



Abstract— We have developed an approach that can be used

by mission designers to determine whether or not a performance

guarantee for their mission software, when carried out under the

uncertain conditions of a real-world environment, will hold

within a threshold probability. In this paper we demonstrate its

utility for verifying multirobot missions, in particular a

bounding overwatch mission.

I. INTRODUCTION

Deploying a team of autonomous or semi-autonomous
robots to search for and locate a Chemical, Biological,
Radiological, or Nuclear explosive threat provides the
advantages of keeping human personnel remote from danger
and also freeing the robots to make progress in the absence of
regular supervisory communications. However, the extreme
risk to the general population makes it incumbent on the
designers of such missions to be able to give realistic
performance guarantees of mission success. We have
developed an approach that can be used by mission designers
to determine whether or not a performance guarantee for their
mission software, when carried out under the uncertain
conditions of a real-world environment, will hold within a
threshold probability. The paper builds upon our previous
work in single robot missions [5][11].The contribution of this
paper is the verification for multi-robot missions.

Our prior work, based on a process algebra methodology,
addresses the verification of behavior-based robot programs
without the discretization step seen in some work [7] and the
computational complexity of a traditional model checking
approach [6]. However, that work was single robot; The
multirobot problem is more difficult since the robots can be
interleaved in any order, introducing combinatorics which
greatly complicate verification [18]. However, we show in
Section IV that by leveraging the termination conditions of a
recursive process definition our prior approach can be
extended to handle multirobot mission verification. Our
approach to verification does not include explicit search of all
possible interleavings. We present the verification of a two
robot, bounding-overwatch scenario using the new theoretical
contribution. In addition to the verification of the performance
guarantee for this example, we also present an experimental
validation of this mission, and show that our prediction is
consistent with the validation results.

II. PRIOR WORK

Several methods have been developed to address the issue
of general purpose software verification. Model-checking [6]
is based on an exhaustive exploration of the states that can

*This research is supported by the Defense Threat Reduction Agency,

Basic Research Award #HDTRA1-11-1-0038.
D.M. Lyons, D. Harrington and T-M Liu are with the Dept. of Computer

& Information Science, Fordham University, Bronx NY 10458, USA (Ph:
718-817-4485, Fx: 718-817-4488, Em: dlyons@cis.fordham.edu).

result from execution of the software. A critical issue in model
checking approaches is potential state space explosion.
Another approach is deductive verification [16] where
properties are proved about the software using automated
theorem proving techniques. An important issue to address for
theorem proving techniques is how the assertions to be proved
are generated.

Verification of robot mission software adds challenges to
the general software verification problem. A robot program
does not execute based on static inputs, but rather interacts
with an asynchronous and concurrent environment model in
an ongoing fashion. Because the end result of robot behavior
involves motion and action in the physical world, there may
be a necessary continuous nature to some aspects of the
problem. The lack of full information about the nature of the
environment in which a mission is to be carried out means that
significant uncertainty must be modeled or verification results
will not be realistic.

Brahman [3] uses model checking to automatically verify
safety and system failure properties of programs specified
with the MDS (Mission Data System) architecture. Using
hybrid automata to address continuous spaces, she leveraged
MDS to structure the problem to limit state explosion. Napp
and Klavins [15] introduce a guarded command language
CCL for programming and reasoning about multirobot. They
address uncertainty by adding rates and exponential
probability distributions to CCL, and address the multirobot
issue by inspecting stochastic population properties.

Automatic controller generation [1] shares some of the
characteristics of automatic verification. The starting point is
a natural language description of the desired behavior [7] and
the objective is to generate a correct-by-construction
controller, typically exploiting model-checking techniques.

Multiagent systems (MAS) verification is addressed by
Kouvaros et al.[18] in a model-checking framework. They
address the combinatoric implications by restricting attention
to systems where checking a (small) finite number of agents
suffices to prove general properties. In contrast, we leverage
the structure of behavior-based missions that are the input to
our systems to address the combinatorics.

III. VERIFICATION SYSTEM ARCHITECTURE

Robotics has been considered as a key technology area to
safeguard our society against attacks with weapons of mass
destruction (WMD) [4]. However, due to the high-risk nature
of counter-WMD (C-WMD) missions, failure cannot be
tolerated. A robot team’s success in a C-WMD mission has to
be ensured before execution such that the robots would “get it

R.C. Arkin, and S. Jiang are with the Mobile Robotics Laboratory,
Georgia Institute of Technology, GA 30332, USA (Em:
arkin@cc.gatech.edu).

Verifying and Validating Multirobot Missions

D. M. Lyons Senior Member, IEEE, R. C. Arkin Fellow, IEEE, S. Jiang Student Member, IEEE, D.

Harrington and T. Liu Student Member, IEEE

mailto:arkin@cc.gatech.edu

right the first time”. We now review the framework that we
developed to serve this purpose [12].

The verification framework is built upon MissionLab, a
behavior-based robot programming environment [13], Figure
1. MissionLab is a user-friendly environment for designing
multi-robot missions. The front-end of MissionLab is a
usability-tested graphical robot behavior programming
interface, where robot programs are created as finite state
automata (FSA). The back-end of MissionLab provides a
library of primitive behaviors (e.g., GoToGoal) that can be
assembled into higher-level complex missions (e.g., a
biohazard search behavior) in the form of FSAs.

Figure 1: Verification System Architecture

The core of the verification framework is VIPARS
(Verification in Process Algebra for Robot Schemas), a
process algebra based approach to verifying robots’ mission
success. To initiate the verification of a multirobot mission, the
robot programs in MissionLab’s CNL (Configuration Network
Language) representation [14] are translated to PARS
(Process Algebra for Robot Schemas), the language
understood by VIPARS. The robot operator also needs to
provide VIPARS with models of the robots, the sensors each
robot is equipped with, and the environment the robots are to
operate in, along with the performance criteria that the mission
is required to meet. VIPARS then provides the operator with a
performance guarantee for the mission based on how well the
provided performance criteria were met.

By inserting VIPARS into the traditional program-execute
loop of robot programming, it effectively forms a feedback
design loop whereby the operator can iteratively refine the
robot program based on information provided by VIPARS
(e.g., time criterion is not met). Importantly, for critical
missions such as C-WMD, operators can avert failures by not
undertaking missions that are likely to fail.

IV. FORMAL MODEL

The MissionLab program, environment models, and
performance criteria are all uniformly represented in PARS.

A. PARS
A brief overview of PARS is given here; for more details

see [8]-[12]. The semantics of a process in PARS is a port-
automaton extended with duration and partitioned end-states

(separate abort and stop). A process C with initial parameter
values u1,u2,…, in port connections i1,i2,…, out connections
o1,o2,…, and final result values v1,v2,… is written:

 Cu1,u2,… (i1,i2,…)(o1,o2,…)v1,v2,…

The variables of the process are initialized by u1,u2,…
The final result values v1,v2,…can be used to initialize other
processes. The input and output connections indicate how C
communicates with other, concurrent process.

Processes are either basic or composite, where a
composite process is defined as a composition of other
processes. A (conditional) sequential chain is composed using
the ‘;’ operator; a sequential chain will terminate once each
process in turn stops, or if any process aborts. Other
composition operations include parallel-max (‘|’) and
parallel-min (cf. LOTOS disabling[2]) (‘#’) compositions.
Further notation is explained as it is used in later sections.

B. CNL to PARS
In MissionLab a designer specifies the robot mission using

as Finite State Automaton (FSA) (example is shown in Figure
5). Each state in the FSA involves the execution of a behavior
which may result in many sensing and motor actions and
interaction with the environment. Hence verification must
occur at a greater level of the detail than the FSA.

Figure 2:GoToGuarded Move CNL Network

Behavior states in the FSA are translated into more
detailed networks of CNL processes with dataflow
connections. For example, the GoToGuarded behavior is
compiled into a network, as shown in Figure 2 (omitting
lower-level data-flow nodes)which includes potential-field
based obstacle avoidance.

A set of basic PARS processes has been defined to
implement CNL nodes. These take similar parameters to the
data-flow nodes and can be connected similarly. The
GoToGuarded behavior is translated to PARS as a parallel
composition of communicating processes as in Figure 2:

 GoTGg(p,ob)(v) = MoveTGg(p)(c1) |
 AvoidObp(ob)(c2) |
 Noiseq()(c3) |
 Coopw(c1,c2,c3)(v)

The translation from CNL to PARS is currently done by hand
using a template. An automated translator is being
constructed. This topic is touched on again in Section VI.

C. System Description

The system to be verified consists of a robot program,
translated from CNL to PARS, represented as a concurrent,
communicating composition with the robot, sensor and
environment models. A behavior-based program behaves
dramatically differently in different environments, so robot,
sensor and environment models are a crucial part of the
system to be verified.

C++

CNL

Executable

Human

Operator

Performance

Criteria

Models

(Robot, Sensors,

Environment)

PARS VIPARS

MissionLab

AvoidOB

MoveTG

Noise

COOP

The robot program generates control commands for the
robot, and queries information from physical sensors. The
robot and sensor PARS models accept the same input
commands and produce the same outputs through input and
output ports. However, the relationship between the controller
commands, the state of the environment and the sensor signals
is determined by which models the user has chosen for
verification. In prior work we have explored a number of
models [8][9]; our focus here is on the problem of automated
verification of multirobot missions given such models.

Consider a two robot program: the PARS program for the
first robot is represented by the process PR1 and for the
second by PR2. The processes send control signals to and
receive sensory information from their respective robot
models Robot1 and Robot2 using ports. As a running
example, consider the case where each robot receives position
and generates velocity information:

Sysr,p,q,s = PR1r (cp1)(cv1) |
 PR2p (cp2)(cv2) |
 Robot1q (cv1)(cp1) |
 Robot2s (cv2)(cp2)

(2)

Figure 3: Two Robot Example System
Figure 3 is a graphical representation of (2), showing how

the connections are made between robot program and robot
model processes (the arrows) and also how the system
parameters (p,q,r,s) relate to the parameters for each process.
These parameters are a component of internal state for each
process, where the initial position might be a parameter for
the robot models.

In the case where all the processes in Sys are tail-recursive
(TR) definitions (e.g. (3) below), then it may be possible to
rewrite Sys itself as a TR process [10][9] where for
convenience we denote all parameters with u:

Sysu = Sys’u; Sysf(u) (3)

The criterion developed in [10] for whether (3) is possible,
is that the port operations in the TR body for each of the
components of Sys can be matched up to produce a single TR
body, Sys’. The advantage of (3) is that it enables efficient
verification [9][11]. This operation has complexity O(npnio)
where np is the number of component processes and nio is the
number of port communication operations per process.

In one execution of Sys’ the system parameters u are
transformed to f(u) by calculations performed within
component processes and by transfer of values by port
communications between processes. Finding f(u) just requires
following the connections between component processes
[11]and has complexity O(nvnpnio) where nv is the number of
system parameters.

D. Performance Criterion

The construction of the system period process, Sys’ and

the system flow function f(u), are the prerequisites established
in [10] for the verification of whether Sys satisfies a
performance guarantee G, also specified as a process network.
We argued that process algebra is just as intuitive a language
to specify event orderings [2] as a temporal logic language
(e.g., Linear Temporal Logic (LTL)). Since both program and
specification are process networks, the bisimulation result
relating property and program relates a more abstract
specification of a process network to a more detailed
implementation, as generalized by De Nicola [16]

Def. 1: PQ denotes process P and process Q are
observationally equivalent by a specification implementation
bisimulation.

 Of course, in a logic it is possible to concisely proscribe,
to state what should not hold, whereas a process algebra is
prescriptive. We shall show that in our case this is not a
limitation. Let us look at some examples.

A performance criterion network is written using process
composition operations and basic processes along with
constraints on the values of the parameters to the processes.
An example of a simple liveness criterion is that robot r1
reach a specific location; this is written as follows:

Delayt1 ; (Delayt2 # Atr1,p)
t1 T, |p-L|<

(4)

The basic process Atr,prepresents robot r at position p.
Specification (4) insists that r1 arrive at location p by time T

at the latest and the final position be within  of location L.
Notice there is no constraint on t2.

Example (5) specifies a two robot criterion. In this case,
robot r1 must arrive at its location before r2 arrives at its
location. Process variables in our framework may be random
variables [11], and an example constraint on a random
variable can be its probability of meeting some condition. In
this case, the criterion specifies that the location of robot r1
must have at least an 80% probability of being within a
distance R of location L1 by time t1.

Delayt1 ; (Delayt2 # Atr1,p) |
 Delayt3 ; (Delayt4 # Atr2,q)

t1,t3 T, t1<t3,
 P (|p-L1|<R)>0.8, P (|q-L2|<R)>0.8

(5)

Finally, we consider a safety criterion: that the two robots
never approach too closely. Notice this involves proscription,
and it is handled by moving the negation to the constraint on
the variable values. For all times greater than 0, the

probability of the robots being  must be at least 80%.
Delayt1 ; (Delayt2 # Atr1,p) |

 Delayt3 ; (Delayt4 # Atr2,q)
t1,t3>0, P (|p-q|>)>0.8

(6)

We define a performance criterion as follows:
Def. 2: G(P,C) is a performance criterion, where

 P is the process network associated with the criterion,

 C is the set of constraints on the process variables in P.
If u are the variables in P, then C(u) holds iff the

constraints in C hold on the variable values of u. As usual, a
safety criterion,(6) is treated as a negated liveness condition.

Def. 3: A performance criterion is negated by negating the

constraint on variable values: G(P,C) = G(P,C)

V. VERIFICATION OF MISSIONS

When Sys consists of only TR processes every
computation of Sys can be expressed as a process network

PR1 Robot1

 cp1

 cv1

PR2 Robot2

 cp2

 cv2

r

p

q

s

(Sys’)n and the values of the system variables are the solution
of fn(uo) where f(u) is the system flow function, u0 are the

initial system parameter values and n0. Let P sat Q indicate
that process P satisfies performance criterion Q, then:

Def. 4: Sys satisfies G(Q,C) iff, for n0
 (Sys’)n sat Q, and C(fn(uo))

Def. 5: P abs S is the process in which any processes in P
not named in the set S are hidden by the internal action i. This
can be defined recursively:
 (P ; Q) abs S = (P ; i) if Q S
 (P | Q) abs S = (P | i) if Q S
 (P # Q) abs S = (P # i) if Q S
For convenience, we also write P abs Q to mean the

process where any processes not named in Q are hidden.
Def. 6: Compositions of internal actions can be grouped:

i ; i = i, i | i = i and i #i = i

Given a performance criterion G(Q,C) and Sys to be
verified, then it is first necessary to evaluate (Sys’)n sat Q. (See
[9] for calculation of Sys’). This is accomplished in two steps:
(Sys’)n abs Q is calculated and hidden actions grouped, and

then ((Sys’)n abs Q)Q is determined.
We have implement a simplified version of this procedure

for speed: (Sys’)n is projected to the set of processes in Q

which we write (Sys’)nQ(or again (Sys’)nS where S is the
set of processes in Q). This produces a version of (Sys’)n abs
Q in which all internal actions have been removed, and this is

checked for composition structural equivalence s with the
performance criterion.

Def. 7: P s Q holds iff

 P=Q or P= P1  P2, Q = Q1  Q2 where,
P1 sQ1, P2 sQ2, = {‘;’,’|’,’#’}

Structural equivalence is more restrictive (P sQ  P Q
but not vice-versa) but is fast. Note that when compared
structurally in this way, a program and specification may be
equivalent on process names but differ on the parameters to
the processes. For example, if we consider just the first part
of the single robot move example in [9] we have the
performance criterion:

Q = Delayt1; (Delayt2#Ata)
And after projection we have:

 (Sys’)nQ= Delay(n-1)t; (Delayt #Atfn(p))

In this case ((Sys’)nQ)sQ then the parameters to each
process must be equal; i.e., t1=(n-1)t, t2=t and a = fn(p),

where t and p are constants. Thus, establishing P sQ posts a
set of constraints on the parameter values which we write as

C which must also be met for the program to satisfy the
performance criterion.

The final step in verification is to determine whether the

constraints C and C are satisfied by the system flow function:

C C(fn(uo)). This constraint problem can include random,
continuous variables, and in [10] we map this to a filtering
problem for a hybrid Dynamic Bayesian Network (DBN).

A. Non-TR Systems

In a multirobot, behavior-based system, we expect that the
robot will continually respond to affordances in their
environment. To handle this, we need to support non-TR
processes in the concurrent communicating composition of
the system process. In [12] we consider a waypoint mission,

and in [5] a search and acquire C-WMD mission. Both of
these require a single non-TR process in the system, and we
extend our definition of satisfy to cover this.

Let P = P1 ; P2 ; P3 ... Pm be the non-TR process in the

system Sys. Let Sys1 be Sys, where P is replaced by P1, and

so forth for Sys2 through Sysm. Let f1 be the Sys1 flow

function, so forth for f2 through fm. In that case:

Def. 8:Sys satisfies G(Q,C) iff for n1,n2,..,nm0
 (Sys1’)n1; (Sys2’)n2 ; .. ; (Sysm’)nm sat Q, and
 C(f1n1(uo)), f2n2(u1), fmnm(um-1)),

where u1= f1n1(uo) and so forth for u1 through um-1. This
framework breaks the problem into a sequence of TR
subsystems, addressing each one in turn to determine if it
fulfills a portion of the performance criterion. For a waypoint
example, the subsystems are the individual moves and the
components of the criteria are the individual location
constraints [12]. For a C-WMD search and acquire mission,
the subsystems are the search component and the acquire
component, and the components of the criterion are the target
detection probability and final target location constraint [5].

However, a difficulty of multirobot systems is each agent
will have one (or more) non-TR mission processes. Thus for
k agents, this definition of satisfy would require km different
sequences to be tested!

A TR process terminates when its body aborts (by the
definition of ‘;’). Basic condition processes are basic
processes that evaluate a condition on their arguments;
aborting when their condition is true, stopping otherwise.

Def. 9: The abort condition of a process (P) is defined by:

(P) = cond(P), if PCOND,

(P | Q) = (P)  (Q)

(P # Q) = (P)  (Q)

(P ; Q) = (P) ; (Q)

Where COND contains EQa,b, NEQa,b, LTa,b,

GTRa,b etc., and where cond(P) is the comparison condition

for the basic process, e.g., cond(EQa,b) is (a=b) and so forth.
Given the body of a TR process we can write the abort
condition for the process in terms of the condition processes.

Let Sys be composed of k non-TR processes, each of
which is m TR processes in sequence. We can assume
sequential composition without loss of generality, since if at
any point we have additional parallel or disabling
components, they can be counted as additional non-TR
components of Sys. We label the components Pij for non-TR

component i{1...k}, sequential component j{1...m}.
Our approach starts with Sys1 containing Pi1 and any other

TR processes, R1,…,Rh. To know which components we need
we evaluate (Sys1)n1 as before except that we use ⋁ Ω(𝐏𝑖1)𝑖
as a performance criterion. When (and if) this is satisfied,
Sys2 is then constructed from Sys1 with any Pi1 for which

(Pi1) holds replaced by Pi2. We can now redefine satisfy:

Def. 10: Sys satisfies G(Q,C) iff for n1,n2,..,nm0
 (Sys1’)n1; (Sys2’)n2 ; .. ; (Sysm’)nm sat Q, where
 Sys1=(P11|P21|...Pk1)|(R1...Rh) and

Sys1 satisfies G(i,⋁ Ω(𝐏𝒊𝟏)𝑖), and
 each subsequent system Sys+ is the previous system Sys-

with each Pij for which (Pij) holds replaced by Pil,
l=j+1, and C(f1n1(uo)), f2n2(u1), fmnm(um-1)).

Note: In the case of random variables, each (Pij) can be a

probabilistic condition.

VI. VERIFICATION & VALIDATION OF A MULTI-ROBOT

MISSION

We now present the verification and validation of a
Bounding Overwatch mission with two robots (Fig. 4), to
illustrate the effectiveness of the VIPARS verification
framework in providing performance guarantees for multi-
robot missions. Bounding Overwatch, or leapfrogging, is a
military tactical movement that is used by units of infantry to
move forward under enemy fire. During this operation, one
infantry unit does the bounding (i.e., advancing forward)
while the other unit does the overwatch (i.e., stay stationary
and watching over the bounding unit). The idea is that the
overwatch unit is in a better position to watch for danger and
to engage the enemy than the bounding unit [17].

Figure 4 presents a simplified Bounding Overwatch
mission with two robots (designated as Robot1 and Robot2,
Pioneer 3-ATs), where the robots alternate in bounding (i.e.,
advancing forward) and taking the overwatch position (i.e.,
covering for the advancing robot). The motivation behind this
mission is to get the robot team to the end of the hallway,
where an object of interest (e.g., biohazard) might be located,
and to avoid detection by enemies by using Bounding
Overwatch.

Figure 4: Bounding Overwatch

Figure 5: FSA for Robot1

The behaviors of Robot1 and Robot2 for carrying out the
Bounding Overwatch mission are specified in MissionLab as
FSAs; shown in Figure 5 for robot1. The FSA for Robot2 is
similar to Robot1’s and is not shown for brevity. The starting
location (in meters) for Robot1 and Robot2 is (5.5, 5.0) and
(6.5, 5.0) respectively; and the goal location for Robot1 and
Robot2 is (19.75, 18.0) and (20.0, 17.5) respectively. Both
robots use dead reckoning with shaft encoders and gyros to

determine their positions. Each robot follows a series of
waypoints, communicating a message to the other robot when
it reaches its overwatch position. The mission consists of a set
of behaviors (i.e., GoToGuarded, Spin, Stop, Notify) and
triggers (i.e., Notified, AtGoal, HasTurn, MessageSent) for
state transitions.

The performance criteria for the Bounding Overwatch
mission are:

1. Rmax – the success radius; each robot is required to be
within this radius (e.g., 2.0 m) of its goal location in the
physical environment

2. Tmax – the maximum allowed time; the mission is
required to be completed under this time limit (e.g., 200 s)
The Bounding Overwatch mission is only considered
successful when both of these criteria are met. Thus, the
overall mission success can then be defined as:

Success = (r1≤Rmax) and (r2≤Rmax) and (t ≤Tmax) (7)

Where r1 and r2 are Robot1’s and Robot2’s relative distances

to their respective goal locations.
In the following subsections, we first describe the

verification of the Bounding Overwatch mission with
VIPARS. Then the details of validation of the mission with
physical robots are presented. The results of verification and
validation are then compared and discussed.

A. Verification

The CNL to PARS translation from the mission FSAs
(e.g., Figure 5) yields a Mission process that includes the
translated instructions for Robot1 and Robot2. A small
portion of the Mission process is presented below:

1.Mission (piM,piM2,obM,obM2,hM,hM2,odM,odM2)

2. (vo,vo2) =

3. ...

4. (Is_at_goalG2B(piM) ;

5. Put_messageS1(cG2)) |

6. (Got_messageS1(cG2) ; (

7. Coop1,1,1,G3A(piM2,cV3,cC5,cC6)(vo2)) |

8. Move_toG3A,drop2500(piM2)(cV3)) |

9. NoiseZ0,G3A(piM2)(cC5)) |

10. Avoid_ObstaclesZ0,G3A(piM2,obM2)(cC6))) |

11. (Is_at_goalG3A(piM2);

12. SpinG90(hM2)(vo2)) |

13. (Is_at_headG90(hM2); (

14. Coop1,1,1,G3B(piM2,cV4,cC7,cC8)(vo2)) |

15. Move_toG3B,drop2500(piM2)(cV4)) |

16. NoiseZ0,G3B(piM2)(cC7)) |

17. Avoid_ObstaclesZ0,G3B(piM2,obM2)(cC8))) | …

The Mission (controller) process inputs odometry and
heading information while outputting a velocity for each
Robot (environment) process; these are the port variables
listed on lines 1 and 2. These carry information to and from
the robot and sensor environment models. Trigger (basic)
processes such as Is_at_goal and Is_at_heading (lines 4,6,11
and 13) are used to switch the behavior state by triggering
process networks corresponding to the CNL implementations
of the FSA states and connecting them to the Mission ports.
The implementation of GoToGuarded in Fig. 2 can be seen at
various points (lines 7-10 and 14-17).

The system process for this mission consists of the two
robot models and the Mission process, similar to Figure 3
except with a single controller process communicating with
each robot over different ports:

Robot2

Robot1

X

Y
Robot1 Overwatch Position

Robot2 Overwatch Position

Sys = Mission(c1,c2,c3,c4, c5,c6,c7,c8)(c9,c10) |

Robot1P01,Z0,H0 (c9)(c7, c3, c5,c1) |

Robot2P02,Z0,H0(c10)(c8, c4,c6,c2) .

For example, c9 and c10 are the port connections for the
velocity output for Robot1 and Robot2 respectively (see line
2 of Mission). The initial parameters to the robot processes
fix the initial conditions for the verification.

The two robot models transform velocity commands to
generate odometry (q) and actual position (r) according to the
much simplified template below, where both r and q are
random variables represented using a Mixture of Gaussians
representation [11]:

Robotr,q (v)(p,d) = (Atr#Delayt
#Outp,r#Outd,q# Invu) ;

Robotr+u*z(u,t)*t, q+u*t.
Where z(u,t) is a function that calculates the uncertainty due
to the velocity u applied for a discrete time step time t using
the calibration data collected for each robot. Odometry can be
read from port d and is calculated as dead reckoning. The
odometry position is used by the Mission process to calculate
its motions. The actual position r is calculated as a probability
distribution using the uncertainty z(u,t).

The performance criterion for the Mission from the prior
section is effectively eq. (5) but without ordering constraint.

B. Validation

Experimental validation of the Bounding Overwatch
mission, introduced in the beginning of this section, is
conducted to show the validity of the VIPARS verification
result. Validation consists of running the mission on physical
robots in the real environment and measuring the robot team’s
performance with respect to the performance criteria Rmax and
Tmax. The mission was run 100 times in an indoor lab
environment with tile flooring, Figure 8. Both robots operated
at a maximum velocity of 0.3 m/s; and they communicate with
each other through the wireless network set up by a standard
off-the-shelf router. The following three performance
variables were measured during each trial run:

1. t – Mission completion time
2. r1 – Robot1’s relative distance to its goal location
3. r2 – Robot2’s relative distance to its goal location

C. Results

The goal of the verification framework is to serve as a
decision support tool for human operators. While more
research needs to be conducted to determine the best way to
present performance guarantees to human operators under
stressful situations, we present a preliminary representation.
Instead of verifying the mission against a single specific point
(i.e., a single (Tmax, Rmax) point), the mission is verified against
a range of performance criteria values. We believe this would
be more informative to the operator regarding the performance
of the robot team in carrying out the operation. Furthermore,
this could also demonstrate the robustness of VIPARS against
a spectrum of performance criteria.

Figure 9 shows the VIPARS verification and experimental
validation results for the performance guarantee of the time
criteria P(t ≤ Tmax), the probability that the bounding
overwatch mission will be completed under the time limit,
Tmax. Figure 9 shows that the VIPARS verification is
consistent with validation result. The plot of verification
versus validation of P(t ≤ Tmax), Figure 9 can be divided into

three different regions:
1. High Confidence (Unsuccessful) – the region of near

zero verification error and the mission succeeds with near
zero probability, or almost never succeeds

2. Uncertain – the region where verification error is
significantly greater than zero; verification error is defined
as the difference between verification and validation

3. High Confidence (Successful) – the region of near
zero verification error and the mission with success
probability approaching 1.0 and almost certainly succeeds.

Robot2 is at the first overwatch
position while Robot1 is bounding
to the second overwatch position

Robot1 is at the second overwatch
position while Robot2 is bounding
to the third overwatch position

Robot1 is at its goal location while
Robot2 is bounding to its goal
location

Robot2 is near the third overwatch
position; Robot1 is about turn 90
degrees counterlockwise and bound
to its goal location

Figure 8: Snapshots of the Bounding Overwatch Mission

The Unsuccessful region informs the robot operator that if the
performance criteria of the mission falls into this region, then
the mission should be aborted or changed. For example,
VIPARS verification of the time criterion, shown in Figure 9,
informs the robot operator that the mission almost never
succeeds under 180 s. Experimental validation of the time
criterion, Figure 9, supports this interpretation (i.e., no
validation run of the 100 trials completed the Bounding
Overwatch mission under 180 s).

Figure 9: Verification vs. Validation of Time Performance Criterion
P(t ≤ Tmax)

Robot2

Robot1

Robot1

Robot2

Robot2

Robot1

Robot1

Robot2

High Confidence

(Successful)

High Confidence

(Unsuccessful)

The Uncertain region informs the robot operator that if the
performance criteria falls into this region, then based on the
acceptable threshold probability, she can decide to abort or
execute the mission, although in general this area is to be
avoided if possible. For example, if the mission is required to
be completed under 200 s (i.e., Tmax = 200), which VIPARS
verified to have 0.9 probability of success. Then if 0.9 is
greater than the threshold probability, the robot operator could
proceed to execute the mission. From Figure 9, we also
observe that higher the threshold probability (i.e., the
minimum acceptable probability of success), higher the
confidence of verification (i.e., the verification error decrease
and gets closer to the High Confidence (Successful) region).
Due to the prevalence of error between verification and
validation in this region it should generally be avoided.

The Successful region indicates that if the performance
criteria of the mission fall into this region, then the mission can
be executed with high confidence that the robot team will
almost surely get the mission right the first time. For example,
Figure 9 tells the human operator that the robot team can
complete the mission with close to 100% probability of
success for Tmax≥225 s. This is supported by the validation
result, as no validation run of the 100 experimental runs of the
mission completed under 225 s.

Figure 10: Verification vs. Validation of Spatial Performance
Criterion P(r1 ≤ Rmax, r2 ≤ Rmax)

Figure 10 shows the VIPARS verification and
experimental validation results for the performance guarantee
of the spatial criterion P(r1 ≤ Rmax, r2 ≤ Rmax), the
probability that both robots will be within the Rmax radius of
their respective goal locations. Again, the VIPARS
verification is consistent with the result of experimental
validation as shown in Figure 10. Similarly, the result of the
verification and validation of P(r1 ≤ Rmax, r2 ≤ Rmax) can be
divided into three different regions as we have done for the
time criterion above.

Figure 10 informs the robot operator to abort the mission
if both robots of the Bounding Overwatch mission are required
be within a radius of 1.5 m or less of their respective goal
locations, since the mission almost never going to succeed in
meeting the requirement. Additionally, depending on the
acceptable threshold probability, the robot operator can make
the decision to deploy or abort by evaluating the probability of
success for Rmax within the uncertain region in Figure 10.

Lastly, the robot operator can infer that the mission almost
surely will get it right for Rmax greater than and equal to 2.5m.

a

b

Figure 11: Verification (a) and Validation (b) of Spatial and Time

Performance Criteria 𝐏(𝐭 ≤ 𝐓𝐦𝐚𝐱, 𝐫𝟏 ≤ 𝐑𝐦𝐚𝐱, 𝐫𝟐 ≤ 𝐑𝐦𝐚𝐱)

So far we have examined the two performance criteria
separately. However, the Bounding Overwatch mission is only
successful when both criteria are met. Figure 11 shows the
VIPARS verification and experimental validation results for
the performance guarantee of the overall mission
successP(t ≤ Tmaxr1 ≤ Rmax, r2 ≤ Rmax), the probability
that both performance criteria, Tmax and Rmax, are met. The
verification result is consistent with experimental validation.
The dark red surface area in Figure 11 corresponds to the High
Confidence (Successful) region while the dark blue surface
area corresponds to the High Confidence (Unsuccessful)
region. The result allows the operator to query the verification
system for probability of overall mission success for different
combination of performance criteria (e.g., spatial and time
criteria for Bounding Overwatch).

Fig. 12: Verification & Validation of Time Criterion at various Rmax

High Confidence

(Successful)

High Confidence

(Unsuccessful)

Figures 12-13 examine further how different combinations
of performance criteria affect the overall mission success and
verification error of VIPARS. These figures are basically 2D
slices of the 3D surface plot in Figure 11. Figure 12 shows
verification and validation of the time criterion at various
spatial criteria. Comparing this to Figure 9, we see that while
different values of Rmax has no effect for the High Confidence
(Unsuccessful) region, it significantly affects the probability of
mission success in the High Confidence (Successful) region.
More importantly, it also introduced significant verification
error in this region. However, the values of Rmax that
significantly affects mission success and verification error are
the Rmax’s in the Uncertain region, Figure 10. This result
reinforced our view that the Uncertain region should generally
be avoided.

Fig.13: Verification & Validation of Spatial Criterion at various Tmax

Fig. 13 shows verification and validation of the spatial
criterion at various time criteria. Tmax has a significant impact
on the accuracy of verification in the Uncertain region. Figure
13 shows a large verification error for Tmax = 190 s. On the
surface, this error in the probability of overall mission success
is due to the verification error of P(t ≤ Tmax) at Tmax =190 s
in Figure 9 (at the beginning of the Uncertain region);
however, the underlying culprit is likely the models of robot
motion uncertainty that VIPARS used for verifying the
performance criteria. Nonetheless, the time window for large
verification is small (i.e., approximately 5 s); and the
verification error decreases as Tmax increases (e.g., Tmax =195
s). Furthermore, VIPARS is more conservative than the
validation result for Tmax ≥195 s in the Uncertain region (e.g.,
VIPARS over-predicted the probability of success at
Tmax =190 s, and under-predicted at Tmax =195 s). A
conservative performance guarantee is desirable for critical
multi-robot missions where failures could have catastrophic
consequence.

VII. CONCLUSIONS

In this paper we have extended our approach to
establishing performance guarantees for autonomous,
behavior-based missions to handle the problem of multiple
robot missions. Rather than exploring all possible action
orderings for a mission expressed as a sequence tail-recursive
(TR) system, each system is verified in sequence, and the end
conditions used to determine which system to verify next. For

systems with random variables this translates to looking at the
maximum likelihood next action each time.

A bounding overwatch mission with two robots was
verified and validated to illustrate the effectiveness of
VIPARS in verifying multirobot missions. Rather than
verifying one particular criterion point as in prior work, the
mission is verified against a range of performance criteria
values. We believe this would be more informative to the
robot operator regarding the performance of the robot team in
carrying out the operation. It also demonstrates the robustness
of VIPARS against a spectrum of performance criteria. As
prior work, verification results were validated against 100
trials of the mission on two Pioneer 3AT robots.

Probabilistic algorithms such as SLAM are a key part of
modern robot software. Future work with VIPARS will
involves performance guarantees for missions with
probabilistic software.

REFERENCES
[1] Belta, C. (2010) Synthesis of provably-correct control and

communication strategies for distributed mobile systems.
ICRA’10 Workshop on Formal Methods for Rob.& Aut.

[2] Bolognesi, T., and Brinksma,E. (1987) Introduction to the ISO
Specification Language LOTOS, Computer Networks & ISDN
Sys, 14(1), pp. 25-59.

[3] Braman, J. (2009) Safety Verification and Failure Analysis of
Goal-Based Hybrid Control Systems. Ph.D. Thesis. Cal. Inst. of
Technology, Pasadena CA.

[4] Doesburg, J.C. and Steiger, G.E. (2004) The Evolution of
Chemical, Biological, Radiological, and Nuclear Defense and
the Contributions of Army Research and Development, NBC
Report, US Army Nuclear & Chemical Agency, Fall/Winter.

[5] Jiang, S., Arkin, R., Lyons, D., Liu, T-M., and Harrington, D.
(2013) Performance Guarantees for C-WMD Missions.
IEEEInt. Symp. Safety, Sec.& Res. Rob., Linkoping Sweden.

[6] Jhala, R., Majumdar, R. (2009) Software Model Checking.
ACM Computing Surveys 41(4) 21:1-53.

[7] Kress-Gazit, H., (2010) LTLMoP: Experimenting with
Language, Temporal Logic and Robot Control.ICRA’10
Workshop on Formal Methods for Robotics and Automation.

[8] Lyons, D., Arkin, R. (2004) Towards Performance Guarantees
for Emergent Behavior. IEEE Int. Conf. on Rob. & Aut.

[9] Lyons, D., Arkin, R., Nirmal, P and Jiang, S., (2012) Designing
Autonomous Robot Missions with Performance Guarantees..
IEEE/RSJ IROS, Vilamoura Portugal.

[10] Lyons, D., Arkin, R., Nirmal, P and Jiang, S., Liu, T-L. (2013)
A Software Tool for the Design of Critical Robot Missions with
Performance Guarantees. Conf. Sys. Eng. Res. (CSER’13).

[11] Lyons, D., Arkin, R., Liu, T-L., Jiang, S., Nirmal, P. (2013a)
Verifying Performance for Autonomous Robot Missions with
Uncertainty. IFAC Int. Vehicle Symp, Gold Coast, Australia.

[12] Lyons, D., Arkin, R., Nirmal, P and Jiang, Liu, T.M., S., Deeb,
J. (2013b) Getting It Right The First Time: Robot Mission
Guarantees in the Presence of Uncertainty. IEEE/RSJ IROS,
Tokyo, Japan.

[13] MacKenzie, D., Arkin, R.C., Cameron, R. (1997) Multiagent
Mission Specification and Execution. Aut. Robots 4(1): 29-52.

[14] MacKenzie, D.C. (1996) Configuration Network Language
(CNL) User Manual. College of Comp., Georgia Tech, V. 1.5.

[15] Napp, N., Klavins, E. (2011) A Compositional Framework for
Programming Stochastically Interacting Robots, IJRR. 30:713.

[16] De Nicola, R. (1987) Extensional Equivalences for Transition
Systems, Acta Informatica, 24:211-237.Shankar, N. (2009)
Automated deduction for Verification. ACM Computing
Surveys 41(4) 20:1-56.

[17] Szczerba, R.,& Collier, B. (1998). Bounding overwatch
operations for robotic and semi-robotic ground vehicles. SPIE
Aerosense Conference on Guidance and Navigation.

[18] Kouvarous, P., Lomuscio, A. (2013) Automatic Verification of
Parameterized Interleaved MultiAgent Systems. Proc.
AAMAS13, St. Paul MN.

http://verifiablerobotics.com/ICRA10/Slides/KressGazit.pdf
http://verifiablerobotics.com/ICRA10/Slides/KressGazit.pdf

