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SUMMARY 

Although rate and equilibrium in reactions of the type 

RNH2 
+ R'CORu  RN=CR'le + H2O 

have been studied in a number of cases where RNH2 
is a hydroxyamine or 

hydrazine derivative or where one or more of the R groups are aryl 

groups, little attention seems to have been given to the simple cases 

where R, R' and R" are all hydrogen or saturated alkyl groups. 

Imines and imonium ions are potentially important not only for 

their possible uses, but also as intermediates in a wide variety of 

reactions, such as amine-catalyzed aldolization and decarbonylation. 

The equilibrium constants for the formation of N-isobutylidene-

methylamine, N-isobutylidene-n-propylamine, N-isobutylidene-3-methoxy-

proplyamine, and N-isobutylidene-t-butylamine from isobutyraldehyde 

and corresponding primary amines have been measured. Three methods 

have been used in this determination, two involving measurements of 

the ultraviolet spectra and one involving the pH measurements. The 

ultraviolet measurements are based on the decrease in absorbance at 

2850 A (due to the decrease in concentration of isobutyraldehyde) 

and the increase in absorbance at about 2300 A (due to the formation 

of imines) that occur when increasing concentrations of primary amines 

are added to aqueous isobutyraldehyde solutions. The pH measurements 

are based on the fact that the addition of isobutyraldehyde to primary 

amine buffers decreases the pH values by transforming the amines to 



xi 

the corresponding imines which are much less basic. For the reaction 

of methylamine, all three methods were used and found to give within 

1.5% of the same value. For the reaction of n-propylamine, 3-methoxypro-

pylamine and t-butylamine, ultraviolet measurements at about 2300 A and 

in some cases pH measurements were used, with satisfactory agreement. 

The results are given in the following table: 

i-PrCH=NR 	 Equilibrium Constant 
	

Average 
R 	 U.V. Measurement 	pH Measurement 

-CH
3 

91.7 + 3.5 89.5 	2.0 90.7 

-CH2CH2
CH3 76.3 + 0.7 75.5 + 1.3 75.9 

-(CH2 ) 30CH3  65.2 + 2.5 63.8 + 1.5 64.5 

-C(CH
3

) 3.5 + 0.1 3.5 

where the equilibrium constants, K = 	[Irvine] 	are not in- 
[Aldehyde][Amine] ' 

volved the concentration of water, since the concentration of water 

almost remains constant in the equilibrium reaction. 

The most significant trend in equilibrium constants noted may 

be attributed to the steric hindrance. 

The autoprotolysis constant of water and the ionization constants 

of various amines at 35 °  C and ionic strength other than zero have been 

calculated from literature and/or determined in this study. 



CHAPTER I 

INTRODUCTION 

Nomenclature of Imines  

Imines were discovered by Schiff (1) in 1864. The structure 

of these materials can be designated as 

R
1 

..' 
R

C=1\T-R
3 

(I) 
2 

where the R groups may be alkyl groups, aryl groups, or hydrogen atoms. 

Compounds with structure I have been referred to as imines, azo-

methines, anils, or Schiff bases. The nomenclature for compounds of 

this type is often variable. Chemical Abstracts lists general refer-

ences to these materials under the categories of imines and Schiff 

bases. Ketimines refer to compounds where both R1  and R2  are alkyl or 

aryl groups while aldimines refer to compounds where one or both of the 

groups, R1  and R2 , is a hydrogen atom. For convenience, the term Schiff 

bases has been limited to designating those imines where R1  is an aryl 

group, R
2 

is a hydrogen atom, and R
3 

either an alkyl or aryl group (2). 

Anils are imines in which R
1 

and R
2 

are an aliphatic group, or an aro-

matic group, or a hydrogen atom, and R
3 

is a phenyl or substituted 

phenyl group (2). Imines in which R
3 

is an alkyl or aryl group are 

1. H. Schiff, Ann., 131, 118 (1864). (Abbreviations used in 
these footnotes follow the form employed by Chemical Abstracts.) 

2. R. W. Layer, Chem. Rev., 63, 489 (1963). 

1 
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ordinarily named by Chemical Abstracts as derivatives of the amine 

R3NH2 
(3). All the imines discussed in this study which deal with the 

formation of imines from isobutyraldehyde and primary alkyl amines, 

are in this category. Therefore, a typical example, (CH 3 ) 2CHCH=N-CH3 , 

is named N-isobutylidenemethylamine (4). When R
3 

is a hydrogen atom, 

the compound is ordinarily named as an imine; for example, CH
3
CH=N-H 

is named ethylidenimine (3). 

Physical Properties  

The N-isobutylidenealkylamines studied are all colorless liquids. 

At room temperature, the densities are in the range 0.7-0.8. The struc-

tural refractive constant of C=N is given as 3.75 in Batsan)v's scale (5) 

and 4.04 in Briihl's scale (6). 

The ultraviolet absorption spectra associated with the unconju-

gated C=N system has not been extensively studied. In some cases (7,8) 

where the alkyl group attached to the imino carbon atom is a primary or 

secondary alkyl group, the spectra cannot be interpreted unambiguously 

because enaminisation is possible as follows: 

3. Chem. Abstr.,  39, 5928 (1945). 

4. Chem. Abstr., 42, 10749 (1948). 

5. S. S. Batsanov, Refractometry and. Chemical Structure, 
Consultants Bureau, New York, 1961, p. 41. 

6. J. W. BrUhl, Z. Physik. Chem., 7, 177, 191 (1891); Ibid., 
79, 1 (1912). 

7. J. Hires and J. Balog, Acta Univ. Szeged., Acta phys. et 
Chem., 2, 87 (1956); Chem. Abstr., 51, 1777 (1957). 

8. S. F. Mason, Quart. Revs. (London), 15, 316 (1961). 
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R 	 7±- R t..."-C=CH-NH-R" 

where R and R i  are alkyl groups or hydrogen atoms, and R" is an alkyl 

group. 

In 1963, Bonnett and co-workers (9) studied the formation of 

neopentylidenealkylamines from pivalaldehyde and alkyl amines by ultra-

violet measurements in various organic solvents. In this case, enamini-

sation and aldol-type condensations of the imines are obviated. In 

hexane solution, `max for R u=n-Bu, sec-Bu, t-Bu are 244, 243 and 250 mp, 

respectively and log e is 1.94, 1.93, and 1.90 respectively. They 

showed that the wave lengths of maximum absorption and extinction co-

efficients of neopentylidenealkylamines are dependent on the polarity 

of the solvent and the alkyl group attached to the imino nitrogen atom. 

For instance, in ethonolic solution, the Amax  of neo-pentylidenebutyl-

amines decreases 7-9 mil and log e increases 0.02-0.09 in each case. 

A number of N-alkylidenealkylamines give rise to a Raman line 

near 1670 cm-1  (10,11). Cantarel (12) found that simple imines have a 

Raman line in the same region; he compared their characteristic fre-

quency with those of C=C and C=0, and found it to be closer to the 

latter: 

9. R. Bonnett, N. J. David, J. Hamlin and P. Smith, Chem. and  
Ind., 1836 (1963). 

10. A. Kirrmann and P. Laurent, Bull. Soc. Chem.,  6, 1657 (1939). 

11. L. Kahovec, Acta Phys. Austriaca, 1, 307 (1948); Chem. 
Abstr. 42, 6665 (1948).----  

12. R. Cantarel, Compt. rend., 210,480 (1940); Chem. Abstr., 
3592 (1940). 



- 
Group 

1 
 Lyon). 

C=C 1500 
C=N 1670 
C=0 1750 

The C=N bond distances fcr several imines have been deduced from 

the corresponding. Raman frequencies by comparison with the C=0 distances 

for several ketones. The average distance for C=0 is close to the 

accepted value of 1.215 A (13); the imines are considered to be per-

fectly covalent and a bond distance of 1.24 A is estimated. Using a 

carbon double bond radius of 0.665 A, a nitrogen double bond radius of 

0.575 A may be calculated. 

Infrared (IR) absorption due to the stretching vibration of the 

C=N group in open chain compounds has been assigned to the region 1690-

1630 cm 1  by Bellamy (14) in 1958. In 1963, Suydam (15) measured the 

infrared absorption spectra of a series of imines of the type of 

R-CH=N-R' where the R and R' groups are alkyl or phenyl groups. For 

all of the saturated aliphatic imines (R,R' = alkyl), Suydam showed 

that a C=N absorption peak lies within the narrow range between 1664 

1 and 1672 cm (5.98 to 6.01 microns), and neither chain length nor 

branching has any noticeable effect on this frequency. 

13. L. Pauling, The Nature of the Chemical Bond,  3rd ed., 
Cornell University Press, Ithaca, N.Y., 1960, p. 224. 

14. L. J. Bellamy, Infrared Spectra  of Complex Molecules, 
2nd ed., Methuen and Co., 17777719777dhap. 15. 

15. F. H. Suydam, Anal. Chem., 35, 193 (1963). 
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Everard and Sutton (16) report the bond dipole of the C=N bond 

in aliphatic aldimines to be 1.4 D, which is less than the bond dipoles 

of 2.5 D for ketones. As the size of the alkyl group attached to the 

nitrogen is increased, the moment tends to decrease. 

'mines possess a double bond, suggesting that geometric isomers 

should be possible, e.g. 

H 	 H
C = N

je 
C = 

R
....- N

\R 	 R.... 
cis 	 trans 

Studies of dipole moment (16) and Raman spectra (12) indicate that 

aldimines exist very largely at least in the trans form. Other studies 

have been made and confirmed that no isomerization occurred and all the 

aldimines exist in the trans form. (7,17). 

If aldimines exist only in the trans form, it will not be neces-

sary to correct for the presence of some cis isomer in evaluating the 

carbon-nitrogen double bond dipole. This bond dipole may be compared 

with those of C-N (0.45 D) and CEN (3.2 D from solution measurements 

and 3.6 D from gas measurements). The dipole of carbon-nitrogen bonds 

evidently do not rise linearly with the multiplicity as do the energies 

(18). On the contrary, the difference between the triple and the double 

16. K. B. Everard and L. E. Sutton, . Chem. Soc., 2318 (1948). 

17. V. DeGaouck and R. J. W. LeFevre, J. Chem. Soc., 741 (1938). 

18. L. Pauling, The Nature of the Chemical Bond, 3rd ed., 
Cornell University Press, Ithaca, N.Y., 1960, pp. 85, 189. 
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bond dipoles markedly exceeds that between the double and the single 

bond dipoles. 

Coates and Sutton (19) studied the bond energy of C=N by burning 

N-isobutylidene-n-butylamine and on the basis of heat of atomization of 

graphite and nitrogen. 

C(s) 	C(g) ( 3P) 
	

-126.3 kcals/mole 

N
2 
 (g) 	2N (g) 	 -170.2 kcals/mole 

The bond energy, 137.5-147.5 kcal/mole was obtained. In 1962, Bedford 

and co-workers (20) burned the same compound and obtained the value 

142.6 kcal/mole. 

All the imines whose ionization constants have been determined 

have been found to be more weakly basic than the primary amines from 

which they are derived. Cordes and Jencks (21) measured the ionization 

constants of a number of substituted N-benzylidene-t-butylamines. They 

observed values ranging from 5 x 10 
,7 
forthe p-methoxy compound to 

2.5 x 10-9  for the p-nitro compound. B?'ezina and Zuman (22) reported 

that the ionization constants for the ketimines derived from methylamine 

and cyclohexanone and cyclopentane are 3 x l0-5 and less than 10 6 , 

respectively. 

19. G. E. Coates and L. E. Sutton, J. Chem. Soc., 1187 (1948). 

20. A. F. Bedford, P. B. Edmondson and C. T. Mortimer, J. Chem.  
Soc., 2927 (1962). 

21. E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc., 85, 2843 
(1963). 

22. M. fr'ezina and P. Zuman, Chem. Listy, 47, 975 (1953); Chem. 
Abstr., 48, 5674i (1954). 
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The nuclear magnetic resonance spectrum of N,N'-dipiperonylidene-

ethylenediamine has been studied (23). The band position of the hydro-

gen atom attached tc the imino carbon has been assigned to 8.17 p.p.m. 

downfield from the tetramethylsilane. Leonard and Paukstelis (24) 

reported the spectrum of N-isobutylidenepyrrolidinium perchlorate. The 

signals occurred at 8.35 p.p.m. (J=9.0 c.p.s. doublet) (A), 4.16 p.p.m. 

(B), 2.97 p.p.m. (C), 2.23 p.p.m. (D), and 1.31 p.p.m. (J = 7.0 c.p.s., 

doublet) (E). The assignments were made as shown 

E 

A 	CH 3 H C 
H 	C 

CH
3 

B r+ 1  

C10-4 

In this ion the A proton was shown to be coupled to the C proton 

(J-Ac  = 9.0 c.p.s.) and to the B proton (JAB = 2.0 c.p.s.). The magni-

tude of J for spin-spin coupling through three single bonds and the 

C=N double bond is in the range observed for long-range coupling in 

the system H— C=C;:: `11 (25). The coupling of the C proton to the E pro- 

tons gave a doublet with JcE  = 7.0 c.p.s. 

Recently, Bonnett (26) studied the nuclear magnetic resonance 

23. N. S. Bhacca, D. P. Hollis, W. F. Johnson and E. A. Pier, 
High Resolution Nuclear Magnetic Resonance Spectra Catalog, Vol. 2, 
Varian Associates, Palo Alto, California, 1963, No. 673. 

24. N. J. Leonard and J. V. Palkstelis, J. Org. Chem. 28, 3021 
(1963). 

25. J. R. Dyer, Applications of Absorption Spectroscopy of 
Organic Compounds, Prentice-Hall, Inc., N.J. 1965, p. 99. 

26. R. Bonnett, J. Chem. Soc., 2313 (1965). 
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spectra of N-neopentylidenealkylamines and showed that the band for 

the proton attached to the imino carbon appears at 7.41-7.50 p.p.m. 

This signal appears to be weakly coupled (J— 1.5 c,p.s,) to the 

proton attached to the carbon atom adjacent to nitrogen. 

Formation of :mines  

There are several methods for preparing imines (27-32), of which 

the most common is the reaction. of aldehydes or ketones with amines. 

Only this method is of interest in this thesis, which deals with the 

equilibria between isobutyraldehyde, alkylamines and corresponding N-iso-

butylidenealkylamines. This reaction was discovered by Schiff (1). The 

general equation can be expressed as 

R, H 
1 ,1- 1'"C=0 + H2N-R3 HO-C--N-R

3 Hz-  111 2 

R1  -C=N-R3 
 + H2O 

R t  

27. C. Moureu and G. Mignonac, Lat. rend., 156, 1801 (1913); 
Chem. Abstr.,  3114 (1913). 

28. M. Busch and F. Falco, Ber., 2557 (1910). 

29. J. J. Ritter, J. Am.  Chem. Soc., 55, 3322 (1953). 

30. F. Barrow and F. J. Thorneycraft, J. Chem. Soc.,  769 (1939). 

31. K. Hoesch, Ber., 48, 1122 (1915); ibid., 50, 462 (1917). 

32. E. C. Britton, and F. Bryner, U. S. Patent 1,938,890; Chem. 
Abstr.,  42, 7744 (1948). 

2 
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Studies of rates and equilibria have been studied in a number of 

reactions of this type, but have been largely limited to those cases 

where R3
NH

2 
is a hydroxylamine, semicarbazide, or hydrazine derivative. 

Little attention seems to have been given to the cases where the R's 

groups in I are all hydrogen and/or saturated alkyl groups. 

The formation and hydrolysis of a number of oximes, semicarba-

zones, and related compounds has been shown to proceed through Equation 

A and B, with step A rate-determining at neutral and alkaline pH values 

and step B rate-determining at acidic pH values (33,34). 

R H 1 	I 1 I 
R
I\ C=N-R3 

+ H2O 	HO-C--N-R
3 2 	 k-1 	11 2 

9 1   11  	R 
0-C--N-R 

3  2 
C=0 + R 

3
NH 2 

2 
 

Morton and Pitt (35) have shown that the rate of retinylidene-

methylamine hydrolysis is much slower in acid than in neutral solution 

and this behavior has been interpreted in terms of a change in rate-

determining step from A to B at low pH values. Crowell and McLeod (36) 

33. E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc., 85, 2843 
(1963). 

34. W. P. Jencks., Progress in Physical Organic Chemistry, Vol. 
2, S. G. Cohen, A. Streitwieser, Jr., and R. W. Taft, Eds., Interscience 
Publishers, New York, N.Y., 1964, Chapter 2. 

35. R. A. Morton and G. A. J. Pitt, Biochem. J.,  59, 128 (1955). 

36. R. K. McLeod and T. I. Crowell, J. Org. Chem., 26, 1084 
(1961). 
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found that the condensation of primary amines with aromatic aldehydes 

in methanol proceeds at a rate proportional to the concentrations of the 

un-ionized reactants and is subject to general acid catalysis by acetic 

acid. In 1963 Cordes and Jencks (33) studied the rates of hydrolysis of 

a series of substituted N-benzylidene-t-butylamines and found that it 

followed Equations A and B in the pH range 0-14 at 25 g . The compounds 

studied are fairly closely related to the imines discussed in this 

thesis. However, additional work would be desirable to tell whether 

this mechanism holds in the reaction of aliphatic carbonyl compounds 

with primary alkylamines. 

The most practical and widely adopted method for the synthesis of 

aldimines (37) is a modification of the one described by Chancel (38). 

The reaction is carried out by adding the aldehyde to the amine without 

a solvent at 0 ° . After the addition is complete, solid potassium hy-

droxide is added to remove the water formed in the reaction. Finally, 

the aldimine is distilled from potassium hydroxide. The N-isobutylidene-

alkylamines obtained in this work were water white when freshly distilled, 

but are unstable and polymerize on standing. They should be stored under 

nitrogen in a refrigerator and, for some purposes, used within a few 

hours after distillation. 

37. K. N. Campbell, A. H. Sommers, and B. K. Campbell, J. Am. 
Chem. Soc.,  66, 82 (1944). 

38. M. F. Chancel, Bull. Soc. Chim France,  11, 933 (1894). 



CHAPTER II 

PRINCIPLES OF OBTAINING EQUILIBRIUM CONSTANTS 

pH Measurements  

If isobutyraldehyde is added to an aqueous solution of an amine, 

the following equilibrium will be established 

CHICH 
	

CH 

CH'CHCHO + RNH2 = CH,,CHCH=N-R + H2O 
3 	 3 

with some of the amine being used to form the corresponding N-isobutyli-

denealkylamine, which is a much weaker base. Thus, the addition of the 

aldehyde will cause the pH to decrease. A relationship between the pH, 

the concentrations of the reactants and various equilibrium constants 

may be derived as follows. 

First, consider the dissociation of amine 

RNH2 + H2O RNH3
+ + OH 

K 	
[Be [OH 

K_ -  B] 
( 1 ) 

where Kb  is the dissociation constant of amine and [B], [BHT ] and [OH] 

are the concentrations of free amine, ammonium ion and hydroxide ion, 

respectively. 

Before addition of aldehyde, the concentration of hydroxide ion 

can be obtained from Equation (1). 

11 



[OH- ] = 
0 	

[BH ]o 

the subscript (or superscript) zero represents the dissociation constant 

of amine and the concentration of each species under the initial con-

centrations. 

Similarly, after addition of aldehyde the concentration of hydrox-

ide ion can be written as 

K[B] f.  

[OH ]f - 
[BH if  

(39) 

where the subscript (or superscript) f represents the dissociation con-

stant of amine and the concentration of each species under the final 

conditions. 

From Equations (2) and (3) the ratio of the concentration of 

hydroxide ions is obtained. 

An alkylamine-alkylammonium buffer solution is used instead of 

plain aqueous amine solution. The alkylammonium ion in Equation (4) 

comes from two sources: from the alkylammonium salt that was produced 

by the addition of strong acid such as perchloric acid or hydrochloric 

acid, and from the dissociation of alkylamine. 

Isobutyaldehyde is easily oxidized to isobutyric acid. The con-

centration of aldehyde solution should be corrected for the acid formed 

from it. It is also important to neutralize the free acid before adding 

Ki0 [B] o  

12 

(2)  
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the aldehyde to the amine solution. In these measurements, the iso-

butyric acid was neutralized by standard sodium hydroxide solution until 

a pale-green color appeared for the indicator bromothymol blue. 

During the addition of aqueous isobutyraldehyde, the concentra-

tion of alkylamine and alkylammonium ions decreases. Therefore, the 

ionic strength changes significantly, and changes in the ratio, — 
Tr 
"b
f 

 

From Equation (4), using the pH value of the alkylamine-alkylam-

monium buffer solution before addition of aldehyde and the ionization 

constant of water at the given ionic strength and temperature, the 

value [OH ] o can be calculated; from the amount of strong acid added, 

the concentration of alkylammonium ion can be obtained from the fact 

that the solution must.be electrically neutral. Since the hydrogen ion 

concentration is never larger than 10 -10  M, electroneutrality requires 

that 

= Coll] + [x - ] 	
( 5) 

where [C] is the concentration of the anion of the strong acid used to 

make the buffer solution. 

The ionic strength of the solution after each stepwise addition 

of isobutyraldehyde can be calculated from the equation 

P = E
1  c 

izi
2 	 (6) 

where C. is the molarity of the ionic species i whose electric charge 

is Z. The summation indicated is carried out over all ionic species in 

solution. 

in Equation (4) are not negligible. 



The values of Kb  at different ionic strengths are obtainable by 

a method that will be discussed in the next chapter. 

The amount of N-isobutylidenealkylamine formed when the equili-

brium is established, is simply equal to the difference between the sum 

of the concentrations of alkylamine and alkylammonium ion and the sum of 

the concentrations of alkylamine and alkylammonium ion that would be 

present if the sole effect of the addition of the aqueous aldehyde solu-

tion were dilution, i.e., 

V 
[I] 	[[B11+ ] 0  + [B] 0 1 x v  "'Ey  - f[Bli+ ] f  + [B] f l 

	
(7) 

where [I] is the imine concentration, Vo  is the volume of alkylamine-

alkylammonium buffer at the original concentration and V is the volume 

if isobutyraldehyde solution added. 

The final concentration of isobutyraldehyde may be calculated 

from the volume of standard aldehyde solution added and the concentra-

tion of imine formed. 

The equilibrium constant for imine formation can be obtained by 

substituting the concentration of imine [I], alkylamine [B], and iso-

butyraldehyde [A] into the expression, 

[I]  
K - [A][B] 

(8) 

which is applicable under conditions where the concentration of water 

remains essentially constant. 
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Ultraviolet Measurements  

When saturated primary amines are added to aqueous solutions of 

isobutyraldehyde the absorbance at 2850 A, due to the aldehyde, decreases, 

and the absorbance at about 2300 A, due to the imine, increases. By 

quantitative measurements on the ultraviolet spectra of aqueous solutions 

of aldehyde and amine, or of imine, the equilibrium constant for the 

formation of the imine may be determined. The fundamental relationship 

used in this determination is the Beer-Lambert Law (39-41), according to 

which 

D = ecl 

where D is the optical density, e is the molar extinction coefficient, 

c is the molar concentration, and 1 is the path length (or cell length), 

which will be expressed in centimeters in the present work. 

The equation for the reaction equilibrium is 

(CH3 ) 2CHCHO + RNH2 -4 (CH3  ) 2  CHCH=N-R + H2O '  

This equilibrium can be approached from either side; first, mix-

ing the aldehyde and amine solutions; second, hydrolyzing the N-isobuty-

lidenealkylamine. Both methods have been tried, but the latter has the 

disadvantage of the instability of imines. 

39. J. R. Dyer, Applications of Absorption Spectroscopy of  
Organic Compounds, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, p.9. 

40. H. H. Jaffe and M. Orchin, Theory and Applications of Ultra-
violet Spectroscopy, John Wiley and Sons, N.Y., 1958, p. 8. 

41. A. Beer, Ann. Physik.,  86, 78 (1852). 



Define. 

D: 	Optical density of solution. 

Equilibrium concentration of imine. 

A: Equilibrium concentration of aldehyde. 

Ao : 	A + I. 

B: Equilibrium concentration of amine. 

Bo : 	B + I. 

B
T

: 	The total concentration of amine in all forms, which is 
equal to B + I + BH+ or Bo  + 

E
A

: 	Extinction coefficient of aldehyde. 

E
B

: 	Extinction coefficient of amine. 

E
I

: 	Extinction coefficient of imine. 

W: 	Concentration of water. 

The equilibrium constant for imine formation has been expressed 

in Equation (8). The optical density of the equilibrium mixture is the 

sum of the contributions of the components present in the solution, 

namely, the aldehyde, amine, imine, and ammonium ion. Therefore, with 

a cell length of 1.00 cm, 

D = AE
A 

+ BEB 
+ IE

I 
	

(9) 

since the absorption of ammonium ion is negligible. 

The final concentration of aldehyde is equal to the difference 

between A0 , which is the concentration of aldehyde that would be present 

if none had reacted to give imine, and the concentration of imine. 

A = A
o 

- I 
	

(10 ) 



The final concentration of amine is 

B = B
o 

- I 

substituting Equation (10) into Equation (8), 

KAoP 
1 + KB 

substituting Equation (10, (11), and (12) into Equation (9), 

KA0 (E, - EA  - EE ) 
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D - A
o
E
A 

- B
o
E
B 1 + KB 

(12) 

(13)  

(14)  

Equation (13) may be rearranged to give 

A
o  	1 

AoEA 
+ B

o
E
B 
- D EA  + EB  - ET  KB,EA  + EB  EI) 

Equation (14) is used for measurements of absorbance at the 

absorption maximum of the aldehyde, where the absorption due to amine 

and imine are small and the optical density at equilibrium is less than 

the product of the original concentration of aldehyde and its extinction 

coefficient. 

If measurements are made at the absorption maximum of the imine, 

where the absorption due to aldehyde is small, the following modifica-

tion of Equation (14) is used in order to deal with positive numbers. 

A
o 	1 	1  

D - A
o
E
A 

- B
o
E
B 	

- E
A 

- E
B 

KB(E
I 

- E
A 

- E
B

) (15) 

If we define 

K / 	I.W 
A.B ' 

then, 



Ao + EB (Bo  -B) -D - E
A 
 +E

B 
 -EI  + RETTA 

 77
B  7
T-T 

I 

Ao 	 1 	 1 	(16) 
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K K' 

Equation (14) and (15) would change to (14') and (15') respectively. 

A  1 
EB 

 
(14- 1 ) 

Ac 1  

oEB EI - EA 
E
B + K B(EI 

- E
A 

- E
B

) 
(15') 

 

Measurements at the absorption maximum of the imine has the ad-

vantage of utilizing the extinction coefficient of the imine, which is 

much larger than that of isobutyraldehyde at its absorption maximum. It 

will also permit the use of lower concentrations of isobutyraldehyde so 

that complications due to isobutyric acid in the aldehyde solution will 

be less. 

Because the absorption of amine at the absorption maximum of imine 

is significant, the same concentration of amine solution as the initial 

concentration of amine in the sample cell was used in reference cell in 

the runs in which measurements were made at the imine absorption maximum. 

In this case,. Equation (14) and (15) will change to the form: 

A
o 	1  

D - A0EA  - EB (B0  B')  El  - EA  - EB  KB(E
I 
 - EA 
	B 
- E-T (17)  

where B' is the concentration of amine in the reference cell. Similarly, 

Equation (14 f ) and (15') have the corresponding form. 

Ao 	1  
AcEA 

+ EB(Bo 
B ) - D E

I 
E
B 

- E
A 

K B(EA + EB EI )
(16') 
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A
o  

D- A
o
E
A 

- 
EB(Bo 

- B') 	E
I 

E
B 

- E
A 

1771jE
I 

- E
A 

- E
B
y (17')  

In order to use Equations (14) through (17'), it is necessary to 

know the values of B and Bo 
in the various equilibration solutions. The 

total concentration of amine in all forms, B T , may be calculated from 

the volumes of the various solutions and the strengths of the amine 

solutions used in making up the equilibrium solutions. Inasmuch as B
T 

is equal to Bo  plus BH+ , and B1-11- , the ammonium ion concentration is 

always quite small, Bo  is set equal to BT  as a first approximation. In 

some cases, where K is rather small and B
T 

reasonably large, B is also 

set equal to BT  as a first approximation. Otherwise, if measurements 

are being made at the imine maximum, the first approximation of the 

value of B is made by attributing all the absorption to imine, thus 

estimating I, and subtracting the estimated I from the first approxima-

tion of the Bo value. 

The value of A0 , the total concentration of aldehyde in all forms, 

may be calculated from the manner in which the equilibrium solutions were 

made up. If an estimate of the concentration of imine, I, has been made, 

a first approximation to the value of K may be made by substituting into 

Equation (8) as follows. 

y 
- AB -0707± ,  

If the value of I has not been estinated, then Equation (14) (or 

a more suitable equation from the series (15) through (17')) may be used 

to obtain a first approximation of K. Values of A 0/(A0EA  + BoEB  - D) 
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are plotted against 1/B. The value of E
B 

and D are measured and the 

A
o
E
A 

value comes from simultaneous measurements on solutions like the 

equilibrium solutions except that the amine has been omitted. The 

first approximation to the values of B and B o  are used. The intercept 

in the plot is equal to 1/(EA  + EB  - ET) and the slope is l/K(E A  + EB  - 

ET ); therefore, K is calculated by dividing the intercept by the slope. 

In an improved calculation of K, it is necessary to make correc-

tion for the amount of the amine that is tied up as the ammonium ion. 

The ammonium ions present arise partly from isobutyric acid, which we 

have been unable to remove entirely from the isobutyraldehyde in the 

purification procedures employed, in spite of the fact that the aldehyde 

is distilled, stored, and handled under nitrogen. At the pH's prevail-

ing in our equilibrium solutions isobutyric acid will exist essentially 

completely in the form of isobutyrate anions. From B T , the total con-

centration of amine in all forms, p, the concentration of isobutyrate 

(determined by titration of the aldehyde solutions used), and K b , the 

ionization constant of the amine at 35
o 

and the appropriate ionic 

strength, we can calculate the concentration of ammonium ion 

BH
+ 
 - 

p - KB  + 	 ) 2  + Lab (BT  - I) 

2 	
(18) 

Subtraction of the ammonium ion concentration from B T 
gives a new 

value for B. Then using this new B
o 

and the experimentally determined 

value of E
B' 

new values of B
o
E
B 

and/or 
EB(Bo 

- B / ) are calculated. 

Improved values of B for the various points may be calculated 

from the latest B
o 

and K as shown below: 



413o B - A - 1  + )((B - A - 	+ ooK 	ooK  
1\2 

B - 2 (20) 
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I = B - B = 1KAB 
 KB 
	 (19) 

where K is the equilibrium constant determined in the first approximation 

(or from pH measurements if available). 

From Equation (19), solving for B, we get 

or if W and K' are used 

W\2 	oW 4B 
Bo  - Ao K  - E + J(Bo  - A - oK  —) + B - 2 

is obtained. 

By using Equation (20) or Equation (21) the concentration of amine 

left in the solution is obtained. 

Then, if Equation (17) is used, 

A  
D - A

o
E
A 

- 
EB(Bo 

- B') 

1 	 W\ is plotted against T3- (or, if Equation (17') is used, 37). Through the 

experimental points the best straight line is drawn. 

If the K (or K') value determined from this line is not equal to 

that obtained in the previous approximation, it is considered to be an 

improved approximation and used as the basis for going through the pro-

cedure of calculation again. The process of successive approximations 

is continued until the value obtained no longer changer. It is neces-

sary to go through the process three times in most cases and never more 

than four times. The calculation was done by a Burroughs B-5000 com-

puter (see Appendix). 

(21) 
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The extinction coefficients of the imines are about ten times as 

large as the apparent extinction coefficient of the aldehyde. This 

permits considerably more dilute solutions to be used when K is determined 

by measurements at the imine maxima, so that complications due to the iso-

butyric acid present as an impurity in the aldehyde are minimized. It is 

also much less likely that the concentration of imine will become so 

large as to cause imine to separate from solution. 
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CHAPIER III 

IONIZATION CONSTANTS 

Autoprotolysis Constant of Water  

The interrelationship between the concentrations of hydrogen and 

hydroxyl ions in an aqueous medium is fixed by the equilibrium between 

these ions and water molecules: 

H2O r H
+ 
+ OH 
	

(22) 

Since the purest water is dissociated into H +  and OH to an ex-

tremely slight degree, Equation (22) must be written as a reversible 

reaction. Applying the mass law to this reaction in equilibrium, we may 

write: 

KW InHni0H 
	 (23) 

or 

K I  = [111- ][0H] 
	

(24) 

in terms of molal concentrations (m's) or molar concentrations (in 

brackets). Although such equilibrium constants will vary with ionic 

strength, this is not true of a thermodynamic equilibrium constant such 

as 

,t mHmOHYHYOH 
W 	aH

2
0 

(2 5) 
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where aH20 is the activity of water and the y's are activity coeffi- 

cients. 

The process represented by Equation (22) has a large heat effect; 

accordingly, the temperature coefficient of Kw  is large. The activity 

coefficients in Equation (25) are practically unity unless solutes are 

present. If aH2O is defined as unity in water, Kw  is equal to Kw  at 

zero ionic strength. 

Values of KW at temperatures from 0
o 
to 60

o 
C at 5 o  intervals are 

listed in Table 32 (Appendix). 

In this study the equilibrium constants for imine formation are 

determined at 35°  and various ionic strengths (other than zero). The 

dissociation constant of water at 35 °  and various ionic strength is 

required for this investigation. 

Harned and Hamer (42) used the cell 

H2 1 (m1 ), 
	

)1Agx-Ag 

to determine the dissociation constant of water. The electromotive 

force of such a cell at a given temperature is given by 

E = E0  - 	in yexmin
cF  

	

RT 	 (26) 

where E0 
is the electromotive force of the standard cell, which is equal 

to 0.21563 volt at 35 °  (43). 

42. H. S. Harned and W. J. Hamer, J. Am. Chem. Soc.,  55, 2194 
(1933). 

43. H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc., 54, 
1350 (1932). 
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Elimination of mH  from Equations (25) and (26), and rearrange-

ment of resulting terms gives 

RT 	mX 	RT 	YHYOH RT 	t RT E - Eo F + 	In 	— In 	- 	In Kw  - T  In YHYx  (27)F  mOH 
F 	a

H20 

The values of the ionic activity coefficient product of water, 

YHYOH 
aH20 

for the particular ionic strengths and salts used by Harned and co-work-

ers were obtained by Equation (27). The values in potassium chloride, 

sodium chloride, and sodium bromide at 35
o 

are listed in Table 1. 

The dissociation constant of water in terms of molarity can 

easily be obtained by substitution of the ionic activity function in 

Table 1 into Equation (25). The values obtained are listed in the 

columns headed Kw, Table 2. 

Harned and co-workers have given equations for the relationship 

between molarity and molality in the presence of various concentrations 

of potassium chloride (46), sodium chloride (47), and sodium bromide (48). 

By applying these equations, values for the dissociation constants 

of water, Kw, in terms of molarity were calculated and are shown in the 

columns headed Kw, in Table 2. 

46. H. S. Harned and M. A. Cook, J. Am. Chem. Soc.,  59, 1290 
(1937). 

47. H. S. Harned and M. A. Cook, J. Am. Chem. Soc.,  61, 495 
(1939). 

48. H. S. Harned and C. C. Crowford, J. Am. Chem. Soc., 59, 
1903 (1937). 



Table 1. The Ionic Activity Function of Water, 
in Salt Solutions at 35° . 

'HYOH 

aH
20 

26 

KC1 (42) 

Ionic Activity Function of Water 

NaC1 (44) 	 NaBr (45) 

0.01 0.812 

0.02 0.754 0.756 0.765 

0.03 0.720 0.720 0.726 

0.04 0.696 0.699 

0.06 0.662 0.658 0.660 

0.11 0.612 0.600 0.606 

0.21 0.567 0.549 0.561 

44. H. S. Harned and G. E . Mannweiler, J. Am. Chem. Soc.,  57, 
1873 (1935). 

45. H. S. Harned and B. B . Owen, The Physical Chemistry of 
Electrolytic Solutions, 3rd. ed., Reinhold Publishing Corporation, 
New York, 1958, p. 752. 



Table 2. Dissociation Constant of Water in Terms of Molality 
(Kw) and Molarity (c at 35 ° . 

,a 
11 

b 
11 

KC1 NaC1 NaBr 
Kw  KW  KW  KW   Kw  K1,1  

0 0 2.088 2.062 2.091 2.065 2.089 2.064 

0.0100 0.0099 2.573 2.540 - - 

0.0200 0.0199 2.771 2.734 2.763 2.728 2.731 2.695 

0.0300 0.0298 2.901 2.862 2.901 2.863 2.877 2.838 

0.0400 0.0397 3.001 2.959 - 2.989 2.947 

0.0600 0.0596 3.156 3.108 3.175 3.130 3.165 3.118 

0.1100 0.1091 3.413 3.352 3.482 3.426 3.447 3.387 

0.2100 0.2077 3.684 3.599 3.805 3.730 3.724 3.639 

a
In terms of molality. 

bIn terms of molarity. 
cExtrapolated value. 
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Table 3. pKw of Water at 35°  C. 

m C 

pK 

KC1 NaC1 NaBr 

0 0 13.686 13.685 13.685 

0.0100 0.0099 13.595 - - 

0.0200 0.0199 13.563 13.564 13.569 

0.0300 0.0298 13.543 13.543 13.547 

0.0400 0.0397 13.529 - 13.531 

0.0600 0.0596 13.507 13.505 13.506 

0.1100 0.1091 13.475 13.465 13.460 

0.2100 0.2077 13.444 13.428 13.439 

28 



Figure 1. Dissociation Constant of Water at 35 °  C. 
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It may be seen that the value of K w  in dilute solution is essen-

tially independent of the nature of the salt present at a given ionic 

strength. 

The difference between the values of pKW in the presence of 

different salts at a given ionic strength increases as the ionic strength 

of the solution is increased. For convenience, the values of pICl/4  were 

plotted against the square root of ionic strength (in terms of molarity). 

As shown in Figure 1, only one curve was plotted through the three sets 

of experimental points. One can easily read the average value of pKW at 

any desired ionic strength. Since pK' has about the same value at ionic 

strength below 0.06 M in the presence of the three different salts, 

sodium chloride, sodium bromide, and potassium chloride, at a given 

ionic strength, it will be assumed to have the same value at the same 

ionic strength in our equilibrium solutions where the ionic strength is 

never above 0.02 M. 

Ionization Constant of Methylamine  

In 1941, Everett and Wynne-Jones (49) determined the ionization 

constant of methylamine in water from 0 °  to 50 °  at 100  intervals and 

ionic strengths from 0.05 to 0.20, and extrapolated these data to zero 

ionic strength. They used the cell 

MeNH2 
MeNH2 .11C1 
KC1 

and measured the e.m.f. The following results were obtained. (Table 4). 

49. D. H. Everett and W. F. K. Wynne-Jones, Proc. Roy. Soc., 
(London), A 177, 499 (1941). 

H2 



Table 4. pKa  of Methylammonium Ions 

Conc. M -log Ko 
-log K

10 
-log K20 -log K30 -log K40  -log K50  

0.1988 11.5845 11.2170 10.8705 10.5440 10.2360 9.9450 

0.1491 11.5685 11.2005 10.8520 10.5265 10.2200 9.9320 

0.0994 11.5460 11.1790 10.8330 10.5080 10.2015 9.9145 

0.0497 11.5225 11.1550 10.8100 10.4875 10.1820 9.8950 

0a  0 11.4960 11.1300 10.7870 10.4660 10.1605 9.8760 

31 

a
Extrapolated Value. 
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In Table 4, if -log K
a 

values at zero ionic strength are plotted 

1 
against y, -log K

a 
at zero ionic strength and 35o can be obtained. Simi- 

1 71-, larly, plots of -log K a  against  gave -log Ka  at 35o and ionic strength 

0.0497, 0.0994, 0.1491, and 0.1988 (in terms of molarity), respectively. 

Finally, from the Kw  and Ka values at various ionic strengths and 350 , 

the corresponding Kb  values are obtained. If Kb  values are plotted 

against the square root of ionic strength, a straight line can be drawn, 

from which one can read the ionization constants at various ionic 

strengths directly. For convenience, the plot at low ionic strength 

has been enlarged as shown in Figure 2; some of the values obtained 

from this plot are listed in Table 5. 

Ionization Constant of n-Propylamine  

The free energy for the equilibrium between n-propylamine and 

n-propylammonium ion in water was measured by Evans and Hamann (50), 

using the same type of cell that Everett and Wynne-Jones used in deter-

mining the ionization constant of methylamine. The values at ionic 

strengths 0.0497, 0.0994, 0.1988 (in terms of molarity), and temperature 

20
o 
C and 40

o 
C were reported (Table 6). The value at zero ionic strength 

has also been estimated by extrapolation. 

From the standard molar free energy change for the reaction 

CH3-CH2-CH2-NH2  + H2O CH3-CH2-CH2-NH3
+ 
+ OH 

and applying the equation 

50. A. G. Evans and S. D. Hamann, Trans.  Faraday Soc.,  47, 
34 (1951). 



Table 5. Ionization Constant of Methylamine at 35 0 . 
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-log Ka  -log Kt  Kb  x 

0 10.310 3.375 4.22a  

0.0099 10.314 3.281 5.24 

0.0199 10.316 3.250 5.62 

0.0298 10.320 3.225 5.96 

0.0397 10.324 3.206 6.22 

0.0596 10.330 3.176 6.67 

aFrom extrapolation to infinite dilution 
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Figure 2. Ionization Constant of Methylamine at 35 °  C 
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Table 6. Free Energy for the Equilibrium of n-Propylamine 
and its Ammonium Ion in Water. 

35 

T, °C -AG cal/mol. 

o. 1988 20 14414 

o.1988 4o 14446 

0.0994 20 14382 

0.0994 4o 14412 

0.0497 20 14373 

0.0497 4o 14409 

Oa  0 20 14357 

Oa  0 4o 14391 

aE
xtrapolated value. 



LG = -RT In K 

the ionization constants at those particular ionic strengths and tempera-

tures were calculated. 

The ionization constants are plotted against reciprocal of tem- 

1 perature, T , for the ionic strengths 0, 0.0497, 0.0994, and 0.1988 M 

respectively. From these plots the values at these ionic strengths and 

35°  can be obtained. The ionization constants at 35 °  are then plotted 

against the square root of ionic strength. For convenience, an enlarged 

part of the plot is shown in Figure 3, and some of the values obtained 

from it are shown in Table 7. 

Ionization Constant of 3-Methoxypropylamine  

The dissociation constant of 3-methoxypropylamine has not been 

reported in the literature. It has been determined by titrating 

3-methoxypropylamine with perchloric acid at various ionic strengths at 

35o . A research pH meter (sensitive to 0.001 pH) is used in this 

determination. Considering the following equation 

RNH
3
+ = RNH2 + H

+ 
(R = CH2-CH2-CH2-OCH3 ) 

the dissociation constant can be written as 

ERNH2][e] Ka = 	RNH
3
+] 

Because the concentration of hydrogen ion is small during the titration, 

at the half way point of neutralization, the pKa  value is equal to the 

pH value. 

36 

(28) 
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Table 7. 	Ionization Constants of n-Propylamine at 350 . 

4,1/1 
-log Ka  -log Kb 

 
Kb  x 104 

0
a 

10.212 3.473 3.37 

0.0099 10.217 3.378 4. 19 

0.0199 10.219 3.347 4.5o 

0.0298 10.221 3.324 4.75 

0.0397 10.223 3.307 4. 93 

0.0596 10.226 3.280 5.25 

aExtrapolated Value. 



Figure 3. Ionization Constant of n-Propylamine at 35 °  C. 
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It is not always easy to find the end point accurately by inspec-

tion of the curve in which the pH values are plotted against volume, 

but it can be found much more accurately by a differential plot, in 

which the difference in pH values per unit volume of perchloric acid, 

ApH/AV, is merely the slope of the curve (pH against volume) at any 

value of volume; the differential plot is therefore a means of locating 

more accurately the volume of titrant at the maximum slope of the 

ordinary titration curve. 

The dissociation constants at four different ionic strengths 

have been obtained directly by titration. The value at zero ionic 

strength is obtained by extrapolating the curve, in which the dissocia-

tion constants are plotted against the square root of ionic strength, 

to zero ionic strength (Figure 4). All of these values are shown in 

Table 8. 

Ionization Constant of t-Butylamine 

The dissociation of t-butylammonium ion may be formulated as 

t-BuNH
3

4-  + H2O (-2 "c-BuNH2 + H3
0+  

The dissociation constant was determined by Hetzer, Robinson, and 

Bates (51) using a cell which may be represented as 

Pt -- H2 (g:latm)I(CH3 ) 3CNH3Br(mi ),(CH3 ) 3C 	(m2 )IAgBr-Ag 

where m's are molality. The results of their measurements of the elec-

tromotive force of the above cell at 35
o 

are listed in Table 9. 

51. H. B. Hetzer, R. A. Robinson, and R. G. Bates, J. Phys.  
Chem.,  66, 2696 (1962). 



Table 8. Ionization Constant of 3-Nlethoxypropylamine at 35° . 

40 

P,  pKa  pKb  Kb  x 104  

0 9.718 3.967 1.o8a  

0.00435 9.845 3.778 1.67 

0.00771 9.849 3.756 1.75 

0.05135 9.946 3.569 2.70 

0.09853 9.950 3.525 2.99 

aFrom extrapolation to infinite dilution. 
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Figure 4. Ionization Constant of 3-methoxypropylamine at 35 °  C. 



The general equation for calculating the acidic dissociation con-

stant, Ka , is obtained by combining the mass-law expression for the 

above reaction with the Nernst equation for the cell and with the 

DeBye-HUckel expression for the activity coefficient of the ions 

concerned (52). The resulting equation is 

-log Ka = -log Ka-(34 
4  = -log (yH 

YHMH )  log mBH mB 	1
2a 

 + bee 4  

where 

E - E 
-log (yexmH) = 	 RT log mX 2.30259 7- 

In these equations, E and E
o 

and the e.m.f. and standard poten- 

tial of the cell, a and b are Debye-Elickel constants, 1  is the ionic 

strength, and 13 are adjustable parameters. 

It is evident that in Equation (29) lc is a concentration dis-

sociation constant which becomes equal to the thermodynamic dissocia-

tion constant Ka' at zero ionic strength. 

By applying Equation (29), where E 0  = 0.06585 (53), R = 8.3143 

joules/deg. moles, F = 96, 487.0 coulombs/equiv., T = 308.150, a = 0 

and a = 0.5211,
2 

B = 0.3312,
2 
the values of dissociation constants were 

52. H. B. Hetzer and R. G. Bates, J. Phys. Chem.  66, 308 (1962). 

53. H. B. Hetzer, R. A. Robinson, and R. A. Bates, J. Phys.  
Chem.,  66, 1423 (1962). 

1Cf. appendix Table 32. 
2
Cf. appendix Table 33-34. 

(29) 

(30)  



Table 9. Ionization Constant of t-Butylamine at 35 °  C. 

(CH3 ) 3CNH3Br (cH
3

)
3
CNH2 E volt(46) Kb  x10

4  

0 .04724 0.02359 0.77171 5.90 

0.04256 0.02126 0.77396 5.85 

0.04045 0.01983 0.77462 5.85 

0.03592 0.01818 0.77784 5.77 

0.03374 0.01655 0.77837 5.73 

0.02421 0.01225 0.78654 5.57 

0.01293 0.00634 0.79925 5.16 

4.53a 

aValue extrapolated to zero ionic strength by Hetzer, Robinson and 
Bates (51). 

43 
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Figure 5. Ionization Constant of t-Butylamine at 35 °  C. 
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calculated in terms of molarity and shown at the right column of Table 9. 

A plot of dissociation constant against the square root of ionic strengths 

(in terms of molarity) is shown in Figure 5. 



CHAPTER IV 

EXPERIMENTAL AND INSTRUMENTATION 

Chemicals 3 

t-Butylamine  

Eastman white label t-butylamine was distilled under nitrogen. 

Bromothymol blue  

Fisher Scientific Company bromothymol blue was used. One-tenth 

gram of bromothymol blue was dissolved in 100 ml of 20% aqueous ethanol. 

Isobutyraldehyde  

Eastman Chemical Company isobutyraldehyde was distilled under 

nitrogen. 

Methylamine  

Matheson Coleman and Bell Company 25% aqueous methylamine was 

used. 

3-Methoxypropylamine  

Eastman Chemical Company practical grade 3-methoxypropylamine 

was distilled under nitrogen. 

Perchloric Acid 

Baker Analyzed Reagent grade perchloric acid was used without 

further purification. 

Potassium Hydroxide  

Baker Analyzed Reagent grade solid potassium hydroxide was used. 

3The boiling points that were determined are listed in Table 10 at the 
end of this section. 
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n-Propylamine  

Eastman Organic Chemical Company practical grade propylamine was 

distilled under nitrogen. 

Sodium Hydroxide  

Baker Analyzer Reagent grade sodium hydroxide was used. 

Standard Buffer Solutions  

Beckman 14049 buffer (pH = 9.18 at 25 °  C) and Beckman 3501 

Buffer (pH = 7.00 at 25 °  C) were used. 

Instrumentation 

Ultraviolet Measurements  

All the ultraviolet spectra were made with a Cary Recording Spec-

trophotometer, Model 14. The instrument was operated as described in 

the operating manual. The spectra were made using distilled water as 

the solvent unless otherwise indicated. A matched set of Beckman No. 

46007 quartz one-centimeter cells was used for all measurements. Dis-

tilled water was used in the reference cell in obtaining extinction co- 

efficients, except in certain cases, which will be noted, where a variety 

of aqueous amine solutions were used. Water at 35 o was circulated around 

the cell compartment and cell holder from a constant temperature bath. 

Since 35o  is higher than room temperature, the solution required a few 

minutes to attain thermal equilibrium. For each imine, the wavelength 

of maximum absorption was first determined. Then, the instrument was 

fixed at this particular wavelength to obtain the optical density. This 

has the advantage of making sure that the solution is at thermal equili-

brium. 



Table 10. Boiling Points of Some Chemicals Used. 

Compound 	 Observed Value
a Literature Value 

Isobutyraldehyde 	 63.5 — 64° 	 63.5°  (54) 

Propylamine 	 47° 	 48.0°  (55) 

3-Methoxypropylamine 	115 — 116° 	 117-118°  (56) 

t-Butylamine 	 44-45° 	 44.5 °  (57) 

atinder atmospheric pressure (740-745 mm Hg). 

54. D. I. Coomber and J. R. Partington, J. Chem. Soc., 1444 
(1938). 

55. A. I. Vogel, J. Chem. Soc., 1829 (1948). 

56. W. P. Utermohlen, Jr., J. Am. Chem. Soc., 67, 1505 (1945). 

57. M. T. Rogers, J. Am. Chem. Soc., 69, 457 (1947). 

48 
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pH Measurements  

A Beckman 101900 Research pH Meter with glass electrode and calo-

mel reference electrode was used in this experiment. In the measurement 

of pH with this particular pH meter, the instrument is calibrated first 

against an internally contained standard cell at 1019.44 millivolts; 

this potential is known precisely at any given ambient temperature. 

Then, for the purpose of standardizing the electrode system, the elec-

trode tips are immersed in a buffer solution of known pH. In this 

standardization procedure, the temperature compensator is set to the 

temperature of the buffer (at 35°  C), while the read control is set to 

the exact pH value of the buffer at its measured temperature. The 

standardize control is adjusted until the null meter is balanced, thus 

compensating for the various potentials in the electrode system. Sub-

sequent immersion of the electrode tips in a sample solution causes a 

potential that is proportional to the pH of the sample. This potential 

is balanced out by adjusting the read control until the null meter is 

balanced. The potential is read directly in pH units on the readout 

scales. The sensitivity is + 0.001 pH. 

The pH scale was standardized at a pH of 6.99 by Beckman buffer 

3501 or at pH of 9.10 by Beckman buffer 14049 at 35 ° . The measurements 

were made on equilibration solutions stirred with a magnetic stirrer in 

a beaker which was in a water bath at 35 o . 

Constant Temperature Baths  

A constant temperature water bath made by Precision Scientific 

Company No. 587, was used for all extended studies at 35 ° . This was 

connected to a Sargent Laboratory Thermoregulator, No. 3829, and water 
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was circulated around the cell compartment and cell holder during ultra-

violet measurements, while in pH measurements, the water was circulated 

through copper tubing in a small basin which held the beaker for titra-

tion. The bath temperature was adjusted to 35.0 + 0.2 °  using a -2 to 

68° C thermometer with 0.2
o 
 divisions in the thermostat. The tempera-

ture of the equilibrium solution was checked periodically by using a 

special thermometer (-1 to 40 °  with 0.2 °  divisions). 

Nuclear Magnetic Resonance Measurements  

The nuclear magnetic resonance (n.m.r.) spectra were obtained 

from a Varian Nuclear Magnetic Resonance Spectrometer, Model A-60. In 

order to obtain a reasonable signal, the r.f. frequency was set at 0.04 

to 0.10 units, the filter bandwidth at 0.4 to 4 c.p.s. and the sweep 

time was 250 sec. The instrument was zeroed with internal tetramethyl-

silane in neat samples. All chemical shifts (8) are given in cycles 

per seconds (c.p.s.) downfield from the internal reference. For all 

spectra given as figures 500 cps and 50 cps sweep widths were used. 

Boiling Point Determination  

Boiling points were taken as the distillation temperature of the 

fraction collected. All boiling points reported herein are uncorrected. 

Infrared Measurements  

All infrared (IR) spectra were recorded with a Perkin-Elmer Infra-

red Spectrophotometer, Model 21, and calibrated with the 6.238 p band of 

polystyrene. 

Refractive Index Measurements  

All refractive indices were measured using a Bausch and Lomb 
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Abbe-56 refractometer. 

Preparation of N-Isobutylidenealkylamines  

The N-isobutylidenealkylamines were prepared by a method based on 

that of Campbell, Sommers and Campbell (36). For the case of the methyl-

imine this method is described in detail as follows. The aqueous meth-

ylamine 	25%) obtained from the Matheson Coleman and Bell Company was 

used without further purification. Fifty-eight milliliters of 25% 

aqueous methylamine (or 16 g. of methylamine) was added to a 300 ml. 

three-necked round bottom flask which was cooled in an ice-salt bath. 

One of the necks was connected with a condenser, the central neck 

connected with a dropping funnel which contained 50 ml. (or 37 g.) 

freshly distilled isobutyraldehyde, and the third neck was connected 

with a T tube leading to a prepurified nitrogen cylinder. 

The aldehyde was added slowly to the amine with magnetic stir-

ring and the system was kept in the ice-salt bath to guard against 

excess heat of reaction. The stirring was continued for one hour. 

Then, the solid potassium hydroxide was added and stirring was con-

tinued for over fifteen minutes. 

The flask was then allowed to warm to room temperature. The 

water layer was separated by using a separatory funnel, then the pro-

duct was dried overnight with solid potassium hydroxide in the refri-

gerator. Finally, it was distilled under nitrogen, b.p. 69.5
0 

, 

35.2 g (81% yield). 

N-Isobutylidene-n-propylamine, N- isobutylidene- 3-methoxypro-

pylamine, and N-isobutylidene-t-butylamine were prepared by the same 



Table 11. Yields of N-Isobutylidenealkylamines 

Aldehyde Used 
Compound 	 g. 

Amine Used 
g. 

Yield 

N-Isobutylidenemethylamine 37 16 81 

N-Isobutylidene-n-propylamine 39 32 77 

N-Isobutylidene-3-methoxypropyl-
amine 24 30 90 

N-Isobutylidene-t-butylamine 36 38 59 

Table 12. Physical Constants of Some N-Isobutylidenealkylamines 

(CH3 ) 2CH-CH=N-R 

R B.P 4 
n
t 

Methyl 69.5 0.7388a  1.4041a  12.5 

n-Propyl 115.5 0.7518a  1.4158a  13.5 

3-Methoxypropyl 160.0 0.8202 1.4245 b 

t-Butyl 115-116 0.7453 1.4055 25.0 

a 
R. T. Tiollais, Bull. Soc. Chim. France, 14, 708 (1947). 

For density at 35 ° , for refractive index at 25 ° . 

52 



53 

apparatus and procedures. The amounts of materials used and yields 

obtained are listed in Table 11. Physical constants of these imines 

are listed in Table 12. 

N-Isobutylidene-3-methoxypropylamine has not been reported in 

the literature. The elemental analysis of this compound give 

%c 	 %H 

Found 67.09 11.82 9.93 

Calculated 67.07 11.97 9.79 

pH Measurements  

N- Isobutylidenemethylamine  

Methylamine-Methylammonium Buffer Solution. A 250 ml. volumetric 

flask was filled 95% with nitrogen-saturated water, 1.0 ml. of 25% 

aqueous methylamine was added, and then water was added to the mark. 

Two 20-ml. aliquots were titrated with standard acid to determine the 

amine concentration. To 200 ml. of this methylamine solution was 

added 3.90 ml of 0.51578 M hydrochloric acid. The concentration of 

methylammonium ion, 0.0108 M and concentration of methyamine (in Table 

13) were calculated. 

Isobutyraldehyde Solution. A 0.2 M solution of isobutyraldehyde 

was made up in nitrogen-saturated water in a 250 ml, volumetric flask. 

In order to make sure the nitrogen-aldehyde solution was neutral when 

added to the amine solution, 0.75 ml. of bromothymol blue solution was 

added and the solution was neutralized by standard sodium hydroxide 

solution. The change in aldehyde concentration due to oxidation to acid 

and to change in volume by adding indicator and base has been accounted 
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for. The addition of aldehyde solution was carried out under nitrogen 

to prevent the oxidation of isobutyraldehyde. The temperature was 

kept at 35 0.2° . A research pH meter was used to make the following 

measurements. 

In each experiment the aqueous isobatyraldehyde solution was 

added to 100 ml. of methylamine-methylammonium buffer solution. The 

brackets in Table 13 represent the concentration of solution before the 

addition of isobutyraldehyde. 

Applying Equations (4-8) and the ionization constants of methyl-

amine and water in Chapter III, the equilibrium constant is calculated 

as shown in the righthand columns of Table 13. The average concentra-

tion of water in these experiments, 54.87 M., is calculated from the 

partial molar volumes of aldehyde and amine and their concentrations. 

N-Isobutylidene-n-propylamine  

n-Propylamine-n-propylammonium Buffer Solution. An aqueous n-pro-

pylamine solution with a concentration of 0.21 M was prepared from fresh-

ly distilled n-propylamine and nitrogen-saturated distilled water in a 

250 ml. volumetric flask. Then, 4.00 ml. of 0.51587 M of hydrochloric 

acid was added to this amine solution. The concentration of n-propyl- 

ammonium ion, 91.2 x 10
-4 

M; and n-propylamine (given in Table 14) were 

calculated. 

Isobutyraldehyde Solution. The aldehyde solution was prepared in 

a concentration approximately equal to that of the n-propylamine. The 

procedure and amounts of indicator added are exactly the same as des-

cribed before. Isobutyraldehyde solution was added to 100 ml. of n-pro-

pylamine-n-propylammonium buffer solution at 35°  C with magnetic stir- _ 

ring. The data obtained are given in Table 14. 



Table 13. Summary of Measuring Equilibrium Constant for N-Isobutylidene-
methylamine Formation by pH Measurements. 

[i-P1-01-10]0 [i-PrCOOH][MeNH21, 
4 

M 	10 M 	10 M 
pH of 
Buffer 

Ald. added 
ml, pH 

K-1 
K' 

0.2145 16.5 187.4 10.553 25.0 10.037 85.7 4700 
0.2118 15.3 187.6 10.553 25.0 10.039 86.7 4700 
0.2104 14.6 191.9 10.564 10.0 10.296 90.2 4950 
0.2104 14.6 191.9 10.564 20.0 10.107 85.4 4690 
0.2104 14.6 191.9 10.564 30.0 9.967 87.6 480o 
0.2104 14.6 191.9 10.564 4o.o 9.874 87.3 4780 
0.2127 17.2 187.4 10.553 15.0 10.166 91.2 5010 
0.2127 17.2 187.4 10.553 20.0 10.076 91.3 5020 
0.2127 17.2 187.4 10.553 25.0 10.006 89.4 4910 
0.2127 27.2 187.4 10.553 30.0 9.941 90.5 4960 
0.2127 17.2 187.4 10.553 35.o 9.886 91.7 5030 
0.2127 17.2 187.4 10.553 4o.o 9.85o 89.6 4910 
0.2127 17.2 187.4 10.553 45.o 9.805 91.6 5020 
0.2134 17.2 187.4 10.553 15.0 10.178 85.5 470o 
0.2134 17.2 187.4 10.553 20.0 10.080 88.7 4870 
0.2134 17.2 187.4 10.553 25.0 9.999 91.2 5010 
0.2134 17.2 187.4 10.553 30.0 9.935 91.9 5o4o 
0.2134 17.2 187.4 10.553 35.o 9.883 92.2 5060 
0.2134 17.2 187.4 10.553 40.0 9.845 90.6 496o 
0.2134 17.2 187.4 10.553 45.o 9.805 91.3 5000 

Average 89.5 + 4910 
2.0 

+ 



Table 14. Summary of Measuring Equilibrium Constant for N-Isobutylidene-
n-propylamine Formation by pH Measurements. 

[i-PI-CHO] [i-PrCOOH][n-PrNH, 
4 	4 	

]0 

10 M 	10 M 
pH of 
Buffer 

Ald. Added 
ml. 

1 
 

0.2127 11.6 213.0 10. 585 10.0 10.360 71.1 3910 
0.2127 11.6 213.0 10.585 15.0 10.260 72.o 3950 
0.2127 11.6 213.0 10.585 20.0 10.173 74.5 4090 
0.2127 11.6 213.0 10.585 25.0 10.102 75.2 4130 
0.2127 11.6 213.0 10.585 30.0 10.039 76.7 4210 
0.2127 11.6 213.0 10.585 35.0 9.986 77.8 426o 
0.2127 11.6 213.0 10.585 40.0 9.943 76.4 4190 
0.2127 11.6 213.0 10.585 45.o 9.901 79.1 4330 
0.2153 9.4 214.0 10.587 20.0 10.175 75.4 4140 
0.2153 9.4 214.0 10.587 25.0 10.100 75.2 4130 
0.2153 9.4 214.0 10.587 30.0 10.046 74.2 4070 
0.2153 9.4 214.0 10.587 35.0 9.991 75.8 4160 
0.2153 9.4 214.0 10.587 40.0 9.945 76.7 4200 
0.2167 8.5 215.0 10.580 20.0 10.163 74.5 4090 
0.2167 8.5 215.0 10.580 25.o 10.090 75.6 4150 
0.2167 8.5 215.0 10.580 30.0 10.033 75.4 4140 
0.2167 8.5 215.0 10.580 35.0 9.980 76.3 4180 
0.2167 8.5 215.0 10.580 40.0 9.936 76.7 4200 

Average 75.5 + 4140 
1.3 70 

+ 



57 

N-Isobutylidene-3-methoxypropylamine  

3,Methoxypropylamine-3-Methoxypropylammonium Solution. One mil-

liter of freshly distilled 3-methoxypropylamine was weighed in a syringe, 

and then added to a 250 ml. volumetric flask that was almost filled with 

nitrogen-saturated distilled water. After water was added to the mark, 

the concentration of amine was about 0.39 M. The buffer solution was 

prepared by adding 4.0 ml. of 0.51578 M of hydrochloric acid to this 

amine solution. The concentration of 3-methoxypropylammonium ion is 

86.o x
4 
M. The concentrations of 3-methoxypropylamine for several 

runs are listed in Table 15. 

Isobutyraldehyde Solution. An isobutyraldehyde solution of the 

same concentration as that used in determining the equilibrium constant 

of N-isobutylidenemethylamine was prepared. 

In a 250 ml. beaker, 100 ml. of 3-methoxypropylamine-3-methoxy-

propylammonium buffer solution was titrated with isobutyraldehyde 

solution. The change in pH values are listed in the following table. 

N-Isobutylidene-t-butylamine. The equilibrium constant for the 

formation of n-isobUtylidene-t-butylamine is relatively small. Unfor-

tunately, the change of pH in the titration of t-butylamine-t-butyl-

ammonium buffer solution with isobutyraldehyde solution is so small 

that pH measurements may not be used to determine the equilibrium con-

stant for imine formation reliably. 



Table 15. Summary of Measuring Equilibrium Constant for 
N-Isobutylidene-3-methoxypropylamine Formation 
by pH Measurements at 35° C. 

[i-PrCHO] o[i-PrCOOH] [RNH2L 

M 	104M 	104M 
pH of 
Buf fer 

Aid. Added 
ml. 	pH 

K  

M
-1 

0.2137 15.9 298.0 10.388 15.0 	10.092 64.1 3520 
0.2137 15.9 298.0 10.388 20.0 	10.010 65.7 3600 
0.2137 15.9 298.0 10.388 25.0 	9.942 64.8 355o 
0.2137 15.9 298.0 10.388 30.o 	9.884 64.9 355o 
0.2137 15.9 298.0 10.388 35.o 	9.833 64.7 354o 
0.2137 15.9 298.o 10.388 40.0 	9.792 64.3 3520 
0.2137 15.9 298.o 10.388 45.o 	9.757 64.5 3530 
0.2118 25.4 305.8 10.402 15.0 	10.115 62.o 3400 
0.2118 25.4 305.8 10.402 20.0 	10.036 62.9 3450 
0.2118 25.4 305.8 10.402 25.0 	9.970 62.4 342o 
0.2118 25.4 305.8 10.402 30.0 	9.914 62.1 3400 
0.2118 25.4 305.8 10.402 35.0 	9.867 61.3 3360 
0.2118 25.4 305.8 10.402 4o.o 	9.826 61.1 3340 
0.2118 25.4 305.8 10.402 45.o 	9.789 60.8 333o 
0.2080 55.5 298.6 10.438 15.0 	10.150 62.o 3400 
0.2080 55.5 298.6 10.438 20.0 	10.070 63.5 3480 
0.2080 55.5 298.6 10.438 25.o 	9.997 65.2 3570 
0.2080 55.5 298.6 10.438 30.0 	9.940 65.1 357o 
0.2080 55.5 298.6 10.438 35.o 	9.891 64.6 3540 
0.2080 55.5 298.6 10.438 40.0 	9.842 66.1 362o 
0.208o 55.5 298.6 10.438 45.o 	9.799 66.8 3650 

Average 63.8 + 3490 
1.5  8o 

+ 
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Ultraviolet Measurements  

In general, N-isobutylidenealkylamines are not very stable. 

Although the equilibrium of imine formation can be established by mix-

ing appropriate concentration of isobutyraldehyde and amine solutions, 

or by hydrolyzing the N-isobutylidenealkylamine, technically it is more 

convenient to establish the equilibrium by mixing isobutyraldehyde and 

amine rather than hydrolyzing isobutylidenealkylamine. 

Isobutyraldehyde Solution 

In the ultraviolet measurements, the isobutyraldehyde solutions 

were prepared by the following procedure: 

A volumetric flask was 95 per cent filled with nitrogen-saturated 

water. To the flask was added isobutyraldehyde (known weight), and then 

water was added to the mark. After it was homogeneous, aliquots of 

solution were removed by pipet and titrated with standard aqueous sodium 

hydroxide solution. The concentration of isobutyric acid thus found to 

be present was taken into account in calculating the concentration of 

isobutyraldehyde. 

Amine Solution  

Each amine solution was made up using freshly distilled amine and 

nitrogen-saturated water. The concentration of methylamine was deter-

mined- by titrating with standard acid, whereas the concentrations of 

other amines were calculated from the weight of amine and the volume of 

solution. 

Extinction Coefficient of Isobutyraldehyde  

The apparent extinction coefficients of isobutyraldehyde at 35° 

and 2850 A and/or 2300 A were obtained by preparing the appropriate 
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concentration of isobutyraldehyde solution and examining the ultraviolet 

spectra at these particular wavelengths. 

The concentration of solutions and optical densities are shown in 

Table 16. Dividing the optical density by concentration, the extinction 

coefficient was obtained and listed in the last column of Table 16. 

Extinction Coefficients of Amines  

Extinction coefficients of the various amines studied in aqueous 

solution at 35
o 
were determined at some wavelength in the range 2260- 

2300 A with the results shown in Tables 17 through 20. The N-isobutyli-

denemethylamine solutions were found to absorb negligibly at 2850 A. 

Extinction Coefficient of N-Isobutylidenealkylamines  

The extinction coefficients of N-isobutylidenealkylamines at 

their absorption maxima are much greater than those of the correspond-

ing aldehyde or amine at any wavelength in the range in which we made 

measurements. A very dilute isobutyraldehyde solution and concentrated 

amine solutions were used. The equilibrium is pushed toward imine 

formation. 

Isobutyraldehyde and methylamine solutions were made up with 

concentrations of 0.04 M and 3 M respectively, and used in preparing the 

solutions shown in the table on the following page. 

The optical density of each solution at 35 0  and 2265 A is listed 

in Table 20. After correcting for the incompleteness of imine formation 

by using an estimated K value of 90 (the value obtained from pH measure-

ments could have been used), the extinction coefficient of N-isobutyli-

denemethylamine was obtained as shown in the right column of Table 21. 
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Soln. 
No. 

Sample Solution Reference Solution 
i-PrCHO 	H2O MeNH

2 	
MeNH

2 	
H2O 

Conc.M Vol. ml. ml. Conc.M Vol. ml. Conc.M 	Vol. ml. 	ml. 

1 0.04116 10 0 3.0400 25 3.0400 25 10 

2 0.04116 10 10 3.0400 15 3.0400 15 20 

3 0.04116 10 20 3.0400 5 3.0400 5 30 

4 0.03950 10 10 2.9960 15 2.9960 15 20 

5 0.03950 10 10 2.9960 15 2.9960 15 20 

6 0.03950 10 15 2.9960 10 2.9960 10 25 

7 0.03950 10 15 2.9960 10 2.9960 10 25 

Solutions of isobutyraldehyde and the other primary amines with 

the initials concentrations shown in Tables 22, 23, and 24 were made 

up in a similar fashion and their absorbances measured at 2280 + 20 A 

in water at 350 • The extinction coefficients shown for the imines 

were calculated by correcting for incompleteness of imine formation, 

using K values of 76, 64, and 3.5 for the N-isobutylidene-n-propyl- 

amine, the N-isobutylidene-3-methoxypropylamine, and the N-isobutylidene-

t-butylamine, respectively. 

Extinction Coefficient of N-Isobutylidenemethylamine in n-Hexane  

A 100 ml. volumetric flask was 90 per cent filled with n-hexane. 

To the flask was added 0.14 ml. (0.1052 g) of N-isobutylidenemethyl-

amine to make up 100 ml. of 0.01236 M solution. Twenty-five milli-

liter Erlenmeyer flasks were used to make up the following solutions. 

The optical density of each solution was measured at 350 and 

2425 A referred to n-hexane and was listed in Table 25. 



Table 16. Extinction Coefficient of Isobutyraldehyde at 35 °  

Concentration 
M 

Wavelength 
A Optical Density 

Extn. Coeff. 
cm- 1M-1  Av. 

0.1366 2850 1.985 14.53 
14.60 

0.1342 2850 1.969 14.67 

0.1557 230o 0.085 0.54 
0.54 

0.1246 2300 0.068 o.54 

Table 17. Extinctio/j. Coefficient of Methylamine at 35 °  C 
and 2265 A. 

No. 
Concentration 

M Optical Density 
Extn. Coeff. 
cm7 1M-1  

1 0.6446 1.706 2.65 

2 0.6016 1.585 2.64 

3 0.4297 1.160 2.7o 

4 0.4281 1.142 2.67 

5 0.4280 1.142 2.67 

Average 2.67 + 0.02 
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Table 18. Extinction Coefficient of n-Propylamine 

No. 
Concentration 

M Optical Density 
Extn. Coeff. 

cm7 1M-1  

1 1.2125 1.370 1.13 

2 0.9094 1.180 1.30 

3 0.7275 0.920 1.26 

4 0.6063 0.770 1.27 

5 0.1572 0.192 1.22 

6 0.1179 0.150 1.27 

7 0.0786 0.100 1.27 

8 0.0629 0.082 1.30 

Average 1.25 + 0.04 

Table 19. Extinction Coefficient of 3-Methoxypropylamine 
at 35° C and 2300 A 

No. 
Concentration 

M Optical Density 
Extn. Coeff. 

cm71M-1 

1 0.2446 0.272 1.11 

2 0.3884 0.448 1.15 

3 0.4893 0.500 1.02 

4 0.5826 0.600 1.03 

5 0.7339 0.730 0.99 

6 0.7767 0.770 0.99 

7 0.9786 0.934 0.95 

Average 1.03 + 0.05 
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at 35° C and 2300 A. 



Table 20. Extinction Coefficient of t-Butylamine at 

No. 
Concentration 

M Optical Densities 
Extn. Coeff. 

cmt 1M-1  

1 0.1177 0.580 4.93 

2 0.1181 0.595 5.04 

3 0.1766 0.875 4.95 

4 0.1772 0.889 5.01 

5 0.2354 1.155 4.91 

6 0.2362 1.170 4.95 

Average 4.96 + 0.04 

Table 21. Extinction Coefficient of N-Isobutylidenemethylamine 
at 35°  C and 2265 A. 

Solution 
No. Optical Density 

Extn. Coeff. 
cm-1M-1  

1 1.693 144.6 

2 1.682 144.9 

3 1.680 147.3 

4 1.648 147.2 

5 1.647 147.2 

6 1.638 147.4 

7 1.639 147.4 

Average 146.4 + 0.8 
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35°  C and 2260 A. 



Table 22. Extinction Coefficient of N-Isobutylidene-n-propylamine 
at 35°  C and 2300 A. 

[i-PrCHO] 	[n-PrNH2 ] 	 Extn. Coeff. 

	

No. 	M 	 m 	Optical Density 	cm-1M-1  

	

1 	0.01099 	 1.2125 	 1.720 	 153.8 

	

2 	0.01099 	 0.9094 	 1.698 	 156.6 

	

3 	0.01099 	 0.7275 	 1.680 	 155.6 

Average 	155.3 + 0.7 

Table 23. Extinction Coefficient of N-Isobutylidene-3- 
methoxypropylamine at 35° C and 2300 A. 

No. 
[i-PrCHO] 

m 
[CH30(CH2 ) QNH2] 

m 	J  Optical Density 
Extn. Coeff. 

cm71M-1  

1 0.01693 0.4893 1.923 140.4 

2 0.01693 0.7339 1.911 138.1 

3 0.01693 0.9786 1.904 136.9 

4 0.01246 0.3884 1.357 135.6 

5 0.01246 0.5826 1.351 133.5 

Average 136.9 + 1.9 
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Table 24. Extinction Coefficient of N-isobutylidene-t-butylamine 
at 35°  C and 2260 A. 

No. 

Li-PrCHO] 

M 

Lt-BuNH2
i 

M Optical Density 

Extn. Coeff. 

cm 1M-1  

1 0.01495 0.4744 1.505 167.2 

2 0.01495 0.7116 1.642 162.5 

3 0.01495 0.7116 1.650 163.4 

4 0.01495 0.9488 1.775 161.4 

5 0.01495 0.9488 1.776 161.4 

Average 163.2 + 1.7 

Table 25. Extinction Coefficient of N-Isobutylidenemethylamine 
in n-Hexane at 2425 A and 35 °  C. 

No. 
0.01236 M 
solution, ml. 

n-Hexane 
ml. Optical Density 

Extn. Coeff. 
cmr1M-1  

1 0 10 0.834 67.4 

2 0 10 0.845 68.3 

3 2 10 0.712 69.1 

4 2 10 0.710 68.9 

5 4 lo 0.605 68.5 

6 4 10 0.605 68.5 

Average 	68.5 + 0.4 
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Extinction Coefficient of N-Isobutylidenealkylamines in 2,2 4-  
Trimethylpentane  

To 2,2,4-trimethylpentane were added freshly distilled N-isobu-

tylidenealkylamines to make up solutions with concentrations shown in 

Tables 26 through 29. The solution for ultraviolet measurements were 

made up as shown in each table. 

Partial Molar Volume of Methylamine and Isobutyraldehyde  

For a 3.0132 M aqueous solution of methylamine, d 35 was found 

to be 0.9654. Based on this measurement, the partial molar volume of 

methylamine, 40.75 ml. per mole was calculated. That of water is 18 

ml. per mole. Therefore, every mole of methylamine replaces 2.26 

moles of water. Similarly, isobutyraldehyde has density, d45 , of 

0.7770, and therefore a molar volume of 92.79 ml.per mole is calculated. 

It is assumed that the partial molar volume in aqueous solution is 

the same and therefore that each mole replaces 5.16 moles of water. 

Partial Molar Volume of n-Propylamine  

The partial molar volume of n-propylamine was calculated from 

the volume of n-propylamine which were used to make up a solution and 

the concentration of n-propylamine in the solution. By averaging ten 

values, a partial molar volume of 83.7 + 0.6 ml. per mole was obtained, 

thus, every mole of n-propylamine replaces 4.65 moles of water. 

Partial Molar Volume of 3-methoxypropylamine  

The partial molar volume of 3-methoxypropylamine is 102.0 + 0.2 

ml. per mole which is calculated from the volume of pure 3-methoxypro-

pylamine used, the total volume of solution and molarity of eighteen 

3-methoxypropylamine solutions. Each mole of 3-methoxypropylamine would 

replace 5.66 moles of water. 
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Table 26. Extinction Coefficient of N-Isobutylidenemethyl-
amine in 2,2,4-Trimethylpentane at 2425 A and 35 °  C. 

No. 
0.01272 M 

Solution, ml. 
i-Octane 

ml. Optical Density 
Extn. Coeff. 

cm7 1M-1  

1 0 10 0.858 67.5 

2 0 10 0.860 67.6 

3 2 10 0.712 67.2 

4 2 10 0.712 67.2 

5 4 lo 0.598 65.9 

6 4 10 0.602 66.3 

Average 67.0 + 0.5 

Table 27. Extinction Coefficient of N-Isobutylidene-n-pro-
pylamine in 2,2,4-Trimethylpentane at 2450 A 
and 35°  C. 

No. 
0.03113 M 
Solution, ml. 

i -Octane 
ml. Optical Density 

Extn. Coeff. 
cm.- 	- 1 

1 1.0 2.0 1.730 90.4 

2 2.0 1.0 0.870 90.9 

3 2.3 0.7 0.622 92.9 

Average 91.4 + 0.1 
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Table 28. Extinction Coefficient of N-Isobutylidene-3-methoxy-
propylamine in 2,2,4-trimethylpentane at 2450 A and 35 ° C. 

No. 
0.03113 M 

Solution, ml. 
i-Octane 

ml. Optical Density 
Extn. Coeff. 

cm7 1M-1  

1 1.0 2.0 1.872 90.2 

2 2.0 1.0 0.942 90.8 

3 1.5 0.5 0.700 90.0 

Average 90.3 + 0.3 

Table 29. Extinction Coefficient of N-Isobutylidene-t-
butylamine in 2,2,4-Trimethylpentane at 2500 A 
and 35° C. 

No. 
0.01921 M 
Solution, ml. 

i-Octane 
ml. Optical Density 

Extn. Coeff. 
cm7 1M-1  

1 0 3.0 1.625 84.6 

2 1.0 2.0 1.070 83.5 

3 2.0 1.0 0.542 84.6 

Average 84.2 + 0.5 
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Partial Molar Volume of t-Butylamine  

The partial molar volume of t-butylamine, 105.7 + 0.4 ml. per 

mole was calculated from data on siz t-butylamine solutions, which had 

concentrations from 0.04 to 1.42 M. By dividing by the molecular 

weight of water, it may be seen that every mole of t-butylamine replaces 

5.87 moles of water. 

The Ultraviolet Absorption of Equilibrium Solutions at the Absorption  
Maximum of N-Isobutylidenemethylamine  

The isobutyraldehyde solutions were made up with the concentra-

tion of 0.039 M in a 250 ml. volumetric flask. The concentration of 

free acid present in this solution was determined by titrating with 

standard sodium hydroxide solution. The solution of 0.07 M methylamine 

was also prepared in a 250 ml. volumetric flask. 

The following solutions were made up in 50 ml. Erlenmeyer flasks 

for ultraviolet measurements. 

No. 

Sample Solution Reference Solution Absorbance 
i-PrCHO 

ml. 
H 0 
mi. 

MeNFT 
m1.2  

H 0 
mi. 

MeNH2 ml. Ia  IIb  

1 10 25 0 35 0 0.006 0.008 
2 10 25 0 35 0 0.006 0.010 
3 10 23 2 33 2 0.189 

10 21 4 31 4 0.385 

5 10 20 5 3o 5 0.442 0 .453 
6 10 17 8 27 8 0.616 
7 10 15 10 25 10 0.727 0.767 
8 10 10 15 20 15 0.866 0.940 
9 10 5 20 15 20 1.018 1.051 

10 10 0 25 10 25 1.094 1.140 

Equilibrium Constant K 
K' 

95.4 	 88.o 
5260 	 485o 

   

aInitial concentrations of 
ylamine were 0.03924, 2.4 

b 	. Initial concentrations of 
ylamine were 0.03965, 1.0 

isobutyraldehyde, isobutyric acid, and meth-
x 10-4 , and 0.06858 M, respectively. 

isobutyraldehyde, isobutyric acid, and meth-
x 10-4 , and 0.07000 M, respectively. 
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The optical density, D, for each solution listed in the last 

column of the above Table was obtained after the solution had thermal 

equilibrium at 35 °  C. It was determined by fixing the spectrophotometer 

at the wavelength of maximum absorption of N-isobutylidenemethylamine, 

i.e., 2256 A. From these two sets of experiments values of K and K' of 

91.7 + 3.5 and 5050 + 200 were obtained from Equations (17) and (17') 

respectively by the least squares techniques and Burroughs 5000 computer 

program (Appendix II). The plot of I is shown in Figure 14. 

At the Absorption Maximum of Isobutyraldehyde  

Isobutyraldehyde and methylamine solutions were prepared with 

concentrations of 0.o6 M and 3 M respectively. The following solution 

was made up in 25 ml. Erlenmeyer flasks for the ultraviolet measurements. 

No. 

Sample Solution 
Absorbance i-PrCHO 

ml. 
MeNH2 

 ml. 
H2O 
ml. I

a 
II
b  

1 10.00 0 2.00 1.985 1.968 
2 10.00 0 2.00 1.985 1.970 
3 10.00 0.10 1.90 1.655 
4 10.00 0.20 1.80 1.375 
5 10.00 0.25 1.75 1.282 1.190 
6 10.00 0.40 1.60 0.835 

7 10.00 0.50 1.5o 0.690 0.637 
8 10.0o 0.65 1.35 0.470 

9 10.00 0.70 1.3o 0.372 
10 10.00 0.80 1.20 0.373 
11 10.0o 0.85 1.15 0.280 
12 10.00 1.00 1.00 0.270 0.243 
13 10.00 1.50 0.50 0.179 0.160 
14 10.00 2.00 0 0.150 0.120 

	

Equilibrium Constant K 	 88.0 
	

94.o 

	

K' 	 4790 
	

5110 

aInitial concentrations of isobutyraLdehyde, 
methylamine were 0.1640, 25.7 x 10 -4 , and 2 

b Initial concentrations of isobutyradehyde, 
methylamine were 0.1610, 17.3 x 10', and 3 

isobutyric acid, and 
.9750 M, respectively. 

isobutyric acid, and 
.0100 M, respectively. 
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Distilled water was used as reference in these measurements. The 

spectra were measured at 35o C at the absorption maximum of isobutyral-

dehyde, i.e., 2850 A. Values of K and K' of 91.0 + 3.0 and 4950 + 160 

were obtained from Equations (16) and (16') respectively. The plot of 

II is shown in Figure 15. 

Ultraviolet Measurements at the Absorption Maximum of N-Ixobutylidene-
propylamine .  

One milliliter of isobutyraldehyde was added to nitrogen-saturated 

water in a volumetric flask to make 250 ml. of solution. Then 250 ml. 

of a n-propylamine solution was prepared similarly, using 1.6 ml. of 

amine. The concentration of isobutyraldehyde and n-propylamine was cal-

culated from their weight respectively. 

The following sets of solutions were made up in 50 ml. Erlenmeyer 

flasks for the ultraviolet measurements. 

No. 

Sample Solution Reference Soln. Absorbance 
i-PrCHO 

ml. 
H2O 
ml. 

n-PrNH2 
ml. 

H2O 
ml. 

n-PrNH2 
 ml. a 

I II III 

1 lo 25 0 35 0 0.002 0.001 0.003 
2 10 25 0 35 0 0.000 0.002 0.002 
3 10 23 2 33 2 0.230 0.233 0.230 
4 10 21 4 31 4 0.460 0.470 0.465 
5 10 20 5 3o 5 0.540 0.553 0.580 
6 10 17 8 27 8 0.778 0.774 0.780 
7 10 15 lo 25 10 0.880 0.905 0.895 
8 10 10 15 20 15 1.102 1.110 1.110 
9 lo 5 20 15 20 1.230 1.252 1.230 

10 10 0 25 10 25 1.302 1.335 1.296 

Equilibrium Constant K 75.5 77.7 75.8 
K' 4170 4290 418o 

a Initial concentrations of isobutyraldehyde, isobutyric acid, and n-pro- 
pylamine were 0.04292, 2.7 x 10 - 	and 0.07680 NI, respectively. 

b
Initial concentrations of isobutyraldehyde, isobutyric acid, and n-pro-
pylamine were 0.04335, 2.6 x 10 -  , and 0.07731 M, respectively 

c
Initial concentrations of isobutyraldehyde, isobutyric acid, and n-pro-
pylamine were 0.04323, 2.6 x 10 - 	and 0.07695 M, respectively. 
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These measurements were made at 35 °  C and at the absorption 

maximum of N-isobutylidenepropylamine, i.e., 2300 A. Values of K and 

K' of 76.3 + 0.7 and 4210 + 50 were obtained from Equations (17) and 

(17') respectively using the least squares techniques. The plot of 

is shown in Figure 16. 

The Ultraviolet Absorption of Equilibrium Solutions at the Absorption  
Maximum of N-isobutylidene-3-methoxypropylamine  

Isobutyraldehyde and 3-methoxypropylamine were prepared with con-

centrations of 0.04 M and 0.079 M respectively. The following solutions 

were made up in 50 ml. Erlenmeyer flasks for ultraviolet measurements 

at 35°  and 2300 A. 

No. 

Sample Solution Ref. Solution Absorbance 
i-PrCHO 
ml. 

H2O 
ml. 

RNH2 
 ml. 

H2 0 
m l. 

RN H2 
ml. Ia IIb  IIIc  

1 10 25.0 0 35.0 0 0 0.007 0.008 
2 10 25.0 0 35.0 0 0 0.005 0.006 
3 lo 23.0 2.0 33.0 2.0 0.236 0.222 0.225 
4 lo 22.5 2.5 32.5 2.5 - 0.282 0.268 
5 10 22.0 3.0 32.0 3.0 - 0.330 0.318 
6 10 21.0 4.o 31.0 4.o 0.436 0.431 0.420 
7 10 20.0 5.0 30.0 5.0 0.528 0.510 0.502 
8 10 17.0 8.o 27.o 8.o 0.746 0.712 0.708 
9 lo 15.0 10.0 25.o 10.0 0.870 0.872 0.882 

10 lo 10.0 15.0 20.0 15.0 1.058 1.039 1.030 
11 10 5.0 20.0 15.0 20.0 1.218 1.170 1.175 
12 10 0.0 25.0 10.0 25.0 1.299 - - 

Equilibrium Constant K 69.1 63.1 63.5 

K' 3810 3480 3510 

alnitial concentrations of isobutyraldehyde, isobutyric 
oxypropylamine were 0.04327, 1.5 x 10 -4, and 0.07916 M, 
b
Initial concentrations of isobutyraldehyde, isobutyric 
oxypropylamine were 0.04350, 0.3 x 10 -4 , and 0.07926 E, 

cInitial concentrations of isobutyraldepyde, isobutyric 
oxypropylamine were 0.04377, 0.3 x 10 -4 , and 0.07895 M, 

acid, and 3-meth-
respectively. 

acid, and 3-meth-
respectively. 

acid, and 3-meth-
respectively. 
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Values of K and K' of 65.2 + 2.5 and 3600 + 140 were obtained 

from Equations (17) and (17') respectively. The plot of II is shown in 

Figure 17. 

Ultraviolet Absorption at the Absorption Maximum of N-Isobutylidene-t-
butylamine  

Isobutyraldehyde and t-butylamine solutions were prepared with 

concentrations of 0.04 M. and 1.4 M respectively. The following solu-

tions were made up in 50 ml. Erlenmeyer flasks for ultraviolet measure-

ments. 

No. 

Sample Solution Reference Soln. Absorbance 
i -PrCHO 
ml. 

H2O 
ml. 

t-BuNH2  
ml. 

H2O 
ml. 

I-BuNH2  
ml. Ia IIb IIIc 

1 10 25.o 0 35.o 0 0 0.006 0.002 
2 10 25.0 0 35.0 0 0 0.003 0.000 
3 lo 23.0 2.0 33.0 2.0 0.316 0.303 0.304 
4 10 22.5 2.5 32.5 2.5 0.340 0.364 0.348 

5 10 22.0 3.o 32.0 3.0 0.391 0.415 0.415 
6 lo 21.0 4.o 31.o 4.o 0.482 0.490 0.500 
7 10 20.0 5.0 30.0 5.0 0.552 0.556 0.530 
8 10 17.0 8.o 27.0 8.o 0.708 0.729 0.720 

9 lo 15.0 10.0 25.0 10.0 0.818 0.840 0.800 
10 10 10.0 15.0 20.0 15.0 1.032 1.030 1.046 
11 10 5.0 20.0 15.0 20.0 1.162 1.170 1.175 

	

Equilibrium Constant K 	 3.62 3.35 3.50 

	

K' 
	

205 	193 	199 

a
Initial concentrations of 
amine were 0.04356, 1.7 x 

bInitial concentrations of 
amine were 0.04342, 1.7 x 

cInitial concentrations of 
amine were 0.04352, 1.1 x 

isoputyraldehyde, i 
10-4 , and 1.4230 M, 

isoputyraldehyde, i 
10-4 , and 1.4191 M, 

isoputyraldehyde, i 
10-4 , and 1.4215 14 , 

sobutyric acid, and I-butyl-
respectively. 

sobutyric acid, and t-butyl-
respectively. 

sobutyric acid, and t-butyl-
respectively. 

These measurements were made at 35 0  C and 2260 A. Values of K 

and K' cif 3.49 + 0.09 and 199 + 4 were obtained from Equations (17) and 

(17') respectively by using the least squares techniques. The plot of 

II is shown in Figure 18. 
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Rate of Attainment of Equilibrium in Imine Formation  

During the absorbance and pH measurements there was no signifi-

cant drift in the values obtained, showing that the composition of the 

solutions , were not changing appreciably at this time. In order to assure 

thermal equilibrium,at least five minutes was allowed to elapse before 

the equilibrium absorbance values were measured in the spectral deter-

minations of K and at least two minutes was allowed to elapse before 

equilibrium pH values were measured when K was determined by the pH 

method. 

In one case direct experiments on the reaction rate were made. 

To a solution of 1.0 ml. 0.0433 M aqueous isobutyraldehyde in 1.0 ml. 

water, 1.0 ml. of 0.0800 M aqueous n-propylamine solution was added by 

syringe. The absorbance at 2300 A increased from 1.238 at 15 sec. to 

1.305 where it became constant after about 270 sec. From the extinc-

tion coefficients of the aldehyde and amine it may be calculated that 

the absorbance should have been 0.032 before any reaction occurred. 

Therefore, the halftime for the reaction under these conditions (room 

temperature 25-30° ) was considerably less than 15 sec. At 35 °  the 

reaction should be even more rapid. 

These measurements plus the agreement obtained when the equi-

librium constant was determined by different methods and in different 

runs (in some of which the solutions had stood for as much as five 

minutes before equilibrium measurements were made) using a given 

method, seem to assure that equilibrium was attained. Further evi-

dence for this point comes from the fact that approximately the same 

values for K were obtained in measurements in which the imines were 
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used as the starting material. (These measurements were rendered less 

reliable by the instability of the imine and by other factors and 

therefore not reported here.) 

Infrared Spectra of N-Isobutylidenealkylamine  

The infrared spectra of N-isobutylidenealkylamines were run in 

chloroform solution. A 10 ml. volumetric flask was filled with 8 ml. 

of chloroform, then 0.4 ml. of N-isobutylidenealkylamine was added by 

syringe. Finally, chloroform was added to the mark. The chloroform 

solution was run against chloroform by using a pair of 0.1 mm. sodium 

chloride cells. All four imines studied had an absorption maximum in 

the range 5.97-6.00 p, which is attributed to the carbon-nitrogen 

double bond. 

Freshly distilled N-isobutylidenemethylamine was also run neat in 

a 0.05 mm. sodium chloride cell. The spectrum is shown in Figure 8. 

After correcting by polystyrene (6.238 p), the peak for carbon-nitrogen 

double bond appears at 6.00 p. 

The infrared spectra of N-isobutylidene-n-propylamine, N-iso-

butylidene-3-methoxypropylamine, and N-isobutylidene-t-butylamine were 

also run neat in a smear sodium chloride. The spectra are shown in 

Figures 9-11. After correcting by polystyrene the peak for carbon-

nitrogen double bond appear at 5.97, 5.90, and 5.97 p respectively. 

The Nuclear Magnetic Resonance Spectra  

The nuclear magnetic resonance spectra are shown in Figures 12-

15. The positions of the bands (relative to tetramethylsilane) and 

some of the coupling constant are assigned as follows: 
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3.25 
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0.82 
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1.75 
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3.21 

1.09 
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1.15 
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7.0 

4.2 

1.6 

6.8 

4.3 

1.4 

6.4 

6.9 

6.9 

4.2 

1.4 

6.8 

6.3 

6.9 

4.1 

aThe absorption by type B protons was too broad and weak to permit a 
reliable assignmeht of the chemical shift, but in all cases it was 
about 2.3 p.p.m. 
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CHAPTER V 

DISCUSSION 

In aqueous solution isobutyraldehyde may be hydrated. 

(CH3 ) 2CHCHO + H2O (-2  (CH3 ) 2CHCH(OH) 2 

The hydration of aldehyde is catalyzed by acids; the free acid present 

can play the role of catalyst. Furthermore, even uncatalyzed hydra-

tion proceeds at an appreciable rate. 

The extent of hydration of isobutyraldehyde in aqueous solution 

has been studied by Hine, Houston and Jensen (58) by measurements of the 

nuclear magnetic resonance spectra. The integrated intensities of the 

peaks due to the methyl groups of the free aldehyde and hydrate showed 

that 38 + 1% of the aldehyde is present as the hydrate at 25 °  and 30 + 

1% at 35 ° . These figures correspond to K h  values of 0.0110 and 0.0077 

M
1
, respectively, where 

[(CH3 ) 2CHCH(oH) 2 ] 

Kh - [(CH3 ) 2CHCHO][H20] 

The rate of hydration of isobutyraldehyde has also been studied. 

The rate constant obtained by Hine and Houston (59) for the acid-cata-

lyzed hydration of isobutyraldehyde in aqueous solution at 35 °  is 440 + 

58. J. Hine, J. G. Houston, and J. H. Jensen, J. Org. Chem., 30, 
1184 (1965). 

59. J. Hine and J. G. Houston, J. Org. Chem., 30, 1328 (1965). 
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1 - 40 M sec-1  

Due to the presence of the hydrated form of the aldehyde, the 

extinction coefficient of isobutyraldehyde and equilibrium constant of 

formation for imines obtained in Chapter IV are the apparent values. 

They may be corrected for the amounts of hydrated form present to get the 

true values. 

Although the optical density measurements in determinations of the 

extinction coefficient and equilibrium constant of imine formation were 

made soon after the solutions were prepared (to minimize the oxidation 

of isobutyraldehyde and possible complicating reactions of the imine), 

the rate of hydration is so fast that it would not interfere with the 

ultraviolet measurements. 

The amount of isobutyraldehyde present could be determined by 

n.m.r. and ultraviolet measurements. The equilibrium constants for 

aldolization have been determined (57) 

[(CH3 ) 2CHCHOHC(CH3 ) 2CHO] 
Kald.   — 1.05 + 0.1 M

-1 

[(CH3 ) 2CHCH0]2  

The purification procedures for isobutyraldehyde did not succeed 

in removing all of the acid impurities in the aldehyde samples. They 

may also be formed by oxidation after the aqueous solutions are prepared. 

In every case we have tried to minimize the amount of free acid. 

The apparent extinction coefficient of isobutyraldehyde at 35 °  is 

14.6 cm7 /M-1 . Assuming the isobutyraldol has negligible absorbance and 

correcting for the amount of the hydrated form, the true extinction 

coefficient is calculated. 



8o 

14.6  
- 20.9 cm-1.M-1 e

true 	1-0.30 

Primary aliphatic aldehydes might give polymeric materials with 

amines. This is due to the ease with which the imine initially formed 

undergoes subsequent aldol condensations. For example: 

(X + 1)R-CH2-CH=N-R 1  -.RCH2-(CH=C)x-CH=NR 

Isobutyraldehyde is a secondary aldehyde, which can readily form 

imines with amines. Fortunately, the fact that this aldehyde has only 

one a-hydrogen makes the corresponding dimeric imines incapable of 

splitting out a mole of amine to give an a,S-unsaturated imine which would 

result in polymerization. Therefore, the complication of polymerization 

is not involved in the measurement of equilibrium constant of imine 

formation. 

Imine-enamine rearrangement might occur in N-isobutylidenealkyl-

amines but Witkop has shown that the equilibrium in such reactions 

usually lies well in the side of the imine (60). In calculating the 

extinction coefficient and equilibrium constant of imine formation, we 

assume that the amount of enamine present is negligible in all cases. 

The ionization constants of the imines are so small that the 

correction for immonium ion present in equilibration solution is shown 

to be insignificant. 

In the pH measurements, in order to assure that the isobutyralde-

hyde solution was neutral, the free acid was neutralized by standard 

60. B. Witkop, J. Am. Chem. Soc., 78, 2873 (1956). 
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sodium hydroxide solution with bromothymol blue as indicator. The 

ionization constant of bromothymol blue is 10 -7  (61). The amounts of 

bromothymol blue being added would not effect the pH value during the 

measurements to any significant extent. In this measurement it was 

also assumed that the intermediate (carbinolamine) and product (e.g., 

imine) would not effect the pH value. The fact that essentially the 

same equilibrium constants were obtained by the pH method as by spectral 

measurements, in which ionization of imine would not produce major com-

plications, substantiates this assumption. The pH method may not be 

used in cases where the equilibrium constants for imine formation are 

relatively small. 

In the ultraviolet measurements, it was assumed that there is 

no appreciable absorption due to the carbinolamine or its conjugate 

acids, the ammonium ion, or the imonium ion. 

The wavelengths of maximum absorption of N-isobutylidenealkyl-

amines and their extinction coefficients were summarized in the follow-

ing table. 

It can be seen that the wavelengths of absorption maximum shift 

to higher wavelength from water to 2,2,4-trimethylpentane, whereas the 

extinction coefficients decrease in hydrocarbon solution. This may be 

explained due to the usual solvent effect for n r transitions. The 

equilibrium constants for imine formation are listed in Table 31. 

The equilibrium constant is decreased by the steric hindrance of 

the R group attached to nitrogen atom of amine. Because only four 

points are available so far, and these R groups do not have a large 

61. E. E. Sager, et al., J. Am. Chem. Soc.,  73, 732 (1948). 



Table 30. Ultraviolet Absorption of Some N-Isobutylidene-
alkylamines at 35 °  C. 

( CH3 ) 2CHCH=N-R Solvent 

Water i-Octane n-Hexane R 

-CH3 

-CH2c1-12cH, 
J  

-(CH2)30CH3 

-C (CH ) 
33 

Xmax(A) 
€ 	. 
xmax (A) 
e 

Xmax(1) 
e 

Xmax(I) 
e 

2265 
146.4 
2300 
155.3 
2300 
136.9 
2260 
163.2 

2425 
67.o 
2450 
91.4 
2450 
90.3 
2500 
84.2 

2 1425 
68.5 

Table 31. Equilibrium Constants for the Formation of 
N-Isobutylidenealkylamines at 35 ° . 

UV Measurement pH Measurement Average 
K K' K K' 

-cH3  91.7 + 3.5
b 

5050 + 200b 89.5 + 2.0 4910 + 90 90.7 4980 

-CH
2
CH

2
CH

3 
76.3 + 0.7 4210 + 5o 75.5 + 1.3 4140 + 7o 75.9 4180 

-(CH2 ) 30CH3 65.2 + 2.5 3600 + 140 63.8 + 1.5 3490 + 8o 64.5 355o 

-C(cH
3

)
3 

3.5 ± 0.1 199 + 4 3.5 199 

a
At the absorption maximum of N-isobutylidenealkylamine. 

bThe value of K and K' obtained at the absorption maximum of aldehyde are 
91.0 + 3.0 M-1  and 4950 + 160, respectively. 
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difference in a value, applying the Taft-equation correlation of these 

data do not give a good straight line. 

The dissociation constant of 3-methoxypropylamine does not appear 

to have been measured. It was obtained by titration of 3-methoxypropyl-

amine with perchloric acid. The pK b  of 3-methoxypropylamine is expected 

to be in between that of 2-methoxyethylamine, 4.55
4
(62), and the unsub- 

stituted primary amine, i.e., n-propylamine, 3.47 5 (50). From the 

results in Figure 4, extrapolated to zero ionic strength, pKb  equal to 

3.97 was obtained. Applying the common relation between a x 
and a

xCH2 

(63), pKb  equal to 4.10 is estimated from these a 's values, Hall's 

, 
value for p (3.14) and log K for primary amines. The extrapolated 

value, 3.97, is consistent with these predictions. 

The band of the proton attached to the imino carbon is at 7.46-

7.51 p.p.m. (neat) which is upfield from that of N,N-dipiperonylidene-

ethylenediamine (23) and N-isobutylidenepyrrolidenium ion (24), but is 

very close to Bonnett's value (7.41-7.50 p.p.m.) (26). The chemical 

shift of the protons in the methyl groups of the i-propyl group attached 

to the imino carbon atom are almost the same (1.05-1.09 p.p.m.). The 

coupling constant of A type protons with B type protons is 6.8-7.0 c.p.s. 

The coupling constant of vinyl type protons with the one attached to the 

62. R. J. Bruehl, and F. H. Verhoek, J. Am. Chem. Soc., 70, 1401 
(1948). 

63. J. Hine, Physical Organic Chemistry,  2nd ed., McGraw-Hill 
Book Company, Inc., New York, 1962, pp.97-98. 

4This value is at zero ionic strength and 25 °  C. 

5This value is at zero ionic strength and 35 °  C. 
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carbon atom adjacent to the doubly bonded nitrogen atom is 1.4-1.6 c.p.s. 

for imines. Thus in system of the type 

H H 
I 

-C-C=X 

the coupling constant when X is nitrogen is nearer to that found when X 

is oxygen (— 1.3 c.p.s.) than to that found when X is carbon (4-10 c.p.s.) 

(25). 

The nuclear magnetic resonance spectra of N-isobutylidenealkyl-

amines (— 25%) in chloroform showed that all peaks shift a little bit 

downfield which indicates that some of the imine molecules form hydrogen 

bonds in chloroform solution. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The work described in this study has been done with the aim of 

devising a method to obtain the equilibrium constant for imine formation 

from isobutyraldehyde and primary alkylamines. Two methods, namely 

ultraviolet measurements (at absorption maximum of imines and/or alde-

hyde) and pH measurements, have been proved satisfactory. 

Imines and imonium ions are important not only in their own right, 

but also because they act as intermediates in a wide variety of reac-

tions, such as amine-catalyzed aldolization, decarboxylation, etc. (63). 

The following recommendations are made for future, more detailed 

studies in the present field. 

1. Measurement of the equilibrium constant of isobutyraldehyde 

with ethylamine and isopropylamine. The effect of simple alkyl substi-

tuents at the nitrogen atom of N-isobutylidenealkylamine could be 

obtained from the series methyl, ethyl, i-propyl, and t-butyl groups. 

2. Use of primary alkylamines that have strong electron donating 

or withdrawing groups, such as 2,2,2-trifluoroethylamine, 2-methoxyethyl-

amine, 2-chloroethylamine, or unsaturated alkyl groups which may form a 

64. J. Hine, Physical Organic Chemistry,  2nd ed., McGraw-Hill 
Book Company, Inc., New York, N.Y., 1962, Secs. 11-3c, 11-4d and 
13-1b. 
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conjugated system with imino double bond. Then, applying these results 

to Taft-equation correlations, which would make clearer the nature of 

electronic effects in imine formation. 

3. Study of steric effects upon the equilibrium for imine forma-

tion. A bulky alkyl group attached to the carbonyl carbon or the nitro-

gen atom of primary alkyl amines would be expected to decrease the 

magnitude of equilibrium constant. Thus, the equilibrium constants for 

ketimines are expected to be smaller than those for the corresponding 

aldimines. Other kinds of carbonyl compounds (both aldehydes and ketones) 

and cycloalkylamines (such as cyclopropylamine, cyclobutylamine, cyclo-

hexylamine, etc.) may be used to determine the steric effect in the 

equilibrium of carbonyl compounds, amines and corresponding imines and/or 

carbinolamines. 
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Table 32. Ionization Constant of Water from 0 to 60 0  C 

t 

C. Kw  x 10
14  

-log Kw  

0 0.1139 14.943 

5 0.1846 14.734 

10 0.2920 14.535 

15 0.4505 14.346 

20 0.6809 14.167 

25 1.008 13.996 

3o 1.469 13.833 

35 2.089 13.680 

4o 2.919 13.535 

45 4.018 13.396 

5o 5.474 13.262 

55 7.297 13.137 

6o 9.614 13.017 

Data from H. S. Harned and B. B. Owen, The Physical Chemistry 
of Electrolytic Solutions, 3rd ed., Chapter 15, Reinhold Publishing 
Corp., New York, 1958. 
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Table 33. Constants of the Debye-Htickel Theory from 0 to 100 0 . 

o
t 

(For 
Unit Vol. 

ion-size parameters, 
of Solvent 

"41., in angstrom units) 
Unit Wt. of Solvent 

a b a 

0 0.4918 0.3248 0.4918 0.3248 

5 0.4952 0.3256 0.4952 0.3256 

10 0.4989 0.3264 0.4988 0.3264 

15 0.5028 0.3273 0.5026 0.3272 

20 0.5070 0.3282 0.5066 0.3279 

25 0.5115 0.3291 0.5108 0.3286 

30 0.5161 0.3301 0.5150 0.3294 

35 0.5211 0.3312 0.5196 0.3302 

38 0.5242 0.3318 0.5224 0.3306 

40 0.5262 0.3323 0.5242 0.3310 

45 0.5317 0.3334 0.5291 0.3318 

50 0.5373 0.3346 0.5341 0.3326 

55 0.5432 0.3358 0.5393 0.3334 

6o 0.5494 0.3371 0.5448 0.3343 

65 0.5558 0.3384 0.5504 0.3351 

7o 0.5625 0.3397 0.5562 0.3359 

75 0.5695 0.3411 0.5623 0.3368 

8o 0.5767 0.3426 0.5685 0.3377 

85 0.5842 0.3440 0.5750 0.3386 

90 0.5920 0.3456 0.5817 0.3396 

95 0.6001 0.3471 0.5886 0.3404 

100 0.6086 0.3488 0.5958 0.3415 

Source: R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 
2nd ed., p. 468, Academic Press, New York, 1959. The values for unit 
weight of solvent were obtained by multiplying the corresponding values 
for unit volume by the square root of the density of water at the appro-
priate temperature. 
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Table 34. Values of (RT1n10)/F from 0 to 100 °  

(ln 10 

t
o
C 

= 2.30259) 

(RT1n10)/F t
o
C (RT1n10)/F 

0 0.054197 50 0.064118 

5 0.055189 55 0.065110 

10 0.056181 6o 0.066102 

15 0.057173 65 0.067094 

20 0.058165 7o 0.068086 

25 0.059157 75 0.069078 

3o 0.060149 8o 0.070070 

35 0.061141 85 0.071062 

38 0.061737 90 0.072054 

4o 0.062133 95 0.073046 

45 0.063126 100 0.074038 

R = 8.3143 joules deg -imole-1 ; F = 96,487.0 coulombs equiv 1 ; 
T = t( °C) + 273.150: Report of the National Academy of Sciences-
National Research Council Committee on Fundamental Constants, 1963. 
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APPENDIX 

COMPUTER PROGRAM FOR CALCULATION OF EQUILIBRIUM CONSTANTS 
BY ULTRAVIOLET METHOD*  

This program was written in a simplified language prepared by 

Dr. L. J. Gallagher of the Engineering Experiment Station, Georgia 

Institute of Technology, especially for the Burroughs B-5000. A 

special tape of computer instructions is required in order to use 

this simplified ALGOL language. 

COMMENT 

N = NUMBER OF SOLUTIONS If 0029 

OALD = CONCENTRATION OF ALDEHYDE SOLUTION 5 0029 

OAM = CONCENTRATION OF AMINE SOLUTION 6 0029 

D = OPTICAL DENSITY 7 0029 

EI = EXTINCTION COEFFICIENT 8 0029 

EA = EXTINCTION COEFFICIENT 9 0029 

EB = EXTINCTION COEFFICIENT 10 0029 

P = CONCENTRATION OF ISOBUTYRIC ACID 11 0029 

KIA = IONIZATION CONSTANT OF AMINE 12 0029 

Kl = EQ. CONSTANT BY FIRST APPROXIMATION 13 0029 

MA = PARTIAL MOLAR VOLUME OF ALDEHYDE 14 0029 

MB = PARTIAL MOLAR VOLUME OF AMINE 15 0029 

VALD = VOLUME OF ALDEHYDE IN MIXTURE 16 0029 

We wish to thank Mr. R. F. Ellis for writing this program. 
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COMMENT 

VW 	= 	VOLUME OF WATER IN MIXTURE 17 0029 

VAM 	= 	VOLUME OF AMINE IN MIXTURE 18 0029 

AO 	= 	ORIGINAL CONCENTRATION OF ALDEHYDE 19 0029 

B01 	= 	ORIGINAL CONCENTRATION OF AMINE 20 0029 

BR 	= 	FIRST APPROXIMATION OF AMINE REMAINING 0029 

RNH3 	= 	CONCENTRATION OF AMMONIUM ION 21 0029 

BO 	= 	CORRECTED ORIGINAL CON. OF AMINE 22 0029 

B 	= 	FINAL CONCENTRATION OF AMINE 23 0029 

W 	= 	CONCENTRATION OF WATER 24 0029 

Y 	= 	AD DEVIDE BY THE DIFFERENCE OF 25 0029 

OPTICAL DENSITY AND ABS. OF AID + AM 26 0029 

RB 	= 	RECIPROCAL OF B 27 0029 

RBW 	= 	RECIPROCAL OF B TIME W 28 0029 

BEGIN 29 0029 

REAL OALD, OAM, P, KIA, Kl, EI, EA, EB B  MA, MB, 30 0029 

START OF SEGMENT xxxxxxxxxx  0011 

TINTERCEPT, N, A, J, L: 31 0000  

ARRAY VALD[1:20], VAM[1:20], VW[1:20], A0[1:20], 32 0000 

B01[1:20], RNH3[1:20], B0[1:20], B[1:20], 33 0008 

RB[1:201, y[1:20], W[1:20], RBW[1:20], 34 0016 

INTERCEPT[1:2], SLOPE[1:2], D[1:20], KEQ(1:2], 

BR[1:20]; 35 0024 

ALPHA. ARRAY Z[1:2]; 36 0034 

ALPHA X; 37 0036 
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LIST L1(X, N, OALD, OAM, EI, EA, EB, P, KIA, Kl, 38 0036 

MA, MB, VALD[1], 39 0050 

FOR J.-1 STEP 1 UNTIL N DO VW[J], FOR J.-1 4o 0054 

STEP 1 UNTIL N DO VAM[J], FOR J4-1 STEP 1 UNTIL 41 0060 

N DO D[J]); A 41 0066 

LIST L2(N, OALD, OAM, RI, EA, ER, P, KIA, K1, MA, MB); 42 0074 

LIST L3(J, VALD[J], VW[J], VAM[J], D[J], AO[J], B01[J], 44 0093 

BR[J], RNH3[J], B0[J], B[J], W[J]); 45 0109 

LIST L4(J,Y[J], RB[J], RBW[J]); 46 0121 

LIST L5(Z[L1, INTERCEPT[L], SLOPE[L], KEQ[L]); 47 0133 

LIST L6(TINTERCEPT): 48 0146 

LIST L7(X); 49 0152 

FORMAT F2(19,F10.5,F10.5,F9,2,F8.2,F8.2,F11.6,F11.6, 50 0158 

START OF SEGMENT xxxxxxxxxx  0012 

F10.3,F9.2,F9.2); 	 51 	0158 

0012 IS 0014 LONG, NEXT SEG 0011 

FORMAT F3(12,F7.1,F7.2,F7.2,F8.3,F10.5,F10.5,F10.5,F11.6 	 0158 

START OF SEGMENT xxxxxxxxxx  0013 

F10.5, F10 .5,F9.3); 	 53 	0158 

0013 IS 0015 LONG, NEXT SEG 0011 

FORMAT F4(19,F10.5,F10.3,F11.3); 	 54 	0158 

START OF SEGMENT 	* 00:4 

0014 IS 0007 LONG, NEXT SEG 0011 

FORMAT F5(X7, A6,F12.7,F12.7,F10.3); 	 55 	0158 
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START OF SEGMENT **xxxxxxXx  0015 

0015 Is 0008 LONG, NEXT SEG 0011 

FORMAT F6(X7,"TBEORETICAL INTERCEPT = ",F9.7); 
	

57 	0158 

FORMAT F7(X7,A6); 

START OF SEGMENT xxxx,xx**xx  0016  

0016 IS 0009 LONG, NEXT SEG 0011 

58 	0158 

START OF SEGMENT xxx***xx** 0017 

0017 IS 0005 LONG, NEXT SEG 0011 

PROCEDURE LEASTSWARES(Y,X,L): 	 82 	0158 

VALUE L: 	 0158 

REAL L : 	 83 	0158 

ARRAY Y[*], X[*]; 	 84 	0158 

BEGIN 	 85 	0158 

REAL K, SY, SX, SXY, SXSQ: 	 83 	0158 

START OF SEGMENT *xxxxxxxxx  0018 

SY*-0; 	 86 	0000 

FOR K4-3 STEP 1 UNTIL N DO SY'-SY+Y[K]; 	87 	0000 

SX4-0; 	 88 	0006 

FOR K4-3 STEP 1 UNTIL N DO SX+-SY+Y[K]; 	 89 	0007 

SXY4-0; 	 90 	0012 

FOR K4-3 STEP 1 UNTIL N DO SXY4-SXY+Y[K]xX[K]; 91 	0013 

SXSQ44-0; 	 92 	0019 

FOR K4-3 STEP 1 UNTIL N DO 	 93 	0020 

SXSQ4-SXSQ+X[K]*2; 	 94 	0021 

N 4- N=2; 	 0025 
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SLOPE[L]4-(SXY-(SXxSY)/N)/(SXSQ-SX*2/N); 	95 	0027 

INTERCEPT[L]4-(SY-SLOPE[L]xSX)/N; 	 96 	0032 

N 4- N+2; 	 0036 

END; 	 97 	0037 

0018 IS 0040 LONG, NEXT SEG 0011 

READFREE(L1,A); 	 62 	0158 

PRINT (L1,STANDARD) ; NEWPAGE: 	 0159 

FOR J4-2 STEP 1 UNTIL N DO VALD[J].-VALD[1]; 	59 	0161 

z[1]-"Y-1/B"; 	 60 	0167 

z[2]-"Y-W/B"; 	 61 	0169 

TINTERCEPT 1/(EI-EA-EB); 	 63 	0171 

FOR J4-1 STEP 1 UNTIL N DO 	 64 	0173 

BEGIN 	 65 	0177 

	

AO[J]4-0ALDX(VALD[J]/(VALD[J]+1/W[J]+VAM[J])); 66 	0177 

B01[J]4-0AMx(VAM[J]/(VALD[J]+VW[J]+VAM[J])); 	67 	0183 

IF X = "ALDMAX" THEN 	 0190 

BR[J] B01[J] - (AD[J] - D[J]/EA) ELSE 	 0191 

BR[J] 4- B01[J] - D[J]/ EI; 	 0197 

IF VAM[J]0 THEN BEGIN 	 68 	0203 

RNI13[J]-(+p-KIA+sQRTU-P+KIA)*2+4xKIAxBR 

[J]))/ 2 ; 	 69 	0205 

BO[J]4-B01[J]- RNH3[J]; 	 71 	0212 

	

B[J]4-(BO[J]-AO[J]-1/K1+S 0QRT((BO[J]-AO[J]-1/K1)72 	0216 

*2+4xB0[J]/K1))/2; 	 73 	0223 

RB[J]4-1/B[J]; 	 74 	0228 
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IF x = "ALDMAX" THEN 

Y[J]4-AO[J]/((D[1] + D[2])/2 - D[J] + EBX 

BO[J]) ELSE 

76 

77 

0231 

0232 

Y[J14-AO[J]/(D[J]-(D[1]+D[2])/2-EBXRNH3[J]); 78 0241 

W[J]4-55.176-MAxAO[J]-MBxBO[J]; 79 0251 

RBW[J].-RB[J]XW[J] 80 0256 

END ELSE 	RNH3[J]4-B0[J]4-B[J].-W[J]4-Y[J]4-BR[J].-0; 75 0259 

END; 81 0272 

LEAST SQUARES (Y,RB,1); 98 0275 

LEAST SQUARES (Y,RBW,2); 99 0277 

FOR L-1 STEP 1 UNTIL 2 DO KEQ[L]o-INTERCEPT[L]/ 
SLOPE[L]; 0279 

PRINT (L7,F7); 100 0287 

SKIPLINE;SKIPLINE; 101 0288 

HEADING;SKIPLINE; 102 0289 

PRINT (L2,F2); 103 0290 

SKIPLINE;SKIPLINE; 104 0292 

HEADING;SKIPLINE; 105 0293 

FOR J4-1 STEP 1 UNTIL N DO PRINT (L3,F3); 106 0294 

SKIPLINE;SKIPLINE; 107 0300 

HEADING;SKIPLINE; 108 0301 

FOR J-1 STEP 1 UNTIL N DO PRINT (L4,F4); A 108 0302 

NEWPAGE;SKIPLINE;SKIPLINE; 109 0307 

HEADING;SKIPLINE; 110 0308 

FOR L-1 STEP 1 UNTIL 2 DO PRINT (L5,F5); 111 0309 
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SKIPLINE;SKIPLINE 112 0315 

PRINT (L6,F6) 113 0316 

END; 114 0316 

0011 IS 0321 LONG, NEXT SEG 0002 

The following is an example of input and output. This i$ one of 

the data for measuring the equilibrium constant for N-isobutylidene-n- _ 

propylamine formation. 



N 
10 

VALD 

OAID 
0.04323 

VW 

OAM 
0.07695 

VAM 	D 

EI 
155.68 

AO 

EA 	EB 	P 	KIA 
0.54 	1.25 	0.000073 	0.000350 

B01 	BR 	RNH3+ 	BO 

KI 
75.000 

MA 	MB 
5.16 	4.65 

1 10.0 25.00 0.00 0.003 0.01235 0.00000 0.00000 0.000000 0.00000 0.00000 0.000 
2 10.0 25.00 0.00 0.002 0.01235 0.00000 0.00000 0.000000 0.00000 0.00000 0.000 
3 10.0 23.00 2.00 0.230 0.01235 0.0044o 0.00292 0.000882 0.00352 0.00194 55.096 
4 10.0 21.00 4.00 0.465 0.01235 0.00879 0.00581 0.001294 0.00750 0.00442 55.077 
5 10.0 20.00 5.00 0.580 0.01235 0.01099 0.00727 0.001462 0.00953 0.00579 55.068 
6 10.0 17.00 8.00 0.780 0.01235 0.01759 0.01258 0.001964 0.01562 0.01025 55.040 
7 10.0 15.00 10.00 0.895 0.01235 0.02199 0.01624 0.002249 0.01974 0.01352 55.020 
8 10.0 10.00 15.00 1.110 0.01235 0.03298 0.02585 0.002873 0.03011 0.02237 54.972 
9 10.0 5.00 20.00 1.230 0.01235 0.04397 0.03607 0.003417 0.04056 0.03185 54.924 

10 10.0 0.00 25.00 1.296 0.01235 0.05497 0.04664 0.003904 0.05106 0.04170 54.875 

Y RB RBW 

1 0.00000 0.000 0.000 
2 0.00000 0.000 0.000 
3 0.05456 514.455 28344.371 
4 0.02680 226.062 12450.883 
5 0.02146 172.690 9509.678 
6 0.01594 97.514 5367.133 
7 0.01388 73.973 4070.014 
8 0.01119 44.706 2457.604 
9 0.01010 31.399 1724.521 

10 0.00959 23.979 1315.868 

INTERCEPT SLOPE EQUILIBRIUM CONSTANT 

Y -1/B 0.0069017 0.0000914 75.511 
Y-W/B 0.0069120 0.0000017 4167.382 

THEORETICAL INTERCEPT = 0.0064981 



   1p111 
lllll 	14"111 

INFRARED SPECTRA 

Polystyrene was used as reference. A pair of 0.05 mm. sodium 

chloride cells was used for N-isobutylidenemethylamine, and a smear so-

dium chloride cell was used for the other imines. The instrument was 

set as follows: 

Resolution = 927 
	

Response 	= 2 

Gain 	= 5 	 Suppression = 5 

Speed 	= 6 

99 

Figure 6. The Infrared Spectrum of N-Isobutylidenemethylamine. 
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Figure 7. The Infrared Spectrum of N-Isobutylidene-n-propylamine. 

Figure 8. The Infrared Spectrum of N-Isobutylidene-3-methoxy-
propylamine. 



101 

Figure 9. The Infrared Spectrum of N-Isobutylidene-t-butylamine. 

NUCLEAR MAGNETIC RESONANCE SPECTRA 

Tetramethylsilane was used as an internal reference in the neat 

spectra. The following abbreviations will be used with the nuclear 

magnetic resonance spectra: 

S.T. = Sweep Time R.F.F. = R.F. Field 

S.W. = Sweep Width S.O. = Sweep Offset 

F.B. = Filter Bandwidth S.A. = Spectrum Amplitude 
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Figure 10. Nuclear Magnetic Resonance Spectrum of N-Isobutylidene-
methylamine Neat. F.B.: 2 c.p.s.; R.F.F. 0.10 mG; S.T.: 
250 sec.; S.W.: 500 c.p.s.; 5.0.: 16 c.p.s.: S.A.: 3.2; 
Insert F.B. 0.2 c.p.s.; S.W. 50 c.p.s.; S.O.: 418 c.p.s.; 
S.A.: 40. 
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Figure 11. Nuclear Magnetic Resonance Spectrum of N-Isobutylidene-
n-propylamine. Neat. F.B.: 2 c.p.s.; R .F.F.: 0.06 mG; 
S.T.: 250 Sec; S.W.: 500 c.p.s.; S.O.: 24 c.p.s.; S.A.: 
1.0; Insert F.B. 0.4 c.p.s.; R.F.F.; 0 .10 m.g.; S.W. 
50 c.p.s.: S.O. 422 c.p.s.; S.A. 6.3. 
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Figure 12. Nuclear Magnetic Resonance Spectrum of N-Isobutylidene-3- 
methoxypropylamine Neat. F.B.: 4 c.p.s.; R.F.F.: 0.04 mG; 
S.T.: 250 Sec.; S.W.: 500 c.p.s.; S.O.: 25 c.p.s.; S.A.: 
1.0; Insert F.B.: 1 c.p.s.; R.F.F. 0.06 mG; S.W.: 50 c.p.s.; 
S.O.: 427 c.p.s.; S.A.: 2.5. 

• NSA 

Figure 13. Nuclear Mangetic Resonance Spectrum of N-Isobutylidene-t-
butylamine Neat. F. B .: 1 c.p.s.; R.F.F. 0.06 mG; S.T.: 
250 Sec.; S.W.: 500 c.p.s.; S.O.: 21; S.A.: 2.5 Insert 
I.F.B.: 0.4 c.p.s.; R.F.F. 0.10 mG; S.W.: 50 c.p.s.; S.O.: 
418 c.p.s.; S.A.: 16. Insert II. F.B. 1 c.p.s.; R.F.F. 
0.06; S.W. 50; S.O. 51: S.A. 1.0. 
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Figure 14. Plot for Determination of Equilibrium Constant for 
N-Isobutylidenemethylamine Formation by 
Equation (16). 
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Figure 15. Plot for Determination of Equilibrium Constant for 
N-Isobutylidenemethylamine Formation by 
Equation (17). 
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Figure 16. Plot for Determination of Equilibrium Constant 
for N-Isobutylidene-n-propylamine Formation by 
Equation (16). 
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Figure 17. Plot for Determination of Equilibrium Constant for 
N-Isobutylidene-3-methoxypropylamine Formation by 
Equation (16). 
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Figure 18. Plot for Determination of Equilibrium Constant for 
N-Isobutylidene-t-butylamine Formation by 
Equation (16). 
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