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· to provide high quality students with a multidisciplinary graduate educational experience which is of the highest standard of
excellence recognized by the national academic community and which enables them to perform to their maximum potential
in a society with a technological base; and

· to sustain an international position of leadership in dynamic scientific research which is participated in by both students and
faculty and which is focused on areas of significance to the pulp and paper industry; and

· to contribute to the economic and technical well-being of the nation through innovative educational, informational, and
technical services.
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such as flotation deinking and bleaching with gaseous 
chemicals. These parameters can easily be measured in a 
transparent (i.e., gas/water) system by optical 
visualization and/or laser techniques [3-71. If the system 
is opaque, optical and laser techniques can only be 
utilized near the system boundaries, if at all. However, 
the walls encompassing the system can influence the 
information obtained and this information may not 
represent true conditions in the bulk flow. For these 
systems, resistivity or optical probes have been 
suggested, but they would be inadequate in a fiber 
suspension because the fiber could form entanglements 
around the probe tip. Therefore, alternative tools & 
techniques must be developed to characterize the bubble 
behavior in complex gas/liquid/fiber systems, such as 
flotation deinking cells. 

ABSTRACT 

Fluid mechanic issues related to effective 
contaminant removal by flotation are being addressed at 
the Institute of Paper Science and Technology. This 
review summarizes that research. A method to visualize 
gas flows in fiber suspensions is first reviewed and flow 
visualization results are shown. Gas holdup 
measurements in a fiber suspension are then discussed 
and selected results are outlined. Mixing studies in pulp 
suspensions are also detailed. Finally, flotation 
modeling efforts are briefly reviewed. 

Attempts to visualize these complex fiber 

air/water/fiber systems 

suspensions have been conducted by Walmsley [S] 
where water was replaced by clove oil to produce a 

is 

system that had the same refractive index as wood fiber. 

unknown. 
However, the applicability of these results to 

Additional 
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fluid mechanics, flotation, deinking, fluid flow, flash x- 
ray radiography, gamma densitometry, mixing, wax experiments have been performed to measure bubble 

size in dilute fiber systems of less than 0.5% 
consistency by weight by Hunold et al. [9]. Small 
samples were siphoned through a capillary tube from 
the experimental test cell and analyzed for bubble 
volume. The effective bubble diameter was then 
determined. Possible bubble coalescence in the 
siphoning procedure or capillary tube were not addressed 
in this study. Julien Saint Amand [lo] has also 
addressed the effect of bubble size on flotation, but 
bubble size was measured in a fiber-free system and 
assumed to not change when fiber was a&led to the 
flotation cell. We are developing alternative techniques 
to quantify flow characteristics and bubble size in fiber 
suspensions. 

1. INTRODUCTION 

Paper recycling is a complex issue where the main 
goal is to remove as many contaminants as possible 
while retaining as many fibers as possible. This is 
typically accomplished through a variety of separation 
processes, including screening, cleaning, flotation, and 
washing. In all of these processes, the understanding of 
the relevant fluid mechanic issues is critical for effective 
contaminant removal. This article reviews the current 
research program at the Institute of Paper Science and 
Technology (IPST) in the area of flotation deinking 
fluid mechanics, which has been ongoing for 
approximately four years. This program examines air 
bubble flow visualization and bubble size measurements 
in pulp suspensions at consistencies typical of flotation 
deinking, gas holdup measurements in a bubble column 
under various operating conditions, mixing in a fiber 
suspension and its relationship to contaminant size, and 
bubble/particle interactions and the development of a 
flotation deinking model. Stickies interactions and 
control [l] and flotation deinking chemistry [2] are also 
being addressed at IPST but will not be included in this 
review. 

2.1 Flash X-ray Radiography 

Radiation techniques offer the ability to penetrate 
opaque fiber systems without inserting flow-altering 
probes. Flash x-ray radiography (FXR) is an x-ray 
imaging process where an intense burst of radiation is 
produced for a fraction of a second to record dynamic 
events on film that may be obscured by dust, smoke, or 
light, conditions that would make conventional high- 
speed photography impossible. FXR also allows for the 
recording of images of inclusions or voids inside opaque 

2. BUBBLE VISUALIZATION objects that are part of these dynamic events. 
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The application of FXR to air/water/fiber flows is between each x-ray position are due to film placement
justified because water and wood fibers have similar restrictions on the bubble column. The actual image
densities, whereas the density of air is considerably area of the column interior is 20 cm x 20 cm. The
different from water and wood fiber. Water also has a radiographs, as shown in the format presented here, have

linear x-my attenuation coefficient (a measure of x-my some loss of detail as a result of electronic digitization
absorption) three orders of magnitude larger than air, and and reduction, but the images are representative of the
a suspension of wood fiber and water should absorb x- originals, which are available at IPST. All observations
rays in a similar manner, unless the water or fiber has and measurements in our studies are based on the
been treated with special radioactive materials. Hence, original images.

water and wood fibers will absorb x-rays at a similar · Figure 2a corresponds to an air injection flow rate
rate, but at a significantly different rate compared to air. of 0.5 slpm (standard liters per minute) and shows

FXR has been used periodically over the past 10 discrete air bubbles (the dark regions) rising through the

years at IPST to study areas relevant to the pulp ard water column in a well-dispersed fashion. This flow
paper industry. Farrington used FXR to study high pattern is typically referred to as bubbly flow [19].
consistency forming [11 ] and demonstrated that FXR is Upon close examination of each radiograph, the bubbles
a potentially powerful technique for the investigation of appear to be ellipsoidal in shape with a major axis
high-speed multiphase flows in general and concentrated length between approximately 2 and 5 mm, indicating
fiber flows in particular. He extended this technique to the bubbles are fairly uniform in size compared to other
investigate sheet formation and quality [12] and black test conditions (i.e., Fig. 2c). The observed bubbles are
liquor spray formation [13]. Triantafillopoulos and not spherical because drag forces tend to deform the
Farrington [14] further extended this technique to bubble shape. Although the bubbles may differ
visualize flow ' phenomena in opaque coating considerably from tree ellipsoids, they are commonly
applications. Finally, Zavaglia and Lindsay [15] applied classified as ellipsoidal [3]. The air/water flow patterns
FXR and an x-ray tracing fluid to visualize fluid motion observed at 0.5 slpm continue throughout the column
during impulse drying. These processes are similar in height, with negligible evidence of bubble coalescence.
that the events of interest typically occur at high speed These observations are also confirmed by visual

and the region of visual interest is obscured - a examination of the air/water flow characteristics before
condition that is ideal for FXR application, and after the radiographs were taken.

We recently utilized FXR to visualize air flows in a Increasing the air injection flow rate to 2.0 slpm
suspension of unprinted old newspaper (ONP) at various (Fig. 2b) results in the appearance of many more
consistencies and air flow rates [16-18]. This was bubbles. Some of the bubbles appear to be clumped

accomplished in a quiescent rectangular bubble column together in groups, and it is hypothesized that these
(no bulk fluid exchange) depicted in Fig. 1, which had bubble groups will coalesce to form a single larger
interior dimensions of 20 cm wide by 2 cm deep, ard bubble if the thin liquid film between the bubbles has
was 100 cm high. Air was injected at the base of the sufficient time to thin and rapture before the bubbles
column through nine evenly spaced holes. A single 20 break the surface. Additionally, some larger bubbles are
cm x 25.2 cm x-ray negative was exposed during the 30 also observed which are more than likely formed by the
nanosecond discharge of the x-ray unit, freezing the coalescence of these groups of smaller bubbles.
image on film. Composite images were formed at three Coalescence is further verified by the observations of
column locations to gather qualitative results of the gas more larger bubbles being recorded at Position 3 than at
flowconditions. Position 1. Hence,they coalesceas they rise through

the column. The flow regime associated with this air
2.2 Bubble Flow Observations injection rate is still considered bubbly, or beginning

the transition from bubbly flow, because the flow
Figure 2 displays composite radiographs obtained remains predominantly homogeneous.

in an air/water system at three different air injection
rates, where the arrows at the base of each column At an air injection flow rate of 15 slpm (Fig. 2c),

represent the relative locations of each air inlet hole. the flow is now considered to be chum-turbulent [19],
The x-rays of each column represent the composite of characterized by a heterogeneous flow of rather large
individual x-rays taken at one of three positions in the bubbles that form by the coalescence of smaller
quiescent bubble column and at separate time intervals, bubbles, with some smaller bubbles still present
Position 1 and Position 3 correspond to the bottom and throughout the column. The large dark regions in these
top image, respectively. The gaps, or open areas radiographs correspond to single large bubbles. Some
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are formed at the column base as the air is introduced 
into the column at these high air injection rates. Others 
form as the bubbles rise through the column and 
interact with each other in this highly turbulent flow. 
At these high air injection rates, backmixing is visually 
observed in the column, where large bubbles (that may 
span the 2 cm column depth) travel up the central 
region of the column in a serpentine pattern and smaller 
bubbles adjacent to the walls travel downward, trapped 
in the backmixed flow around the oscillating rising 
channels of air. The smaller bubbles are eventually 
caught in the rising bulk flow. Backmixing is not 
captured on the radiographs nor is it recorded on 
photographs; however, it is possible to record this 
phenomenon by high-speed video analysis if the system 
is transparent. 

Adding 1% unprinted ONP to the system results in 
a significant change in the bubble flow characteristics. 
At an air injection flow rate of 0.5 slpm (Fig. 3a), there 
are preferential regions at the base of the column 
(Position 1) where the air bubbles rise and other regions 
are void of rising bubbles. This is a result of fiber 
network formation that restricts the rise of small 
bubbles. When a bubble is large enough to break 
through the fiber network, or a bubble finds a local 
region where no network exists, the bubbles rise. As 
they rise, they push the fiber aside creating local regions 
with a fiber consistency less than the average value of 
1% and other regions where the local consistency is 
greater than 1%. The locally low consistency regions 
have a low resistance to bubble rise, creating the 
preferential rise paths for the ascending bubbles. This 
phenomenon is typically termed channeling. Generally, 
the location of these preferential rise paths is not static 
due to the shifting of the fiber network caused by 
interaction with intermittent rising bubbles. For 
example, a small bubble may become trapped in a fiber 
network, but other rising bubbles may also get trapped 
and coalesce with the first bubble to form a resulting 
bubble large enough to break through the network. As 
it breaks through, the adjacent fibers are pushed aside, 
which may close a nearby preferential rise path and 
cause a new local fiber network to form. This new 
network will now trap bubbles in this region, and the 
process begins again. Therefore, the overall flow 
conditions within the column are more likely to be 
quasi-steady-state in nature. 

As the bubbles rise from Position 1 to Position 2 
in Fig. 3a, they become more dispersed, but there are 
stiil regions in the column deficient of bubbles. Bubble 
dispersion continues toward the top of the column with 
Position 3 showing the most uniform bubbly flow of 
the three locations recorded at this air injection rate. 

Figure 3b reveals the resulting flow patterns for the 
air injection flow rate of 2.0 slpm with an ONP 
consistency of 1%. Considerable coalescence takes place 
under these conditions and the resulting flow patterns 
are considered to be chum-turbulent. Therefore, 
increasing the fiber consistency results in an early 
transition to chum-turbulent flow. 

When the air injection rate is further increased to 15 
slpm (Fig. 3c), a very chaotic flow pattern is reoorded 
on the radiographs. Very large bubbles are observed due 
to the high coalescence rate. The resulting bubbles also 
vary in shape due to the highly turbulent nature of the 
flow field. In addition to the very large bubbles, some 
very small bubbles are also recorded. However, due to 
the small buoyant force associated with these bubbles, 
they are typically carried toward the column bottom due 
to backmixing. This is visually observed in the flow 
near the walls but not specifically recorded in the 
radiographs. 

As shown in Fig. 4 for Position 2 and an air flow 
rate of 2 slpm, increasing the fiber consistency from 0 
to 1.5% results in fewer but larger and more spherical 
bubbles recorded on the radiographs because the fibers 
enhance bubble coalescence. This is most significant for 
the given conditions at consistencies between 1 .O% and 
1.5%. The fewer, larger bubbles result in a significant 
reduction in the overall bubble surface area, which will 
be detrimental to any process where maximizing gas 
bubble surface area is important, such as flotation 
deinking or bleaching with gaseous chemicals. 

2.3 Ongoing Bubble Visualization Research 

Our initial FXR research has displayed that this 
flow visualization technique is a valuable tool to 
observe gas flows in opaque fiber suspensions. We have 
recently completed work using FXR to measure bubble 
size in an ONP suspension with a single air inlet 
comprised of a sparger or a small orifice in a gasket. 
Details of this research can be found in [20]. Additional 
FXR research that is currently underway includes 
investigating the effect of system chemistry, fiber type, 
and fiber length on bubble size. We are also pursuing 
research in other areas in a mill where the flow 
visualization of gas/liquid/fiber systems may provide 
valuable insight into the fluid flow conditions. 

3. GAS HOLDUP MEASUREMENTS 

Aeration ratios of 200.1000% have been reported 
for flotation deinking equipment [lo]. This value is 
defined as the volumetric gas flow rate compared to the 
volumetric slurry flow rate, and is easily controlled or 
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altered by adjusting either (or both) flow rates. 
However, these values do not necessarily correlate to 
effective flotation cell operation. Gas holdup (or void 
volume or void fraction), defined as the percent gas 
volume in a multiphase system, may be a more 
appropriate measure for flotation cell performance. Gas 
holdup may be influenced by the flow conditions, flow 
geometry, and fiber consistency, and is typically 
spatially dependent. Typical flotation cells operate with 
a gas holdup on the order of 10.20% [21]. However, a 
high gas holdup is not necessarily better. A uniform gas 
holdup created by bubbly flow conditions would be 
more desirable in a flotation cell because the air being 
introduced into the system would be uniformly 
distributed. In general, to identify optimum operating 
conditions, the magnitude and distribution of gas holdup 
in a cell would be needed, with a high, but uniformly 
distributed, value being most desirable. We are currently 
performing gas holdup studies in gas/liquid/fiber 
systems. 

3.1 Measuring Gas Holdup 

Gas holdup in a multiphase system can be nzcor&l 
with a variety of methods, including measuring the 
increase in column height when the gas is introduced 
[2 1,221, dynamic gas disengagement [23], pressure drop 
measurements [22], electric resistivity probes [4, 241, 
and gamma densitometry [21, . 24, 251. Gamma 
densitometry is a radiation technique in which the 
attenuation of a gamma-ray beam (caused by mass 
interference) between a gamma source and detector is 
recorded and correlated to the chord-average gas holdup 
value. Details of this technique can be found in [21, 24- 
261. This latter technique is being utilized at IPST to 
record gas holdup in fiber suspensions. 

3.2 Gas Holdup in ONP Suspensions 

Lindsay et al. [21] measured gas holdup in a 
cylindrical quiescent bubble column filled with 0, 1, and 
2% ONP fiber suspensions. Gas holdup values were 
less uniform and lower in the fiber systems, implying 
gas channeling and lower gas residency time in the 
suspension. Both conditions are detrimental to effective 
flotation deinking. Lindsay et al. [21] also completed 
gas holdup experiments in a cocurrent bubble column 
filled with either 0 or 1% ONP fiber suspensions. In 
these experiments, the 1% fiber suspension had a higher 
gas holdup than that nzcorded for the water system, and 
the gas holdup increased when the superficial liquid 
v&city exceeded the superficial gas velocity. Here, the 
superficial velocity represents the effective liquid or gas 
velocity in the column if only one constituent is 

present and is defined as the liquid or gas volumetric 
flow rate divided by the column cross-sectional area. 

An extension of this study has recently been 
completed in the identical cocurrent bubble column, 
which is depicted in Fig. 5 [26]. The bubble column 
was 1.5 m high with an interior diameter of 12.7 cm. 
Chord-averaged gas holdup values were determined at ten 
lateral and six vertical locations, while the superficial 
gas velocity (II,) was varied from 0.5 5 II, S 4.0 cm/s, 
the superficial liquid velocity (Q) was varied from 2.5 s 
II! 5 7.5 cm/s, and unprinted ONP fiber suspensions of 
0,0.8 and 1.2% were considered. 

Figure 6 displays typical chord-average gas holdup 
profiles obtained for the 0.8% ONP suspension, where 
the highest values were obtained in the center of the 
bubble column. As expected, increasing the superficial 
gas velocity increases the ‘gas holdup for a fixed 
superficial liquid velocity and column height. This was 
observed for all pulp consistencies, column heights, and 
superficial liquid flow rates. 

As air is injected into a bubble column, the 
bubbles rise from the injector ports. If the bubbles are 
not removed fast enough, they coalesce with other 
bubbles forming larger bubbles with a corresponding 
larger buoyant force and faster rise velocity. These large, 
fast rising bubbles tend to reduce the gas holdup when 
compared to well-dispersed small bubbles produced at 
the same air flow rate. For a fixed air flow rate, if the 
liquid flow rate in the bubble column increases, the 
faster flowing fluid removes bubbles from the injector 
port at a faster rate, which keeps the bubbles small and 
well-dispersed, as well as increases the amount of 
backmixing observed in the system. This results in an 
increase in the cross-sectional average gas holdup as the 
superficial velocity is increased. Figure 7 shows this 
trend for a column height of H = 50.8 cm for three 
superficial gas velocities (v~ = 0.5, 2.0, and 4.0 cm/s) 
and all consistencies considered by Schulz [26]. It is 
interesting to note that the consistency at which the 
maximum cross-sectional average gas holdup occurs 
depends on both the liquid and gas superficial velocities. 

This relationship is better depicted in Fig. 8 for a 
superficial gas velocity of 4.0 cm/s and a column height 
of 50.8 cm. For all considered conditions, the lowest 
cross-sectional average gas holdup occurs at an ONP 
consistency of 1.2%. When the superficial liquid 
velocity is 2.5 cm/s, the maximum cross-sectional 
average gas holdup occurs in the air/water system (0% 
consistency). However, when the superficial liquid 
velocity is 5.0 or 7.5 cm/s, the maximum cross- 
sectional average gas holdup occurs when the ONP 

p 



consistency is 0.8%. This interesting result will be using a microscope at 80x magnification to determine
further discussed in an upcoming publication [27]. the frontal areas and perimeters of all particles with

perimeters larger than 31.4 _tm. Wax particles with
3.3 Ongoing Gas Holdup Research smaller perimeters were discarded because, in addition to

Gas holdup measurements are important to the pulp consisting of a small fraction of all particles, they were
and paper industry and may not follow the trends often difficult to distinguish from the background.

typically observed in simple air/water systems. Equivalent particle diameters were then determined on
Therefore, we are interested in determining the effect of the basis of panicle projected area. Further details of

this technique can be found in [31,32].fiber type, fiber consistency, system chemistry, and
flow conditions on gas holdup in fiber suspensions.
These, and other important parameters, will be the focus 4.2 Synthetic Fiber Results

offutureresearch. Bose et al. [31] recentlycompleteda series of
mixing experiments using Nylon fibers. Fluid samples

4. MIXING IN FIBER SUSPENSIONS were taken from five tank locations and the impeller
speed was varied from 400 to 900 RPM, corresponding

During the paper recycling process, mixing, either to a tank Reynolds number based on impeller diameter
intentional or unintentional, occurs from the pulping to of 3.6 x 104 < Re_ < 8.1 x 10 4. Nylon fiber consistency
the papermaking process. For example, turbulence was also varied from 0 to 1% by weight. The resulting
increases the mixing effectiveness in a pulp suspension, particle size distributions were shown to be spatially
which will increase the number of bubble/particle homogeneous for all considered conditions in which the

collisions in a flotation cell. Depending on the process consistency was < 0.8%, confirming local isotropic
conditions (e.g., temperature, pH), the mixing rate may turbulent conditions within the mixing tank. At 1%
also alter the particle size of some stickie materials. We Nylon, the tank was stratified with the molten wax
are addressing this issue by performing experiments in a confined to the top of the tank.
mixing tank filled with various consistencies of fiber
suspensions and a small amount (by volume) of a Figure 10 displays the particle size distributions for
curtaincoatingwax, four different Nylon consistencies while the tank

mixing speed is fixed at 500 RPM. The data points

4.1 The Mixing Tank representthe percentageof particles in a particularsize
range, where at least 1100 particles were analyzed for

These experiments are conducted in a Standard each distribution. The panicle size distribution in water
Vessel Configuration (SVC) mixing tank [28, 29], (0%) is bimodal with the first peak around 20 gm and
where the impeller, baffles, and mixing chamber all the second peak near 120 gm. The reason for the
have specific dimensions relative to one another. Figure bimodality of the panicle size distribution is currently
9 is a schematic of the SVC mixing tank used in our unknown, but is has been reported by other
experiments, which is temperature controlled and has investigators [33, 34]. Adding Nylon fiber to the
the ability for air injection below the impeller blades to mixing tank, even in such dilute amounts as 0.1% by
simulateflotation, weight, considerablyalters the resulting particle size

Following the experimental procedures of Shinnar distributions. As shown, when Nylon fiber is present, a
[30], tests are conducted by heating the tank to 60°C, monomodal particle size distribution results, which
which is above the melting point of the curtain coating covers a smaller panicle size range as consistency
wax (~54°C) that was a:klxi to the tank. A small increases. Increasing the consistency also results in a
amount of Poly Vinyl Alcohol (~500 Ppm) was also decrease in the average wax particle size.

added to the mixture as a suspending agent. The molten Figure ! 1 shows the effect tank mixing speed has
wax globules reach a steady-state particle size on the wax particle size distribution for a fiber
distribution that depends on the tank operating consistency of 0.5%. Increasing the tank speed creates
conditions, such as fiber consistency and mixing rate. more uniform particle size distributions that shift to

Small liquid samples are then removed from the tank at smaller average particle sizes. This result is clearly
specified locations and rapidly quenched in cold water to revealed when the average particle diameter is plotted as
freeze the particle size in place. The effect of tank a function of tank mixing speed for four Nylon
operating conditions on wax panicle size distribution is consistencies (Fig. 12). Increasing the tank mixing
then determined throughimageanalysis of the resulting speed and Nylon fiber consistency both reduce the
particles [30, 31]. The image analysis was performed by average wax panicle size. However, differences between
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the 0.5 and 0.8% results ale small. The cause of the were originally developed for mineral flotation and are

particle size reduction as the mixing speed is increased described in detail elsewhere [35-38]. Only specific
is clue to higher shear conditions at the higher speeds, values used in this model are summarized below.
resulting in smaller panicles. The panicle size reduction The model for the overall flotation process can be
due to increased fiber consistency is not clear, but it is described by
hypothesized that the fibers prevent coalescence of the

molten wax panicles. Additionally, collisions between dnfp -- f f k2n _ (1)
molten wax particles and fibers may result in enhanced dt --klnpns +
particle breakup, yielding a smaller steady-state particle

f corresponds to the number of free particles insizedistribution, wherenp

· aunitvolumeavailabletoattachtoabubble,nf is the

4.3 Ongoing Mixing Research number of bubbles in the unit volume that are available

Some recycling processes may operate at or above for particle attachment, and n_ represents the number of
the melting temperature of specific contaminants, such bubbles with particles attached to it in the unit volume.
as wax. We are using this mixing research to understand The first term on the right-hand side represents the
what effect this has on these special contaminants, arrl overall probability that a free particle will successfully
are currently investigating if cellulose fibers alter the attach to a bubble that is initially free of particles and
particle size in the same manner that Nylon fibers do. can be likened to the death of free particles in a

population balance equation. The second term on the

5. FLOTATION MODELING right-hand side is a measure of the probability that the
bubble/particle aggregate will become unstable and split

Flotation deinking is a separation process in which to yield a "new" free particle in the unit volume and
swarms of air bubbles are injected into a relatively low represents a birth of free particles in a population
consistency pulp slurry so that hydrophobic balance equation. This term has not been explicitly
contaminant particles attach to the hydrophobic bubble included in previous flotation models (i.e., [10, 39-47]).
surface. After a stable bubble/particle aggregate forms,
the rising bubble carries the contaminant to the surface The kinetic constants k_ and k 2 are positive
where it is removed from the system. Although numbers described by the various microprocess
flotation cell designs vary with respect to their probabilities and the collision frequency:

geometry, flow configurations, and operating kl = ZP_P_P_P,_b (2)
parameters, they all operate on similar principles, which
have recently been reviewed [35]. These fundamental k2= Z'Pd_b = Z'(1 - P_b) (3)

principles have been applied to formulate a In Eq. (2), Z is related to the collision frequency which
mathematical model of the flotation deinking process, we take to have the form implied by the work of Liepe

and M6ckel [48], namely,
5.1 The Overall Flotation Model

The overall flotation deinking model is based on Z=27/9 5( £4/9 /( )2
the common assumption (see, for example, [35]) that 3 ! v1/302/3J Rp + RBk t t (4)

the flotation process is comprised of a series of x( ? 4/3 t, 14/9^,,4/3/1/2microprocesses that must occur sequentially to achieve x R 9Ap + xxB _laB /

successful panicle removal. These microprocesses
involve capture (or collision) of the panicle by the where vt and Pt are the fluid kinematic viscosity and
bubble, attachment of the particle to the bubble as it fluid density, respectively, e is the turbulent energy
slides over the bubble surface, the creation of a three- density, Rp and Rs are the particle and bubble radius,
phase contact, and the stabilization of the App = pp- Pt, ApB = PB -- Pt, and pp and PB are the

bubble/particle aggregate as it rises through the panicle and bubble density. Equation (4) would be
suspension. Each of these microprocesses has an applicable to flotation cells with agitation. Note that
associated probability that it will successfully occur, this expression differs from that presented in [36] by a

and are functions of the bubble and particle physical factor of nBnp, where nB and np are the total number of
properties (e.g., diameter, density), the fluid properties bubbles and particles per unit volume. The original
(e.g., viscosity, surface tension), and the system expression in [36] was adopted following the work of
properties (e.g., contact angle, turbulent energy density, Schulze [49, 50]. However, as recently pointed out by
bubble and panicle concentration). These relationships Julien Saint Amand [10], the Z in Eq. (2) should not



have the nBnpterm because it accounts for the collision s Based on new research, k2 in Eq. (3) is slightly

between free panicles ( nf) and free bubbles (nfB), which different from that previously presented (i.e., [36]).

f nf Based on dimensional considerations, k2 should have
are already incorporated into Eq. (1). Therefore, Z np units of 1/time, giving the second term on the fight-
is a tree collision frequency with units of number per hand side of Eq. (1) the units of number per unit time
unit time per unit volume, per unit volume, which is consistent with the other

In Eq. (2), P, represents the probability of collision terms. Since Pdestab (or Pstab) is a true probability and is
and is described by the expression from Yoon and unitless, an additional term has to be included in k2,
Luttrell [51] which we call Z' and has units of 1/time. This term

could be thought of as a collision rate between

4Re 'l R· Pc = + 15 J[,RB ) (5) bubble/particle aggregates and the "thing" that makesthe aggregate unstable, like a turbulent eddy. Current
research is directed toward quantifying this term.

where R% is the bubble Reynolds number defined by
As a first estimate, we argue that k2 < 1, based on

_ l)sdsPt
Res - , (6) the reasoningthat at most, the numberof free particles

_tt that could be generated at a given instant in time due to
the destabilization of the bubble/particle aggregate is

where _)Bis the bubble rise velocity, dB = 2RB, and gt is equivalent to n_, the number of bubbles per unit

the fluid dynamic viscosity. The probability of volume with attached particles at that instant in time.
attachment by sliding (P_) is determined from the This assumes that only one particle could attach to a
formulation ofSchulze [40] bubble, an assumption we are currently relaxing.

lc

P_ = sin2 q_cnt (7) Therefore, values of k2> 1 have no physical meaning.
Since 0 < Paest,b < 1, Z'Pde,t,b < 1. As a firstl

where q_cntis the critical position angle that may be approximation, we will assume that Z' = 1 (and has the
determined only by numerically solving the system of appropriate units of 1/time). This assumption will be
ordinary differential equations which govern the modified as we continue to research this area.

adhesion by sliding process [40]. This process is also Using the appropriate values for k_ and k2 outlined
discussed in detail in [35]. The probability of three- above, Eq. (1) can be solved to predict flotation
phase contact (Ptpc) is assumed to be approximately one efficiency as a function of time, the flotation efficiency
(i.e., Pt_: -- 1). The probability of stability (Pmb) is for a fixed flotation time, and the time period to redtK:e
determinedfrom [40,52] the number of free particles in the unit volume by a

1-exp(1 - 1--_-) (8) factor of two. An example of one such plot, based on
k, Bo') model predictions, of the flotation efficiency for a fixed

flotation time of 600 seconds (10 minutes) is shown in

where Fig. 13. This figure was generatedwith the fluid

Fd_hm,,t properties corresponding to those of water and the

Bo' = Fattachment (9) following parameters fixed: _B = 10 cm/s, pp = 1.3
g/cm a, _ = 50 dynes/cm, 0 = 60°, e = 10 W/kg, {},t =

with 60°,nB= 1000,andnp= 100.It is knownthat surface

2/ 1 tension and turbulentenergydensityaffect bubble size

1-9pp£_ [49, 53-55], but the specific relationship may be system

Fdetachment = 4R Appg + (gp + R s)_ dependent. We also know that the bubble rise velocity(10) will be a function of bubble radius [3], but this

(R s )(O) relationshipis unknownfor fiber suspensions. In the+3Rp 2c_ _ 2Rsptg sin 2 n_ calculations presented here, we have held both _ and _B
fixed and present Fig. 13 as an example of the type of

and resultsthatcanbepredictedwithourmodel.

( Figure 13 reveals thattheefficiencyis not veryF_mh,,e,t = 6_ sin _ - sin _ + (11) good for the indicated conditions. We believe this is the
result of two assumptions we initially incorporated into

where g is the acceleration due to gravity, c_ is the the model: a bubble can have only one particle attached
surface tension, and 0 is the contact angle, to it, and the total number of bubbles in a unit volume
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must be greater than the total number of particles. In 
actual flotation units, these assumptions are not likely 
to be true and the results presented here would provide 
the lowest efficiency predictions. We are currently 
addressing modifications to our first-generation model 
(Eq. (1)) to relax these assumptions. 

Figure 13 does reveal that for the two bubble radii 
considered, small particles are not removed very 
effectively. Increasing the particle radius results in an 
increase in the efficiency until a maximum is reached, 
which depends on the bubble radius, then the efficiency 
declines toward zero because the bubble/particle 
aggregate becomes unstable. The shape of these curves 
is similar to those typically presented when flotation 
efficiency is plotted as a function of particle size, where 
flotation is performed for a given time period [56, 571. 
Therefore, at least qualitatively, the model predicts what 
is typically observed in industry. 

5.2 Current Modeling Research 

The purpose of a flotation deinking model is to be 
able to predict separation efficiencies and general 
performance trends before full-scale experiments and 
mill trials are performed. However, model validation 
studies must be completed to determine the model 
effectiveness at predicting flotation performance. These 
studies are currently underway at IPST. In conjunction 
with model validation experiments, model 
improvements, as alluded to. above, are also being 
addressed. 

The microprocess probabilities that are incorporated 
in the model kinetic constants, k, and ka, and adopted 
from the mineral processing industry, also include 
specific assumptions. Details of these assumptions are 
found in 1351. Our current research is focusing on the 
probability of collision and the probability of 
attachment by sliding, where we are developing a more 
accurate model and a closed-form approximation for 
these expressions, respectively. 

6. CONCLUSIONS 

Flotation deinking is a very complex separation 
process. A considerable effort is being coordinated at the 
Institute of Paper Science and Technology to understand 
the relevant fluid mechanic issues involved in effective 
flotation. A technique to visualize gas flows in fiber 
suspensions at typical flotation deinking operating 
consistencies has provided great insight into what 
occurs in a fiber suspension when gas is injected. 
Bubble size measurements from the resulting images are 
possible, and are being used to determine how bubble 

This work was funded by the Member Companies 
of the Institute of Paper Science and Technology. Their 
continued support is greatly appreciated. Many other 
individuals also contributed to this research effort aKi 
include Dr. F. Bloom, Dr. M. Ghiaasiaan, Dr. K. 
Maruvada, Mr. P. Phelan, Ms. A. Emery, Mr. J. 
Monefeldt, Mr. T. Schulz, Mr. F. Bose, Mr. S. 
Omberg, and Mr. G. Smith. 
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Figure 2: Radiograph composite of the bubble flow patterns (the dark regions represent air
bubbles) in an air/watersystem at air injection rates of (a) 0._ slpm, (b) 2.0 slpm, and
(c) 1_ slpm.
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Figure 3: Radiograph composite of the bubble flow patterns (the dark regions represent 
bubbles) in an air/water/l% ONP system at air injection rates of (a) 0.5 slpm, (b) 2.0 
slpm, and (c) 15 slpm. 
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Figure 4: Effect of fiber consistency on air bubble flow patterns at Position 2 and an air injection
rate of 2 slpm.
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Figure 6: Chord-average gas holdup measurements at a column height of H - 50.8 cm for

various superficial gas velocities, a superficial liquid velocity of 7.5 cm/s, and an ONP
consistency of 0.8%.
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Figure 7: Cross-sectional average gas holdup measurements at a column height of H - 50.8 cm
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Figure 8: Cross-sectional average gas holdup measurements as a function of ONP consistency 
for a superficial gas velocity of 4.0 cm/s and a column height of 50.8 cm. 
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Figure 13: Flotation efficiency at t = 600 seconds as a function of particle radius, R_, for selectext· ° . . [J

bubble radii, RB. All other parameters are fixed at the mdmated condmons.






