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Electric propulsion for commuter air transportation is becoming promising because of significant 

strides in battery specific energy and motor specific power. Energy storage and rapid battery 

recharge remain nonetheless challenging owing to the significant energy and power requirements of 

even small aircraft. By modifying algorithms developed in the field of scheduling theory, we propose 

power optimized and power-investment optimized strategies for electric aircraft battery swaps and 

recharges. Several aspects are considered: electric energy expenditures, capital expenditures, and 

flight schedule integrity. The first strategy optimizes the swaps and recharges to minimize the peak-

power draw from the grid and to reduce electric energy expenditures. The second strategy optimizes 

the swaps and recharges to minimize electricity expenditures and capital expenditures associated 

with battery and charger procurement. In both cases, the optimization is decomposed into two 

simpler problems. The first is a recharge schedule feasibility analysis given a number of chargers and 

batteries, which is based on a network flow representation of the battery swap and recharge. The 

second is a recharge schedule generation given a number of chargers and batteries. Both strategies 

are applied to the operations of two commuter airlines and are contrasted with a benchmark non-

optimized power-as-needed strategy. Promising results are obtained with up to 61% reduction in 

peak-power draw and up to 25% reduction in electricity costs. 
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1 Introduction 

At the time of writing, battery technology has advanced sufficiently to motivate serious consideration 

of electric propulsion for small aircraft. The benefits of electric propulsion include near-zero aircraft 

emissions, reduced energy costs associated with sourcing energy from the electrical grid, and reduced 

maintenance costs resulting from simpler mechanical systems (Patterson, Derlaga and Borer 2016). The 

implications of these benefits on aircraft operating costs are significant and motivate an assessment of their 

impacts not only on existing aviation business models but also on new aviation markets such as urban air 

mobility (Holden and Goel 2016). 

A major technical challenge associated with electric propulsion for aircraft is the gravimetric energy 

density of current battery chemistries, which is two orders of magnitude less than that of jet fuel (Winter 

and Brodd 2004). This places severe constraints on the design and operations of electric aircraft by 

substantially limiting range. In contrast, the battery specific energy density is not as challenging for electric 

automobiles for which the range now exceeds the average daily urban trip distance (Santos, et al. 2011).  

For high frequency commercial air transportation services such as commuter airlines, the limited range 

of electric aircraft implies not only the need to restrict operations to shorter routes but also the need to 

recharge aircraft batteries after each flight. Commercial aircraft need high daily utilization to be profitable 

and therefore batteries need to be recharged quickly during the ground turnaround time at each airport 

visited. These operations are unlike personal electric automobiles which average less than an hour of driving 

per day with morning and late afternoon trips split by a long period of inactivity during which batteries can 

be recharged at low power (van Haaren 2011). 

Given the significant energy requirements and short turnaround times typical of commercial aircraft 

operations, fast recharges at high power may be required. With high power levels come new challenges 

such as thermal management, battery health and longevity (Rezvanizaniani, et al. 2014), and electric 

infrastructure issues. Indeed, the electrical grid may not be able to sustain high power draws associated with 
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fast charging in some remote locations. There is therefore considerable uncertainty regarding if, and how, 

adequate recharging rates can be achieved to enable commercial operations of electric aircraft.  

 There are also cost implications when using high power levels for fast battery recharging. The price of 

electricity not only varies from city to city and from utility to utility but also depends on how the electric 

energy is drawn from the grid. Electricity pricing is typically based on both the amount of energy used and 

the peak-power delivered – or likely to be delivered – over a month of operations (Warwick, et al. 2016). 

The energy part of the bill is related to the cost of producing electricity using natural resources. The peak-

power part of the bill is related to the investments needed for oversized electricity generation, 

transformation, and transmission infrastructures to adequately serve the peak demand of end-users.  

 Because the price of electricity is sensitive to the peak-power demand, care must be given to how electric 

energy is drawn from the grid in order to lower energy expenditures. Disregarding time-of-use effects, the 

lowest price of electricity is achieved by minimizing the peak power drawn, or likely to be drawn, from the 

grid by chargers. This minimum is reached when batteries are continuously charged at low power levels 

since this strategy maximizes the amount of energy transferred to batteries while minimizing the peak-

power demand. The resulting flat power profile can be achieved using a local energy storage system such 

as battery banks able to supply extra power in periods of high demand and store energy in periods of low 

demand. Another way to generate a flat power profile is to consider swappable batteries that are 

interchanged from the aircraft and recharged in such a manner that power is continuously drawn from the 

grid at relatively low levels. After an aircraft lands at an airport, discharged batteries are swapped with 

previously recharged batteries during the ground turnaround time. The removed batteries are recharged and 

installed later on another aircraft departing the airport.  

 Swaps have the additional benefit of ensuring that batteries are adequately cooled in-between flights. 

Indeed, batteries tend to heat-up during fast recharges and discharges which may impact their longevity and 

capacity (Shim, et al. 2002). In turn, this degradation impacts the aircraft range capability. By recharging 

at lower powers and ensuring that batteries are as cool as possible upon installation on the aircraft, these 

thermal challenges can be mitigated. 
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 In this paper, we explore the use of battery swaps and recharges for the operations of a fleet of electric 

commuter aircraft. We optimize the design and operations of the supporting battery and charger 

infrastructure to minimize expenditures. In section 2, we present relevant background on battery swaps for 

electric vehicles.  In section 3, we describe the relevant models and algorithms developed in the field of 

scheduling theory and we formulate the optimization model using a network flow representation of the 

battery swap and recharge problem. In section 4, we modify the aforementioned algorithms and propose 

two battery swap and recharge strategies that maintain the integrity of the flight schedule. The first is a 

power optimized strategy which optimizes the battery recharge schedule to minimize the peak-power draw 

from the grid and therefore the electricity price. This is achieved by minimizing the numbers of chargers 

required at any given airport. The second is a power-investment optimized strategy which minimizes the 

overall recharge expenditures (capital expenditures and recurring energy expenditures) by determining the 

optimal numbers of chargers and batteries at any given airport. We also develop a non-optimized power-

as-needed strategy to benchmark the two aforementioned strategies. In section 5, we describe the operating 

environment for the study as well as the networks and schedules of two commuter aircraft operators. The 

electric aircraft used for the analysis is described along with its power consumption in various phases of 

flight. The rates and schedules for relevant electric utilities are also presented. In section 6, we implement 

the charging strategies and compare the results in terms of electricity price and capital expenditures. Finally, 

in section 7, we conclude with the main contributions of our research, and we highlight future 

improvements.  

2 Battery Swaps 

Battery swaps have been studied primarily in the context of electric cars and public transportation 

(Sultana, et al. 2018) (Jing, Kim and An 2018). Swapping has been proposed as an alternative to simple 

plug-in charging with the aim of alleviating long recharge times, high energy costs, and potential harmful 

impacts on the grid such as overloads, voltage overages, and losses (Tran-Quoc, et al. 2012) (Sarker, 

Pandžic and Ortega-Vazquez 2015) (Kang, et al. 2016).  
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In this context, two main themes may be identified from the literature. The first focuses on the design 

of the network of battery swap and recharge stations. The objective is to determine the most appropriate 

locations for battery swap stations and/or the required number of chargers and/or spare batteries to 

maximize profits or minimize investment costs associated with the deployment of a battery-swap 

infrastructure. This optimization is achieved while satisfying electricity requirements for various demand 

profiles such as daily commuting, road trips, public transportation, and package delivery (Zheng, et al. 

2014) (Mak, Rong and Shen 2015) (Yang and Sun 2015) (Hof, Schneider and Goeke 2017).  

The second theme focuses on the operation of the battery swap and recharge stations, sometimes 

including the scheduling of recharges. The objective is to develop an optimal charging strategy to reach 

goals such as: minimizing the infrastructure operating costs with or without battery inventory costs; 

minimizing loads on microgrids or entire distribution networks; maximizing the use of renewable energy 

sources to reduce carbon emissions; and maximizing the availability of recharged batteries under various 

concepts of operation (Schneider, Thonemann and Klabjanb 2017) (Yang, Guo and Zhang 2017) (Wu, et 

al. 2017) (Li, et al. 2018) (Widrick, Nurre and Robbins 2018)  (Mahoor, Hosseini and Khodaei 2019). 

The considerations and challenges related to the design and operation of a battery swap and recharge 

infrastructure to support electric aircraft operations are nevertheless quite different from those encountered 

in the context of electric ground vehicles owing to the nature of air transportation. Indeed, in the case of 

airline operations, the battery swap and recharge problem is constrained by the number of electric aircraft, 

by the locations of charging stations, and by recharge requirements corresponding to pre-determined aircraft 

routings and schedules. The demand for electric energy is therefore assumed to be known deterministically 

and the goal is to determine the optimum numbers of chargers and batteries at each location to meet the 

demand while minimizing peak loads and energy costs to the airline. As a result, many of the studies carried 

out for electric vehicles are not directly applicable to electric aircraft operations. 
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3 Model Development 

In this paper, we investigate two battery swap and recharge approaches: a power optimized strategy 

which minimizes the price of electricity and a power-investment optimized strategy which minimizes the 

overall recharge cost to the operator. Both approaches involve removing discharged batteries from aircraft 

as they arrive at their destinations in order to recharge them. Meanwhile, other batteries previously 

recharged with enough energy to complete the subsequent flights are loaded aboard the aircraft. Assuming 

no energy tankage between low-electricity-cost airports and high-electricity-cost airports (i.e. batteries are 

recharged just enough to be able to fly the subsequent flight with adequate reserves), minimizing the cost 

of electricity requires minimizing the peak-power draw at each airport within the network. For each airport, 

minimizing the peak power is equivalent to minimizing the number of chargers needed to charge the 

batteries assuming that each charger operates at the same power level. Given this minimum number of 

chargers, the minimum number of batteries required to operate all flights at that airport is also determined. 

This solution describes the power optimized strategy.  

Because batteries and chargers are expensive (U.S. SEC, Form 10-K, Tesla, Inc. 2016) and there is no 

reason to tie significant amount of capital in unnecessary inventories of batteries and chargers, the power-

investment optimized strategy goes a step further and accounts for the cost of chargers and batteries to find 

a solution that minimizes the combined capital expenditures (associated with battery and charger 

acquisition) and recurring energy expenditures (associated with electricity consumption). 

3.1 Relationship with machine scheduling problems 

The battery recharge problem under investigation belongs to the family of job-shop problems which 

have been studied since the beginning of the industrial revolution. In the field of operations research, a job-

shop problem is an optimization problem in which ideal jobs are assigned to various resources at particular 

times. In its most basic version, n jobs with varying processing times need to be scheduled on m machines 

with varying processing powers p, while trying to minimize the makespan 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 defined as the total time 

to complete the n jobs. Over the years, many variants of the original job-shop problem have been studied, 
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including some featuring release times, deadlines, and various objective functions (Jackson 1955), (Horn 

1974), (Labetoulle, et al. 1984). A subclass of these problems features a single type of machine and is called 

a machine scheduling problem. Using the machine scheduling analogy for the battery swap and recharge 

problem, the machines are the chargers, the shops are the airports where machines are located, and the jobs 

are the battery recharges. A recharge job indexed j has a release date denoted 𝑟𝑟𝑗𝑗, which is the time at which 

an aircraft lands and its discharged battery becomes available for recharge. A job also has a processing time 

denoted 𝑝𝑝𝑗𝑗, which is the time required to recharge the battery sufficiently to complete the subsequent flight 

with adequate energy reserves. Finally, a job has a deadline denoted 𝑑𝑑𝑗𝑗, which is the time by which the 

recharge needs to be completed for the battery to be ready for a subsequent flight. A scheduling optimization 

problem typically has an objective function to be minimized. Since the goal of this research is to generate 

a feasible recharge schedule that minimizes the peak-power draw while minimizing the impact on flight 

operations, the relevant objective function uses the concept of lateness denoted Lj and defined as the 

difference between the completion time of a job denoted Cj and its deadline dj. Given a number of chargers 

and batteries, the goal is to ensure that a battery is recharged and available for each departure in the flight 

schedule. As a result, the optimization minimizes the maximum lateness across all flights denoted 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 

defined in equation (1) as the maximum of all departure delays induced by battery recharges: 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑗𝑗
�𝐿𝐿𝑗𝑗� = max

𝑗𝑗
�𝐶𝐶𝑗𝑗 − 𝑑𝑑𝑗𝑗� (1) 

Scheduling optimization problems are notoriously difficult to solve and many have been proven to be 

non-deterministic polynomial-time hard (NP-hard) (Lenstra, Kan and Brucker 1977). This is true for many 

problems featuring machines working in parallel on jobs with both release dates and deadlines (Brucker 

2007). In order to efficiently solve the battery swap and recharge problem using aspects of machine 

scheduling theory, some assumptions are made to facilitate the search for an optimal solution.  

3.2 Modeling assumptions 

First, no energy tankage is permitted between airports. This means that operators will charge the battery 

just enough to fly the subsequent flight with appropriate regulatory reserves (FAA 2000). Operators will 
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not recharge batteries in excess of this minimum amount of charge at airports with cheaper electricity prices 

in order to minimize recharges at airports with higher electricity prices. This means that the battery recharge 

scheduling optimization is no longer a network-wide problem but rather a collection of smaller-scale 

airport-based optimizations which can be studied independently.  

Second, batteries are always removed from the aircraft upon arrival and are replaced with batteries that 

have been recharged sufficiently for their next flights. A buffer time is introduced to account for the time 

spent removing discharged batteries from the aircraft and the time spent loading recharged batteries back 

onto the aircraft. 

 Third, batteries are assumed to have identical states of charge upon arriving at a specific airport. The 

remaining energy corresponds to the regulatory reserves, and all flights arriving at the same destination 

airport are assumed to share the same diversion airport and the same final reserves. This implies that 

batteries can be treated as identical and assigned to upcoming flights in a first-in, first-out (FIFO) sequence. 

The sequence of arriving batteries at an airport thus determines the pairing of batteries with their subsequent 

flight. This assumption simplifies the optimization because it is no longer necessary to keep track of the 

arriving battery state of charge. Additionally, there is no need to optimize the battery-to-flight allocation 

mechanism.  

Fourth, preemption is assumed to be possible during the recharge of batteries. This means that a recharge 

may be interrupted before completion and resumed at a later time in order to accommodate the recharge of 

another battery. Upon removal from aircraft, batteries are envisioned to be connected to a centralized 

recharge station which prioritizes battery recharge jobs according to the flight schedule at that airport (i.e. 

determines which batteries should be recharged first, second, etc.). The recharge process can pause and 

resume as necessary, adding flexibility during the search for a feasible battery recharge schedule.  

 Under these assumptions and using the three-field terminology introduced by Graham et al. (Graham, 

et al. 1979) to classify machine scheduling problems, the battery recharge problem reduces to 

𝑃𝑃𝑚𝑚 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑗𝑗 � 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚.  𝑃𝑃𝑚𝑚 is the machine environment field indicating that m identical machines work in 
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parallel,  𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝, 𝑟𝑟𝑗𝑗 is the job characteristic field indicating that preemption is allowed and that recharge jobs 

are subject to release dates 𝑟𝑟𝑗𝑗, and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is the optimality criteria field, implying that recharge jobs are 

subject to deadlines 𝑑𝑑𝑗𝑗 and that the objective is to minimize the maximum lateness. 

𝑃𝑃𝑚𝑚 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑗𝑗 � 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 problems are not NP-hard and algorithms have been developed to find optimal 

solutions. In this paper, the battery swap and recharge problem is decomposed into two smaller sub-

problems following the approach of Horn (Horn 1974) and Martel (Martel 1981): the feasibility of the 

recharge is investigated first and the actual recharge schedule is generated next. 

3.3 Formulation of the battery recharge schedule feasibility problem 

 To assess the feasibility of the 𝑃𝑃𝑚𝑚 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑗𝑗 � 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 battery recharge problem, several constraints are 

defined.  The number of chargers and the number of batteries available at each airport in the network define 

the infrastructure constraints, the departure times and the arrival times of flights define the flight schedule 

constraints, and the origins and destinations and associated energy requirements define the routing 

constraints. Given the infrastructure constraints, we check whether all recharges can be processed given 

the flight schedule and routing constraints. If all recharges cannot be performed, the infrastructure 

constraints must be relaxed by allowing either more batteries or more chargers at the airport. The existence 

of at least one solution can be proven: for n flights departing from an airport over the course of a day, the 

presence of n different batteries and n different chargers at this airport ensures that the recharge schedule is 

feasible (provided each recharge lasts less than 24 hours). This solution is nonetheless not optimal from a 

battery and charger utilization standpoint. Tradeoffs between the number of batteries and the number of 

chargers can be conceived. One objective of the feasibility study is thus to generate a Pareto frontier 

highlighting, at each airport, the tradeoff between the number of batteries and the number of chargers.  

 The recharge schedule feasibility is assessed at each airport separately by representing the schedule and 

its constraints using a network flow model and computing next the maximum flow through the network. 

This can be done in 𝒪𝒪(𝑝𝑝3) time (Horn 1974) (Lawler, et al. 1993). The network flow model helps define 

the amount of processing (i.e. recharge) to be performed on each battery within a given time interval. The 
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network consists of nodes and arcs. There are four different sets of nodes:  the source node s, the sink node 

t, the job nodes J, and the time interval nodes I. The set of job nodes represents the set of battery recharges 

that must be completed in order to fly the schedule. Each job node 𝐽𝐽𝑗𝑗, indexed by j, corresponds to the 

recharge job required for one departure. The corresponding job processing time 𝑝𝑝𝑗𝑗 is the amount of time 

needed to recharge the battery for that departure. The set of interval nodes represents a discretization of 

time. Time intervals are constructed by listing out all job release dates and deadlines (i.e. aircraft arrival 

and departure times), and by subsequently ordering them. This ordered list defines a list of adjacent time 

intervals during which batteries may be recharged. Each time interval node 𝐼𝐼𝑖𝑖, indexed by i, represents one 

of these time intervals and has a length Δ𝑇𝑇𝑖𝑖. Each recharge job node 𝐽𝐽𝑗𝑗 is connected to the source node using 

an arc with a capacity representing the processing time 𝑝𝑝𝑗𝑗 required to recharge the battery. By construction, 

a recharge job is either possible or impossible during a time interval. Therefore, an arc connects a recharge 

job node 𝐽𝐽𝑗𝑗 to a time interval node 𝐼𝐼𝑖𝑖 if and only if a battery recharge can be performed during that time 

interval. Because a battery can be charged by no more than one charger at a time, the capacity of this arc is  

set to the amount of time available to perform a recharge job during that time interval, namely ΔT𝑖𝑖. Each 

time interval node is connected to the sink node using an arc with a capacity representing the total charging 

capacity expressed in units of time. If m identical chargers are considered, then the total processing 

capability of the m chargers during the time interval Δ𝑇𝑇𝑖𝑖 is given 

by 𝑝𝑝 ∙ Δ𝑇𝑇𝑖𝑖. A graphical depiction of the network flow 

representation of the battery recharge scheduling problem is 

provided in Figure 1. 

 Next, we use the Ford-Fulkerson method of augmenting paths 

(Ford and Fulkerson 1956) to estimate the maximum flow that 

can be pushed through the network. An augmenting path is a path 

along the arcs from the source to the sink that has available 

capacity on all edges. To find augmenting paths, we implement 
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the breadth-first search algorithm of Edmonds-Karp (Dinic 1970) (Edmonds and Karp 1972). It iteratively 

explores the network looking for the shortest path from the source to the sink with available capacity. The 

maximum flow is then compared to the total amount of processing power required to complete all the 

battery recharges. If they match, then the maximum lateness 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is equal to zero and a battery recharge 

schedule is feasible given the infrastructure and flight schedule constraints. Otherwise, the battery recharge 

schedule is not feasible and two options can be pursued. Either the infrastructure constraints need to be 

relaxed by adding more batteries and/or more chargers, or the flight schedule constraints need to be relaxed 

by allowing flight departure delays (i.e. setting a maximum lateness target 𝐿𝐿𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 greater than zero). In 

this research, disrupting the flight schedule is not allowed since the schedule is assumed to be optimized 

for (network-wide) revenue-management purposes. As a result, 𝐿𝐿𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is always set to zero and the 

infrastructure constraints are progressively relaxed until the flight schedule becomes feasible.  

 Using flow conservation constraints at the different nodes as well as capacity constraints along the arcs, 

the maximum flow problem can be expressed as a linear programming optimization. This is highlighted in 

the optimization problem statement of equation (2), where  𝑥𝑥𝑠𝑠,𝑗𝑗 denotes the flow from the source node to 

the job node 𝐽𝐽𝑗𝑗, 𝑥𝑥𝑗𝑗,𝑖𝑖 denotes the flow from the job node 𝐽𝐽𝑗𝑗 to the time interval node 𝐼𝐼𝑖𝑖, and 𝑥𝑥𝑖𝑖,𝑡𝑡 denotes the 

flow from the time interval node  𝐼𝐼𝑖𝑖 to the sink node in a problem with n recharge jobs (n batteries), m 

identical chargers, and 2n-1 time intervals (n aircraft arrivals and departures at the airport of interest).  

Maximize: 

�𝑥𝑥𝑠𝑠,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 𝑥𝑥𝑠𝑠,1 + 𝑥𝑥𝑠𝑠,2+. . +𝑥𝑥𝑠𝑠,𝑛𝑛 

Subject to: 

Edge capacity constraints along arcs:         �
∀𝑗𝑗 ∈ ⟦1, 𝑝𝑝⟧;  𝑥𝑥𝑠𝑠,𝑗𝑗 ≤ 𝑝𝑝𝑗𝑗

∀(𝑖𝑖, 𝑗𝑗) ∈ ⟦1, 2𝑝𝑝 − 1⟧ × ⟦1, 𝑝𝑝⟧;  𝑥𝑥𝑗𝑗,𝑖𝑖 ≤ Δ𝑇𝑇𝑖𝑖
∀𝑖𝑖 ∈ ⟦1, 2𝑝𝑝 − 1⟧;  𝑥𝑥𝑖𝑖,𝑡𝑡 ≤ 𝑝𝑝 ∙ Δ𝑇𝑇𝑖𝑖

 

Flow conservation constraints at nodes:     �
∀j ∈ ⟦1, 𝑝𝑝⟧;  𝑥𝑥𝑠𝑠,𝑗𝑗 = ∑ 𝑥𝑥𝑗𝑗,𝑖𝑖

2𝑛𝑛−1
𝑖𝑖=1

∀i ∈ ⟦1, 2𝑝𝑝 − 1⟧;  ∑ 𝑥𝑥𝑗𝑗,𝑖𝑖
𝑛𝑛
𝑗𝑗=1 = 𝑥𝑥𝑖𝑖,𝑡𝑡

 

(2)  
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Flow positivity constraints:                        �
∀𝑗𝑗 ∈ ⟦1, 𝑝𝑝⟧,𝑥𝑥𝑠𝑠,𝑗𝑗 ∈ ℝ+

∀(𝑖𝑖, 𝑗𝑗) ∈ ⟦1, 2𝑝𝑝 − 1⟧ × ⟦1, 𝑝𝑝⟧,𝑥𝑥𝑗𝑗,𝑖𝑖 ∈ ℝ+

∀𝑖𝑖 ∈ ⟦1, 2𝑝𝑝 − 1⟧, 𝑥𝑥𝑖𝑖,𝑡𝑡 ∈ ℝ+
 

3.4 Generation of a feasible battery recharge schedule 

 Given a number of batteries and a number of chargers, proving the feasibility of a battery recharge 

schedule is sufficient to estimate the peak-power demand and therefore the price of electricity. 

Nevertheless, the actual generation of a battery recharge schedule is also of interest to understand how 

operators will charge aircraft batteries. A recharge schedule is constructed using the flow values computed 

during the determination of the maximum flow for the schedule feasibility analysis. Of interest are the flow 

values 𝑥𝑥𝑗𝑗,𝑖𝑖  which represent the processing times of the recharge jobs 𝐽𝐽𝑗𝑗 performed during the time 

intervals 𝐼𝐼𝑖𝑖. Several recharge jobs may be partially processed during a time interval and building a schedule 

consists in ordering these partial recharges and allocating them to the various chargers. For each time 

interval, generating a schedule is equivalent to solving a 𝑃𝑃𝑚𝑚 | 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 | 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 problem (Horn 1974) with 

several chargers working in parallel to minimize the total completion time 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 of partial recharge jobs 

with identical release dates coinciding with the beginning of the time interval. By construction of the 

network, 𝑥𝑥𝑗𝑗,𝑖𝑖 ≤ ∆𝑇𝑇𝑖𝑖 and ∑ 𝑥𝑥𝑗𝑗,𝑖𝑖
𝑛𝑛
𝑗𝑗=1 ≤ 𝑝𝑝 ∙ ∆𝑇𝑇𝑖𝑖, which implies that for each time interval the 

inequality 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ≤ ∆𝑇𝑇𝑖𝑖 holds true (McNaughton 1959). In fact, a lower bound for the total completion time 

can be attained for each time interval, as provided in equation (3) (Brucker 2007). 

∀𝑖𝑖 ∈ ⟦1, 2𝑝𝑝 − 1⟧;  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖 = 𝑝𝑝𝑚𝑚𝑥𝑥 �𝑝𝑝𝑚𝑚𝑥𝑥

𝑗𝑗
�𝑥𝑥𝑗𝑗,𝑖𝑖� ,�

𝑥𝑥𝑗𝑗,𝑖𝑖

𝑝𝑝

𝑛𝑛

𝑗𝑗=1
� (3) 

 A schedule is constructed in 𝒪𝒪(𝑝𝑝) time (McNaughton 1959) by filling the chargers successively and by 

scheduling the partial recharge jobs in any order. When the time bound 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖  is reached, the partial recharge 

job is split into two parts and the second part is processed by the next available charger starting at the 

beginning of the time interval. This construct ensures that the recharge schedules generated for each time 

interval have no more than m-1 preemptions (Gonzalez and Sahni 1978) and the condition 
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∀(𝑖𝑖, 𝑗𝑗) ∈ ⟦1, 2𝑝𝑝 − 1⟧ × ⟦1, 𝑝𝑝⟧;  𝑥𝑥𝑗𝑗,𝑖𝑖 ≤  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖  ensures that a partial recharge job cannot be processed by two 

chargers simultaneously. 

4 Implementation 

4.1 Power optimized battery swap and recharge strategy 

 The power optimized strategy aims at minimizing the peak-power draw from the grid and therefore the 

price of electricity. This is equivalent to minimizing the number of chargers at each airport in the network 

and determining the corresponding number of batteries that yield a feasible battery swap and recharge 

schedule. The search for the minimum number of chargers and the corresponding number of batteries at a 

given airport is initiated by astute guesses. If chargers were to be used without interruption at maximum 

power without any release time or deadline constraint, a lower bound for the number of chargers, denoted 

m, is given by equation (4) where E is the amount of energy supplied to the batteries over a given time 

period, P is the maximum power output of the chargers, and ∆𝑝𝑝 is the time period length. 

𝑝𝑝 =
𝐸𝐸

𝑃𝑃.∆𝑝𝑝
 (4) 

 Similarly, a lower bound for the number of batteries at an airport is given by the number of aircraft, 

denoted N, that start their operations at that airport (i.e. aircraft that depart from this airport without arriving 

first). An upper bound for the number of batteries at an airport is given by the number of flights departing 

that airport, denoted kmax. Let m be the initial guess for the minimum number of chargers located at the 

airport of interest and k = N be the initial guess for the minimum number of batteries. The maximum lateness 

Lmax across all flights at that airport may then be computed using equation (1) and compared with the 

maximum lateness target Ltarget. If Lmax > Ltarget and k < kmax, then an additional battery may be necessary to 

enable operations. This happens when aircraft arrival and departure times are so close that a sufficient 

battery charge cannot be made during the ground turnaround time. The number of batteries is therefore 

incremented by one unit and the maximum lateness is recalculated with the same number of chargers. If 

Lmax > Ltarget and k = kmax, then an additional charger may be necessary to enable operations without 
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unacceptable disruptions. The number of chargers is thus incremented by one unit and the maximum 

lateness is recalculated with the minimum number of batteries N. The process of adding batteries and adding 

chargers is repeated until Lmax < Ltarget at which point the flight schedule at that airport is feasible with a 

minimum number of chargers m* and a corresponding minimum number of batteries k*.  The algorithm for  

the power optimized battery swap and recharge strategy is illustrated in Figure 2. 

 The process of adding a battery to the search 

described previously requires an adjustment to 

the algorithms and concepts described in section 

3. As batteries are added to an airport inventory, 

the sets of job nodes and time interval nodes are 

modified. Additional job nodes are created to 

account for the recharge of these additional 

batteries and additional time interval nodes are 

created to account for the availabilities of these 

new batteries. If one battery is introduced, then 

a recharge job is added with a release time set at 

the start of the study period. Using the first-in 

first-out assumption, all other recharge jobs are 

shifted by one increment, meaning that their 

release dates stay the same (i.e. at the time when 

the aircraft carrying the battery lands) but their 

deadlines are shifted to the next departure. Consequently, each battery stays longer on the ground and more 

time is available for charging. The process of introducing one additional battery is illustrated in Figure 3 

and this shifting process is repeated each time a new battery is added. 

 

Figure 2: Implementation of the power optimized 

battery swap and recharge strategy by determining 

the minimum number of chargers 

Power Optimized Strategy

Guess minimum number of batteries
k = N located at airport

Guess minimum number of chargers
m = E / located at airport

Compute Lmax given release dates rj, 
deadlines dj, and recharge times pj

Airport schedule feasible with m*
chargers and k* batteries

Yes
No

k = k + 1
Add one 
battery

m = m + 1
Add one 
charger

k = kmax

Seconds in a day
P: Maximum charge power

E: Daily airport energy requirement
N: Number of aircraft stationed at airport

For each airport in network

k < kmax
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Figure 3: A new job J0 and a new time interval I0 are created when a new battery is added. J0 

represents the recharge job for the first departure while I0 represents the early availability of this 

new battery. J1 now represents the recharge job for the second departure. Batteries are now available 

for longer periods of time on the ground during which they can be recharged. 

 

4.2 Power-investment optimized battery swap and recharge strategy 

 The power-investment optimized strategy aims at minimizing the overall recharge expenditures. Fewer 

chargers may result in lower electricity prices but may increase the number of batteries necessary, thus 

increasing capital expenditures. Conversely, additional chargers may increase the price of electricity but 

may reduce the number of batteries necessary, thus potentially reducing capital expenditures. There is 

therefore a tradeoff between higher capital expenditures due to the battery and charger procurement costs 

and lower recurring expenditures due to lower electricity price. Investigating these tradeoffs requires 

another adjustment to the algorithms and concepts described in section 3. As the number of chargers 

increases, it is likely that the number of required batteries decreases. This results in a Pareto frontier 

representing the set of non-dominated solutions to the battery and charger tradeoff problem. To generate 

this boundary, the battery swap and recharge feasibility analysis is integrated into an algorithm featuring 

two loops searching respectively for the number of chargers and the number of batteries that satisfy the 

flight schedule constraints. 

 At any given airport, the procedure starts with the feasible solution (m*, k*) to the power optimized 

strategy which provides an upper bound k* to the minimum number of batteries required to satisfy the flight 
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schedule. Let m*+ 1 be the initial guess for the number of chargers and k* be the initial guess for the number 

of batteries. The maximum lateness Lmax at that airport is computed using equation (1) and compared with 

the maximum lateness target Ltarget. If Lmax < Ltarget, then the battery recharge schedule is still feasible. The 

number of batteries is then iteratively decremented by one unit and the maximum lateness is calculated until 

Lmax > Ltarget at which point the flight schedule is no longer feasible. Starting at the last feasible solution 

found, the number of chargers is again incremented by one unit and the process of searching for the 

minimum number of batteries is repeated. This procedure results in the creation of a Pareto frontier 

representing the number of chargers and the associated minimum number of batteries that satisfy the flight 

schedule at the airport.  

 From this Pareto frontier of non-dominated solutions, an optimal solution is defined as a pair (number 

of chargers, number of batteries) that minimizes the capital expenditures at that airport. This pair is 

identified by estimating energy and capital expenditures for each solution along the Pareto frontier. Using 

the battery lifetime energy throughput, the longevity and replacement date of each battery are approximated. 

A discounted cash flow analysis is then carried out using the longevity and expected replacement date of 

batteries, the cost of batteries, the cost of chargers, and the price of electricity. Future cash outflows are 

discounted to the present time to yield a net present value which enables the identification of the lowest 

cost solution pair (Fisher 1930) (Williams 1938). The analysis is repeated at each airport in the network to 

yield the solution to the power-investment optimized battery swap and recharge strategy illustrated in Figure 

4. This simple analysis is akin to superimposing isopreference curves over the Pareto frontier and selecting 

the Pareto-optimal solution yielding the highest utility. The power optimized strategy solution, the Pareto 

frontier, and the power-investment optimized strategy solution are depicted in Figure 5. 
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Figure 4: Trading off batteries for additional 

chargers to generate the Pareto frontier of non-

dominated solutions for the power-investment 

optimized strategy 

 Figure 5: Pareto optimal solutions 

highlighting the solution to the power 

optimized and power-investment optimized 

strategies 

 

4.3 Charger power selection for battery swap and recharge solutions 

 A typical battery recharge is composed of three phases: the pre-charge for low battery states of charge, 

followed by the constant-current fast charge, and finally the constant-voltage charge for high battery states 

of charge. When searching for solution pairs during the schedule feasibility analysis, we assume that 

chargers are working at their maximum rated power during the constant-current phase of the charge.  

 However, this assumption may not be justified at smaller airports characterized by few aircraft 

movements but short turnaround times. At these airports, a single charger is usually required but the 
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resulting peak power is disproportionately large compared to the amount of energy used. In these cases, 

chargers may not need to operate at maximum rated power and yet are able to charge batteries sufficiently 

during the allotted time windows. The main benefit of throttling down the recharge power is to further 

decrease the peak power drawn from the electrical grid, and thus, to further decrease the price of electricity. 

 Consequently, a refinement of the battery swap 

and recharge strategies proposed in sections 4.1 and 

4.2 consists in minimizing the power drawn from the 

grid by throttling down the recharge power once a 

solution pair (m*, k*) is found. This is achieved using 

a bisection algorithm that iteratively converges to the 

minimum required charger power yielding a feasible 

recharge schedule. The feasibility is assessed at each 

step by computing the maximum lateness Lmax (which 

determines if the flight schedule integrity constraint 

is violated). The minimum charger power is used to 

determine the peak power and thus the price of 

electricity at the airport. The implementation of the charger power selection process is highlighted in Figure 

6 and its integration within the implementation of the power optimized and power-investment optimized 

strategies is depicted in Figure 7. Although this is particularly relevant for smaller airports where fast 

charging can result in excessive peak powers, this process is applied to all airports in the network as a 

refinement to the two strategies described previously. 

 

Figure 6: Charger power selection process 

Charger power selection
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Figure 7: Charger power refinement for power optimized and power-investment optimized strategies 

4.4 Benchmark non-optimized power-as-needed battery recharge strategy  

A benchmark strategy is developed to highlight the potential savings using the optimized battery swap 

and recharge strategies. This power-as-needed strategy minimizes neither the peak-power draw from the 

grid nor the capital expenditures. Instead, it follows a simpler logic in which batteries are fully recharged 

overnight and partially charged during the ground turnaround time after each flight. Battery swaps are 

performed if, and only if, the state of charge of the on-board battery at the end of the ground turnaround 

time is insufficient to complete the subsequent mission with appropriate energy reserves. If a battery swap 

is necessary, the on-board battery is removed to be fully recharged and is replaced with a fully charged 

spare battery. A spare battery inventory management plan is implemented so that spare batteries are re-used 

for subsequent flights to limit the inventory of batteries. Thus, removed batteries are immediately plugged-

in and placed in the airport pool of available batteries once fully recharged. This pool of available batteries 

is used when aircraft land and their on-board batteries need to be swapped. Overall, this unsophisticated 

strategy represents an approach with little operational complexity, where batteries are recharged whenever 

possible, and for which no consideration is given to the availability of chargers, the required number of 

chargers, the price of electricity, or the capital expenditures. A description of the algorithm implementing 

the simpler power-as-needed strategy is proposed in Figure 8.  
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5 Applications 

 The strategies presented in the previous sections are applied to the operations of an electric aircraft by 

two commuter airlines similar to Cape Air and Mokulele Airlines. 

5.1 Description of commuter operators 

Cape Air is one of the largest commuter operators in the world and operates a fleet of Cessna 402s, 

Britten-Norman Islanders, and ATR42 in the New England area, the Caribbean, Illinois, Missouri, Montana, 

and the Mariana Islands. Mokulele Airlines operates a small fleet of Cessna 208 aircraft in the Hawaiian 

Islands and California. This study focuses on Cape Air’s Cessna 402 operations in New England and on 

Mokulele’s Cessna 208 operations in Hawaii. Some relevant network statistics are presented in Table 1. 

Based on the analysis of Cape Air’s and Mokulele’s flight routings, great circle distances are augmented 

 

Figure 8: Power-as-needed strategy implementation with battery inventory management plan 
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by 6% and 28% respectively to account for operational idiosyncrasies (instrument approaches, traffic 

patterns) and geographical obstacles (mountains). Reserves for both operators include a diversion to an 

alternate airport 50nm away and a 45min final reserve (Justin, et al. 2017).  

Table 1: Network statistics of two commuter operators 

 Cape Air 
New England Network 

Mokulele Airlines 
 Hawaiian Network 

Week Analyzed 07/31/2015 to 08/07/2015 03/20/2016 to 03/27/2016 
Weekly Flights 1,839 732 
Cities Served 19 9 
Number and Type of Aircraft 48 Cessna 402 8 Cessna 208 
Median Day Turnaround Time 35 min 19 min 

 

 

5.2 Description of the electric aircraft 

 Cape Air is the launch customer of the Tecnam P2012 Traveller, a twin-engine aircraft expected to 

replace the Cessna 402 fleet (Hemmerdinger 2017). An electric propulsion retrofit of the Tecnam P2012 

based on the design principles of the NASA Maxwell X-57 is envisioned (Justin, et al. 2017). The electric 

aircraft retains some of the original structure of the Tecnam P2012 design and the nine-passenger cabin. 

However, it features a new retractable landing gear, a smaller composite wing fitted with single-slotted 

flaps, and a distributed electric propulsion system similar to the one found on the NASA X-57 (Borer, 

Derlaga, et al. 2017). The propulsion system consists of twelve high-lift propellers driven by electric motors 

and distributed along the leading edge of the wing to increase the airflow over the wing at low flight speeds, 

as well as two larger cruise propellers driven by electric motors and located at the wingtips. This system 

benefits from several aero-propulsion integration advantages over conventional propulsion systems, 

including increased cruising speeds, improved cruise lift-to-drag ratios, improved battery-to-shaft 

conversion efficiency, and zero greenhouse gas emissions (Borer, Patterson, et al. 2016). Some 

characteristics of the “Electro-Traveller” are summarized in Table 2.  
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Table 2: “Electro-Traveller” design parameters, power requirements, and operational assumptions 

Characteristics and Performance  Power Requirements  Operational Assumptions 
Max. Take-Off 
Weight 8,730 lb  Taxi 39 kW  Taxi In and Out 

Phase 10 min 

Operational Empty 
Weight 4,075 lb  Take-off 416 kW  Take-off Phase 2 min 

Battery Capacity (x2) 214 kWh  Climb at 4,000 ft 
and 1,000 ft/min 382 kW  Approach Phase 1 min 

Wing Area 175 ft2  Cruise at 8,000 ft 
and 65% power 306 kW  Landing Phase 1 min 

Max. Lift Coefficient, 
CLmax 

3.95  Cruise at 8,000 ft 
and 75% power 353 kW  Min. and Max. 

Cruise Altitude 
3,000 ft 
10,000 ft 

Carson’s Speed at 
8,000 ft 184 kt  Descent at 4,000ft 

and 700 ft/min 50 kW  Distance to 
Alternate 50 nm 

Best Range Speed at 
8,000 ft 146 kt  Approach 191 kW  Final Reserve 45 min 

Best Endurance Speed 
at 5,000 ft 113 kt  Landing 191 kW  Battery 

Swapping Time 5 min 

 

5.3 Electricity schedules and other assumptions 

The electricity rates at airports served by Cape Air and Mokulele Airlines were retrieved from the 

websites of the corresponding utilities and assembled into a database. The database includes 139 rate 

schedules from 11 different utilities (Hawaiian Electric Company, Nantucket Electric Company, 

Eversource Energy, NSTAR, Central Maine Power, Emera Maine, Liberty Utilities, Niagara Mohawk 

Power Corporation, Consolidated Edisson, National Grid, Green Mountain Power). These rate schedules 

depend on the type of customer, the amount of energy used, the peak power likely to be delivered, and the 

delivery voltage. When time-of-use schedules are in effect, a time-weighted average electricity price is used 

since the proposed method does not account for these effects. Additional assumptions related to the recharge 

process, the cost of batteries, and the cost of chargers are summarized in Table 3. 

Table 3: Battery, charger, and electricity rate assumptions for cases studies 

Technology Assumptions  Economic Assumptions (2018-US$) 
Charger Power 125 kW  Charger Cost $100,000 
Charger Efficiency 90%  Battery Specific Cost 100 $/kWh 
Charger Useful Life  7 years  Battery Inventory Cost 0 $/month 
Battery Useful Life 1,000 cycles  Discount Rate 8.1% 
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6 Results and Discussions 

 The power optimized and power-investment optimized strategies are compared and contrasted with the 

power-as-needed strategy using the peak-power demand, the electricity cost, the number of chargers, and 

the number of batteries required to satisfy the flight schedules of the airlines. 

6.1 Results for the power optimized strategy 

The first set of results in Figure 9 provides a detailed electricity demand profile over a day of operations 

for Cape Air’s largest station at Boston Logan International Airport (BOS) and for Mokulele Airlines at 

Molokai Hoolehua Airport (MKK) for the power-as-needed strategy and the power optimized strategy.  

Several salient features can be observed. First, the power-as-needed strategy results in a very peaky 

demand relative to the power optimized strategy for the same amount of energy delivered to the aircraft. At 

Boston airport, the power-as-needed strategy leads to four peaks of daily recharge activity at 10am, 12pm, 

3.30pm and 6.30pm corresponding to four banks of aircraft arrivals from outer stations. This yields a 

maximum power demand of 1,789kW. The profile also features a flat zero-power demand from 10pm to 

7am when chargers are not used. At Molokai Hoolehua airport, the power-as-needed strategy leads to four 

  

Figure 9: Power-as-needed (red) and power optimized (black) demand profiles over a day of 

operations for Cape Air at Boston (left) and for Mokulele Airlines at Molokai (right) 
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daily peaks of recharge activity at 7am, 12pm, 6pm, and 7.30pm, with a maximum demand of 517kW. A 

flat zero-power demand is also observed between 9.30pm and 6.30am. With the power optimized strategy, 

the peak demand is significantly reduced by spreading the ‘energy flow’ evenly from the grid to the batteries 

throughout the day and night. At Boston airport, the maximum power demand is reduced by over 53% to 

833kW, while it is reduced by 74% to 132kW at Molokai Hoolehua airport. 

Next, the busiest airports of Cape Air and Mokulele Airlines are considered. The total amount of energy 

required over a week of operations and the peak power are recorded at several busy airports and summarized 

in Table 4 for the power-as-needed and power optimized strategies. With the power optimized strategy, all 

airports experience significant reductions in peak-power demand, averaging 57% and 61% for Cape Air 

and Mokulele Airlines respectively. The largest reductions exceed 80% and typically occur at quieter 

airports where fewer chargers are required and fast charging is not necessary. This is either due to a lack of 

traffic, which is the case at Hana and Waimea airports, or to extended ground times, which is the case at 

Hyannis airport (used primarily as a maintenance facility by Cape Air). 

Table 4: Peak powers at several busy airports for the power-as-needed and power optimized strategies 

 Location Energy 
(kWh) 

Peak Demand (kW)  

Location Energy 
(kWh) 

Peak Demand (kW) 
Power 

as 
Needed 

Power 
Optimized Change 

Power 
as 

Needed 

Power 
Optimized Change 

C
 C

A
PE

 A
IR

 –
  N

E
W

 E
N

G
L

A
N

D
 N

E
T

W
O

R
K

 

ACK Nantucket, MA 44,970 1,033 417 -60% 

M
O

K
U

L
EL

E 
– 

H
A

W
A

II
 N

E
TW

O
R

K
 HNL Honolulu, HI 18,263 478 139 -71% 

ALB Albany, NY 14,550 471 132 -68% HNM Hana, HI 1,103 139 21 -85% 

AUG Augusta, ME 6,623 139 83 -40% JHM Kapalua, HI 19,930 517 264 -49% 

BOS Boston, MA 82,812 1,789 833 -53% JRF Kalaeloa, HI 7,021 239 90 -62% 

EWB New Bedford, MA 7,086 417 132 -68% KOA Kona, HI 22,518 517 278 -46% 

HPN White Plains, NY 3,367 339 118 -65% LUP Kalaupapa, HI 551 139 35 -75% 

HYA Hyannis, MA 14,087 756 139 -82% MKK Hoolehua, HI 19,860 517 132 -74% 

LEB Lebanon, NY 5,032 139 97 -30% MUE Waimea-Kohala, HI 2,223 139 21 -85% 

MSS Massena, NY 4,947 139 56 -60% OGG Kahului, HI 22,841 656 222 -66% 

MVY Martha’s Vineyard, MA 22,639 694 250 -64% Network Weighted Average -61% 

OGS Ogdensburg, NY 5,053 139 56 -60%       

PVC Provincetown, MA 8,507 417 139 -67%        

PVD Providence, RI 5,653 278 139 -50%        

RKD Rockland, ME 9,991 239 125 -48%        

RUT Rutland, VT 4,296 139 42 -70%        

Network Weighted Average   -57%        
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Considering the peak-power demand and energy used, the electricity prices are computed at each airport 

and displayed in Table 5. The electricity prices range between 6.7c/kWh (Albany) and 24.5c/kWh (White 

Plains) in New England, and between 19.4c/kWh (Honolulu) and 54.6c/kWh (Kalaupapa) in Hawaii. This 

yields average electricity prices of 13.9c/kWh for Cape Air and 29.6c/kWh for Mokulele Airlines, leading 

to average energy-related operating costs of $0.28/nm and $0.75/nm respectively. These costs compare 

favorably to the energy-related operating costs of conventional fuel-burning commuter aircraft, which are 

typically between $1.50/nm and $2.50/nm (Justin, et al. 2017). Overall, the electricity price reductions 

obtained with the power optimized strategy average 25% for Cape Air and 23% for Mokulele Airlines. This 

strategy requires a total of 120 batteries and 23 chargers (corresponding to a capital expenditure of $8.63M) 

for Cape Air, and a total of 39 batteries and 12 chargers (corresponding to a capital expenditure of $3.26M) 

for Mokulele Airlines. Additional details about electricity costs, number of chargers, and number of 

batteries are provided in Appendix A. 

Table 5: Electricity prices at several airports for the power-as-needed and power optimized strategies 

 Location Energy 
(kWh) 

Electricity Price ($/kWh)  

Location Energy 
(kWh) 

Electricity Price ($/kWh) 
Power as 
Needed 

Power 
Optimized Change Power as 

Needed 
Power 

Optimized Change 

C
A
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 A
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 –

  N
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ACK Nantucket, MA 44,970 0.141 0.128 -9% 

M
O

K
U

L
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E 
– 

H
A

W
A

II
 N

E
TW

O
R

K
 HNL Honolulu, HI 18,263 0.342 0.194 -43% 

ALB Albany, NY 14,550 0.103 0.067 -35% HNM Hana, HI 1,103 1.088 0.370 -66% 

AUG Augusta, ME 6,623 0.098 0.091 -7% JHM Kapalua, HI 19,930 0.402 0.349 -13% 

BOS Boston, MA 82,812 0.208 0.152 -27% JRF Kalaeloa, HI 7,021 0.322 0.210 -35% 

EWB New Bedford, MA 7,086 0.244 0.173 -29% KOA Kona, HI 22,518 0.327 0.284 -13% 

HPN White Plains, NY 3,367 0.504 0.245 -51% LUP Kalaupapa, HI 551 1.316 0.546 -59% 

HYA Hyannis, MA 14,087 0.211 0.155 -27% MKK Hoolehua, HI 19,860 0.428 0.332 -22% 

LEB Lebanon, NY 5,032 0.189 0.179 -5% MUE Waimea-Kohala, HI 2,223 0.367 0.281 -23% 

MSS Massena, NY 4,947 0.111 0.068 -39% OGG Kahului, HI 22,841 0.417 0.332 -20% 

MVY Martha’s Vineyard, MA 22,639 0.203 0.155 -24% Network Weighted Average 0.387 0.296 -23% 

OGS Ogdensburg, NY 5,053 0.11 0.068 -38%       

PVC Provincetown, MA 8,507 0.256 0.172 -33%        

PVD Providence, RI 5,653 0.194 0.171 -12%        

RKD Rockland, ME 9,991 0.1 0.089 -11%        

RUT Rutland, VT 4,296 0.246 0.179 -27%        

Network Weighted Average   0.186 0.139 -25%        
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6.2 Results for the power-investment optimized strategy 

The power optimized strategy yields promising electricity cost reductions but fails to account for the 

significant amount of capital tied-up in the inventory of batteries and chargers. The next set of results 

concerns the power-investment optimized strategy which accounts for the peak power demand, the number 

of batteries, and the number of chargers when minimizing overall recharge costs. Figure 10 indicates that 

the power-investment optimized strategy yields a peak-power reduction of 46% at Boston airport (from 

1,789kW to 972kW) and 57% at Molokai Hoolehua airport (from 517kW to 222kW) compared to the 

power-as-needed strategy. Even though these reductions are less pronounced than with the power optimized 

strategy, significant reductions are still observed compared to the power-as-needed strategy.  

  

Figure 10: Power-as-needed (red) and power-investment optimized (dark grey) demand profiles over 

a day of operations for Cape Air at Boston (left) and for Mokulele Airlines at Molokai (right) 

The total amount of energy required and the peak power recorded at the busiest airports during a week 

of operations are summarized in Table 6 for the power-as-needed and power-investment optimized 

strategies. Results indicate an average peak-power reduction of 49% for Cape Air and 54% for Mokulele 

Airlines. The largest peak power reductions reach 82% at Hyannis airport for Cape Air and 85% at Hana 

and Waimea-Kohala airports for Mokulele Airlines.  
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Table 6: Peak powers at several airports served by the two commuter operators for the power-as-

needed and power-investment optimized strategies 

 Location Energy 
(kWh) 

Peak Demand (kW)  

Location Energy 
(kWh) 

Peak Demand (kW) 
Power 

as 
Needed 

Power-
Investment 
Optimized 

Change 
Power 

as 
Needed 

Power-
Investment 
Optimized 

Change 

C
A

PE
 A

IR
 –

  N
E

W
 E

N
G
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A

N
D

 N
ET

W
O

R
K

 

ACK Nantucket, MA 44,970 1,033 694 -33% 

M
O

K
U

L
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E 
– 

H
A

W
A

II
 N

E
TW

O
R

K
 HNL Honolulu, HI 18,263 478 278 -42% 

ALB Albany, NY 14,550 471 132 -68% HNM Hana, HI 1,103 139 21 -85% 

AUG Augusta, ME 6,623 139 83 -40% JHM Kapalua, HI 19,930 517 264 -49% 

BOS Boston, MA 82,812 1,789 972 -46% JRF Kalaeloa, HI 7,021 239 90 -62% 

EWB New Bedford, MA 7,086 417 132 -68% KOA Kona, HI 22,518 517 278 -46% 

HPN White Plains, NY 3,367 339 118 -65% LUP Kalaupapa, HI 551 139 35 -75% 

HYA Hyannis, MA 14,087 756 139 -82% MKK Hoolehua, HI 19,860 517 222 -57% 

LEB Lebanon, NY 5,032 139 97 -30% MUE Waimea-Kohala, HI 2,223 139 21 -85% 

MSS Massena, NY 4,947 139 56 -60% OGG Kahului, HI 22,841 656 222 -66% 

MVY Martha’s Vineyard, MA 22,639 694 396 -43% Network Weighted Average -54% 

OGS Ogdensburg, NY 5,053 139 56 -60%       

PVC Provincetown, MA 8,507 417 139 -67%        

PVD Providence, RI 5,653 278 139 -50%        

RKD Rockland, ME 9,991 239 125 -48%        

RUT Rutland, VT 4,296 139 42 -70%        

Network Weighted Average -49%        

 
The electricity prices for the power-as-needed and power-investment optimized strategies are compiled 

in Table 7. The prices range between 6.7c/kWh (Albany) and 24.5c/kWh (White Plains) in New England, 

and between 21c/kWh (Kalaeloa) and 54.6c/kWh (Kalaupapa) in Hawaii. This results in average electricity 

prices of 14.5c/kWh for Cape Air and 30.8c/kWh for Mokulele Airlines. In turn, these translate into energy-

related operating costs of $0.29/nm and $0.78/nm respectively.  Again, this compares very favorably to the 

energy-related operating costs of conventional fuel-powered commuters. Overall, the electricity price 

reductions obtained with the power-investment optimized strategy average 20% for both Cape Air and 

Mokulele Airlines. This strategy requires a total of 98 batteries and 27 chargers (corresponding to a capital 

expenditure of $7.87M) for Cape Air, and a total of 30 batteries and 14 chargers (corresponding to a capital 

expenditure of $2.98M) for Mokulele Airlines. This corresponds to a capital expenditure reduction of 8.8% 

for Cape Air and 8.4% for Mokulele Airlines compared to the power optimized strategy. Additional details 

about electricity costs, number of chargers, and number of batteries are provided in Appendix A. 
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Table 7: Electricity costs at several busy airports served by the two commuter operators for the 

power-as-needed and power-investment optimized strategies 

 Location Energy 
(kWh) 

Electricity Price ($/kWh)  

Location Energy 
(kWh) 

Electricity Price ($/kWh) 

Power as 
Needed 

Power-
Investment 
Optimized 

Change 
Power 

as 
Needed 

Power-
Investment 
Optimized 

Change 

C
A

PE
 A

IR
 –

  N
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R
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ACK Nantucket, MA 44,970 0.141 0.133 -6% 

M
O

K
U

L
EL

E 
– 
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A

W
A

II
 N

E
TW

O
R

K
 HNL Honolulu, HI 18,263 0.342 0.246 -28% 

ALB Albany, NY 14,550 0.103 0.067 -35% HNM Hana, HI 1,103 1.088 0.370 -66% 

AUG Augusta, ME 6,623 0.098 0.091 -7% JHM Kapalua, HI 19,930 0.402 0.349 -13% 

BOS Boston, MA 82,812 0.208 0.161 -23% JRF Kalaeloa, HI 7,021 0.322 0.210 -35% 

EWB New Bedford, MA 7,086 0.244 0.173 -29% KOA Kona, HI 22,518 0.327 0.284 -13% 

HPN White Plains, NY 3,367 0.504 0.245 -51% LUP Kalaupapa, HI 551 1.316 0.546 -59% 

HYA Hyannis, MA 14,087 0.211 0.155 -27% MKK Hoolehua, HI 19,860 0.428 0.351 -18% 

LEB Lebanon, NY 5,032 0.189 0.179 -6% MUE Waimea-Kohala, HI 2,223 0.367 0.281 -23% 

MSS Massena, NY 4,947 0.111 0.068 -39% OGG Kahului, HI 22,841 0.417 0.332 -20% 

MVY Martha’s Vineyard, MA 22,639 0.203 0.169 -17% Network Weighted Average 0.387 0.308 -20% 

OGS Ogdensburg, NY 5,053 0.11 0.068 -39%       

PVC Provincetown, MA 8,507 0.256 0.172 -33%        

PVD Providence, RI 5,653 0.194 0.171 -12%        

RKD Rockland, ME 9,991 0.1 0.089 -11%        

RUT Rutland, VT 4,296 0.246 0.179 -27%        

Network Weighted Average 0.186 0.145 -20%        

 

6.3 Recharge schedule generation 

At each airport, detailed schedules can be generated for each charger and each battery to help visualize 

when chargers are used and when batteries are actively recharged. The charts in Figure 11 describe the 

activities of chargers at the Molokai Hoolehua airport over a day of operations for the power optimized and 

power-investment optimized strategies. The power optimized strategy requires a single charger (left chart) 

while the power-investment optimized strategy requires two chargers (right charts). The vertical axes list 

the battery identification indices and the horizontal axes represent time. Each chart indicates when batteries 

arrive at the airport, when batteries are recharged, when batteries depart the airport, and where batteries are 

heading next. It is noteworthy that preemption is allowed and thus some battery recharges are split between 

the two chargers in the power-investment optimized strategy. This is for instance the case of the third battery 

which arrives at Molokai Hoolehua at 7:00am, gets partially recharged on the second charger between 
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7:36am and 7:59am, completes its recharge on the first charger between 8:00am and 8:42am, and finally 

departs to Honolulu at 10:15am.  

  

Figure 11: Charger schedules at Molokai airport 

for the power optimized strategy (left, one charger) 

and for the power-investment optimized strategy 

(right, two chargers). Battery arrivals are 

indicated with blue circles, recharges are 

indicated with black diamonds, departure times 

are denoted by red crosses, and departure 

destinations are labelled. 
 

 The power-investment optimized strategy trades some batteries for additional chargers. The average 

utilization of chargers at each airport therefore decreases, which may provide additional flexibility during 

periods of irregular operations (i.e. additional recharge capacity is available). In the case of Molokai 

Hoolehua airport, the power optimized strategy requires a single charger used on average 90% of the time, 

while the power-investment optimized strategy requires two chargers used 68% and 39% respectively for 

an average utilization of 53%. Table 8 summarizes the charger utilization at the busiest airports in the 
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network of Cape Air and Mokulele Airlines. The average utilization reaches 56% (Cape Air) and 62% 

(Mokulele) for the power optimized strategy while it reaches 46% (Cape Air) and 49% (Mokulele) for the 

power-investment optimized strategy. 

Table 8: Average charger utilization for the power-optimized and the power-investment optimized 

strategies 

 Location 

Average Charger 
Utilization (%) 

 

Location 

Average Charger 
Utilization (%) 

Power 
Optimized 

Power-
Investment 
Optimized 

 Power 
Optimized 

Power-
Investment 
Optimized 

C
A
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 –

  N
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 E

N
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A

N
D

 N
ET

W
O

R
K

 

ACK Nantucket, MA 64% 39% 

M
O

K
U

L
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E 
– 

H
A

W
A

II
 N

E
TW

O
R

K
 HNL Honolulu, HI 78% 39% 

ALB Albany, NY 65% 65% HNM Hana, HI 32% 32% 

AUG Augusta, ME 47% 47% JHM Kapalua, HI 45% 45% 

BOS Boston, MA 59% 51% JRF Kalaeloa, HI 46% 46% 

EWB New Bedford, MA 32% 32% KOA Kona, HI 48% 48% 

HPN White Plains, NY 17% 17% LUP Kalaupapa, HI 9% 9% 

HYA Hyannis, MA 60% 60% MKK Hoolehua, HI 90% 53% 

LEB Lebanon, NY 31% 31% MUE Waimea-Kohala, HI 63% 63% 

MSS Massena, NY 53% 53% OGG Kahului, HI 61% 61% 

MVY Martha’s Vineyard, MA 58% 34% Network Weighted Average 62% 49% 

OGS Ogdensburg, NY 54% 54%     

PVC Provincetown, MA 37% 37%      

PVD Providence, RI 24% 24%      

RKD Rockland, ME 47% 47%      

RUT Rutland, VT 61% 61%      

Network Weighted Average 56% 46%      

7 Conclusions and Future Work 

This paper describes and attempts to address some of the challenges that airlines will face when 

introducing electric aircraft into their operations. In the quest for lower operating costs, we propose two 

battery swap and recharge strategies that aim at minimizing energy and capital expenditures. The power-

optimized and power-investment optimized strategies are implemented for the operations of two 

representative commuter airlines in New England and Hawaii. The power-optimized strategy yields peak-

power reductions of 57% and 61% respectively, while the power-investment optimized strategy yields peak-

power reductions of 40% and 54% respectively. In turn, electricity price reductions of 25% and 23% are 
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observed for the power-optimized strategy, while 22% and 20% reductions are observed for the power-

investment optimized strategy.  

The proposed approach relies on a network flow representation of the battery swap and recharge problem 

and leverages algorithms previously developed for machine scheduling problems. The main contributions 

of this paper are twofold. First, we formulate an optimization problem to address the battery swap and 

recharge for electric commuter aircraft while preserving routing and schedule integrity. Second, we 

decompose a large-scale network-wide optimization problem into a set of smaller-scale airport-centric 

optimization problems enabling an efficient search for feasible recharge schedule solutions. Overall, this 

research provides significant insights into the economic and operational challenges that will be faced by 

airlines as well as into the design and operations of the supporting recharge infrastructure. 

Subsequent research will introduce uncertainties in arrival times and energy usage in order to better 

represent typical commercial airline operations and to assess the robustness of the proposed solutions. 

Future improvements to the current method would include the introduction of variable electricity prices 

following time-of-use pricing schemes, the possibility to tank electric energy between airports of differing 

electricity costs, and the ability to optimize the charger power as part of the main optimization problem. 
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Appendix A: Airport activity, energy use, electricity price (decomposed into energy cost, power-demand cost, and fixed cost), and 

infrastructure requirements for the power-as-needed, power optimized and power-investment optimized strategies 

 Location Weekly 
Flights 

Power-as-Needed Strategy Power Optimized Strategy Power-Investment Optimized Strategy 

Energy  Peak 
Demand  

Electricity 
Price  

Energy 
Cost 

Demand 
Cost 

Fixed  
Cost 

Battery 
Number 

Charger 
Number Energy  Peak 

Demand  
Electricity 

Price  
Energy 

Cost 
Demand 

Cost 
Fixed  
Cost 

Battery 
Number 

Charger 
Number Energy  Peak 

Demand  
Electricity 

Price  
Energy 

Cost 
Demand 

Cost 
Fixed  
Cost 

Battery 
Number 

Charger 
Number 

 (IATA) (City, State) (-) (kWh) (kW) ($/kWh) ($/kWh) ($/kWh) ($/kWh) (-) (-) (kWh) (kW) ($/kWh) ($/kWh) ($/kWh) ($/kWh) (-) (-) (kWh) (kW) ($/kWh) ($/kWh) ($/kWh) ($/kWh) (-) (-) 

C
A

PE
 A

IR
 –

  N
E

W
 E

N
G
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A

N
D

 N
E

T
W

O
R

K
 

ACK Nantucket 
 MA 1702 40,347 1,033 $0.141 $0.120 $0.020 $0.001 7 8 44,970 417 $0.128 $0.12 $0.007 $0.001 20 3 44,970 694 $0.133  $0.120  $0.012  $0.001  8 5 

ALB Albany 
 NY 256 14,810 417 $0.103 $0.043 $0.054 $0.007 5 3 14,550 132 $0.067 $0.043 $0.017 $0.007 5 1 14,550 132 $0.067  $0.043  $0.017  $0.007  5 1 

AUG Augusta 
ME 122 6,653 139 $0.098 $0.075 $0.018 $0.004 3 1 6,623 83 $0.091 $0.075 $0.011 $0.005 2 1 6,623 83 $0.091  $0.075  $0.011  $0.005  2 1 

BOS Boston 
MA 2397 80,800 1,789 $0.208 $0.095 $0.113 $0.001 17 14 82,812 833 $0.152 $0.097 $0.055 $0.000 29 6 82,812 972 $0.161  $0.097  $0.064  $0.000  22 7 

EWB New Bedford 
MA 317 7,922 417 $0.244 $0.122 $0.111 $0.010 8 3 7,086 132 $0.173 $0.122 $0.039 $0.012 4 1 7,086 132 $0.173  $0.122  $0.039  $0.012  4 1 

HPN White Plains 
NY 252 4,118 339 $0.504 $0.041 $0.454 $0.009 1 3 3,367 118 $0.245 $0.041 $0.194 $0.010 3 1 3,367 118 $0.245  $0.041  $0.194  $0.010  3 1 

HYA Hyannis 
MA 829 19,603 756 $0.211 $0.117 $0.084 $0.010 41 6 14,087 139 $0.155 $0.128 $0.021 $0.006 26 1 14,087 139 $0.155  $0.128  $0.021  $0.006  26 1 

LEB Lebanon 
NY 174 5,309 139 $0.189 $0.146 $0.041 $0.002 5 1 5,032 97 $0.179 $0.146 $0.03 $0.003 3 1 5,032 97 $0.179  $0.146  $0.030  $0.003  3 1 

MSS Massena 
NY 96 4,896 139 $0.111 $0.037 $0.054 $0.021 3 1 4,947 56 $0.068 $0.039 $0.027 $0.002 2 1 4,947 56 $0.068  $0.039  $0.027  $0.002  2 1 

MVY Martha’s 
Vineyard, MA 834 19,905 694 $0.203 $0.117 $0.076 $0.010 5 5 22,639 250 $0.155 $0.128 $0.023 $0.004 10 2 22,639 396 $0.169  $0.128  $0.037  $0.004  7 3 

OGS Ogdensburg 
NY 87 4,974 139 $0.110 $0.037 $0.053 $0.020 3 1 5,053 56 $0.068 $0.039 $0.026 $0.002 2 1 5,053 56 $0.068  $0.039  $0.026  $0.002  2 1 

PVC Provincetown 
MA 417 7,515 417 $0.256 $0.128 $0.117 $0.011 5 3 8,507 139 $0.172 $0.128 $0.034 $0.010 5 1 8,507 139 $0.172  $0.128  $0.034  $0.010  5 1 

PVD Providence 
RI 230 6,949 278 $0.194 $0.093 $0.074 $0.028 6 2 5,653 139 $0.171 $0.116 $0.05 $0.006 4 1 5,653 139 $0.171  $0.116  $0.050  $0.006  4 1 

RKD Rockland 
ME 182 9,635 239 $0.1 $0.075 $0.021 $0.003 6 2 9,991 125 $0.089 $0.075 $0.011 $0.003 3 1 9,991 125 $0.089  $0.075  $0.011  $0.003  3 1 

RUT Rutland 
VT 91 4,583 139 $0.246 $0.145 $0.099 $0.002 3 1 4,296 42 $0.179 $0.145 $0.032 $0.002 2 1 4,296 42 $0.179  $0.145  $0.032  $0.002  2 1 

Network-Wide Total / 
Weighted Average 7,986 238,018 995 $0.186  $0.099  $0.082  $0.005  118 54 239,613 432 $0.139  $0.102  $0.034  $0.003  120 23 239,613 546 $0.145  $0.102  $0.040  $0.003  98 27 

(Variation)           (-57%) (-25%) (+3%) (-59%) (-46%) (+2%) (-57%)  (-49%) (-20%) (+3%) (-52%) (-50%) (-17%) (-50%) 
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 HNL Honolulu 

HI 525 14,937 478 $0.342  $0.151  $0.179  $0.012  7 4 18,263 139 $0.194  $0.172  $0.020  $0.001  8 1 18,263 278 $0.246  $0.151  $0.085  $0.009  4 2 

HNM Hana 
HI 61 438 139 $1.088  $0.307  $0.731  $0.050  0 1 1,103 21 $0.370  $0.307  $0.044  $0.020  1 1 1,103 21 $0.370  $0.307  $0.044  $0.020  1 1 

JHM Kapalua 
HI 486 20,893 517 $0.402  $0.280  $0.114  $0.008  4 4 19,930 264 $0.349  $0.280  $0.061  $0.008  4 2 19,930 264 $0.349  $0.280  $0.061  $0.008  4 2 

JRF Kalaeloa 
HI 178 8,876 239 $0.322  $0.151  $0.151  $0.019  3 2 7,021 90 $0.210  $0.172  $0.035  $0.003  2 1 7,021 90 $0.210  $0.172  $0.035  $0.003  2 1 

KOA Kona 
HI 512 23,442 517 $0.327  $0.221  $0.099  $0.008  7 4 22,518 278 $0.284  $0.221  $0.055  $0.008  5 2 22,518 278 $0.284  $0.221  $0.055  $0.008  5 2 

LUP Kalaupapa 
HI 26 690 139 $1.316  $0.298  $0.835  $0.184  1 1 551 35 $0.546  $0.372  $0.145  $0.028  1 1 551 35 $0.546  $0.372  $0.145  $0.028  1 1 

MKK Hoolehua 
HI 669 17,436 517 $0.428  $0.298  $0.123  $0.007  3 4 19,860 132 $0.332  $0.298  $0.028  $0.006  10 1 19,860 222 $0.351  $0.298  $0.046  $0.006  5 2 

MUE Waimea-
Kohala, HI 61 2,985 139 $0.367  $0.250  $0.110  $0.007  3 1 2,223 21 $0.281  $0.250  $0.022  $0.009  2 1 2,223 21 $0.281  $0.250  $0.022  $0.009  2 1 

OGG Kahului 
HI 660 23,180 656 $0.417  $0.280  $0.130  $0.007  8 5 22,841 222 $0.332  $0.280  $0.045  $0.007  6 2 22,841 222 $0.332  $0.280  $0.045  $0.007  6 2 

Network-Wide Total / 
Weighted Average 3,178 112,875 504 $0.387  $0.243  $0.134  $0.010  36 26 114,310 197 $0.296  $0.248  $0.042  $0.006  39 12 114,310 234 $0.308  $0.244  $0.056  $0.008  30 14 

(Variation)            (-61%) (-23%) (+2%) (-68%) (-36%) (+8%) (-54%)  (-54%) (-20%) (+1%) (-58%) (-24%) (-17%) (-46%) 
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