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SUMMARY

Controlled thermonuclear fusion in tokamaks brings forth demands for burning plasma

dynamics research. The deuterium-tritium fusion generates energetic alpha particles, which

first transfer their energy to core electrons. The heated electrons and remaining fusion al-

pha particles then heat core ions through Coulomb collisions, which can increase the fu-

sion reaction rate and may conceivably lead to a thermal runaway instability. Meanwhile,

core electrons lose energy to the edge plasma and wall through electron cyclotron radia-

tion, bremsstrahlung, impurity radiation, and transport; and core ions lose energy through

transport to the edge and ion orbit loss. The various timescales of radiation and transport

processes in different regions are vital to the determination of tokamak operation.

A multi-region multi-timescale transport model is developed to simulate burning plasma

dynamics in tokamaks. Regions including the core, edge, scrape-off layer, and divertor are

modeled as separate nodes. Fusion alpha heating with a time delay between heating elec-

trons and ions is considered. Ohmic and auxiliary heating methods are included. Radiations

such as electron cyclotron radiation, bremsstrahlung, line radiation, and recombination ra-

diation are involved. Coulomb collisional energy transfer is utilized for energy redistribu-

tion among species. Ion orbit loss is included as one edge plasma effect. Transport times

between nodes are derived theoretically from the fluid model, where diffusivity parame-

ters are computed numerically from experiment data by machine learning. The transport

model is validated by application to DIII-D non-fusion plasmas in various auxiliary heating

conditions.

Both inductive and non-inductive ITER operation scenarios are simulated with the

model. Simulation results with sensitivity analyses indicate the radiation and transport can

promptly remove extra heat from the core plasma and thereby inhibit the thermal runaway

instability from the fusion alpha heating. This model can be used for tokamak deuterium-

tritium burn control studies in the future.
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CHAPTER 1

INTRODUCTION

Fusion has a great potential to provide essentially inexhaustible energies for the later 21st

century and future. In this research, a multi-region multi-timescale transport model is de-

veloped for fusion burning plasma simulations. This chapter introduces background knowl-

edge about nuclear fusion and tokamaks first, where two primary magnetic confinement

devices used in this research are presented. Then, several relevant previous works about

burning plasmas are surveyed, and their conclusions with limitations are given. Lastly, en-

ergy transfer processes in tokamak burning plasmas are analyzed, and the research purposes

of this thesis are put forward.

1.1 Nuclear Fusion and Tokamaks

Under proper conditions, light atomic nuclei can merge and convert mass deficit to energy

via nuclear fusion. A significant amount of energy is released during this process. Fusion

reactions with primary interests [1, 2, 3] are listed as follows:

2
1D + 3

1T→ 4
2He(3.52 MeV) + n0(14.06 MeV),

2
1D + 2

1D→ 3
1T(1.01 MeV) + p+(3.02 MeV),

2
1D + 2

1D→ 3
2He(0.82 MeV) + n0(2.45 MeV),

2
1D + 3

2He→ 4
2He(3.6 MeV) + p+(14.7 MeV).

One measure of the fusion reaction probability is the cross section σ. When reactants

have a distribution of velocities, the reactivity 〈σv〉 can be introduced as an average of the

cross-section and velocity product. The reaction rate is computed by n1n2 〈σv〉, where

n1 and n2 are particle densities of reactants. Several important fusion reactivities 〈σv〉
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are computed from the Bosch-Hale model [4] and shown in the Figure 1.1 with the ion

temperature Ti in a log-log scale. This figure indicates the strong temperature dependence

of the fusion reactivity in roughly 〈σv〉 ∝ T 2
i .

100 101 102

Ti [keV]

10−34

10−32

10−30

10−28

10−26

10−24

10−22

〈σ
v
〉[

m
3
/
s]

D-T

D-D

D-3He

Figure 1.1: The reactivities computed from the Bosch-Hale model [4] for several important
fusion reactions as functions of the ion temperature.

The Coulomb repulsion between two charged particles must be overcome when two

nuclei fuse. One way to achieve this goal is to heat the fusion fuels to a high enough tem-

perature, where ions and electrons are separated. This fourth fundamental state of matter

is called plasma. However, the hot plasma is not allowed to contact the wall, where the

charged particles will recombine and become neutral particles again. One way to confine

the plasma is to use magnetic fields, and one such kind of magnetic device is the tokamak,

a toroidal chamber with magnetic coils.

Tokamaks have been proven to be the most successful device in producing and main-

taining plasmas with parameters of density, temperature, and energy confinement time clos-

est to the fusion power reactor requirements. The world’s largest magnetic confinement de-

vice is the International Thermonuclear Experimental Reactor (ITER) [5], which is being

built in southern France. ITER is planned to generate the first plasma in 2025 and start the
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deuterium-tritium operation in 2035. This research will also use the experiment data from

the DIII-D tokamak, operated since the late 1980s by General Atomics (GA) in San Diego

and built on the update of the earlier Doublet III.

1.2 Literature Survey

Much research has been performed on fusion-relevant plasmas. We focus on the work

about burning plasma dynamics here.

Wang et al. [6] simulated the dynamics of burning plasmas in ITER with a 1.5-dimensional

up-down asymmetry Tokamak Transport Simulation Code (TTSC). This work showed that

a large excursion of fusion power could occur with a slight improvement of plasma confine-

ment, which would give difficulties to feedback controls. The effect of plasma profiles on

fusion power excursion, changes in pumping efficacy, and magnetohydrodynamic sawtooth

activity were also studied.

Green et al. [7] introduced studies of fusion burning plasma physics and fusion reactor

technologies in ITER. The areas of burning plasma physics were categorized into energetic

particle effects, self-heating phenomena, and reactor-scale physics. In addition, the plasma

physics of ITER was also assessed in inductive drive scenarios, hybrid scenarios, and non-

inductive drive scenarios.

Cordey et al. [8] re-examined the condition of the ELMy H-mode database. They ap-

plied principal component regression, an error in variables technique, and the selection of

fewer variables to address shortcomings in the previous ordinary least squares regression

for the tokamak energy confinement time scaling law. This new scaling law improved the

performances for ITER at higher βn.

Stacey [9] surveyed the experimental observations of several abrupt transition phenom-

ena in plasma operating conditions. In addition, the theoretical thermal instabilities driven

by the temperature dependence of various radiative and atomic physics cooling mechanisms

were studied and compared with experimental observations.
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Hill [10] developed a tokamak- and configuration-specific confinement tuning model

and applied it to the DIII-D experiments. The results showed the improvement of the tuned

model in simulating the experimental temperatures compared with the model using the

ITER-98 scaling law. However, this tuned dynamic model solved only the global ion and

electron temperatures, limiting its application to a more complicated system with multiple

regions and timescales.

Hill [11] also studied the active and passive control mechanisms limiting plasma power

excursion in the ITER. Several potential burning control mechanisms, including electron

cyclotron radiation (ECR), impurity radiation, ion-orbit loss (IOL), and multi-faceted asym-

metric radiation from the edge (MARFE) instabilities, were investigated. The ECR was

found to be the most critical passive burning control mechanism at high temperatures. A

framework of the multinodal dynamics model was presented for future research.

Stacey [12] researched the temporal and spatial dependence of the various heating and

cooling mechanisms involved in fusion burning plasmas. A spatially coarse nodal space-

time dynamics model was introduced for burning plasmas. The core and edge plasma’s

particle and energy balance equations were presented. This previous work gives directions

for our work, where we will build one practical multinodal model based on the previous

two-nodal model framework. We will also derive internodal transport times from the fluid

theory and solve them from DIII-D experiment data with machine learning algorithms.

1.3 Research Purposes

Fusion burning plasmas with alpha heating bring forth demands for research in burning

plasma dynamics. International Thermonuclear Experimental Reactor (ITER) will experi-

ment with deuterium-tritium (D-T) fusion reactions. The D-T fusion generates 14.1 MeV

neutrons, which leave the plasma immediately, and 3.5 MeV fusion alpha particles, which

are confined by the magnetic field within the tokamak. The fusion alpha particles transfer

their energy to electrons before ions in the core plasma. The heated electrons produce elec-
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tron cyclotron radiation (ECR), bremsstrahlung, and impurity radiation, which then heat

edge electrons and the first wall. Such radiation processes are viewed as instantaneous

energy transport compared with diffusion transport.

The remaining fusion alpha particles and heated electrons in the core plasma energize

core ions through Coulomb collisions, which will increase the fusion reaction rate by in-

creasing the fusion reactivity in the core region. This process may conceivably lead to a

thermal runaway instability in the reactor, where more fusion reactions produce more fu-

sion alpha particles and more heating in positive feedback. However, in the meantime,

energy is also transported and radiated from the plasma core to the edge and wall. Such

energy losses may inhibit the thermal runaway instability. Therefore, multiple timescales

of various processes in different tokamak regions are crucial to burning D-T plasma opera-

tions.

When both radiation and transport processes are included, the plasma core cannot be

modeled independently with only one timescale, such as an energy confinement time,

which has been studied in previous global burning plasma dynamics models [1, 10, 11].

For example, radiations from the heated core electrons can have much more rapid re-

sponses to heat the edge and the wall, while transport processes send energy in relatively

long timescales. Such fast and slow phenomena will couple the plasma core with the edge

and other tokamak regions in multiple timescales.

A multi-region multi-timescale transport model based on previous research [12, 11] is

developed for simulating burning plasma dynamics in tokamaks. Regions including the

core, where most fusion reactions and ECR are generated, edge, where transport from the

core and impurity radiation happen, scrape-off layer (SOL), where the atomic and molecu-

lar preprocesses are important, and divertor, where most waste materials are removed from

the plasma, are modeled as separate nodes. The radiation and transport processes are con-

tained in different timescales. Transport times between different nodes are derived from the

fluid theory and computed through a parametric diffusivity formula, where parameters are
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optimized based on experimental data with machine learning algorithms. An edge plasma

phenomenon, ion orbit loss (IOL), is also considered. This transport model is validated

for DIII-D non-fusion plasmas with various auxiliary heating conditions and simulated for

ITER fusion plasmas in both inductive and non-inductive scenarios. This transport model

can also be used for burning D-T plasma control in the future.

6



CHAPTER 2

A MULTINODAL BURNING PLASMA DYNAMICS MODEL

The core goal of this research is to model the burning plasmas properly. In this chapter, a

multinodal burning plasma dynamics model is proposed. The geometry of the multinodal

model is introduced first, then the particle and energy balance equations with internodal

transport terms are derived from the fluid model. Next, multiple mechanisms in burning

plasmas are considered in the multinodal model as the source and sink terms. External

particle source, ohmic and auxiliary heating, fusion alpha heating, radiation, Coulomb col-

lisional energy transfer, ion orbit loss, and atomic and molecular processes are visited.

Lastly, all source and sink terms are assembled into particle and energy balance equations,

and a framework for the multinodal model is presented.

2.1 Geometry

The first thing to be introduced is the geometry of the multinodal model. One conventional

tokamak is viewed as one torus. The cross section of the torus is assumed to be circular in

this research. Following the flux surfaces from the inner side to the outer side, the torus is

divided into three regions: the core, edge, and scrape-off layer (SOL). The divertor region

is ignored here and will join the model at the end of this chapter. Each region is viewed as

one separate node in the multinodal model.

The geometry of the multinodal model is illustrated in the Figure 2.1, where each node

is a toroidal shell and each interface is a torus surface. The rcore, redge, and rsol are the minor

radii for the surface Acore, Aedge, and Asol respectively. The ∆rcore-edge is the radial distance

between core and edge nodes, the ∆redge-sol is the radial distance between edge and SOL

nodes, and the ∆rsol-div is the radial distance from the SOL node center to its outer surface.
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These radial distances are calculated as

∆rcore-edge = redge/2, ∆redge-sol = (rsol − rcore) /2, ∆rsol-div = (rsol − redge) /2. (2.1)

Lastly, the normalized minor radius is defined as ρ = r/a, where a is the minor radius of

the plasma.

Vsol 
  
  
  
  
  
  
  
  
  
  
  
   
  
 

Vedge 
  
  
  
  
  
  
  
  

Vcore 
  
  

Acore
minor radius r

AedgeAsol

rcore redge rsol

Δrcore-edge

Δredge-sol

Δrsol-div

Figure 2.1: The geometry of the multinodal model, where each node is a toroidal shell and
each interface is a torus surface.

Besides of the geometry, the set of ion species is defined as I = {D,T, α, z1, z2, . . . },

where D is for deuterons, T is for tritons, α is for alpha particles, and z1, z2, . . . are for

impurity particles. Also, the set of all species is defined as S = { e } ∪ I, where e is for

electrons.

2.2 Balance Equations and Transport Terms

After the geometry of the multinodal model is introduced, the particle and energy balance

equations are derived from the fluid theory. The particle balance equation with the particle

transport term is presented first, then the energy balance equation with the energy transport

term is brought up next. Here, only three nodes in the multinodal model are considered:
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the core, edge, and SOL nodes. A derivation for a general multinodal model is also given

in the Appendix B, where any finite number of nodes is allowable.

2.2.1 Particle Balance Equation and Particle Transport

From the fluid theory, the continuity equation [1] for the species σ is

∂nσ
∂t

+∇ · Γσ = Sσ, σ ∈ S, (2.2)

where nσ is the particle density, Γσ = nσvσ is the particle flux, and Sσ is the net particle

source.

Core Particle Balance Equation

By averaging the continuity equation in the core node, we have

1

Vcore

∫
Vcore

∂nσ
∂t

dV =
1

Vcore

∫
Vcore

Sσ dV − 1

Vcore

∫
Vcore

∇ · Γσ dV. (2.3)

where Vcore is the volume of the core node. Let the volume-averaged particle density, net

particle source, and particle transport term be

n̄core
σ =

1

Vcore

∫
Vcore

nσ dV, (2.4)

S̄core
σ =

1

Vcore

∫
Vcore

Sσ dV, (2.5)

S̄core
σ,tran = − 1

Vcore

∫
Vcore

∇ · Γσ dV. (2.6)

Then, the volume-averaged continuity equation or the particle balance equation for the core

node is

dn̄core
σ

dt
= S̄core

σ + S̄core
σ,tran. (2.7)
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By the divergence theorem, the particle transport term is transformed as

S̄core
σ,tran = − 1

Vcore

∫
Vcore

∇ · Γσ dV = − 1

Vcore

∫
Acore

Γσ · dS. (2.8)

From the Fick’s law of diffusion, Γσ = −Dσ∇nσ, where Dσ is the diffusion coefficient

and ∇nσ is the density gradient. In toroidal coordinates, the density gradient [1] is written

as

∇nσ =
∂nσ
∂r
r̂ +

1

R0 + r cos θ

∂nσ
∂φ
φ̂+

1

r

∂nσ
∂θ
θ̂. (2.9)

We assume that the particle gradient has toroidal and poloidal symmetries on internodal

surfaces, i.e.

∇nσ =
dnσ
dr
r̂. (2.10)

Thus, the particle transport term becomes

S̄core
σ,tran = − 1

Vcore

∫
Acore

Γσ · dS = − 1

Vcore
(Γσ,r)Acore

Acore. (2.11)

The radial flux at the core-edge interface Acore is approximated by

(Γσ,r)Acore
=

(
−Dσ

dnσ
dr

)
Acore

≈ −Dcore
σ

n̄edge
σ − n̄core

σ

∆rcore-edge
, (2.12)

whereDcore
σ is the diffusion coefficient at the surfaceAcore between the core and edge nodes,

and ∆rcore-edge is the radial distance between locations of average values, which is shown in

the Figure 2.1. Then,

S̄core
σ,tran = −Acore

Vcore
(Γσ,r)Acore

= − AcoreD
core
σ

Vcore∆rcore-edge

(
n̄core
σ − n̄edge

σ

)
. (2.13)
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Let internodal particle transport times between core and edge nodes be

τ core→edge
P,σ =

Vcore∆rcore-edge

AcoreDcore
σ

=
r2

core

2rcore

∆rcore-edge

Dcore
σ

, (2.14)

τ edge→core
P,σ =

Vedge∆rcore-edge

AcoreDcore
σ

=
r2

edge − r2
core

2rcore

∆rcore-edge

Dcore
σ

, (2.15)

where the torus shell volumes are Vcore = 2πR0 ·πr2
core and Vedge = 2πR0 ·π

(
r2

edge − r2
core

)
,

the torus surface areas are Acore = 2πR0 · 2πrcore and Aedge = 2πR0 · 2πredge, and the R0 is

the major radius. The relation between two internodal transport times is

τ core→edge
P,σ =

Vcore

Vedge

Vedge∆rcore-edge

AcoreD
core-edge
σ

=
Vcore

Vedge
τ edge→core
P,σ . (2.16)

Hence, the particle transport term in the core node becomes

S̄core
σ,tran = − n̄

core
σ − n̄edge

σ

τ core→edge
P,σ

= − n̄core
σ

τ core→edge
P,σ

+
Vedge

Vcore

n̄edge
σ

τ edge→core
P,σ

. (2.17)

Edge Particle Balance Equation

Similarly, the particle balance equation for the edge node is

dn̄edge
σ

dt
= S̄edge

σ + S̄edge
σ,tran, (2.18)

where the particle transport term in the edge node is

S̄edge
σ,tran = − 1

Vedge

(∫
Aedge

Γσ · dS −
∫
Acore

Γσ · dS
)

= − 1

Vedge

[
(Γσ,r)Aedge

Aedge − (Γσ,r)Acore
Acore

]
.

(2.19)
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The radial flux at the edge-SOL interface is approximated by

(Γσ,r)Aedge
=

(
−Dσ

dnσ
dr

)
Aedge

≈ −Dedge
σ

n̄sol
σ − n̄edge

σ

∆redge-sol
, (2.20)

where Dedge
σ is the diffusion coefficient at the surface Aedge between the edge and SOL

nodes. Then,

S̄edge
σ,tran = −Aedge

Vedge
(Γσ,r)Aedge

+
Acore

Vedge
(Γσ,r)Acore

= − AedgeD
edge
σ

Vedge∆redge-sol

(
n̄edge
σ − n̄sol

σ

)
+
Vcore

Vedge

AcoreD
core
σ

Vcore∆rcore-edge

(
n̄core
σ − n̄edge

σ

)
.

(2.21)

Let internodal particle transport times between edge and SOL nodes be

τ edge→sol
P,σ =

Vedge∆redge-sol

AedgeD
edge
σ

=
r2

edge − r2
core

2redge

∆redge-sol

Dedge
σ

, (2.22)

τ sol→edge
P,σ =

Vsol∆redge-sol

AedgeD
edge
σ

=
r2

sol − r2
edge

2redge

∆redge-sol

Dedge
σ

, (2.23)

where the SOL volume is Vsol = 2πR0 · π
(
r2

sol − r2
edge

)
, and the edge-SOL interface area is

Asol = 2πR0 · 2πrsol. The relation between two internodal transport times is

τ edge→sol
P,σ =

Vedge

Vsol

Vsol∆redge-sol

AedgeD
edge
σ

=
Vedge

Vsol
τ sol→edge
P,σ . (2.24)

Hence, the particle transport term in the edge node becomes

S̄edge
σ,tran = − n̄

edge
σ − n̄core

σ

τ edge→core
P,σ

− n̄edge
σ − n̄sol

σ

τ edge→sol
P,σ

= − n̄edge
σ

τ edge→core
P,σ

+
Vcore

Vedge

n̄core
σ

τ core→edge
P,σ

− n̄edge
σ

τ edge→sol
P,σ

+
Vsol

Vedge

n̄sol
σ

τ sol→edge
P,σ

.

(2.25)
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With the assumption τ sol→edge
P,σ →∞, the particle transport term is simplified to

S̄edge
σ,tran =

Vcore

Vedge

n̄core
σ − n̄edge

σ

τ core→edge
P,σ

− n̄edge
σ

τ edge→sol
P,σ

= − n̄edge
σ

τ edge→core
P,σ

+
Vcore

Vedge

n̄core
σ

τ core→edge
P,σ

− n̄edge
σ

τ edge→sol
P,σ

.

(2.26)

SOL Particle Balance Equation

Also, the particle balance equation for the SOL node is

dn̄sol
σ

dt
= S̄sol

σ + S̄sol
σ,tran, (2.27)

where the particle transport term in the SOL node is

S̄sol
σ,tran = − n̄sol

σ

τ sol→edge
P,σ

+
Vedge

Vsol

n̄edge
σ

τ edge→sol
P,σ

− n̄sol
σ

τ sol→div
P,σ

≈ Vedge

Vsol

n̄edge
σ

τ edge→sol
P,σ

− n̄sol
σ

τ sol→div
P,σ

, (2.28)

and τ sol→div
P,σ is the particle transport time from the SOL node to the divertor and plenum

nodes, which represents one effective particle confinement time of the SOL node. Here, we

use the formula:

τ sol
P,σ =

Vsol∆rsol-div

AsolDsol
σ

=
r2

sol − r2
edge

2rsol

∆rsol-div

Dsol
σ

, (2.29)

where ∆rsol-div is the radial distance between the SOL center and its outer surface.

2.2.2 Energy Balance Equation and Energy Transport

From the fluid theory, the energy conservation equation [13] for the species σ is

3

2
nσ

(
∂

∂t
+ vσ · ∇

)
Tσ + pσ∇ · vσ +∇ · qσ = Pσ, σ ∈ S, (2.30)

where Tσ is the temperature (in the energy unit), pσ is the pressure, qσ is the heat flux,

and Pσ is the net energy source for the species σ. Let the energy density be Uσ =
3

2
nσTσ.
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Combining the energy conservation equation with the particle one, we get

3

2
nσ
∂Tσ
∂t

+
3

2
Γσ · ∇Tσ + pσ∇ · vσ +∇ · qσ +

3

2
Tσ
∂nσ
∂t

+
3

2
Tσ∇ · Γσ = Pσ +

3

2
TσSσ,

3

2

∂ (nσTσ)

∂t
= Pσ +

3

2
SσTσ − pσ∇ · vσ −∇ ·

(
3

2
ΓσTσ + qσ

)
.

(2.31)

Since

Γσ = −Dσ∇nσ, qσ = −kσ∇
Tσ
k

= −χσnσcp,m,σ∇
Tσ
k

= −5

2
χσnσ∇Tσ, (2.32)

where kσ is the thermal conductivity, k is the Boltzmann constant, cp,m,σ is the molar heat

capacity, and χσ is the thermal diffusivity, then,

∂Uσ
∂t

=

(
Pσ +

3

2
SσTσ − pσ∇ · vσ

)
+∇ ·

(
3

2
DσTσ∇nσ +

5

2
χσnσ∇Tσ

)
. (2.33)

If we assume Dσ ≈
5

3
χσ

1 and let the new notations of the effective thermal diffusivity and

the power source term be

χσ ←
5

3
χσ ≈ Dσ, Pσ ← Pσ +

3

2
SσTσ − pσ∇ · vσ, (2.34)

then the energy conservation equation becomes

∂Uσ
∂t

= Pσ +∇ ·
(

3

2
χσTσ∇nσ +

3

2
χσnσ∇Tσ

)
= Pσ +∇ · (χσ∇Uσ) .

(2.35)

1This assumption allows us avoiding handling densities and temperatures at the interface, which are not
available in the multinodal model.
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Core Energy Balance Equation

For the core node, let the volume-averaged energy density, net energy source, and energy

transport term be

Ū core
σ =

1

Vcore

∫
Vcore

Uσ dV, (2.36)

P̄ core
σ =

1

Vcore

∫
Vcore

Pσ dV, (2.37)

P̄ core
σ,tran =

1

Vcore

∫
Vcore

∇ · (χσ∇Uσ) dV. (2.38)

The volume-averaged energy conservation equation or the energy balance equation for the

core node is

dŪ core
σ

dt
= P̄ core

σ + P̄ core
σ,tran. (2.39)

By following a similar method as the particle balance equation, internodal energy transport

times between core and edge nodes are defined as

τ core→edge
E,σ =

Vcore∆rcore-edge

Acoreχcore
σ

=
r2

core

2rcore

∆rcore-edge

χcore
σ

, (2.40)

τ edge→core
E,σ =

Vedge∆rcore-edge

Acoreχcore
σ

=
r2

edge − r2
core

2rcore

∆rcore-edge

χcore
σ

, (2.41)

where χcore
σ is the thermal diffusivity at the surface Acore between the core and edge nodes.

The energy transport term in the core node is

P̄ core
σ,tran = − Ū

core
σ − Ū edge

σ

τ core→edge
E,σ

= − Ū core
σ

τ core→edge
E,σ

+
Vedge

Vcore

Ū edge
σ

τ edge→core
E,σ

. (2.42)
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Edge Energy Balance Equation

Similarly, the energy balance equation for the edge node is

dŪ edge
σ

dt
= P̄ edge

σ + P̄ edge
σ,tran. (2.43)

Let internodal energy transport times between edge and SOL nodes be

τ edge→sol
E,σ =

Vedge∆redge-sol

Aedgeχ
edge
σ

=
r2

edge − r2
core

2redge

∆redge-sol

χedge
σ

, (2.44)

τ sol→edge
E,σ =

Vsol∆redge-sol

Aedgeχ
edge
σ

=
r2

sol − r2
edge

2redge

∆redge-sol

χedge
σ

, (2.45)

where χedge
σ is the thermal diffusivity at the surface Aedge between the edge and SOL nodes.

The energy transport term in the edge node is

P̄ edge
σ,tran = − Ū

edge
σ − Ū core

σ

τ edge→core
E,σ

− Ū edge
σ − Ū sol

σ

τ edge→sol
E,σ

= − Ū edge
σ

τ edge→core
E,σ

+
Vcore

Vedge

Ū core
σ

τ core→edge
E,σ

− Ū edge
σ

τ edge→sol
E,σ

+
Vsol

Vedge

Ū sol
σ

τ sol→edge
E,σ

.

(2.46)

Again, with the assumption τ sol→edge
E,σ →∞, the energy transport term is simplified to

P̄ edge
σ,tran =

Vcore

Vedge

Ū core
σ − Ū edge

σ

τ core→edge
E,σ

− Ū edge
σ

τ edge→sol
E,σ

= − Ū edge
σ

τ edge→core
E,σ

+
Vcore

Vedge

Ū core
σ

τ core→edge
E,σ

− Ū edge
σ

τ edge→sol
E,σ

.

(2.47)

SOL Energy Balance Equation

Also, the energy balance equation for the SOL node is

dŪ sol
σ

dt
= P̄ sol

σ + P̄ sol
σ,tran, (2.48)
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where the energy transport term in the SOL node is

P̄ sol
σ,tran = − Ū sol

σ

τ sol→edge
E,σ

+
Vedge

Vsol

Ū edge
σ

τ edge→sol
E,σ

− Ū sol
σ

τ sol→div
E,σ

≈ Vedge

Vsol

Ū edge
σ

τ edge→sol
E,σ

− Ū sol
σ

τ sol→div
E,σ

. (2.49)

The τ sol→div
E,σ is the effective energy confinement time of the SOL node, which is calculated

from

τ sol→div
E,σ =

Vsol∆rsol-div

Asolχsol
σ

=
r2

sol − r2
edge

2rsol

∆rsol-div

χsol
σ

. (2.50)

2.2.3 Particle and Thermal Diffusivities

In order to calculate internodal transport times, the formulas of particle and thermal dif-

fusivities are required. Much research [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28] has been done for this topic. One comprehensive empirical scaling for the effective

thermal diffusivity in the ELMy H-mode tokamak plasma compatible with the ITER H-92

P(y) [18] is

χH92(ρ) = αHB
−5/2
T ne(ρ)3/4Te(ρ) |∇Te(ρ)|1/2 q(ρ)9/4

× ε(ρ)7/8κ(ρ)−2M−1A−1/8a−1/2
(
m2/s

)
,

(2.51)

where the coefficient αH = 3.08, normalized radius ρ = r/a, toroidal magnetic field BT

in T, electron density ne in 1019 m−3, electron temperature Te in keV, electron temperature

gradient ∇Te in keV/m, safety factor q = qψ, local toroidicity ε = r/R, local elongation

κ, hydrogenic atomic mass number M , aspect ratio A = R/a, and minor radius a in m.

Another empirical scaling compatible with the ITER H-98 P(y,2) [17] is

χH98(ρ) = αHB
−3.5
T ne(ρ)0.9Te(ρ) |∇Te(ρ)|1.2 q(ρ)3.0

× κ(ρ)−2.9M−0.6R0.7a−0.2
(
m2/s

)
,

(2.52)
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where the coefficient αH = 0.123. The particle and thermal diffusivities for electrons and

ions [18] are computed by

χe(ρ) = χi(ρ) = χH92(ρ) (or χH98(ρ)) , (2.53)

Di(ρ) = 0.3 (χe(ρ) + χi(ρ)) = 0.6χH92(ρ) (or 0.6χH98(ρ)) . (2.54)

In the multinodal model, the particle diffusivity Dnode and the thermal diffusivity χnode

are evaluated at their corresponding internodal surfaces. The electron density ne(ρ) and

temperature Te(ρ) are replaced by the corresponding nnode
e and T node

e , and ∇Te(ρ) is ap-

proximated by a finite difference scheme between nodes. We will revisit the diffusivity

formula when we discuss the computational methods in the next chapter.

2.3 Sources and Sinks

In this section, several important sources and sinks of particles and energies in the multin-

odal model are presented. These terms include external particle sources, ohmic and auxil-

iary heating, fusion alpha heating, radiation, Coulomb collisional energy transfer, ion orbit

loss, and atomic and molecular processes. The superscript “node” is used for a general

node. Some global source and sink terms for the whole plasma are also discussed, which

could occasionally be used as approximations for the corresponding nodal terms.

2.3.1 External Particle Sources

The external particle source Snode
σ,ext represents one species σ particles from the outside of the

tokamak plasma. Main external particle sources include neutral beam injection (NBI) and

gas puffing (GAS), i.e.,

Snode
σ,ext = Snode

σ,NBI + Snode
σ,GAS. (2.55)
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The global external particle sources for deuterons [10] are calculated by

SD,NBI =
PNBI

Eb0V
, SD,gas =

GAS ·NA

CgasRgasV
, (2.56)

where PNBI is the total injected neural beam power, Eb0 is the initial beam energy, GAS is

the calibrated gasflow in the unit of Torr · L/s, NA is the Avogadro constant, Rgas is the

gas constant, Cgas is the inverse of the gas puffing efficiency, and V is the plasma volume.

Here, Eb0 = 80 keV is used for the DIII-D tokamak, and Eb0 = 1 MeV is for the ITER.

Besides, the constant Cgas = 150 [10] or Cgas = 200 [29] can be used for the gas puffing.

When the deposition profiles are available, the nodal external particle sources are cal-

culated by integrating the deposition profile over the node. For example, the nodal particle

source from NBI [11] is

Snode
σ,NBI =

1

Vnode

∑
k

Fk,σ
Eb0,k

∫
Vnode

dPNBI,k

dρ
dρ, (2.57)

where Vnode is the volume of the node, k indicates the beam component, Eb0,k is the en-

ergy of the beam component k, Fk,σ is the fraction of beam particles to species σ, and

dPNBI,k/ dρ is the total radial NBI power deposition profile. Similarly, the nodal particle

source from shattered pellet injection (SPI) (or similarly gas puffing) [11] is

Snode
σ,SPI =

Fp,σ
Vnode

∫
Vnode

dSSPI

dρ
dρ, (2.58)

where Fp,σ is the fraction of species σ in pellets and dSSPI/ dρ is the total radial SPI particle

deposition profile.

In this research, one exponential fitting for the gas puffing source profile [29] is used as

SGAS = SGAS,max10−20(1−ρ), 0 ≤ ρ ≤ 1, (2.59)

where SGAS,max is the maximum particle injection rate at the edge, and ρ is the normalized
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radius. This profile is shown in the Figure 2.2, which is used for calculating nodal particle

source by the Equation 2.72.
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Figure 2.2: Several important deposition profiles in the tokamak plasma, where neutral
beam injection and cyclotron heating power deposition profiles are fitted from Kessel et al.
[30], and gas puffing profile is fitted from Baylor et al. [29].

2.3.2 Ohmic and Auxiliary Heating

In order to heat plasmas to a high enough temperature for fusion reactions, additional heat-

ing methods are required. The most common energy sources include ohmic heating, neutral

beam injection (NBI), and radiofrequency (RF) radiation, where RF heating includes ion

cyclotron heating (ICH), electron cyclotron heating (ECH), and lower hybrid heating (LH)

[31, 32]. Among these heating methods, the ohmic heating P node
Ω supplies energy for elec-

trons only, while the auxiliary heating terms can be included for both ions and electrons:

P node
i,aux = P node

i,NBI + P node
i,ICH, (2.60)

P node
e,aux = P node

e,NBI + P node
e,ECH + P node

σ,LH. (2.61)

For the ohmic heating term, the global ohmic heating power PΩ can be accessed directly

from the experiment data of DIII-D, where this global one can approximate the nodal term:
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P node
Ω = PΩ. (2.62)

For ITER, the ohmic heating power [33] is computed by

P node
Ω

(
W/m3

)
= 2.8× 10−9 ZeffI

2
P

a4T
3/2
e

, (2.63)

where Zeff is the effective atomic number, the plasma current IP is in A, the minor radius a

in m, and the nodal electron temperature Te = T node
e in keV.

The neutral beam injection (NBI) powers are gotten by multiplying the total NBI power

PNBI with the fraction of energy to one species. The fraction of the initial beam energy to

ions [34] is

fbi =
1

Eb0

∫
Pi dt = φ (Eb0/Ec) , (2.64)

where Eb0 is the initial beam energy (Eb0 ≈ 80 keV for the DIII-D tokamak, and Eb0 ≈

1 MeV for ITER), Ec is the critical beam energy [34] by

Ec =

(
3
√
π

4

)2/3(
mi

me

)1/3
mb

mi

Te, (2.65)

and the function φ(x) [34] is

φ(x) =
1

x

[
1

3
ln

1− x1/2 + x

(1 + x1/2)
2 +

2√
3

(
tan−1 2x1/2 − 1√

3
+
π

6

)]
. (2.66)

The NBI power fraction for electrons is gotten by fbe = 1− fbi. Hence,

Pi,NBI = fbi
PNBI

V
, Pe,NBI = fbe

PNBI

V
. (2.67)

Then the NBI power to ions is distributed among different species by their particle densities.

Similarly, the nodal power sources are calculated by integrating them when the deposi-
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tion profiles are available. The nodal NBI power [11] is

P node
σ,NBI =

1

Vnode

∑
k

Uk,σ
Eb0,k

∫
Vnode

dPNBI,k

dρ
dρ, (2.68)

where Uk,σ is the fraction of energy from beam particle k to species σ. Also, the nodal RF

heating [11] is

P node
σ,RF =

FRF,σ

Vnode

∫
Vnode

dPRF

dρ
dρ, (2.69)

where FRF,σ is the fraction of the deposited RF heating power to species σ and dPRF/ dρ is

the total radial RF power deposition profile.

In this research, predetermined deposition profiles of auxiliary heating powers are uti-

lized. Suppose the power density from one energy source x is Px(ρ), and the total power is

Px,tot. Thus,

Px,tot =

∫ a

0

Px(r)2πR0 · 2πr dr = 4π2a2R0

∫ 1

0

Px(ρ)ρ dρ

= 4π2a2R0Px,max

∫ 1

0

p(ρ)ρ dρ,

(2.70)

where p(ρ) is the normalized power profile function and can be determined by simulations

(e.g., TSC [35], ASTRA [36], and ONETWO [37]) or experiments [30, 38, 39]. Hence,

Px,max =
Px,tot

4π2a2R0

∫ 1

0
p(ρ)ρ dρ

=
Px,tot

V

1

2
∫ 1

0
p(ρ)ρ dρ

. (2.71)

Therefore, the nodal power density is

P node
x =

1

Vnode

∫
Vnode

Px(ρ) dV =
1

Vnode

∫ r1

r0

Px(r)2πR0 · 2πr dr

=
4π2a2R0

2πR0 · πa2(ρ2
1 − ρ2

0)

∫ ρ1

ρ0

Px,maxp(ρ)ρ dρ

= Px,max
2

ρ2
1 − ρ2

0

∫ ρ1

ρ0

p(ρ)ρ dρ =
Px,tot

V

1

ρ2
1 − ρ2

0

∫ ρ1
ρ0
p(ρ)ρ dρ∫ 1

0
p(ρ)ρ dρ

.

(2.72)
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One polynomial fitting for the neutral beam injection (NBI) power deposition profile [30]

is

PNBI = PNBI,max

(
−20.44ρ4 + 45.92ρ3 − 35.89ρ2 + 10.42ρ

)
, 0 ≤ ρ ≤ 1, (2.73)

which is shown in the Figure 2.2. In addition, one exponential fitting for the cyclotron

heating power deposition profile [30] is

PCH = PCH,max

(
e−6ρ − e−6

)
, 0 ≤ ρ ≤ 1, (2.74)

which is also shown in the Figure 2.2.

2.3.3 Fusion and Alpha Heating

The next term to be considered is the fusion alpha heating. As we mentioned in the in-

troduction, a deuterium-tritium (D-T) fusion generates a 14.1 MeV neutron and a 3.5 MeV

alpha particle. While neutrons leave the plasma immediately, alpha particles are confined

by the magnetic field and transfer their energy to electrons and ions. Following the neutral

beam injection (NBI) formula in the Equation 2.64, the fraction of the initial fusion alpha

particle energy to ions [34] is

fαi =
1

Eα

∫
Pi dt = φ

(
Eα
Ec

)
≈ 0.189, (2.75)

where Ec = 0.281 MeV < Eα = 3.5 MeV for Te = 10 keV. The illustration of this

energy transfer process is shown in the Figure 2.3, where the radiation and transport losses

are neglected. From this figure, the energetic alpha particles are found to transfer their

energy first to core electrons and then to core ions. The figure shows most fusion heating

to electrons for t < 0.253 s. This delay could prevent the thermal instability, where an

opportunity is provided to remove the electron energy from the core before electrons heat
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the ions then lead to a higher fusion reactivity. The alpha heating from the fusion event

is vital to the study of burning dynamics, which should be considered in the multinodal

model.
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Figure 2.3: Fusion alpha heating without radiation and transport losses for a typical induc-
tive operation scenario of ITER.

Since the threshold energies of D-D and D-3He fusions are much higher than the D-T

fusion, only the D-T fusion is considered for the multinodal model in this research. The

nodal fusion terms for D-T fusion are represented by

Snode
D,fus = Snode

T,fus = −nnode
D nnode

T 〈σv〉fus , Snode
α,fus = nnode

D nnode
T 〈σv〉fus , (2.76)

P node
σ,fus = nnode

D nnode
T 〈σv〉fus Ufσ, σ ∈ {D,T, α } , (2.77)

where 〈σv〉fus is the fusion reactivity evaluated at the nodal ion temperature T node
i and com-

puted by the Bosch-Hale fusion reactivity fitting model [4], and Ufσ is the energy trans-

ferred from fusion alpha particles to the species σ per fusion reaction. However, the main

drawback of these fusion power terms is that the fusion energy is assumed being trans-

24



ferred from the fusion alpha particles to the ions and electrons immediately. The delay

effect between fusion alpha heating to electrons and to ions should be considered.

When the delay effect of fusion alpha heating is considered, the nodal fusion power can

be written as an integral term of generated alpha particles from previous times multiplying

the heating power:

P node
σ,fus(t) =

∫ t

t0

nnode
D (t′)nnode

T (t′) 〈σv〉fus

(
T node
i (t′)

)
Pασ

(
Enode
α (t− t′), T node

e (t)
)

dt′,

(2.78)

where t is the current time, t′ is a previous term to be integrated, and t0 is the initial time.

The Pασ is the power transferred from the fusion alpha particle to the species σ, which

depends on the fusion alpha particle energy Enode
α and the electron temperature T node

e . The

fusion alpha particle energy can be calculated by the time evolution of beam energy in the

NBI heating [34]:

Eb(t) = Eb0
[
e−3t/τse −

( Ec
Eb0

)(
1− e−3t/τse

)]2/3

, (2.79)

where Eb0 is the initial beam energy at t = 0, τse the slowing-down time of beam particles

in electrons [34] computed by

τse =
3(2π)1/2T

3/2
e

m
1/2
e mbAD

, (2.80)

with

AD =
ne4Z2

bZ
2 ln Λ

2πε20m
2
b

. (2.81)

The beam heating powers to electrons and ions [34] are

Pbe =
2m

1/2
e mbAD

3(2π)1/2T
3/2
e

Eb, Pbi = Pbe

(Ec
Eb

)3/2

, (2.82)
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where the critical beam energy [34] is

Ec =

(
3
√
π

4

)2/3(
mi

me

)1/3
mb

mi

Te, (2.83)

and the electron temperature Te is evaluated at the current time t. To avoid solving the

integro-differential equation (IDE), we approximate the integral term in the Equation 2.78

by a delayed fusion heating. By a sample computation with ITER conditions, most of

fusion alpha particle energy is deposited to electrons at the beginning and to ions around

τse. So, we assume the ion temperature increasing linearly in [t − τse, t]. Thus, the fusion

reaction rate Snode
fus for ions is evaluated at

T node
i (t− τse) ≈ T node

i (t)− dT node
i

dt

∣∣∣∣
t

· τse. (2.84)

The delayed fusion reactions then give the fusion heating power P node
σ,fus to ions.

2.3.4 Radiations

Once electrons and ions get energy from the fusion alpha particles, several kinds of ra-

diation can be generated as energy losses. The substantial radiative energy losses in the

burning plasma include electron cyclotron radiation (ECR), bremsstrahlung, and impurity

radiation (line and recombination radiations), i.e.

P node
R = P node

rad = P node
ECR + P node

brem + P node
imp . (2.85)

These radiations are viewed as instantaneous energy transfer processes from the core to

the edge or wall. However, radiations from different regions play various roles in energy

coupling between these regions in tokamak plasmas.
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Electron Cyclotron Radiation

In tokamaks, charged particles (ions and electrons) are confined in magnetic fields with a

gyro-frequency Ω = −qB/m and a gyro-radius rL = v⊥/ |Ω|. When charged particles are

centrifugally accelerated, cyclotron radiations can be generated, which are important for

sufficiently high-temperature plasmas [11, 1]. The rate of energy loss from a single particle

[1, 12] is
dWrad

dt
=

e2

6πε0c3

r2
LΩ4[

1−
(
rLΩ

c

)2
]2 , (2.86)

where c is the speed of light and ε0 is the vacuum permittivity. Since

rL,eΩ
2
e

rL,iΩ2
i

=
v⊥,eeB/me

v⊥,izieB/mi

=
1

zi

√
mi

me

Te
Ti

mi

me

≈ 1

zi

(
mi

me

)3/2

� 1, (2.87)

the electron cyclotron radiation (ECR) is much larger than than the ion cyclotron radiation

(ICR). In this research, only the ECR is considered.

Albajar et al. [40] proposed a practical formula for ECR in the tokamak including the

estimation of wall reflection:

Psyn,r (W) = 3.84× 10−2(1− r)1/2R0a
1.38κ0.79B2.62

0

( ne0
1020

)0.38

Te0

× (16 + Te0)
2.61

(
1 + 0.12

Te0
p0.41
a0

)−1.51

K (αn, αT , βT )G(A),

(2.88)

with pre-assumed density and temperature profiles

ne = ne0
(
1− ρ2

)αn
, (2.89)

Te = (Te0 − Tea)
(
1− ρβT

)αT + Tea , (2.90)
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where formals of parameters are

pa0 = 6.04× 103 a

BT

ne0
1020

, (2.91)

G(A) = 0.93
(
1 + 0.85e−0.82A

)
, (2.92)

K (αn, αT , βT ) = (αn + 3.87αT + 1.46)−0.79 (1.98 + αT )1.36 β2.14
T

×
(
β1.53
T + 1.87αT − 0.16

)−1.33
,

(2.93)

the central density ne0 is in m3, the central temperature Te0 is in keV, r is the wall reflec-

tivity, and A is the aspect ratio.

By using the practical formula in the Equation 2.88, Hill [11] showed that the power

loss from ECR increases with the core temperature and can have a significant effect when

the temperature of the core plasma is larger than 30−40 keV. Furthermore, this power loss

from ECR can lead to greater thermal stability due to its instantaneous negative feedback

mechanism. Hence, the ECR term should be considered in the multinodal model.

When the electron temperature is relatively small, the nodal ECR term can be approxi-

mated by the global one as

P node
ECR =

Psyn,r

V
, (2.94)

where the central density ne0 and temperature Te0 are approximated by the core density

ncore
e and temperature T core

e . Also, the estimated parameters [11] αn = 0.5, αT = 8.0,

βT = 5.0, and r = 0.8 can be used.

However, when the electron temperature is high, the more precise calculation is needed

for a larger ECR power. From the integration of the density profile in the Equation 2.89

over the whole plasma, there is

Vcoren
core
e + Vedgen

edge
e

V
= 2

∫ 1

0

ne(ρ)ρ dρ =
ne0

1 + αn
. (2.95)
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Thus, the central density ne0 can be solved by

ne0 = (1 + αn)
Vcoren

core
e + Vedgen

edge
e

V
. (2.96)

Similarly, by integrating of the temperate profile in the Equation 2.90 over the core node,

there is

T core
e =

2

ρ2
core

∫ ρcore

0

Te(ρ)ρ dρ =
2

ρ2
core

∫ ρcore

0

[
(Te0 − Tea)

(
1− ρβT

)αT + Tea
]
ρ dρ

=
2

ρ2
core

(Te0 − Tea)
∫ ρcore

0

(
1− ρβT

)αT ρ dρ+ Tea

≡ 2I1

ρ2
core

(Te0 − Tea) + Tea.

(2.97)

Also, in the edge node, there is

T edge
e =

2

ρ2
edge − ρ2

core

∫ ρedge

ρcore

Te(ρ)ρ dρ

=
2

ρ2
edge − ρ2

core

∫ ρedge

ρcore

[
(Te0 − Tea)

(
1− ρβT

)αT + Tea
]
ρ dρ

=
2

ρ2
edge − ρ2

core
(Te0 − Tea)

∫ ρedge

ρcore

(
1− ρβT

)αT ρ dρ+ Tea

≡ 2I2

ρ2
edge − ρ2

core
(Te0 − Tea) + Tea.

(2.98)

Thus, the central and boundary temperatures can be solved from

Te0 =
ρ2

core

(
ρ2

core − ρ2
edge + 2I2

)
2ρ2

core(I1 + I2)− 2I1ρ2
edge

T core
e +

(
ρ2

core − ρ2
edge

)
(2I1 − ρ2

core)

2ρ2
core(I1 + I2)− 2I1ρ2

edge
T edge
e , (2.99)

Tea =
I2ρ

2
core

ρ2
core(I1 + I2)− I1ρ2

edge
T core
e +

I1

(
ρ2

core − ρ2
edge

)
ρ2

core(I1 + I2)− I1ρ2
edge

T edge
e , (2.100)

where integrals are

I1 =

∫ ρcore

0

(
1− ρβT

)αT ρ dρ, I2 =

∫ ρedge

ρcore

(
1− ρβT

)αT ρ dρ. (2.101)
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Then, the shape parameters αn = 0.037, αT = 1.027, and βT = 1.194 are fitted from

typical electron density and temperature profiles in the ITER inductive operation, which

are shown in the Figure 2.4. Similarly, the shape parameters αn = 0.102, αT = 4.079, and

βT = 3.278 for the ITER non-inductive operation are shown in the Figure 2.5. Moreover,

a ECR power profile is fitted from Albajar et al. [41] as

dPECR

dV

(
MW/m3

)
= −1.333ρ4 + 3.314ρ3 − 2.335ρ2 + 0.118ρ+ 0.238. (2.102)

This ECR power profile is integrated and normalized to fractions of ECR power to the core

and edge nodes, i.e., f core
ECR and f edge

ECR . Hence, the nodal ECR power is computed by

P core
ECR = f core

ECRPECR, P edge
ECR = f edge

ECRPECR, (2.103)

where PECR is the global ECR power density with the central density in the Equation 2.96

and the central temperature in the Equation 2.99.
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Figure 2.4: Electron temperature and density profiles fitted for the electron cyclotron radia-
tion (ECR) calculation, where Te and ne are the typical electron temperatures and densities
in the ITER inductive operation [31, 7].
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Figure 2.5: Electron temperature and density profiles fitted for the electron cyclotron radia-
tion (ECR) calculation, where Te and ne are the typical electron temperatures and densities
in the ITER non-inductive operation [7].

Bremsstrahlung and Impurity Radiations

Radiations from electrons interacting with fusion ions and impurities are important energy

sinks. These radiations will decrease the temperature of electrons, decreasing the ion tem-

perature and limiting the thermal excursion.

When one charged particle is decelerated by a collision with another one, bremsstrahlung

can happen, where a photon is produced for the energy loss. Since radiation fields from two

one-kind particles are canceled [1], only the electron-ion collisions can generate bremsstrahlung.

The power of bremsstrahlung radiation [1] is calculated from

P node
brem = Pbrem

(
W/m3

)
= 1.7× 10−38z2

effnineT
1/2
e , (2.104)

where Te is the electron temperature in keV and

z2
eff =

∑
j 6=e

njz
2
j

ni
=
niz

2
i

ni
+
nzz

2
z

ni
(2.105)

is the effective atomic number.
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Both fusion reactions and sputtering from walls bring impurity particles into the plasma.

Those impurities can be partially ionized. When plasma electrons collide with partially

ionized atoms, the electrons of these ions can be excited to higher states, followed by

the de-excitation to lower states with emissions of energetic photons, which lead to line

radiations. Also, free plasma electrons can recombine with these partially ionized atoms

and emit photons, which give recombination radiations. Usually, elements with high atomic

numbers have higher level radiations than the lower ones [1]. The impurity radiation [1,

42, 43] is calculated by

P node
imp = Pimp

(
W/m3

)
=
∑
z

(1 + 0.3Te)× 10−37nenzz
3.7−0.33 lnTe , (2.106)

where Te is in keV, z is the atomic number of the impurity ions, and the other quantities

are in mks units.

Mandrekas et al. [44] simulated ITER Engineering Design Activities (EDA) model

with self-consistent coupled transport scrape-off layer and divertor calculations. Their

results suggest that impurity radiation can be considered to solve the divertor heat load

problem in ITER. Becker [45] explored the confinement in the ignited ITER EDA by self-

consistent calculations with a 1.5-D predictive transport code. This research shows a sig-

nificant radiative loss from the confinement zone by bremsstrahlung. Pütterich et al. [46]

calculated cooling factors for multiple elements from H to Bi at ne = 5× 1019 m−3 via

ADAS. Pütterich et al. [46] also concluded a coarse reactor model is able to model impuri-

ties effectively. Besides, Hill [11] suggested active impurity seeding can be a possible way

of controlling burn conditions. These conclusions prompt us to include impurity radiations

into the multinodal model.
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2.3.5 Collisional Energy Transfer

Coulomb collisions transfer energy between charged particles. Since the collision between

one kind of species does not change the average species temperature, only the collisional

energy transfer between different species is considered. The collisional energy transfer to

the species σ is

Qnode
σ =

∑
σ′ 6=σ

Qnode
σσ′ , (2.107)

where Qnode
σσ′ ≡ Qnode

σ′→σ is the collisional energy transfer from the species σ′ to the species σ.

For the collisions between ion species, the rate of collisional energy transfer from the

species i′ to i is

Qii′ =
3

2
ni (Ti′ − Ti) νii′ , (2.108)

where the characteristic frequency for energy transfer between ions [1, 47] is

νii′ =
2mi

mi +mi′

√
2

3
√
π

(
qiqi′

4πε0

)2
4πni′

miT
3/2
i

(
mimi′

mi +mi′

)1/2

ln Λi,

=
2
√

2

3
√
π

(
qiqi′

4πε0

)2
4πni′

T
3/2
i

(mimi′)
1/2

(mi +mi′)3/2
ln Λi.

(2.109)

This term is used for the collisional energy transfer between deuterons, tritons, and alpha

particles, such as Qnode
αD , Qnode

αT , and Qnode
DT .

When the collisions between ions and electrons are considered, the rate of ion-election

collisional energy transfer Qie [1] (from electrons to ions) is used:

Qie =

nine (qiqe)
2me ln Λ

(
1− Ti

Te

)
2πε20 (2πmeTe)

1/2mi

[
1 +

4
√
π

3

(
3meTi
2miTe

)3/2
] , (2.110)

and Qei = −Qie, where ln Λ is the Coulomb logarithm. The Qnode
ie term is positive when

T node
i < T node

e and negative when T node
i > T node

e . This term is applied for the collisional
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energy transfer between ions and electrons, such as Qnode
De , Qnode

Te , and Qnode
αe .

To compute the collisional energy transfer, the Coulomb logarithm is needed. When

temperatures among different species are approximately same, we apply [1]

ln Λ = ln

12π

√
(ε0T )3

neq4
eq

2
i

 , (2.111)

where T is the common temperature, and q is the charge. However, when species have

much different temperatures, the classical Coulomb logarithm for collisions between species

[48] is

ln Λ = ln

[
12π

(ε0
e

)3/2
]
− ln

[
Z1Z2 (A1 + A2)

A2T1 + A1T2

√
n∗
T∗

]
= 30.37− ln (Z1Z2)− ln

[
A1 + A2

A2T1 + A1T2

√
n∗
T∗

]
,

(2.112)

whereA is the mass number with respect to the proton mass, densities in m−3, temperatures

in eV, and
n∗
T∗

=
ne
Te

+
∑
i

Z2
i ni
Ti

. (2.113)

2.3.6 Ion Orbit Loss

Ion orbit loss (IOL) [49, 50, 51, 52, 53, 54, 55] stands for one kind of ion loss. Ions on

passing or banana-trapped orbits can leave the plasma by drifting outward across the last

closed flux surface (LCFS), which is called the standard IOL. Another kind of IOL is for

the ion loss through the X-point in the diverted plasma, which is called the X-loss IOL.

We only consider the standard IOL in the multinodal model, but the X-loss IOL could be

included in the future.

To compute the IOL terms in the multinodal model, the loss fractions are needed. The
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ion particle loss fraction for the Maxwellian velocity distribution [49, 51] is

Forb =

∫ 1

−1
Γ (3/2, εmin (ρ0, ζ0)) dζ0

2Γ (3/2)
, (2.114)

where ζ0 = V‖0/V0 is the direction cosine,

εmin (ρ0, ζ0) =
Emin (ρ0, ζ0)

kTi (ρ0)
=
mV 2

min (ρ0, ζ0)

2kTi (ρ0)
(2.115)

is the reduced energy corresponding to the minimum velocity of the IOL, Γ(n) is the

gamma function, and Γ(n, x) is the upper incomplete gamma function. Similarly, the en-

ergy loss fraction [49, 51] is

Eorb =

∫ 1

−1
Γ (5/2, εmin (ρ0, ζ0)) dζ0

2Γ (5/2)
. (2.116)

The minimum loss energy Emin (ρ0, ζ0) for ions is determined by proper computation

strategies [51]. One method is using the GTEDGE code [51]. where a combination of

conversations of canonical toroidal angular momentum, energy, and magnetic momentum

is solved. This quadratic equation for the initial ion velocity V0 [51] is written as

V 2
0

[(∣∣∣∣Bs

B0

∣∣∣∣ fφ0

fφs
ζ0

)2

− 1 +
(
1− ζ2

0

) ∣∣∣∣Bs

B0

∣∣∣∣
]

+ V0

[
2e(ψ0 − ψs)
Rmfφs

(∣∣∣∣Bs

B0

∣∣∣∣ fφ0

fφs
ζ0

)]

+

[(
e(ψ0 − ψs)
Rmfφs

)2

− 2e (φ0 − φs)
m

]
= 0,

(2.117)

where R is the major radius, φ is the electrostatic potential, fφ = |Bφ/B|, ψ is the flux

surface. From the Ampere’s law, the flux surface is calculated from

ψ = RAφ =
1

2

(
µ0I

2πa2

)
R0r

2 =⇒ ψ(ρ) =
µ0IR0

4π
ρ2. (2.118)
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The circular flux surface geometry is described as

R(r, θ) = R0h(r, θ), h(r, θ) = 1 +
r

R0

cos θ, Bφ =
Bφ0

h(r, θ)
. (2.119)

As an approximation, we solve the Equation 2.117 at ζ0 = 1 and take the min−π≤θ0≤π V0(ζ0, ρ0, θ0)

with average parameters of one shot. Also, the predetermined electrostatic potential pro-

files in the Appendix C are used. Two sample calculations are shown in the Figure 2.6 for

DIII-D and the Figure 2.7 for ITER.
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Figure 2.6: Ion particle and energy cumulative loss fractions for DIII-D, where IP =
1.5 MA, R0 = 1.75 m, a = 0.885 m, Ti = 1 keV, Bφ0 = 1.98 T, and the electrostatic
potential is from the Appendix C.1.

Once the nodal particle and energy loss fractions are calculated from the IOL model,

the nodal IOL for ion particles [11] is computed by

Snode
σ,IOL = −Fσ,orb

(
ρIOL

node

)
τ node
P,σ,IOL

nnode
σ , (2.120)

where ρIOL
node is evaluated at the center of one node, τ node

P,σ,IOL is the particle loss timescale of

IOL. Also, the nodal IOL for ion energies [11] is

P node
σ,IOL = −Eσ,orb

(
ρIOL

node

)
τ node
E,σ,IOL

U node
σ , (2.121)
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Figure 2.7: Ion particle and energy cumulative loss fractions for ITER, where IP =
9.731 MA, R0 = 6.2 m, a = 2 m, Ti = 6 keV, Bφ0 = 5.3 T, and the electrostatic po-
tential is from the Appendix C.2.

where τ node
E,σ,IOL is the energy loss timescale of IOL. The IOL timescales is approximated by

transport times from the edge to the SOL.

2.3.7 Atomic and Molecular Processes

Atomic and molecular processes are important for the scrape-off layer and divertor regions.

For the recycling hydrogen (or deuterium or tritium) atoms from the wall, the important

atomic processes [1, 34] are excitation, ionization, charge exchange, and elastic scattering:

excitation H + e− → H∗ + e−,

ionization H + e− → H+ + 2e−,

charge exchange H + H+ → H+ + H,

elastic scattering H + H+ → H + H+.
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For the re-emitted and gas injected hydrogen (or deuterium or tritium) molecules, the im-

portant molecular processes [1, 34] are

dissociation H2 + e− → H + H + e−,

dissociative ionization H2 + e− → H+ + H + 2e−,

molecular ionization H2 + e− → H2
+ + 2e−,

excitation H2 + e− → H2
∗ + e−,

dissociative recombination H2
∗ + e− → H− + H,

dissociative recombination H2
+ + e− → H + H,

dissociative ionization H2
+ + e− → H+ + H+ + 2e−,

charge exchange H+ + H− → H + H.

In the multinodal model, we focus on the atomic reactions and ignore the molecular

ones. Following the previous research [56, 57], we consider the ionization, recombination,

charge exchange, and the elastic scattering processes in the SOL and divertor node. The

cross sections and reaction rate coefficients for these processes can be found in previous

research [58, 59, 60].

• Ionization: The particle sources for the ionization process are

Ssol
σ,ion = nsol

σ0n
sol
e 〈σv〉sol

σ,ion , σ ∈ {D,T } , (2.122)

Ssol
e,ion =

∑
σ

nsol
σ0n

sol
e 〈σv〉sol

σ,ion , (2.123)

where 〈σv〉sol
σ,ion is the reaction rate coefficient for an ionization process [59], and the

summation is over all ionization processes. The energy sink is

P sol
e,ion = −

∑
σ

Eσ,ionn
sol
σ0n

sol
e 〈σv〉sol

σ,ion , (2.124)
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where the ionization energy is Eσ,ion = 13.6 eV [59] or can be calculated by [56]

Eion (eV) = 17.5 +

[
5.0 +

35.5

Te(eV)

]
log10

(
1021

ne(m
−3)

)
. (2.125)

• Recombination: The particle sinks for the recombination processes are

Ssol
σ,rec = −nsol

σ n
sol
e 〈σv〉sol

σ,rec , σ ∈ {D,T } , (2.126)

Ssol
e,rec = −

∑
σ

nsol
σ n

sol
e 〈σv〉sol

σ,rec , (2.127)

where 〈σv〉sol
σ,rec is the reaction rate coefficient for a recombination process [59], and

the summation is over all recombination processes. The energy source is

P sol
e,rec =

∑
σ

fσ,recEσ,recn
sol
σ n

sol
e 〈σv〉sol

σ,rec , (2.128)

where fσ,rec is the absorption fraction of the ionization potential released upon re-

combination, and the recombination energy is Eσ,rec = 13.6 eV.

• Charge exchange and elastic scattering: The energy sink for the charge exchange and

elastic scattering is

P sol
σ,at = −3

2

(
T sol
σ − T sol

σ0,c

)
nsol
σ n

sol
σ0,c

(
〈σv〉sol

σ,cx + 〈σv〉sol
σ,el

)
, σ ∈ I, (2.129)

where 〈σv〉sol
σ,cx and 〈σv〉sol

σ,el are the reaction rate coefficients for the charge exchange

and elastic scattering [60] respectively, and also nsol
σ0,c and T sol

σ0,c are the density and

temperature of the cold recycling neutral atoms from the wall.

The neutral densities nsol
σ0

and nsol
σ0,c

can be measured from experiments or computed

from Monte Carlo or neutral transport codes, such as the GTNEUT [61]. In this research,

we assume nsol
D0 = 1015 m−3. The cold recycling neutral deuterium density can be approx-

imated with the particle refection from the wall. The particle reflection coefficient RN
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and the energy reflection coefficient RE are computed from Thomas et al. [62]. Once the

particle reflection coefficient is computed, the cold recycling neutral density can be ap-

proximated by nsol
D0,c ≈ RNn

sol
D0. We do not apply the approximation from RNn

sol
D , since the

nodal particle density is usually much higher than the particles injected on the wall, which

may lead to a much larger recycling neutral density. The temperature of these neutrals is

assumed as T sol
D0,c ≈ 1 eV for a convenience of using available data of the reaction rate

coefficients [60], but the result is insensitive to this temperature.

2.4 Multinodal Model Framework

After discussions of essential processes in fusion plasmas, now the framework for the

multinodal burning plasma dynamics model based on previous works [11, 12] can be pre-

sented. As introduced in the Section 2.1, a tokamak plasma is divided into multiple regions

in the multinodal model, where each region is modeled as one separate node. A node

has one system of dynamics equations for modeling particle and energy balances. Using

the multinodal model, different phenomena in different regions are modeled with different

timescales.

For convenience of dividing the tokamak plasma into multiple regions, the normalized

minor radius is defined as ρ = r/a, where a is the minor radius. The tokamak plasma is

split into the following four regions:

• Core region: 0 ≤ ρ ≤ ρcore = 0.9, where ρcore = rcore/a.

• Edge region: ρcore ≤ ρ ≤ ρedge = 1.0, where ρedge = redge/a.

• Scrape-off layer (SOL) region: ρedge ≤ ρ ≤ ρsol = 1.1, where ρsol = rsol/a.

• Divertor region: the divertor and the private flux region.

Those numbers of ρcore, ρedge, and ρsol are pre-assumed here and could be adjusted in the

future research. The first three regions in the DIII-D tokamak are shown in the Figure 2.8.
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Figure 2.8: The cross section of the DIII-D plasma with the core, edge, and SOL regions
in the multinodal model. The divertor region is omitted here.

The multinodal model contains density and energy balance equations for all regions.

The nnode
σ and T node

σ are used as the volume-averaged particle density and temperature in

one node. For example, the volume-averaged electron density nnode
e in one node between

ρ0 and ρ1 is calculated from the radial distribution function through

nnode
e =

1

V

∫
V

ne(ρ) dV

=
1

π (ρ2
1 − ρ2

0) · 2πR0

∫ ρ1

ρ0

dρ

∫ 2π

0

ρ dθ

∫ 2π

0

(R0 + ρ cos θ)ne(ρ) dφ

=
4π2R0

2π2 (ρ2
1 − ρ2

0)R0

∫ ρ1

ρ0

ne(ρ)ρ dρ =
2

ρ2
1 − ρ2

0

∫ ρ1

ρ0

ne(ρ)ρ dρ.

(2.130)

This formula is used to obtain nodal values from experiment data. Also, the nodal species

energy density is defined as

U core
σ =

3

2
ncore
σ T core

σ . (2.131)

The particle and energy balance equations for all nodes are presented in the following

subsections.
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2.4.1 Core Region

The core region is where most fusion reactions happen. Fusion reactions generate energetic

alpha particles, which introduce a vital energy source for further radiation and transport.

Modeling the dynamics of the core node is important in the multinodal model.

Core Particle Balance Equations

In the core region, deuterons and tritons are injected through the neutral beam injection

(NBI) and gas puffing. When the core temperature is high enough, the fusion reactions

happen, which consume deuterons and tritons and produce alpha particles. Those particles

are transported to the edge by diffusion or be lost by ion orbit loss (IOL). Hence, the particle

balance equation for deuterons, tritons, and alpha particles is

dncore
σ

dt
= Score

σ = Score
σ,ext + Score

σ,fus + Score
σ,tran + Score

σ,IOL, σ ∈ {D,T, α } . (2.132)

The external particle sources and wall reactions also bring in impurity particles, which are

transported or lost. Thus, the particle balance equation for impurities is presented as

dncore
z

dt
= Score

z = Score
z,ext + Score

z,tran + Score
z,IOL, z ∈ { z1, z2, . . . } , (2.133)

where when multiple impurities are considered, the single impurity z can be replaced by

z1, z2, . . . . Similarly, the particle balance equation for electrons is

dncore
e

dt
= Score

e = Score
e,ext + Score

e,tran, (2.134)

which is replaced by the quasi-neutrality:

ncore
e =

∑
σ∈I

zσn
core
σ = ncore

D + ncore
T + zαn

core
α +

∑
z

zzn
core
z . (2.135)
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Notice, the balance equations of electrons in other regions will also be replaced by their cor-

responding quasi-neutrality equations. The terms on the right-hand sides of these particle

balance equations are the particle sources and sinks, which have been discussed thoroughly

in the previous sections:

1. The external particle source Score
σ,ext is presented in the Equation 2.55.

2. The fusion term for the D-T fusion Score
σ,fus is presented in the Equation 2.76.

3. The particle transport term Score
σ,tran is presented in the Equation 2.17.

4. And the ion orbit loss (IOL) term Score
σ,IOL is presented in the Equation 2.120.

Core Energy Balance Equations

In the core region, ions are heated by auxiliary heating and fusion alpha heating. The ions

also redistribute their energies through Coulomb collisions. Such energetic ions then are

transported to the edge or lost by the IOL. Therefore, the energy balance equation for ions

is
dU core

σ

dt
= P core

σ = P core
σ,aux + P core

σ,fus +Qcore
σ + P core

σ,tran + P core
σ,IOL, σ ∈ I. (2.136)

Electrons are also heated through ohmic heating. Besides transport, the core electrons radi-

ate their energy instantaneously through electron cyclotron radiation (ECR), bremsstrahlung,

and impurity radiation. Hence, the energy balance equation for electrons is

dU core
e

dt
= P core

e = P core
Ω + P core

e,aux + P core
e,fus − P core

R +Qcore
e + P core

e,tran. (2.137)

These sources ans sinks have been described in the previous sections:

1. The auxiliary heating term P core
σ,aux is presented in the Equation 2.60 and 2.61.

2. The ohmic heating to electrons P core
Ω is presented in the Equation 2.62 and 2.63.
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3. The D-T fusion term P core
σ,fus is presented in the Equation 2.77.

4. The radiation term P core
R is presented in the Equation 2.85.

5. The energy transport term P core
σ,tran is presented in the Equation 2.42.

6. The Coulomb collisional energy transfer Qcore
σ term is presented in the Equation

2.107.

7. And the IOL term P core
σ,IOL is presented in the Equation 2.121.

2.4.2 Edge Region

Once the particle and energy are transported from the core to the edge, the edge ions and

electrons are heated. Also, the edge plasma has more impurities, which will have stronger

impurity radiations. Besides, some edge effects, including the ion orbit loss (IOL), are

significant. Hence, modeling the edge region is essential.

Edge Particle Balance Equations

In the edge region, the ions and electrons are also supplied by the neutral beam injection

(NBI) and gas puffing. Usually, the gas puffing will introduce most particles to the edge

node rather than to the core node. Also, particles are transported from the core to edge, and

then to the SOL. The IOL will accelerate the particle loss in the edge node. The particle

balance equations for deuterons, tritons, alpha particles, and impurities are

dnedge
σ

dt
= Sedge

σ = Sedge
σ,ext + Sedge

σ,fus + Sedge
σ,tran + Sedge

σ,IOL, σ ∈ I. (2.138)

Most of sources and sinks in these equations are same as the corresponding terms in the

core region, while the particle transport term Sedge
σ,tran is presented in the Equation 2.26.
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Edge Energy Balance Equations

The energetic ions and electrons are transported to the edge and then heat the edge plasma.

Those heated electrons will lose their energies through transport and radiations. These

processes will couple the edge equations with the core ones. Thus, the energy balance

equations for deuterons, tritons, alpha particles, impurities, and electrons are

dU edge
σ

dt
= P edge

σ = P edge
σ,aux + P edge

σ,fus +Qedge
σ + P edge

σ,tran + P edge
σ,IOL, σ ∈ I, (2.139)

dU edge
e

dt
= P edge

e = P edge
Ω + P edge

e,aux + P edge
e,fus − P edge

R +Qedge
e + P edge

e,tran. (2.140)

Similar to the edge particle equations, most of terms are same as the corresponding terms

in the core region, while the energy transport term P edge
σ,tran is presented in the Equation 2.47.

2.4.3 Scrape-Off Layer Region

The scrape-off layer (SOL) [63, 58, 64, 65, 60, 56, 66, 57, 67, 68, 69, 70, 71, 72, 73] refers

to the plasma outside the separatrix. The particle densities and temperatures in the SOL

are relatively lower compared with the edge ones. Thus, the neutral and partially ionized

particles cannot be ignored. Modeling the SOL is important for practical fusion reactors.

SOL Particle Balance Equations

In the SOL region, particles are transported from the edge. Besides, the atoms can be

injected from the external sources and then recycled from the wall, where the wall condition

is vital. Also, the atomic and molecular processes are important in this region. Hence, the

particle balance equations in the SOL region are

dnsol
σ

dt
= Ssol

σ = Ssol
σ,ext + Ssol

σ,ion + Ssol
σ,rec + Ssol

σ,tran + Ssol
σ,IOL, σ ∈ I, (2.141)

where the particle sources and sinks are as follows.
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1. The particle source term from external sources, such as the massive gas injection

(MGI) [11], is

Ssol
σ,ext = Ssol

σ,MGI =
S tot
σ,MGIf

sol
σ,MGI

Vsol
, (2.142)

where S tot
σ,MGI is the total MGI source of species σ and f sol

σ,MGI is the fraction of S tot
σ,MGI

ionized in the SOL.

2. The particle source term for the ionization process Ssol
σ,ion is presented in the Equation

2.122.

3. The particle sink term for the recombination process Ssol
σ,rec is presented in the Equa-

tion 2.126.

4. The transport term Ssol
σ,tran is presented in the Equation 2.28.

5. And the IOL term Ssol
σ,IOL is the IOL particle from the edge to the SOL.

SOL Energy Balance Equations

Similar to the edge node, the transport and radiation should be considered in the SOL

node. Besides, the atomic and molecular processes are important. Thus, the energy balance

equations in the SOL region are

dU sol
σ

dt
= P sol

σ = P sol
σ,ext + P sol

σ,at +Qsol
σ + P sol

σ,tran + P sol
σ,IOL, σ ∈ I, (2.143)

dU sol
e

dt
= P sol

e = P sol
e,ext + P sol

e,ion + P sol
e,rec − P sol

R +Qsol
e + P sol

e,tran, (2.144)

where the energy sources and sinks are described as follows.

1. The P sol
σ,ext is the power source term from external sources.

2. The power sink term from the ionization process P sol
σ,ion is presented in the Equation

2.124.
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3. The power source term from the recombination process P sol
σ,rec is presented in the

Equation 2.128.

4. The power sink term from the charge exchange and elastic scattering processes P sol
σ,at

is presented in the Equation 2.129.

5. The radiation term P sol
R is the impurity radiation, which has been discussed before.

6. The collisional energy transfer term Qsol
σ includes collisions of the species σ with

both charged particles and neutral particles, i.e.

Qsol
σ =

∑
σ′∈I,σ′ 6=σ

Qsol
σ′→σ +

∑
σ′0

Qsol
σ′0→σ

. (2.145)

Notice that the elastic scattering with the recycling of neutral particles from the wall

has already been considered in the atomic process term.

7. The transport term P sol
σ,tran is presented in the Equation 2.49.

8. And the IOL term P sol
σ,IOL is the IOL energy from the edge to the SOL.

2.4.4 Divertor Region

The divertor [56, 66] is a magnetic device for removing impurities and ashes from the

plasma when the reactor is operating. It can help control the buildup of fusion products

and clean plasma impurities. Modeling dynamics in the divertor node is vital for practical

fusion reactors.

Divertor Particle Balance Equations

The particle balance equations in the divertor region are

dndiv
σ

dt
= Sdiv

σ = Sdiv
σ,ext + Sdiv

σ,ion + Sdiv
σ,rec + Sdiv

σ,tran, σ ∈ I. (2.146)
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The particle sources and sinks from external sources, ionization, and recombination are

similar to those in the SOL region. The transport term is

Sdiv
σ,tran =

Vsol

Vdiv

nsol
σ

τ sol→div
P,σ

+ Sdiv
σ,tar, (2.147)

where Sdiv
σ,tar is the particle sink for combinations with divertor targets. The Sdiv

σ,tar is com-

puted by [11]:

Sdiv
σ,tar = −Adiv

Vdiv
ndiv
σ cs,σ(1−Rw,σ), (2.148)

where the Adiv is the combined effective surface area of the divertor targets, Vdiv is the

volume of the divertor region, cs,σ is the sound speed of the species σ in the divertor as

[56]:

cs,σ =

√
2T div

σ

mσ

, (2.149)

and the Rw,σ is the reflection fraction of the species σ from the wall.

Divertor Energy Balance Equations

The energy balance equations in the divertor region are

dU div
σ

dt
= P div

σ = P div
σ,ext + P div

σ,at +Qdiv
σ + P div

σ,tran, σ ∈ I, (2.150)

dU div
e

dt
= P div

e = P div
e,ext + P div

e,ion + P div
e,rec − P div

R +Qdiv
e + P div

e,tran. (2.151)

The power sources and sinks from the external sources, radiation, ionization, recombina-

tion, charge exchange, elastic scattering, and collisions are similar to those in the SOL

region. The transport term is

P div
σ,tran =

Vsol

Vdiv

U sol
σ

τ sol→div
E,σ

+ P div
σ,tar, (2.152)
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where P div
σ,tar is the energy sink for combinations with divertor targets. The P div

σ,tar is computed

by [11]:

P div
σ,tar = −Adiv

Vdiv
U div
σ cs,σγσ,sh, (2.153)

where the sheath energy transmission coefficient γsh is gotten from [56, 11]:

γσ,sh =
2T div

σ

T div
e

+
2

1− δσ,sh
+

1

2
ln

[
(1− δσ,sh)mσ/me

2π(1 + T div
σ /T div

e )

]
, (2.154)

and δσ,sh is the secondary sheath transmission coefficient.

2.5 Summary

In this chapter, a framework for a multi-region multi-timescale plasma transport model is

proposed to simulate burning plasma dynamics in tokamaks. Regions including the core,

edge, scrape-off layer (SOL), and divertor are modeled as separate nodes. The balanced

equations and transport terms are derived from the fluid theory. Several essential terms in

the burning plasma are introduced, including fusion alpha heating, electron cyclotron radia-

tion (ECR), bremsstrahlung, impurity radiation, and collisional energy transfer. Moreover,

other necessary terms, containing external particle sources, ohmic and auxiliary heating,

and atomic and molecular processes, are discussed. One edge effect, ion orbit loss (IOL),

is also considered. The framework of the multinodal model is proposed at the end of the

chapter. In the next chapter, we will develop the computational methods for the multinodal

model.
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CHAPTER 3

COMPUTATIONAL METHODS

Before applying the multinodal model for simulating plasmas, we must properly compute

the particle and energy transport between nodes. In this chapter, computational methods

for the multinodal burning plasma dynamics model are built. Firstly, The limitations of

previous methods for obtaining transport times are discussed. Next, we present a paramet-

ric diffusivity formula with transport times. Moreover, the machine learning algorithms

involved in this research are visited, including back propagation and gradient descent. Fi-

nally, the GTBURN package and its modules are introduced at the end of the chapter.

3.1 Limitations of Previous Works

In the multinodal burning plasma model, particles and energy are transferred through radi-

ation and transport. Although radiations travel at the speed of light, which are treated as

instantaneous energy transfer processes, the particle and energy transport should be char-

acterized with finite transport times τa→bx,σ from the region a to b for species σ particles (if

x = P ) or energies (if x = E). Modeling the transport times between adjacent nodes is

critical for the multinodal model.

In order to determine the internodal transport time, the first way one can try is the

energy confinement time τ exp
E from the steady-state energy balance equation [1]:

Wth

τ exp
E

= Pheat − Prad −
dWth

dt
− dWrot

dt
, (3.1)

where the thermal energy is Wth =
∫

3
2
nT dV , the rotation energy is Wrot =

∫
1
2
nmv2 dV ,

also Pheat and Prad are additional heating and radiation respectively. Through regression

analysis over multiple experiments from various tokamaks, scaling laws are gotten for the
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global (one-nodal) energy confinement time. One widely used scaling law is the ITER-

98(y,2) energy confinement scaling law (ITER-98) [5]:

τ IPB98(y,2)
E

1 s
= 0.056

(
IP

1 MA

)0.93(
BT

1 T

)0.15 ( ne
1019 m−3

)0.41
(

Ptot

1 MW

)−0.69

×
(
R0

1 m

)1.97

κ0.78A−0.58

(
M

1 amu

)0.19

,

(3.2)

where IP (MA) is the plasma current, BT (T) is the toroidal magnetic field, ne (m−3) is

the line averaged electron density, Ptot (MW) is the total absorbed power (heating power),

R0 (m) is the major radius, κ is the elongation, A = R0/a is the aspect ratio, and M (amu)

is the hydrogen isotope mass (M = 2 for the deuterium plasma and M = 2.5 for the

deuterium-tritium plasma). However, this equation does not measure the energy transport

time directly, but determines a energy loss rate from the steady-state plasma. Addition-

ally, this formula cannot be generalized to a transport time between nodes conveniently in

theory.

The second way to determine internodal transport times is to perform tokamak exper-

iments and infer transport times from them. This method has been suggested in previous

research [12]. For example, by injecting pellets into the core plasma, one can measure the

deuteron density change in the edge plasma to get the deuterium particle transport time

from the core to the edge, i.e., τ core→edge
P,D . Similarly, by providing electron cyclotron heating

to the core plasma, one can measure the electron temperature change in the edge plasma

to get the electron energy transport time from the core to the edge, i.e., τ core→edge
E,e . The

region-to-region particle and energy transport times can be determined by adjusting these

coupling coefficients to make the predictions of the multinodal model consistent with mea-

sured densities and temperatures. However, there are several shortcomings of this direct

measurement method:

• Firstly, directly measuring one particle or energy transport time for one species is

hard in practice. In real tokamak experiments, multiple particle and energy sources
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can exist during one shot, such as the gas puffing of deuterons at the beginning and

then the neutral beam injection next. The interactions of multiple particle and energy

sources are sometimes unavoidable. In such cases, the transport times are not inde-

pendent of each other and hence cannot be determined from experiments separately.

• Besides, the direct measurement method can only determine one steady transport

time from one shot, which will be a constant in that shot. However, the experimental

conditions can be changed during one shot and among different shots. In fact, for

a well-performed multinodal model, a proper model for dynamic transport times is

required, where internodal transport times should depend on real-time experiment

conditions such as the magnetic field, safety factor, and local temperature.

• Lastly, the direct measurement can only provide transport times for existing shots,

while these transport times are hard and unreliable to be extrapolated to new shots.

The purpose of this research is to obtain a predictive model, which can not only

explain the existing shots, but also predict the new shots with new reasonable condi-

tions. This raises a requirement for model generalization ability.

By visiting the drawbacks of previous methods for obtaining internodal transport times,

we propose a novel way by taking advantage of state-of-the-art machine learning tech-

niques. A parametric scaling law is given for the diffusivity model and then used for build-

ing the internodal transport times. The diffusivity model can be optimized by utilizing

experiment data and used for predicting new experiments of both DIII-D and ITER. More

details of this method are discussed in this chapter.

3.2 Multinodal Model Formulas

In this section, the formulas in the multinodal model are presented. A parametric diffusivity

model is proposed, and a vector form of internodal transport time computation is given. The
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parameters in the diffusivity model are discussed, which will need optimizing based on the

experiment data. Those optimization algorithms will be introduced in the next section.

3.2.1 Parametric Diffusivity Model

The diffusivity formula in the Equation 2.52 is rewritten as a parametric one:

χ(ρ)

1 m2/s
= αH

(
BT

1 T

)αB ( ne(ρ)

1019 m−3

)αn (Te(ρ)

1 keV

)αT ( |∇Te(ρ)|
1 keV/m

)α∇T
q(ρ)αq

× κ(ρ)ακ
(

M

1 amu

)αM ( R

1 m

)αR ( a

1 m

)αa
,

(3.3)

where ρ is the normalized radius by ρ = r/a, BT is the toroidal magnetic field, ne is

the electron density, Te is the electron temperature, q is the safety factor, κ is the local

elongation, M is the hydrogenic atomic mass number, R is the major radius, and a is the

minor radius. Also, αH , αB, . . . , αa are undetermined parameters, which will be solved

from the experiment data later. Now the diffusivity formula is reformulated into one vector

form by taking logarithms in both sides:

ln

(
χ(ρ)

1 m2/s

)
= lnαH + αB ln

(
BT

1 T

)
+ αn ln

(
ne(ρ)

1019 m−3

)
+ αT ln

(
Te(ρ)

1 keV

)
+ α∇T ln

( |∇Te(ρ)|
1 keV/m

)
+ αq ln q(ρ) + ακ lnκ(ρ)

+ αM ln

(
M

1 amu

)
+ αR ln

(
R

1 m

)
+ αa ln

( a

1 m

)
= b+ wT ln x(ρ),

(3.4)
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where the notations are

b = lnαH , (3.5)

w =

[
αB αn αT α∇T αq ακ αM αR αa

]T

, (3.6)

x(ρ) =

[
BT

1 T

ne(ρ)

1019 m−3

Te(ρ)

1 keV

|∇Te(ρ)|
1 keV/m

q(ρ) κ(ρ)
M

1 amu

R

1 m

a

1 m

]T

.

(3.7)

Let the internodal particle diffusivity be Dnode
σ , and the internodal thermal diffusivity be

χnode
σ . Although we use the “node” in the superscripts here, those diffusivities represent

transport between adjacent nodes. The diffusivity vector is defined as

χnode =

[
Dnode

D Dnode
T . . . χnode

D χnode
T . . .

]T/(
1 m2/s

)
. (3.8)

Also, let the nodal input vector x (ρ) be xnode. Hence, the diffusivity model becomes

lnχnode = ln


Dnode

D / (1 m2/s)

Dnode
T / (1 m2/s)

...

 =


bnode
P,D +

(
wnode
P,D

)T
ln xnode

bnode
P,T +

(
wnode
P,T

)T
ln xnode

...



=


bnode
P,D

bnode
P,T

...

+


(
wnode
P,D

)T(
wnode
P,T

)T

...

 ln xnode ≡ bnode + Wnode ln xnode.

(3.9)

In general, the internodal diffusivity model can be defined as any parametric function:

χnode = fnode (xnode) . (3.10)

where χnode ∈ Rnnode
χ , xnode ∈ Rnnode

x , and fnode : Rnnode
x 7→ Rnnode

χ . Here we select one
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exponentially linear function:

χnode = fnode (xnode; Wnode,bnode) = exp (bnode + Wnode ln xnode) , (3.11)

where Wnode ∈ Rnnode
χ ×nnode

x and bnode ∈ Rnnode
χ . Such an exponentially linear function gives

a positive diffusivity as a power scaling of physical features xnode. This function can be

replaced with the multi-layer neural network (multilayer perceptron [74, 75]) in the future.

The nodal diffusivity models from the different nodes are combined and rewritten into

one formula:

χ =

[
χT

core χT
edge . . .

]T

=

[
fT

core (xcore; Wcore,bcore) fT
edge (xedge; Wedge,bedge) . . .

]T

,

≡ f (x) ,

(3.12)

where χ ∈ Rnχ is the diffusivity vector, x ∈ Rnx is the physical feature vector, and f :

Rnx 7→ Rnχ is a parametric function for the diffusivity model. This formula is convenient

when the model is discussed theoretically. In practice, each nodal diffusivity model is

implemented separately since each one has a different input vector.

3.2.2 Dynamical System

After defining the diffusivity model, we go back to the multinodal model, which is viewed

as a dynamical system:

dy

dt
= S (y(t), τ (t), t) , t0 ≤ t ≤ tnt , (3.13)
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where t is the time variable, y ∈ Rny is a vector of nodal particle densities and energies,

i.e.

y =

[
yT

core yT
edge . . .

]T

, (3.14)

ynode =

[
nnode

D nnode
T . . . U node

D U node
T . . .

]T

, (3.15)

τ ∈ Rnτ is the vector of transport times, and S ∈ Rny is the vector of particle and energy

sources for the corresponding y. The internodal transport time vector is defined as

τ =

[
τT

core τT
edge . . .

]T

, (3.16)

where τnode ∈ Rnnode
τ is the vector of internodal transport times. For example, the core-edge

transport time vector is

τcore =

[
τ core→edge
P,D τ core→edge

P,T . . . τ core→edge
E,D . . .

]T

, (3.17)

and the edge-SOL transport time vector is

τedge =

[
τ edge→sol
P,D τ edge→sol

P,T . . . τ edge→sol
E,D . . .

]T

. (3.18)

Here the relation between two directions of adjacent nodes in the Equation 2.16 is used,

so only one-direction transport times are needed. Besides, the internodal transport times

depend on the corresponding diffusivities, which can be represented by a function:

τnode = gnode (χnode) , (3.19)

where the function gnode : Rnnode
χ 7→ Rnnode

τ has been defined in the Section 2.2 such as the

Equation 2.14, 2.15, 2.40, and 2.41. All nodal transport times can also be combined into
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one function g : Rnχ 7→ Rnτ such that

τ (t) = g (χ(t)) . (3.20)

Notice, the function g is determined, which is different from the parametric function f

with undetermined parameters. To solve the dynamic system with the internodal transport

times, we still need to obtain parameters in the diffusivity model first. The method will be

discussed in the next section.

3.3 Optimization Algorithms

In this section, optimization algorithms from machine learning are introduced to obtain the

parameters in the diffusivity model. Most of the concepts and methods can be found in the

machine learning and deep learning materials [76, 77].

3.3.1 Mean Squared Error Loss

After the dynamical system in the Equation 3.13 is formulated, it is solved for one shot (i.e.,

one experiment) at discrete time steps t = t1, t2, . . . , tnt , where the number of time steps

nt is determined by the experiment measurement or burning length. In this research, the

Runge-Kutta of order 5 of Dormand-Prince-Shampine method [78] is used for solving this

system of ordinary differential equations (ODEs). The solution of the dynamical system

is given as Ŷ ∈ Rnt×ny , where one row of Ŷ is one solution y(ti) at the time step ti.

Here, the energy densities have been replaced by their corresponding temperatures. Let the

experiment measurement be Y ∈ Rnt×ny . The error between multinodal model solutions

(predictions) and experiment measurements (targets) for this shot is defined by the mean

squared error (MSE):

L =
1

ntny

∥∥∥Ŷ −Y
∥∥∥2

F
, (3.21)
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where the Frobenius norm is used for matrices. This error is also used as the loss func-

tion in the optimization process. The regularization term is added to the loss function for

preventing overfitting:

L =
1

ntny

∥∥∥Ŷ −Y
∥∥∥2

F
+
∑
node

(
λnode
W ‖Wnode‖2

F + λnode
b ‖bnode‖2

2

)
, (3.22)

where λnode
W and λnode

b are regularization hyperparameters.

3.3.2 Back Propagation Algorithm

To get the optimized diffusivity model, one needs to minimize the MSE loss over all given

shots in the training dataset. In this process, the parameters in the diffusivity model are

updated by following the gradient descent algorithm, where the back propagation algorithm

is used to compute gradients of the MSE loss over model parameters.

The back propagation algorithm [76, 77] is widely used for training feed-forward neural

networks. The gradient of the loss over the model parameters is computed by the chain rule.

In the multinodal model, the gradient of the MSE loss on the nodal weight Wnode is

∇WnodeL =
∂L

∂Wnode

=
2

ntny

(
Ŷ −Y

)T ∂Ŷ

∂Tnode

∂Tnode

∂Cnode

∂Cnode

∂Wnode
∈ Rnnode

χ ×nnode
x ,

(3.23)

where ∂Ŷ/∂Tnode ∈ Rnt×ny is the gradient of the ODE solver computed by the adjoint

sensitivity method [78], Tnode ∈ Rnt×nnode
τ and Cnode ∈ Rnt×nnode

χ are τnode and χnode at all

time steps respectively, and

∂Cnode

∂Wnode
= CT

node ln Xnode ∈ Rnnode
χ ×nnode

x . (3.24)

Similarly, we can calculate the gradient of MSE loss on the nodal bias term as ∇bnodeL. In

this research, we utilize an automatic differentiation engine in the PyTorch [79], a Python
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library for deep learning, to automatically compute these gradients. Also, the gradient of

the ODE solver has been built in the torchdiffeq [78]. So, we do not have to implement

these gradient formulas ourselves.

When the gradients are available, the weight and bias are updated through the gradient

descent algorithm [77]:

Wnode ←Wnode − ηWnode∇WnodeL, (3.25)

bnode ← bnode − ηbnode∇bnodeL, (3.26)

where ηWnode and ηbnode are learning rates, which can control step sizes in the gradient de-

scent algorithm. After enough iterations, this algorithm can find a local minimum of the

MSE loss. By combining the gradient descent with the back propagation, we are able to

optimize the parameters in the diffusivity time model (i.e., αH , αB, . . . , αa in the Equation

3.3).

3.3.3 Vanishing and Exploding Gradient Problem

However, this is one issue to be addressed. When the back propagation is processed in the

ODE solver, the gradient can explode, which is similar to the Recurrent Neural Network

(RNN). Intuitively, let A ∈ Rn×n be a square matrix, and its eigenvalue decomposition

is A = QΛQ−1, where Q ∈ Rn×n whose columns are eigenvectors of A, and Λ is the

diagonal matrix for eigenvalues of A and |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then,

Ak =
(
QΛQ−1

) (
QΛQ−1

)
. . .
(
QΛQ−1

)
= QΛkQ−1. (3.27)

When |λ1| > 1, lim
k→∞

∥∥Ak
∥∥→∞, which can lead to exploding gradient when the sequence

is overlong. It is also similar to the vanishing gradient. There are some methods to avoid

the gradient exploding or vanishing. In this work, we simply limit the length of the time

sequence of one shot, so that the gradients will not vanish or explode. Better methods can
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be implemented in the future.

Collecting all pieces in the previous sections together, we can build the multinodal

model with the diffusivity and transport time models, solve it to get solutions, then optimize

the diffusivity model for better predictions. All these things give the algorithm inside the

GTBURN package, which is introduced in the next section.

3.4 GTBURN Package

In this section, the framework of GTBURN, a Python package developed for burning

plasma dynamics models, is described. Although the GTBURN package can be used for

solving the one nodal model as the Appendix A, only the multinodal model is focused on

here.

The GTBURN package includes the following modules.

• Data: A module reads in the experiment data such as the DIII-D data from the OM-

FIT (One Modeling Framework for Integrated Tasks) [80], including two-dimensional

data ne, nz, Te, Ti (depending on ρ and t), and one-dimensional data a, R0, κ, BT ,

IP , Ptot, PΩ, PNBI, etc. (depending on t only). For ITER, the conditions of design

scenarios from the ITER design book [31] are used.

• Preprocessor: A module preprocesses data into time sequences. Since the origi-

nal signal can be sampled at different times, we need this module to interpolate all

signals at one consistent time list. Also, the volume-averaging is done for the two-

dimensional signals by the Equation 2.130 to get the nodal particle densities and

temperatures.

• Diffusivity model: A module implements the model for particle and thermal diffu-

sivities. The Equation 3.11 is built for each node with its corresponding parameters.

The shot conditions are combined into input vectors, and the diffusivities are given
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from the model as output vectors. Several undetermined parameters are contained in

this module, which are initialized properly from empirical formulas.

• Transport time model: A module computes the particle and energy transport times

as the Equation 3.19. The particle and thermal diffusivities from the diffusivity model

are used as inputs, and the internodal transport times are given out from this module.

• Reactor: A module simulates the tokamak by the multinodal burning plasma dy-

namics model. The particle and energy sources and sinks are computed from the

experiment data. The internodal transport times are utilized for building the trans-

port terms. Then, these terms are assembled together into one dynamical system and

are ready to be solved by an ordinary differential equation (ODE) solver.

• Dynamical system solver: A module solves the dynamical system from the reactor.

Solutions of this solver are the estimated particle densities and temperatures. This

solver is designed to be differentiable, which means the back propagation algorithm

is allowed for computing gradients through it.

• Optimizer: A module calculates the mean square error (MSE) between the estimated

particle densities and temperatures and experiment ones. The back propagation al-

gorithm is used to allow the gradient of MSE to flow back to the diffusivity model,

where parameters are updated with the gradient descent algorithm.

The workflow chart for GTBURN is shown in the Figure 3.1, where cylinders are repre-

sented dataset, rectangles are for modules, solid lines are for forward flows to solve the

problem, and blue dash lines are for the back propagation to optimize the parameters in the

diffusivity model. Python packages including NumPy [81], SciPy [82], Matplotlib

[83], PyTorch [79], and torchdiffeq [78] are used. In GTBURN, plasma data from

datasets are preprocessed in the preprocessor first, then inputted into the parametric diffu-

sivity model to get particle and thermal diffusivities. Those diffusivities are then inputted
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into the transport time model to get particle and energy transport times between different

nodes. All particle and energy source and sink terms are inputted into the multinodal model,

which is then solved by the dynamical system solver to obtain simulated nodal densities

and temperatures. The optimizer takes both estimations and measurements to optimize pa-

rameters in the diffusivity model. Once the diffusivity model is optimized based on the

experiment data, the whole multinodal model is used to predict results for new shots.

Multi-Nodal 
Model

Back 
Propagation

Back 
Propagation

Data 
BT0, IP, AMINOR, R0,
KAPPA, PTOT, POH,

PNBI, etc.

Preprocessed 
Data

Particle & Energy 
Sources & Sinks

Measured Nodal  
Densities  

& TemperaturesPreprocessor

Transport TimesTransport  
Time  
Model

Multi-Nodal
Reactor

Simulated  
Nodal  

Densities  
& Temperatures

Dynamical
System  
Solver

OptimizerZIPFIT Data 
EDENSFIT (ne) 
ETEMPFIT (Te) 
ITEMPFIT (Ti)  
ZDENSFIT (nz) 

Diffusivities

Back 
Propagation

Parametric 
Diffusivity

Model

Back 
Propagation

Figure 3.1: Workflow chart for the GTBURN, where solid lines are for the forward flow to
solve the problem and dash lines are for back propagation to optimize the parameters in the
diffusivity model.

3.5 Summary

This chapter proposes several computational methods for the multinodal burning plasma

model. The main question answered in this chapter is how to obtain the internodal transport

times. Firstly, previous methods based on global energy confinement times and experiment

measurements are reviewed, and their limitations are discussed. Then, one novel method

based on machine learning is proposed, where the parametric diffusivity model is initialized
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by scaling laws and optimized using experimental data. Next, the relevant machine learn-

ing algorithms are explained, including back propagation and gradient descent. Finally,

several modules in the GTBURN package are introduced for simulating plasmas with the

multinodal model. In the following chapters, this package is used for DIII-D deuterium

plasmas and ITER deuterium-tritium plasmas.
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CHAPTER 4

MULTINODAL MODEL SIMULATIONS FOR DIII-D PLASMAS

In order to validate the proposed multinodal burning plasma dynamics model, it is crucial

to apply the model for DIII-D non-fusion plasmas. In this chapter, the multinodal model is

simplified to a three-nodal model and then simulated for DIII-D shots. Several necessary

assumptions are made for the model’s application to deuterium plasmas. The particle and

energy balance equations are presented with the corresponding diffusivities and transport

times. Experiment data and simulation settings are also explained. The data are split into

training and testing datasets, where the diffusivity model is trained on the training dataset

and then evaluated on the testing dataset. Finally, the simulation results are presented and

analyzed for testing shots, and the strengths and weaknesses of the multinodal model for

DIII-D plasmas are discussed at the end of this chapter.

4.1 Assumptions for Modeling DIII-D Plasmas

In DIII-D experiments, deuterium plasmas are used. Due to a lower cross section and

a higher energy threshold, the deuterium-deuterium (D-D) fusion reaction is neglected.

Therefore, the multinodal model can be simplified to a non-reaction one. Several assump-

tions utilized to simplify the multinodal model for the DIII-D deuterium plasma are as

follows.

1. Only the core, edge, and scrape-off layer (SOL) regions are modeled as nodes. The

divertor, private flux region, plenum, and other regions are neglected.

2. Only the deuteron, electron, and one effective impurity particle (carbon) are consid-

ered. The triton, alpha particle, and other impurities are neglected.

3. Only nnode
D , T node

D , and T node
e in the corresponding nodes are solved in the dynamics
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model. The nnode
z is obtained from the experimental measurements, and the nnode

e is

gotten from the charge neutrality.

4. The deuterium-deuterium (D-D), deuterium-tritium (D-T), and other fusion reactions

are neglected.

5. Only atomic processes of ionization, recombination, charge exchange, and elastic

scattering of deuterons are considered. Other atomic processes and all molecular

processes are neglected.

6. The ohmic heating, neutral beam injection (NBI), electron cyclotron heating (ECH),

ion cyclotron heating (ICH), and gas puffing deposition profiles are predetermined

for all shots.

7. In the electron cyclotron radiation (ECR) formula (i.e., the Equation 2.88) , ITER

coefficients αn = 0.5, αT = 8.0, βT = 5.0, and r = 0.8 are used.

8. The ion orbit loss (IOL) term is only included for the edge deuterons. Besides, the

IOL timescales are approximated by the corresponding transport times from the edge

to the SOL.

Most assumptions mentioned above allow us to take advantage of the DIII-D deuterium

plasma data from OMFIT (One Modeling Framework for Integrated Tasks) [80] conve-

niently. However, some assumptions will be removed when the ITER plasma is studied in

the next chapter.

4.2 Particle and Energy Balance Equations

The multinodal plasma dynamics model for DIII-D plasmas has two groups of equations,

including particle balance equations and energy balance equations.
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Particle balance equations for deuterons in the core, edge, and SOL nodes are

dncore
D

dt
= Score

D,ext + Score
D,tran, (4.1)

dnedge
D

dt
= Sedge

D,ext + Sedge
D,tran + Sedge

D,IOL, (4.2)

dnsol
D

dt
= Ssol

D,ion + Ssol
D,rec + Ssol

D,tran + Ssol
D,IOL. (4.3)

The electron densities are solved from the charge neutrality equations:

ncore
e = zDn

core
D + zzn

core
z , (4.4)

nedge
e = zDn

edge
D + zzn

edge
z , (4.5)

nsol
e = zDn

sol
D + zzn

sol
z , (4.6)

where atomic numbers are zD = 1 and zz = 6. The particle sources and sinks on the

right-hand sides of the particle balance equations are presented as follows.

1. The nodal external source term is Snode
D,ext = Snode

D,NBI + Snode
D,GAS.

2. The nodal ionization term is Ssol
D,ion = nsol

D0n
sol
e 〈σv〉sol

D,ion, and the nodal recombination

term is Ssol
D,rec = −nsol

D n
sol
e 〈σv〉sol

D,rec.

3. The nodal transport terms are

Score
D,tran = −n

core
D − nedge

D

τ core→edge
P,D

, (4.7)

Sedge
D,tran =

Vcore

Vedge

ncore
D − nedge

D

τ core→edge
P,D

− nedge
D

τ edge→sol
P,D

, (4.8)

Ssol
D,tran =

Vedge

Vsol

nedge
D

τ edge→sol
P,D

− nsol
D

τ sol→div
P,D

, (4.9)

where τ core→edge
P,D is the particle transport time from the core node to the edge node,

τ edge→sol
P,D is the particle transport time from the edge node to the SOL node, and
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τ sol→div
P,σ is the particle confinement time from the SOL node to the divertor and

plenum. The formulas of particle transport times are

τ core→edge
P,σ =

r2
core

2rcore

∆rcore-edge

Dcore
σ

, (4.10)

τ edge→sol
P,σ =

r2
edge − r2

core

2redge

∆redge-sol

Dedge
σ

, (4.11)

τ sol→div
P,σ =

r2
sol − r2

edge

2rsol

∆rsol-div

Dsol
σ

, (4.12)

where Dcore
σ , Dedge

σ , and Dsol
σ are particle diffusivities.

4. The IOL terms are

Sedge
D,IOL = −

F edge
D,orb

τ edge
P,D,IOL

nedge
D , Ssol

D,IOL = −Vedge

Vsol
Sedge

D,IOL, (4.13)

where the particle loss fraction F edge
D,orb is evaluated at the center of the edge node

ρIOL
edge = (ρedge+ρcore)/2, and the particle loss timescale is approximated by the particle

transport time: τ edge
P,D,IOL ≈ τ edge→sol

P,D .

Energy balance equations for deuterons and electrons in the core, edge, and SOL nodes

are

dU core
D

dt
= P core

D,aux +Qcore
D + P core

D,tran, (4.14)

dU edge
D

dt
= P edge

D,aux +Qedge
D + P edge

D,tran + P edge
D,IOL, (4.15)

dU sol
D

dt
= P sol

D,at +Qsol
D + P sol

D,tran + P sol
D,IOL, (4.16)

dU core
e

dt
= P core

Ω + P core
e,aux − P core

R +Qcore
e + P core

e,tran, (4.17)

dU edge
e

dt
= P edge

Ω + P edge
e,aux − P core

R +Qedge
e + P edge

e,tran, (4.18)

dU sol
e

dt
= P sol

e,ion + P sol
e,rec − P sol

R +Qsol
e + P sol

e,tran, (4.19)
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where for σ ∈ {D, e } and node ∈ { core, edge, sol }, the nodal energy isU node
σ =

3

2
nnode
σ T node

σ .

The energy sources and sinks on the right-hand sides are presented as follows.

1. The nodal ohmic heating term is approximated by the global averaged one: P node
Ω ≈

PΩ.

2. The nodal auxiliary heating term is P node
σ,aux = P node

σ,NBI + P node
σ,RF.

3. The nodal Coulomb collisional energy transfer terms are

Qnode
D = Qnode

De =

nnode
D nnode

e (qDqe)
2me ln Λ

(
1− T node

D

T node
e

)
2πε20 (2πmeT node

e )1/2mD

[
1 +

4
√
π

3

(
3meT

node
D

2mDT node
e

)3/2
] , (4.20)

and Qnode
e = −Qnode

De .

4. The nodal radiation term for the core and edge nodes is P node
R = P node

ECR +P node
brem +P node

imp ,

where radiation terms on the right-hand side are calculated by the Equation 2.94,

2.104, and 2.106 respectively. The radiation term for the SOL node is P sol
R = P sol

brem +

P sol
imp.

5. The nodal charge exchange and elastic scattering term is

P sol
D,at = −3

2

(
T sol

D − T sol
D0,c

)
nsol

D n
sol
D0,c

(
〈σv〉sol

D,cx + 〈σv〉sol
D,el

)
, (4.21)

where 〈σv〉sol
D,cx and 〈σv〉sol

D,el are charge exchange and elastic scattering reaction rate

coefficients, nsol
D0,c ≈ RNn

sol
D0, and T sol

D0,c ≈ 1 eV.

6. The nodal ionization term is P sol
e,ion = −ED,ionn

sol
D0n

sol
e 〈σv〉sol

D,ion, where the 〈σv〉sol
D,ion

is the ionization reaction rate coefficient, the ED,ion is the ionization energy, and

nsol
D0 = 1015 m−3. The nodal recombination term is P sol

e,rec = ED,recn
sol
D n

sol
e 〈σv〉sol

D,rec,
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where the 〈σv〉sol
D,rec is the recombination reaction rate coefficient and the ED,rec is the

recombination energy.

7. The nodal transport terms are

P core
σ,tran = −U

core
σ − U edge

σ

τ core→edge
E,σ

, (4.22)

P edge
σ,tran =

Vcore

Vedge

U core
σ − U edge

σ

τ core→edge
E,σ

− U edge
σ

τ edge→sol
E,σ

, (4.23)

P sol
σ,tran =

Vedge

Vsol

U edge
σ

τ edge→sol
E,σ

− U sol
σ

τ sol→div
E,σ

, (4.24)

where τ core→edge
E,σ is the energy transport time from the core node and to the edge node,

τ edge→sol
E,σ is the energy transport time from the edge node to the SOL node, and the

τ sol→div
E,σ is the energy confinement time for the SOL node. The formulas of energy

transport times are

τ core→edge
E,σ =

r2
core

2rcore

∆rcore-edge

χcore
σ

, (4.25)

τ edge→sol
E,σ =

r2
edge − r2

core

2redge

∆redge-sol

χedge
σ

, (4.26)

τ sol→div
E,σ =

r2
sol − r2

edge

2rsol

∆rsol-div

χsol
σ

, (4.27)

where χcore
σ , χedge

σ and χsol
σ are thermal diffusivities.

8. The IOL terms are

P edge
D,IOL = −

Eedge
D,orb

τ edge
E,D,IOL

U edge
D , P sol

D,IOL = −Vedge

Vsol
P edge

D,IOL, (4.28)

where Eedge
D,orb is the energy loss fraction evaluated at the edge center, and the energy

loss timescale is approximated by the energy transport time: τ edge
E,D,IOL ≈ τ edge→sol

E,D .
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4.3 Diffusivity and Transport Time Models

In this section, the diffusivity and internodal transport time formulas are simplified for the

DIII-D plasma based on the assumptions in the Section 4.1. Only particle diffusivities

for deuterons and thermal diffusivities for deuterons and electrons in the core, edge, and

SOL nodes are considered. Other diffusivities are neglected in the multinodal model for

DIII-D. Besides, only particle transport times for deuterons and energy transport times for

deuterons and electrons are modeled.

Let the diffusivity vectors at the core-edge, edge-SOL, and SOL-plenum/divertor sur-

faces be

χcore =

[
Dcore

D χcore
D χcore

e

]T

, (4.29)

χedge =

[
Dedge

D χedge
D χedge

e

]T

, (4.30)

χsol =

[
Dsol

D χsol
D χsol

e

]T

, (4.31)

where the unit of diffusivities is 1 m2/s. The parametric diffusivity models are

χcore = exp (bcore + Wcore ln xcore) , (4.32)

χedge = exp (bedge + Wedge ln xedge) , (4.33)

χsol = exp (bsol + Wsol ln xsol) , (4.34)

where Wcore, Wedge, Wsol, bcore, bedge, and bsol are model parameters. The input vectors of

the diffusivity models are
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xcore =

[
BT

1 T

ncore
e

1019 m−3

T core
e

1 keV

|∇Te|core

1 keV/m
qcore κcore

M

1 amu

R

1 m

a

1 m

]
, (4.35)

xedge =

[
BT

1 T

nedge
e

1019 m−3

T edge
e

1 keV

|∇Te|edge

1 keV/m
qedge κedge

M

1 amu

R

1 m

a

1 m

]
, (4.36)

xsol =

[
BT

1 T

nsol
e

1019 m−3

T sol
e

1 keV

|∇Te|sol

1 keV/m
qsol κsol

M

1 amu

R

1 m

a

1 m

]
, (4.37)

where qcore ≈ qedge ≈ qsol ≈ q95 (the safety factor at the 95% flux surface), κnode ≈ κ (the

global elongation), and

|∇Te|core ≈
∣∣T core
e − T edge

e

∣∣
∆rcore-edge

, |∇Te|edge ≈
∣∣T edge
e

∣∣
∆redge-sol

, |∇Te|sol ≈
∣∣T sol
e

∣∣
∆rsol-div

. (4.38)

Here the core and edge gradients only depend on the core and edge electron temperatures,

so that the core and edge nodes can be decoupled from the SOL node for convenience

in model training. Also, when the burning plasma physics in the core and edge nodes is

focused on, the SOL can be removed from the multinodal model. This simplification will

be helpful when multinodal model is applied for ITER.

The internodal transport times are built based on the nodal diffusivities. The core trans-

port time vector containing internodal transport times from the core to edge is

τcore =


τ core→edge
P,D

τ core→edge
E,D

τ core→edge
E,e

 =



r2
core

2rcore

∆rcore-edge

Dcore
D

r2
core

2rcore

∆rcore-edge

χcore
D

r2
core

2rcore

∆rcore-edge

χcore
e

 =
r2

core

2rcore
∆rcore-edge � χcore, (4.39)

where � is the componentwise division. The edge transport time vector for transport times
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from the edge to SOL is

τedge =


τ edge→sol
P,D

τ edge→sol
E,D

τ edge→sol
E,e

 =



r2
edge − r2

core

2redge

∆redge-sol

Dedge
D

r2
edge − r2

core

2redge

∆redge-sol

χedge
D

r2
edge − r2

core

2redge

∆redge-sol

χedge
e


=
r2

edge − r2
core

2redge
∆redge-sol � χedge. (4.40)

And the SOL transport time vector for transport times from the SOL to divertor and plenum

(or the effective confinement times of SOL to the outside of plasma) is

τsol =


τ sol→div
P,D

τ sol→div
E,D

τ sol→div
E,e

 =



r2
sol − r2

edge

2rsol

∆rsol-div

Dsol
D

r2
sol − r2

edge

2rsol

∆rsol-div

χsol
D

r2
sol − r2

edge

2rsol

∆rsol-div

χsol
e

 =
r2

sol − r2
edge

2rsol
∆rsol-div � χsol. (4.41)

All these formulas have been built in the GTBURN package.

4.4 Experiment Data and Simulation Settings

After the multinodal model and the parametric diffusivity formula are formalized, the ex-

periment data used for the DIII-D plasma simulations can be presented. The shots used in

this work are listed in the Table 4.1 with the signals in Table 4.2. These data selections fol-

low Hill et al. [10]. The selected shots are limited to the ELMing non-RMP (non-resonant

magnetic perturbation) H-mode with the standard magnetic field configuration. Basic de-

scriptions of these shots, including the ohmic heating power, electron cyclotron heating

(ECH) power, ion cyclotron heating (ICH) power, neutral beam injection (NBI) power, gas

puffing, magnetic field at the magnetic axis, electron density and temperature, are listed in

the Table 4.1. Besides, several signals for these shots are used, including geometric param-

eters (e.g., minor radius, major radius, plasma volume, etc.), electromagnetic parameters

(e.g., plasma current, toroidal field, etc.), powers (e.g., ohmic heating power, NBI power,
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etc.). The particle density and temperature profiles are collected from the ZIPFIT [84, 80],

which fits profiles using EFIT data and Thomson data. The profiles are integrated to get

nodal densities and temperatures.

Table 4.1: Experiment shots [10] from DIII-D used in this study, where densities and tem-
peratures are volume-averaged over the whole plasma.

Shot PΩ/MW PECH/MW PICH/MW PNBI/MW GAS/(Torr · L/s) |B0| /T ne/10
19 m−3 Te/keV

131190* -0.18-0.57 0.00-2.44 0.00 2.01-9.21 11.29-162.33 1.72-1.92 1.25-4.65 0.50-2.80
131191 -0.11-0.26 0.00-2.38 0.00 2.57-9.20 14.11-87.21 1.73-1.87 1.08-3.89 0.46-3.24
131195 0.07-0.43 0.00-2.23 0.00 2.61-9.65 7.99-76.45 1.77-1.86 1.14-3.27 0.89-2.29
131196 0.00-0.78 0.00-1.27 0.00 2.02-9.79 11.35-84.68 1.76-1.87 1.14-3.63 0.49-2.63
134350 -0.22-0.82 0.00-3.15 0.00 2.39-9.27 0.00-90.14 1.73-1.93 1.11-6.60 0.45-2.96
135837 -0.06-0.58 0.00 0.00 0.00-14.44 0.05-46.83 1.73-2.04 1.22-4.85 0.35-1.65
135843 0.16-1.43 0.00 0.00 0.06-7.12 0.05-115.68 1.82-2.13 0.65-6.55 0.29-1.80
140417 0.02-0.89 0.00 0.00 0.61-4.37 0.00-70.65 1.90-2.02 1.82-5.18 0.48-1.44
140418* -0.07-0.85 0.00 0.00 0.61-4.13 0.00-64.55 1.87-2.05 1.70-5.00 0.43-1.30
140419 -0.12-0.82 0.00 0.00 0.61-4.12 0.00-39.96 1.92-2.05 1.43-5.26 0.48-1.49
140420* 0.10-0.98 0.00-3.34 0.00 0.61-4.12 0.00-21.69 1.88-2.07 0.96-6.94 0.45-1.76
140421 -0.23-0.84 0.00-3.23 0.00 0.61-4.11 0.00-17.94 1.90-2.06 0.99-5.77 0.57-1.76
140422 -0.20-0.89 0.00 0.00 0.61-4.13 0.00-23.60 1.92-2.06 0.93-4.85 0.51-1.78
140423 -0.13-0.86 0.00 0.00 0.61-4.11 0.00-30.99 1.93-2.06 0.96-4.44 0.50-1.88
140424 -0.02-0.85 0.00 0.00 0.61-4.14 0.05-104.98 1.92-2.05 1.22-6.94 0.51-1.66
140425 0.05-0.84 0.00 0.00 0.61-4.14 0.02-112.07 1.90-2.06 1.19-7.73 0.42-1.49
140427* 0.09-0.96 0.00 0.00 0.61-4.15 0.02-109.97 1.93-2.05 1.94-7.15 0.42-1.19
140428 0.10-0.87 0.00 0.00 0.61-4.15 0.00-0.20 1.91-2.06 1.50-7.06 0.48-1.13
140429 0.16-0.84 0.00 0.00 0.61-4.15 0.00-6.46 1.92-2.05 1.09-6.82 0.46-1.24
140430 0.00-0.88 0.00 0.00-0.04 0.61-4.15 0.00-26.28 1.93-2.08 1.08-4.24 0.48-1.61
140431 -0.06-0.95 0.00 0.00-0.04 0.61-4.16 0.00-38.34 1.91-2.09 1.00-4.17 0.53-1.86
140432 -0.08-0.95 0.00 0.00 0.61-4.13 0.00-50.36 1.90-2.09 0.98-3.85 0.48-2.06
140440 0.12-1.03 0.00 0.00 0.61-4.14 0.03-108.87 1.95-2.09 1.47-7.43 0.49-1.29
140535* 0.18-0.69 0.00 0.00-0.03 0.63-4.48 0.07-118.15 1.92-2.10 1.13-2.11 0.23-1.29
140673 0.00-0.49 0.00-3.38 0.00-0.29 1.95-11.26 0.00-102.17 1.65-1.78 1.16-4.76 0.34-1.39

* Shots in the testing dataset.

In order to prevent over-fitting for a particular shot and also obtain a general multin-

odal to cover a wide range of shots, the selected shots in the Table 4.1 are divided into

two datasets: one training dataset including 20 shots, which are in the Table 4.1 without

stars, and another testing dataset including 5 shots, which are in the Table 4.1 with stars.

The training dataset is used to optimize the parametric diffusivity model, while the test-

ing dataset is used to evaluate the performances of the optimized model. In detail, the

computational experiment is done as follows:
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Table 4.2: DIII-D experimental signals from OMFIT [80] used in the multinodal model.

Name Units Tree Description

AMINOR m EFIT Minor radius
R0 m EFIT Major radius of magnetic axis

VOLUME m3 EFIT Plasma volume
KAPPA0 - EFIT Elongation at magnetic axis
TRITOP - EFIT Top triangularity
TRIBOT - EFIT Bottom triangularity

IP A N/A Plasma current measured with Rogowski loops
BT0 T EFIT Toroidal field at magnetic axis
LI - EFIT Internal inductance
Q0 - EFIT q at magnetic axis

Q95 - EFIT q at 95% flux surface

PTOT W EFIT Total input power, including NBI, Ohmic, ECH, and ICH
POH W EFIT Ohmic power
PNBI W EFIT Total Injected neutral beam power

ECHPWRC W N/A Total ECH power
ICHPWRC W N/A Total RF power

GASA CAL Torr · L/s NEUTRALS Calibrated gasflow measurements from the 5 gas valves (A-E)

EDENSFIT 1019 m−3 ZIPFIT01 Electron density
ETEMPFIT keV ZIPFIT01 Electron temperature
ITEMPFIT keV ZIPFIT01 Ion temperature
ZDENSFIT 1019 m−3 ZIPFIT01 Impurity density

• Training process: The dynamical system of the multinodal model is solved on the

training dataset by following the black arrows in the Figure 3.1. During this process,

the data are preprocessed into time sequences. Then the nodal diffusivities are gotten

and inputted into the internodal transport time model, where the parameters from

the χH98 model [17] are used for initializing the diffusivity model. Next, the nodal

source terms with the transport times are integrated into a multinodal model. This

model is solved in a dynamical system solver to get the simulated nodal densities

n̂node
σ and temperatures T̂ node

σ . After it, the mean squared error (MSE) is computed as

MSE =
1

ntny

∑
ti

‖yti − ŷti‖2
2 , (4.42)
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where for each time step, the simulation solution from the multinodal model is

ŷti =

[
n̂node

D

1019 m−3

T̂ node
D

1 keV

T̂ node
e

1 keV

]
node∈{ core,edge,sol }

, (4.43)

and the measurement from the DIII-D experiment is

yti =

[
nnode

D

1019 m−3

T node
D

1 keV

T node
e

1 keV

]
node∈{ core,edge,sol }

. (4.44)

Once the MSE is calculated, the gradients of error flow back by following the blue

arrows in the Figure 3.1 to the parametric diffusivity model. The parameters in the

diffusivity model are updated by using the gradient descent algorithm. The shots in

the training dataset are iterated through this process one by one. Such one iteration

all shots is called an epoch. Multiple epochs are done until the convergence, where

the MSE is small enough.

• Testing process: Once the parameters in the nodal diffusivity model are converged to

a local optimum, the dynamical system of the multinodal model is solved on the test-

ing dataset. Then, the solutions are compared with the experimental measurements.

Also, the errors from both the original diffusivity model and the optimized model are

compared to analyze the effectiveness of the whole computational method.

There are several hyperparameters used to control the training and testing processes.

Those hyperparameters in the solver and optimizer are listed in the Table 4.3. Unlike

the parameters, which can be learned (or solved) from the data, the hyperparameters are

predetermined by researchers.

The absolute and relative tolerances are used in the in the ordinary differential equation

(ODE) solver [78, 85], where the total tolerance is computed by

atol + rtol * norm of the current state.

The learning rate and the regularization rate (weight decay) in the optimizer are set 0.01
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Table 4.3: Hyperparameters in the solver and optimizer.

Hyper-parameter Number

Solver absolute tolerance 10−5

Solver relative tolerance 10−5

Optimizer learning rate 0.01
Optimizer regularization rate 10−5

Training time step 0.2 s
Testing time step 0.02 s
Moving average window size 5
Training epoch number 24

and 10−5 respectively. A higher learning rate can increase the convergence speed but may

result in a worse local minimum (larger MSE). For shortening the running time of the

optimization process and stabilizing the convergence, the training time step is selected as

0.2 s, while the testing time step is 0.02 s for the better evaluations. Also, to smooth the

oscillations in experimental measurements, the simple moving average is implemented with

a window size of 5. Since the core and edge nodes can be decoupled from the multinodal

model, the core and edge nodes are trained firstly with 12 epochs. Then the SOL node is

trained for another 12 epochs to get an optimized multinodal model. This method can help

the model converge and stabilize.

One important issue during the training process is the stiffness, where the multinodal

model can be stiff for some shots. The multinodal model can be viewed as a system of

ordinary differential equations (ODEs). A stiff equation [86] means a differential equation

becomes numerically unstable for a normal step size, since some terms in the equation

change too rapidly. The stiffness of a system can be evaluated the stiffness ratio. For a

linear constant coefficient system y′ = Ay + f(t), where y, f ∈ Rn and A ∈ Rn×n, let

the eigenvalues of A be λi ∈ C, i = 1, . . . , n. Then sort the eigenvalues by
∣∣Re(λ)

∣∣ ≥
|Re(λi)| ≥ |Re(λ)|. The stiffness ratio is defined as

∣∣Re(λ)
∣∣ / |Re(λ)|. Since usually a

multinodal model is a nonlinear system, we can linearize the multinodal model at one point

and then access its stiffness ratio. This research can be done in future. Also, since an
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adaptive-step ODE solver is used in this research, the solver will automatically cut the step

size when rapid changes are seen in the source terms. This can lead to an extremely small

time step and a long-time solving procedure. However, the fixed-step ODE solver cannot

be applied, since it can lead to a divergent solution. Hence, some specific stiff ODE solvers

may be applied for solving the multinodal model in the future.

4.5 Computation Results

After the parametric diffusivity model in the multinodal model is trained on the training

shots, the simulation results of testing shots are presented in this section. The parameters

in the optimized diffusivity model are listed in the Table 4.4 for the core, edge, and scrape-

off layer (SOL) nodes. The particle diffusivities of deuterons and the thermal diffusivities

of deuterons and electrons are included. We also listed the parameters in the original χH98

[17] model in the Equation 2.52 for the comparison, which are used as initial parameters in

the diffusivity model. The performances of the optimized parametric diffusivity model for

testing shots will be analyzed in the following subsections.

Table 4.4: Parameters in the nodal particle and thermal diffusivities for the DIII-D plasma.

αH αB αn αT α∇T αq ακ αM αR αa

DH98 0.0738 -3.5000 0.9000 1.0000 1.2000 3.0000 -2.9000 -0.6000 0.7000 -0.2000
χH98 0.1230 -3.5000 0.9000 1.0000 1.2000 3.0000 -2.9000 -0.6000 0.7000 -0.2000

Dcore
D 0.0401 -4.2589 1.0426 -0.8033 -0.4398 2.5829 -3.2690 -1.2093 0.0965 0.2555

χcore
D 0.0827 -3.5729 -0.1225 3.2578 1.1600 2.3382 -2.7806 -1.0380 0.1285 0.3878
χcore
e 0.0784 -3.9093 0.6392 2.3133 1.6147 2.4419 -3.3836 -1.0507 0.2298 0.2593

Dedge
D 0.0370 -4.2804 3.2465 0.6073 -0.3878 2.4128 -3.1978 -1.2910 -0.0161 0.2778

χedge
D 0.1129 -3.5983 0.2251 1.4056 1.1128 2.9299 -3.0591 -0.6859 0.6195 -0.0464
χedge
e 0.1270 -3.3745 -0.9212 1.4332 1.4935 2.9131 -3.0735 -0.5680 0.7330 -0.1191

Dsol
D 0.0602 -3.6842 1.5414 0.2547 0.8641 2.7684 -3.1355 -0.8030 0.4916 0.0138

χsol
D 0.1267 -3.4738 0.6007 1.2647 1.2567 3.0425 -2.8686 -0.5700 0.7319 -0.2312
χsol
e 0.1196 -3.5343 0.7191 1.2305 1.2152 2.9764 -2.9216 -0.6284 0.6721 -0.1760

To evaluate the overall performance of the optimized model, the mean squared error
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(MSE) is used. Shots in the testing dataset are simulated with the optimized model, in-

cluding the shot 131190, 140418, 140420, 140427, and 140535. The performances of the

original χH98 diffusivity model [15, 17, 25] and the optimized parametric diffusivity model

are shown in the Table 4.5. The average MSE of testing shots is also computed. The rel-

ative decreases of the errors are over 96% after the optimization, and the average MSE on

the testing dataset decreases over 98%. Since the diffusivity model was only trained on

the training dataset rather than on the testing dataset, these decreases in errors prove the

effectiveness of the computational method. The multinodal model with the optimized dif-

fusivity formula can be generalized for predicting new shots that the multinodal model has

never seen before.

Table 4.5: Mean squared errors for shots in the testing set.

Mean squared error (MSE)
Shot χH98 model Optimized model Relative decrease of MSE

131190 11.5861 0.4075 96.48%
140418 56.6859 0.3170 99.44%
140420 70.3650 0.5876 99.16%
140427 29.7967 0.7105 97.62%
140535 88.4208 0.7348 99.17%

Average 51.3709 0.5515 98.93%

In order to obtain insights into the strengths and shortcomings of the multinodal model,

shots in the testing dataset are analyzed in the following subsections. Several necessary

signals changing with time are presented first. Then the solutions of the multinodal model

over the core, edge, and SOL nodes are given. Also, the diffusivities and transport times

are displayed. Finally, a summary of all results is given at the end.

4.5.1 Shot 131190

The first shot in the testing dataset is the shot 131190. Some signals, including the plasma

current, toroidal magnetic field, safety factor, gas puffing rate, ohmic heating power, neutral

78



beam injection (NBI) power, electron cyclotron heating (ECH) power, and ion cyclotron

heating (ICH) power, are presented in the Figure 4.1. In this shot, particles are puffed to

the plasma edge at the beginning, and then the plasma is heated by ohmic heating. The NBI

is turned on for the whole shot with a higher power around 3-5 s. The ECH power is used

to heat the electrons during 2.5-4.5 s, while the ICH power is zero in this shot.
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Figure 4.1: Signals of the shot 131190 from the DIII-D tokamak, where the plasma current,
toroidal magnetic field, safety factor, gas puffing, ohmic heating, neutral beam injection
(NBI), electron cyclotron heating (ECH), and ion cyclotron heating (ICH) are included.

To directly compare the original diffusivity model and optimized diffusivity model, we

plot the densities and temperatures of the deuterons and electrons in the core, edge, and

SOL nodes in the Figure 4.2, 4.4, and 4.6 respectively. The left column is the solution from

the original model in each figure, and the right column is from the optimized model. The

densities are presented in the top row, and the temperatures are in the bottom row. The

n̂node
σ and T̂ node

σ are from the simulations of the multinodal model, and nnode
σ and T node

σ are

from the experimental measurements (ZIPFIT). The multinodal model performances over

the core, edge and SOL nodes are analyzed one by one next.
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Core Node

The core particle densities and temperatures of the deuterons and electrons for the shot

131190 are shown in the Figure 4.2, with the diffusivities and internodal transport times

from the core to edge in the Figure 4.3. The overall performance of the optimized diffusiv-

ity is better than the original diffusivity model. After optimizations, the particle densities

increase at the beginning of the shot when the gas puffing is on and then with the NBI.

However, a small jump of the electron temperature is found at the beginning of the shot,

probably due to an overestimated NBI power. When the ECH is turned on round 2.5 s, the

increases of the core temperatures are lower than the experiment measured ones. An ampli-

fication factor can be multiplied by the ECH term in the electron energy balance equation.

This factor can also be learned from the data automatically. Besides, the increases in ther-

mal diffusivities of deuterons and electrons are observed around 2.5 s, which will also lead

to lower temperatures. At the end of the shot, the densities and temperatures decrease as

expected.

Edge Node

The edge particle densities and temperatures of the deuterons and electrons for the shot

131190 are shown in the Figure 4.4, with the diffusivities and transport times from the edge

to SOL in the Figure 4.5. Again, the optimized diffusivity model has a better performance

than the original model in the edge node. Jumps of the particle densities are observed at the

beginning of the shot since most of the gas puffing is assumed to be deposited at the edge

node. The gas puffing coefficient can be adjusted with experiment conditions or a gas puff-

ing code in the future. The experiment data have more oscillations due to the measurement

issues, but the multinodal model solutions are much smoother. The deuteron and electron

particle densities can basically track the experiment data. However, the temperatures are

lower than in the experiment due to higher thermal diffusivities. More heating power de-

positions to the edge node with lower thermal diffusivities can give higher temperatures
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(b) Optimized diffusivity model

Figure 4.2: Simulation results of the shot 131190 for the core node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.3: Diffusivities and transport times from the core to the edge for the shot 131190
with the optimized diffusivity model.

during the middle of the shot. The multinodal model can track the decrease in densities and

temperatures at the end of the shot.
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Figure 4.4: Simulation results of the shot 131190 for the edge node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.5: Diffusivities and transport times from the edge to the SOL for the shot 131190
with the optimized diffusivity model.

SOL Node

The SOL particle densities and temperatures of the deuterons and electrons for the shot

131190 are shown in the Figure 4.6, with the diffusivities and transport times in the Figure

4.7. Similar to the core and edge nodes, the performance of the multinodal model becomes

better after the optimization. Although the particle densities can track the experimental
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measurement tendencies, the deuteron temperature is lower than the experiment data, and

the electron temperature is higher than the measurement. A lower deuteron thermal diffu-

sivity can help mitigate this deviation. However, the problem with the electron temperature

may be caused by some ignored processes in the SOL, such as more atomic and molecular

reactions. Also, neutral particle densities in the SOL should be adjusted, so the number

of electrons generated from the ionization process can be properer. Therefore, a neutral

and charged particle code [56, 57, 61] for the SOL, divertor, plenum, and other necessary

regions is required to be connected with the multinodal model code for better performance

in the SOL region.
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Figure 4.6: Simulation results of the shot 131190 for the SOL node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.

4.5.2 Shot 140418

The second shot in the testing dataset is the shot 140418, and its signals are shown in the

Figure 4.8. The gas particles are puffed to the plasma edge at the beginning of the shot.

Then the neutral particles are injected from the beginning around 1.2 s to the end. The ECH
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Figure 4.7: Diffusivities and transport times from the SOL to the divertor for the shot
131190 with the optimized diffusivity model.

and ICH are zeros for this shot. This shot is a good example of analyzing the response of

the multinodal model with only the NBI power, since there is only one primary energy

source during the most time of the shot.
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Figure 4.8: Signals of the shot 140418 from the DIII-D tokamak, where the plasma current,
toroidal magnetic field, safety factor, gas puffing, ohmic heating, neutral beam injection
(NBI), electron cyclotron heating (ECH), and ion cyclotron heating (ICH) are included.
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Core Node

The core particle densities and temperatures of the deuterons and electrons for the shot

140418 are shown in the Figure 4.9, with the diffusivities and transport times in the Figure

4.10. The performance of the multinodal model becomes much better after the optimiza-

tion. The particle densities increase as expected with the NBI, although the increasing

speed is lower than the measurement. However, bumps are observed at the beginning of

the core temperatures, which shows an overestimation of the ohmic heating. Also, a larger

thermal diffusivity of core electrons can help mitigate this bump. Similar to the particle

densities, the core temperatures can also increase with the NBI power, which shows the

thermal diffusivities are appropriately determined. The overall performance of the multin-

odal model is good in the core node with only the NBI power.
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Figure 4.9: Simulation results of the shot 140418 for the core node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.10: Diffusivities and transport times from the core to the edge for the shot 140418
with the optimized diffusivity model.

Edge Node

The edge particle densities and temperatures of the deuterons and electrons for the shot

140418 are shown in the Figure 4.11, with the diffusivities and transport times in the Fig-

ure 4.12. A jump in the particle densities is noticed at the beginning, which is from the

overestimation of the gas puffing at the edge node. However, when NBI is turned on, a

decrease in particle density is found. This may be because of the over-long transport time

from the core to the edge or the over-short transport and the ion orbit loss from the edge to

the SOL. The edge temperatures can track the tendencies of the NBI. However, the deuteron

thermal diffusivity should be lower, while the electron thermal diffusivity should be higher.

SOL Node

The SOL particle densities and temperatures of the deuterons and electrons for the shot

140418 are shown in the Figure 4.13, with the diffusivities and transport times in the Figure

4.14. The particle densities of SOL deuterons and electrons jump at the beginning of the

shot, which is from the gas puffing at the edge node then transported to the SOL, and can be

flattened by increasing the transport time from the edge to the SOL. The SOL temperatures

follow the increases from the NBI, although the thermal diffusivity of electrons should be

much larger than the current solution.

86



2 4
0

1

2

3

n
[m
−

3
]

×1019 Shot 140418 Edge

n̂edge
D

nedge
D

n̂edge
e

nedge
e

2 4

t [s]

0

5

10

15

T
[k

eV
]

T̂ edge
D

T edge
D

T̂ edge
e

T edge
e

(a) Original diffusivity model

2 4

1

2

3

n
[m
−

3
]

×1019 Shot 140418 Edge

n̂edge
D

nedge
D

n̂edge
e

nedge
e

2 4

t [s]

0.2

0.4

T
[k

eV
]

T̂ edge
D

T edge
D

T̂ edge
e

T edge
e

(b) Optimized diffusivity model

Figure 4.11: Simulation results of the shot 140418 for the edge node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.12: Diffusivities and transport times from the edge to the SOL for the shot 140418
with the optimized diffusivity model.

4.5.3 Shot 140420

The third testing shot is the shot 140420, where the signals are shown in the Figure 4.15.

This shot has gas puffing at the beginning of the shot. Then NBI is turned on at the 1.2 s.

The ECH starts at the 2 s and ends at the 5 s, with a slight decrease around the 3.1 s. The

ICH is zero during the shot. This shot is a good example for analyzing the multinodal
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Figure 4.13: Simulation results of the shot 140418 for the SOL node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.14: Diffusivities and transport times from the SOL to the divertor for the shot
140418 with the optimized diffusivity model.

model performance with two kinds of power sources, i.e., NBI and ECH.

Core Node

The core particle densities and temperatures of the deuterons and electrons for the shot

140420 are shown in the Figure 4.16, with the diffusivities and transport times in the Figure
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Figure 4.15: Signals of the shot 140420 from the DIII-D tokamak, where the plasma cur-
rent, toroidal magnetic field, safety factor, gas puffing, ohmic heating, neutral beam injec-
tion (NBI), electron cyclotron heating (ECH), and ion cyclotron heating (ICH) are included.

4.17. We can see a considerable improvement in the overall performance in the simulation

results of core densities and temperatures. The deuteron and electron densities increase as

expected when the gas puffing and NBI are turned on. The core temperatures also increase

with the NBI and ECH during the shot, where the deuteron temperature has a more accurate

result than the electron temperature. These results prove that the multinodal model can

correctly handle the NBI and ECH powers in the core node.

Edge Node

The edge particle densities and temperatures of the deuterons and electrons for the shot

140420 are shown in the Figure 4.18, with the diffusivities and transport times in the Figure

4.19. Similar to previous shots, the particle densities are higher than the measurement at the

beginning while lower at the middle and end. The higher particle densities at the beginning

can be because of overestimating the gas puffing in the edge node or a short transport time

from the edge to SOL. The lower particle densities later may be due to an overly strong
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Figure 4.16: Simulation results of the shot 140420 for the core node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.17: Diffusivities and transport times from the core to the edge for the shot 140420
with the optimized diffusivity model.

transport and ion orbit loss from the edge to the SOL. A longer deuteron transport time

from the edge to SOL can help increase the particle densities in the edge node. The edge

temperatures can track the measurements, although the electron thermal diffusivity should

be larger to get a lower electron temperature in the edge node. The overall performance

of the optimized multinodal model is better than the original one with the χH98 diffusivity,
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although the core node has a better result than the edge node.
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Figure 4.18: Simulation results of the shot 140420 for the edge node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.19: Diffusivities and transport times from the edge to the SOL for the shot 140420
with the optimized diffusivity model.

SOL Node

The SOL particle densities and temperatures of the deuterons and electrons for the shot

140420 are shown in the Figure 4.20, with the diffusivities and transport times in the Figure
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4.21. The overall performance of the multinodal model increases in the SOL node after the

optimization. However, due to a stronger transport from the edge to the SOL, the particle

densities are overestimated at the beginning. Besides, the electron temperature is found to

be too high in the SOL node. Therefore, a larger thermal diffusivity should be assigned,

and more atomic and molecular reactions should be considered with proper neutral particle

densities.
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Figure 4.20: Simulation results of the shot 140420 for the SOL node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.

4.5.4 Shot 140427

The fourth testing shot is the shot 140427, whose signals are shown in the Figure 4.22. The

NBI is turned on at the beginning of the shot around 1.2 s to the end. The gas puffing is

given at 3 s-5 s. The ECH and ICH are zeros during this shot. This shot can be used for

analyzing the multinodal model performance with both the gas puffing and NBI.
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Figure 4.21: Diffusivities and transport times from the SOL to the divertor for the shot
140420 with the optimized diffusivity model.
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Figure 4.22: Signals of the shot 140427 from the DIII-D tokamak, where the plasma cur-
rent, toroidal magnetic field, safety factor, gas puffing, ohmic heating, neutral beam injec-
tion (NBI), electron cyclotron heating (ECH), and ion cyclotron heating (ICH) are included.

Core Node

The core particle densities and temperatures of the deuterons and electrons for the shot

140427 are shown in the Figure 4.23, with the diffusivities and transport times in the Figure

4.24. The overall performance of the optimized diffusivity model is better than the original

one. When the NBI is turned on, the deuteron particle in the core region can increase
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with time. However, the increase speed is lower than the measurement. A lower particle

diffusivity can help decrease the transport from the core to the edge and hence accelerate

this process. The deuteron and electron temperatures can also track the jump when the

NBI is on. However, besides a bump at the beginning, a small overshoot is observed in

the deuteron temperature. A larger thermal diffusivity will eliminate this overshot from the

NBI.
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Figure 4.23: Simulation results of the shot 140427 for the core node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.

Edge Node

The edge particle densities and temperatures of the deuterons and electrons for the shot

140427 are shown in the Figure 4.25, with the diffusivities and transport times in the Figure

4.26. Although the performance of the multinodal model improves after the optimization,

the effect of the NBI is underestimated in the edge densities. More particles should be

deposited to the edge deuterons when the NBI is turned on. This issue can be solved by

using a more accurate NBI simulation code. The deuteron and electron temperatures can
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Figure 4.24: Diffusivities and transport times from the core to the edge for the shot 140427
with the optimized diffusivity model.

increase as expected when the NBI is turned on. However, the thermal diffusivity of the

edge electron should be higher than the current result to have a lower electron temperature.
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Figure 4.25: Simulation results of the shot 140427 for the edge node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.26: Diffusivities and transport times from the edge to the SOL for the shot 140427
with the optimized diffusivity model.

SOL Node

The SOL particle densities and temperatures of the deuterons and electrons for the shot

140427 are shown in the Figure 4.27, with the diffusivities and transport times in the Figure

4.28. The bump in the particle densities shows that the particle transport from the edge

to the SOL is overestimated. When gas puffing is turned on, a large transport from the

edge to the SOL leads to higher SOL densities than the experimental measurements. For

temperatures, the electron temperature is found to be much higher than the measurement.

This can be explained by a longer confinement time of the SOL electrons, and some ignored

SOL reactions. Again, a more accurate SOL-divertor code with the multinodal model can

mitigate this problem.

4.5.5 Shot 140535

The last testing shot is the shot 140535, whose signals are shown in the Figure 4.29. The

gas particles are puffed at the beginning of the shot. The neutral beams are injected in

0.4-3 s, with the ICH to the core ions in 1-3 s. This shot is a good example of analyzing the

performance of ion temperatures in the multinodal model since it is the only testing shot

with ICH.
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Figure 4.27: Simulation results of the shot 140427 for the SOL node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.28: Diffusivities and transport times from the SOL to the divertor for the shot
140427 with the optimized diffusivity model.

Core Node

The core particle densities and temperatures of the deuterons and electrons for the shot

140535 are shown in the Figure 4.30, with the diffusivities and transport times in the Figure

4.31. The core particle densities are larger than the experimental measurement. Thus, the

particle diffusivity of the core deuteron should be larger than the current value, so the extra
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Figure 4.29: Signals of the shot 140535 from the DIII-D tokamak, where the plasma cur-
rent, toroidal magnetic field, safety factor, gas puffing, ohmic heating, neutral beam injec-
tion (NBI), electron cyclotron heating (ECH), and ion cyclotron heating (ICH) are included.

particles can be transported from the core to the edge. The core temperatures track the

tendencies of the experiment data. However, the thermal diffusivities at the beginning of

the shot should be larger, so the temperatures can increase more slowly due to the NBI.

Edge Node

The edge particle densities and temperatures of the deuterons and electrons for the shot

140535 are shown in the Figure 4.32, with the diffusivities and transport times in the Fig-

ure 4.33. Similar to the core node, the particle diffusivity of the edge deuteron should be

larger than the current value to have small edge densities compared with the experimen-

tal measurement. For edge temperatures, the ICH power deposited to the edge deuterons

should be larger to have a higher deuteron temperature. An over higher electron temper-

ature is observed for the edge electrons. The energy transport time of electrons from the

core to the edge should be larger.
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Figure 4.30: Simulation results of the shot 140535 for the core node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.

1 2 3

t [s]

10−1

100

D
or
χ

[m
2
/s

]

Shot 140535 Core

Dcore
D

χcore
D

χcore
e

(a) Particle and thermal diffusivities

1 2 3

t [s]

10−1

100

τ
[s

]

Shot 140535 Core→Edge

τ core→edge
P,D

τ core→edge
E,D

τ core→edge
E,e

(b) Particle and energy transport times

Figure 4.31: Diffusivities and transport times from the core to the edge for the shot 140535
with the optimized diffusivity model.

SOL Node

The SOL particle densities and temperatures of the deuterons and electrons for the shot

140535 are shown in the Figure 4.34, with the diffusivities and transport times in the Fig-

ure 4.35. The overall performance of the multinodal model in the SOL particle densities

improves after the optimization, although the particle density result is better than the tem-
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Figure 4.32: Simulation results of the shot 140535 for the edge node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.33: Diffusivities and transport times from the edge to the SOL for the shot 140535
with the optimized diffusivity model.

perature one. However, the effective energy confinement time of the SOL electrons should

be lower, so the electron temperature can be smaller than the current simulation result com-

pared with the experimental measurement.
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Figure 4.34: Simulation results of the shot 140535 for the SOL node, where n̂node
σ and T̂ node

σ

are from the multinodal model, while nnode
σ and T node

σ are from the experimental measure-
ment.
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Figure 4.35: Diffusivities and transport times from the SOL to the divertor for the shot
140535 with the optimized diffusivity model.

4.6 Summary

This chapter presents a simplified multinodal model for DIII-D deuterium plasmas. Three

nodes are modeled, including the core, edge, and scrape-off layer (SOL). These nodes’ par-

ticle and energy balance equations are given with the proper sources and sinks. A paramet-
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ric diffusivity model is formulated with the internodal transport times. Among the DIII-D

experiment data, 25 ELMing non-RMP H-mode shots are selected and split into training

and testing datasets. The multinodal model is optimized on the training set and evaluated

on the testing set. The evaluation results’ mean squared error (MSE) is presented with the

optimized diffusivity model parameters. The particle densities, temperatures, diffusivities,

and transport times are presented for the testing shots.

After analyzing the model performances, several strengths and shortcomings of the

multinodal model are concluded:

• The overall performance of the multinodal model with optimized diffusivity parame-

ters is better than the original one with the χH98 diffusivity [17, 18]. This observation

proves the effectiveness of the proposed computational methods based on machine

learning and optimization algorithms.

• The performance of the multinodal model is better in the core and edge nodes than in

the SOL node. Since the core and edge nodes can be decoupled from the multinodal

model, we can use such a two-nodal model when we simulate burning plasmas in

ITER.

• The multinodal model can track the density and temperature tendencies more accu-

rately with only one power source than the multiple sources. More interaction terms

can be considered in future work.

• The neutral beam injection (NBI) is dealt with more appropriately than the ion and

electron cyclotron heating (ICH and ECH). This observation requires more accurate

computations for the deposition profiles rather than the predetermined ones currently

used.

• The distributions and efficiencies of the gas puffing among nodes should be adjusted

by the experiment data. So the particle densities in the edge node will not have a

jump at the shot beginning.
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• The ion orbit loss (IOL) and other edge effects in the edge nodes should be revisited

in the future to get a better result of edge transport.

After discussing the strengths and shortcomings of the multinodal model for DIII-D

non-fusion plasmas, we can now apply the model to ITER fusion plasmas, where deuterium-

tritium (D-T) fusion reactions should be included in the model. This target will be focused

on in the next chapter. The limitations of the current multinodal model can also be ad-

dressed in future work, which will be discussed in the last chapter.
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CHAPTER 5

MULTINODAL MODEL SIMULATIONS FOR ITER PLASMAS

In order to study the thermal runaway instability of burning plasmas, it is important to ap-

ply the multinodal burning plasma model for ITER deuterium-tritium (D-T) plasmas in this

chapter. Several proper assumptions are made for simplifying the multinodal model. The

particle and energy balance equations are presented for deuterons, tritons, alpha particles,

and electrons. The simplified multinodal model is then applied to simulate inductive and

non-inductive operation scenarios. Sensitivity analyses are also done for diffusivity, elec-

tron cyclotron radiation, impurity radiation, and ion orbit loss parameters. The simulation

results show that radiation and transport processes can quickly remove extra energy from

fusion alpha heating and prevent potential thermal runaway instability.

5.1 Assumptions for Modeling ITER Plasmas

In order to be used for simulating ITER deuterium-tritium (D-T) plasmas, the multinodal

burning plasma model needs several necessary simplifications, which are postulated as

follows. With these assumptions, this study’s research can focus on the burning plasma

and its critical involved timescales with a balance of solution accuracy and computation

efficiency.

1. Only the core and edge regions are modeled as nodes in the multinodal model. Other

regions are neglected, including the scrape-off layer (SOL), divertor, and plenum.

The geometry of the multinodal model for ITER is shown in the Figure 5.1. This

assumption can let us focus on the important burning processes in the plasma core

and the transport and radiation from the core to the edge.

2. Only the deuteron, triton, alpha particle, and electron are computed in the model.
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Figure 5.1: The cross section of the ITER plasma with the core and edge regions in the
multinodal model.

Particle densities and temperatures of these species are solved from the multinodal

model besides electron densities, which are computed from the charge neutrality.

3. Only the helium (He, around 3%), beryllium (Be, 2%), and argon (Ar, 0.12%) are

considered as impurity particles, where helium is generated from D-T fusion reac-

tions, beryllium is the first wall material, and argon is seeded for increasing radiation

loss and reduce the heat load to the divertor [7]. Besides the helium density directly

solved from the multinodal model, other impurity densities are assumed as constant

fractions of the electron density in one region. This assumption can let us avoid

modeling complicated impurity mechanisms and wall conditions.

4. Only the deuterium-tritium (D-T) fusion reaction is considered. Other fusion reac-

tions, including D-D and D-3He reactions, are neglected due to their lower reaction

rates than the D-T reactions under ITER conditions.

5. The delay mechanism of the fusion alpha heating is implemented for the core node.

The fusion alpha particles can transfer energy to electrons immediately but have to
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wait for a slowing-down timescale before heating ions. Besides, the ion temperature

is assumed to increase linearly within this timescale.

6. All atomic processes and molecular processes are neglected, which are usually cru-

cial in the neglected SOL and divertor nodes. Neutral particles and recycling parti-

cles from the wall are also ignored. The particles passing through the last closed flux

surface (LCFS) are assumed lost.

7. When auxiliary heating is applied, the predetermined energy deposition profiles of

neutral beam injection (NBI) and radiofrequency (RF) heating [30], including elec-

tron cyclotron heating (ECH), ion cyclotron heating (ICH), and lower hybrid (LH)

heating, are used. These deposition profiles have been included in the previous re-

search. This assumption can decrease the computation burden, while more accurate

computations for auxiliary heating can be implemented in the future.

8. The triton particle and thermal diffusivities are assumed equal to the deuteron corre-

sponding ones, i.e. Dnode
D = Dnode

T and χnode
D = χnode

T , where node ∈ { core, edge }.

Thus, only two ion particle diffusivities (Dnode
D and Dnode

α ), two ion thermal diffusivi-

ties (χnode
D and χnode

α ), and one electron thermal diffusivity (χnode
e ) are needed for each

node.

9. When the electron cyclotron radiation (ECR) [40] is computed, the parameters in-

cluding the density profile αn = 0.037 and temperature profile αT = 1.027, βT =

1.194 fitted from the typical ITER profiles of inductive scenario [7], and also the

reflection coefficient r = 0.8 [11, 41] are used in the ECR formula. For the non-

inductive scenario, the parameter αn = 0.102, αT = 4.079, βT = 3.278, r = 0.8 are

applied. Besides, one ECR power profile fitted from Albajar et al. [41] is used..

10. The ion orbit loss (IOL [49, 50, 51, 52, 53, 54, 55]) term is only included for the

edge node, where the particle and energy loss timescales are approximated by the
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corresponding transport times from the edge to the SOL. The sample IOL compu-

tation with ITER conditions [11] has shown that the IOL in the plasma core can be

neglected.

5.2 Particle and Energy Balance Equations

With the above assumptions, the multinodal burning plasma model proposed in the Section

2.4 can be simplified into the following particle and energy balance equations.

Particle balance equations for deuterons, tritons, and alpha particles in the core and

edge nodes are

dncore
D

dt
= Score

D,ext + Score
D,fus + Score

D,tran, (5.1)

dncore
T

dt
= Score

T,ext + Score
T,fus + Score

T,tran, (5.2)

dncore
α

dt
= Score

α,ext + Score
α,fus + Score

α,tran, (5.3)

dnedge
D

dt
= Sedge

D,ext + Sedge
D,fus + Sedge

D,tran + Sedge
D,IOL, (5.4)

dnedge
T

dt
= Sedge

T,ext + Sedge
T,fus + Sedge

T,tran + Sedge
T,IOL, (5.5)

dnedge
α

dt
= Sedge

α,ext + Sedge
D,fus + Sedge

α,tran + Sedge
α,IOL. (5.6)

The electron densities are computed from the charge neutrality:

ncore
e = zDn

core
D + zTn

core
T + zαn

core
α +

∑
z

zzn
core
z , (5.7)

nedge
e = zDn

edge
D + zTn

edge
T + zαn

edge
α +

∑
z

zzn
edge
z . (5.8)

The particle source and sink terms on the right-hand sides of the particle balance equations

are as follows.

1. The external particle source term is computed by summing the neutral beam injection

(NBI), gas puffing (GAS), shatter pellet injection (SPI), and other external particle
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sources: Snode
σ,ext = Snode

σ,NBI +S
node
σ,GAS +Snode

σ,SPI +. . . , where σ ∈ {D,T, α }. In this chapter,

only the particles from the NBI are considered.

2. The fusion terms are computed from the D-T fusion reactions as in the Equation 2.76:

Snode
D,fus = Snode

T,fus = −nnode
D nnode

T 〈σv〉fus , Snode
α,fus = nnode

D nnode
T 〈σv〉fus . (5.9)

3. The transport terms considering the transport between the core and edge, and also

between the edge and SOL are computed by

Score
σ,tran = −n

core
σ − nedge

σ

τ core→edge
P,σ

, Sedge
σ,tran =

Vcore

Vedge

ncore
σ − nedge

σ

τ core→edge
P,σ

− nedge
σ

τ edge→sol
P,σ

, (5.10)

where τ core→edge
P,σ is the particle transport time from the core node to the edge node,

and τ edge→sol
P,σ is the particle transport time from the edge node to the SOL node. These

particle transport times are calculated by

τ core→edge
P,σ =

r2
core

2rcore

∆rcore-edge

Dcore
σ

, τ edge→sol
P,σ =

r2
edge − r2

core

2redge

∆redge-sol

Dedge
σ

(5.11)

where Dcore
σ and Dedge

σ are the core and edge particle diffusivities respectively.

4. The ion orbit loss (IOL) term is only included for the edge node, which is computed

by

Sedge
σ,IOL = −

F edge
σ,orb

τ edge
P,σ,IOL

nedge
σ , (5.12)

where F edge
σ,orb is the particle loss fraction, and τ edge

P,σ,IOL is the particle IOL timescale.

Energy balance equations for deuterons, tritons, alpha particles, and electrons in the
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core and edge nodes are

dU core
D

dt
= P core

D,aux + P core
D,fus +Qcore

D + P core
D,tran, (5.13)

dU core
T

dt
= P core

T,aux + P core
T,fus +Qcore

T + P core
T,tran, (5.14)

dU core
α

dt
= P core

α,aux + P core
α,fus +Qcore

α + P core
α,tran, (5.15)

dU core
e

dt
= P core

Ω + P core
e,aux + P core

e,fus − P core
R +Qcore

e + P core
e,tran, (5.16)

dU edge
D

dt
= P edge

D,aux + P edge
D,fus +Qedge

D + P edge
D,tran + P edge

D,IOL, (5.17)

dU edge
T

dt
= P edge

T,aux + P edge
T,fus +Qedge

T + P edge
T,tran + P edge

T,IOL, (5.18)

dU edge
α

dt
= P edge

α,aux + P edge
α,fus +Qedge

α + P edge
α,tran + P edge

α,IOL, (5.19)

dU edge
e

dt
= P edge

Ω + P edge
e,aux + P edge

e,fus − P core
R +Qedge

e + P edge
e,tran, (5.20)

where the nodal energy density is defined as U node
σ =

3

2
nnode
σ T node

σ for σ ∈ {D,T, α, e }

and node ∈ { core, edge }. The energy source and sink terms on the right-hand sides of the

energy balance equations are as follows.

1. Ohmic heating power is computed from the plasma current by the Equation 2.63:

P node
Ω

(
W/m3

)
= 2.8× 10−9 ZeffI

2
P

a4T
3/2
e

, (5.21)

where IP is in A, a in m, and Te in keV.

2. The auxiliary heating term is calculated by summing the neutral beam injection (NBI)

and radiofrequency (RF) energy: P node
σ,aux = P node

σ,NBI + P node
σ,RF.

3. Fusion power is directly deposited to the ions and electrons as the Equation 2.77:

P node
σ,fus = nnode

D nnode
T 〈σv〉fus Ufσ, σ ∈ {D,T, α } , (5.22)
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where Ufσ is the fusion energy transferred from the fusion alpha particles to the

species σ, and it is computed by viewing the fusion alpha particles as an energetic

beam in NBI formulas. The delay effect between fusion alpha heating to electrons

and ions is considered by using a slowing-down timescale τ node
se in the Equation 2.80:

τse =
3(2π)1/2T

3/2
e

m
1/2
e mbAD

. (5.23)

The fusion heating to ions is postponed by this timescale compared with electrons.

So fusion alpha particles will transfer their energy to electrons first before to ions.

4. Collisional energy terms transferred between ions and electrons are

Qnode
α = Qnode

αD +Qnode
αT +Qnode

αe , (5.24)

Qnode
D = −Qnode

αD +Qnode
DT +Qnode

De , (5.25)

Qnode
T = −Qnode

αT −Qnode
DT +Qnode

Te , (5.26)

Qnode
e = −Qnode

αe −Qnode
De −Qnode

Te , (5.27)

where Qnode
σσ′ is the energy transferred from the species σ′ to σ collisionality. The

Qnode
αD , Qnode

αT , and Qnode
DT terms are computed from the Equation 2.108 as the ion-ion

collisions:

Qii′ =
3

2
ni (Ti′ − Ti) νii′ , (5.28)

where νii′ is the characteristic frequency for energy transfer between ions as in the

Equation 2.109. Also the Qnode
De , Qnode

Te , and Qnode
αe terms are computed from the Equa-

tion 2.110 as the ion-electron collisions:

Qie =

nine (qiqe)
2me ln Λ

(
1− Ti

Te

)
2πε20 (2πmeTe)

1/2mi

[
1 +

4
√
π

3

(
3meTi
2miTe

)3/2
] . (5.29)
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5. The radiation term including electron cyclotron radiation (ECR [40]), bremsstrahlung

[1], and impurity radiation [1, 42, 43] is computed by P node
R = P node

ECR +P node
brem +P node

imp .

6. The energy transport terms considering the transport between the core and edge, and

the edge and SOL are obtained by

P core
σ,tran = −U

core
σ − U edge

σ

τ core→edge
E,σ

, P edge
σ,tran =

Vcore

Vedge

U core
σ − U edge

σ

τ core→edge
E,σ

− U edge
σ

τ edge→sol
E,σ

, (5.30)

where τ core→edge
E,σ is the energy transport time from the core node to the edge node,

and τ edge→sol
E,σ is the energy transport time from the edge node to the SOL node. These

energy transport times are solved from

τ core→edge
E,σ =

r2
core

2rcore

∆rcore-edge

χcore
σ

, τ edge→sol
E,σ =

r2
edge − r2

core

2redge

∆redge-sol

χedge
σ

, (5.31)

where χcore
σ and χedge

σ are the core and edge thermal diffusivities respectively.

7. The IOL term is computed by

P edge
σ,IOL = −

Eedge
σ,orb

τ edge
E,σ,IOL

U edge
σ , (5.32)

where Eedge
σ,orb is the energy loss fraction, and τ edge

E,σ,IOL is the energy IOL timescale.

5.3 Computation Results of Inductive Operation Scenarios

Once the multinodal burning plasma model is simplified for the ITER deuterium-tritium

(D-T) plasmas, it can be used for simulating the ITER operation scenarios in the following

sections. The ITER tokamak can be operating in not only the inductive case [31, 7], where

the ohmic current contributes to the most of total toroidal current compared with the beam-

driven current and the bootstrap current, but also the non-inductive case [31, 7], where

highly energetic neutral atom injection and powerful radiofrequency radiation drive the
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most toroidal current. In this section, the inductive and hybrid scenarios are simulated. The

inductive operation scenario 2 is discussed firstly with more details, while the inductive

scenario 1 and hybrid scenario 3 are visited briefly later.

5.3.1 Inductive Operation Scenario 2

The design scenario 2 of the inductive operation is selected to be simulated first, and its

typical operating conditions [7] are shown in the Table 5.1 with the inductive scenario

1 and hybrid scenario 3. The typical parameters, including geometries, electromagnetic

values, auxiliary heating powers, averaged densities, averaged temperatures, and impurity

fractions, are contained. Although a helium fraction is mentioned in this table, the helium

density will be solved from the multinodal model directly. These operation conditions are

used for multinodal model simulations. Besides, the typical radial profiles of the electron

and ion temperatures, and the electron and helium densities [7] are shown in the Figure

5.2. These profiles are integrated over the core and edge nodes to get nodal densities and

temperatures, which are used as benchmarks for optimizing the diffusivity parameters in

the multinodal model.
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Figure 5.2: Plasma temperature and density profiles at the current flat-top phase for the in-
ductive operational scenario. Reproduced with permission from the ITER Technical Basis
[31].
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Table 5.1: Typical parameters of ITER inductive and hybrid operation scenarios. Repro-
duced with permission from the ITER Technical Basis [31].

Scenario 1 Scenario 2 Scenario 3
Parameter Symbol Inductive Inductive Hybrid

Major radius R0 (m) 6.2 6.2 6.2
Minor radius a (m) 2.0 2.0 2.0
Volume V (m3) 831 831 831
Surface S (m2) 683 683 683
Elongation at the 95% flux surface κ95 1.70 1.70 1.70
Triangularity at the 95% flux surface δ95 0.33 0.33 0.33

Toroidal magnetic field at the magnetic axis BT (T) 5.3 5.3 5.3
Plasma current IP (MA) 15 15 13.8
Safety factor at the 95% flux surface q95 3.0 3.0 3.3

Volume-averaged electron density 〈ne〉 (1019 m−3) 11.3 10.1 9.3
Volume-averaged ion temperature 〈Ti〉 (keV) 8.1 8.0 8.4
Volume-averaged electron temperature 〈Te〉 (keV) 8.9 8.8 9.6

Fusion power Pfus (MW) 500 400 400
Auxiliary heating power Paux (MW) 50 40 73
Radiofrequency heating power PRF (MW) 17 7 40
Neutral beam heating power PNBI (MW) 33 33 33
Fusion energy gain factor Q 10 10 5.4
Energy confinement time τE (s) 3.4 3.7 2.73
Plasma pulse length & burning time t (s) 500 400 1070

Helium fraction fHe (%) 3.2 3.2 2.5
Beryllium fraction fBe (%) 2.0 2.0 2.0
Argon fraction fAr (%) 0.14 0.12 0.19
Effective impurity charge Zeff 1.72 1.66 1.85
Radiation power Prad (MW) 61 47 55

Before simulating the inductive scenario 2, we need to model several necessary particle

and energy sources. For external particle sources, the neutral beam injection (NBI) injects

negative deuteron particles into the tokamak plasma. At the same time, the same amount

of tritons is supplied for a balance of deuteron and triton particles. For external energy

sources, neutral beam and radiofrequency radiation systems are used for auxiliary heating.

ITER heating and current drive system [31, 87, 32] (H&CD) includes 33 MW neutral

beam injection (NB, 1 MeV), 20 WM ion cyclotron heating (IC, 40-50 MHz), and 20MW
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electron cyclotron heating (EC, 170 GHz) in the first campaign, and also 40MW lower

hybrid heating (LH, 5 GHz) [32] with 50 MW NB, 40 MW IC, and 40 MW EC as potential

upgrades in the future. Much studies [88, 89, 90, 91, 92] have been done for the ITER

H&CD systems. For the inductively driven scenario 2, Wagner et al. [91] concluded that

the exact heating mixture proportions of NB, IC, and EC are not critical. However, the

IC should be utilized for heating ions directly. Thus, we assume all RF heating power is

deposited to ions in this scenario.

In order to model the ITER burning plasma more accurately, the parameters in the diffu-

sivity model need tuning properly by machine learning algorithms. In previous simulations

of DIII-D plasmas, the experiment data are split into a training dataset and a testing dataset.

The training dataset is used for tuning parameters in the diffusivity model. And once the

diffusivity parameters are optimized properly, the multinodal model is evaluated on the test-

ing dataset. However, since the ITER reactor is still under construction, we cannot obtain

the ITER experiment data and use it to train the parametric diffusivity model directly. Thus,

enlightened by the transfer learning [93], the parameters learned in the multinodal model of

the DIII-D deuterium plasma are transferred to the diffusivity model for the ITER plasma.

Then, we apply a fine-tuning method to these diffusivity parameters by using burning sim-

ulation results from the previous research [31, 7] as optimization targets. The parameters in

the diffusivity model are adjusted for ITER operation conditions, so the simulation results

of the ITER multinodal model can match these design scenarios during the current flat-top

region.

During the optimization, the inductive scenario 2 is used as a training set, while the

inductive scenario 1 and the hybrid scenario 3 are viewed as a testing set. The training

set is used to train the parametric diffusivity model, while the testing set evaluates model

performances. This method allows the optimized model to be generalized for new data in

prediction tasks. This idea has been discussed thoroughly in the previous research for the

DIII-D deuterium plasma. For the ITER D-T plasma, the optimization object is set as a

114



Table 5.2: Optimized parameters in the nodal particle and thermal diffusivities for the ITER
inductive scenarios.

αH αB αn αT α∇T αq ακ αM αR αa

Dcore
D 0.0623 -3.8193 1.4726 -0.3682 -0.0086 3.0048 -2.8187 -0.7748 0.5270 0.6836

Dcore
α 0.0749 -3.6346 1.6613 -0.1922 0.1712 3.1992 -2.6402 -0.5874 0.7167 0.8744

χcore
D 0.0699 -3.7410 -0.2917 3.1220 1.0357 2.1694 -2.9481 -1.2062 -0.0400 0.2193
χcore
α 0.0774 -3.6392 -0.1908 3.2190 1.1267 2.2702 -2.8457 -1.1047 0.0613 0.3204
χcore
e 0.0492 -4.3936 0.0319 1.6794 0.9890 1.7566 -3.6844 -1.5747 -0.3684 -0.3237

D
edge
D 0.0276 -4.5754 2.9503 0.3002 -0.6916 2.1044 -3.4817 -1.5889 -0.3185 -0.0250

D
edge
α 0.0347 -4.3454 3.1718 0.5397 -0.4552 2.3442 -3.2601 -1.3569 -0.0831 0.2106

χ
edge
D 0.1117 -3.6094 0.2137 1.4591 1.1279 2.9174 -3.0692 -0.6974 0.6077 -0.0581
χ

edge
α 0.1106 -3.6189 0.1774 1.4062 1.0864 2.8513 -3.0361 -0.7233 0.5688 -0.0918
χ

edge
e 0.1126 -3.4947 -0.9932 1.4032 1.4071 2.7817 -3.1842 -0.6915 0.6069 -0.2435

vector of

[
nnode

D

1019 m−3

nnode
α

1018 m−3

nnode
e

1019 m−3

T node
D

1 keV

T node
e

1 keV

]
node∈{ core,edge }

, (5.33)

where both densities and temperatures in the core and edge nodes are considered. The

parameters in the nodal diffusivity model are initialized as the corresponding DIII-D deu-

terium plasma parameters. Besides, only the current flat-top region of the inductive sce-

nario 2 is simulated during the optimization. The densities and temperatures are initialized

at the flat-top values instead of a cold plasma. The time step is set as 0.2 s and the total

time length is 10 s. After 14 epochs, the mean squared error (MSE) loss of the scenario 2

at the current flat-top region drops from 6.7085 to 0.0016 with a learning rate of 0.02. The

optimized diffusivity parameters are shown in the Table 5.2.

After optimizing the diffusivity parameters, the initial temperatures are reset to 2 keV

in the core node and 1 keV in the edge node for all species. The particle densities are

same as the Table 5.1 and the Figure 5.2, but the alpha particle densities become 1017 m−3.

The multinodal modal with this initial condition is then simulated for the ITER inductive

scenario 2 and a total time 15 s.

The simulation results of the scenario 2 are shown in the Figure 5.3, where densities and
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temperatures of deuterons, alpha particles, and electrons are presented. The triton densities

and temperatures are omitted since their values are roughly the same as deuteron ones.

Also, the temperatures of alpha particles are only for cold ones, where the fusion alpha

particles at 3.5 MeV are excluded until they transfer their energy to electrons and ions. The

simulation results show that the core and edge temperatures reach a steady state at about

11 s. The energy excursion from the fusion alpha heating is not found in this simulation.

0 5 10 15
0

5

10

n
c
o
re

σ
[1

0
1
9

m
−

3
]

Scenario 2 Core

ncore
D

ncore
α × 10

ncore
e

0 5 10 15

2.5

5.0

7.5

10.0

T
c
o
re

σ
[k

eV
]

T core
D

T core
α

T core
e

(a) Core node

0 5 10 15
0.0

2.5

5.0

7.5

n
e
d
g
e

σ
[1

0
1
9

m
−

3
]

Scenario 2 Edge

nedge
D

nedge
α × 10

nedge
e

0 5 10 15
1

2

3
T

e
d
g
e

σ
[k

eV
]

T edge
D

T edge
α

T edge
e

(b) Edge node

Figure 5.3: Densities and temperatures of the ITER design scenario 2.

The powers changing with time are shown the Figure 5.4, where for σ ∈ { e, i } and

node ∈ { core, edge }, P node
oh is the ohmic heating, P node

σ,aux is the auxiliary heating, P node
σ,fus

is the fusion heating, Qnode
σ is the Coulomb collisional energy transfer to the species σ,

P node
rad is the radiation power, P node

σ,tran is the energy transport, and P node
σ,iol is the IOL energy

loss. In these figures for powers, a positive value means a energy gain, while a negative

value means a energy loss. At the beginning of the simulation, the ohmic heating P core
oh and

auxiliary heating P core
σ,aux supply the most of energy to core electrons and ions, until the core

ion temperature is higher enough to initiate fusion reactions. The fusion alpha particles heat

the electrons in P core
e,fus first, then the heated electrons transfer their energy to ions through

Coulomb collisions Qcore
i = −Qcore

e . Meanwhile, the fusion heating is also deposited to
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core ions through P core
i,fus. The fusion heating is removed by the radiation power P core

rad and

transport loss P core
σ,tran.
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Figure 5.4: Powers of the ITER design scenario 2.

To present how the energy is produced and transferred, a picture of the energy flows at

the 15 s for the scenario 2 is shown in the Figure 5.5. This picture presents an overview

of how fusion energy is transferred between different species and transported between dif-

ferent regions by different mechanisms. Firstly, the fusion alpha particles born at 3.5 MeV

are mostly deposited to the core electrons in 55.41 MW compared with ions in 11.65 MW.

Notice that the multinodal model has considered a time delay between fusion heating to

electrons and ions. However, it is not shown here since this energy flow figure is for an ap-

proximately steady state. Then, once the electrons are heated through fusion and auxiliary

heating, they transfer energy to the core ions through Coulomb collisions in 53.80 MW.

The core electrons also lose their energy through radiation and transport. The impurity

radiation in 19.53 MW plays an important role among several radiation processes, com-

pared with electron cyclotron radiation (ECR) in 3.26 MW and bremsstrahlung radiation

in 0.62 MW. The ECR power is less than the impurity radiation due to a lower T core
e . Be-

sides, the energy transport to the edge electrons in 0.19 MW is relatively small due to a
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Figure 5.5: Energy flows for the ITER inductive scenario 2 simulated by the multinodal
model at 15 s.

small electron diffusivity between the core and edge nodes. Moreover, after core ions are

heated from fusion and auxiliary heating, they also transport their energy to the edge ones

in 81.58 MW. These radiation and transport processes are quick and strong enough to re-

move extra energy from fusion alpha heating. Hence, the power excursion does not happen

in this inductive scenario.

5.3.2 Inductive Operation Scenario 1

To evaluate the performance of the multinodal model with optimized diffusivity parameters

for ITER inductive operations, one more inductive case, the scenario 1, is used as a testing

scenario. The operation conditions of this scenario have been shown in the Table 5.1, where

the expected fusion power 500 MW is higher than the scenario 2 with 400 MW. Also, larger

radiofrequency (RF) heating power is applied with the same neutral beam injection (NBI)

power as the scenario 2. A longer burning time in 500 s is planned with a higher electron

temperature and density.
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The simulation results of the multinodal model for the inductive operation scenario 1

are shown in the Figure 5.6. The ion and electron temperatures are comparable with the

scenario 2 when they reach a steady state around 11 s. Similarly, the power excursion is not

observed in this scenario.
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Figure 5.6: Densities and temperatures of the ITER design scenario 1.

5.3.3 Hybrid Operation Scenario 3

A hybrid mode of operation [31], where a substantial fraction of the plasma current is driven

by non-inductive current drive power and the bootstrap current, is one of the promising

routes towards the establishment of ITER operation in steady-state or non-inductive modes.

One hybrid operation case, the scenario 3, is selected for verifying its thermal stability with

fusion alpha heating by using the multinodal burning plasma model for inductive scenarios.

The typical operation parameters have been listed in the Table 5.1. In this hybrid scenario,

25% plasma current is supplied by the current drive (i.e. ICD/IP = 25%), while 17% is by

the bootstrap current (i.e. IBS/IP = 17%).

The simulation results of the hybrid operation scenario 3 with the multinodal model

are shown in the Figure 5.7 and 5.8, where the densities and temperatures are shown firstly,
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while the powers are presented next. The ion and electron temperatures reach a steady state

in about 6 s, which is shorter than the inductive scenarios due to higher auxiliary heating

power. The increased auxiliary heating is then removed by higher radiation and transport

terms. Thus, no power excursion is observed in this hybrid scenario simulation.
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Figure 5.7: Densities and temperatures of the ITER design scenario 3.
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Figure 5.8: Powers of the ITER design scenario 3.
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Figure 5.9: Energy flows for the ITER hybrid scenario 3 simulated by the multinodal model
at 15 s.

Same as the inductive scenario 2, energy flows of the hybrid scenario 3 at the 15 s are

shown in the Figure 5.9. Compared with the Figure 5.5, a lower fusion alpha heating to core

electrons is observed, but the auxiliary heating is higher due to more RF power. Thus, the

energy transfer to ions and radiation loss through impurities also become more extensive.

Besides, due to more energy from auxiliary heating to core ions, they transport more heat

to edge ions. These transport and radiation processes are sufficient to remove extra fusion

energy and prevent power excursion in this hybrid scenario.

5.4 Computation Results of Non-Inductive Operation Scenarios

Besides inductive scenarios, where most of the plasma current are supplied inductively,

the ITER tokamak can also operate in steady-state non-inductive scenarios [31], where

the total plasma current at the current flat-top phase is generated non-inductively by the

additional current drive and bootstrap current. In ITER, four kinds of heating and current

drive (H&CD) systems [7, 32] are used, including:
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• Neutral beam (NB), which provides central plasma heating and can be adjusted to

provide on-axis or near (r/a ≤ 0.6) off-axis current-drive,

• Ion cyclotron (IC) radiofrequency (RF), which provides the heating of ions and

current-drive in the central plasma,

• Electron cyclotron (EC) RF, which provides central plasma heating and current-drive

both on and off-axis, and

• Lower hybrid (LH) RF, which provides off-axis heating and current-drive.

Among these H&CD systems, the off-axis current-drive [7] is more appealing since this

system can be used to provide favorable magnetic shear configurations for stability.

As representations for non-inductive operation conditions, three typical scenarios are

selected, including the weak negative shear (WNS) scenario 4, the strong negative shear

(SNS) scenario 6, and the weak positive shear (WPS) scenario 7. Their typical parameters

are shown in the Table 5.3, where most of parameter names can be found in the Table

5.1. The percentages of current drive, bootstrap current, and ohmic heating in the plasma

current are also included.

In order to simulate the non-inductive scenarios properly, we transfer the diffusivity pa-

rameters from the multinodal model of inductive scenarios to the multinodal model of non-

inductive scenarios. These three non-inductive scenarios are split into a training dataset

with the scenario 4 and a testing dataset with the scenario 6 and 7. Again, the training

dataset is used for tuning diffusivity parameters, while the testing dataset is for evaluat-

ing model performances. The non-inductive multinodal model is trained on the training

dataset with 2 epochs and a learning rate 0.02, where the mean squared error (MSE) loss

of the scenario 4 drops from 13.2741 to 0.6333. The optimized parameters in the parti-

cle and thermal diffusivities for the non-inductive scenarios are shown in the Table 5.4.

The multinodal model with optimized diffusivity parameters is then used to simulate non-

inductive scenario 4, 6, and 7.
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Table 5.3: Parameters of ITER non-inductive operation scenarios, where WNS is for weak
negative shear, SNS is for strong negative shear, and WPS is for weak positive shear. Re-
produced with permission from the ITER Technical Basis [31].

Scenario 4 Scenario 6 Scenario 7
Parameter WNS SNS WPS

R0 (m) 6.35 6.35 6.35
a (m) 1.85 1.85 1.85
κ95 1.85 1.86 1.86
δ95 0.40 0.41 0.41

BT (T) 5.18 5.18 5.18
IP (MA) 9.0 9.0 9.0
q0 3.5 5.9 2.7
q95 5.3 5.4 5.3

〈ne〉 (1019 m−3) 6.7 6.5 6.7
〈Ti〉 (keV) 12.5 12.1 12.5
〈Te〉 (keV) 12.3 13.3 12.1

Pfus (MW) 356 340 352
PLH (MW) 29 40 29
PNBI (MW) 30 20 28
Q 6.0 5.7 6.2
τE (s) 3.1 3.13 3.07

fHe (%) 4.1 4.0 4.0
fBe (%) 2.0 2.0 2.0
fAr (%) 0.26 0.2 0.23
Zeff 2.07 1.89 1.99
Prad (MW) 37.6 36.2 34.6

ICD/IP (%) 51.9 53.7 50.2
IBS/IP (%) 48.1 46.3 49.8
IOH/IP (%) 0 0 0

5.4.1 Non-Inductive Operation Scenario 4

The first non-inductive ITER operation scenario simulated by the multinodal burning plasma

model is the weak negative shear (WNS) scenario 4. Its typical conditions are listed in the

Table 5.3, and its typical radial profiles are presented in the Figure 5.10. Compared with

the inductive profiles in the Figure 5.2, a larger core temperature with a steeper temperature

gradient can be observed. The plasma current of the non-inductive scenario is lower than
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Table 5.4: Optimized parameters in the nodal particle and thermal diffusivities for the ITER
non-inductive scenarios.

αH αB αn αT α∇T αq ακ αM αR αa

Dcore
D 0.0709 -3.6915 1.5921 -0.2904 0.0625 3.1264 -2.6872 -0.6488 0.6514 0.8070

Dcore
α 0.0885 -3.4674 1.8260 -0.0281 0.3347 3.3629 -2.4712 -0.4213 0.8820 1.0389

χcore
D 0.0515 -4.0476 -0.5981 2.8100 0.7229 1.8626 -3.2547 -1.5129 -0.3467 -0.0875
χcore
α 0.0568 -3.9486 -0.5002 2.9044 0.8117 1.9601 -3.1545 -1.4142 -0.2484 0.0106
χcore
e 0.0687 -4.0671 0.2988 1.9584 1.2788 1.9781 -3.2958 -1.2677 -0.0972 -0.0464

D
edge
D 0.0287 -4.5364 2.9882 0.3103 -0.6636 2.1400 -3.4399 -1.5506 -0.2814 0.0120

D
edge
α 0.0358 -4.3141 3.2030 0.5623 -0.4266 2.3741 -3.2279 -1.3260 -0.0526 0.2410

χ
edge
D 0.0975 -3.7455 0.0778 1.3422 0.9980 2.7811 -3.2051 -0.8336 0.4714 -0.1943
χ

edge
α 0.0941 -3.7818 0.0085 1.2420 0.9190 2.6745 -3.1888 -0.8902 0.3985 -0.2607
χ

edge
e 0.1261 -3.3826 -0.8945 1.6105 1.5562 2.8887 -3.0679 -0.5809 0.7164 -0.1334

the inductive one, while the safety factor at the 95% flux surface is higher. Moreover, the

plasma current is divided into two roughly equal halves by the current drive and bootstrap

current.
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Figure 5.10: Plasma temperature and density profiles at the current flat-top phase for the
steady state weak negative shear (WNS) operational scenario. Reproduced with permission
from the ITER Technical Basis [31].

The simulation results for the non-inductive scenario 4 are shown in the Figure 5.11 and

5.12 for the core and edge nodes. The particle densities and temperatures are shown in the

first figure, while the power terms are presented in the second figure. The ion and electron
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temperatures reach a steady state at about 12 s. Compared with the inductive scenario

2, the non-inductive scenario 4 has larger fusion and auxiliary heating. Also, the energy

transported from the core electrons to the edge ones is much larger now. However, the

Coulomb collisional energy is transferred from ions to electrons since the temperature of

core electrons is lower than the temperature of core ions. The energy excursion due to the

fusion alpha heating is not found in this simulation.
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Figure 5.11: Densities and temperatures of the ITER design scenario 4.

To study the radiation and transport processes of the non-inductive scenario 4 quantita-

tively, energy flows at 15 s are shown in the Figure 5.13. Due to a higher ion temperature,

larger fusion heating powers are observed for both ions and electrons. However, since the

temperature of core electrons is lower than the temperature of core ions, the collisional en-

ergy transfer is from ions to electrons now. The energy transport from core electrons to the

edge is much stronger than the inductive scenario to remove extra heating, but the energy

transport of core ions is smaller now. Overall, the radiation and transport processes in the

non-inductive scenario are sufficiently fast and strong to prevent power excursion of fusion

alpha heating.
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Figure 5.12: Powers of the ITER design scenario 4.

5.4.2 Non-Inductive Operation Scenario 6 and 7

To evaluate the performance of the multinodal model for non-inductive operation, we select

two more scenarios: one is the strong negative shear (SNS) scenario 6, and another is the

weak positive shear (WPS) scenario 7. The simulation result for the scenario 6 is shown

in the Figure 5.14, while the result for the scenario 7 is in the Figure 5.15. Similar to the

WNS scenario 4, the ion and electron temperatures reach steady states around 12 s, and

power excursion is not observed.

5.5 Sensitivity Analyses

To analyze how the density and temperature change with model parameters, we imple-

ment several sensitivity analyses in this section. The normalized sensitives of densities and

temperatures with respect to diffusivities, electron cyclotron radiation (ECR) parameters,

impurity fractions, and ion orbit loss (IOL) timescales are computed for the inductive sce-

nario 2. The dynamic processes of burning plasmas are also visualized by perturbing these

parameters.
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Figure 5.13: Energy flows for the ITER non-inductive scenario 4 simulated by the multin-
odal model at 15 s.

0 5 10 15
0

2

4

6

n
c
o
re

σ
[1

0
1
9

m
−

3
]

Scenario 6 Core

ncore
D

ncore
α × 10

ncore
e

0 5 10 15

5

10

15

T
c
o
re

σ
[k

eV
]

T core
D

T core
α

T core
e

(a) Core node

0 5 10 15
0

2

4

6

n
e
d
g
e

σ
[1

0
1
9

m
−

3
]

Scenario 6 Edge

nedge
D

nedge
α × 10

nedge
e

0 5 10 15

1.0

1.5

2.0

T
e
d
g
e

σ
[k

eV
]

T edge
D

T edge
α

T edge
e

(b) Edge node

Figure 5.14: Densities and temperatures of the ITER design scenario 6.
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Figure 5.15: Densities and temperatures of the ITER design scenario 7.

5.5.1 Sensitivity Analysis of Diffusivities

The first sensitivity analysis is done for the diffusivity parameters in the Table 5.2. To

avoid the impact of physical value scales and units, we utilize normalized sensitivities. For

example, the normalized sensitivity of the core electron temperature T core
e with respect to

the temperature power αT in the electron thermal diffusivity χcore
e is computed by

S (T core
e |αT ) =

αT
T core
e

∂T core
e

∂αT
. (5.34)

The normalized sensitivities of the diffusivity parameters are shown in the Table 5.5. Sev-

eral observations can be drawn from this table:

• The particle diffusivities of alpha particles are more sensitive to the change of pa-

rameters than the deuteron particle diffusivities in both the core and edge nodes.

• The core deuteron particle diffusivity is more sensitive to the magnetic field, nodal

particle density, and safety factor.

• The thermal diffusivities of core deuterons are more sensitive to parameters than
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Table 5.5: Sensitivities of the diffusivity parameters for the ITER design scenario 2.

Sensitivity αH αB αn αT α∇T αq ακ αM αR αa

ncore
D -0.0172 0.1098 -0.0582 0.0127 0.0002 -0.0569 0.0258 0.0122 -0.0166 -0.0082
ncore
α -0.0729 0.4417 -0.2791 0.0326 -0.0252 -0.2561 0.1021 0.0392 -0.0953 -0.0442

T core
D -0.1751 1.0922 0.1180 -1.2921 -0.3722 -0.4172 0.2739 0.1935 0.0128 -0.0266
T core
α -0.0199 0.1210 0.0088 -0.1516 -0.0461 -0.0497 0.0301 0.0202 -0.0022 -0.0044
T core
e -0.0006 0.0041 -0.0000 -0.0022 -0.0011 -0.0011 0.0011 0.0008 0.0004 0.0001

n
edge
D -0.0905 0.6905 -0.5816 -0.0191 0.1448 -0.2092 0.1672 0.1317 0.0526 0.0016
n

edge
α -0.2759 1.9995 -1.9186 -0.1479 0.3268 -0.7106 0.4773 0.3430 0.0418 -0.0403

T
edge
D -0.3151 1.8965 -0.1481 -0.4806 -0.9434 -1.0098 0.5131 0.2013 -0.3493 0.0127
T

edge
α -0.0085 0.0512 -0.0033 -0.0125 -0.0245 -0.0266 0.0137 0.0056 -0.0088 0.0005
T

edge
e 0.0190 -0.1450 0.1225 0.0048 -0.0323 0.0439 -0.0351 -0.0277 -0.0110 -0.0003

alpha particles and electrons.

• The core deuteron and electron thermal diffusivities are more sensitive to the nodal

temperature, magnetic field, and safety factor.

Overall, the magnetic field and safety factor are important parameters to control particle

and energy transport between core and edge nodes.

To visualize how the burning plasma dynamics changes due to the heat coefficients

between the core and edge, we multiple and divide these heat coefficients (χcore
σ , where

σ ∈ {D, α, e }) by two. The results are shown in the Figure 5.16. When heat coefficients

become smaller, less energy can be transported from the core to the edge, leading to a higher

core temperature and higher fusion power. However, since the heat coefficients have strong

positive dependencies on temperatures and temperature gradients, the heat transport from

the core to the edge becomes larger when the core temperature is high enough. Then such

increasing in heat transport can balance the increase of fusion heating and thus prevent ther-

mal instability. The change in core temperatures is included in the summary of sensitivity

analyses as the Table 5.6.
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Figure 5.16: Sensitivity of the thermal diffusivity between the core and edge for the ITER
design scenario 2.

Table 5.6: Summary of sensitivity analyses for the ITER design scenario 2.

Parameter Change of the parameter ∆T core
D (keV) ∆T core

e (keV)

Core-edge thermal ×0.5 +1.184 +2.038
diffusivities χcore

σ ×2.0 -1.159 -1.751

Wall reflection coefficient -0.1 -0.002 -0.025
of ECR r = 0.8 +0.1 +0.002 +0.033

Beryllium fraction -1.0% -0.063 +0.059
fBe = 2.0% +1.0% +0.058 -0.072

Argon fraction -0.04% -0.005 +0.165
fAr = 0.12% +0.04% -0.008 -0.184

IOL timescales ×0.1 -0.000 -0.000
τ edge
p,σ,IOL and τ edge

E,σ,IOL ×10.0 +0.000 +0.000

5.5.2 Sensitivity Analysis of Electron Cyclotron Radiation Parameters

The second sensitivity analysis is done for electron cyclotron radiation (ECR). The normal-

ized sensitivities of the ECR parameters are shown in the Table 5.7. Here only the core and

edge electron temperatures with respect to the density shape parameter αn, the temperature
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shape parameters αT and βT , and the reflection coefficient r in Albajar et al. [40] are con-

sidered. The results show that the electron temperatures are more sensitive to the reflection

coefficient r and the temperature shape factor βT than other parameters. As mentioned by

Albajar et al. [40], the wall reflection coefficient is still needed more research for ITER,

which will be an important coefficient for modeling energy transport from core electrons

to the edge and wall.

Table 5.7: Sensitivities of the ECR parameters for the ITER design scenario 2.

Sensitivity αn αT βT r

T core
e -0.0001 0.0100 -0.0135 0.0212
T edge
e -0.0001 0.0098 -0.0132 0.0208

To visualize how the burning plasma dynamics changes by the wall reflection coeffi-

cient r, the results with different reflection coefficients are shown in the Figure 5.17, where

P core
ECR is the ECR loss in the core node, and r = 0.8 is the original one. As we can see, a

higher wall reflection coefficient means more ECR power being reflected back and thus a

smaller value of ECR loss. However, since the ECR power is relatively small due to the

low electron temperature T core
e , the electron and ion temperatures do not change much by

changing the wall reflection coefficient. The values of temperature changes are included in

the Table 5.6.

5.5.3 Sensitivity Analysis of Impurity Fractions

The third sensitivity analysis is done for impurity fractions. The normalized sensitivities of

the electron temperatures to impurity fractions, including beryllium and argon, are shown

in the Table 5.8. Negative values mean the increase of impurity fractions will lead to lower

electron temperatures. The argon impurity fraction is found to have a more substantial

effect on the core electron temperature than the beryllium one.

The sensitivities of deuteron and electron temperatures’ dynamics with respect to the

beryllium and argon impurities are shown in the Figure 5.18 and 5.19 respectively. A higher
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Figure 5.17: Sensitivity of the wall reflection coefficient in the electron cyclotron radiation
for the ITER design scenario 2.

Table 5.8: Sensitivities of the impurity fractions for the ITER design scenario 2.

Sensitivity fBe fAr

T core
e -0.0120 -0.0469
T edge
e -0.0184 -0.0693

impurity fraction leads to more impurity radiation and then causes a slower increase in core

temperatures. However, as the core electron temperatures increase, the impurity radiation

becomes smaller, and the temperatures at the steady state do not change much. The values

of temperature changes have been presented in the Table 5.6.

5.5.4 Sensitivity Analysis of Ion Orbit Loss Timescales

The last sensitivity analysis is done for ion orbit loss (IOL[49, 50, 51, 52, 53, 54, 55])

timescales. The normalized sensitivities of the IOL parameters are shown in the Table

5.9. The results show that the edge densities and temperatures are not sensitive to the IOL

timescales, which is because of relatively small IOL values in the ITER edge node. This

observation has been confirmed by computations with typical ITER parameters [11]. Since
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Figure 5.18: Sensitivity of the beryllium impurity fraction for the ITER design scenario 2.
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Figure 5.19: Sensitivity of the argon impurity fraction for the ITER design scenario 2.

the IOL timescales have fewer effects on the core temperatures, we do not need to simulate

the burning plasma with different IOL timescales.
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Table 5.9: Sensitivities of the IOL parameters for the ITER design scenario 2.

Sensitivity τ edge
p,IOL τ edge

e,IOL

nedge
D −5.4127× 10−9 4.3326× 10−9

nedge
α 3.4776× 10−6 8.9833× 10−8

T edge
D −3.0381× 10−8 5.7944× 10−7

T edge
α −1.7795× 10−7 1.4968× 10−6

5.6 Summary

In this chapter, the multinodal burning plasma model is applied for simulating ITER deuterium-

tritium (D-T) plasmas. Assumptions are made firstly to simplify the multinodal model,

where only the deuteron, triton, alpha particle, and electron in the core and edge nodes

are computed. Several significant impurities, including helium, beryllium, and argon, are

considered for impurity radiation. Next, the delayed fusion heating, electron cyclotron radi-

ation (ECR), and ion orbit loss (IOL) are modeled. Finally, the particle and energy balance

equations are presented based on previous assumptions.

The simplified multinodal model is used for solving D-T plasmas in both inductive

and non-inductive operation scenarios of ITER. In the inductive scenario, ohmic current

contributes the most to plasma current. By simulating with the multinodal model, fusion

alpha particles, born at 3.5 MeV from D-T fusion reactions, are observed transferring most

of their energy to core electrons first. Then, when core electrons are heated, their energy

is removed by impurity radiation, ECR, and Coulomb energy transfer to core ions quickly

enough. Next, when the core ions are heated by fusion alpha particles, core electrons,

and auxiliary heating, they transport their energy to edge ions. The radiation and transport

processes are strong and fast enough to prevent energy excursion.

Compared with the inductive scenarios, most of the total plasma current is generated

non-inductively by additional current drive and bootstrap current in the ITER steady-state

operation. Simulations of non-inductive scenarios with the multinodal model show higher

core electron and ion temperatures, with stronger energy transport from the core electrons
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to the edge.

Several sensitivity analyses are done for the diffusivities, ECR parameters, impurity

fractions, and IOL timescales on the inductive scenario 2. The magnetic field and safety

factor are found important for controlling transport processes between nodes. Besides, the

temperature shape factor and the wall reflection coefficient are essential in the ECR cal-

culation, while the fractions of beryllium and argon are also critical to the burning plasma

dynamics. The IOL timescale is not crucial in the ITER inductive operation.

In summary, the radiation and transport processes can promptly remove extra core en-

ergy from fusion alpha heating and prevent power excursion for both inductive and non-

inductive operation scenarios in ITER.
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CHAPTER 6

CONCLUSION

In this thesis, we develop a multi-region multi-timescale burning plasma dynamics model

for tokamaks. This model is used for simulating DIII-D non-fusion plasmas and ITER fu-

sion plasmas. Simulation results indicate that radiation and transport can promptly remove

extra heat from the core plasma, thereby inhibiting the thermal runaway instability from fu-

sion alpha heating. Also, research about multinodal model applications in burning plasma

control can be done in the future.

6.1 Research Conclusions

This research develops a multi-region multi-timescale transport model to simulate burning

plasma dynamics in tokamaks. Deuterium-tritium fusion generates 3.5 MeV alpha parti-

cles, which transfer their energy mainly to core electrons. The heated electrons and lower-

energy fusion alpha particles then heat core ions, which will increase the fusion reaction

rate and may conceivably lead to a thermal runaway instability. Meanwhile, core energy

is transported to the edge and radiated to the wall. Multiple timescales of such processes

between different tokamak regions determine the burning plasma dynamics.

A multinodal burning plasma dynamics model is proposed for studying such coupling

effects between different tokamak regions. A tokamak plasma is divided into four regions:

core, edge, scrape-off layer (SOL), and divertor, where each region is viewed as a separate

node. The nodal particle and energy balance equations are derived from the conservation

equations of the fluid theory, where the internodal transport terms are also obtained. Fusion

alpha heating is modeled with a time delay between electrons and ions. Radiations, includ-

ing electron cyclotron radiation (ECR), bremsstrahlung, and impurity ration, are contained

in the model as immediate energy transport from the core to the edge and wall. The ion
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orbit loss (IOL) is incorporated as an edge plasma effect. Other essential mechanisms in

burning plasmas are also visited. After assembling source and sink terms into particle and

energy balance equations, a framework for the multinodal model is proposed. In summary,

the multinodal model includes:

• Nodes: core, edge, scrape-off layer (SOL), and divertor.

• Terms: fusion alpha heating, ohmic heating, ion cyclotron heating (ICH), electron cy-

clotron heating (ECH), neutral beam injection (NBI), gas puffing, electron cyclotron

radiation (ECR), bremsstrahlung, impurity radiation, internodal transport, Coulomb

collisional energy transfer, ion orbit loss (IOL), and atomic and molecular processes.

In order to calculate the transport times between nodes, computational methods are pre-

sented for the multinodal model. The shortcoming and drawbacks of previous work have

been summarized and discussed. Instead of directly obtaining the internodal transport times

from experiments, we propose one parametric diffusivity model. The undetermined param-

eters are initialized from empirical laws and then optimized based on the experiment data.

The machine learning and optimization algorithms used in this research are described thor-

oughly. The mean squared error is used as the loss and the optimization object. The back

propagation is applied to get gradients through the solver, and the gradient descent is im-

plemented to update diffusivity parameters. A computational framework for the multinodal

model, GTBURN, is brought up. Several modules in this code package are also described.

In order to evaluate model performances, the multinodal model is applied for DIII-D

non-fusion plasmas. Several assumptions are made to simplify the model for deuterium

plasmas. The particle and energy balance equations are presented with the parametric dif-

fusivity model and internodal transport times. Among DIII-D experiment data, 25 ELMing

non-RMP H-mode shots are selected, where 20 shots are included in the training dataset,

and 5 shots are held in the testing dataset. The training dataset is used to tune the parame-

ters inside the diffusivity model, while the testing dataset is applied to evaluate the model
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performance and its generalization ability for new shots. Then, the computation results of

the multinodal model on the testing dataset are analyzed. The simulations show the over-

all performance of the multinodal model with the optimized diffusivities is better than the

original model. The multinodal model can track tendencies of experimental densities and

temperatures. It is found that the multinodal model performs better in shots with only one

power source than with multiple sources. Also, the model performance in the core node is

better than in the edge and SOL nodes. Other strengths and shortcomings of the multinodal

model are also visited.

For analyzing the thermal stability of the ITER, the multinodal model is applied for

ITER deuterium-tritium (D-T) plasmas. Firstly, several assumptions are introduced to sim-

plify the model, and then particle and energy balance equations are given for the core and

edge nodes. The D-T fusion heating is included with a reasonable time delay between

fusion alpha heating to electrons and ions. The impurity radiation, bremsstrahlung, and

ECR are considered. Also, the particle and energy transport between the core and edge are

revisited. Both inductive and non-inductive scenarios are simulated, with time-dependent

powers and energy flows presented. The simulation results indicate that radiation and trans-

port processes are strong and fast enough to remove extra core energy from fusion alpha

heating and prevent potential thermal instability. Moreover, sensitivity analyses for diffu-

sivities, ECR parameters, impurity fractions, and IOL timescales exhibit the reliability of

simulations. No tendency suggests the possibility of the fusion thermal excursion in our

research.

6.2 Future Research

For evaluating the multinodal model for ITER, it is crucial to perform a similar analysis

for the deuterium-deuterium (D-D) phase of ITER to prepare a model for the deuterium-

tritium (D-T) phase of ITER. Besides that, more future research can be done to improve

the multinodal burning plasma dynamics model. We will discuss several potential direc-
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tions for multinodal model improvements. Lastly, a framework for the multinodal model

application in the burning D-T plasma control is proposed.

6.2.1 Improvement Directions of the Multinodal Model

The applications of the current multinodal model to DIII-D and ITER plasmas show its

limitations and shortcomings. It is necessary to obtain a more accurate and delicate model

in further work. The framework of the multinodal model can be developed in the following

directions:

• More regions: The current research only considers the core, edge, scrape-off layer

(SOL), and divertor regions of a tokamak. The model can also include the private flux

region (PFR), plenum, and other tokamak regions. The transport processes among

the SOL, divertor, PFR, and plenum have been shown to be essential in modeling

practical tokamaks [65, 56, 66, 94], which should be considered in the future.

• More species: The current research only includes deuterons, tritons, alpha particles,

electrons, and several impurities in the multinodal model, which are usually enough

for an approximate model of deuterium-tritium (D-T) plasmas. However, more im-

purities might be needed when the wall effect is considered. The list of species in

the multinodal model can be determined by the gas puffing, pellet injection, fusion,

atomic and molecular reactions, and wall conditions.

• More dimensions: The current research only models each toroidal shell as one node

since the main spatial dependence of plasma energy transport processes is essen-

tially the radial direction [12]. However, the divertor in tokamaks can introduce vis-

ible poloidal asymmetry in the plasma temperature distribution. Hence, one toroidal

shell can be divided into multiple nodes at different angles, and the current one-

dimensional model can be developed into a two-dimensional model in the future.

• More fusion reactions: The current research only includes D-T fusion reactions.
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However, when the ion temperature is high enough, other fusion events [4] such as

D-D and D-3He reactions might also be worth considering.

• More atomic and molecular processes: The current research models the several

critical atomic hydrogen processes in the DIII-D SOL node, including the ionization,

recombination, charge exchange, and elastic scattering. More atomic and molecular

processes [60, 1] can be included in the multinodal model for simulating the SOL

and divertor nodes more accurately.

• More accurate deposition profiles: The current research applies predetermined par-

ticle source and power deposition profiles of the gas puffing, neutral beam injection,

and cyclotron heating. However, these deposition profiles can be obtained from the

experiment or relevant codes, such as ONETWO [95] and FREYA [96]. They will

allow the multinodal model to have more precise source terms when distributing the

external sources among different nodes.

• More accurate radiation terms: The current research implements fitting parameters

αn, αT , and βT from ITER profiles with a predetermined wall reflection coefficient

r for computing electron cyclotron radiation (ECR) [40]. However, these parameters

can be estimated from experiments or simulations since the ECR has been shown to

be important in the fusion plasma [11] during higher electron temperatures. Also,

when multiple impurity particles are included in the model, a more accurate impurity

radiation code such as ImpRad [97] can be utilized.

• Multi-groups of α particles: When simulating ITER D-T plasmas, alpha particles

are divided into two groups. The energetic alpha particles are only viewed as a heat-

ing source, while the lower energy alpha particles are modeled as an impurity species.

However, the energy distribution of alpha particles calculated by kinetic models [98,

99] is far from a Maxwellian distribution. Hence, a model of multiple energy groups

of alpha particles could be studied later.
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• Neutral particle transport: The current simulations of DIII-D plasmas use the pre-

assumed neutral particle density and temperature in the SOL. Nevertheless, a neutral

particle transport code such as GTNEUT [57, 61] can be used to compute neutral par-

ticle densities in the SOL, divertor, and plenum. Such a neutral particle computation

framework could be incorporated into the current model.

• More edge phenomena: The only edge phenomenon included in the current multin-

odal model is the ion orbit loss (IOL) [49, 51]. More plasma phenomena, such as

edge-localized modes (ELMs) [100], multifaceted asymmetric radiations from the

edge (MARFEs) [101, 102, 94, 103], and non-diffusive transport [104], can be con-

sidered in the future.

• More diffusivity formulas: This research applies a linearly exponential diffusiv-

ity formula. More diffusivity formulas, including high-order exponential diffusivity

formulas and neural networks, can be implemented and compared with the current

formula in the future. Those formulas can catch the interactions between different

physical values.

• Physical constraints: When the diffusivity parameters are optimized, the uncon-

strained optimization problem is solved, where only the mean squared error (MSE)

is minimized. More physical constraints between variables can be contained to pre-

serve physics during the optimization.

• Multivariate optimization: This research uses a sum of normalized nodal densities

and temperatures, where those physical variables are divided by proper constants

with units. Those constants are predetermined by the researcher’s experience. In the

future, these constants can be adjusted based on experimental conditions, and a better

diffusivity model may be obtained. Besides, the stopping criterion can be revisited

to find better minima of the MSE loss.
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• Adaptive-step stiff equation solvers: The multinodal model has been observed to

become stiff when external particle and energy sources change too rapidly. The cur-

rent research uses an adaptive-step ordinary differential equation (ODE) solver, the

Runge-Kutta of order 5 of Dormand-Prince-Shampine [78], which has been shown its

limitations for solving stiff equations for DIII-D plasmas. Specialized stiff equation

solvers, such as methods based on backward differentiation formulas (BDF) [105],

can be applied for solving stiff equations in the multinodal model in the future.

6.2.2 Burning Plasma Control

One potential application of the multinodal model is the burning D-T plasma control. When

particular nodal particle densities and temperatures are demanded, the multinodal model

can be used to obtain the required external particle and energy sources.

Here we use a simplified example for the illustration purpose. Suppose the multinodal

model only considers the core deuteron density and NBI power, i.e.,

dncore
D (t)

dt
= f(Dcore

D , P core
D,NBI, t). (6.1)

In previous chapters, we calculated the gradient of the loss between the measured particle

density and the simulated one over the particle diffusivity, i.e.,
∂Lcore

nD

∂Dcore
D

, and used it to update

the diffusivity. However, given one particular wanted ñcore
D , one can also compute the LnD

as the MSE loss between the given ñcore
D and the multinodal model solution ncore

D . Then, we

can use
∂Lcore

nD

∂P core
D,NBI

to update the NBI source term P core
D,NBI. At the end, we can get the required

NBI power changing with time.

The current GTBURN package can be modified for this burning control task. The

workflow chart is shown in the Figure 6.1. Similarly, the black arrows are the forward

directions to solve the multinodal model, and the blue arrows are the backward directions

to optimize the parameters. Now the nodal densities and temperatures are predetermined

142



by researchers, and the required particle and energy sources are undetermined. Once those

sources are initialized from empirical formulas, we can use the back propagation algorithm

with gradient descent to update these source terms. After the optimization is finished, we

can use these optimized sources to achieve the desired densities and temperatures. This

work can be done in the future.
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Figure 6.1: Workflow chart for the GTBURN for determining particle and energy sources,
where solid lines are for the forward flow to solve the problem and dash lines are for back
propagation to update undetermined particle and energy sources.
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APPENDIX A

ONE-NODAL BURNING PLASMA DYNAMICS MODEL

In this appendix, we introduce a one-nodal burning plasma dynamics model with a particle

and energy confinement time model. The code package, GTBURN, is used. Parameters

in the confinement time model are tuned by DIII-D experiment data. The tuned model

is compared with the original model with an energy confinement time from steady-state

regressions. Simulation results show the advantages of the tuned model and indicate im-

provement directions for future work.

A.1 Global Dynamics Equations

The one-nodal burning plasma dynamics model views the tokamak as a zero-dimension re-

actor, where space-dependent variables, such as densities and temperatures, are replaced by

volume-averaged ones. The zero-dimension volume-averaged particle and energy balance

equations [106, 10, 1] for the D-T fusion can be represented by

dni
dt

= Si −
1

2
n2
i 〈σv〉f −

ni
τP,i

, (A.1)

dnα
dt

= Sα +
1

4
n2
i 〈σv〉f −

nα
τP,α

, (A.2)

dnz
dt

= Sz −
nz
τP,z

, (A.3)

3

2

d

dt
(niTi) = Paux,i +

1

4
n2
i 〈σv〉f Uαi +Qie −

3

2

niTi
τE,i

, (A.4)

3

2

d

dt
(neTe) = PΩ + Paux,e +

1

4
n2
i 〈σv〉f Uαe −Qie − PR −

3

2

neTe
τE,e

, (A.5)

where ni, nα, and nz are volume-averaged ion, α particle, and impurity densities, Ti and

Te are volume-averaged ion and electron temperatures. Ions here are assumed to be half

deuterons and half tritons. Those terms on the right hand sides of the balance equations
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are particle and energy sources, where Si, Sα, and Sz are the ion, α particle, and impurity

external particle source;
1

2
n2
i 〈σv〉f and

1

4
n2
i 〈σv〉f are the fusion particle terms, where

〈σv〉f is the D-T fusion reactivity;
ni
τP,i

,
nα
τP,α

, and
nz
τP,z

are particle diffusion terms, where

τP,i, τP,α, and τP,z, are ion, α particle, and impurity particle confinement times; Paux,i and

Paux,e are auxiliary heating to ions and electrons; PΩ is the ohmic heating to electrons;
1

4
n2
i 〈σv〉f Uαi and

1

4
n2
i 〈σv〉f Uαe are the fusion energy to ions and electrons; Qie is the

Coulomb collisional energy transfer from electrons to electrons to ions; PR is the radiation

term; and
3

2

niTi
τE,i

and
3

2

neTe
τE,e

are energy diffusion terms, where τE,i and τE,e are ion and

electron energy confinement times.

In one DIII-D tokamak plasma modeled, ions are assumed to be full deuterons, where

tritons and α particles are neglected. Hence, the Equation A.2 will not be solved, and the

D-D fusion replaces the D-T fusion. Besides, instead of solving one particle balance for

electrons, we can get the electron density from the charge neutrality, i.e.

ne = Zini + Zznz = ni + 6nz, (A.6)

where the effective impurity particle is assumed to be the carbon due to its availability

in the DIII-D data. By using these impurity density data, we will not solve the Equation

A.3 either. Combining the above assumptions, we can list the simplified global dynamics

equations as follows:

dni
dt

= Si − Si,fus − Si,dif, (A.7)

3

2

d

dt
(niTi) = Pi,aux + Pi,fus +Qie − Pi,dif, (A.8)

3

2

d

dt
(neTe) = PΩ + Pe,aux + Pe,fus − PR −Qie − Pe,dif, (A.9)

where fusion and diffusion terms have been placed with symbols. All particle and energy

source terms have been modeled in the Section 2.3.
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A.2 Volume-Averaged Quantities

Since the dynamics equations to be solved are global in one tokamak but the available

density and temperature data from DIII-D are radius dependent, these physics quantities

need to be averaged over volume first. We take the electron density ne as an example here.

Suppose ne is symmetric in toroidal and poloidal axes, i.e., ne(ρ), where ρ is the normalized

radius. The volume averaged ne becomes n̄e = 1
V

∫
V
ne(ρ) dV . Instead of using one pre-

assumed profile function [10], we make use of the numerical integral. In a torus geometry,

n̄e =
1

V

∫
V

ne(ρ) dV

=
1

πρ2
a · 2πR0

∫ ρa

0

dρ

∫ 2π

0

ρ dθ

∫ 2π

0

(R0 + ρ cos θ)ne(ρ) dφ

=
4π2R0

2π2ρ2
aR0

∫ ρa

0

ne(ρ)ρ dρ =
2

ρ2
a

∫ ρa

0

ne(ρ)ρ dρ,

(A.10)

where ρa = 1 is the normalized minor radius, R0 is the major radius, and θ and φ are

poloidal and toroidal angles respectively. This integral will be done numerically with the

trapezoidal rule. Similar processes can be done for T̄e, T̄i, and n̄z. The averaged ion density

n̄i can be calculated from the averaged electron and impurity densities with the assumption

of charge neutrality in the Equation A.6. In the remaining of this appendix, we drop the

bars over physical quantities and assume ne, ni, nz, Ti, Te, etc. are volume averaged.

A.3 Particle and Energy Diffusion

Since most terms have been modeled in the multinodal model, we focus on the diffusion

term here. The particle and energy diffusion terms are

Si,dif =
ni
τP,i

, Pi,dif =
3

2

niTi
τE,i

, Pe,dif =
3

2

neTe
τE,e

. (A.11)
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The original method to get the confinement times is to use the ITER-98(y,2) energy con-

finement scaling law (ITER-98) [5], which is built on the regression over multiple tokamaks

data. The energy confinement time in the ITER-98 model is defined by

τ IPB98(y,2)
E

1 s
= 0.056

(
IP

1 MA

)0.93(
B0

1 T

)0.15 ( n

1019 m−3

)0.41
(

Ptot

1 MW

)−0.69

×
(
R0

1 m

)1.97

κ0.78A−0.58

(
M

1 amu

)0.19

,

(A.12)

where IP (MA) is the plasma current, B0 (T) is the toroidal magnetic field, ne (m−3) is the

line averaged electron density, Ptot (MW) is the total absorbed power, R0 (m) is the major

radius, κ is the elongation, A = R0/a is the aspect ratio, and M (amu) is the hydrogen

isotope mass (M = 2 here). The particle and energy confinement times can be gotten by

assuming τP,i = τE,i = τE,e = τE,98 ≡ τ IPB98(y,2)
E . In the next section, we will remove this

assumption by allowing each confinement time to have a model with different parameters.

A.4 Confinement Time Models

As mentioned before, in order to get the diffusion terms Si,dif, Pi,dif, Pe,dif, we need their

confinement times. In the previous work [10], the confinement times, τP,i, τE,i, and τE,e,

were modeled with a scaled ITER-98, i.e., τP,σ = CP,στE,98 and τE,σ = CE,στE,98, where

C multipliers are confinement-tuning parameters (CTPs). The CTP is formulated as

C = b1 + b2PNBI,vol + b3PNBI,counter-frac + b4PNBI,short-frac + b5PECH,vol + b6PFW,vol

+ b7q95 + b8q0 + b9IP,xsec + b10BT,0 + b11Si,GAS,vol + b12δdivertor

+ b13δnon-divertor + b14κ,

(A.13)

where physical quantities can be found in [10] and b1-b14 are fitted through experiment data

for τP,i, τE,i, and τE,e. This model requires physical quantities to be non-dimensional, and

additions of terms are not consistent with multiplications in the original ITER-98 model.
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Also, the previous work [10] presents results of energy confinement times and particle

confinement times separately, but not at the same time.

To overcome these drawbacks of the previous work, we model confinement times by

one tuned confinement time scaling law:

τ

1 s
= C

(
IP

1 MA

)αIP (B0

1 T

)αB0 ( n

1019 m−3

)αn ( Ptot

1 MW

)αPtot
(
R0

1 m

)αR0

× κακAαA
(

M

1 amu

)αM
,

(A.14)

where C, αIP − αM are model parameters to be obtained through fitting the experiment

data. By taking the natural logarithm in both sides, we can get

ln
( τσ

1 s

)
= lnCσ + ασ,IP ln

(
IP

1 MA

)
+ ασ,B0 ln

(
B0

1 T

)
+ ασ,n ln

( n

1019 m−3

)
+ ασ,Ptot ln

(
Ptot

1 MW

)
+ ασ,R0 ln

(
R0

1 m

)
+ ασ,κ lnκ+ ασ,A lnA

+ ασ,M ln

(
M

1 amu

)
,

(A.15)

where τσ can be τP,i, τE,i, and τE,e. Let

bσ = lnCσ, (A.16)

wσ =

[
ασ,IP ασ,B0 ασ,n ασ,Ptot ασ,R0 ασ,κ ασ,A ασ,M

]T

, (A.17)

ln x = ln

([
IP

1 MA

B0

1 T

n

1019 m−3

Ptot

1 MW

R0

1 m
κ A

M

1 amu

]T
)
. (A.18)

Then the Equation A.15 can be rewritten as ln
( τσ

1 s

)
= wT

σ ln x + bσ. If we put all three
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confinement times into one formula, we have

ln τ = ln





τP,i
1 s

τE,i
1 s

τE,e
1 s




=


wT
P,i

wT
E,i

wT
E,e

 ln x +


bP,i

bE,i

bE,e

 ≡W ln x + b, (A.19)

which can be viewed as a linear model. The model parameters W and b can be solved

through back propagation algorithm, where the parameters are initialized by coefficients

from the ITER-98 model then optimized by the gradient descent algorithm. The details of

mathematical backgrounds and optimization algorithms can be found in the Section 3.3.

A.5 Computation Results

In this section, we simulate shots from DIII-D experiments with a tuned confinement time

model and compare its results with the original model. The GTBURN is used here for

both simulation and optimization. The shots used in this work are listed in the Table 4.1

which follow [10]. Those shots are limited to ELMing H-mode non-RMP (non-resonant

magnetic perturbation) shots with the standard magnetic field configuration. The shots are

divided into two datasets: one training dataset including 20 shots, in the Table 4.1 without

starts; another testing dataset including 5 shots, in the Table 4.1 with starts. The training

set is used to optimize the confinement time model, and the testing set is used to validate

the optimized model. In detail, the computational experiment is done as follows.

• Training: The dynamical system of the one-nodal model is solved on the training

set by following the black arrows in the Figure 3.1. The MSE is calculated, then

the gradients of error flow back by following the blue arrows in the Figure 3.1 to the

confinement time model. The parameters in the confinement time model are updated.

The settings for the optimizer are listed in the Table A.1.
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• Testing: The dynamical system of the one-nodal model is solved on the testing set

only in the forward direction. The solution is compared with the experiment mea-

surement.

Table A.1: Hyperparameters in the solver and optimizer.

Hyper-parameter Number

Solver absolute tolerance 10−5

Solver relative tolerance 10−3

Optimizer learning rate 0.05
Optimizer regularization rate 10−5

Training time step 0.2 s
Testing time step 0.02 s

Moving average window size 5
Training epoch number 20

After optimizing the time confinement time model with the training set, we get the tuned

coefficients, which are listed in the Table A.2, where the coefficients of the ITER-98 law are

also shown for the comparison. For density confinement times, the ion density confinement

time is found to be heavily dependent on the IP . Besides, the signs of coefficients of αn

and αPtot are flipped, which shows the physical dependency of the density confinement time

can be different from the energy one. For energy confinement times, the signs before αB0

and αM flipped, which shows a higher toroidal magnetic field can lead to a lower energy

confinement time in the H-mode. Also, the αIP for the τE,e becomes negative now.

Table A.2: Tuned coefficients in the density and energy confinement time scaling laws as
the Equation A.14.

C αIP αB0 αn αPtot αR0 ακ αA αM

τE,98 0.0562 0.9300 0.1500 0.4100 -0.6900 1.9700 0.7800 -0.5800 0.1900

τP,i 0.1076 1.9214 0.8653 -1.3130 0.4209 2.6744 0.6771 -0.0352 0.8391
τE,i 0.0494 0.6719 -0.0461 1.0544 -0.8528 1.8454 0.7878 -0.6815 0.0616
τE,e 0.0426 1.0045 -0.2126 0.6868 -0.4626 1.7194 0.5302 -0.7969 -0.0862

The MSEs of the ITER-98 model and the tuned (optimized) model are shown in the

Table A.3. Significant decreases of MSEs (over 92%) are found on the testing set after
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optimizing parameters on the training set. These results can prove the effectiveness of our

model. Although the confinement time model is trained on the training set, the optimized

modal can be generalized to solve the unseen shots in the testing set. This allows the

one-nodal model to be used for prediction tasks.

Table A.3: Mean square errors for shots in the testing set.

Mean Square Error (MSE)
Shot ITER-98 model Tuned model Relative decrease of MSE

131190 14.3232 1.1346 92.08%
140418 243.1307 1.2956 99.47%
140420 317.8486 1.6628 99.48%
140427 112.4497 2.3621 97.90%
140535 314.3537 0.4664 99.85%

Average 200.4212 1.3843 99.31%

The simulation results on the testing set are shown in the Figure A.1-A.5. The toroidal

magnetic field, plasma current, q95, particle and energy sources are shown in the Figure

4.1-4.29. For simulation results, the results from the original ITER-98 model are shown on

the left-hand side, and the optimized model ones are shown on the right-hand side. Also,

the ion and electron densities are shown on the first rows, and the temperatures are on the

second rows. The analyses for each shot are as follows.

• Shot 131190: After the optimization, the densities are close to the experimental mea-

surements, but the temperatures are lower than the measured ones. When the NBI

and ECH powers are supplied to the plasma, Ti and Te should be higher, which sug-

gests the αPtot can be higher, so larger power can lead to longer confinement time and

high temperatures. Another way is to add the PECH to the confinement time model

for modeling this positive effect on energies.

• Shot 140418: With the optimization, temperatures can catch the step jump, which

can be explained as the transition from L-mode to H-mode. However, the particle

density fails to do so, suggesting a switch term can be added to the confinement
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time model. When the plasma transits from L-mode to H-mode, the switch can be

turned on to increase the particle confinement time. Also, we can add the PNBI to the

confinement time model, which will allow it to model the jump in energy supply.

• Shot 140420: After the optimization, both density and temperature results improve

but are under-estimated. As mentioned above, we can add PNBI and PECH to the

confinement time model.

• Shot 140427: The bump shape of the density shows the particle source from the gas

is over-estimated. This problem can be solved by increasing Cgas hence decreasing

the Si,gas in the Equation 2.56. We also can let the Cgas be one learning parameter and

optimize it with experiment data.

• Shot 140535: The results improve after optimization. Similarly, we can add PICH to

the confinement time model.

In summary, by comparing the original and optimized results, we find we can add more

terms, such as PNBI, PECH, and PICH, to the confinement time model. Also, the Cgas in the

Equation 2.56 can be a learning parameter, which will be tuned by the experiment data.

A.6 Summary

In this work towards the one-nodal burning plasma dynamics model, we present the system

of equations at the beginning and the confinement time model next. The GTBURN package

is used for simulating DIII-D plasmas. Finally, the advantages and limitations of the one-

nodal model with the linear confinement time model are listed. Such drawbacks motivate

us to develop a multinodal burning plasma dynamics model as in the thesis.
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Figure A.1: Simulation results of the shot 131190, where n̂σ and T̂σ are from the one-nodal
model, while nσ and Tσ are from the experimental measurement.

2 4
0

2

4

n
[m
−

3
]

×1019 Shot 140418

n̂i

ni

n̂e

ne

2 4

t [s]

0

10

20

30

T
[k

eV
]

T̂i

Ti

T̂e

Te

(a) Before parameter tuning

2 4

2

3

4

5

n
[m
−

3
]

×1019 Shot 140418

n̂i

ni

n̂e

ne

2 4

t [s]

0.50

0.75

1.00

1.25

T
[k

eV
]

T̂i

Ti

T̂e

Te

(b) After parameter tuning

Figure A.2: Simulation results of the shot 140418, where n̂σ and T̂σ are from the one-nodal
model, while nσ and Tσ are from the experimental measurement.
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Figure A.3: Simulation results of the shot 140420, where n̂σ and T̂σ are from the one-nodal
model, while nσ and Tσ are from the experimental measurement.
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Figure A.4: Simulation results of the shot 140427, where n̂σ and T̂σ are from the one-nodal
model, while nσ and Tσ are from the experimental measurement.
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Figure A.5: Simulation results of the shot 140535, where n̂σ and T̂σ are from the one-nodal
model, while nσ and Tσ are from the experimental measurement.
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APPENDIX B

A GENERAL MULTINODAL MODEL FOR PLASMA TRANSPORT

In this appendix, the balance equations and transport terms for a general multinodal model

are derived. Unlike the multinodal modal proposed in the Section 2.2, this general model

does not specify the number of nodes.

B.1 Geometry

The geometry of the general multinodal model is illustrated in the Figure B.1, where each

node is a toroidal shell and each internodal surface is a torus surface. The rj is the minor

radius of the surfaceAj , and ∆rj,j+1 is the radial distance between two adjacent nodes j and

j + 1. Still, we use some notations for the set of ion species as I = {D,T, α, z1, z2, . . . }

and the set of species as S = { e } ∪ I. The particle balance equation is derived first, then

we move to the energy balance equation.

Volume Vj 
  
  
  
 

Volume Vj+1 
  
  
  
 

Volume Vj-1 
  
  
  
 

minor radius r

Node j-1 Node j Node j+1

Surface Aj-1

rj-1

Surface Aj

rj

Δrj,j+1Δrj-1,j

Figure B.1: A diagram for the general multinodal model, where each node is a toroidal
shell and each internodal surface is a torus surface.
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B.2 Particle Balance Equations

From the continuity equation [1] of the species σ in the fluid theory,

∂nσ
∂t

+∇ · Γσ = Sσ, σ ∈ S, (B.1)

where nσ is the particle density, Γσ = nσvσ is the particle flux, and Sσ is the net particle

source. By averaging the continuity equation in the node j, we have

1

Vj

∫
Vj

∂nσ
∂t

dV =
1

Vj

∫
Vj

Sσ dV − 1

Vj

∫
Vj

∇ · Γσ dV. (B.2)

where Vj is the volume of the node j. Define the volume-averaged particle density, net

source, and transport terms:

n̄(j)
σ =

1

Vj

∫
Vj

nσ dV, S̄(j)
σ =

1

Vj

∫
Vj

Sσ dV, S̄
(j)
σ,tran = − 1

Vj

∫
Vj

∇ · Γσ dV. (B.3)

Then, the volume-averaged continuity equation or the nodal particle balance equation is

dn̄
(j)
σ

dt
= S̄(j)

σ + S̄
(j)
σ,tran. (B.4)

Through the divergence theorem, the transport term becomes

S̄
(j)
σ,tran = − 1

Vj

∫
Vj

∇ · Γσ dV = − 1

Vj

(∫
Aj

Γσ · dS −
∫
Aj−1

Γσ · dS
)
. (B.5)

From the Fick’s law of diffusion, Γσ = −Dσ∇nσ, where Dσ is the diffusion coefficient

and ∇nσ is the density gradient. In toroidal coordinates, the density gradient [1] can be

written as

∇nσ =
∂nσ
∂r
r̂ +

1

R0 + r cos θ

∂nσ
∂φ
φ̂+

1

r

∂nσ
∂θ
θ̂. (B.6)
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We assume that the particle gradient has toroidal and poloidal symmetries on internodal

surfaces, i.e.

∇nσ =
dnσ
dr
r̂. (B.7)

Thus, the transport term becomes

S̄
(j)
σ,tran = − 1

Vj

(∫
Aj

Γσ · dS −
∫
Aj−1

Γσ · dS
)

= − 1

Vj

[
(Γσ,r)Aj Aj − (Γσ,r)Aj−1

Aj−1

]
.

(B.8)

The radial fluxes can be approximated by

(Γσ,r)Aj =

(
−Dσ

dnσ
dr

)
Aj

≈ −D(j)
σ

n̄
(j+1)
σ − n̄(j)

σ

∆rj,j+1

, (B.9)

(Γσ,r)Aj−1
=

(
−Dσ

dnσ
dr

)
Aj−1

≈ −D(j−1)
σ

n̄
(j)
σ − n̄(j−1)

σ

∆rj−1,j

, (B.10)

where D(j−1)
σ and D(j)

σ are the diffusion coefficients at the surface Aj−1 and Aj respec-

tively, and ∆rj−1,j and ∆rj,j+1 are the radial distances between locations of adjacent nodal

centers. Let internodal particle transport times be

τ j→j+1
P,σ =

Vj∆rj,j+1

AjD
(j)
σ

=
r2
j − r2

j−1

2rj

∆rj,j+1

D
(j)
σ

, (B.11)

τ j+1→j
P,σ =

Vj+1∆rj,j+1

AjD
(j)
σ

=
r2
j+1 − r2

j

2rj

∆rj,j+1

D
(j)
σ

, (B.12)

τ j−1→j
P,σ =

Vj−1∆rj−1,j

Aj−1D
(j−1)
σ

=
r2
j−1 − r2

j−2

2rj−1

∆rj−1,j

D
(j−1)
σ

, (B.13)

τ j→j−1
P,σ =

Vj∆rj−1,j

Aj−1D
(j−1)
σ

=
r2
j − r2

j−1

2rj−1

∆rj−1,j

D
(j−1)
σ

, (B.14)

where the torus shell volume is Vj = 2πR0 · π(r2
j − r2

j−1), the torus surface area is Aj =

2πR0 · 2πrj , and the R0 is the major radius. For the elongated plasma configuration, r2
j can

be replaced by the product of the semi-major radius aj and the semi-minor radius bj of the
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poloidal cross section. Hence, the transport term becomes

S̄
(j)
σ,tran = − n̄

(j)
σ − n̄(j+1)

σ

τ j→j+1
P,σ

− n̄
(j)
σ − n̄(j−1)

σ

τ j→j−1
P,σ

. (B.15)

Since there are relations between internodal particle transport times that

τ j+1→j
P,σ =

Vj+1∆rj,j+1

AjD
(j)
σ

=
Vj+1

Vj
τ j→j+1
P,σ , (B.16)

τ j−1→j
P,σ =

Vj−1∆rj−1,j

Aj−1D
(j−1)
σ

=
Vj−1

Vj
τ j→j−1
P,σ , (B.17)

the transport term can also be written as

S̄
(j)
σ,tran = − n̄

(j)
σ

τ j→j+1
P,σ

+
Vj+1

Vj

n̄
(j+1)
σ

τ j+1→j
P,σ

− n̄
(j)
σ

τ j→j−1
P,σ

+
Vj−1

Vj

n̄
(j−1)
σ

τ j−1→j
P,σ

. (B.18)

B.3 Energy Balance Equations

The energy conservation equation of the species σ [13] in the fluid theory is

3

2
nσ

(
∂

∂t
+ vσ · ∇

)
Tσ + pσ∇ · vσ +∇ · qσ = Pσ, σ ∈ S, (B.19)

where Tσ is the temperature (in the energy unit), pσ is the pressure, qσ is the heat flux,

and Pσ is the net energy source for the species σ. Let the energy density be Uσ =
3

2
nσTσ.

Combining the energy conservation equation with the particle one, we can get

3

2
nσ
∂Tσ
∂t

+
3

2
Γσ · ∇Tσ + pσ∇ · vσ +∇ · qσ +

3

2
Tσ
∂nσ
∂t

+
3

2
Tσ∇ · Γσ = Pσ,

3

2

∂ (nσTσ)

∂t
= Pσ − pσ∇ · vσ −∇ ·

(
3

2
ΓσTσ + qσ

)
.

(B.20)
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Since

Γσ = −Dσ∇nσ, qσ = −kσ∇
Tσ
k

= −χσnσcp,m,σ∇
Tσ
k

= −5

2
χσnσ∇Tσ, (B.21)

where kσ is the thermal conductivity, k is Boltzmann constant, cp,m,σ is the molar heat

capacity, and χσ is the thermal diffusivity, then,

∂Uσ
∂t

= (Pσ − pσ∇ · vσ) +∇ ·
(

3

2
DσTσ∇nσ +

5

2
χσnσ∇Tσ

)
. (B.22)

If we assume Dσ ≈
5

3
χσ [18] and let the new notations be

χσ ←
5

3
χσ ≈ Dσ, Pσ ← Pσ − pσ∇ · vσ, (B.23)

then,

∂Uσ
∂t

= Pσ +∇ ·
(

3

2
χσTσ∇nσ +

3

2
χσnσ∇Tσ

)
= Pσ +∇ · (χσ∇Uσ) . (B.24)

Let the volume-averaged energy density, net power, and energy transport terms be

Ū (j)
σ =

1

Vj

∫
Vj

Uσ dV, P̄ (j)
σ =

1

Vj

∫
Vj

Pσ dV, P̄
(j)
σ,tran =

1

Vj

∫
Vj

∇·(χσ∇Uσ) dV. (B.25)

The volume-averaged energy conservation equation or the nodal energy balance equation

becomes

dŪ
(j)
σ

dt
= P̄ (j)

σ + P̄
(j)
σ,tran, (B.26)

where we assume

Ū (j)
σ =

3

2
n̄(j)
σ T̄ (j)

σ . (B.27)
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By following a similar method as the particle balance equation, we can define energy trans-

port times as

τ j→j+1
E,σ =

Vj∆rj,j+1

Ajχ
(j)
σ

=
r2
j − r2

j−1

2rj

∆rj,j+1

χ
(j)
σ

, (B.28)

τ j+1→j
E,σ =

Vj+1∆rj,j+1

Ajχ
(j)
σ

=
r2
j+1 − r2

j

2rj

∆rj,j+1

χ
(j)
σ

, (B.29)

τ j−1→j
E,σ =

Vj−1∆rj−1,j

Aj−1χ
(j−1)
σ

=
r2
j−1 − r2

j−2

2rj−1

∆rj−1,j

χ
(j−1)
σ

, (B.30)

τ j→j−1
E,σ =

Vj∆rj−1,j

Aj−1χ
(j−1)
σ

=
r2
j − r2

j−1

2rj−1

∆rj−1,j

χ
(j−1)
σ

, (B.31)

where χ(j−1)
σ and χ(j)

σ are the thermal diffusivity at the surface Aj−1 and Aj respectively.

The energy transport term is

P̄
(j)
σ,tran = − Ū

(j)
σ − Ū (j+1)

σ

τ j→j+1
E,σ

− Ū
(j)
σ − Ū (j−1)

σ

τ j→j−1
E,σ

= − Ū
(j)
σ

τ j→j+1
E,σ

+
Vj+1

Vj

Ū
(j+1)
σ

τ j+1→j
E,σ

− Ū
(j)
σ

τ j→j−1
E,σ

+
Vj−1

Vj

Ū
(j−1)
σ

τ j−1→j
E,σ

.

(B.32)
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APPENDIX C

RADIAL ELECTRIC FIELD AND ELECTROSTATIC POTENTIAL PROFILES

In this appendix, we present the radial electric fields and electrostatic potentials for DIII-D

and ITER with their polynomial fitting formulas. These formulas are used for ion orbit loss

calculations in the Section 2.3.6

C.1 Radial Electric Field Profile for DIII-D

The radial electric filed fitting from a profile for DIII-D-like parameters [107] is

Er(ρ)(kV/m) =


−27ρ3 − 54ρ2 + 66ρ, 0 ≤ ρ < 0.85,

390125ρ4 − 1345748ρ3 + 1734828ρ2 − 990662ρ+ 211459, 0.85 ≤ ρ ≤ 1.

(C.1)

Also, the radial electrostatic potential can be integrated from

φ(r) =

∫ a

r

Er(r
′) dr′ =⇒ φ(ρ) = a

∫ 1

ρ

Er(ρ
′) dρ′, (C.2)

where a is the minor radius of DIII-D. Hence, the fitted electrostatic potential is

φ(ρ)(kV)

= a


6.75ρ4 + 18ρ3 − 33ρ2 + 6.12, 0 ≤ ρ < 0.85,

−78025ρ5 + 336437ρ4 − 578276ρ3 + 495331ρ2 − 211459ρ+ 35992, 0.85 ≤ ρ ≤ 1.

(C.3)
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C.2 Radial Electric Field Profile for ITER

The radial electric filed fitting from a predictive analysis of H-mode in ITER [108] is

Er(ρ)(kV/m) =


−71ρ3 − 47ρ2 + 119ρ− 10, 0 ≤ ρ < 0.925,

−776ρ+ 721, 0.925 ≤ ρ ≤ 1.

(C.4)

Also, the fitted electrostatic potential is

φ(ρ)(kV) = a


17.75ρ4 + 15.67ρ3 − 59.5ρ2 + 10ρ+ 14.32, 0 ≤ ρ < 0.925,

388ρ2 − 721ρ+ 333, 0.925 ≤ ρ ≤ 1,

(C.5)

where a is the minor radius of ITER.
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