Operator algebras and data hiding in topologically ordered systems

Leander Fiedler

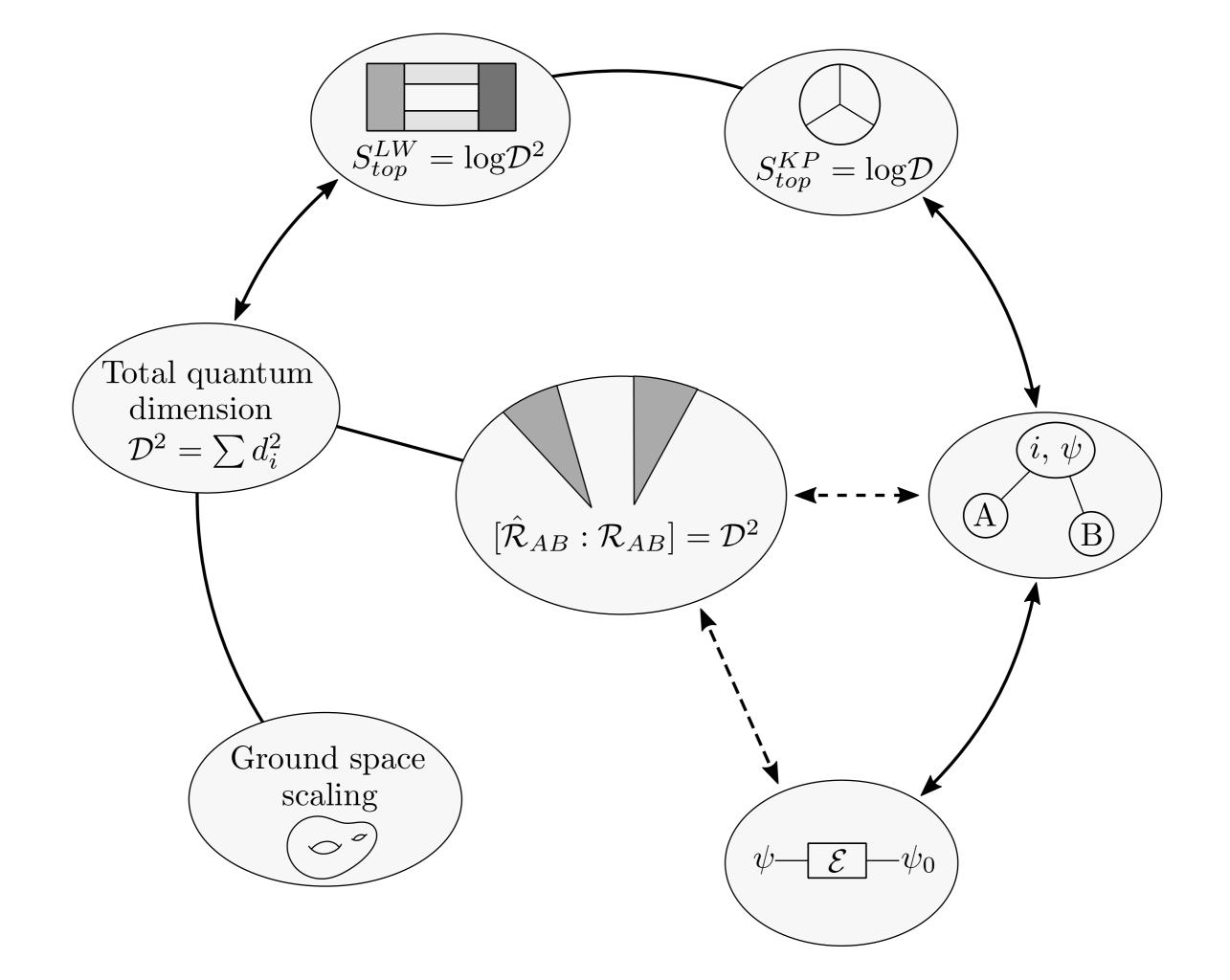
Pieter Naaijkens

Tobias Osborne

UC Davis & RWTH Aachen

arXiv:1608.02618

9 October 2016 QMath 13



Topological order

Quantum phase outside of Landau theory

> ground space degeneracy

- > ground space degeneracy
- > long range entanglement

- > ground space degeneracy
- > long range entanglement
- > anyonic excitations

- > ground space degeneracy
- > long range entanglement
- > anyonic excitations
- > modular tensor category / TQFT

- > ground space degeneracy
- > long range entanglement
- > anyonic excitations
- > modular tensor category / TQFT

Modular tensor category

Describes all properties of the anyons, e.g. fusion, braiding, charge conjugation, ...

Modular tensor category

Describes all properties of the anyons, e.g. fusion, braiding, charge conjugation, ...

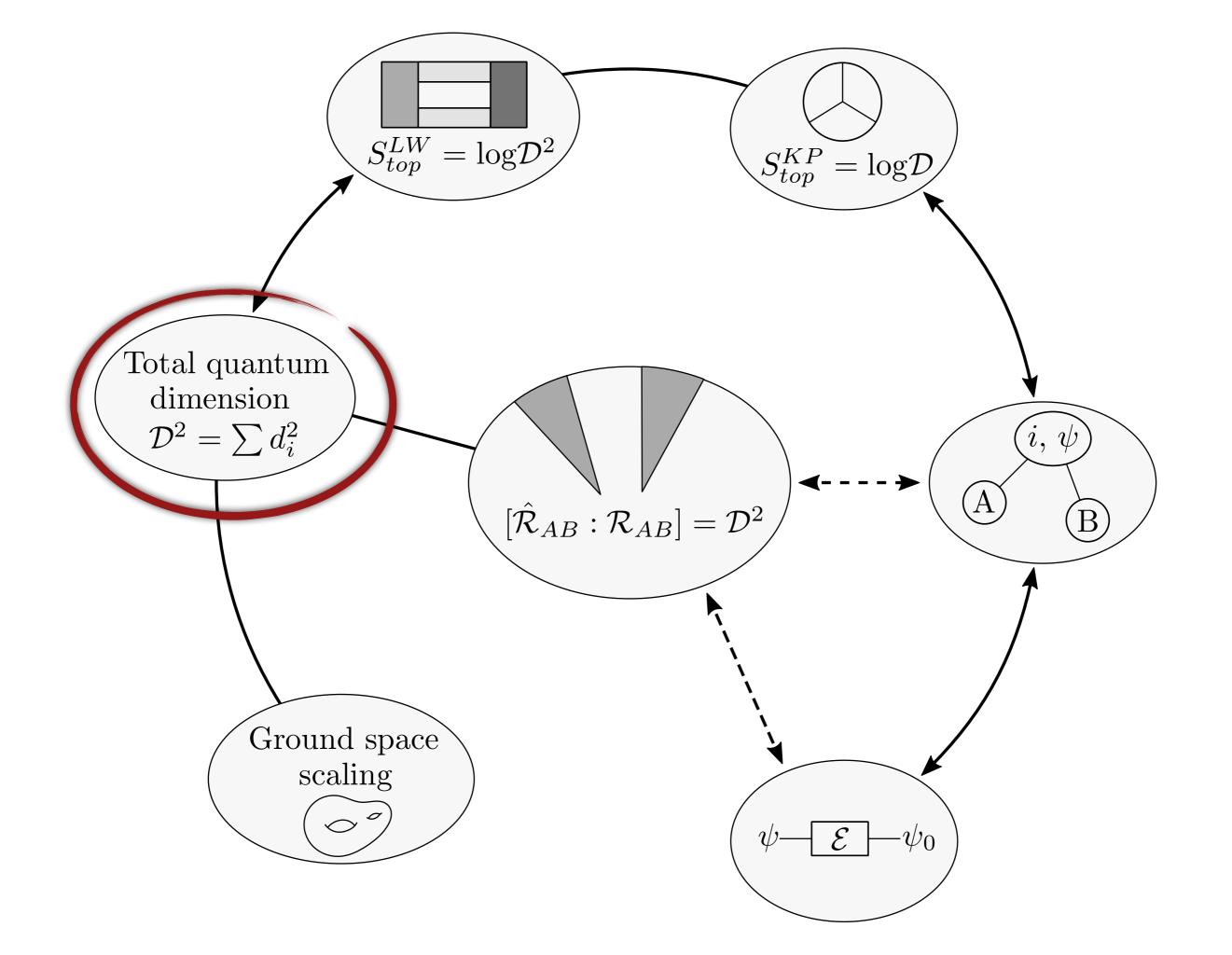
Irreducible objects $\rho_i \Leftrightarrow anyons$

Modular tensor category

Describes all properties of the anyons, e.g. fusion, braiding, charge conjugation, ...

Irreducible objects $\rho_i \Leftrightarrow$ anyons

Quantum dimension
$$\mathcal{D}^2 = \sum_i d(\rho_i)^2$$



Topological entanglement entropy

Area law for top. ordered states:

$$S_{\Lambda} = \alpha |\partial \Lambda| - \gamma + \cdots$$

Kitaev & Preskill (06), Levin & Wen (06)

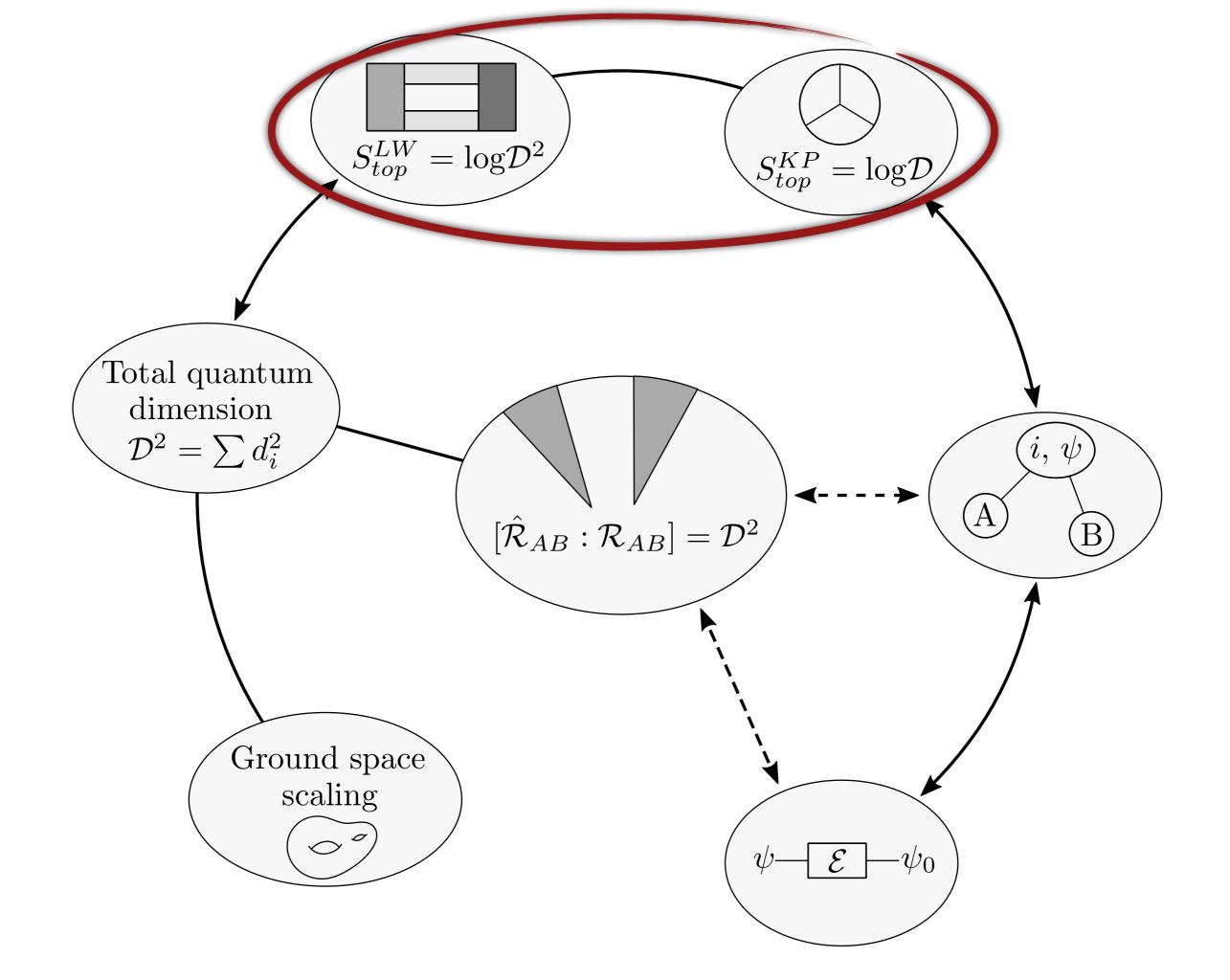
Topological entanglement entropy

Area law for top. ordered states:

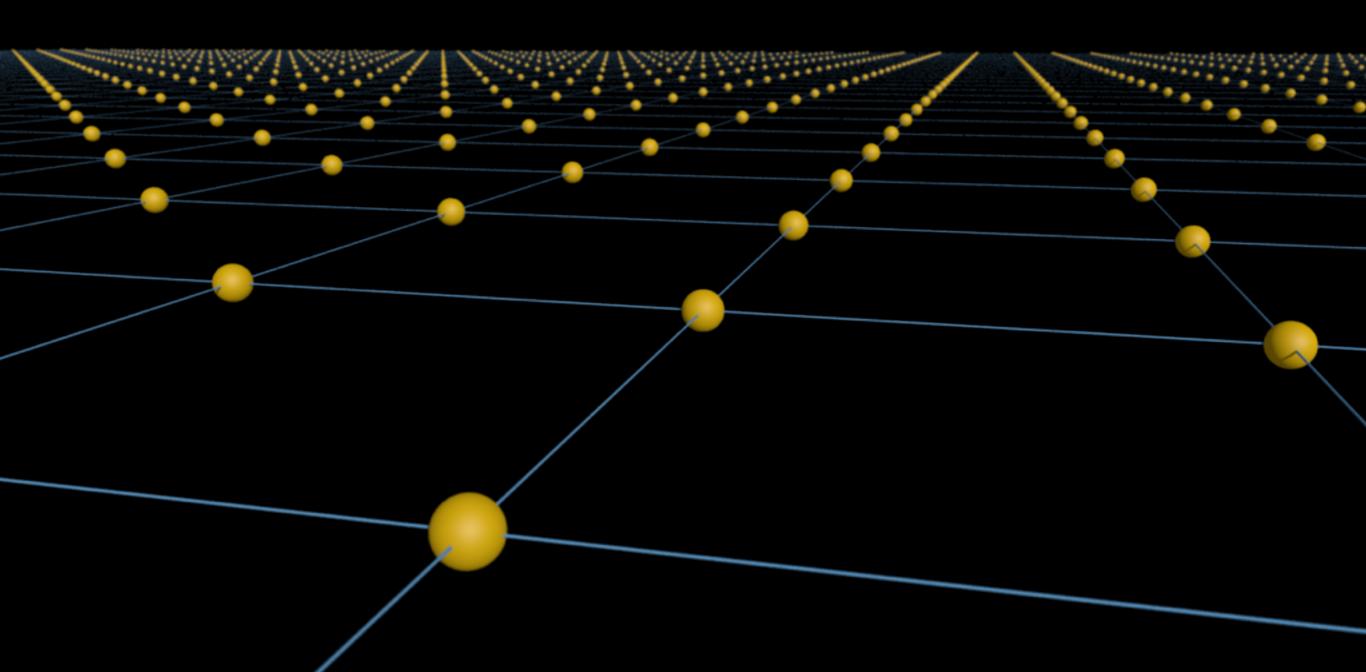
$$S_{\Lambda} = \alpha |\partial \Lambda| - \gamma + \cdots$$

Universal constant: $\gamma = \log \mathcal{D}$

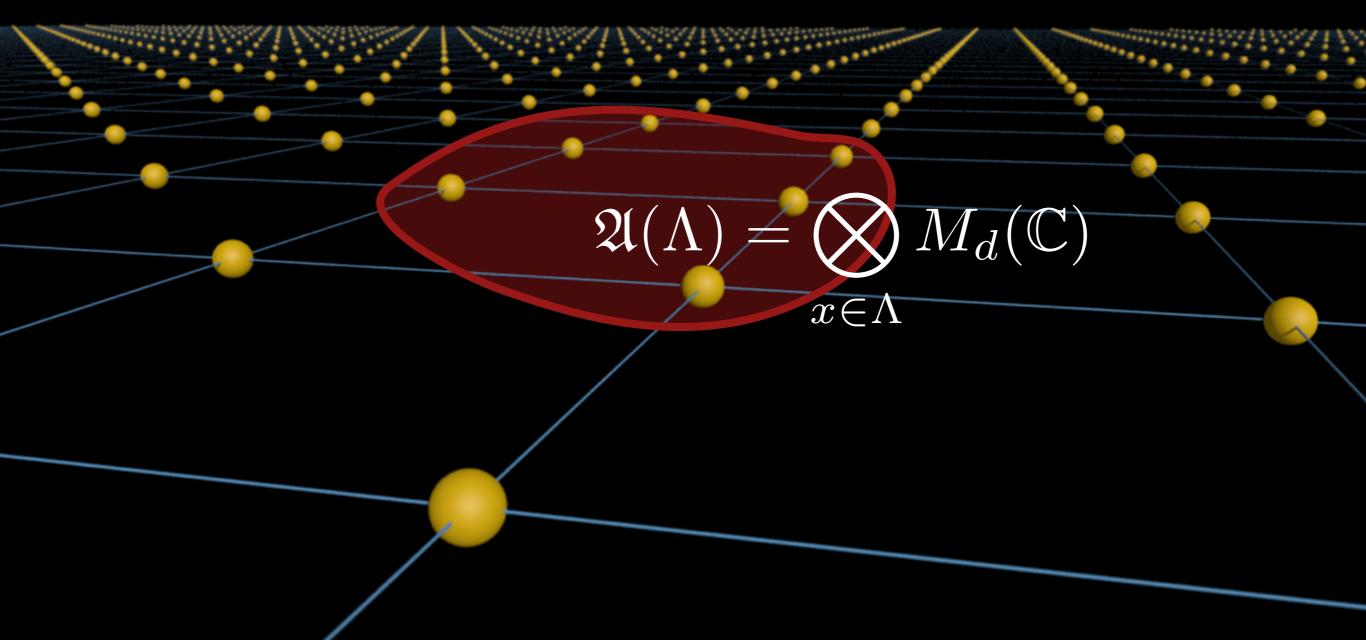
Kitaev & Preskill (06), Levin & Wen (06)



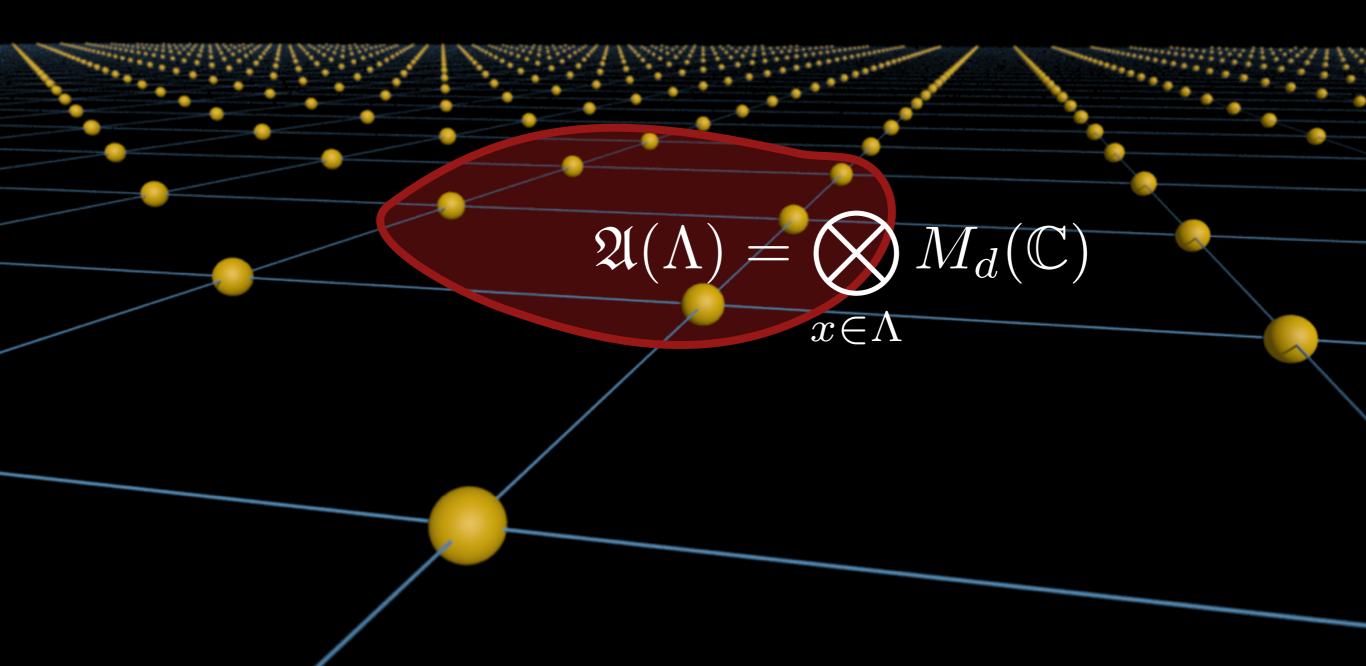
Technical framework



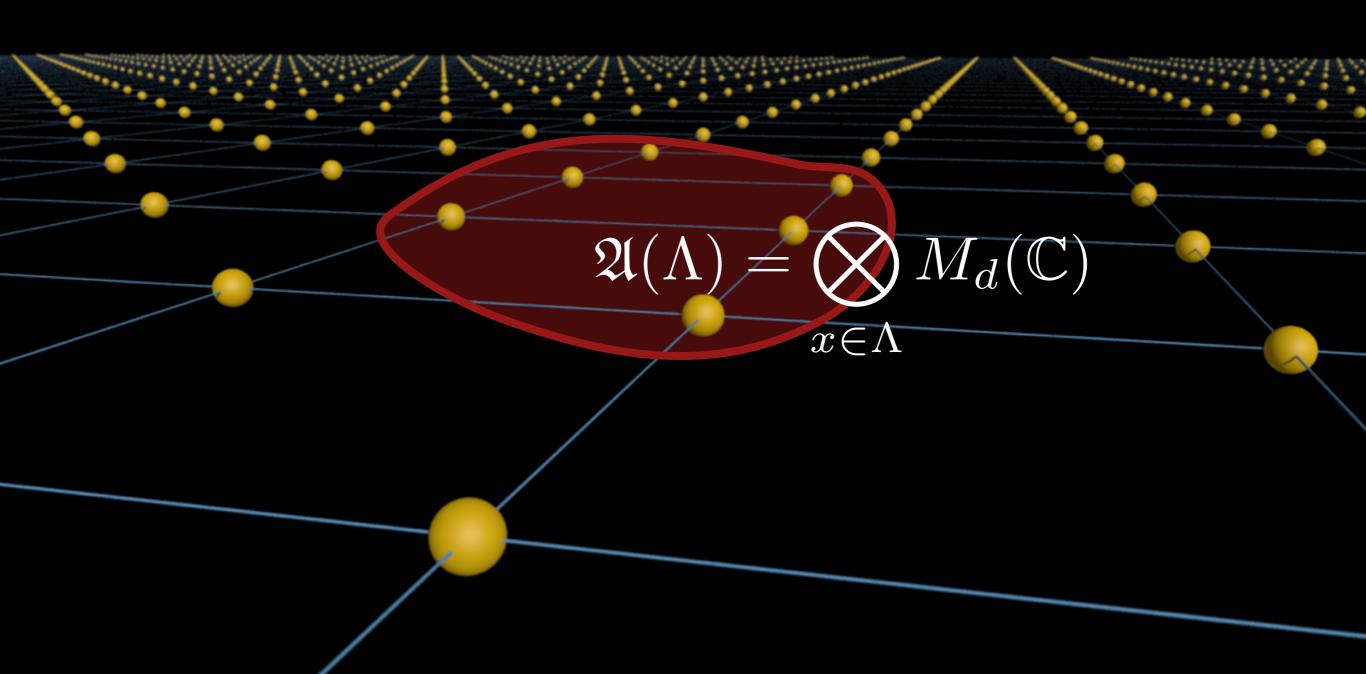
Quasi-local algebra
$$\mathfrak{A} = \overline{\bigcup_{\Lambda} \mathfrak{A}(\Lambda)}^{\|\cdot\|}$$



and local Hamiltonians $H_{\Lambda} \in \mathfrak{A}(\Lambda)$



ground state representation π_0



Example: toric code

 $\omega_0 \circ \rho$ is a single excitation state

$$\rho(A) := \lim_{n \to \infty} F_{\xi_n} A F_{\xi_n}^*$$

Example: toric code

 $\omega_0 \circ \rho$ is a single excitation state

$$\rho(A) := \lim_{n \to \infty} F_{\xi_n} A F_{\xi_n}^*$$

 $\pi_0 \circ \rho$ describes observables in presence of background charge

Quantum dimension

 $\mathcal{R}_A = \pi_0(\mathfrak{A}(A))''$

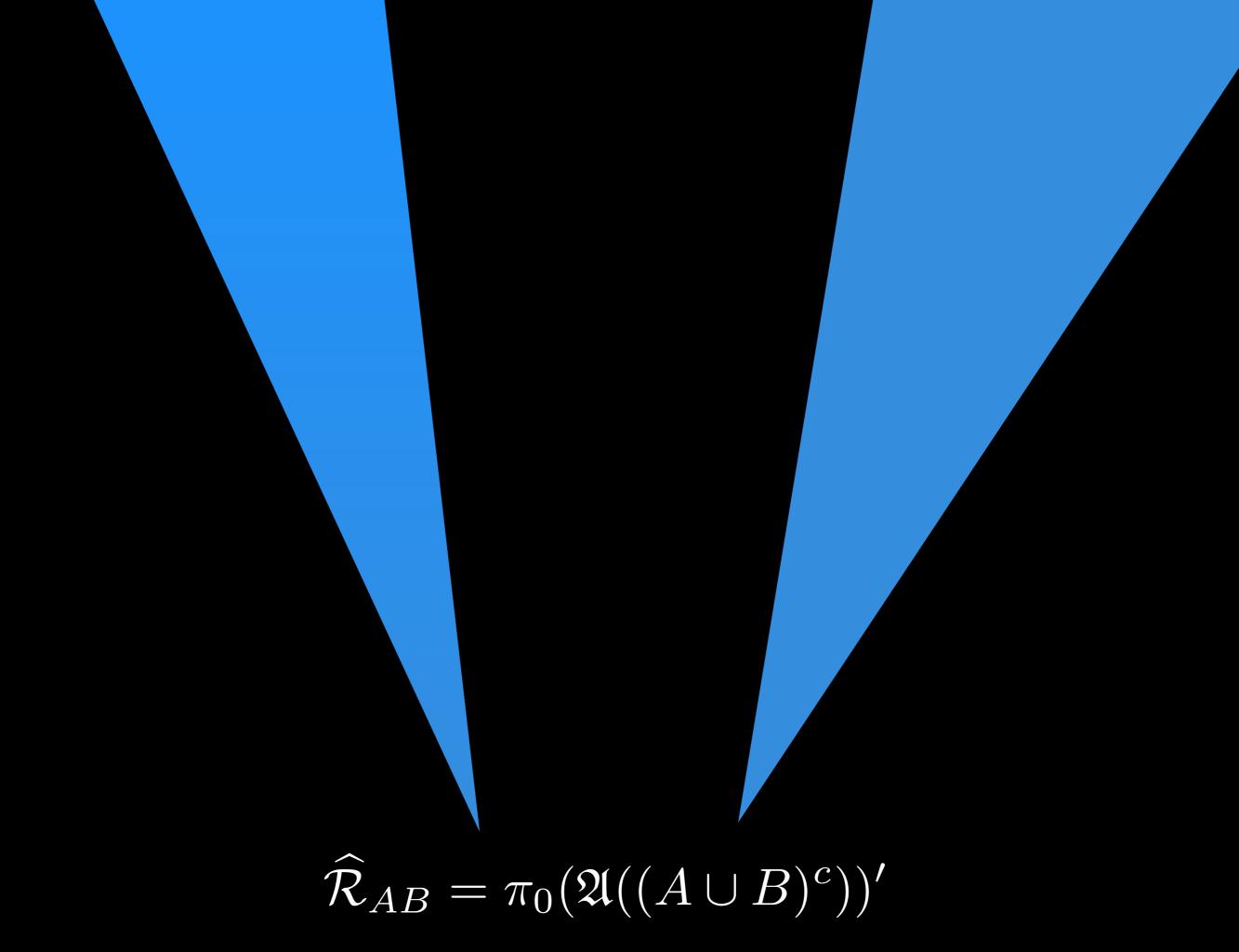
 $\mathcal{R}_A = \pi_0(\mathfrak{A}(A))''$

 \mathcal{R}_B

$$\mathcal{R}_A = \pi_0(\mathfrak{A}(A))''$$

 \mathcal{R}_B

$$\mathcal{R}_{AB} = \mathcal{R}_A \vee \mathcal{R}_B$$

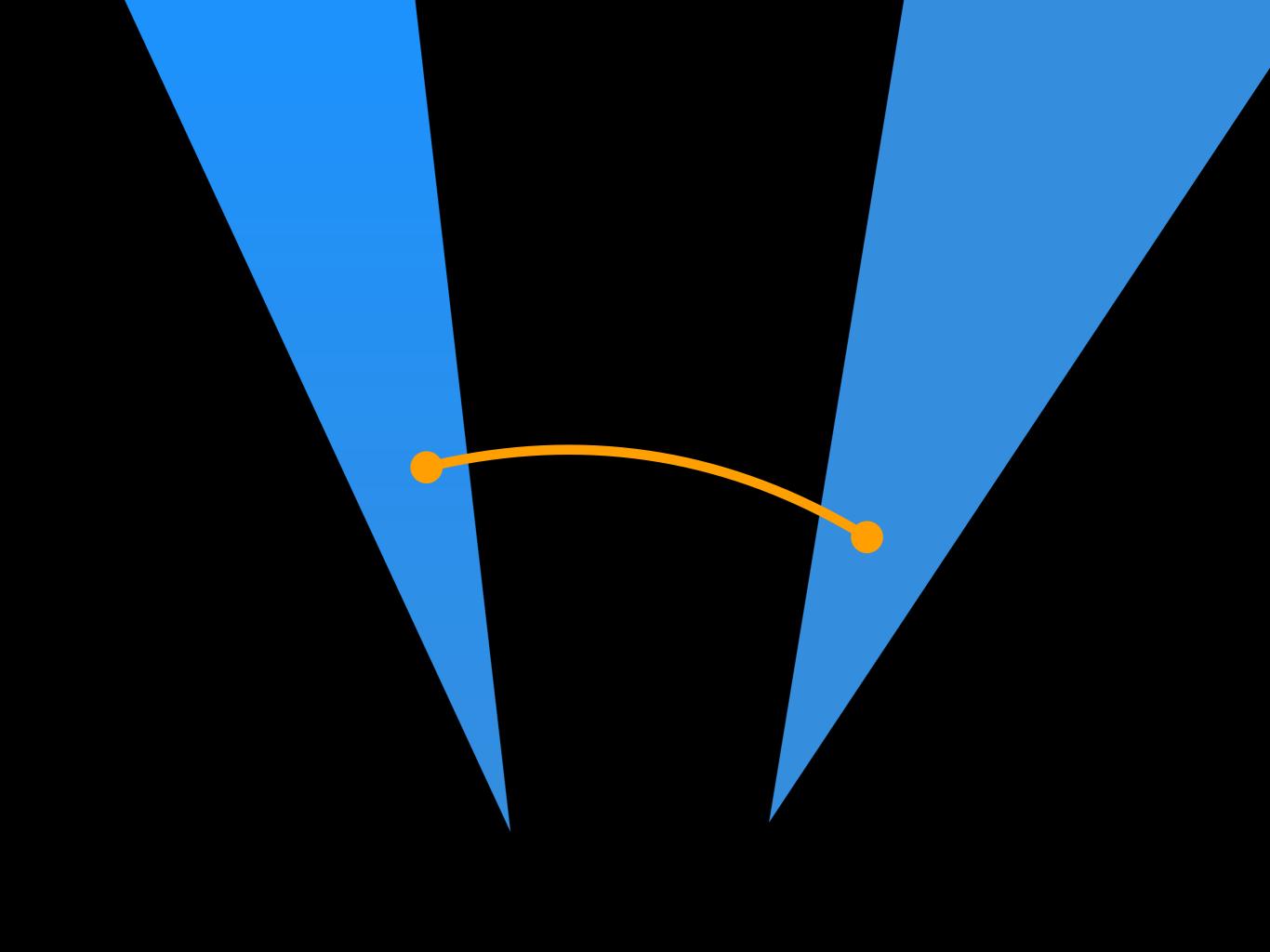


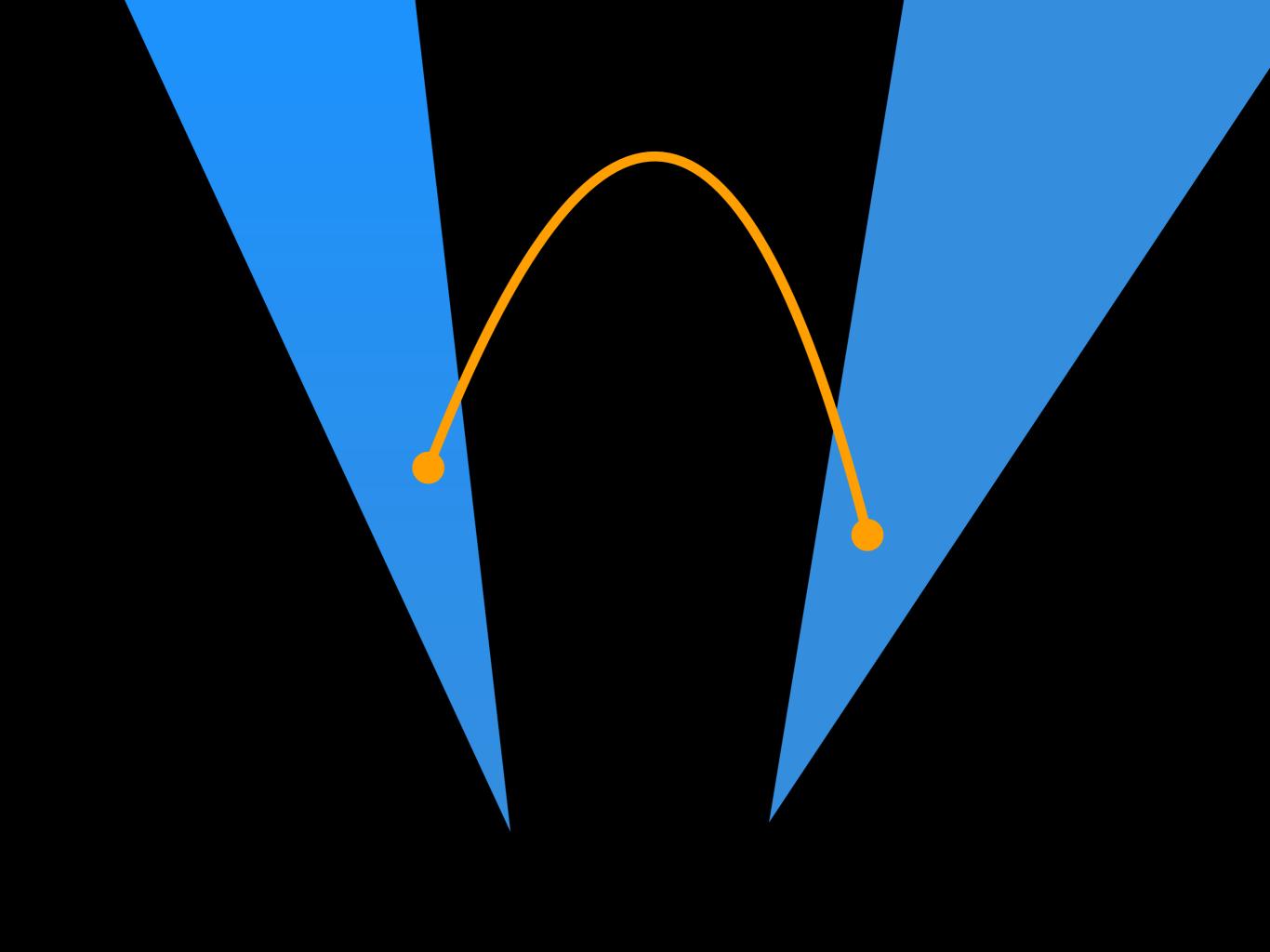
Locality: $\mathcal{R}_{AB} \subset \widehat{\mathcal{R}}_{AB}$

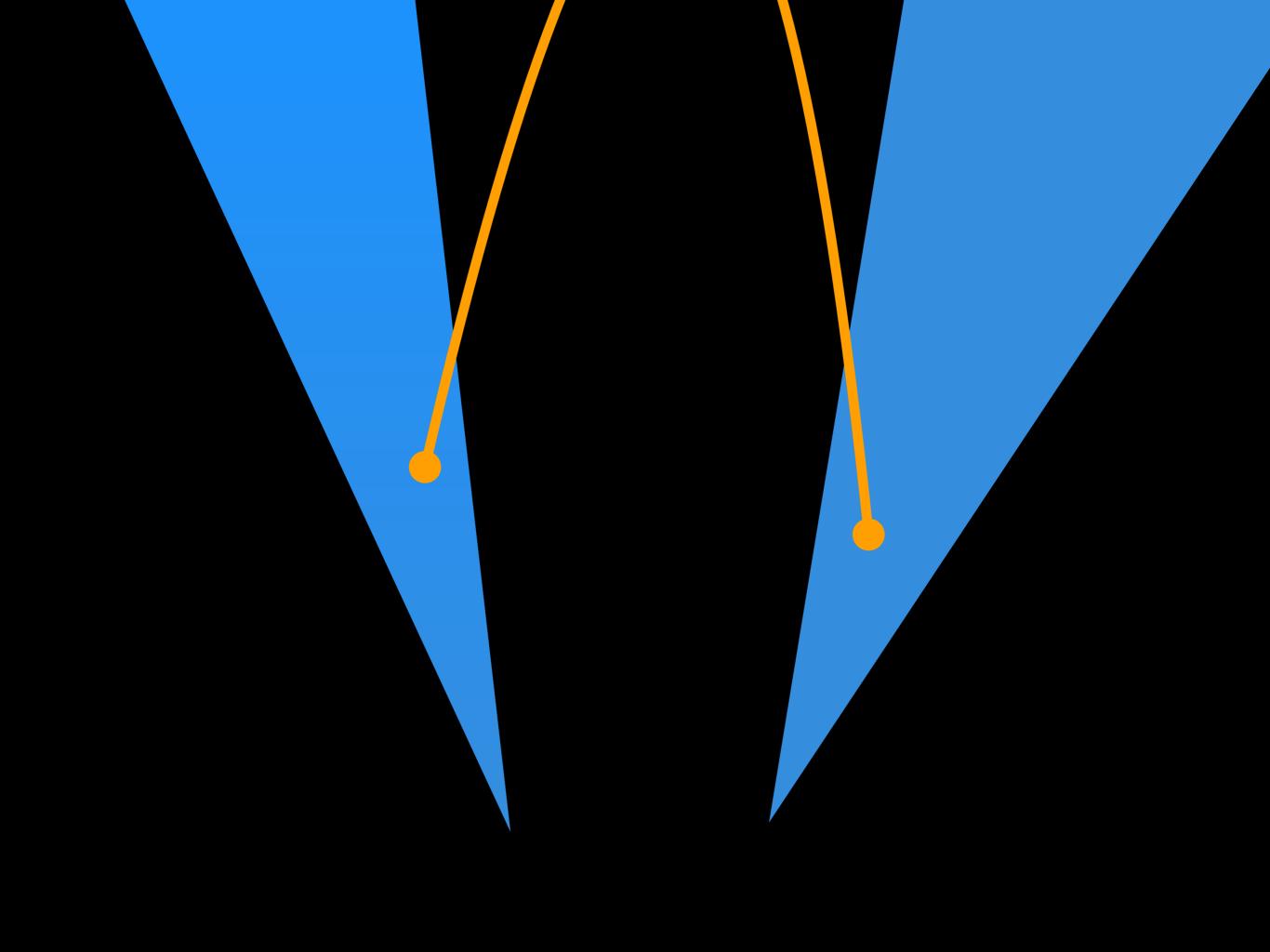
Locality: $\mathcal{R}_{AB} \subset \widehat{\mathcal{R}}_{AB}$

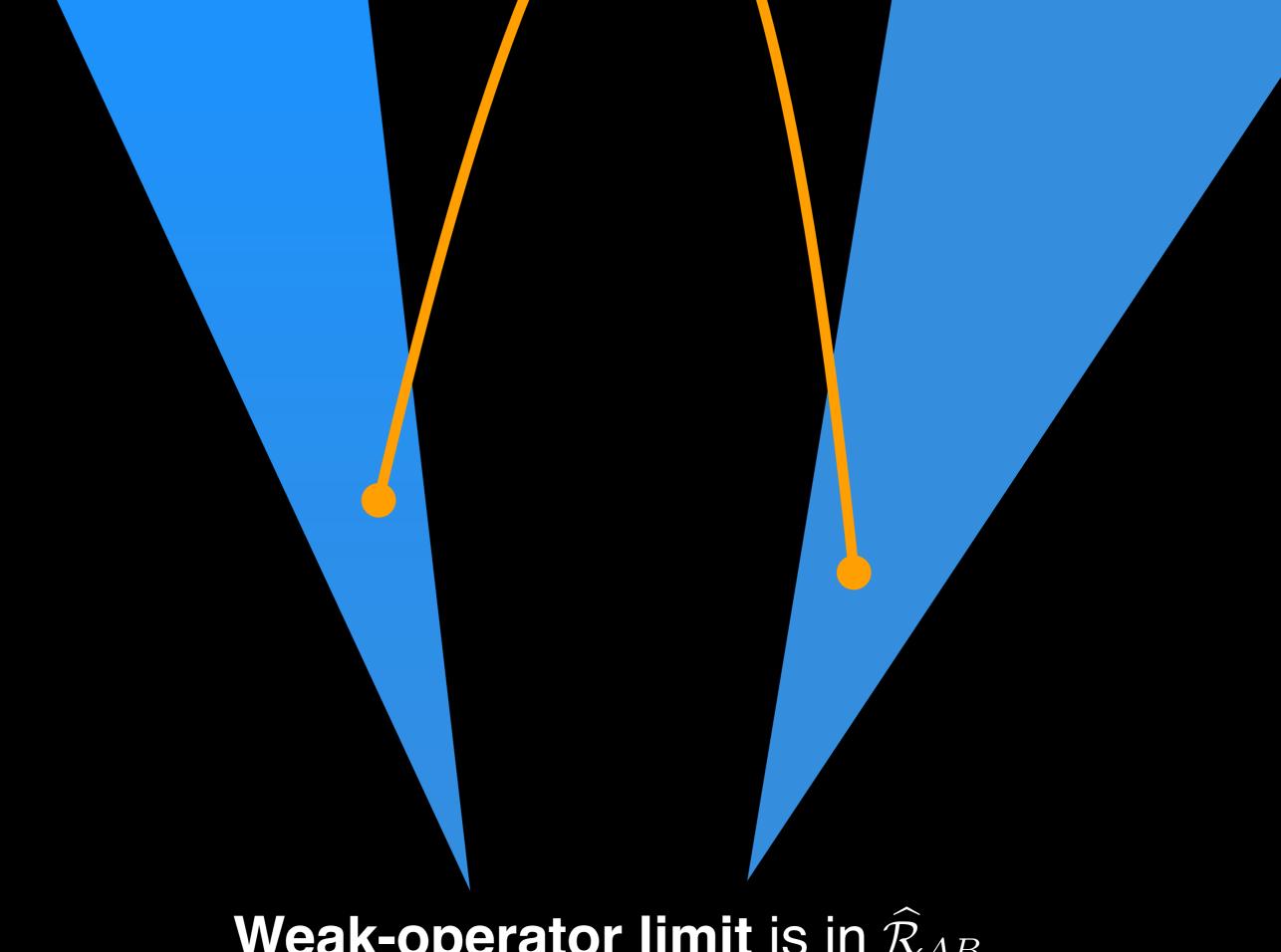
but:

$$\mathcal{R}_{AB} \subsetneq \widehat{\mathcal{R}}_{AB}$$









Weak-operator limit is in $\widehat{\mathcal{R}}_{AB}$

Jones-Kosaki-Longo index $[\widehat{\mathcal{R}}_{AB}:\mathcal{R}_{AB}]$ **Weak-operator limit** is in $\widehat{\mathcal{R}}_{AB}$

Theorem

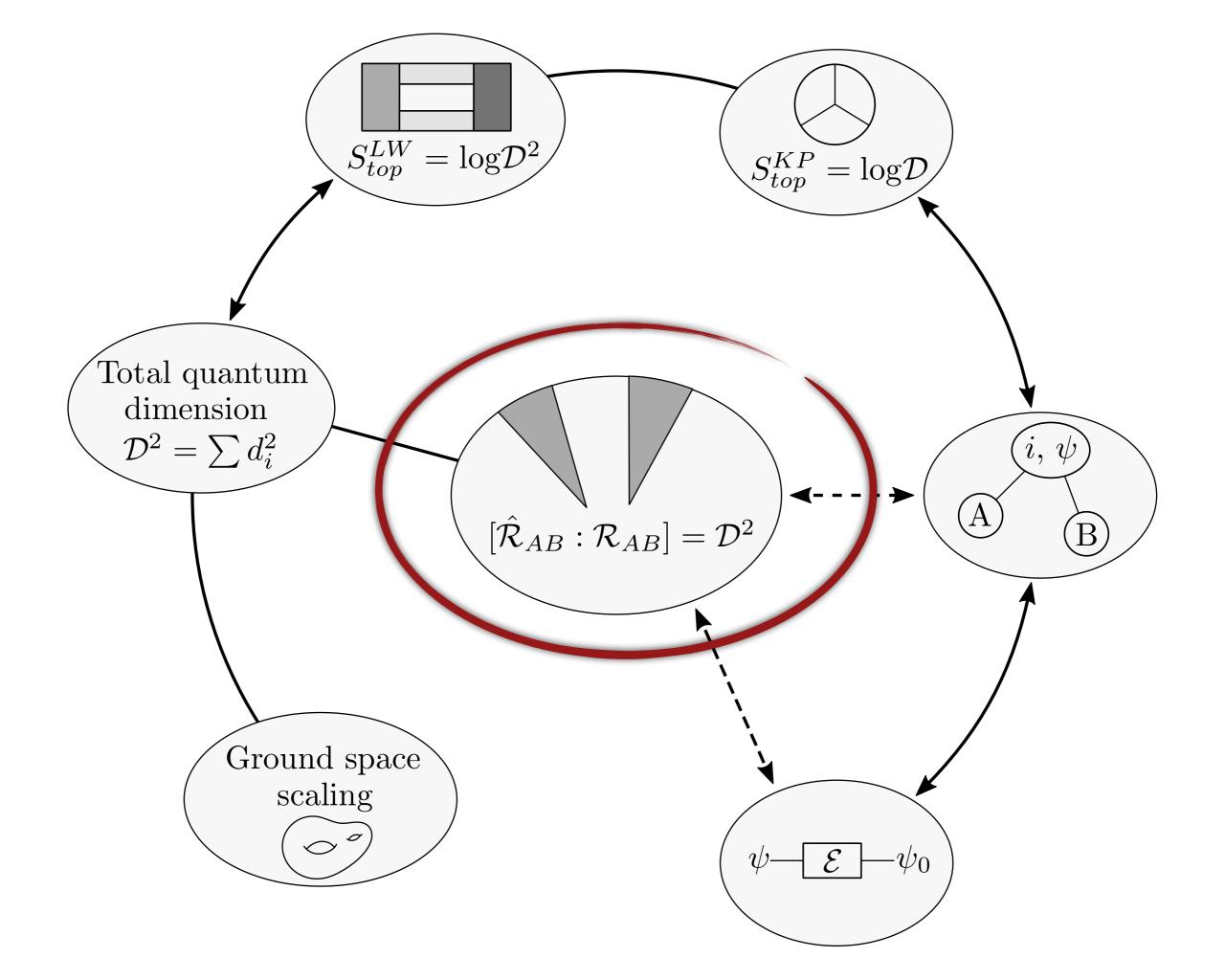
The number of excitation types is bounded by

$$\mu_{\pi_0} = \sup_{A \cup B} [\widehat{\mathcal{R}}_{AB} : \mathcal{R}_{AB}]$$

If all excitations have conjugates, μ_{π_0} is equal to the **total quantum dimension**.

PN, J. Math. Phys. '13

Kawahigashi, Longo & Müger, Commun. Math. Phys. '01



Data hiding

Alice

Bob

Eve

Alice

Bob

Eve

Operations in $\widehat{\mathcal{R}}_{AB}$ are invisible to Eve

Alice

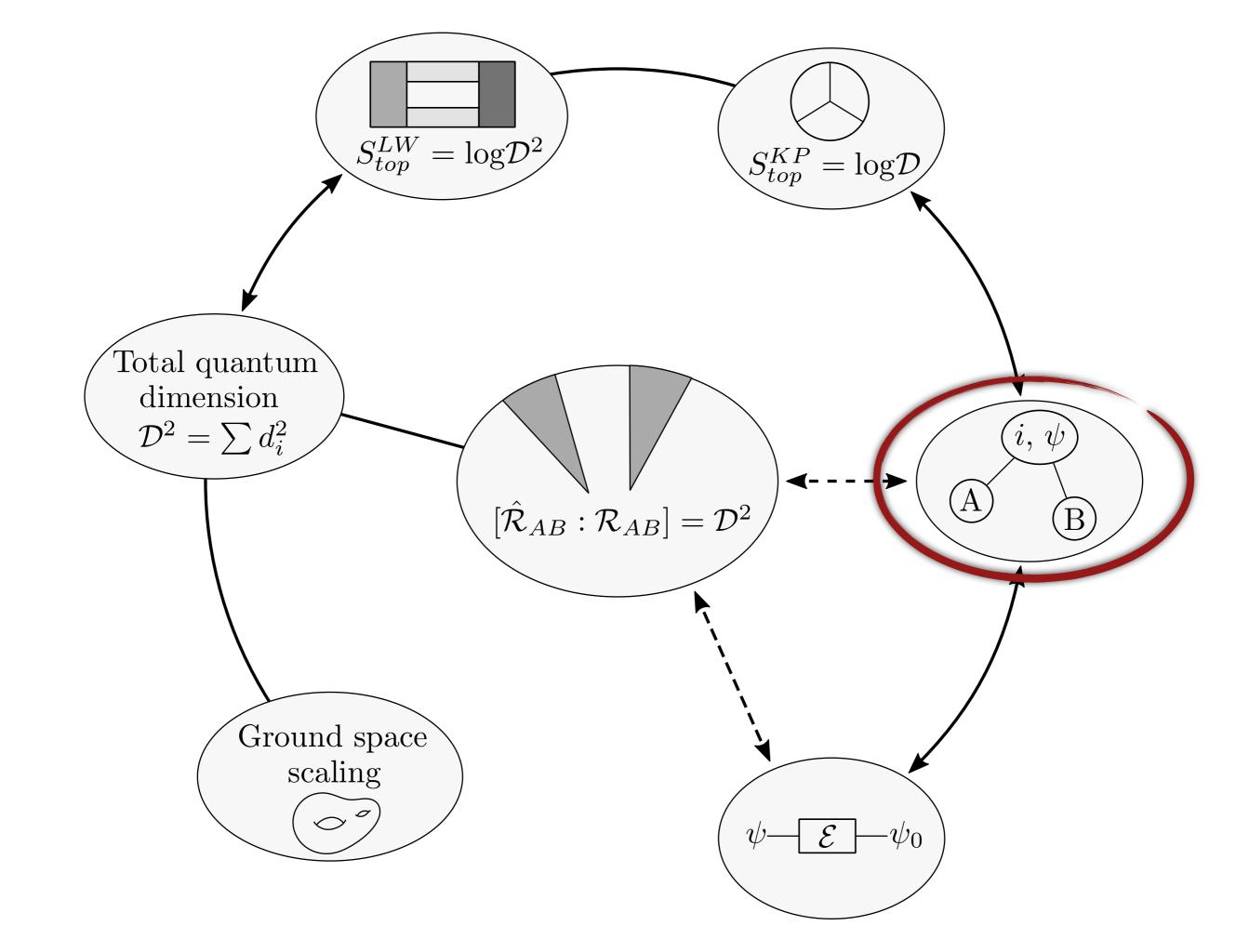
Bob

Eve

and can be used to create charge pairs

Similar conclusion: TEE as a secret sharing capacity

Kato, Furrer & Murao, Phys. Rev. A., '16



Distinguishing states

Alice prepares a mixed state ρ :

$$\rho = \sum_{i=1}^{n} p_i \rho_i$$

Distinguishing states

Alice prepares a mixed state ρ :

$$\rho = \sum_{i=1}^{n} p_i \rho_i$$

...and sends it to Bob

Distinguishing states

Alice prepares a mixed state ρ :

$$\rho = \sum_{i=1}^{n} p_i \rho_i$$

...and sends it to Bob

Can Bob recover $\{p_i\}$?

In general not exactly:

In general not exactly:

$$\chi(\{p_i\}, \{\rho_i\}) := S(\rho) - \sum_i p_i S(\rho_i)$$

In general not exactly:

$$\chi(\{p_i\}, \{\rho_i\}) := S(\rho) - \sum_i p_i S(\rho_i)$$

Generalisation of Shannon information

In general not exactly:

$$\chi(\lbrace p_i \rbrace, \lbrace \rho_i \rbrace) := S(\rho) - \sum_i p_i S(\rho_i)$$
$$= \sum_i p_i S(\rho_i, \rho)$$

Generalisation of Shannon information

Want to compare $\widehat{\mathcal{R}}$ and \mathcal{R} :

$$H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R}) = \sup_{(\phi_i)} \left(\sum_{i} [S(p_i \phi_i, \phi) - S(p_i \phi_i \upharpoonright \mathcal{R}, \phi \upharpoonright \mathcal{R})] \right)$$

Want to compare $\widehat{\mathcal{R}}$ and \mathcal{R} :

$$H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R}) = \sup_{(\phi_i)} \left(\sum_{i} [S(p_i \phi_i, \phi) - S(p_i \phi_i \upharpoonright \mathcal{R}, \phi \upharpoonright \mathcal{R})] \right)$$
$$= \sup_{(\phi_i)} \left(\chi(\{p_i\}, \{\phi_i\}) - \chi(\{p_i\}, \{\phi_i \upharpoonright \mathcal{R}\}) \right)$$

Want to compare $\widehat{\mathcal{R}}$ and \mathcal{R} :

$$H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R}) = \sup_{(\phi_i)} \left(\sum_{i} [S(p_i \phi_i, \phi) - S(p_i \phi_i \upharpoonright \mathcal{R}, \phi \upharpoonright \mathcal{R})] \right)$$

$$= \sup_{(\phi_i)} \left(\chi(\{p_i\}, \{\phi_i\}) - \chi(\{p_i\}, \{\phi_i \upharpoonright \mathcal{R}\})) \right)$$

$$\Delta_{\chi}$$

Want to compare $\widehat{\mathcal{R}}$ and \mathcal{R} :

$$H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R}) = \sup_{(\phi_i)} \left(\sum_{i} [S(p_i \phi_i, \phi) - S(p_i \phi_i \upharpoonright \mathcal{R}, \phi \upharpoonright \mathcal{R})] \right)$$

$$= \sup_{(\phi_i)} \left(\chi(\{p_i\}, \{\phi_i\}) - \chi(\{p_i\}, \{\phi_i \upharpoonright \mathcal{R}\})) \right)$$

$$\Delta_{\chi}$$

Shirokov & Holevo, arXiv:1608.02203

A quantum channel

For finite index inclusion $\mathcal{R} \subset \widehat{\mathcal{R}}$

$$\mathcal{E}: \widehat{\mathcal{R}} \to \mathcal{R}, \qquad \mathcal{E}(X^*X) \ge \frac{1}{[\widehat{\mathcal{R}}:\mathcal{R}]} X^*X$$

A quantum channel

For finite index inclusion $\mathcal{R} \subset \widehat{\mathcal{R}}$

$$\mathcal{E}: \widehat{\mathcal{R}} \to \mathcal{R}, \qquad \mathcal{E}(X^*X) \ge \frac{1}{[\widehat{\mathcal{R}}:\mathcal{R}]} X^*X$$

quantum channel, describes the restriction of operations

Quantum dimension and entropy

$$\log[\widehat{\mathcal{R}}:\mathcal{R}] = \sup_{\phi:\phi\circ\mathcal{E}=\phi} H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R})$$

Hiai, J. Operator Theory, '90; J. Math. Soc. Japan, '91

Quantum dimension and entropy

$$\log[\widehat{\mathcal{R}}:\mathcal{R}] = \sup_{\phi:\phi\circ\mathcal{E}=\phi} H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R})$$

Hiai, J. Operator Theory, '90; J. Math. Soc. Japan, '91

gives an **information-theoretic** interpretation to quantum dimension

Quantum dimension and entropy

$$\log[\widehat{\mathcal{R}}:\mathcal{R}] = \sup_{\phi:\phi\circ\mathcal{E}=\phi} H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R})$$

Hiai, J. Operator Theory, '90; J. Math. Soc. Japan, '91

gives an **information-theoretic** interpretation to quantum dimension

Completely different methods from Kato/Furrer/ Murao, PRA **93**, 022317 (2016)

> Only classical information can be stored

- > Only classical information can be stored
- > Different methods compared to Kato et al.

- > Only classical information can be stored
- > Different methods compared to Kato et al.
- > No finite dimensional analogue to index

- > Only classical information can be stored
- > Different methods compared to Kato et al.
- > No finite dimensional analogue to index
- > Can use powerful methods from mathematics

- > Only classical information can be stored
- > Different methods compared to Kato et al.
- > No finite dimensional analogue to index
- > Can use powerful methods from mathematics
- > Right framework to study stability?

