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Annual Report for Georgia Tech's Participation 
in the NASA Advanced Design Program (ADP) 

Under the direction of Professors Dan Schrage and Dimitri Mavris, graduate students in the 
Aerospace Systems Design Laboratory (ASDL) have completed analysis of a High Speed Civil 
Transport (HSCT), with emphasis on conceptual and preliminary design using Response Surface 
Methodology (RSM). After completing courses in the School of Aerospace in areas such as 
Concurrent Engineering, Systems Design, and Life Cycle Cost, the student team for this year's 
ADP effort conducted their study of the integrated design of an HSCT. 

This integrated design approach focused on linking aerodynamic and propulsion design 
variables through the use of a Design of Experiments (DoE) technique. This technique allows for 
the rapid exploration of the design space for the purposes of modeling a physical phenomena (such 
as modeling drag as a function of geometry and flight condition) or optimization of a system level 
response (such as the yield per revenue passenger mile, $/RPM). The design team demonstrated 
the execution of both uses of DoE by performing a statistical regression on the data generated in 
order to form Response Surface Equations. These equations were then incorporated into the 
synthesis code FLOPS for a point design optimization with the $/RPM as an objective. Typical 
constraints for an HSCT (e.g. approach speed, takeoff and landing field length, and noise) were 
considered in the optimization. 

The results of this work was presented by the student team in June at the Annual ADP 
Conference, held this year at the Ohio Aerospace Institute adjacent to NASA Lewis in Cleveland. 
The presentation included a detailed description of the above as well as introduction to ASDL's 
general design methodology and specifics of the HSCT problem. 

The final report for this contract is being submitted simultaneously with this Annual 
Report. The final report documents the work of the student team in detail and provides a list 
references used. 
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Foreword 

This report documents work completed during Georgia Tech's third year of involvement 
with NASA's Advanced Design Program (ADP). The work herein was performed by the student 
team members under the advisement and coordination of Dr. Dan Schrage and Dr. Dimitri Mavris, 
Co-Director and Associate Director of the Aerospace Systems Design Laboratory (ASDL) in the 
School of Aerospace Engineering, respectively. The design team would like to take this 
opportunity to thank the following individuals for their valuable assistance: Florian Bachmaier, 
Andreas Hahn, Jae Moon Lee, Peter Rohl, Jimmy Tai, Bill Marx, and Jason Brewer. 

The· following individuals comprised-the 1995 Georgia Tech ADP Design Team. Listed 
with their names are the areas in which they were responsible for in the study. The team ]eader 
was Dan DeLaurentis. 

\ 
Juergen Baecher 
Oliver Bandte 
Dan DeLaurentis 
Kemper Lewis 
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Jose Sicilia 
Craig Soboleski 
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Executive Summary 

This report documents the efforts of a Georgia Tech HSCT Aerospace Student Design 
Team in completing a design methodology demonstration under NASA's Advanced Design 
Program (ADP). Aerodynamic and Propulsion analyses are integrated into the synthesis code 
FLOPS in order to improve its prediction accuracy. Executing the Integrated Product and Process 
Development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory 
(ASDL), this report describes an irnproved sizing process followed by a combined aero-propulsion 
optimization, where the objective function, average yield per Revenue Passenger Mile ($/RPM), is 
constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals 
for the team included successful demonstration of the application of RSM to parameter design, 
introduction of higher fidelity disciplinary analysis than normally feasible at the conceptual and 
early preliminary level, and, in sum, investigation of relationships between aerodynamic and 
propulsion design parameters and their effect on the objective function, $/RPM. 

This report develops a unique approach to aircraft synthesis in which statistical methods, 
specifically Design of Experiments and the Response Surface Methodology, are used to more 
efficiently search the design space for optimum configurations. In particular, two uses of these 
techniques will be demonstrated. First, response model equations will be formed which represent 
complex analysis in the form of a regression polynomial. Next, a second regression equation will 
be constructed, not for modeling purposes, but instead for the purpose of optimization at the 
system level. Such an optimization problem with the given tools normally would be difficult due 
to the need for hard connections between the various complex codes involved. The methodology 
put forward in this report presents an alternative using the above mentioned statistical approach, 
and is demonstrated via an example of aerodynamic modeling and planform optimization for a 
High Speed Civil Transport aircraft. 

I. Introduction 

Over the past few years, much research has taken place on the topic of how best to design 
complex aerospace systems. Much of this effort has been conducted under the general term of 
Multidisciplinary Design Optimization (MDO). MDO has been defined as "A methodology for the 
design of complex engineering systems that are :governed by mutually interacting physical 
phenomena and made up of distinct interacting subsystems" .1 One of the earliest and most wel1 
known approaches to executing :MOO was through the Global Sensitivity Equations approach, 
where "what if' questions are answered through so-called system sensitivity derivatives which 
relate a system response to changes in design variables, including the interactions of the disciplines 
involved. Examples are seen in References 2 and 3, though there are numerous others. The 
strength of the GSE lies in the determination of interactions between disciplines in a structured and 
logical manner. These interactions, represented as sensitivities, can then be used as gradient 
information in a traditional optimization exercise. The GSE approach, though, provides only local 
gradient information and some of the derivatives may be difficult to calculate. Malone and Mason 
have used the GSE approach in combination/coordination with other techniques and tools in an 
attempt to improve on some of the shortcomings and give more insight to the designer.4 However, 
for vehicle synthesis (a truly multidisciplinary problem), with numerous interacting disciplines, 
many design variables (both continuous and discrete), and often times relatively inaccurate 
contributing analysis, an effective and comprehensive methodology has not emerged. 

This report describes some new developments which fonn the , initial execution of an 
evolving Integrated Product and Process Design (IPPD) approach. Traditional sizing is performed 
with somewhat rudimentary tools due to the impracticability of connecting complex codes together 
into an iterative sizing code. The use of statistical techniques in the proposed method allows for 
more flexibility in searching a design space by representing large amounts of knowledge (e.g. 
complex, expensive analysis codes or physical experiments) via response surface equations 
(RSEs ). Caveats in the use of statistical approximations in the replacement of complex analysis 
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include accuracy and scope issues. How well the fitted equations represent the given data will be 
important in determining the validity of the results. Also, the RSEs are valid only in the design 
space (multidimensional region bounded by the range extremes for each design variable 
considered) for which they were formed. Thus, they will only produce designs which are 
"conventional" in so far as conventional is defined by the size of the design space chosen. These 
issues will be revisited throughout the remainder of this report. 

The approach put forward in this study addresses a multidisciplinary problem (the 
synthesis of an aircraft) from an Integrated Product and Process Design (IPPD) perspective, where 
the recomposition portion of the synthesis is executed using Design of Experiments (DOE) and the 
above mentioned RSEs. These techniques allow for the introduction of more accurate contributing 
analysis into the synthesis and sizing process. RSEs have been used in the aerospace field over the 
past several years by several groups.5

·
6 A key development presented here, however, is that a 

systematic plan for incorporating RSEs directly into a vehicle synthesis code as "model" equations 
has been developed. This process is demonstrated by modeling the mission aerodynamics (i.e. 
vehicle drag as a function of planform shape, overall geometry, and flight condition) via RSEs, 
incorporating these RSEs into a synthesis code, and then using this modified code to conduct a 
system rather than discipline level optimization. The key objective at the system level is 
affordability. 

II. IPPD Approach to System Recomposition 

The Georgia Tech IPPD methodology can best be viewed as a recomposition process, 
employed once the various parts of the problem have been broken down and analyzed. In order to 
do this recomposition in an meaningful way, Product and Process design variables and constraints 
must be considered simultaneously. Product characteristics are those that pertain directly to the 
subject of product design, such as geometry, materials, propulsion systems, etc. Process 
characteristics, on the other hand, refer to those items related to how the product is designed, 
produced, and sustained over its lifetime. A rational arproach to executing the integration process 
takes the form of a "Funnel", as illustrated in Fi ure 1 . 

Product Fcasibk conf~guralion . Process 

Figure 1: Systematic Recomposition 

In essence, the Funnel represents a concurrent recomposition process in which all of the 
various disciplinary interactions, ideally, are accounted for during "synthesis", or recomposition. 
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In reality, as this is a developing n1ethodology, smaller parts are tackled first in order to discover 
the strengths and weaknesses of the method. For this study, the aerodynamic and propulsion 
disciplines were examined in detail, with stability and control introduced as constraints, and 
structures considerations being linlited to component weight estimation based on historical data 
compiled in the sizing code FLOPS (FLight OPtimization System). The first level in the fur.mel 
represents fundamental design variables in each category. These are the parameters available to the __ 
engineer in formulating configurations. The next step, the introduction of RSM, is the newest 
innovation in the approach, and its importance lies in two facts. First, it allows the formation of 
response equations which can be used to replace complex simulation codes needed to arrive at a 
point design optimum. Second, as is illustrated at the bottom of the figure, once economically 
viable alternatives are synthesized, these RSEs can be used to obtain the discipline metrics, such as 
LID or SFC, which correspond to the optimal configuration. After the equations are formed, this 
discipline level information is used to perform system synthesis (with appropriate constraints) 
through the use of FLOPS. What is thus obtained are the various design variable settings which 
correspond to the point design optimum (i.e. one aircraft configuration) and a corresponding 
$/RPM value. The $/RPM (dollars per Revenue Passenger Mile) is the selected Overall Evaluation 
Criterion (OEC) for commercial aircraft. The $/RPM represents the ticket price, on a per mile 
basis, that an airline must charge in order to achieve a specified return on investment (ROI) for 
itself and the manufacturer of the aircraft. Unfortunately, this optimal result for the OEC can never 
be achieved exactly due economic factors of which the designer cannot control, such as market and 
airline considerations. These economic factors introduce a distribution for $/RPM that 
subsequently is used to determine if economic viability has been achieved (based on a the needs of 
the airline and manufacturer) or if a design iteration (see bottom, right of figure) is necessary. 

The need for disciplinary approximations becomes evident in Figure 1, as the connection of 
complicated analysis tools (e.g. CFD for aerodynamics, FEM for structures, cycle analysis for 
propulsion, etc.) from each discipline would be impractical. Common design variables, if they 
exist, between areas can be represented as noise factors in the formation of particular RSEs. For 
example, the position of the engine nacelles, a decision made by the propulsion and stability 
person, is kept as a variable in the aerodynamic model equation formation. 

III. Desi2n of Expt:~riments and the Response Surface Method 

Understanding the characteristics of the design space and behavior of the proposed designs 
as efficiently as possible is as important to the designer as finding the numerical optimum. This is 
particularly true for complex aerospace systems which require multidisciplinary analyses, a large 
investment of computing resources, and intelligent data management. Although automated iterative 
optimization programs are useful (in that they are readily applied to engineering design in general), 
their drawbacks include an inability to exploit domain knowledge and high sensitivity to the 
manner in which a problem is fommlated. In addition, due to the iterative nature, a significant 
amount of information is used merely in an intermediate step in the iteration process and is lost 
when the optimization run is finished. 

The Response Surface Methodology (RSM) comprises a group of statistical techniques for 
empirical model building and exploitation. By careful design and analysis of experiments, it seeks 
to relate a response, or output variable, to the levels of a number of predictors, or input variables. 
In most cases, the behavior of a rneasured or computed response is governed by certain laws 
which can be approximated by a deterministic relationship between the response and a set of design 
variables; thus, it should be possible to determine the best conditions (levels) of the factors to 
optimize a desired output8

• Unfortunately, many times the relationship between response and 
predictors is either too complex to determine or unknown, and an empirical approach is necessary 
to determine the behavior. The strategy employed in such an approach is the basis of the RSM. In 
this current application, a second degree model of the selected responses in k-variables is- assumed 
to exist. A notional example of a second order model is displayed in Figure 2 for two variables x 1 
and x2. 
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Figure 2: Second Order Response Surface Model 

The second degree RSE takes the form of: 

Jc Jc Jc 

R = bo + L b;X; + L biixi2 + LL bijxixj (1) 
i=l i=l i<>j 

where, bi are regression coefficients for the first degree terms, bii are coefficients for the pure 
quadratic terms, bij are coefficients for the cross-product terms (second order interactions), and b

0 

is the intercept term. To facilitate the discussion to follow, the components of equation ( 1) are 
further defined. The xi terms are the "main effects", the xi2 terms are the "quadratic effects", and 
the xixj are the "second-order interaction terms". 

Once this equation is constructed from the sample data through a least squares technique, it 
can be used in lieu of more sophisticated, time consuming computations to predict and/or optimize 
the response R. If one is optimizing on R, the "optimal" settings for the design variables are 
identified (through any number of techniques) and a confirmation case is run using the actual 
simutation code to verify the results. Since the RSE is in essence a regression curve, a series of 
experimental or computer simulation runs must be performed to obtain a set of data for regression. 
One organized way of obtaining these data is the aforementioned DOE, which is used to determine 
a table of input variables and combinations of their levels yielding a response value (but also 
encompasses other procedures, like Analysis of Variance). There are many types of DOEs. Table 
1 displays a simple full factorial example for three variables at two levels, a minimum and a 
maximum (sometimes also described as "-1" and "+1" points). The response can be any of a 
variety of metrics (such as thrust, drag, pitching moment, weight, etc.), while the design 
variables(or control factors) define the design space. For the approach in this report, the factors 
become input variables to the analysis code, while the response is generally the desired output of 
the program. 

Table 1: Design of Experiment Example for a two-level, 23 Factorial Design9 

Factors 
Run 1 2 3 Response 

1 - - - Y1 
2 + - - Y2 
3 - + - Y3 
4 + + - Y4 
5 - - + Ys 
6 + - + Y6 
7 - + + Y1 
8 + + + -YR 

A statistical analysis can be performed using Analysis of Variance (ANOVA) with t-Tests 
in estimating the model parameters for the RSE. The same DOE approach can be used for 
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variables at three levels, requiring more runs to obtain the same information. On the other hand, 
evaluation of all possible combinations of variables at two or three levels increases the number of 
cases that need to be tested exponentially, and thus is not practical. In fact, testing these variables 
at three levels, their two extremes and a center point, would take a total of 531 ,441 cases for a 3 12 

factorial design. Table 2 illustrates that one way of decreasing the number of experiments or 
simulation runs required is to reduce the number of variables. But as Table 2 also displays, a 3 7 

full factorial design requires 2, 187 ruDS, which is still considered impractical for experiments or 
computer simulations. Hence, fractional factorial and second order model designs (of which the 
Central Composite is an example) are proposed as a more plausible means to perform experiments. 
Table 2 provides three examples. 

Table 2: Number of Cases Required for Different DOEs9 

DOE 7 12 Equation 
Variables Variables 

3-level, 2,187 531,441 3n 
Full Factorial 

Central 143 4,121 2n+2n+l Composite 
Box 62 2,187 -

Behnken 
D-Optimal 36 91 (n+ 1 )(n+2)/2 

Design 

Fractional factorial DOEs use less information to come up with results similar to full 
factorial designs. This is accomplished by reducing the model to only account for parameters of 
interest. Therefore, fractional factorial designs often neglect third or higher order interactions for 
an analysis (see RSE in Equation (1)), accounting only for main and quadratic effects and second 
order interactions. Thus, the model used in this report neglects third and higher order interactions 
and a tradeoff exists in fractional factorial designs. The number of experiments or simulations 
(often referred to as "cases") rises as the increasing degree to which interaction and/or high order 
effects are desired to be estimated. Practically, since generally only a fraction of the full factorial 
design number of cases can be run, high order effects and interactions are not estimable. They are 
said to be confounded, or indistinguishable, from each other in terms of their effect on the 
response. This aspect of fractional factorial designs is described by the resolution. Resolution III 
implies that main effects are confounded with second order interactions. Thus, one must assume 
these interactions to be zero in order to estimate the main effects. Resolution IV indicates that all 
main effects are estimable, though second order interactions are confounded with other such 
interactions. Resolution V or greater means that both main effects and second order interactions 
are estimable (though for Resolution V desips, third order interactions would be confounded with 
second order effects, hence must be zero )1 

• The example presented in Section IV will employ a 
Resolution V design for the generation of RSEs. Another possibility for reducing the number of 
cases is to give up the ability of accounting for replicates. Replicates are normally used to provide 
for the calculation of experimental error (as opposed to model fit error). Since we assume that our 
computer simulations are "exact" or repeatable, replicates are not needed for this application of 
DOE. 

As a general approach, a first DOE is performed in order to reduce the number of variables 
by identifying the contribution to the response of each variable considered. This exercise, termed a 
screening test, uses a two level fractional DOE for testing a linear model, thus estimating the main 
effects of the design variables on the response. It allows for an investigation of a high number of 
variables to gain a first understanding of the problem and the design space. A visual way to see 
the results of this screening is through a Pareto Chart1 1

, displayed in Figure 3. It identifies in a bar 
chart the most significant contributors to the response based on the linear equation generated from 
the DOE data. A line of cumulative contribution indicates which variables contribute how much. 
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By defining the percentage of contribution desired, the nurr1ber of variables needed to be carried 
along can be determined from the array of variables in the Pareto Chart. Usually, 7 to 8 variables 
are selected from the Pareto Chart to be carried over to the next step of generating the Response 
Surface Equation. 

Term 
lF 
$-Fuel 
ROI-A 
U-Comp 
ProdO 
"Pax 
E-TF 
LC 
ROI-M 
U1il 
R&S 
LabRate 
A-TF 
lnsur 
TAT 
Main! 

Scaled Estimate 
-0.0242133 
0 .02019050 
0.01529961 
-0.0093494 
-0.0082122 
-0.0071229 
0 .00690495 
0.00495633 
0.00471449 1 
-0.0046931 
0 .00347228 
0.00252888 
-0.0023878 
0 .00090584 
0 .00048753 
0.00036315 

.ll 

Figure\ 3: Pareto Plot - Effect of Design Variables on the Response 

Figure 4 illustrates for a sirnple two variable case the two steps of this approach and the 
different shapes of the response function. The two level, linear model of y as a function of x 1 and 
x 2 represents the screening test. Here it is seen that response y is not highly dependent on x 1• 

With this information, the actual generation of an RSE takes place only with x 2 but in a quadratic 
model setting. By reducing the nu:mber of variables considered, the order of effects estimable in 
the RSE is increased. The payoff, of course, is for cases for numerous variables. Unfortunately, 
the process can be 'depicted visually only for the simple two variable case. 

y 

xl 

Two-Level, Linear Screening Three-Level, Quadratic RSE 

Figure 4: Two Steps Towards Response Surface Equations 

After identifying the variables to be cariied through to an RSE, a particular type of OOE 
must be selected. For the purposes of this study, the Central Composite Design (CCD)(Figure 5) 
was selected to form the RSE. The particular CCD chosen is a five level composite design formed 
by combining a two level full or fractional factorial design with a set of axial or star and center 
points as described in References 8 and 12. It is an economical design in terms of the number of 
runs required, as Figure 5 illustrates by displaying a design for three variables as a cube with star 
and center points. The distance between axial points describes the extents of the design space. 
The points on the comers of the cube, on the axis, and in the center of the cube are additionally 
examined points as identified by the DOE scheme of levels for each variable. The center provides 
multiple replicates, for estimating experimental error, which is assumed non-existent for 
simulation-based analysis. Hence, just one replicate is required for the center point. 
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o Full factorial points 
0 Center point 

• Star points 

Figure 5: Central Composite Design Illustration for Three Variables 

Finally, with the Central Composite Design in hand, an RSE can be obtained by using 
Equation ( 1) as a model for regression on the generated data. Unlike for true experiments, a 
statistical environment without any error can be assumed, so that all deviations from the predicted 
values are true measures of a model fit. A lack of fit parameter for the model expresses how good 
the model represents the true response. A small lack of fit parameter usually indicates existing 
higher order interactions not accounted for in the model. Depending on the level of this lack of fit, 
a new design with a transformed model to account for these interactions should be used. 

IV. Example: Aero-Propulsion Optimization for an HSCT 

The methodology described above is best understood via a detailed execution example. 
This example, the synthesis and optimization of a High Speed Civil Transport, is developed in the 
rest of this report. Choosing a planform shape for a supersonic transport is a task that to this day 
is still a long and tedious one. The need for efficient performance at both sub- and supersonic 
cruise conditions exhibit immediately the presence of conflicting design objectives. Studies by 
Boeing and Lockheed during the 1970's for the SuperSonic Transport (SST) program looked 
extensively at this issue13

'
14

• Basically what emerged was that low aspect ratio, highly swept 
wings have low drag at M > 1, since the cranked leading edge serves to provide subsonic type 
flow normal to the wing leading edge. Unfortunately, such planforms are poor in subsonic cruise. 
Another option studied was the variable sweep wing, which, as the name implies, has the 
advantage of adapting to the flight condition. However, complications involving reduced fuel 
volume and weight and complexity penalties resulted in this concept never being seriously 
considered. The so-called double delta emerged as a compromise. Here the outboard panel helps 
retain some subsonic performance while keeping acceptable supersonic cruise efficiency 13

• The 
study carried out presently employs a DOE technique which models and examines planforms 
ranging from the pure delta (arrow) to the double delta. 

The trades involved in planform selection are complicated by the presence of design and 
performance constraints at the system level which are directly related to the wing. The limit on 
approach speed, for example, is mostly a function of wing loading. Similarly, fuel volume 
requirements impact the wing size since most of the fuel is carried in tanks located inside the wing 
structure. Both of these issues become sizing criteria and both tend to increase the wing in size. 
Of course, increased wing area br:ings with it higher induced and skin friction drag. Terminal 
performance at takeoff and landing (especially field length limitations) also presents a challenge. 
Increasing the low speed aerodynamic performance of the aircraft will reap benefits for noise 
control through reduced thrust and more modest climb rates. The HSCT will need its maximum CL 
at takeoff, and the use of high lift devices will play a major role in making that maximum as high as 
possible. Based on typical data from the SST studies, a configuration of flap settings ·was selected 
for the baseline aircraft in this example and the takeoff and landing polars were generated using the 
code AER02S 15

• 
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A. Problem Formulation 

The problem consists of using the new techniques outlined in Sections II and III in 
synthesizing and eventually optimizing an HSCT type aircraft for a given mission. Improved 
aerodynamic procedures over what is currently available in the synthesis code FLOPS are 
incorporated via RSEs. Finally, an RSE for the overall objective function ($/RPM) and several 
performance constraints are generated and a constrained optimal solution (using aerodynamic and 
propulsion design variables) is found. 

B. Fo1rming RSEs for Mission Drag 

The goal of introducing RSEs is to replace the existing drag calculation in the synthesis 
code FLOPS. Ordinarily FLOPS determines drag at a certain flight condition (i.e. Mach number 
and altitude) by one of three methods: internal calculations (based on the EDET aero prediction 
program16

), externally generated drag table, externally generated polar equation. Considering the 
functional form of the drag polar equation: 

(2) 

RSEs for Cno and k 2, are to be formed as a function of design variables and operational Mach 
number. Thus, the total drag for a given aircraft configuration will again be a function of Mach 
number and CL as well as design variables The first step in forming the response model equations 
is to first conduct a screening test. Even with the computational advantages brought by DOE, an 
excessive number of design variables can make the RSE generation expensive/difficult (See Table 
2). The design variables which are to make up the RSE model for vehicle drag must be the ones 
which have the most influence on the aerodynamic characteristics of the airplane and, perhaps most 
importantly, that the designer could control. A screening test is designed to identify the subset of 
design variables which contribute most to a given response (i.e. the variables for which the 
response has the highest sensitivity). To begin the screening process, a parametric wing planform 
definition scheme must be selected which encompasses the variety of wing shapes considered for a 
supersonic transport: from a pure arrow wing to a kinked double delta. This excludes, for 
example, fuselage length and diameter since these are given by the nurrtber of passengers to be 
carried. A summary of all the design variables selected can be found in Figure 6. 

Other Design Variables 
for the Aerodynamic Screening 

xwing 
lie at root 
lie at tip 

Nacelle Scaling 
Horizontal Tail Area 

CLDesign 
Root Airfoil (Joe. max. thiclm.) 
Tip Airfoil (Joe. max. thickn.) 

Nacelle X-location 
Wing Reference Area 

tX2.1) 

tXl.l) 

Planfonn Variables 
(Normauzed by Span) 

Y-.n.il 

Figure 6: Aerodynamic Design Variable Selection 

Choosing meaningful ranges for the design variables is critical. On the one hand, the 
ranges should be somewhat large to include the largest design space possible and increase the 
chances that the eventual optimal configuration is captured. On the other hand, the range must not 
be chosen so large as to reduce the prospects of a good fit of the RSE (second order polynomials in 
this example) to the actual highly non-linear response. 
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Additionally, there are physical restrictions which limit the range choices. For example, the 
wing at its aftmost location with longest root chord must not interfere with the horizontal tail. 
Table 3 shows a summary of all design variables with their chosen ranges. Recall that planfonn 
variables are nonnalized by span, selected based on review of past and present concepts, and _that 
the screening test is a 2-level (or linear) test. Since we are not interested in forming an equation 
just yet, the linear sensitivities are expected to do just as well in determining which are the most · 
important contributors. A sampling of some shapes investigated is shown in Figure 7. 

Table 3: Ranges for Aerodynamic Design Variables 

Variable Sv mbol s ower Bound Upper Bound 
KinkX-loc. XI 1.54 1.69 

[iploc. lcadin_g_ed! e X2 2 . 10 2.3 6 
lfip_l_oc. trailinl! ed~e X3 2 .40 2.58 
Kink loc. trailing edge X4 2 . 19 2.36 
[KinkY-Joe . Yl 0 .44 0.58 
~ootChord xs 2.19 2.50 
NaCelle (l) Y-Joc. I NAY! U .l.:> U.J:> 

I Nacelle (2 )_Y-loc. NAY2 0.45 0.5 5 
Nacelle X-1 oc . NAX 10 .30 16 .50 
Wine Area s 8500.00 ~ 500.00 
X-loc. ofWine XWING 0 .25 0.3 3 
/cRoot TCI 2 .70 3.30 
/cTip_ TCO 2 .30 2.80 

!':Jacelle Scaling NAC 1.00 1.20 
Area ol Hor. Jail l~lAJL 4UU.W ~- \XJ_ 

LDesie n ClDES 0 .08 0. 12 
RootAirfoil(loc. rrox . thickness) IAF 0 .50 0.60 

Figure 7: Variety of Planform Possibilities for HSCT Example 

Two 2-level experiments are conducted, one each for the two selected responses (C00, k2) and the 
results are visually inspected via the aforementioned Pareto Chart, an example of which appears in 
Figure 8 for the M=2.4 case as an example. 

Summary of Fit 
RSquare 0.837214 

Pareto Plot of Scaled Estimates 
Term Sc1led Estimate 
nal 0.00029964 
s -0 .0001615 
S-tail 0 .00013194 
nay2 -0 .0001070 
xwing 0 .00006539 
lei 0.00007739 
nay1 0 .00007450 

X5 0 .00006732 
V1 0.00003904 
X1 -0 .0000362 
teo 0 .00003049 
oal -0.0000234 

nax -0 .0000228 
X2 0 .00001656 
ial -0 .0000039 

X3 0 .00000256 
X4 0.00000036 

Figure 8: Screening of Aerodynamic Variables for C Do' Mach 2.4 
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As explained in Section ill, the important information in the Pareto Chart is the relative importance 
of each term, as illustrated graphically by the cumulative bar chart. The scaled estimates listed in 
the figure are actual regression coefficients for the linear equation formed, though this equation is 
not used. 

Table 4 shows some sample screening results for both sub- and supersonic screening. 
Often, screening tests confirm a designer's intuition as to which parameters are the important ones. 
However, some of the variables which turned out to be important would not have been recognized 
as such without the screening. For example, the area of the horizontal tail (ST Aa) is important for 
the drag due to lift at supersonic speeds. In this case, it is only due to the comparatively large 
range chosen for this parameter, since tail area, intuitively, should not contribute greatly to drag 
due to lift. Other variables, however, clearly proved their importance. For example the spanwise 
location of the kink (y 1) was the most contributing parameter for lift induced drag in the subsonic 
flight regime. This is basically the only reason for having a kink at all: The outboard wing section 
with low sweep angle is the main producer of lift in subsonic tlight whereas in supersonic 
conditions it only poses a drag penalty. Once the screening results are collected, the actual RSE 
generation is performed with the just identified most contributing parameters, leaving the others 
fixed at their nominal values. 

Table 4: Results of Screening Tests: 
The Important Variables 

Supersonic Subsonic: Supersonic Subsonic: 
k2 k2 Cno Cno 

Stail Yl Stail nal 

Yl XJ s YI 
XJ X2 tci XJ 

x3 xs xs x4 

xs x-wing x-wing x-wing 

CLdesign CLdesign CLdesign CLdesign 
nay 1 
nay2 

nal 

With the number of variables now shrunk to a manageable level, a new DOE is set up to 
generate the data to be used in forming the actual response equations for Cno and k

2
. Since drag 

varies with Mach number which itself varies throughout the mission, it was decided that including 
Mach nurnber as a variable in the RSE models for drag would add another nonlinearity to the 
already nonlinear model, thus complicating the fitting process. Therefore, RSEs for Cn and k 

0 2 
are to be formed for a series of Mach numbers covering the expected operational speed range of the 
aircraft. Thus, the total drag for a given aircraft configuration was again a function of Mach 
number and CL. So then, following the procedure outlined in Section III, a 5-level Central 
Composite Design is constructed and the resulting series of simulation runs are executed using the 
aerodynamic analysis tools listed in Appendix A. The data generated is used to form the second­
order polynomial RSEs for each of the two responses in the polar equation at and for the series of 
operational Mach numbers. A sample listing of the regression coefficients, or the "b0's", for one 
of the RSEs is shown in Figure 9 under the heading "Estimate". These are the actual coefficients 
which, along with the design variables, make up the RSE of the fonn of Equation ( 1 ). The other 
three columns contain data concerning the regression accuracy. 
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Parameter Estimates 

Term Esllmale Sid Error I Ratio Prob>llt 
l)lercept -5 .878813 5 .372921 -1.09 0 .2891 
X I 2 .3984876 2 .573549 0 .93 0.3644 
x3 2.3956492 2 .503083 0 .96 0 .3519 
y I -0.674068 1.963603 -0.34 0 .7356 
X 5 1.1983904 1.05529 1.14 0.2719 
S-Tail -0 .000415 0 .000745 -0.56 0 .5846 
CLDes 8 .6087716 6 .640273 1.30 0.2121 
x J•x 1 -0.933080 0.661597 -1.41 0.1765 
x3•x I 0.4738990 0 .484103 0.98 0 .3413 
x3' x3 -0.701553 0.459443 -1.53 0 . 1452 
y l'x I 2.240618 0.622419 3 .60 0.0022 
yl'x3 -1.013835 0 .518682 - 1.95 0.0673 
yl'yl -1.678383 0 .759487 -2.21 0.0411 
x5•x I -0 696132 0.281092 -2 .48 0.0241 
x5'x3 0.3819572 0 .2 34244 1.63 0 . 1214 
x.S'yl 0 5088605 0 .301170 1.69 0.1094 
x5'x5 -0 .257235 0.15490.1 -1.66 0.1151 
S-Tail'xl 0 .0003073 0 .000249 1.23 0 .2339 
S-Tail'x3 0.0000541 0 .000207 0 .26 0.7975 
S··Tail'yl -0.000355 0.000267 -1.33 0.2008 
S-Tait'x5 0.0000482 0 .000120 0.40 0 .6940 
S-Ta ii'S-Tail -1.814e -7 1.215e-7 -1.49 0 . 1538 
CLDes'xl -1.891504 2.178464 -0.87 0.3973 
CL0es'x3 -1.331705 1.815387 -0.73 0.4732 
CLDes'yl I. 7865949 2.334069 0.77 0.4545 
CLDes'x5 -0 .481944 1.054096 -0.46 0 .6533 
CLDes•s-Tail 0 .0002250 0 .000934 0.24 0.8124 
CLDes'CLDes -11.20019 9.303713 -1.20 0 .2451 

Figure 9: Response Surface Equation for k2 at M=2.4 

There are several ways to validate the accuracy of the RSEs. The first step always is to plot 
the obtained data. The Whole Model Test in Figure 10 is a plot of the actual response values for k

2 
over the predicted values, based on the second order model for the RSE at M=2.4. The straight 
line indicates a perfect fit, i.e. all predicted values are equal to the actual for the same levels of input 
variables. As illustrated in Figure 10, the model predicts the values fork quite well, since all data 

2 
points are rather close to the straight line. This model fit corresponds to an R-square value of 
0.973728. The R-square value is the square of the correlation between the actual and predicted 
response. Thus, and R-square value of one means that all the errors are zero (i.e. a perfect fit) 10

• 

The dotted lines indicate the confidence interval for the model, showing a small range with no 
points falling outside of this range. 

The Residual Plot on the right side of Figure 10 is an important verification for the 
assumption of normality for residuals or statistical error in the response. Hence, the residuals are 
plotted over predicted values for k

2 
based on the assumed model. A "cloud" of data points, 

indicating no particular pattern, proves the normality assumption for residuals. Hence, there is no 
reason to suspect violation of the normality assumption for the response k

2
• 

Whole Model Test 

0.590 0.600 0 .610 0 .620 0 .63 
k2(2 4) Pr~ed 

0 .003 

0 .002 

0 .001 

~ 0 .000 • a: ·0 . 00 I 

-0.002 

-0 . 003 

Restdual Plot 

. : . 
-- --- ~.,.. - .. -~ .. - .. -.... --

·.·· . 

• 0. 00. -+-r--r---r--r-t--r-"'T"""""i 
0 .590 0 .600 0 .610 0 620 

k2(2 .4) Pr..Ocred 

Figure 10: Whole Model Fit Test- A Validation 

C. Incorporating the RSE Approximations into the Synthesis Code 

FLOPS (FLight OPtimization System) is the code selected to perform the vehicle sizing 
portion of the design methodology shown in Figure 1. FLOPS, developed by NASA Langley 
Research Center, is an aircraft sizing code which is used as a multidisciplinary sizing tool to assist 
the user in his/her conceptual and preliminary design process16

• FLOPS contains nine modules for 
aircraft systems analysis: weights, aerodynamics, engine cycle analysis, propulsion data scaling 
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and interpolation, mission performance, takeoff and landing, noise footprint, cost analysis, and 
program control. However, FLOPS does not model the aerodynamic performance of cranked 
wing planforms (such as the ones under study here) very well, generally because its routines were 
tailored to typical subsonic type planforms. This was an additional motivation (besides the 
increase in aerodynamic analysis fidelity) for replacing the mission drag prediction with the RSEs. 
FLOPS does give the user the option to insert an externally derived series of polars. 
Unfortunately, these polars apply only to a single configuration. To analyze a new configuration, 
a whole new set of polars would have to be generated and inserted manually into the FLOPS input 
file. This, clearly, makes any attempt of planform optimization difficult. FLOPS does have its 
own optimization routine, which allows for the variation of aerodynamic shaping variables such as 
taper, sweep, aspect ratio, and wing area. But for wing shapes such as those seen in Figure 7, 
variables like aspect ratio (span squared over area) and sweep are not sufficient to uniquely define a 
cranked, variable sweep planform. 

The use of RSM overcomes the limitations of using a single aerodynamics deck for each 
corresponding configuration. The RSE drag models give the user the ability to optimize a 
configuration without regenerating aerodynamic decks (for each iteration) by representing the 
output of the aerodynamic programs with an RSE. It then becomes a simple exercise to evaluate the 
equation internally to find the new aerodynamic properties for varying flight conditions. In effect, 
the RSE has captured the essence of a complex external aerodynamics program with a set of 
equations which can be used as an internal module in FLOPS. This process is depicted below in 
Figure II. 

tc_ 
lk121 'ol•,., 

CDo •fati.M.rrorwl") 
K·f~M .• ~OMIII"l', CL) 
au.~edfr'oi-.,.,IJiis 

Response Surface &jualions 

C00 = b0 + L,bixi + Lbiixr+ .. . 

K2 = b0 + L,bixi + L,buxr+ .. . 

Synthesis Code 

ModifiedFWPS 
$Name/is1 and coding 

Figure 11: Incorporating Aerodynamic RSEs into FLOPS 

D. Constrained Aero-Propulsion Optimization 

Once the aerodynamic modeling process is complete, attention turns toward the system 
.level sizing/optimization problem. Revisiting Figure I, it is seen that once Response Surface 
Equations for the discipline(s) are :formed, the optimization process, given a mission definition, 
can proceed. Again, a DOFJRSM approach is employed, this time for the purpose of optimizing 
the system level response, $/RPM, (as opposed to the modeling function represented by the 
aerodynamic RSEs) given II design variables. After determining variable ranges, a DOE for the 
generation of simulation results had to be selected. Since eleven is a large number of variables for 
a Design of Experiments, the Central Composite Design (CCD) was selected to generate the 
minimum number of data points required to produce a quadratic estimation equation. Use of the 
fractional factorial CCD with eleven variables at 5 levels requires I5I simulation runs if an 
additional center point is added and the cube design has Resolution V (see Section Ill). 

FLOPS sizes the engine for the given cycle in order to fly the requiredHSCT mission. The 
cycle itself is defined by certain key parameters: the Overall Pressure Ratio (OPR), the Fan 
Pressure ratio (FPR), the Turbine Inlet Temperature (TIT), and the throttle ratio (TTR). The fan 
pressure ratios take into account the number of fan stages in order to account correctly for the 
manufacturing feasibility of the design (i.e. a fan with 2.5 stages would be impossible to 
manufacture). The engine cycle analysis capability in FLOPS is sufficient for modeling a Mixed 
Flow TurboFan (such as the one proposed here in the HSCT example) and it contains a fully 
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operational ability to optimize an engine for the four selected cycle variables above. Thus no 
Response Surface Modeling for propulsion responses was required. Compressor and turbine 
component maps, which describe the component's off-design performance, are generated 
externally and provided to FLOPS at run time. Other data such as control laws, correct component 
map addresses, engine cycle constraints, and engine configuration are provided externally as well. 

So then, based on experience gained during the aerodynamic RSE construction and 
previous supersonic transport concepts, the design variables and their ranges are selected and 
shown in Table 5. The ranges represent the range spanned by the star points of the CCD. Note 
that all variables used for this equation are either aerodynamic or propulsion variables. 
Incorporation of RSEs into the simulation process which capture the effect of structures, 
manufacturing, and stability/control was not part of this project. It is, however, an interesting and 
important topic for future research to fully complete the recomposition outlined in Figure 1. 

Tabl{\ 5: Design Variables for the Aero-Propulsion Optimization 

Aero I Prop. Lower Upper 
Variables Bound Bound 

X1 1.54 1.62 
X3 2.48 2.58 
Y1 0.50 0.58 

Root Chord 2.19 2.35 
Surface Area 8500 sq. ft 9500 sq. ft 
X-wing loc. 0.25 0.29 

Thrust I Weight 0.28 0.32 
Ratio 
TIT 3000 3250 
OPR 19 21 
FPR 3.5 4.5 
BPR 0.35 0.45 

Figure 12 illustrates the sizing mission which is a split subsonic-supersonic 6500nm profile 
consistent with the current requirernent of subsonic flight over populated land. The stages in 
Figure 12 are modeled in FLOPS, which then performs a fuel balance to achieve a converged_ 
aircraft gross weight. 

F.L. = I 1000 ft. 
S.D. & S.L. 

oo4 .. ~ ... 
SO n.m. 730 n.m. 

6500n.m. 

M=0.6 
25000 ft. 
30 min. 

DESCENT 

~~ ... 
100 n.m. 200 n.m. 

Figure 12: Typical HSCT Mission 

Using the CCD for the variables and their design ranges depicted in Table 5, the simulation 
runs are carried out. Through the linear regression approach, :a quadratic equation can be 
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established using least square estimators for the parameters. The optimization process is exhibited 
in Figure 13, displaying the DOE with 151 simulation runs for 11 variables from aerodynamics 
(x1, x3, x5, y1, XWING), propulsion (BPR, FPR, OPR, TIT), and class of the aircraft (T/W, S­
wing). These 151 cases represent 151 vehicle sizing problems in which the modified FLOPS code 
is used to size the vehicle and detennine the response, $/RPM, for each run. This data is then used 
to form a RSE for $/RPM as well as the constraints (V -app, Cma, Flyover and Sideline EPNL, 
TOFL, and LFL). These polynomials are then brought to a spreadsheet optimizer, where the 
objective function can be minimized in consideration of the polynomial constraint equations. 
Hence, the solution found is the constrained point optimal configuration for an HSCT within the 
design space specified by the ranges of the 11 variables and for the given mission. Finally, a 
confirmation run to validate results and obtain component weights is performed. These component 
weights, together with the mission parameters, describe the optimal configuration passed over to 
the economic uncertainty assessment. The actual execution of this assessment is not part of this 
report, but has been published under a similar study in Reference 7. 

The generation of both the aerodynamic RSEs as well as the just introduced overall 
objective RSE for $/RPM was accomplished via UNIX shell scripts, which managed the process 
of setting up input files, running the specified codes in remote shells, and parsing output files for 
the required response values. This process automation saved a considerable amount of time over a 
manual procedure of running hundreds of simulations from the command line. 

Propulsion 
(BPR , OPR, TIT, FPR) 

Sizing 
(T/W, S) 

Figure 13: Design Optimization Approach 

E. Validation 

Figure 14 displays two statistics and their validation. The Summary of Fit lists some 
characterizations of the least square estimation such as the RSquare (or RSquare Adjusted) value 
indicating the quality of fit of the data points to the estimated line (See Section III). As mentioned, 
a value of 1 denotes a perfect fit with all data points lying exactly on the regression line. So then, 
an R-square of 0.981485 (0. 961956) indicates a very good fit for the objective function $/RPM. 
The Root Mean Square Error (RSME) is the standard deviation around the mean of the response, 
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both listed in the Summary of Fit. The low RMSE value of 0.000956 for a mean of 0.152887 
attests, just as the RSquare value did, a very good fit of the regression line to the data points. 
Finally, the number of observations closes the list with the number of data points, entered into the 
program and used for the statistical analysis. 

Summary or Fit 
RSquare 0.981485 

~~~~~d~quare Error 8 :~~~ 
Mean of Response 0.152887 
Observations (or Sum Wgt.s) 151 

0.002 

0.0015-

0.0010.. 

Residual Plot 

, . . . . . ' .. ~, 

;; 0.0005 • • .... :.;--.. : .. : •• 1 o.~t-:--_.;..o;:----i' ... __.;.~....o..-t 

0.140 0.145 0.150 0.155 0.160 0.165 
SIR PM Predicted 

.c::t , • ·~~ :·~ ·.:: ·.:·~ • 

.{).0005· - ••• --~ •• 

.{)0010 

Figure 14: Summary of Fit and Analysis Validation 

The Whole Model Test plots data of actual $/RPM values against the values predicted with 
the equation, for the same set of inputs. For a perfect fit, all points would be lying on a straight 
line indicating that the predicted outcome is exactly the same as actually computed by the simulation 
routine. The Whole Model Test also displays a 95 % prediction interval, denoting that of all 
predicted outcomes, 95 % of the data points will fall between these two lines. As discussed for 
the aerodynamic RSE, the Residual Plot shows the residuals (difference of predicted and actual 
value) of the response ($/RPM) against the predicted values. If this plot shows a pattern or a non­
scattered behavior, the normality assumption can usually not be justified. For this analysis, the 
plot shows a distinct scatter without any pattern, therefore the assumption of normality of the data 
is accepted and the statistical analysis approved. 

The main result of this statistical analysis is now presented in Figure 15. It displays the 
sensitivities of the objective function ($/RPM) and the constraints (GW, Vapp, TOFL, SLNoise, 
FONoise, and LFL) with respect to the design variables (T/W, Sref, x-wing, xI, y 1, x3, x5, 
OPR, TIT, FPR, and BPR). These sensitivities indicate the behavior of the response variables 
with a change in the design variable setting. 
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Figure 15: Response Surface Equation Sensitivities 
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The statistical analysis tool used here (JMP9
) allows a change in the design variable setting with a 

real time update on the response values (made possible by the simple polynomial evaluation 
required), giving the designer a feel for the magnitude of the sensitivities. As a result of this 
sensitivity analysis, it can be seen that T/W has a large effect on noise, while to a lesser degree the 
planform variables influence the $/RPM. 

The optimization results obtained for this example are summarized in Table 6 and Table 7. 
Table 6 contains the optimal setting of the design variables while Table 7 lists the minimal value for 
the objective function, $/RPM, and the values for the constraints generated by the RSEs as well as 
the results of a verification run of FLOPS. The right hand column displays the difference of these 
two values indicating a percentage error for the RSE-based approach. The errors are seen to be 
modest and acceptable for conceptual/preliminary studies. 

Table 6: Constrained Optimization for Minimum $/RPM 

~Design ·~~timiz~~ .. : .. 
~ilvariable . Nalue :.:~}~ 

x1 1.54 
y1 0.58 
x3 2.58 
x5 2.19 

Sref 8500 
x-wing 0.28 

T/W 0.28 
OPR 21.00 
TIT 3148.44 
FPR 4.50 
BPR 0.45 

Table 7: Constrained Optimization Results 

RSE FLOPS o/o Error 
$/RPM 0.14059 0.14347 -2.00 

GW (lbs) 804,552 831,323 -3.22 
vann (kts) 157.45 160.0 -1.59 
TOFL (ft) 10,080 10,165 -0.83 
LFL (ft) 10,107 10,271 -1.59 

FONoise, EPNL 121.87 121.48 +0.33 
SLN oise, EPNL 124.78 124.31 +0.38 

Note that for this optimization the maximum noise levels as specified by FAA FAR 36 were 
not applied since noise suppression techniques were not modeled in the synthesis code. Hence, 
the noise constraints are not met during this scheme. The fact that the constraint RSE was formed, 
however, provides the capability to have a truly noise-constrained vehicle once suppression can be 
accurately modeled. The optimization yields a wing planform illustrated in Figure 16. The figure 
on the bottom depicts the planform variable definitions at their optimal settings. It can be seen 
from the overlay plot on the top that the baseline had a lager span but a smaller sweep in the outer 
part of the wing than the optimized planform. In addition, with this set of design variables all 
component weights can be determined and passed through to an economic uncertainty assessment. 
As mentioned, this exercise is described in Reference 7. 
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Figure 16: Optimal Design Planform Comparison 

V. Conclusions 

An improved design methodology has been developed and presented here which provides a 
means to bring higher fidelity analysis to the synthesis process. As part of NASA's Advanced 
Design Program Initiative, these results for a High Speed Civil Transport (HSCT) application were 
produced by ASDL's Student Design Team. The implementation is a further step towards a 
comprehensive IPPD approach to aerospace systems design being developed at ASDL. 

The overall objective in this years ADP project was the integration of aerodynamic and 
propulsion analyses into the sizing/optimization process and the investigation of their combined 
effects on the design of an HSCT. Under this task, the use of Design of Experiments (DOE) and 
Response Surface Methodology (RSM) was a central part of the solution approach. DOEJRSM 
was successfully used to generate Response Equations representing vehicle drag as a function of 
geometry and flight condition parameters. These equations were subsequently validated and then 
integrated into the sizing program FLOPS, replacing prediction methods in the code. This 
transformation of the sizing code into a more powerful preliminary design tool enabled an 
innovative aerodynamic I propulsion integration to take place. 

A five level, eleven ( 11) factor DOE was executed using this new tool to find the variable 
settings which minimized the objective function. Included in the 11 factors were critical 
aerodynamic, propulsion, and sizing design variables. The result of the experiment was a 
response equation for the overall system objective, the average yield per Revenue Passenger Mile 
($/RPM), representing the response for and setting of the 11 factors composing the design space. 
This RSE was then used to obtain the optimal setting of the design variables which minimized the 
$/RPM in the presence of constraints such as field length, noise, and approach speed. The 
resulting settings represent an "optimal point design" solution, as it represents a deterministic 
design since uncertainties such as economic variance or technology risk were not addressed. 

The results presented here provide the impetus for further investigations. Specifically, the 
introduction of economic uncertainty (as . outlined in Reference 7) and the modeling of more 
complex tools (such as CFD for aerodynamics and FEM approaches for structures) via DOEJRSM 
merit extended research. 
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Appendix A 

The following public domain tools were used for the aerodynamic analysis: the Boeing Design and 
Analysis Program (BDAP) for supersonic drag due to lift prediction and skin friction drag, 
WINGDES for optimum camber and twist, AER02S for subsonic drag due to lift, and AWA VE 
for fuselage area ruling. References for these codes appear after the main reference section. 
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