networks of CNL processes with dataflow 
connections. For example, the GoToGuarded behavior is 
compiled into a network, as shown in Figure 2 (omitting 
lower-level data-flow nodes)which includes potential-field 
based obstacle avoidance.  

A set of basic PARS processes has been defined to 
implement CNL nodes. These take similar parameters to the 
data-flow nodes and can be connected similarly. The 
GoToGuarded behavior is translated to PARS as a parallel 
composition of communicating processes as in Figure 2: 

 GoTGg(p,ob)(v) =  MoveTGg(p)(c1)      | 
                                                   AvoidObp(ob)(c2)       | 
                                                   Noiseq()(c3)                | 
                                                   Coopw(c1,c2,c3)(v) 

The translation from CNL to PARS is currently done by hand 
using a template. An automated translator is being 
constructed. This topic is touched on again in Section VI. 

C. System Description 

The system to be verified consists of a robot program, 
translated from CNL to PARS, represented as a concurrent, 
communicating composition with the robot, sensor and 
environment models. A behavior-based program behaves 
dramatically differently in different environments, so robot, 
sensor and environment models are a crucial part of the 
system to be verified.  
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The robot program generates control commands for the 
robot, and queries information from physical sensors. The 
robot and sensor PARS models accept the same input 
commands and produce the same outputs through input and 
output ports. However, the relationship between the controller 
commands, the state of the environment and the sensor signals 
is determined by which models the user has chosen for 
verification. In prior work we have explored a number of 
models [8][9]; our focus here is on the problem of automated 
verification of multirobot missions given such models. 

Consider a two robot program: the PARS program for the 
first robot is represented by the process PR1 and for the 
second by PR2. The processes send control signals to and 
receive sensory information from their respective robot 
models Robot1 and Robot2 using ports. As a running 
example, consider the case where each robot receives position 
and generates velocity information: 

Sysr,p,q,s = PR1r (cp1)(cv1)       | 
                                  PR2p (cp2)(cv2)       | 
                                  Robot1q (cv1)(cp1)  | 
                                  Robot2s (cv2)(cp2) 

 
(2) 

 

 

 

 

 

Figure 3: Two Robot Example System 
Figure 3 is a graphical representation of (2), showing how 

the connections are made between robot program and robot 
model processes (the arrows) and also how the system 
parameters (p,q,r,s) relate to the parameters for each process. 
These parameters are a component of internal state for each 
process, where the initial position might be a parameter for 
the robot models.  

In the case where all the processes in Sys are tail-recursive 
(TR) definitions (e.g. (3) below), then it may be possible to 
rewrite Sys itself as a TR process [10][9] where for 
convenience we denote all parameters with u: 

Sysu  =  Sys’u; Sysf(u) (3) 

The criterion developed in [10] for whether (3) is possible, 
is that the port operations in the TR body for each of the 
components of Sys can be matched up to produce a single TR 
body, Sys’. The advantage of (3) is that it enables efficient 
verification [9][11]. This operation has complexity O(npnio) 
where np is the number of component processes and nio is the 
number of port communication operations per process.  

In one execution of Sys’ the system parameters u are 
transformed to f(u) by calculations performed within 
component processes and by transfer of values by port 
communications between processes. Finding f(u) just requires 
following the connections between component processes 
[11]and has complexity O(nvnpnio) where nv is the number of 
system parameters.  

D. Performance Criterion 

The construction of  the system period process, Sys’ and 

the system flow function f(u), are the prerequisites established 
in [10] for the verification of whether Sys satisfies a 
performance guarantee G, also specified as a process network. 
We argued that process algebra is just as intuitive a language 
to specify event orderings [2] as a temporal logic language 
(e.g., Linear Temporal Logic (LTL)). Since both program and 
specification are process networks, the bisimulation result 
relating property and program relates a more abstract 
specification of a process network to a more detailed 
implementation, as generalized by De Nicola [16] 

Def. 1: PQ denotes process P and process Q are 
observationally equivalent by a specification implementation 
bisimulation. 

 Of course, in a logic it is possible to concisely proscribe, 
to state what should not hold, whereas a process algebra is 
prescriptive. We shall show that in our case this is not a 
limitation. Let us look at some examples. 

A performance criterion network is written using process 
composition operations and basic processes along with 
constraints on the values of the parameters to the processes. 
An example of a simple liveness criterion is that robot r1 
reach a specific location; this is written as follows:  

Delayt1 ; (Delayt2 # Atr1,p) 
t1 T, |p-L|< 

(4) 

The basic process Atr,prepresents robot r at position p. 
Specification (4) insists that r1 arrive at location p by time T 

at the latest and the final position be within  of location L. 
Notice there is no constraint on t2. 

Example (5) specifies a two robot criterion. In this case, 
robot r1 must arrive at its location before r2 arrives at its 
location. Process variables in our framework may be random 
variables [11], and an example constraint on a random 
variable can be its probability of meeting some condition. In 
this case, the criterion specifies that the location of robot r1 
must have at least an 80% probability of being within a 
distance R of location L1 by time t1. 

Delayt1 ;  (Delayt2 # Atr1,p) | 
   Delayt3 ;  (Delayt4 # Atr2,q) 

t1,t3 T, t1<t3,  
       P (|p-L1|<R)>0.8, P (|q-L2|<R)>0.8 

(5) 

Finally, we consider a safety criterion: that the two robots 
never approach too closely. Notice this involves proscription, 
and it is handled by moving the negation to the constraint on 
the variable values. For all times greater than 0, the 

probability of the robots being  must be at least 80%.  
Delayt1 ;  (Delayt2 # Atr1,p) | 

    Delayt3 ;  (Delayt4 # Atr2,q) 
t1,t3>0, P (|p-q|>)>0.8 

(6) 

We define a performance criterion as follows: 
Def. 2: G(P,C) is a performance criterion, where 

 P is the process network associated with the criterion, 

 C is the set of constraints on the process variables in P. 
If u are the variables in P, then C(u) holds iff the 

constraints in C hold on the variable values of u. As usual, a 
safety criterion,(6) is treated as a negated liveness condition.  

Def. 3: A performance criterion is negated by negating the 

constraint on variable values: G(P,C) = G(P,C) 

V. VERIFICATION OF MISSIONS 

When Sys consists of only TR processes every 
computation of Sys can be expressed as a process network 

PR1 Robot1 

               cp1 

          cv1 

PR2 Robot2 

            cp2 

             cv2 

r 

p 

q 

s 



  

(Sys’)n and the values of the system variables are the solution 
of fn(uo) where f(u) is the system flow function, u0 are the 

initial system parameter values and n0. Let P sat Q indicate 
that process P satisfies performance criterion Q, then:  

Def. 4: Sys satisfies G(Q,C) iff, for n0 
 (Sys’)n sat Q, and C( fn(uo)) 

Def. 5: P abs S is the process in which any processes in P 
not named in the set S are hidden by the internal action i. This 
can be defined recursively: 
 (P  ; Q) abs S = (P  ; i)  if Q S 
 (P  | Q) abs S = (P  |  i)  if Q S 
 (P # Q) abs S = (P #  i) if Q S 
For convenience, we also write P abs Q to mean the 

process where any processes not named in Q are hidden. 
Def. 6: Compositions of internal actions can be grouped: 

i ; i = i,     i | i = i     and    i #i = i 

Given a performance criterion G(Q,C) and Sys to be 
verified, then it is first necessary to evaluate (Sys’)n sat Q.  (See 
[9] for calculation of Sys’). This is accomplished in two steps: 
(Sys’)n abs Q is calculated and hidden actions grouped, and 

then ((Sys’)n abs Q)Q is determined.  
We have implement a simplified version of this procedure 

for speed: (Sys’)n is projected to the set of processes in Q 

which we write (Sys’)nQ(or again (Sys’)nS where S is the 
set of processes in Q). This produces a version of (Sys’)n abs 
Q in which all internal actions have been removed, and this is 

checked for composition structural equivalence s with the 
performance criterion.  

Def. 7: P s Q holds iff 

 P=Q or P= P1  P2, Q = Q1  Q2 where,  
P1 sQ1, P2 sQ2, = {‘;’,’|’,’#’} 

Structural equivalence is more restrictive (P sQ  P Q 
but not vice-versa) but is fast. Note that when compared 
structurally in this way, a program and specification may be 
equivalent on process names but differ on the parameters to 
the processes. For example, if we consider just the first part 
of the single robot move example in [9] we have the 
performance criterion: 

Q  = Delayt1; (Delayt2#Ata) 
And after projection we have: 

    (Sys’)nQ= Delay(n-1)t; (Delayt #Atfn(p)) 

In this case ((Sys’)nQ)sQ then the parameters to each 
process must be equal; i.e., t1=(n-1)t, t2=t and a = fn(p), 

where t and p are constants. Thus, establishing P sQ posts a 
set of constraints on the parameter values which we write as 

C which must also be met for the program to satisfy the 
performance criterion.  

The final step in verification is to determine whether the 

constraints C and C are satisfied by the system flow function: 

C C( fn(uo) ). This constraint problem can include random, 
continuous variables, and in [10] we map this to a filtering 
problem for a hybrid Dynamic Bayesian Network (DBN).  

A. Non-TR Systems 

In a multirobot, behavior-based system, we expect that the 
robot will continually respond to affordances in their 
environment. To handle this, we need to support non-TR 
processes in the concurrent communicating composition of 
the system process. In [12] we consider a waypoint mission, 

and in [5] a search and acquire C-WMD mission. Both of 
these require a single non-TR process in the system, and we 
extend our definition of satisfy to cover this.  

Let P = P1 ; P2 ; P3 ... Pm be the non-TR process in the 

system Sys. Let Sys1 be Sys, where P is replaced by P1, and 

so forth for Sys2 through Sysm. Let f1 be the Sys1 flow 

function, so forth for f2 through fm. In that case: 

Def. 8:Sys satisfies G(Q,C) iff for n1,n2,..,nm0 
 (Sys1’)n1; (Sys2’)n2 ; .. ; (Sysm’)nm sat Q, and 
 C(f1n1(uo)), f2n2(u1), fmnm(um-1)),  

where u1= f1n1(uo) and so forth for u1 through um-1. This 
framework breaks the problem into a sequence of TR 
subsystems, addressing each one in turn to determine if it 
fulfills a portion of the performance criterion. For a waypoint 
example, the subsystems are the individual moves and the 
components of the criteria are the individual location 
constraints [12]. For a C-WMD search and acquire mission, 
the subsystems are the search component and the acquire 
component, and the components of the criterion are the target 
detection probability and final target location constraint [5].  

However, a difficulty of multirobot systems is each agent 
will have one (or more) non-TR mission processes. Thus for 
k agents, this definition of satisfy would require km different 
sequences to be tested! 

A TR process terminates when its body aborts (by the 
definition of ‘;’). Basic condition processes are basic 
processes that evaluate a condition on their arguments; 
aborting when their condition is true, stopping otherwise.  

Def. 9: The abort condition of a process (P) is defined by: 

(P) = cond(P), if PCOND, 

(P | Q) =  (P)  (Q) 

(P # Q) =  (P)  (Q) 

(P ; Q) =  (P) ; (Q) 

Where COND contains EQa,b, NEQa,b, LTa,b, 

GTRa,b etc., and where cond(P) is the comparison condition 

for the basic process, e.g., cond(EQa,b) is (a=b) and so forth. 
Given the body of a TR process we can write the abort 
condition for the process in terms of the condition processes. 

Let Sys be composed of k non-TR processes, each of 
which is m TR processes in sequence. We can assume 
sequential composition without loss of generality, since if at 
any point we have additional parallel or disabling 
components, they can be counted as additional non-TR 
components of Sys. We label the components Pij for non-TR 

component i{1...k}, sequential component j{1...m}.  
Our approach starts with Sys1 containing Pi1 and any other 

TR processes, R1,…,Rh. To know which components we need 
we evaluate (Sys1)n1 as before except that we use ⋁ Ω(𝐏𝑖1)𝑖  
as a performance criterion. When (and if) this is satisfied, 
Sys2 is then constructed from Sys1 with any Pi1 for which 

(Pi1) holds replaced by Pi2. We can now redefine satisfy:  

Def. 10: Sys satisfies G(Q,C) iff for n1,n2,..,nm0 
 (Sys1’)n1; (Sys2’)n2 ; .. ; (Sysm’)nm sat Q, where 
 Sys1=(P11|P21|...Pk1)|(R1...Rh) and 

Sys1 satisfies G(i,⋁ Ω(𝐏𝒊𝟏)𝑖 ), and 
 each subsequent system Sys+ is the previous system Sys- 

with each Pij for which (Pij) holds replaced by Pil, 
l=j+1, and C(f1n1(uo)), f2n2(u1), fmnm(um-1)). 

Note: In the case of random variables, each (Pij) can be a 



  

probabilistic condition. 

VI. VERIFICATION & VALIDATION OF A MULTI-ROBOT 

MISSION 

We now present the verification and validation of a 
Bounding Overwatch mission with two robots (Fig. 4), to 
illustrate the effectiveness of the VIPARS verification 
framework in providing performance guarantees for multi-
robot missions. Bounding Overwatch, or leapfrogging, is a 
military tactical movement that is used by units of infantry to 
move forward under enemy fire. During this operation, one 
infantry unit does the bounding (i.e., advancing forward) 
while the other unit does the overwatch (i.e., stay stationary 
and watching over the bounding unit). The idea is that the 
overwatch unit is in a better position to watch for danger and 
to engage the enemy than the bounding unit [17]. 

Figure 4 presents a simplified Bounding Overwatch 
mission with two robots (designated as Robot1 and Robot2, 
Pioneer 3-ATs), where the robots alternate in bounding (i.e., 
advancing forward) and taking the overwatch position (i.e., 
covering for the advancing robot). The motivation behind this 
mission is to get the robot team to the end of the hallway, 
where an object of interest (e.g., biohazard) might be located, 
and to avoid detection by enemies by using Bounding 
Overwatch. 
 

 
 
 
 
 
 
 
 
 

Figure 4: Bounding Overwatch 

 

Figure 5: FSA for Robot1 

The behaviors of Robot1 and Robot2 for carrying out the 
Bounding Overwatch mission are specified in MissionLab as 
FSAs; shown in Figure 5 for robot1. The FSA for Robot2 is 
similar to Robot1’s and is not shown for brevity. The starting 
location (in meters) for Robot1 and Robot2 is (5.5, 5.0) and 
(6.5, 5.0) respectively; and the goal location for Robot1 and 
Robot2 is (19.75, 18.0) and (20.0, 17.5) respectively. Both 
robots use dead reckoning with shaft encoders and gyros to 

determine their positions. Each robot follows a series of 
waypoints, communicating a message to the other robot when 
it reaches its overwatch position. The mission consists of a set 
of behaviors (i.e., GoToGuarded, Spin, Stop, Notify) and 
triggers (i.e., Notified, AtGoal, HasTurn, MessageSent) for 
state transitions. 

The performance criteria for the Bounding Overwatch 
mission are: 

1. Rmax – the success radius; each robot is required to be 
within this radius (e.g., 2.0 m) of its goal location in the 
physical environment 

2. Tmax – the maximum allowed time; the mission is 
required to be completed under this time limit (e.g., 200 s) 
The Bounding Overwatch mission is only considered 
successful when both of these criteria are met. Thus, the 
overall mission success can then be defined as:  

Success = (r1≤Rmax) and (r2≤Rmax) and (t ≤Tmax) (7) 

Where r1 and r2 are Robot1’s and Robot2’s relative distances 

to their respective goal locations. 
In the following subsections, we first describe the 

verification of the Bounding Overwatch mission with 
VIPARS. Then the details of validation of the mission with 
physical robots are presented. The results of verification and 
validation are then compared and discussed. 

A. Verification 

The CNL to PARS translation from the mission FSAs 
(e.g., Figure 5) yields a Mission process that includes the 
translated instructions for Robot1 and Robot2. A small 
portion of the Mission process is presented below: 

1.Mission   (piM,piM2,obM,obM2,hM,hM2,odM,odM2) 

2.      (vo,vo2) =  

3.                      ... 

4.  (Is_at_goalG2B(piM) ;  

5.   Put_messageS1(cG2))                  | 

6.  (Got_messageS1(cG2) ; (            

7.   Coop1,1,1,G3A(piM2,cV3,cC5,cC6)(vo2))  | 

8.         Move_toG3A,drop2500(piM2)(cV3))    | 

9.   NoiseZ0,G3A(piM2)(cC5))        | 

10.       Avoid_ObstaclesZ0,G3A(piM2,obM2)(cC6))) |   

11. (Is_at_goalG3A(piM2); 

12.  SpinG90(hM2)(vo2))          | 

13. (Is_at_headG90(hM2);  ( 

14.        Coop1,1,1,G3B(piM2,cV4,cC7,cC8)(vo2))  | 

15.  Move_toG3B,drop2500(piM2)(cV4))    | 

16.   NoiseZ0,G3B(piM2)(cC7))        | 

17.  Avoid_ObstaclesZ0,G3B(piM2,obM2)(cC8))) | … 

The Mission (controller) process inputs odometry and 
heading information while outputting a velocity for each 
Robot (environment) process; these are the port variables 
listed on lines 1 and 2. These carry information to and from 
the robot and sensor environment models. Trigger (basic) 
processes such as Is_at_goal and Is_at_heading (lines 4,6,11 
and 13) are used to switch the behavior state by triggering 
process networks corresponding to the CNL implementations 
of the FSA states and connecting them to the Mission ports. 
The implementation of GoToGuarded in Fig. 2 can be seen at 
various points (lines 7-10 and 14-17). 

The system process for this mission consists of the two 
robot models and the Mission process, similar to Figure 3 
except with a single controller process communicating with 
each robot over different ports: 

Robot2 

 

Robot1 

  

X 

Y 
Robot1 Overwatch Position 

Robot2 Overwatch Position 

 



  

Sys =  Mission(c1,c2,c3,c4, c5,c6,c7,c8)(c9,c10)  | 

Robot1P01,Z0,H0 (c9)(c7, c3, c5,c1)   | 

Robot2P02,Z0,H0(c10)(c8, c4,c6,c2) . 

For example, c9 and c10 are the port connections for the 
velocity output for Robot1 and Robot2 respectively (see line 
2 of Mission). The initial parameters to the robot processes 
fix the initial conditions for the verification. 

The two robot models transform velocity commands to 
generate odometry (q) and actual position (r) according to the 
much simplified template below, where both r and q are 
random variables represented using a Mixture of Gaussians 
representation [11]: 

Robotr,q (v)(p,d) = (Atr#Delayt 
#Outp,r#Outd,q# Invu) ; 

Robotr+u*z(u,t)*t, q+u*t. 
Where z(u,t) is a function that calculates the uncertainty due 
to the velocity u applied for a discrete time step time t using 
the calibration data collected for each robot. Odometry can be 
read from port d and is calculated as dead reckoning. The 
odometry position is used by the Mission process to calculate 
its motions. The actual position r is calculated as a probability 
distribution using the uncertainty z(u,t).  

The performance criterion for the Mission from the prior 
section is effectively eq. (5) but without ordering constraint.  

B. Validation 

Experimental validation of the Bounding Overwatch 
mission, introduced in the beginning of this section, is 
conducted to show the validity of the VIPARS verification 
result. Validation consists of running the mission on physical 
robots in the real environment and measuring the robot team’s 
performance with respect to the performance criteria Rmax and 
Tmax. The mission was run 100 times in an indoor lab 
environment with tile flooring, Figure 8. Both robots operated 
at a maximum velocity of 0.3 m/s; and they communicate with 
each other through the wireless network set up by a standard 
off-the-shelf router.  The following three performance 
variables were measured during each trial run: 

1. t – Mission completion time 
2. r1 – Robot1’s relative distance to its goal location  
3. r2 – Robot2’s relative distance to its goal location 

C. Results 

The goal of the verification framework is to serve as a 
decision support tool for human operators. While more 
research needs to be conducted to determine the best way to 
present performance guarantees to human operators under 
stressful situations, we present a preliminary representation. 
Instead of verifying the mission against a single specific point 
(i.e., a single (Tmax, Rmax) point), the mission is verified against 
a range of performance criteria values. We believe this would 
be more informative to the operator regarding the performance 
of the robot team in carrying out the operation. Furthermore, 
this could also demonstrate the robustness of VIPARS against 
a spectrum of performance criteria. 

Figure 9 shows the VIPARS verification and experimental 
validation results for the performance guarantee of the time 
criteria P(t ≤ Tmax), the probability that the bounding 
overwatch mission will be completed under the time limit, 
Tmax. Figure 9 shows that the VIPARS verification is 
consistent with validation result. The plot of verification 
versus validation of P(t ≤ Tmax), Figure 9 can be divided into 

three different regions:  
1. High Confidence (Unsuccessful) – the region of near 

zero verification error and the mission succeeds with near 
zero probability, or almost never succeeds 

2. Uncertain – the region where verification error is 
significantly greater than zero; verification error is defined 
as the difference between verification and validation 

3. High Confidence (Successful) – the region of near 
zero verification error and the mission with success 
probability approaching 1.0 and almost certainly succeeds. 

  
Robot2 is at the first overwatch 
position while Robot1 is bounding 
to the second overwatch position 

Robot1 is at the second overwatch 
position while Robot2 is bounding 
to the third overwatch position 

  

Robot1 is at its goal location while 
Robot2 is bounding to its goal 
location 

Robot2 is near the third overwatch 
position; Robot1 is about turn 90 
degrees counterlockwise and bound 
to its goal location 

Figure 8: Snapshots of the Bounding Overwatch Mission 

The Unsuccessful region informs the robot operator that if the 
performance criteria of the mission falls into this region, then 
the mission should be aborted or changed. For example, 
VIPARS verification of the time criterion, shown in Figure 9, 
informs the robot operator that the mission almost never 
succeeds under 180 s. Experimental validation of the time 
criterion, Figure 9, supports this interpretation (i.e., no 
validation run of the 100 trials completed the Bounding 
Overwatch mission under 180 s).  

 

Figure 9: Verification vs. Validation of Time Performance Criterion 
P(t ≤ Tmax) 
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The Uncertain region informs the robot operator that if the 
performance criteria falls into this region, then based on the 
acceptable threshold probability, she can decide to abort or 
execute the mission, although in general this area is to be 
avoided if possible. For example, if the mission is required to 
be completed under 200 s (i.e., Tmax = 200), which VIPARS 
verified to have 0.9 probability of success. Then if 0.9 is 
greater than the threshold probability, the robot operator could 
proceed to execute the mission. From Figure 9, we also 
observe that higher the threshold probability (i.e., the 
minimum acceptable probability of success), higher the 
confidence of verification (i.e., the verification error decrease 
and gets closer to the High Confidence (Successful) region). 
Due to the prevalence of error between verification and 
validation in this region it should generally be avoided. 

The Successful region indicates that if the performance 
criteria of the mission fall into this region, then the mission can 
be executed with high confidence that the robot team will 
almost surely get the mission right the first time. For example, 
Figure 9 tells the human operator that the robot team can 
complete the mission with close to 100% probability of 
success for Tmax≥225 s. This is supported by the validation 
result, as no validation run of the 100 experimental runs of the 
mission completed under 225 s.  

 

Figure 10: Verification vs. Validation of Spatial Performance 
Criterion P(r1 ≤ Rmax, r2 ≤ Rmax) 

Figure 10 shows the VIPARS verification and 
experimental validation results for the performance guarantee 
of the spatial criterion P(r1 ≤ Rmax, r2 ≤ Rmax), the 
probability that both robots will be within the Rmax radius of 
their respective goal locations. Again, the VIPARS 
verification is consistent with the result of experimental 
validation as shown in Figure 10. Similarly, the result of the 
verification and validation of P(r1 ≤ Rmax, r2 ≤ Rmax) can be 
divided into three different regions as we have done for the 
time criterion above. 

Figure 10 informs the robot operator to abort the mission 
if both robots of the Bounding Overwatch mission are required 
be within a radius of 1.5 m or less of their respective goal 
locations, since the mission almost never going to succeed in 
meeting the requirement. Additionally, depending on the 
acceptable threshold probability, the robot operator can make 
the decision to deploy or abort by evaluating the probability of 
success for Rmax within the uncertain region in Figure 10. 

Lastly, the robot operator can infer that the mission almost 
surely will get it right for Rmax greater than and equal to 2.5m.  

a 

 

b 

 
Figure 11: Verification (a) and Validation (b) of Spatial and Time 

Performance Criteria 𝐏(𝐭 ≤ 𝐓𝐦𝐚𝐱, 𝐫𝟏 ≤ 𝐑𝐦𝐚𝐱, 𝐫𝟐 ≤ 𝐑𝐦𝐚𝐱) 

So far we have examined the two performance criteria 
separately. However, the Bounding Overwatch mission is only 
successful when both criteria are met. Figure 11 shows the 
VIPARS verification and experimental validation results for 
the performance guarantee of the overall mission 
successP(t ≤ Tmaxr1 ≤ Rmax, r2 ≤ Rmax), the probability 
that both performance criteria, Tmax and Rmax, are met. The 
verification result is consistent with experimental validation. 
The dark red surface area in Figure 11 corresponds to the High 
Confidence (Successful) region while the dark blue surface 
area corresponds to the High Confidence (Unsuccessful) 
region. The result allows the operator to query the verification 
system for probability of overall mission success for different 
combination of performance criteria (e.g., spatial and time 
criteria for Bounding Overwatch). 

 

Fig. 12: Verification & Validation of Time Criterion at various Rmax 
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Figures 12-13 examine further how different combinations 
of performance criteria affect the overall mission success and 
verification error of VIPARS. These figures are basically 2D 
slices of the 3D surface plot in Figure 11. Figure 12 shows 
verification and validation of the time criterion at various 
spatial criteria. Comparing this to Figure 9, we see that while 
different values of Rmax has no effect for the High Confidence 
(Unsuccessful) region, it significantly affects the probability of 
mission success in the High Confidence (Successful) region. 
More importantly, it also introduced significant verification 
error in this region. However, the values of Rmax that 
significantly affects mission success and verification error are 
the Rmax’s in the Uncertain region, Figure 10. This result 
reinforced our view that the Uncertain region should generally 
be avoided. 

 

Fig.13: Verification & Validation of Spatial Criterion at various Tmax  

Fig. 13 shows verification and validation of the spatial 
criterion at various time criteria. Tmax has a significant impact 
on the accuracy of verification in the Uncertain region. Figure 
13 shows a large verification error for Tmax = 190 s. On the 
surface, this error in the probability of overall mission success 
is due to the verification error of P(t ≤ Tmax) at Tmax =190 s 
in Figure 9 (at the beginning of the Uncertain region); 
however, the underlying culprit is likely the models of robot 
motion uncertainty that VIPARS used for verifying the 
performance criteria. Nonetheless, the time window for large 
verification is small (i.e., approximately 5 s); and the 
verification error decreases as Tmax increases (e.g., Tmax =195 
s). Furthermore, VIPARS is more conservative than the 
validation result for Tmax ≥195 s in the Uncertain region (e.g., 
VIPARS over-predicted the probability of success at 
Tmax =190 s, and under-predicted at Tmax =195 s). A 
conservative performance guarantee is desirable for critical 
multi-robot missions where failures could have catastrophic 
consequence. 

VII. CONCLUSIONS 

In this paper we have extended our approach to 
establishing performance guarantees for autonomous, 
behavior-based missions to handle the problem of multiple 
robot missions. Rather than exploring all possible action 
orderings for a mission expressed as a sequence tail-recursive 
(TR) system, each system is verified in sequence, and the end 
conditions used to determine which system to verify next. For 

systems with random variables this translates to looking at the 
maximum likelihood next action each time. 

A bounding overwatch mission with two robots was 
verified and validated to illustrate the effectiveness of 
VIPARS in verifying multirobot missions. Rather than 
verifying one particular criterion point as in prior work, the 
mission is verified against a range of performance criteria 
values. We believe this would be more informative to the 
robot operator regarding the performance of the robot team in 
carrying out the operation. It also demonstrates the robustness 
of VIPARS against a spectrum of performance criteria. As 
prior work, verification results were validated against 100 
trials of the mission on two Pioneer 3AT robots. 

Probabilistic algorithms such as SLAM are a key part of 
modern robot software. Future work with VIPARS will 
involves performance guarantees for missions with 
probabilistic software. 
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