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describes 
observables in 

presence of 
background charge

⇡0 � ⇢



Quantum dimension





RA = ⇡0(A(A))00



RA = ⇡0(A(A))00

RB



RAB = RA _RB

RA = ⇡0(A(A))00

RB



bRAB = ⇡0(A((A [B)c))0
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Weak-operator limit is in bRAB

Jones-Kosaki-Longo index [ bRAB : RAB ]



Theorem
The number of excitation types is bounded by

If all excitations have conjugates,      is equal 
to the total quantum dimension.

µ⇡0

µ⇡0 = sup
A[B

[ bRAB : RAB ]

PN, J. Math. Phys. ’13  
Kawahigashi, Longo & Müger, Commun. Math. Phys. ’01
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A data hiding task

Kato, Furrer & Murao, Phys. Rev. A., ’16

Similar conclusion: TEE
as a secret sharing capacity
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Alice prepares a mixed state  :

…and sends it to Bob

Can Bob recover       ?
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Shirokov & Holevo, arXiv:1608.02203
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For finite index inclusion 

quantum channel, describes the 
restriction of operations
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Hiai, J. Operator Theory, ’90; J. Math. Soc. Japan, ‘91



Quantum dimension and entropy

gives an information-theoretic interpretation to 
quantum dimension

Completely different methods from Kato/Furrer/
Murao, PRA 93, 022317 (2016) 

Hiai, J. Operator Theory, ’90; J. Math. Soc. Japan, ‘91
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Only classical information can be stored

Different methods compared to Kato et al.

No finite dimensional analogue to index

Can use powerful methods from mathematics

Right framework to study stability?

Some remarks




