
A VISUALIZATION TOOL FOR PERCEPTION SYSTEM DEVELOPMENT AND
OPTIMIZATION

A Thesis
Presented to

The Academic Faculty

By

Michelle D. Warren

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2023

© Michelle D. Warren 2023

A VISUALIZATION TOOL FOR PERCEPTION SYSTEM DEVELOPMENT AND
OPTIMIZATION

Thesis committee:

Dr. David Taylor, Co-Advisor
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Antonia Antoniou, Co-Advisor
Mechanical Engineering
Georgia Institute of Technology

Dr. Samuel Coogan
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Patricio Vela
Electrical and Computer Engineering
Georgia Institute of Technology

Date approved: April 28, 2023

Transformation is intellect, will, purpose, desire. Die. Be born. Bring forth labors and

love. Let the invisible be in the visible. Name yourself and know who you are.

The Egyptian Book of the Dead

For my grandmother Annette Warren

ACKNOWLEDGMENTS

I would like to thank my co-advisors for their persistent help in preparation of this work

– Dr. David Taylor and Dr. Antonia Antoniou – without whom I would not have been able

to organize my thoughts and minimize my scope. They provided eyes for things I could

not see and grounding for one of the hardest periods of my life. I would also like to thank

all members of my thesis committee, including Dr. Samuel Coogan and Dr. Patricio Vela,

for their added expertise in the field and openness to be on my committee.

A very special thanks is due to the Georgia Tech EcoCAR team, whose invaluable

teamwork and effort allowed us all to secure success. The team’s willingness to complete

weekend testing, their patience with tools and hardware, and their go-getter, can-do, at-

titude of grit does not go unnoticed. Particularly, I’d like to thank Nick Hummel, who I

worked alongside on the CAVs team, and who could give insight as a controls engineer as

to what he needed from the perception system. He quickly learned the new tools and skills

that I was showing him, took those, and ran, helping to create a robust CAVs system from

end-to-end.

Special thanks are due to the friends and colleagues who made this work possible.

Neque Willis, Melat Abraham, and Brandon Bland were invaluable both as friends and as

sounding boards for my ideas.

The author gratefully acknowledges the support for this work offered by both the de-

partment through a Graduate Research Assistantship and the GEM National Consortium

Fellowship. Any views and conclusions contained herein are those of the author, and do

not necessarily represent the official positions, expressed or implied, of the funders.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . ix

List of Figures . x

List of Acronyms . xii

Summary . xiv

Chapter 1: Introduction and Background . 1

1.1 EcoCAR Competition . 1

1.2 Perception Systems in Autonomy . 2

Chapter 2: GT EcoCAR Perception System . 5

2.1 Hardware Architecture . 5

2.1.1 Platform . 5

2.1.2 Compute . 5

2.1.3 Sensor Suite . 7

2.2 Existing Software . 9

2.2.1 ROS Overview . 9

2.2.2 Sensor Fusion Node in Simulink Overview 10

vi

2.2.3 Automation . 11

Chapter 3: Tank Viz Description . 13

3.1 Purpose . 13

3.2 Data Displayed on Tank Viz . 16

3.3 Software Architecture . 24

3.3.1 Python Subscribers and Publishers 25

3.3.2 RViz Package Overview . 25

3.3.3 Catkin Workspace and ROS Packages Needed 26

3.4 Real-Time and Post Processing Usage . 27

3.5 Line-By-Line Software Description . 28

3.5.1 Automation Script . 28

3.5.2 Visualization Script . 29

Chapter 4: Conclusion and Future Work . 35

4.1 Tool Modification . 37

Appendices . 39

Chapter A: Tank Viz Scripts . 40

A.0.1 viz d.py: Detection Visualization Script 40

A.0.2 viz lanes v2.py: Lane Detection Visualization Script 47

A.0.3 viz lv.py: Lead Vehicle Visualization Script 51

A.0.4 viz tracks.py: Track Visualization Script 59

vii

References . 67

viii

LIST OF TABLES

3.1 Tank Viz markers and descriptors . 17

ix

LIST OF FIGURES

1.1 An example of a MATLAB simulation of a forward facing perception sys-
tem. On the left is the chase camera view, showing simulated obstacles
ahead. On the right is the bird’s eye view, showing the field-of-view for
selected sensor modalities. 4

2.1 The Georgia Tech EcoCAR Team’s re-engineered 2019 Chevrolet Blazer,
affectionately named “Popy”, an apronym inspired by the vehicle’s P0 mo-
tor and P4 motor regenerative braking architecture. 6

2.2 Left: Bosch Mid-Range RADAR (MRR4). Right: Intel Mobileye camera. . 8

2.3 CAV hardware architecture. 9

2.4 A screenshot of the sensor fusion node in Simulink, specifically the ad-
justable parameters within the IMM block. 12

3.1 A video monitor mounted on the back of the passenger seat headrest for
engineer observation from the backseat. 15

3.2 Intel Tank startup screen . 18

3.3 This is a typical view of what is perceived by the vehicle during highway
driving. The Lead Vehicle is the nearest obstacle within the lane bound-
aries. Outside of the lane boundaries, other detections and tracks can be
observed from obstacles in other lanes. In some instances, one can observe
a cluster of camera and RADAR detections with an accompanying track.
This shows that the sensor fusion node is taking those nearby detections
and creating tracks. Although this is a freeze-frame and all objects may not
reflect what could be observed even a second later, it gives a good view of
how the perception system provides information about the environment. . . 19

x

3.4 This is a capture emphasizing the green lane boundaries that are provided
from camera detection data while driving through a neighborhood. Ob-
stacles on the right side of the lane boundaries are objects on the side of
the road, such as signs or bike riders. Objects on the left side of the lane
boundaries represent oncoming traffic. 20

3.5 This is a capture emphasizing the magenta lane boundaries that are calcu-
lated from steering angle data while driving through a neighborhood. Ob-
stacles on the right side of the lane boundaries are objects on the side of
the road, such as signs or bike riders. Objects on the left side of the lane
boundaries represent oncoming traffic. 20

3.6 Visualization screen with populated data. On the left of the screen is the
current configuration after it has been expanded by the left arrow. 21

3.7 Configuration options within the config panel. 23

3.8 Config file open window . 24

3.9 Scripts within the using markers package 25

3.10 The automation script script.sh included in the Tank startup.sh
shell script used to open programs at system start up. 28

3.11 The first chunk of code that imports required ROS packages, initializes a
publisher, sets up a ROS node, and sets the ROS publish rate 30

3.12 The next chunk of code that defines track and ego-vehicle (referred to
within the code as “ownship”) marker initialized parameters. 31

3.13 The next chunk of code that defines callback functions. 32

3.14 The final chunk of code that updates marker arrays and publishes the mark-
ers. This chunk also handles clearing of markers before updating again. . . 34

xi

LIST OF ACRONYMS

6DOF six degrees of freedom

ACC Adaptive Cruise Control

AVTC Advanced Vehicle Technology Competitions

CAVs Connected Automated Vehicles

DSRC Dedicated Short-Range Communications

EPA Environmental Protection Agency

EV Electric Vehicle

fps frames per second

GPS Global Positioning System

GT Georgia Tech

GUI Graphical User Interface

IMM Interacting Multiple Model

IMU Inertial Measurement Unit

KVM keyboard, video (monitor), mouse

LiDAR Light Detection and Ranging

MAP intersection geometry

MIO Most Important Object

OBU On-Board Unit

PCM Propulsion Controls and Modeling

RADAR Radio Detection and Ranging

RGB red/blue/green

ROS Robotics Operating System

xii

SPaT Signal Phase and Timing

STEM science, technology, engineering, and math

V2X Vehicle-To-Everything

xiii

SUMMARY

Perception systems are necessary for advanced autonomous technologies. During the

integration, development, and testing phases of creating a perception system, it has been

proven to be necessary to create a means for visualizing sensor data and perception informa-

tion obtained from sensor fusion algorithms. The proposed research objective is to discuss

the development and use of a visualization tool for the EcoCAR project, my individual

contribution. To develop this visualization tool, I implemented a cluster script architecture,

assisting in environment automation, that handled subscription to detected object informa-

tion that may be in the form of sensor detections; sensor fused tracks; the Most Important

Obstacle (MIO) track, also referred to as the lead vehicle; lane information; and publishing

of markers based on the position of objects to be reflected on the visualization display with

respect to the car being controlled, or the ego-vehicle. The visualization system, referred

to in this thesis as Tank Viz, provided the team with a complete perception system for con-

tinued development, troubleshooting, and testing that helped lead to the team’s eventual

success in Year 4 of the Mobility Challenge Connected Automated Vehicles section of the

competition and provides a foundation for the team’s perception system for the 2022-2026

Electric Vehicle Challenge.

xiv

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 EcoCAR Competition

EcoCAR is a competition that is part of the Advanced Vehicle Technology Competitions

(AVTC), a series of North America’s premier collegiate automotive engineering competi-

tions. AVTCs engage students from middle school through higher education, creating a

pipeline that both encourages students to pursue careers in science, technology, engineer-

ing, and math (STEM) and has seeded more than 30,000 graduates into industry, helping

to build the workforce needed for the U.S. to be competitive in the global marketplace [1].

Sponsored by the U.S. Department of Energy, General Motors, MathWorks, and Argonne

National Labs, along with other partners and contributors, EcoCAR is one of the AVTC

competitions that Georgia Tech is involved with on a large scale. The goal of this com-

petition is to stimulate the development of advanced vehicle technologies that reduce the

overall impact of transportation on the environment by designing, building, and refining an

alternative fuel and connected/autonomous vehicle that reduces energy consumption, and

greenhouse gas and tailpipe emissions while maintaining consumer acceptability, utility,

and safety. The Georgia Tech (GT) EcoCAR team has been a competitor in EcoCAR for

the past 3 consecutive EcoCAR challenges: EcoCAR 3, EcoCAR Mobility Challenge, and

now the EcoCAR Electric Vehicle (EV) Challenge. Each cycle of the EcoCAR competi-

tion lasts for 4 total years, with goals and deliverables for each year and an annual end-

of-the-year competition. The Georgia Tech EcoCAR team works with upwards of 40-50

undergraduate students and 10 graduate students in a highly technical environment to ad-

dress issues including but not limited to optimized component sizing and subsystem design

based on performance versus cost tradeoffs, design of methodologies to ensure reliability

1

and safety, virtual prototyping and hardware-in-the-loop testing, and vehicle fabrication

and on-road testing. The EcoCAR Mobility Challenge took place from the start of the Fall

2018 semester in August to the conclusion of the Spring 2022 semester in May amongst 12

university teams. One of the technological tracks, Connected Automated Vehicles (CAVs),

requires multidisciplinary groups of students to lead the development of the connected and

automated driving features for each of their teams. Year 4 of the Mobility Challenge was

focused on a complete automated system that performs Adaptive Cruise Control (ACC)

capabilities and Vehicle-To-Everything (V2X). The Georgia Tech team’s perception sys-

tem work spans over the course of two competition cycles, the Mobility Challenge and the

Electric Vehicle Challenge, and will be discussed in this thesis.

1.2 Perception Systems in Autonomy

Any autonomous system for any one of the six SAE J3016 levels of driving automation

requires a way to perceive the environment around it. This requires the robot or vehicle

to have a perception system. The perception system is made up of sensors and processes

for collecting information about the environment and using it to inform decision making.

The perception system, as described by Rosique et al. is a “positioning estimation system”,

perceiving and identifying obstacle distances from the ego-vehicle [2].

A rich perception system takes a multi-modal approach, making use of many variable

sensors. As Campbell et al. describe in their review of sensor technology in autonomous

systems, a perception system can consist of a mixture of exteroceptive sensors and pro-

prioceptive sensors [3]. Exteroceptive sensors can include Light Detection and Ranging

(LiDAR), Radio Detection and Ranging (RADAR), and a variety of types of cameras. Pro-

prioceptive sensors include Global Positioning System (GPS), Inertial Measurement Unit

(IMU), and encoders.

Sensor fusion is the next critical component of perception systems in autonomy by

combining data from multiple sensors to provide a more accurate and robust representation

2

of the environment. As outlined by Yeong et al. “multi-sensor fusion is effectively now a

requisite process”, allowing perception systems to overcome the limitations of individual

sensors, such as noise, occlusion, and limited field of view, and to integrate complemen-

tary information from multiple sensors to provide a more complete understanding of the

environment [4]. In this context, sensor fusion is a fundamental technique that enables

perception systems to operate effectively in complex and dynamic environments.

Visualization of perceived information from an autonomous system is an important part

of the development of autonomous technologies that “helps scientists and engineers to in-

vestigate physical systems through a process of geometric abstraction” according to R.B.

Haber [5]. Bertoline et al. have suggested that visualization ability is central to design

[6]. Visualization is a process that includes three main steps: preparing the data, simpli-

fying the object, and then creating a visual representation of it. Visualization systems are

used during simulation, real-time operations, and post-processing and analysis. Figure 1.1

shows an example of a MATLAB simulation of a forward facing perception system, which

shows the developer a 2-D and 3-D representation of a vehicle and the sensor suite fields

of view. The depiction of data in this visualization is effective for simulation, where the

3-D representation provides greater insight for engineers on realistic scenarios and the 2-D

representation maps the sensor capabilities.

3

Figure 1.1: An example of a MATLAB simulation of a forward facing perception system.
On the left is the chase camera view, showing simulated obstacles ahead. On the right is
the bird’s eye view, showing the field-of-view for selected sensor modalities.

4

CHAPTER 2

GT ECOCAR PERCEPTION SYSTEM

2.1 Hardware Architecture

2.1.1 Platform

Our platform is a 2019 Chevrolet Blazer. Our Blazer originally came with its general

specifications, such as a 3.6-liter LGX 6 cylinder engine with Environmental Protection

Agency (EPA) estimates of 20 mpg city and 26 mpg highway (22 combined) with all-wheel

drive [7], and standard safety features including a rear view camera, rear-seat reminder,

and Teen Driver system. By Year 4 of the competition, the major modifications that we

made to the Blazer include: advancing propulsion systems to achieve hybrid electrification

with an optimized fuel efficiency of 32 mpg combined; and SAE level 2 automation and

vehicle connectivity via perception system situational awareness, V2X communication, and

adaptive cruise control. Our platform was required to be returned to a consumer-ready end-

product after modifications were made to be driven and evaluated at the competition. All

this was done with emissions and safety factors in mind. Figure 2.1 shows the test platform

in Yuma, AZ for the Year 4 EcoCAR Competition Dynamic Vehicle Testing.

2.1.2 Compute

The Intel IEI Tank AIoT is a high-performance embedded computer designed for industrial

applications that require a rugged, reliable, and powerful system. It is powered by a 5th

generation Intel Core processor and R680E chipset, which provides excellent computing

power and graphics performance. The IEI Tank AIoT also offers a range of connectivity

options, including multiple LAN (ethernet) ports, USB ports, and expansion slots for ad-

ditional peripherals [8]. The expansion slots proved to be useful for the team, as the Tank

5

Figure 2.1: The Georgia Tech EcoCAR Team’s re-engineered 2019 Chevrolet Blazer, af-
fectionately named “Popy”, an apronym inspired by the vehicle’s P0 motor and P4 motor
regenerative braking architecture.

originally came with no peripherals for CAN bus connections and were able to be easily up-

dated to include many. With its robust design and powerful performance, the Intel IEI Tank

AIoT is an ideal solution for industrial automation, machine vision, and other demanding

applications.

Both sensor fusion and longitudinal controller algorithms necessary to implement ACC

are implemented in the primary compute unit, the Intel Tank. The Intel Tank runs on the

Linux operating system. The Tank interfaces with actuators in the vehicle via a hybrid

supervisory controller, the dSPACE MicroAutoBox II. The Cohda MK5 On-Board Unit

(OBU) is a wireless radio that communicates via Dedicated Short-Range Communications

(DSRC) and provides V2X capability to the team architecture. The OBU is used to receive

Signal Phase and Timing (SPaT) and intersection geometry (MAP) messages from signal-

ized intersections and communicate them to the Tank to enable autonomous traversal of

6

signalized intersections.

2.1.3 Sensor Suite

The forward-facing sensors on the Blazer include a Bosch Mid-Range RADAR (MRR4)

and an Intel Mobileye 6 camera.

The Bosch MRR4 is a high-performance RADAR sensor designed for use in automotive

applications. It has two field-of-view ranges: a short-range of 45 meters with a field of view

of +/- 45 degrees, and a long range of 160 meters with a field of view of +/- 10 degrees. The

RADAR operates in the 77 GHz frequency band, providing high accuracy and resolution.

The MRR4 features advanced signal processing algorithms, which enable it to distinguish

between different types of objects1 and accurately determine their position and velocity. It

also includes multiple detection zones, allowing it to track multiple objects simultaneously.

The tracking referenced here has minimal time-filtering, and is used only to reduce the

bandwidth from the raw data [9].

The Intel Mobileye 6 camera is a cutting-edge vision-based sensor system designed for

use in automotive applications. With its high-resolution 8-megapixel CMOS sensor and

wide field of view of up to 100 degrees, the Mobileye 6 camera can capture a broad area

in front of the vehicle with exceptional image quality and detail. The camera is capable

of detecting and classifying a wide range of objects, including vehicles, pedestrians, and

cyclists, using advanced computer vision algorithms. It uses highly effective proprietary al-

gorithms to estimate the distance to objects using mono vision technology, which provides

3D information of the surrounding environment from a single camera[10]. The Mobileye 6

camera is designed to work in a variety of lighting conditions, including low light and high

glare, thanks to its advanced image processing capabilities.

The RADAR and camera sensor modalities, shown in Figure 2.2, both provide obstacle

1The MRR4 user manual specifies an object message for obstacles that includes a classification signal
within the CAN bus message. This classification signal has enumerations for an obstacle that is 0 = unknown,
1 = a moving 4-wheel vehicle, 2 = a moving 2-wheel vehicle, 3 = a moving pedestrian, or 4 = a constant
element [9].

7

Figure 2.2: Left: Bosch Mid-Range RADAR (MRR4). Right: Intel Mobileye camera.

positional and velocity data relative to the ego-vehicle. They are both designed for ease of

integration into automotive systems, boasting compact form factors, reliability and dura-

bility in extreme temperatures, vibrations, and shocks, and low power consumption. The

camera sensor, with its own internal compute system, also provides lane information. When

the camera is unable to provide lane information, lanes are extrapolated from the steering

angle input and a fixed value for the left and right offsets. For reference, the equation for

lane extrapolation from steering angle information is given below:

left lane = (curvature ∗ x2) + (heading ∗ x) + left offset

right lane = (curvature ∗ x2) + (heading ∗ x) + right offset

where left lane and right lane refer to an equation for the lane markings to the left and

right of the ego-vehicle respectively, curvature refers to the approximated rate of change of

direction in meters, heading refers to the bearing in degrees, and left offset and right offset

refer to a pre-determined constant representing the width from the center of the car to the

left or right lane markings respectively. The left offset and right offsets are set to -1.8

8

and 1.8 and respectively to match the average lane width of 3.6m on both urban and rural

freeways as determined by the Department of Transportation [11], with the assumption that

the ego-vehicle is in the center of the lane at all times.

Figure 2.3: CAV hardware architecture.

Figure 2.3 shows a visual representation of the connections made between the sensors

and compute systems for the vehicle’s perception system. The purpose of the perception

system is to find the next closest vehicle in the ego-vehicle’s lane. The inputs to the percep-

tion system for sensor fusion are sensor object detections and lane detections. The output

is the displacement measurement to the next vehicle in the current lane.

2.2 Existing Software

2.2.1 ROS Overview

The Robotics Operating System (ROS) is an open-source software framework that provides

a collection of libraries and tools to help software developers build robotic applications

[12]. ROS was initially developed in 2007 by Willow Garage, a robotics research lab in

California, and is now maintained by the Open Robotics organization [13]. ROS supports

a wide range of programming languages, including C++, Python, and Java, and has a large

community of developers who contribute to its development and maintenance.

ROS provides a powerful and flexible framework for building robotic applications, en-

9

abling developers to focus on the high-level logic of their applications rather than the low-

level details of hardware and communication protocols. ROS provides a set of libraries

and tools that help manage the complexity of robot software development. These include

a message-passing system, a parameter server, a package management system, and various

tools for visualization, simulation, and debugging. ROS also provides a standardized archi-

tecture for building robot software, which includes a modular structure with nodes, topics,

and services.

Nodes are individual programs that perform specific tasks, such as reading sensor data

or controlling a robot’s actuators. Nodes communicate with each other through a message-

passing system, where messages are published on topics and subscribed to by other nodes.

This enables a distributed architecture, where different nodes can run on different comput-

ers and communicate with each other over a network.

2.2.2 Sensor Fusion Node in Simulink Overview

The sensor fusion algorithm is a critical component of autonomous vehicle technology.

It combines data from multiple sensors, such as cameras, LiDAR, RADAR, and GPS, to

provide a more accurate and complete view of the environment around the vehicle. The

algorithm processes and analyzes the data from each sensor to identify objects, such as

other vehicles, pedestrians, and road signs, and creates a comprehensive understanding of

the surroundings. The algorithm then fuses this data together to create a real-time, high-

definition 3D map of the environment. This map is used by the vehicle’s control system to

make decisions about steering, acceleration, and braking, allowing the vehicle to navigate

safely and effectively. The development of effective sensor fusion algorithms is essential

for the advancement of autonomous vehicle technology and the safe deployment of self-

driving cars on public roads.

The sensor fusion node on our platform was created using Mathworks’ Simulink. The

graphical interface provided by Simulink provided a means for simplifying the design and

10

simulation process for models that would be challenging to model using traditional pro-

gramming languages. Simulink models can also be easily modified, and changes can be

quickly implemented, which helps speed up the development process.

The sensor fusion node takes in parsed CAN bus detection data from sensors and the ve-

hicle, and provides tracks and information regarding the Most Important Object (MIO), also

referred to as the lead vehicle. “Tracks” refer to the process of detecting and identifying

objects in a sensor’s field of view over time. The tracking process involves associating the

object’s location in different sensor frames to create a trajectory or “track” of its movement

over time. This trajectory can be used to predict the object’s future position and velocity,

which is essential for autonomous vehicle control and decision-making. The sensor fusion

node creates tracks from the multiple sensor modality (front-facing camera and RADAR)

detections and fuses tracks that fit into the identified parameters for fusion, such as a de-

tection assignment threshold based on the detection’s normalized distance from an existing

track, the chosen Kalman filter for fusion, and many more. For reference, the Kalman fil-

tering technique initialized for sensor fusion within the Interacting Multiple Model (IMM)

block was the constant-velocity extended Kalman filter. The selectable parameters for set-

ting up the filter can be seen in the open panel in Figure 2.4.

2.2.3 Automation

Automation scripts on the Intel Tank enabled our team to save time and effort by automat-

ing manual tasks, reducing errors and improving productivity. Automation scripts also

improved the consistency and reproducibility of workflows, ensuring that the same set of

steps is followed every time the script is executed. This was vital during start-up for testing

and even on the back-end with our final product, enabling ACC without operator input. Our

team’s visualization tool to be discussed, further referred to as Tank Viz, interfaced with a

few of the automation scripts, namely the boot script that runs at system startup and a script

for starting all nodes of Tank Viz.

11

Figure 2.4: A screenshot of the sensor fusion node in Simulink, specifically the adjustable
parameters within the IMM block.

The Intel Tank has a mechanical switch on the back panel for toggling ACC Mode. The

ACC mode switch on the Intel Tank is a unique feature that allows the user to toggle the

ACC mode on and off, modifying the Tank’s performance and power consumption accord-

ing to their needs. When the ACC mode switch is toggled off, the Intel Tank functions like

a normal processor, using maximum performance and outputting information to a graphi-

cal display such as a monitor. When the ACC mode switch is toggled on, the Intel Tank is

ready to be used in the background for Automated Cruise Control and is put into a mode

that better balances performance and energy consumption (for example, information is not

passed to an external graphical display). The consumer-ready platform uses the switch tog-

gled on, while testing and optimization phases of the engineering process use the switch

toggled off so that we have access to the system configuration that allows graphical display.

12

CHAPTER 3

TANK VIZ DESCRIPTION

3.1 Purpose

In recent years, perception systems have gained increasing attention in a variety of fields,

including robotics, autonomous driving, and medical imaging, among others. These sys-

tems rely on various sensors, such as cameras, LiDARs, and RADARs, to capture data

from the surrounding environment and process it to make informed decisions. However,

interpreting the raw sensor data can be challenging, especially for complex and dynamic

environments.

The purpose of a visualization tool in a perception system is to transform the raw sensor

data captured by sensors, such as cameras, LiDARs, and RADARs, into graphical represen-

tations that can be easily understood by humans. A visualization tool presents sensor data

in a visual format, such as 2D/3D visualizations, heatmaps, or augmented reality overlays,

allowing the user to interpret and analyze the data more effectively. Tank Viz as discussed

in this thesis is a 2D/3D visualization.

The use of visualization tools can enhance the performance of perception systems by

assisting engineers in building systems that accurately and efficiently detect, track, and

classify objects in complex and dynamic environments. Visualization tools are one of the

ways engineers can make heuristic determinations of what the perception system sees. Vi-

sualization tools can also help to identify patterns and anomalies in the data, providing

insights into the behavior of the environment and facilitating decision-making processes

for engineers and software-developers when considering the controls aspect of autonomy.

Tank Viz as discussed in this thesis is not intended for use by a driver in an autonomous

car end-product. Therefore the visualization system described in this thesis does not im-

13

prove the user experience by presenting information that will lighten the cognitive burden

of the user. The scope of Tank Viz described is that the tool is used only for the validation

and optimization phases of the engineering design process.

For testing, a keyboard, video (monitor), mouse (KVM) was added to the backseat

for engineer observation as shown in Figure 3.1. The monitor was fixed to the back of

the passenger seat headrest using an in-house fabricated mounting apparatus. The wired

keyboard and mouse were free-floating in the backseat for ease of access for the engineer.

In the future we may want to implement a wireless remote-in setup using a laptop. The

large graphical display is necessary for the engineer to observe all visualized icons and

text.

14

Figure 3.1: A video monitor mounted on the back of the passenger seat headrest for engi-
neer observation from the backseat.

15

3.2 Data Displayed on Tank Viz

Tank Viz is able to display the ego-vehicle, the lane boundaries of the lane it is in, front

RADAR detections, front camera detections, tracks, and the lead vehicle. Table 3.1 shows

what objects are displayed on Tank Viz.

16

Table 3.1: Tank Viz markers and descriptors

Marker Marker Name & Description

Ego-Vehicle: The ego-vehicle is represented as a brown box.

Camera-Detected Lanes: Lane boundaries appear as two green

lines when lane data is provided by the Mobileye camera.

Steering Angle Extrapolated Lanes: Lane boundaries appear as

two magenta lines when lane data is not provided by the Mobileye

camera and is calculated from the steering angle.

Camera Detection: Camera detections are represented as small

white spheres.

RADAR Detection: RADAR detections are represented as small

blue spheres.

Track: Tracks are represented by medium red spheres accompanied

by text that includes the track number and the track x-y position in

meters, where x is the longitudinal offset and y is the lateral offset

relative to the ego-vehicle.

Lead Vehicle: The Lead Vehicle is represented as a green box de-

rived from the Sensor Fusion Node as the MIO, accompanied by text

that includes the x-y position in meters, where x is the longitudinal

offset and y is the lateral offset relative to the ego-vehicle.

17

At startup, many windows are brought up automatically within the boot scripts, includ-

ing terminals to see the live data values ticking as data is received, a window to visualize

torque requests, and the Tank Viz window within the RViz package, which is further de-

scribed in detail in the RViz Package Overview at http://wiki.ros.org/rviz. Figure 3.2 shows

the windows that open when starting the Intel TANK, with Tank Viz in the top left corner.

Figure 3.2: Intel Tank startup screen

Once data starts to come in, the visualization screen automatically fills up with icons

referred to as markers representing the different objects perceived. A few examples of the

screen and what to expect are shown in Figure 3.3, Figure 3.4, and Figure 3.5.

18

http://wiki.ros.org/rviz

Figure 3.3: This is a typical view of what is perceived by the vehicle during highway driv-
ing. The Lead Vehicle is the nearest obstacle within the lane boundaries. Outside of the
lane boundaries, other detections and tracks can be observed from obstacles in other lanes.
In some instances, one can observe a cluster of camera and RADAR detections with an ac-
companying track. This shows that the sensor fusion node is taking those nearby detections
and creating tracks. Although this is a freeze-frame and all objects may not reflect what
could be observed even a second later, it gives a good view of how the perception system
provides information about the environment.

19

Figure 3.4: This is a capture emphasizing the green lane boundaries that are provided from
camera detection data while driving through a neighborhood. Obstacles on the right side of
the lane boundaries are objects on the side of the road, such as signs or bike riders. Objects
on the left side of the lane boundaries represent oncoming traffic.

Figure 3.5: This is a capture emphasizing the magenta lane boundaries that are calculated
from steering angle data while driving through a neighborhood. Obstacles on the right side
of the lane boundaries are objects on the side of the road, such as signs or bike riders.
Objects on the left side of the lane boundaries represent oncoming traffic.

20

Tank Viz comes with the option to update configurations. When the arrow on the left

side of the window is expanded, a configuration panel is shown, and seen in Figure 3.6.

Figure 3.6: Visualization screen with populated data. On the left of the screen is the current
configuration after it has been expanded by the left arrow.

The Tank Viz configuration panel, shown in Figure 3.7 handles all markers displayed on

the screen. This visualization configuration includes the background, the grid, and markers.

Markers and groups of markers may be added to the configuration by using the “Add”

button at the bottom. Here we can see that one marker is used for the left lane boundary,

the right lane boundary, and the lead vehicle. A marker array is used for detections and

tracks. Object type boxes must be checked for the type to be see on the display.

21

Under Global Options, the Fixed Frame name is used within the code to add markers

to the correct environment. Essentially, it is the reference frame used to denote the “world”

frame and should not be moving relative to the world. This is described later in the line-

by-line software description. The background color can be chosen by the red/blue/green

(RGB) color values. The frame rate in frames per second (fps) can also be modified here.

A frame rate of 700 fps was chosen for the global environment for improved graphics that

have smooth movements, comparable to popular games.

The Grid cell count, size, line style, RGB color, alpha, plane, and offset can be shown

under Grid. The Alpha is set to 0.5 for the grid lines to be 50% transparent. The offset is

at [70,0,0] in the configuration to move the grid back toward the ego-vehicle for operator

cognition. The cell size is 10, representing 10 units of measure that are used within our

code. For our purposes, the unit of measure is meters. This helps the operator easily see

where detections are without requiring added text that will clutter up the screen. All objects

appear on the x-y plane.

The markers and marker arrays take a marker topic as input, to tell RViz what ROStopic

to subscribe to for marker visualization. The ROStopic will be further described in the line-

by-line software description. The Queue Size handles how many of each type we are able to

see in the frame at once. Their values here are greatly exaggerated to account for graphical

smoothness as an object may move from one position to the next.

22

Figure 3.7: Configuration options within the config panel.

23

The configuration is saved in the home/ < user > /.rviz directory. The < user >

name for the Tank is ieisw. The file open/save window is shown in Figure 3.8. The file can

be changed by simply changing any of the parameters on the config user interface. When

any parameters are changed or the visualization display has been moved to a different frame

of view, the title of the window will include an asterisk *, signifying that the file has been

changed and needs to be saved.

Figure 3.8: Config file open window

3.3 Software Architecture

The visualization scripts, as previously mentioned, are part of a cluster architecture, mean-

ing multiple scripts are run to perform concurrent tasks. It was written this way because

of two main reasons: 1) different items to be displayed on Tank Viz require different

frame rates, and 2) software for graphics generation involves a great amount of through-

put and output, thus having multiple scripts helps with load balancing by organizing the

incoming and outcoming data under its own category. All scripts for visualization can

24

be found at ∼/catkin ws/src/using markers/src/, as shown in Figure 3.9. There are sepa-

rate scripts for visualizing sensor detections (viz d.py), sensor fused tracks (viz tracks.py),

lanes (viz lanes v2.py), and the lead vehicle (viz lv.py). Version 1 of the lane detection

script (viz lanes.py) is obsolete and was replaced by the updated lane script (viz lanes v2.py)

and therefore should be ignored.

Figure 3.9: Scripts within the using markers package

Before understanding the scripts, prior knowledge about Python subscribers and pub-

lishers, the RViz package, the Catkin workspace, and tool usage needs to be discussed.

3.3.1 Python Subscribers and Publishers

In ROS, communication between different nodes (software components) is achieved using

a publish/subscribe model. Nodes can publish messages to a specific ROStopic, and other

nodes can subscribe to that ROStopic to receive the messages. This approach provides a

highly decoupled and modular system, allowing nodes to communicate without having to

know about the specific details of the other nodes. A publisher node creates a ROStopic

and sends messages to it, while a subscriber node receives the messages from the ROStopic.

The messages sent and received can be of any data type, including custom message types

defined by the developer. Many publishers and subscribers will be discussed in the line-by-

line software description.

3.3.2 RViz Package Overview

RViz is a 3D visualization tool in ROS that allows users to visualize and interact with robot

data in a 3D environment. RViz provides a Graphical User Interface (GUI) that enables

25

users to display, interpret, and interact with various types of data, such as robot models,

sensor data, and maps.

RViz has a modular architecture that allows users to add and remove different displays

and plugins according to their needs. Some of the displays available in RViz include the

robot model display, which allows users to visualize the robot and its joints; the point cloud

display, which enables users to visualize data from 3D sensors, such as LiDARs or depth

cameras; and the map display, which displays 2D occupancy grid maps or 3D point clouds.

RViz also allows users to interact with the displayed data, enabling them to move the

robot, modify the map, or adjust the parameters of the displays. Additionally, RViz provides

a comprehensive set of tools for debugging and monitoring the robot’s behavior, such as

the TF tree display, which shows the robot’s coordinate frames and transformations, and

the plot display, which allows users to plot and analyze various types of data.

RViz is a powerful tool for robotics development and research, as it allows users to

quickly prototype, debug, and test their algorithms in a realistic 3D environment. RViz also

integrates seamlessly with other ROS packages, such as the Gazebo simulator, enabling

users to simulate and test their robot systems in a virtual environment before deploying

them on real hardware. Overall, RViz is a versatile and flexible tool for 3D visualization

in ROS, providing users with a powerful set of features for interacting with and analyzing

robot data.

3.3.3 Catkin Workspace and ROS Packages Needed

A Catkin workspace is a directory hierarchy used to develop and build ROS packages.

Catkin is the build system used in ROS, and a Catkin workspace is the top-level directory

where all the packages, build files, and other resources for a particular ROS project are

stored.

A Catkin workspace typically contains two directories: src and build. The src directory

contains all the source code for the ROS packages that are being developed, while the build

26

directory is where the build system generates the binaries and libraries.

When a new package is created in the src directory, the Catkin workspace needs to be

re-built to reflect the changes. This can be done using the catkin make command in the

catkin ws directory from terminal command line window. catkin make will generate

the necessary makefiles and build the packages in the workspace.

Catkin workspaces are used extensively in ROS development, as they provide an or-

ganized and modular way to develop, build, and distribute ROS packages. For visualiza-

tion, we need to include the using markers package to the catkin workspace. The

using markers package is a Catkin package in ROS that provides an example of how

to use markers in RViz, which is a popular 3D visualization tool in ROS. Markers are visual

objects such as arrows, spheres, and lines that can be used to represent various aspects of a

robotic system, such as the robot itself, obstacles, and waypoints. The using markers

package has a wiki page that shows users how to use the visualization msgs/Marker

message type to create and display markers in RViz. When the using markers package

is built and launched in ROS, the basic shapes node runs and publishes the markers to

the chosen /visualization marker ROStopic. These markers are then displayed in

RViz, where they can be manipulated and viewed in 3D.

3.4 Real-Time and Post Processing Usage

Tank Viz can be used during real-time operation while the vehicle platform is powered on,

and in post-processing at lab test benches. ROS, with its capability to sync multiple nodes

to the same virtual clock, is able to record data for synchronized playback amongst all

actors. This recorded data can be played using simple ROS commands within the terminal.

More information on ROS terminal commands can be found on the ROS wiki. When data

is played back, simulated in Simulink to create tracks, or being fed in real-time from real

obstacles in the environment, Tank Viz will be able to display these items.

27

3.5 Line-By-Line Software Description

Many of the Python scripts will contain the same general structure, so for the purpose of

this thesis software description I will provide commentary for the automation script and

one of the python pub-sub scripts. The remaining scripts can be found in the Appendix.

3.5.1 Automation Script

Figure 3.10: The automation script script.sh included in the Tank startup.sh shell
script used to open programs at system start up.

Figure 3.10 shows a bash script that runs several ROS nodes for visualizing markers, tracks,

and lanes. Here’s a line-by-line breakdown of what the script does:

1. #!/bin/bash: This is known as a “shebang” line and tells the shell that this script

should be run with the bash interpreter.

2. cd /catkin ws/src/using markers/src/ &: Changes the working di-

rectory to the folder where the ROS nodes are located. The & character at the end runs the

command in the background so that the script can continue to run.

3. rosrun rviz rviz -d /home/ieisw/.rviz/tank viz.rviz &: Runs

the RViz display that Tank Viz is built on with a configuration file that sets up the visualiza-

tion on the tank. The & character at the end runs the command in the background so that

the script can continue to run.

28

4. ./viz d.py &: Runs a Python script named viz d.py that visualizes markers

in RViz. The & character runs the command in the background.

5. ./viz tracks.py &: Runs a Python script named viz tracks.py that visu-

alizes tracks in RViz. The & character runs the command in the background.

6. ./viz lv.py &: Runs a Python script named viz lv.py that visualizes lanes

in RViz. The & character runs the command in the background.

7. ./viz lanes.py &: Runs a Python script named viz lanes.py that visual-

izes a lane in RViz. The & character runs the command in the background.

Overall, this script sets up a ROS environment for visualizing several components in

RViz.

3.5.2 Visualization Script

For the sake of describing how the visualizations scripts are written, I will use the viz tracks.py

script for the line-by-line description.

This code is a Python script that defines callbacks that handle data received from various

ROS topics. The data is then used to update markers on Tank Viz using the RViz package.

Figure 3.11 shows that the script first imports the required ROS and visualization msgs

packages, as well as the message filters package and the custom PCM message type,

created by the Propulsion Controls and Modeling (PCM) EcoCAR subteam for vehicle di-

agnostic data publishing. It then initializes a publisher for a marker array on a specific

ROStopic, sets up a ROS node, and sets a rate at which to publish markers. The publish

rate is set to control the processor energy consumption. The node is then initialized, as well

as the clock time, markerArray objects, and marker objects.

29

Figure 3.11: The first chunk of code that imports required ROS packages, initializes a
publisher, sets up a ROS node, and sets the ROS publish rate

Several markers are then defined, shown in Figure 3.12, including a sphere marker type,

a text marker type, and a cube marker type to represent the ego-vehicle. Each marker is

given a specific color and scale, as well as a position and orientation. They are all assigned

to the same ROS time clock, shown in the *.header.stamp assignment. They are also added

to the same frame, shown in the *.header.frame assignment so that they may be seen in the

same global environment.

30

Figure 3.12: The next chunk of code that defines track and ego-vehicle (referred to within
the code as “ownship”) marker initialized parameters.

Next, the code screenshot in Figure 3.13 shows that a callback function is defined.

Callback functions handle incoming data from different ROS topics and use the data to

update the appropriate marker. For example, the rtrackCallback function updates the

blue sphere marker with the data received from the /trackDetection topic. It also

updates the position with data from the /trackDetection ROStopic, shown here to

be the dx and dy values from the track data. The text markers are updated to also appear

31

near the position of the spherical track marker. In the code it is shown that the position

updates using the dx and dy values from the track data, with a shift up 4 in the x direction

to make the text appear above the spherical track marker. The lifetime duration for both the

spherical marker and the text is set to 0.3 seconds, so that the track may linger on screen

long enough for the engineering operator to see it. The team may choose to modify the

lifetime duration of marker objects to match the collision avoidance industry standard for

full autonomy of 50Hz (0.02 seconds) in the future [14].

Figure 3.13: The next chunk of code that defines callback functions.

Each callback function checks if the incoming data is valid before updating the marker.

If the data is not valid, the function returns and the marker is not updated.

Finally, shown in Figure 3.14, the subscriber subscribes to all track ROStopics, here

showing that 20 are used, and each updated marker is appended to the marker array and

published. While ros is operating, the marker ID is updated so not to replace markers

but add to the end of a list. Then, the marker array is published. If this marker array is

larger than 100, this will bog down the compute system, overfill the display, and cause

32

visualization performance to diminish, so the array is cleared and the most recent marker

objects are added to the fresh list. The marker array is cleared before each update to prevent

previous markers from lingering in the visualization. At this refresh time, the clock time is

also refreshed. Within the main function, a try-except block tells the program to run unless

there is a ROS interrupt that kills the process. A ROS interrupt may be initiated by either

killing the process within a terminal using the signal number of the process, or by pressing

ctrl-c within the terminal that the process is running in the foreground in. This exception

call keeps the program from continuing to run despite the a call to kill the process and was

a result of a prior implementation error.

33

Figure 3.14: The final chunk of code that updates marker arrays and publishes the markers.
This chunk also handles clearing of markers before updating again.

34

CHAPTER 4

CONCLUSION AND FUTURE WORK

In conclusion, a visualization tool is a necessary component for rapid prototyping in au-

tonomous vehicle applications. As autonomous vehicle development continues to acceler-

ate, the use of a visualization tool becomes increasingly important to ensure that engineers

can rapidly and accurately design and test various scenarios, without the need for expen-

sive physical prototypes or simulations. By providing a clear, intuitive representation of

complex data, a visualization tool can help engineers identify potential issues, optimize

performance, and ultimately speed up the development process. Therefore, the use of a

visualization tool is essential for any team looking to develop effective and efficient au-

tonomous vehicle applications.

The results are centered around the engineering operator experience. Being able to have

a graphical representation of what the vehicle is perceiving allowed the team to make rapid

adjustments during testing, rather than continuing extensive effort of collecting data to be

post-processed for code revisions. For example, during a day of parking lot testing with

highly reflective and metallic obstacles, we were not able to perceive RADAR detections

on the display. This raised questions concerning RADAR calibration, and helped us to

troubleshoot an issue and the necessary solution. Due to parking lot testing that caused us

to make many consecutive left turns, the forward-facing RADAR had been knocked into

a horizontal alignment fault. This was also an issue that support at Bosch was not aware

of, since their testing does not include many consecutive single-direction turns. Without

being able to perceive the lack of RADAR data on Tank Viz, we would have had to take

empty data and try to troubleshoot the issue after the effort of gathering the needed data was

carried out, adding more time and hassle for the engineer. Having a means of visualization

helped to minimize erroneous results.

35

It’s also important to note the approaches that were taken at visualizing perception data

that did not lead to the desired results, so as to minimize the added effort of the team to try

tactics that have already been tried. The first data representation that was tried was simply

outputting text data to a terminal. With this configuration, a terminal window was opened

for each output type – camera detection objects, RADAR detection objects, fused tracks,

and the lead vehicle. The most important information given through this method was the

x-y position of the object. With high frame rates from the sensors, along with the ability to

output several objects at a time from each sensor and up to 20 fused tracks at a time, it was

impossible and highly inefficient to follow any one object by observing the text, causing

us to pause often during testing to try to keep track of objects. Another visualization tactic

attempted involved recording the CAN data from the sensors during testing and replaying

the logged data on the Vector CANoe program after data collection is complete. The first

issue with this is that it does not provide real-time data visualization. While Vector CANoe

is great for checking the CAN data flow, it is not great for visualizing the environment

being perceived. A last attempt at visualizing the environment was using Simulink after

data collection for sensor data playback. While this was a good method for understanding

the environment in the early stages of perception system development, it again was only

useful for after testing and not real-time visualization. It’s possible that Simulink could

be used for real-time visualization, but the team steered away from this approach after

observing the heavy load that MATLAB was already putting on the processor and the great

potential for a faulty or slow visualization program in the field. The RViz package was

decided upon as a visualization package to build on because of its lightweight and easy

integration into the ROS environment. The learning curve was low, which was perfect for

rapid prototyping since our team was already behind from the previous year with CAVs

development. Also, this simplified visualization package was perfect for operator use, and

did not require rich or interactive visualization such as what may be obtained from the

Foxglove Studio ROS visualization package for example.

36

Tank Viz provided a means for validation, by allowing the operator to have six de-

grees of freedom (6DOF) visual of what the Blazer is perceiving. In the long-run, we were

able to create a more robust perception system for CAV system development, testing, and

optimization. Only two versions were made within the year, with many git pushes of mod-

ifications. Modifications within the two versions can be observed on the pushes to other

experimental branches. Having this tool was a contributing factor to our rapid prototyping

from a 9th place CAVs system at the 2021 May competition to a successful 1st place CAVs

system at the 2022 May final competition, securing more than 50% of 1st place awards in

sub-categories and the 1st place overall award for Year 4 of the competition [15].

Succeeding engineers on the Georgia Tech EcoCAR team may find the referenced code

on the Georgia Tech GitHub on the EcoCAR-Mobility private page. Members must be

invited to view these resources. Once on the page, the referenced code can be found in

the Tank catkin ws repository. Then navigate to using markers/src/ to find the

visualization scripts.

4.1 Tool Modification

The team may find reasons to modify this tool that are outside of its original scope. For

example, the team may want to add text to detections or change detection marker shapes

to letters to represent the detected classifications of objects provided by the sensors. A

use-case for this would be to record and analyze the effectiveness and possibly bias of

pedestrian detection from the sensors. Another modification the team may want to make is

adding neighboring lane boundaries from camera detection data when available, to give a

more full and representative display of the environment. Modifications may be made and

pushed to a new branch in GitHub to preserve the original contents. Modifications in the

Python coding language may be made in the Tank Viz scripts. Modifications in the Bash

scripting language may be made in the startup script for Tank Viz within the same folder.

New markers may be added by simply importing necessary ROS packages, initializing

37

a publisher for the marker, defining marker initialization parameters, subscribing to the

desired ROStopic, and appending new markers to a marker array for display.

38

Appendices

39

APPENDIX A

TANK VIZ SCRIPTS

A.0.1 viz d.py: Detection Visualization Script

1 #!/usr/bin/env python

2 import rospy

3 import time

4 from visualization_msgs.msg import MarkerArray

5 from visualization_msgs.msg import Marker

6 import message_filters

7 from pcm_messages.msg import *

8

9 topic = ’/visualization_detectmarker’

10 publisher_d = rospy.Publisher(topic, MarkerArray,queue_size=600) #queue

size 100

11 rospy.init_node(’rviz_dmarkers’)

12 rate = rospy.Rate(420) # ROS Rate at 420Hz

13

14 global time_now

15 time_now = rospy.Time.now()

16

17 global markerArray

18 global marker

19 markerArray = MarkerArray()

20 markerArray.markers= []

21

22 marker = Marker()

23 ownship = Marker()

24

25 # marker = Marker()

40

26 marker.header.frame_id = "marker_frame"

27 marker.header.stamp = time_now

28 marker.type = marker.SPHERE

29 marker.scale.x = 2

30 marker.scale.y = 2

31 marker.scale.z = 2

32 marker.color.a = 1.0 #make it visible

33 marker.pose.orientation.w = 1.0

34 marker.pose.position.z = 0.0

35 # ownship = Marker()

36 ownship.header.frame_id = "marker_frame"

37 ownship.header.stamp = rospy.Time.now()

38 ownship.type = ownship.CUBE

39 ownship.scale.x = 2.5

40 ownship.scale.y = 1.5

41 ownship.scale.z = 1.0

42 ownship.color.a = 1.0 #make it visible

43 ownship.color.r = 1.0

44 ownship.color.g = 0.7

45 ownship.color.b = 0.1

46 ownship.pose.orientation.w = 1.0

47 ownship.pose.position.x = 0.0

48 ownship.pose.position.y = 0.0

49 ownship.pose.position.z = 0.0

50

51 def rDetectionCallback(data):

52 if (data.wObstacle > 0.5):

53 marker.type = marker.SPHERE

54 marker.header.stamp = time_now

55 marker.scale.x = 1

56 marker.scale.y = 1

57 marker.scale.z = 1

58 marker.pose.position.x = data.dx - 4 #- 4.12

41

59 marker.pose.position.y = data.dy # + 1

60

61 #make blue markers

62 marker.color.r = 0.0

63 marker.color.g = 0.0

64 marker.color.b = 1.0

65 marker.lifetime = rospy.Duration(0.3)

66 markerArray.markers.append(marker)

67 #markerArray.markers.append(ownship)

68 else:

69 return

70 def mDetectionCallback(data):

71 marker.type = marker.SPHERE

72 marker.header.stamp = time_now

73 marker.scale.x = 1

74 marker.scale.y = 1

75 marker.scale.z = 1

76 marker.pose.position.x = data.PosX #+5.5#+ 1.38

77 marker.pose.position.y = data.PosY #opposite lateral direction as

radar

78

79 #make purple markers

80 marker.color.r = 1.0

81 marker.color.g = 1.0

82 marker.color.b = 1.0

83 marker.lifetime = rospy.Duration(0.3)

84 markerArray.markers.append(marker)

85 #markerArray.markers.append(ownship)

86 def leadVehCallback(data):

87 if (data.leadVehDist < 1000000):

88 marker.type = marker.CUBE

89 marker.header.stamp = time_now

90 marker.scale.x = 2.5

42

91 marker.scale.y = 1.5

92 marker.scale.z = 1.0

93 marker.pose.position.x = data.leadVehDist

94 marker.pose.position.y = data.leadVehLateralDist

95

96 #make green marker

97 marker.color.r = 0.0

98 marker.color.g = 1.0

99 marker.color.b = 0.0

100 marker.lifetime = rospy.Duration(0.3)

101 markerArray.markers.append(marker)

102 else:

103 return

104 def trackCallback(data):

105 if (data.dx < 1000000):

106 marker.type = marker.SPHERE

107 marker.header.stamp = time_now

108 marker.scale.x = 1.5

109 marker.scale.y = 1.5

110 marker.scale.z = 1.5

111 marker.pose.position.x = data.dx

112 marker.pose.position.y = data.dy

113 #marker.id = data.trackNum #use this when every piece has a unique

identifier

114

115 #make red markers

116 marker.color.r = 1.0

117 marker.color.g = 0.0

118 marker.color.b = 0.0

119 marker.lifetime = rospy.Duration(0.3)

120 markerArray.markers.append(marker)

121 else:

122 return

43

123

124 def viz():

125 global markerArray

126 global time_now

127 # #1 lead vehicle verbose topic

128 # rospy.Subscriber("/lead_vehVERBOSE", LeadVehicleVerbose,

leadVehCallback)

129

130 #32 radar detection topics

131 rospy.Subscriber("/Radar1_Obj00_A", RadObjA, rDetectionCallback)

132 rospy.Subscriber("/Radar1_Obj01_A", RadObjA, rDetectionCallback)

133 rospy.Subscriber("/Radar1_Obj02_A", RadObjA, rDetectionCallback)

134 rospy.Subscriber("/Radar1_Obj03_A", RadObjA, rDetectionCallback)

135 rospy.Subscriber("/Radar1_Obj04_A", RadObjA, rDetectionCallback)

136 rospy.Subscriber("/Radar1_Obj05_A", RadObjA, rDetectionCallback)

137 rospy.Subscriber("/Radar1_Obj06_A", RadObjA, rDetectionCallback)

138 rospy.Subscriber("/Radar1_Obj07_A", RadObjA, rDetectionCallback)

139 rospy.Subscriber("/Radar1_Obj08_A", RadObjA, rDetectionCallback)

140 rospy.Subscriber("/Radar1_Obj09_A", RadObjA, rDetectionCallback)

141 rospy.Subscriber("/Radar1_Obj10_A", RadObjA, rDetectionCallback)

142 rospy.Subscriber("/Radar1_Obj11_A", RadObjA, rDetectionCallback)

143 rospy.Subscriber("/Radar1_Obj12_A", RadObjA, rDetectionCallback)

144 rospy.Subscriber("/Radar1_Obj13_A", RadObjA, rDetectionCallback)

145 rospy.Subscriber("/Radar1_Obj14_A", RadObjA, rDetectionCallback)

146 rospy.Subscriber("/Radar1_Obj15_A", RadObjA, rDetectionCallback)

147 rospy.Subscriber("/Radar1_Obj16_A", RadObjA, rDetectionCallback)

148 rospy.Subscriber("/Radar1_Obj17_A", RadObjA, rDetectionCallback)

149 rospy.Subscriber("/Radar1_Obj18_A", RadObjA, rDetectionCallback)

150 rospy.Subscriber("/Radar1_Obj19_A", RadObjA, rDetectionCallback)

151 rospy.Subscriber("/Radar1_Obj20_A", RadObjA, rDetectionCallback)

152 rospy.Subscriber("/Radar1_Obj21_A", RadObjA, rDetectionCallback)

153 rospy.Subscriber("/Radar1_Obj22_A", RadObjA, rDetectionCallback)

154 rospy.Subscriber("/Radar1_Obj23_A", RadObjA, rDetectionCallback)

44

155 rospy.Subscriber("/Radar1_Obj24_A", RadObjA, rDetectionCallback)

156 rospy.Subscriber("/Radar1_Obj25_A", RadObjA, rDetectionCallback)

157 rospy.Subscriber("/Radar1_Obj26_A", RadObjA, rDetectionCallback)

158 rospy.Subscriber("/Radar1_Obj27_A", RadObjA, rDetectionCallback)

159 rospy.Subscriber("/Radar1_Obj28_A", RadObjA, rDetectionCallback)

160 rospy.Subscriber("/Radar1_Obj29_A", RadObjA, rDetectionCallback)

161 rospy.Subscriber("/Radar1_Obj30_A", RadObjA, rDetectionCallback)

162 rospy.Subscriber("/Radar1_Obj31_A", RadObjA, rDetectionCallback)

163

164 # #10 mobileye detection topics

165 rospy.Subscriber("/ObstacleDataA1", ME_A2, mDetectionCallback)

166 rospy.Subscriber("/ObstacleDataA2", ME_A2, mDetectionCallback)

167 rospy.Subscriber("/ObstacleDataA3", ME_A2, mDetectionCallback)

168 rospy.Subscriber("/ObstacleDataA4", ME_A2, mDetectionCallback)

169 rospy.Subscriber("/ObstacleDataA5", ME_A2, mDetectionCallback)

170 rospy.Subscriber("/ObstacleDataA6", ME_A2, mDetectionCallback)

171 rospy.Subscriber("/ObstacleDataA7", ME_A2, mDetectionCallback)

172 rospy.Subscriber("/ObstacleDataA8", ME_A2, mDetectionCallback)

173 rospy.Subscriber("/ObstacleDataA9", ME_A2, mDetectionCallback)

174 rospy.Subscriber("/ObstacleDataA10", ME_A2, mDetectionCallback)

175

176 # # #20 track topics

177 # rospy.Subscriber("/Tracks1", Track, trackCallback)

178 # rospy.Subscriber("/Tracks2", Track, trackCallback)

179 # rospy.Subscriber("/Tracks3", Track, trackCallback)

180 # rospy.Subscriber("/Tracks4", Track, trackCallback)

181 # rospy.Subscriber("/Tracks5", Track, trackCallback)

182 # rospy.Subscriber("/Tracks6", Track, trackCallback)

183 # rospy.Subscriber("/Tracks7", Track, trackCallback)

184 # rospy.Subscriber("/Tracks8", Track, trackCallback)

185 # rospy.Subscriber("/Tracks9", Track, trackCallback)

186 # rospy.Subscriber("/Tracks10", Track, trackCallback)

187 # rospy.Subscriber("/Tracks11", Track, trackCallback)

45

188 # rospy.Subscriber("/Tracks12", Track, trackCallback)

189 # rospy.Subscriber("/Tracks13", Track, trackCallback)

190 # rospy.Subscriber("/Tracks14", Track, trackCallback)

191 # rospy.Subscriber("/Tracks15", Track, trackCallback)

192 # rospy.Subscriber("/Tracks16", Track, trackCallback)

193 # rospy.Subscriber("/Tracks17", Track, trackCallback)

194 # rospy.Subscriber("/Tracks18", Track, trackCallback)

195 # rospy.Subscriber("/Tracks19", Track, trackCallback)

196 # rospy.Subscriber("/Tracks20", Track, trackCallback)

197

198 markerArray.markers.append(ownship)

199 while not rospy.is_shutdown():

200 i_d = 0

201 for m in markerArray.markers:

202 m.id = i_d

203 i_d += 1

204 publisher_d.publish(markerArray)

205 #print(len(markerArray.markers))

206 if (len(markerArray.markers) >= 420):

207 markerArray.markers = []

208 markerArray.markers.append(ownship)

209 time_now=rospy.Time.now()

210

211 rate.sleep()

212

213 if __name__ == ’__main__’:

214 try:

215 viz = viz()

216 except rospy.ROSInterruptException:

217 marker.action = Marker.DELETEALL

218 ownship.action = Marker.DELETEALL

219 pass

46

A.0.2 viz lanes v2.py: Lane Detection Visualization Script

1 #!/usr/bin/env python

2 import rospy

3 import time

4 from visualization_msgs.msg import MarkerArray

5 from visualization_msgs.msg import Marker

6 from geometry_msgs.msg import Point

7 from pcm_messages.msg import *

8 from GT_CAVs_ROS_Messages.msg import PcmToCav2,

SFNode_Utilized_Lane_Info

9 import math

10

11 # initialize publishers

12 topicl = ’/visualization_leftlanemarker_v2’

13 topicr = ’/visualization_rightlanemarker_v2’

14 publisher_leftlane = rospy.Publisher(topicl, Marker,queue_size=100) #

queue size 100

15 publisher_rightlane = rospy.Publisher(topicr, Marker,queue_size=100) #

queue size 100

16

17 # intialize global vars

18 curvature = 0

19 heading = 0

20 leftOffset = 0

21 rightOffset = 0

22 laneSource = 0

23

24 def sfNodeLaneCallback(data):

25 global curvature

26 global heading

27 global leftOffset

28 global rightOffset

47

29 global laneSource

30

31 # get parameters from ROS message

32 curvature = data.curvature

33 heading = data.heading

34 leftOffset = data.leftOffset

35 rightOffset = data.rightOffset

36 laneSource = data.source

37

38

39

40

41 def plot():

42 global curvature

43 global heading

44 global leftOffset

45 global rightOffset

46 global laneSource

47

48 # setup marker arrays for lanes

49 markerArray = MarkerArray()

50 leftLane = Marker()

51 rightLane = Marker()

52

53 # set opacity

54 leftLane.color.a = 1.0

55 rightLane.color.a = 1.0

56

57 # set color based on source

58 if laneSource == 1: # data coming from ME

59 leftLane.color.r = 0.0

60 leftLane.color.g = 1.0

61 leftLane.color.b = 0.0

48

62 else:

63 leftLane.color.r = 1.0

64 leftLane.color.g = 0.0

65 leftLane.color.b = 1.0

66

67 if laneSource == 1: # data coming from ME

68 rightLane.color.r = 0.0

69 rightLane.color.g = 1.0

70 rightLane.color.b = 0.0

71 else:

72 rightLane.color.r = 1.0

73 rightLane.color.g = 0.0

74 rightLane.color.b = 1.0

75

76 # set other necessary fields

77 leftLane.type = leftLane.LINE_STRIP

78 leftLane.header.stamp = rospy.Time.now()

79 leftLane.header.frame_id = "marker_frame"

80 leftLane.action = leftLane.ADD

81 leftLane.id = 1

82 leftLane.pose.orientation.w = 1.0

83 leftLane.scale.x = 0.5

84 leftLane.scale.y = 0.5

85 leftLane.scale.z = 0.5

86 leftLane.pose.position.x = 0

87 leftLane.pose.position.y = 0

88 leftLane.pose.position.z = 0

89

90 rightLane.type = rightLane.LINE_STRIP

91 rightLane.header.stamp = rospy.Time.now()

92 rightLane.header.frame_id = "marker_frame"

93 rightLane.action = rightLane.ADD

94 rightLane.id = 1

49

95 rightLane.pose.orientation.w = 1.0

96 rightLane.scale.x = 0.5

97 rightLane.scale.y = 0.5

98 rightLane.scale.z = 0.5

99 rightLane.pose.position.x = 0

100 rightLane.pose.position.y = 0

101 rightLane.pose.position.z = 0

102

103 # create points for left lane

104 for i in range(100):

105 p = Point()

106 equation = (curvature*i**2) + (heading*i) + leftOffset

107 p.x = i

108 p.y = equation

109 p.z = 0

110 leftLane.points.append(p)

111

112 # publish left lane

113 # print("publishing left lane")

114 publisher_leftlane.publish(leftLane)

115

116

117 # create points for left lane

118 for i in range(100):

119 p = Point()

120 equation = (curvature*i**2) + (heading*i) + rightOffset

121 p.x = i

122 p.y = equation

123 p.z = 0

124 rightLane.points.append(p)

125

126 # publish left lane

127 publisher_rightlane.publish(rightLane)

50

128

129 def viz():

130 rospy.init_node(’rviz_lane’)

131 rate = rospy.Rate(10) # ROS Rate at 10Hz

132

133 lane_subscriber = rospy.Subscriber("/SFNode_Utilized_Lane_Data",

SFNode_Utilized_Lane_Info, sfNodeLaneCallback)

134

135 while not rospy.is_shutdown():

136 plot()

137 # print("in main loop")

138 rate.sleep()

139

140 if __name__ == ’__main__’:

141 try:

142 viz = viz()

143 except rospy.ROSInterruptException:

144 marker.action = Marker.DELETEALL

145 ownship.action = Marker.DELETEALL

146 pass

A.0.3 viz lv.py: Lead Vehicle Visualization Script

1 #!/usr/bin/env python

2 import rospy

3 import time

4 from visualization_msgs.msg import MarkerArray

5 from visualization_msgs.msg import Marker

6 from pcm_messages.msg import *

7

8 topic = ’/visualization_lvmarker’

9 #publisher = rospy.Publisher(topic, MarkerArray,queue_size=10) #queue

size 100

51

10 publisher_leadveh = rospy.Publisher(topic, MarkerArray,queue_size=10) #

queue size 100

11 rospy.init_node(’rviz_leadveh’)

12 rate = rospy.Rate(10) # ROS Rate at 10Hz

13

14 global markerArray

15 global marker

16 markerArray = MarkerArray()

17 markerArray.markers= []

18

19 marker = Marker()

20 ownship = Marker()

21 text = Marker()

22

23 # marker = Marker()

24 marker.header.frame_id = "marker_frame"

25 marker.header.stamp = rospy.Time.now()

26 marker.type = marker.SPHERE

27 marker.scale.x = 2

28 marker.scale.y = 2

29 marker.scale.z = 2

30 marker.color.a = 1.0 #make it visible

31 marker.pose.orientation.w = 1.0

32 marker.pose.position.z = 0.0

33 # text = Marker()

34 text.header.frame_id = "marker_frame"

35 text.header.stamp = rospy.Time.now()

36 text.type = marker.TEXT_VIEW_FACING

37 text.scale.x = 2

38 text.scale.y = 2

39 text.scale.z = 2

40 text.color.a = 1.0 #make it visible

41 text.pose.orientation.w = 1.0

52

42 text.pose.position.z = 0.0

43 # ownship = Marker()

44 ownship.header.frame_id = "marker_frame"

45 ownship.header.stamp = rospy.Time.now()

46 ownship.type = ownship.CUBE

47 ownship.scale.x = 2.5

48 ownship.scale.y = 1.5

49 ownship.scale.z = 1.0

50 ownship.color.a = 1.0 #make it visible

51 ownship.color.r = 1.0

52 ownship.color.g = 0.7

53 ownship.color.b = 0.1

54 ownship.pose.orientation.w = 1.0

55 ownship.pose.position.x = 0.0

56 ownship.pose.position.y = 0.0

57 ownship.pose.position.z = 0.0

58

59 def rDetectionCallback(data):

60 if (data.wExist > -0.7):

61 marker.type = marker.SPHERE

62 marker.header.stamp = rospy.Time.now()

63 marker.scale.x = 1

64 marker.scale.y = 1

65 marker.scale.z = 1

66 marker.pose.position.x = data.dx

67 marker.pose.position.y = data.dy

68

69 #make blue markers

70 marker.color.r = 0.0

71 marker.color.g = 0.0

72 marker.color.b = 1.0

73 marker.lifetime = rospy.Duration(0.1)

74 markerArray.markers.append(marker)

53

75 #markerArray.markers.append(ownship)

76 else:

77 return

78 def mDetectionCallback(data):

79 marker.type = marker.SPHERE

80 marker.header.stamp = rospy.Time.now()

81 marker.scale.x = 1

82 marker.scale.y = 1

83 marker.scale.z = 1

84 marker.pose.position.x = data.PosX

85 marker.pose.position.y = data.Posy

86

87 #make purple markers

88 marker.color.r = 1.0

89 marker.color.g = 1.0

90 marker.color.b = 1.0

91 marker.lifetime = rospy.Duration(0.1)

92 markerArray.markers.append(marker)

93 #markerArray.markers.append(ownship)

94 def leadVehCallback(data):

95 marker.type = marker.CUBE

96 marker.header.stamp = rospy.Time.now()

97 marker.scale.x = 2.5

98 marker.scale.y = 1.5

99 marker.scale.z = 1.0

100 marker.pose.position.x = data.leadVehDist

101 marker.pose.position.y = data.leadVehLateralDist

102 #make green marker

103 marker.color.r = 0.0

104 marker.color.g = 1.0

105 marker.color.b = 0.0

106 marker.lifetime = rospy.Duration(0.3)

107 text.scale.x = 3.5

54

108 text.scale.y = 3.5

109 text.scale.z = 3.5

110 text.pose.position.x = data.leadVehDist+8

111 text.pose.position.y = data.leadVehLateralDist

112 text.color.r = 0.0

113 text.color.g = 0.0

114 text.color.b = 0.0

115 text.lifetime = rospy.Duration(0.3)

116 text.text = ("Lead Vehicle\n x: %0.2f \n y: %0.2f" % (data.leadVehDist

, data.leadVehLateralDist))

117 if (marker.pose.position.x > 10000):

118 pass

119 else:

120 markerArray.markers.append(marker)

121 markerArray.markers.append(text)

122 #lvma.markers.append(marker)

123 #lvma.markers.append(ownship)

124 def trackCallback(data):

125 if (data.dx < 1000000):

126 marker.type = marker.SPHERE

127 marker.header.stamp = rospy.Time.now()

128 marker.scale.x = 1.5

129 marker.scale.y = 1.5

130 marker.scale.z = 1.5

131 marker.pose.position.x = data.dx

132 marker.pose.position.y = data.dy

133 #marker.id = data.trackNum #use this when every piece has a unique

identifier

134

135 #make red markers

136 marker.color.r = 1.0

137 marker.color.g = 0.0

138 marker.color.b = 0.0

55

139 marker.lifetime = rospy.Duration(0.1)

140 markerArray.markers.append(marker)

141 else:

142 return

143

144 def viz():

145 global markerArray

146 #1 lead vehicle verbose topic

147 rospy.Subscriber("/lead_vehVERBOSE", LeadVehicleVerbose,

leadVehCallback)

148

149 #32 radar detection topics

150 # rospy.Subscriber("/Radar1_Obj00_A", RadObjA, rDetectionCallback)

151 # rospy.Subscriber("/Radar1_Obj01_A", RadObjA, rDetectionCallback)

152 # rospy.Subscriber("/Radar1_Obj02_A", RadObjA, rDetectionCallback)

153 # rospy.Subscriber("/Radar1_Obj03_A", RadObjA, rDetectionCallback)

154 # rospy.Subscriber("/Radar1_Obj04_A", RadObjA, rDetectionCallback)

155 # rospy.Subscriber("/Radar1_Obj05_A", RadObjA, rDetectionCallback)

156 # rospy.Subscriber("/Radar1_Obj06_A", RadObjA, rDetectionCallback)

157 # rospy.Subscriber("/Radar1_Obj07_A", RadObjA, rDetectionCallback)

158 # rospy.Subscriber("/Radar1_Obj08_A", RadObjA, rDetectionCallback)

159 # rospy.Subscriber("/Radar1_Obj09_A", RadObjA, rDetectionCallback)

160 # rospy.Subscriber("/Radar1_Obj10_A", RadObjA, rDetectionCallback)

161 # rospy.Subscriber("/Radar1_Obj11_A", RadObjA, rDetectionCallback)

162 # rospy.Subscriber("/Radar1_Obj12_A", RadObjA, rDetectionCallback)

163 # rospy.Subscriber("/Radar1_Obj13_A", RadObjA, rDetectionCallback)

164 # rospy.Subscriber("/Radar1_Obj14_A", RadObjA, rDetectionCallback)

165 # rospy.Subscriber("/Radar1_Obj15_A", RadObjA, rDetectionCallback)

166 # rospy.Subscriber("/Radar1_Obj16_A", RadObjA, rDetectionCallback)

167 # rospy.Subscriber("/Radar1_Obj17_A", RadObjA, rDetectionCallback)

168 # rospy.Subscriber("/Radar1_Obj18_A", RadObjA, rDetectionCallback)

169 # rospy.Subscriber("/Radar1_Obj19_A", RadObjA, rDetectionCallback)

170 # rospy.Subscriber("/Radar1_Obj20_A", RadObjA, rDetectionCallback)

56

171 # rospy.Subscriber("/Radar1_Obj21_A", RadObjA, rDetectionCallback)

172 # rospy.Subscriber("/Radar1_Obj22_A", RadObjA, rDetectionCallback)

173 # rospy.Subscriber("/Radar1_Obj23_A", RadObjA, rDetectionCallback)

174 # rospy.Subscriber("/Radar1_Obj24_A", RadObjA, rDetectionCallback)

175 # rospy.Subscriber("/Radar1_Obj25_A", RadObjA, rDetectionCallback)

176 # rospy.Subscriber("/Radar1_Obj26_A", RadObjA, rDetectionCallback)

177 # rospy.Subscriber("/Radar1_Obj27_A", RadObjA, rDetectionCallback)

178 # rospy.Subscriber("/Radar1_Obj28_A", RadObjA, rDetectionCallback)

179 # rospy.Subscriber("/Radar1_Obj29_A", RadObjA, rDetectionCallback)

180 # rospy.Subscriber("/Radar1_Obj30_A", RadObjA, rDetectionCallback)

181 # rospy.Subscriber("/Radar1_Obj31_A", RadObjA, rDetectionCallback)

182

183 #10 mobileye detection topics

184 # rospy.Subscriber("/ObstacleDataA1", ME_A2, mDetectionCallback)

185 # rospy.Subscriber("/ObstacleDataA2", ME_A2, mDetectionCallback)

186 # rospy.Subscriber("/ObstacleDataA3", ME_A2, mDetectionCallback)

187 # rospy.Subscriber("/ObstacleDataA4", ME_A2, mDetectionCallback)

188 # rospy.Subscriber("/ObstacleDataA5", ME_A2, mDetectionCallback)

189 # rospy.Subscriber("/ObstacleDataA6", ME_A2, mDetectionCallback)

190 # rospy.Subscriber("/ObstacleDataA7", ME_A2, mDetectionCallback)

191 # rospy.Subscriber("/ObstacleDataA8", ME_A2, mDetectionCallback)

192 # rospy.Subscriber("/ObstacleDataA9", ME_A2, mDetectionCallback)

193 # rospy.Subscriber("/ObstacleDataA10", ME_A2, mDetectionCallback)

194

195 #20 track topics

196 # rospy.Subscriber("/Tracks1", Track, trackCallback)

197 # rospy.Subscriber("/Tracks2", Track, trackCallback)

198 # rospy.Subscriber("/Tracks3", Track, trackCallback)

199 # rospy.Subscriber("/Tracks4", Track, trackCallback)

200 # rospy.Subscriber("/Tracks5", Track, trackCallback)

201 # rospy.Subscriber("/Tracks6", Track, trackCallback)

202 # rospy.Subscriber("/Tracks7", Track, trackCallback)

203 # rospy.Subscriber("/Tracks8", Track, trackCallback)

57

204 # rospy.Subscriber("/Tracks9", Track, trackCallback)

205 # rospy.Subscriber("/Tracks10", Track, trackCallback)

206 # rospy.Subscriber("/Tracks11", Track, trackCallback)

207 # rospy.Subscriber("/Tracks12", Track, trackCallback)

208 # rospy.Subscriber("/Tracks13", Track, trackCallback)

209 # rospy.Subscriber("/Tracks14", Track, trackCallback)

210 # rospy.Subscriber("/Tracks15", Track, trackCallback)

211 # rospy.Subscriber("/Tracks16", Track, trackCallback)

212 # rospy.Subscriber("/Tracks17", Track, trackCallback)

213 # rospy.Subscriber("/Tracks18", Track, trackCallback)

214 # rospy.Subscriber("/Tracks19", Track, trackCallback)

215 # rospy.Subscriber("/Tracks20", Track, trackCallback)

216

217 markerArray.markers.append(ownship)

218 while not rospy.is_shutdown():

219 i_d = 0

220 for m in markerArray.markers:

221 m.id = i_d

222 i_d += 1

223 publisher_leadveh.publish(markerArray)

224 #print(len(markerArray.markers))

225 if (len(markerArray.markers) >= 1000):

226 markerArray.markers = []

227 rate.sleep()

228

229 if __name__ == ’__main__’:

230 try:

231 viz = viz()

232 except rospy.ROSInterruptException:

233 marker.action = Marker.DELETEALL

234 ownship.action = Marker.DELETEALL

235 pass

58

A.0.4 viz tracks.py: Track Visualization Script

1 #!/usr/bin/env python

2 import rospy

3 import time

4 from visualization_msgs.msg import MarkerArray

5 from visualization_msgs.msg import Marker

6 import message_filters

7 from pcm_messages.msg import *

8

9 topic = ’/visualization_tmarker’

10 publisher_t = rospy.Publisher(topic, MarkerArray,queue_size=600) #queue

size 100

11 rospy.init_node(’rviz_markers’)

12 rate = rospy.Rate(200) # ROS Rate at 200Hz

13

14 global time_now

15 time_now = rospy.Time.now()

16

17 global markerArray

18 global marker

19 markerArray = MarkerArray()

20 markerArray.markers= []

21

22 marker = Marker()

23 ownship = Marker()

24 text = Marker()

25

26 # marker = Marker()

27 marker.header.frame_id = "marker_frame"

28 marker.header.stamp = time_now

29 marker.type = marker.SPHERE

30 marker.scale.x = 2

59

31 marker.scale.y = 2

32 marker.scale.z = 2

33 marker.color.a = 1.0 #make it visible

34 marker.pose.orientation.w = 1.0

35 marker.pose.position.z = 0.0

36 # text = Marker()

37 text.header.frame_id = "marker_frame"

38 text.header.stamp = time_now

39 text.type = marker.TEXT_VIEW_FACING

40 text.scale.x = 2

41 text.scale.y = 2

42 text.scale.z = 2

43 text.color.a = 1.0 #make it visible

44 text.pose.orientation.w = 1.0

45 text.pose.position.z = 0.0

46 # ownship = Marker()

47 ownship.header.frame_id = "marker_frame"

48 ownship.header.stamp = rospy.Time.now()

49 ownship.type = ownship.CUBE

50 ownship.scale.x = 2.5

51 ownship.scale.y = 1.5

52 ownship.scale.z = 1.0

53 ownship.color.a = 1.0 #make it visible

54 ownship.color.r = 1.0

55 ownship.color.g = 0.7

56 ownship.color.b = 0.1

57 ownship.pose.orientation.w = 1.0

58 ownship.pose.position.x = 0.0

59 ownship.pose.position.y = 0.0

60 ownship.pose.position.z = 0.0

61

62 def rDetectionCallback(data):

63 if (data.wExist > 0.7):

60

64 marker.type = marker.SPHERE

65 marker.header.stamp = time_now

66 marker.scale.x = 1

67 marker.scale.y = 1

68 marker.scale.z = 1

69 marker.pose.position.x = data.dx

70 marker.pose.position.y = data.dy

71

72 #make blue markers

73 marker.color.r = 0.0

74 marker.color.g = 0.0

75 marker.color.b = 1.0

76 marker.lifetime = rospy.Duration(0.1)

77 markerArray.markers.append(marker)

78 #markerArray.markers.append(ownship)

79 else:

80 return

81 def mDetectionCallback(data):

82 marker.type = marker.SPHERE

83 marker.header.stamp = time_now

84 marker.scale.x = 1

85 marker.scale.y = 1

86 marker.scale.z = 1

87 marker.pose.position.x = data.PosX

88 marker.pose.position.y = data.Posy

89

90 #make purple markers

91 marker.color.r = 1.0

92 marker.color.g = 0.0

93 marker.color.b = 1.0

94 marker.lifetime = rospy.Duration(0.1)

95 markerArray.markers.append(marker)

96 #markerArray.markers.append(ownship)

61

97 def leadVehCallback(data):

98 if (data.leadVehDist < 1000000):

99 marker.type = marker.CUBE

100 marker.header.stamp = time_now

101 marker.scale.x = 2.5

102 marker.scale.y = 1.5

103 marker.scale.z = 1.0

104 marker.pose.position.x = data.leadVehDist

105 marker.pose.position.y = data.leadVehLateralDist

106

107 #make green marker

108 marker.color.r = 0.0

109 marker.color.g = 1.0

110 marker.color.b = 0.0

111 marker.lifetime = rospy.Duration(0.3)

112 markerArray.markers.append(marker)

113 else:

114 return

115 def trackCallback(data):

116 if (data.dx < 1000000 and data.dx > 0):

117 marker.type = marker.SPHERE

118 marker.header.stamp = time_now

119 marker.scale.x = 1.5

120 marker.scale.y = 1.5

121 marker.scale.z = 1.5

122 marker.pose.position.x = data.dx

123 marker.pose.position.y = data.dy

124 #marker.id = data.trackNum #use this when every piece has a unique

identifier

125 #make red markers

126 marker.color.r = 1.0

127 marker.color.g = 0.0

128 marker.color.b = 0.0

62

129 marker.lifetime = rospy.Duration(0.3)

130 text.scale.x = 1.5

131 text.scale.y = 1.5

132 text.scale.z = 1.5

133 text.pose.position.x = data.dx+4

134 text.pose.position.y = data.dy

135 text.color.r = 1.0

136 text.color.g = 0.0

137 text.color.b = 0.0

138 text.lifetime = rospy.Duration(0.3)

139 text.text = ("TrackID: %i \n x: %0.2f \n y: %0.2f" % (data.trackNum,

data.dx, data.dy))

140 markerArray.markers.append(marker)

141 markerArray.markers.append(text)

142 def viz():

143 global markerArray

144 global time_now

145 # #1 lead vehicle verbose topic

146 # rospy.Subscriber("/lead_vehVERBOSE", LeadVehicleVerbose,

leadVehCallback)

147

148 #32 radar detection topics

149 # rospy.Subscriber("/Radar1_Obj00_A", RadObjA, rDetectionCallback)

150 # rospy.Subscriber("/Radar1_Obj01_A", RadObjA, rDetectionCallback)

151 # rospy.Subscriber("/Radar1_Obj02_A", RadObjA, rDetectionCallback)

152 # rospy.Subscriber("/Radar1_Obj03_A", RadObjA, rDetectionCallback)

153 # rospy.Subscriber("/Radar1_Obj04_A", RadObjA, rDetectionCallback)

154 # rospy.Subscriber("/Radar1_Obj05_A", RadObjA, rDetectionCallback)

155 # rospy.Subscriber("/Radar1_Obj06_A", RadObjA, rDetectionCallback)

156 # rospy.Subscriber("/Radar1_Obj07_A", RadObjA, rDetectionCallback)

157 # rospy.Subscriber("/Radar1_Obj08_A", RadObjA, rDetectionCallback)

158 # rospy.Subscriber("/Radar1_Obj09_A", RadObjA, rDetectionCallback)

159 # rospy.Subscriber("/Radar1_Obj10_A", RadObjA, rDetectionCallback)

63

160 # rospy.Subscriber("/Radar1_Obj11_A", RadObjA, rDetectionCallback)

161 # rospy.Subscriber("/Radar1_Obj12_A", RadObjA, rDetectionCallback)

162 # rospy.Subscriber("/Radar1_Obj13_A", RadObjA, rDetectionCallback)

163 # rospy.Subscriber("/Radar1_Obj14_A", RadObjA, rDetectionCallback)

164 # rospy.Subscriber("/Radar1_Obj15_A", RadObjA, rDetectionCallback)

165 # rospy.Subscriber("/Radar1_Obj16_A", RadObjA, rDetectionCallback)

166 # rospy.Subscriber("/Radar1_Obj17_A", RadObjA, rDetectionCallback)

167 # rospy.Subscriber("/Radar1_Obj18_A", RadObjA, rDetectionCallback)

168 # rospy.Subscriber("/Radar1_Obj19_A", RadObjA, rDetectionCallback)

169 # rospy.Subscriber("/Radar1_Obj20_A", RadObjA, rDetectionCallback)

170 # rospy.Subscriber("/Radar1_Obj21_A", RadObjA, rDetectionCallback)

171 # rospy.Subscriber("/Radar1_Obj22_A", RadObjA, rDetectionCallback)

172 # rospy.Subscriber("/Radar1_Obj23_A", RadObjA, rDetectionCallback)

173 # rospy.Subscriber("/Radar1_Obj24_A", RadObjA, rDetectionCallback)

174 # rospy.Subscriber("/Radar1_Obj25_A", RadObjA, rDetectionCallback)

175 # rospy.Subscriber("/Radar1_Obj26_A", RadObjA, rDetectionCallback)

176 # rospy.Subscriber("/Radar1_Obj27_A", RadObjA, rDetectionCallback)

177 # rospy.Subscriber("/Radar1_Obj28_A", RadObjA, rDetectionCallback)

178 # rospy.Subscriber("/Radar1_Obj29_A", RadObjA, rDetectionCallback)

179 # rospy.Subscriber("/Radar1_Obj30_A", RadObjA, rDetectionCallback)

180 # rospy.Subscriber("/Radar1_Obj31_A", RadObjA, rDetectionCallback)

181

182 # #10 mobileye detection topics

183 # rospy.Subscriber("/ObstacleDataA1", ME_A2, mDetectionCallback)

184 # rospy.Subscriber("/ObstacleDataA2", ME_A2, mDetectionCallback)

185 # rospy.Subscriber("/ObstacleDataA3", ME_A2, mDetectionCallback)

186 # rospy.Subscriber("/ObstacleDataA4", ME_A2, mDetectionCallback)

187 # rospy.Subscriber("/ObstacleDataA5", ME_A2, mDetectionCallback)

188 # rospy.Subscriber("/ObstacleDataA6", ME_A2, mDetectionCallback)

189 # rospy.Subscriber("/ObstacleDataA7", ME_A2, mDetectionCallback)

190 # rospy.Subscriber("/ObstacleDataA8", ME_A2, mDetectionCallback)

191 # rospy.Subscriber("/ObstacleDataA9", ME_A2, mDetectionCallback)

192 # rospy.Subscriber("/ObstacleDataA10", ME_A2, mDetectionCallback)

64

193

194 # # #20 track topics

195 rospy.Subscriber("/Tracks1", Track, trackCallback)

196 rospy.Subscriber("/Tracks2", Track, trackCallback)

197 rospy.Subscriber("/Tracks3", Track, trackCallback)

198 rospy.Subscriber("/Tracks4", Track, trackCallback)

199 rospy.Subscriber("/Tracks5", Track, trackCallback)

200 rospy.Subscriber("/Tracks6", Track, trackCallback)

201 rospy.Subscriber("/Tracks7", Track, trackCallback)

202 rospy.Subscriber("/Tracks8", Track, trackCallback)

203 rospy.Subscriber("/Tracks9", Track, trackCallback)

204 rospy.Subscriber("/Tracks10", Track, trackCallback)

205 rospy.Subscriber("/Tracks11", Track, trackCallback)

206 rospy.Subscriber("/Tracks12", Track, trackCallback)

207 rospy.Subscriber("/Tracks13", Track, trackCallback)

208 rospy.Subscriber("/Tracks14", Track, trackCallback)

209 rospy.Subscriber("/Tracks15", Track, trackCallback)

210 rospy.Subscriber("/Tracks16", Track, trackCallback)

211 rospy.Subscriber("/Tracks17", Track, trackCallback)

212 rospy.Subscriber("/Tracks18", Track, trackCallback)

213 rospy.Subscriber("/Tracks19", Track, trackCallback)

214 rospy.Subscriber("/Tracks20", Track, trackCallback)

215

216 markerArray.markers.append(ownship)

217 while not rospy.is_shutdown():

218 i_d = 0

219 for m in markerArray.markers:

220 m.id = i_d

221 i_d += 1

222 publisher_t.publish(markerArray)

223 #print(len(markerArray.markers))

224 if (len(markerArray.markers) >= 100):

225 markerArray.markers = []

65

226 markerArray.markers.append(ownship)

227 time_now=rospy.Time.now()

228

229 rate.sleep()

230

231 if __name__ == ’__main__’:

232 try:

233 viz = viz()

234 except rospy.ROSInterruptException:

235 marker.action = Marker.DELETEALL

236 ownship.action = Marker.DELETEALL

237 pass

66

REFERENCES

[1] “Advanced vehicle technology competitions (avtc),” Retrieved March 03, 2023, from
https://avtcseries.org.

[2] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of per-
ception system and simulators for autonomous vehicles research,” Sensors, vol. 19,
p. 648, 2019, doi:10.3390/s19030648.

[3] S. Campbell, “Sensor technology in autonomous vehicles: A review,” 29th Irish Sig-
nals and Systems Conference (ISSC), pp. 1–4, 2018, doi:10.3390/s21062140.

[4] D. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion
technology in autonomous vehicles: A review,” Sensors, 2021, doi:10.3390/s21062140.

[5] R. Haber, “Visualization techniques for engineering mechanics,” Computing Systems
in Engineering, vol. 1, pp. 37–50, 1 1990, doi:10.1016/0956-0521(90)90046-N.

[6] G. R. Bertoline, E. Wiebe, C. Miller, and L. Nasman, Engineering Graphics Com-
munication. Chicago: Irwin, 1995.

[7] “2023 chevrolet blazer review, pricing, and specs,” 2023, Retrieved April 11, 2023,
from https://www.caranddriver.com/chevrolet/blazer/specs/2019/chevrolet blazer
chevrolet-blazer 2019.

[8] “TANK AIoT developer kit: TANK-XM811AI-i5AD/2A-R10,” Retrieved March 3,
2023, from https://www.ieiworld.com/en/product-ns/model.php?II=2.

[9] Sensor gateway unit interface specification: MRR/LRR4-SGU, Robert Bosch LLC.

[10] “Quad cam vision for robocars comes to CES,” Retrieved March 3, 2023, from https:
//www.eetimes.com/quad-cam-vision-for-robocars-comes-to-ces/.

[11] “Mitigation strategies for design exceptions - safety: Federal highway administra-
tion,” Retrieved April 11, 2023, from https://safety.fhwa.dot.gov/geometric/pubs/
mitigationstrategies/chapter3/3 lanewidth.cfm.

[12] A. Dattalo, “ROS introduction,” Retrieved February 23, 2023 from http://wiki.ros.
org/ROS/Introduction.

[13] J. D’Onfro, “How a billionaire who wrote google’s original code created a robot
revolution,” Retrieved February 23, 2023, from https://www.businessinsider.com/a-
look-back-at-willow-garage-2016-2.

67

https://avtcseries.org
https://doi.org/10.3390/s19030648
https://doi.org/10.3390/s21062140
https://doi.org/10.3390/s21062140
https://doi.org/10.1016/0956-0521(90)90046-N
https://www.caranddriver.com/chevrolet/blazer/specs/2019/chevrolet_blazer_chevrolet-blazer_2019
https://www.caranddriver.com/chevrolet/blazer/specs/2019/chevrolet_blazer_chevrolet-blazer_2019
https://www.ieiworld.com/en/product-ns/model.php?II=2
https://www.eetimes.com/quad-cam-vision-for-robocars-comes-to-ces/
https://www.eetimes.com/quad-cam-vision-for-robocars-comes-to-ces/
https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://www.businessinsider.com/a-look-back-at-willow-garage-2016-2
https://www.businessinsider.com/a-look-back-at-willow-garage-2016-2

[14] B. Soner and S. Coleri, “Visible light communication based vehicle localization for
collision avoidance and platooning,” IEEE Transactions on Vehicular Technology,
vol. 70, 3, doi:10.1109/TVT.2021.3061512.

[15] J. Maderer, “Student team wins department of energy ecocar mobility challenge,”
Retrieved December 1, 2023, from https://coe.gatech.edu/news/2022/05/student-
team-wins-department-energy-ecocar-mobility-challenge.

68

https://doi.org/10.1109/TVT.2021.3061512
https://coe.gatech.edu/news/2022/05/student-team-wins-department-energy-ecocar-mobility-challenge
https://coe.gatech.edu/news/2022/05/student-team-wins-department-energy-ecocar-mobility-challenge

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Background
	EcoCAR Competition
	Perception Systems in Autonomy

	2 | GT EcoCAR Perception System
	Hardware Architecture
	Existing Software

	3 | Tank Viz Description
	Purpose
	Data Displayed on Tank Viz
	Software Architecture
	Real-Time and Post Processing Usage
	Line-By-Line Software Description

	4 | Conclusion and Future Work
	Tool Modification

	Appendices
	A | Tank Viz Scripts
	References

