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Annual Technical Report for . Grant: AFOSR-90-0158, "On the 
Theory of Turbulent Dynamics", for the time period 900301 to 
900930, Ronald F. Fox, P.I., (Georgia Tech Project # G-41-613). 

This research program is based on the idea of amplification of 
intrinsic (i.e. thermal or molecular) fluctuations by chaotic dynamics. 
Just prior to the initiation of this grant in March, 1990, several 
papers were written on this subject (there is no citation to this .grant 
on these papers because of the timing): Phys. Rev. Letts. 64, 249 
(1990), Phys. Rev. A41, 2952, 2969 (1990), and Phys. Rev. A42, 
1946 ( 1990). These papers provide some of the foundational ideas 
for this program (reprints are attached). Two more papers have also 
been written, each of which does carry a citation to this grant. The 
first of these papers: " On the growth of molecular fluctuations for 
nonstationary systems" has been held up by unusually long 
refereeing delays. The second paper: "Amplification of intrinsic 
fluctuations by chaotic dynamics in physical systems·~ was only 
recently submitted. This last paper contains a ne.wly discovered 
technique for the treatment of large scale fluctuations and numerical 
examples of the amplification effect (preprint attached). It also 
contains a suggestion about how to see this effect experimentally. 
Meanwhile, a collaborative effort with my experimental colleague R. 
Roy has lead to the observation of this effect in a chaotic multi -mode 
Nd-YAG laser system, and we are going to write a paper about this 
soon. 

Additional research activity directly related to turbulence in 
fluids has commenced with the AFOSR support of my student, Tim 
Elston. He is studying the numerical simulation of hydrodynamic 
flows which may be chaotic. We will ultimately do this with and 
without the 'incorporation of intrinsic fluctuations. The numerical 
techniques, which are quite delicate, are based in large part on the 
recent work of Brocket et al., "The dynamics of freely decaying two­
dimensional turbulence.", J. Fluid Mech. 194, 333 (1988), of Kida et 
al. "A route to chaos and turbulence.", Physica D 3 7, 116 ( 198 9), and 
of Canuto, Spectral Methods in Fluid Dynamics, (Springer-Verlag, New 
York, 1988). To overcome the stiffness of the Navier-Stokes 
equations (rendered as driven nonlinear coupled ODE's (truncated to 
a finite set) for the vorticity in our studies), we find that the "second 
order (stabilized) leapfrog Crank-Nicolson scheme" is effective and 
apparently state of the art. To this method one can add the 
fluctuations in accord with the new technique elucidated in the 
pending paper "Amplification of intrinsic ... " referred to in paragraph 



1, above. This work is being pursued with computational facilities 
here at Tech and on the Cray at the Naval Research Laboratory 
Central Computing Facility. The Cray time was requested to support 
the research funded by tl).is grant and $5000 of time has been 
provided. Mr. Elston has successfully run trial programs on the Cray 
and we are now poised for our research objectives. 

As was pointed out in the original proposal for this grant, one 
approach to this problem is to obtain a master equation underlying 
the hydro~ynamic equations. An extremely in~eresting development 
in this direction has come to our attention recently through the paper 
of G. Eyink: "Dissipation and large thermodynamic fluctuations" (to 
appear in J. Stat. Phys.). This paper is directly concerned with 
hydrodynamics and fluctuations in nonequilibrium states and it 
addresses the issue of master equations. The work of Kawasaki and 
of Spohn is especially relevant and we are exploring the real 
possibility that a valid master equation can be exposed by their 
methods. 
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Effect of Molecular Fluctuations on the Description of Chaos by Macrovariable Equations 

Ronald F. Fox 
School of Physics, Georgia Institute· of Technology, Atlanta, Georgia 30332 

Joel E. Keizer 
Institute for Theoretical Dynamics and Department of Chemistry, 

University of California, Davis, California, 95616 
(Received 7 July 1989; revised manuscript received 13 November 1989) 

Intrinsic molecular fluctuations are associated with macrovariables whose time evolution is described 
by macrovariable equations. When the macrovariable equations describe chaotic trajectories, the covari­
ance matrix for the molecular fluctuations diverges rapidly. This implies that the macrovariable equa­
tions are not stable and cannot be justified from an underlying molecular description. 

PACS numbers: 05.45.+b, 05.40.+j, 05.70.Ln 

There is a long tradition behind the description of 
macroscopic dissipative processes by phenomenological 
equations, e.g., hydrodynamics, electrical circuits, and 
mass-action chemical reactions. It is now widely appre­
ciated •-9 that a complete macroscopic description of 
these processes must include the deterministic macro­
variables as well as their molecular fluctuations, both of 
which reflect underlying microscopic dynamics. 1·2.8•9 

Indeed, these ftuctuations provide the basis for our un­
derstanding of light scattering, 1 0

•
11 electrical noise, and 

other noise measurements for macroscopic systems. 12 

By considering the thermodynamic limit of Hamiltoni­
an, kinetic theory, 13 and m~ster equation theories, 1.._

22 

numerous investigators have concluded that ftuctuations 
in macroscopic variables- such as the mass, momentum, 
and internal energy densities used in hydrodynamics 
-satisfy Langevin-type equations obtained by lineariza­
tion around the usual phenomenological macrovariable 
equations. While these equations successfully describe a 
variety of physical and chemical phenomena for both 
stationary and nonstationary states, 8•

12 recent numerical 
work suggests that this approach breaks down on chaotic 
attractors. 23 Here we investigate this phenomenon fur­
ther by applying hydrodynamic fluctuation theory to the 
Lorenz model. We show by numerical calculations that 
the trace norm of the covariance matrix diverges ex­
ponentially at twice the rate of the largest Lyapunov ex­
ponent. This is a general property of linearized 
Langevin theories on chaotic attractors, a result that is 
discussed here but whose proof is reserved for else­
where. 24 

We focus on the Lorenz model 25 because it has its ori­
gins in the hydrodynamic equations (using constitutive 
relations and thermodynamic identities the internal ener­
gy density is replaced by the temperature density, 7•26 for 
Which there is a generally agreed upon hyqrodynamic 
fluctuation theory). 7•

9
-

11 The Lorenz model exhibits 
chaos in an appropriate parameter range and can be in­
terpreted as a macroscopic, three-mode representation of 

the Rayleigh-Benard problem. The well-known, approxi­
mate, Galerkin truncation 25 leads to the following cou­
pled equations for the lowest-order amplitudes (macro­
variables) of the temperature deviation (Y and Z) and 
vorticity (X): 

d
d x--a<x-Y), .!Ly--xz+rX-Y 
t ' ~ ' 

d 
dtZ-XY-bZ. 

(I) 

According to fluctuating hydrodynamics, 7•
8

•
12

•
26 Eq. 

(I) represents the conditionally averaged behavior of the 
amplitudes. Molecular fluctuations in the amplitudes 
can be obtained in a similar fashion by analyzing ftuc­
tuations in the mass, momentum, and temperature densi­
ties for the Rayleigh-Benard problem. Since the ftuctua­
tions satisfy linearized equations obtained from the hy­
drodynamic equations, 7•26 a Galerkin truncation parallel­
ing that used to obtain the Lorenz equations also yields 
the associated fluctuation equations. Denoting the flue-
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FIG. I. The variance for 6X, C11, grows large and varies 
wildly. 
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tuations in X, Y, and Z by 6X, 6Y, and 6Z, we obtain 24 

d 
dt 6X- -u(6X-6Y)+ fx, 

d 
dt 6Y- -X6Z-Z6X+r6X-6Y+fy, (2) 

_!!_6Z -X6Y+ Y6X-b6Z+ fz, 
dt 

in which fx, fy, and fz are the derived Gaussian fluc­
tuating forces. 7·26 

Equation (2) is coupled to Eq. (I) via the Jacobian 
matrix of coefficients, J, which depends explicitly on the 
time-dependent solution to Eq. (I): 

adX/dt adx/dt adx/dt 
ax aY az 

J- adY/dt adY/dt adY/dt 
ax aY az 

adZ/dt adz/dt adz/dt 
ax ay az 

-[r~~ ~~ ~x] . 
Y X -b 

(3) 

It is well known 8·12 that the stochastic differential equa­
tions, Eq. (2), produce a nonstationary, Gaussian condi­
tional probability distribution with vanishing mean and 
covariance matrix, C, defined by 

[

(6X6X) (6X6Y) (6X6Z) l 
C- (6Y6X) (6Y6Y) (6Y6Z) , 

(6Z6X) (6Z6Y) (6Z6Z) 

which solves the equation 

dC -JC+CJt+r 
dt 

(4) 

(5) 

and in which r is the matrix of correlation coefficients 
for the fluctuating forces in Eq. (2) . This matrix is com­
pletely determined by the fluctuation-dissipation relation 
for hydrodynamics and involves no free parameters. 26 Its 
explicit form will be given elsewhere, 24 but we note here 
that each coefficient is proportional to Boltzmann's con­
stant. The solution of Eq. (5) is easily generated numeri­
cally8·23 using the conditional average solution obtained 
from Eq. (I). 

Note that there are two types of stochasticity here: 
deterministic stochasticity from the chaotic macrovari­
able dynamics [Eq. ( 1)], and molecular fluctuations 
coming from thermal motions [Eq. (2)1. This is typical 
of the thermodynamic limit 3- 22 in that the thermal fluc­
tuations .. ride on the back" of the deterministic motion. 

The solution for the covariance matrix is easily ob­
tained using standard differential equation solvers with 
initial conditions on the chaotic attractor and a covari­
ance matrix that initially vanishes. Figure I shows the 
results for the parameter values a- I 0, b - t , and 

250 

r -28, for which the Lorenz model is chaotic. The one­
one element of the covariance matrix (6X-mode vari­
ance) is seen both to grow and to fluctuate wildly as it 
rides along the attractor. Comparable results are found 
for other matrix elements. Keizer and Tilden 23 previous­
ly conjectured that the covariance matrix grows ex­
ponentially on a chaotic attractor at twice the rate of the 
largest positive Lyapunov exponent. In fact, we have 
found a way to make this conjecture precise 24 using the 
trace norm, as illustrated by the plot in Fig. 2 of the log­
arithm of the square root of the trace of the covariance 
matrix squared. This smooths out the plot enormously, 
which after a few time units essentially increases linearly 
with the time. The slope of this linear plot is 1.84, which 
is precisely twice the largest positive Lyapunov exponent 
for the attractor as determined by standard methods. 27 

The exponential growth of fluctuations on the chaotic 
attractor has striking consequences. First, when the 
square root of a covariance becomes comparable to the 
size of the macroscopic variables, the deterministic equa­
tions lose their meaning. According to Fig. 2, this be­
comes the case at a scaled time of approximately 20. 
Using values of the density, viscosity, and aspect ratio 
typical for water and the Rayleigh-Benard system, we 
estimate the actual time required for this to occur in the 
Lozenz model is about 40 min. Th~s suggests that in hy­
drodynamic experiments on chaotic systems, the effect of 
fluctuations may be amplified to macroscopic size on an 
experimentally accessible time scale. Second, this result 
suggests that on this time scale the macroscopic, deter­
ministic description for the hydrodynamic variables may 
break down. A detailed analytic account of this break­
down will appear elsewhere. 24 

The exponential divergence of the covariance matrix 
for dissipative macrovariable fluctuations on a chaotic 
attractor is a general property of the usual fluctuation 
theories in the thermodynamic limit. 8·12·24 In this limit, 
the macrovariables satisfy the usual kinetic equations 
[cf. Eq. (I)], and the covariance matrix for the fluctua­
tions solves an equation with exactly the same form as 
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FIG. 2. The Lyapunov exponent is one-half of the slope, i.e., 

0.92. 
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Eq. (5) where J is the Jacobian matrix for the macro­
variable motion and r is the strength of the correlation 
coefficients for the Gaussian forces. For the coupled sys­
tem of macrovariables and covariance matrix, it is not 
difficult to show, either numerically or analytically, that' 
asymptotically in time, on a chaotic attractor, the covari­
ance matrix grows at twice the rate of the largest 
Lyapunov exponent. 23

•
24 Specifically, we find that it is 

possible to define a Lyapunov exponent for the covari­
ance matrix equation [Eq. (5)], denoted by Ac, and we 
have proved the identity 

(6) 

where A is the Lyapunov exponent for the deterministic 
macrovariable equation. The proof of this identity fol­
lows from the fact that the Jacobi matrix not only deter­
mines the time evolution of the covariance matrix [Eq. 
(5)], but is also respOnsible for determining the Ly­
apunov •exponent A for the macrovariable equations. 27 

Thus t¥ observed behavior of the fluctuating Lorenz 
model in the thermodynamic limit is generic. 

As a consequence, we expect that, ( 1) on the time 
scale of the inverse of the largest (positive) Lyapunov ex­
ponent, the average behavior will not be correctly given 
by the deterministic equations, and (2) on this time 

~ scale, molecular fluctuations are sufficiently amplified 
that a molecular-level description must be used instead 
of a purely macrovariable description. 

It should be emphasized that these results refer only to 
macroscopic systems for which the dynamical processes 
are dissipative. For example, they do not apply to con­
servative Hamiltonian systems in which chaos is also well 
established. However, they seem relevant for chaotic dy­
namics in chemistry, as well as in various kinds of hydro­
dynamic systems. Finally, numerical calculations sug­
gesting that turbulence involves a chaotic attractor make 
us suspect that a complete description of experimental 
turbulence will require more than just the Navier-Stokes 
equations; a more molecular-level description will be 
necessary. 

This work was supported by National Science Founda­
tion Grants No. PHY86-03729, No. 89-02549 (R.F.F.) 
and No. CHE86-18647 O.E.K.) and the Institute of 

Theoretical Dynamics at the University of California, 
Davis. 
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Chaos, molecular fluctuations, and the correspondence limit 

Ronald F. Fox 
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 

(Received 31 October 1989) 

Chaos is characterized by sensitive dependence on initial conditions. Trajectories determined by 
coupled, ordinary differential equations show sensitive dependence when their associated Liapunov 
exponent is positive. The Liapunov exponent is positive if the Jacobi matrix associated with the 
coupled differential equations has an eigenvalue with a positive real part, on the average, as the 
Jacobi matrix evolves along the trajectory. For macrovariable equations, there are also fluctuation 
equations which follow the macrovariable trajectories. The covariance matrix for these fluctuations 
evolves according to an equation in which the Jacobi matrix for the deterministic motion plays the 
dominant role. For a chaotic trajectory, the covariance matrix grows exponentially. This means 
that for macrovariable equations that imply chaos, the construction of the macrovariable equations 
out of an underlying master equation is no longer valid. The macrovariable equations cease to be 
physical, and the physical description must be done entirely at the master equation level of descrip­
tion where the fluctuations, which are very large scale, can be properly treated. In parallel with this 
analysis, the correspondence limit connecting the time evolution of the Wigner distribution with 
Liouville's equation breaks down when the classical motion is strongly chaotic. This implies that 
strongly chaotic classical dynamics must be treated quantum mechanically in order to properly 
treat the quantum fluctuations which have grown macroscopically large. Experimental 
confirmation of these ideas is discussed. 

I. WHAT IS CHAOS? 

Consider a system of coupled, first-order differential 
equations of the form 

d 
-d x;(t)=F;(x(t)) , 

t -
(1) 

where i = 1, 2, ... , N and x( t) denotes the N-dimensional 
vector with components X;. The functions F; are general­
ly nonlinear. Because these equations are first order in 
the time derivative, initial conditions give rise to unique 
trajectories. Chaos is very sensitive dependence of the 
trajectory x( t) on the initial conditions. 

This sensitive dependence can be made quantitative by 
introducing the concept of a Liapunov exponent. 1 First, 
consider the instantaneous, local linearization around the 
trajectory x(t). Let ax denote a small deviation from 
x( t) at time t. For a short time, ax evolves according to 

d 
dt ax; =J;kaxk , (2) 

in which summation over k is implicit and J;k is the Jaco­
bi matrix defined by 

aF; 
J;k=-a­

xk 
(3) 

The nonlinearity of the F; 's implies that J;k is an explicit 
function of x( t ). As the trajectory evolves in time, the 
matrix elements J;k also evolve. At each instant of time, 
one may compute the eigenvalues of J;k. If at least one . 
eigenvalue has a positive real part, there is an instantane­
ous, local tendency for the magnitude of ax to grow' 

41 

along a direction corresponding to the associated eigen­
vector. As the trajectory evolves, and J;k also evolves, 
such a tendency is averaged over the course of the trajec­
tory and this leads to the definition of the Liapunov ex­
ponent. 

Let 

d (x0,t)~ llax(Xo,t>ll (4) 

be the length of the deviation vector at time t that started 
at t = 0 from x = Xo· We have used the notation II II for 
the Euclidean metric in an N-dimensional space. The 
Liapunov exponent A. is defined by 1 

. 1 [ d(x0,t) l A.= hm -In . 
t- oo t d ( x0, 0) 

d(Xo>0)-0 

(5) 

If A.> 0, then initially close trajectories exponentiate 
apart with an initial rate A.. This is what is meant by sen­
sitive dependence on initial conditions. If ( 1) describes a 
dissipative dynamics and parameters are chosen so that 
trajectories approach a globally stable attracting fixed 
point, then A.< 0. If a limit cycle is the attractor, then 
'A.=O. But if the attractor is that for a chaotic trajectory 
(dissipative or Hamiltonian dynamics), then A. > 0. 

There is another representation of the dynamics in (1) 

which will prove useful below. We may describe the dy­
namics in ( 1) by a conserved probability flow for the 
probability distribution P ( x, t ): · 

a a -a P(x,t)= --a (F/x)P(x,t)], 
t xj 

(6) 

with the initial'condition P(x,O)=B(x-x0 ). Equation (6) 
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is simply the continuity equation for a conserved proba­
bility flow with probability flux F P. Since it is first order 
on both the left- and right-hand sides, it is straightfor­
ward to prove that it has the solution 

P(x, t)=5(x -x(t)) , (7) 

where x(t) is the solution to Eq. (1). Clearly, if we multi­
ply (6) by xi and integrate over dNx we get 

d 
dt (Xi ) = ( Fi (X) ) ' (8) 

where ( ) denotes averaging with respect to P(x,t). 
Since (7) holds, Eqs. ( 1) and (8) are identical. Because this 
probability distribution remains a Dirac 5 function for all 
times, it describes a deterministic motion with no fluctua­
tion whatsoever around the deterministic trajectories im­
plied by (1). 

We remark in passing that, although (6) is a linear 
equation in P, it nevertheless describes chaos . . Whenever 
the x( t) trajectory is chaotic, the P distribution simply 
follows the x( t) trajectory, and also exhibits chaos. One 
may think of (6) as an example of Liouville's equation, 
the name we use for it below. 

The key points developed here are that the magnitude 
of the Liapunov exponent is determined by the time­
evolving Jacobi matrix, and that Liouville's equation pro­
vides a description of the dynamics equivalent to (1) when 
its solution is the Dirac 5 function solution that follows 
the trajectory. In the following sections of this paper, we 
will return to these key points for the discussions of both 
molecular fluctuations and the correspondence limit. 

II. MOLECULAR FLUCTUATIONS 

Macrovariable equations are phenomenological 
descriptions of physical or chemical phenomena at the 
macroscopic level rather than many-particle descriptions 
at the fundamental microscopic level. We briefly discuss 
two examples below: hydrodynamics and chemical reac­
tions. 

The hydrodynamic equations are2 

_i_p= -V·(pu) at ' (9) 

p [ ; 1 ua+u·Vua ]=- a!p Pap, (10) 

P [_i_E+u·VE l = -V·q-P D at a{3 a{3 ' 
(11) 

in which p is the mass density, u is the velocity field, E is 
the energy field per unit mass, P af3 is the stress tensor, q 
is the heat flux, and D af3 is the strain tensor. In this 
form, these equations represent conservation of mass, 
momentum, and energy, respectively. They do not con­
stitute a closed description,3 however, because the quanti­
ties on the right-hand side, such asP af3 and q, are not ex­
pressed solely in terms of the quantities of the left-hand 
side. This can be remedied by introducing the constitu­
tive relations and equations of state which then produce a 
well-posed mathematical description. Usually, one ends 

up with a closed description in the quantities p, u, and T 
where Tis the temperature field. Because these quanti­
ties represent macroscopic amounts of matter, they have 
associated with them molecular fluctuations. 4

'
5 For ex­

ample; in the description of the hydrodynamics of water, 
p, u, and T may refer to the quantities found for . a cubic 
micrometer of water (this is a "macroscopic" amount) 
which contains -1011 water molecules. From the macro­
scopic viewpoint, the cubic micrometer is thought of as a 
point, but there will be molecular fluctuations associated 
with p, u, and T. The theory for these fluctuations is well 
worked out and is used to compute light scattering 
profiles that have been repeatedly confirmed with mea­
surements. 6 

A bimolecular reaction 

kf 
A +B~ C+D 

kb 

is described by the mass action equation 7 

d 
dt s=k!C A CB -kbCcCD ' 

(12) 

(13) 

in which C A, etc. are the concentrations of the various 
chemical species and s is the reaction progress variable. 
C A is the concentration of species A in the total volume 
of the reaction and no spatial variations are contemplat­
ed. This situation is realized from a macroscopic 
viewpoint in a "continuously stirred tank reactor." Nev­
ertheless, chemicals are molecules and each concentra­
tion has associated with it a molecular fluctuation. Once 
again, the theory for such fluctuations is well estab­
lished.7-9 

A rather general theoretical approach has been 
developed to deepen our understanding of how funda­
mental microscopic dynamics gives rise to macroscopic, 
deterministic equations and their associated molecular 
fluctuation equations. This is the master equation ap­
proach. s, 10 In essence, it is a mesoscopic description of 
dynamics, intermediate between the truly microscopic, 
many-particle dynamics and the macroscopic phenome­
nology. For mass action chemical reactions, the 
McQuarrie master equation8 is very well established. 9 

For dilute gas hydrodynamics, Boltzmann's equation 
serves the role of the master equation, 3' 5 and for 
moderately dense gases the Boltzmann-Enskog equation 
does likewise. 11

' 
12 For liquids, however, no master equa­

tion or equivalent is widely accepted, so that one of the 
upshots of the proposals to be enunciated below will be 
establishing such a master equation construct for hydro­
dynamics in order to use it to test other of our proposals. 
Modern kinetic theory may have already taken us a long 
way towards this particular goal. 

All master equations may be put into the form 10 

:t P(c,t)= J dNc'[ W(c,c')P(c',t) 

- W(c',c)P(c,t)] , (14) 

in which c and c' denote the macrovariables, P ( c, t) is the 
probability distributfon for the macrovariables at time t, 
and W ( c, c') is the transition distribution for changes in 
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the macrovariables. W(c,c,-) determines how much c' 
changes in an infinitesimal time interval, tJ..t. Normally,_ 
this change is by a molecular amount, but at a macro­
scopic rate. This means the following. Let .0. character­
ize the macroscopic size of the system (e.g., .0. could be 
the total volume). Normally, W causes a change in c'· 
components of size 1 /.0. at a rate ~ .0.. We may make 
this quantitative by looking at the moments of W: 

K}l)(c)= I dNc'(c(-c;)W(c',c), (15) 

(16) 

p 
K}P/ . .. ; (c)= I dNc' rr(c;_ -c;.)W(c',c). (17) 

I 2 p j= 1 J J 

The preceding remarks imply that for large .0., 
K(Pl~n-(p-1). In addition, it may be shown that the 
master equation (14) is equivalent to the Kramers­
Moyal13-15 partial differential equation 

l_P=- __i_(K~ 1 )P)+ _!____f_(K~~lP)+ · · · at aci I 2 ac;aCj I) 

+ ( -1 )P liP _E__(K~P} .... P)+ ... 
P I . ac. 1 112 1p 

. 1 =1 lj 

(18) 

We are now in a position to take the "macroscopic lim­
it," i.e., n~ oo. The result is the first-order Liouville 
eqmition:~ 5 - 17 

This equation has the Dirac 8 solution 

P oo (c,t)=8(c-c(t)) , 

where c( t) solves the equation 

..!!.c.(t)=K~I)oo(c(t)) . 
dt I I 

(19) 

(20) 

(21) 

Clearly, if we multiply (19) by cj and integrate over dNc, 
we get 

.!!_(c.)= (K~ 1 )oo(c)) 
dt I I ' 

(22) 

where ( ) denotes averaging with respect to P oo. Since 
(20) holds, Eqs. (21) and (22) are identical. Thus the mac­
roscopic limit yields a deterministic, macrovariable equa­
tion. In constructing the master equation for a particular 
macrovariable dynamics, the goal is .to have (21) be iden­
tical with the original macrovariable dynamics. 
Mathematically, there are many W's which can do this, 
and which one is correct must be decided by the meso­
scopic physics underlying the macrovariable equation. 

We can also obtain the fluctuations around the deter­
ministic dynamics in (21) by furth~r analysis of the 
Kramers-Moyal equation (18). 10

•
15·17 We introduce the 

scaled deviations I' (fluctuations) from the deterministic 
motion c( t) defined by 

(23) 

Using (21) and replacing c in (18) by (23) and then 
Taylor-expanding all functions with respect to p., yields 
and equation for the distribution of the fluctuations, 
cp(p., t ): 

in which R (2) is defined by 

Rql= lim .O.K.t.2l(c(t)) 
I) fl-oo I) • 

(25) 

Both K( 1 loo and R (2 ) depend on the determination trajec­
tory, c(t), determined by (21). In fact, the coefficients of 
the 11- terms in the first part of the right-hand side of (24) 
(the "streaming term") are precisely the Jacobi matrix for 
(21): -

aK.t1loo 
Jij = a' 

cj 

Introduce the covariance matrix C;j defined by 

cij = < 1-l;/-L j > , 

(26) 

(27) 

in which ( ) now denotes averaging with respect to 
cp(p., t ). Equation (24) may be used to prove that C;j 

satisfies the equation 7 

(28) 

Thus, not only does Jij govern the determination of the 
Liapunov exponent for the deterministic macrovariable 
equation (21 ), but it also governs the evolution of the fluc­
tuation covariance matrix through Eq. (28). J;j inherits 
time dependence from (2 n through its explicit depen­
dence on c( t ) . 

Normally, the dynamics begins with some precise ini­
tial state, c(O) and no initial covariances, Cij(O)=O. The 
R;j2l term in-(28) drives the growth of a nonzero C;j· 

Keizer and Tilden 18 studied the growth of C;j for sim­
ple limit cycles and for chaotic trajectories generated by 
the Rossler model. 19 Their numerical studies showed 
that for a chaotic trajectory' cij grew exponentially at a 
rate that appeared to be twice the Liapunov exponent for 
that trajectory. We have recently proved that this obser­
vation is not an accident. 20 

Equation (28) may be considered to be an equation for 
the evolution of the "vector" C;j. Consider the metric for 
this space defined by 

(29) 

The corresponding Liapunov exponent Ac is defined by 

. 1 [ [trC
2
(t)]

112
] A = hm -In (30) 

c t-+oo t [trC2(0)] 112 · 
trC2(0)-+0 

On account of the common role of J;j for both A and Ac, 
we were able to prove20 
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Ac=2A' (31) 

in which A is the Liapunov exponent for the dynamics 
given in (21 ), and for which A is defined as in (5). 

Before proceeding to the radical consequences of "the 
exponential growth of the covariance matrix for a chaotic 
macro variable trajectory, it is important to emphasize the 
two distinct ways in which we use Eq. (28). For non­
chaotic trajectories, that approach stable steady states, 
the covariance matrix elments remain very small [of or­
der unity for the scaling in (23), which means that the 
unsealed covariance matrix elements are of order 1 /!1], 
and represent the physically real fluctuations "carried on 
the back" of the deterministic motion.7 However, for the 
chaotic trajectories, for which the covariance matrix ele­
ments diverge exponentially, we no longer view them as 
physically correct since they ultimately grow much too 
large, and because their origin is in Eq. (24), which fol­
lowed from (18), provided they are not too large. Never­
theless, we have found that Eq. (28) may be used as a 
purely mathematical device for computing the Liapunov 
exponent. Thus we have used it to compute Liapunov ex-
ponents for the Rossler and Lorenz models21 and have 
obtained three-decimal-place agreement with standard 
methods. 1 Moreover, when (28) implies that the covari­
ance matrix elements diverge for a chaotic trajectory, the 
real physical fluctuations do indeed grow very large. 
While (48) is not an accurate way to handle large physical 
fluctuations, the underlying master equation (14) still is. 
Therefore we use (28) to compute A, but we revert to (14) 
to do the physical treatment of the dynamics. 

The radical consequence of chaos for the macrovari­
able dynamics is that the justification for the macrovari­
able equation (21) from the underlying master equation 
(14) breaks down. The reason for this breakdown is that 
the Dirac cS function solution to ( 19) given in (20) is not a 
stable solution to (19). The slightest bit of width added to 
the Dirac cS distribution leads to exponentially growing 
covariance matrix elements. Thus any initial distribution 
other than P oo ( c, 0) = cS( c- c( 0)) will not evolve like the 
expression in (20). Consequently, (22) will not reduce to 
(21) since the average of nonlinear terms such as 
(K?)oo(c)) does not reduce to the nonlinear functions of 
the averages K;( 0 oo ( (c) ). Simply put, the contraction of 
the master equation into a deterministic macrovariable 
equation does not occur. A proper description of the dy­
namics and its associated, large scale·fluctuations must be 
done at the mesoscopic level of the master equation. 

There are several picturesque ways of expressing this 
result for more ·specific situations. For example, when 
the N a vier-Stokes equations (hydrodynamics) predict 
chaos (numerically22 they are certainly able to do so), the 
Navier-Stokes equations are no longer valid; or, you can­
not get a theory of turbulence from Navier-Stokes alone. 
Similarly, when the mass action chemical reaction equa­
tions imply chaos (numerically), these equations are phys­
ically invalid. 

There is an important provision to this conclusion and 
each of its particular realizations. The invalidity of the 
Dirac cS function solution to ( 19) which is at the core of 
our results reflects its instability with respect to any sort 

of initial probability distribution width. Nevertheless, if 
the initial width is very small and the Liapunov exponent 
for the chaotic trajectory is also very small, the instability 
may take a very long time to manifest itself. Thus the 
Dirac cS function solution may prove to be a very good 
approximation over a time interval which is longer than 
the time taken to do the associated experiment. For ex­
ample, one may say that Navier-Stokes will work well, 
for a while, in· th~ case of "weak" turbulence. Clearly, 
for any given situation, one must determine the Liapunov 
exponent and size of the initial width in the distribution 
[this is determined by R (2)(0)], in order to decide wheth­
er or not to discard the macrovariable equations in favor 
of the master equation. 

Detailed accounts of these phenomena for the Rossler 
model, the Lorenz model, 23 and the periodically driven 
Brussellator4 (a particular chemical reaction with a cu­
bic nonlinearity) may be found in a forthcoming paper 
coauthored with Keizer, Tilden, and Fox.20 

III. THE CORRESPONDENCE LIMIT 

In Sec. I we showed that there are two equivalent ways 
to describe the time evolution of an N variable dynamical 
system. Either N coupled first order, ordinary differential 
equations are used to determine the unique N variable 
trajectories, or an N + 1 variable (N X; 's and t) partial 
differential equation, the Liouville equation for the con­
served probability, is used to obtain a Dirac cS function 
solution that follows precisely the N variable trajectory. 
In classical mechanics, these two alternatives also exist, 
although now we have 2N coupled, ordinary differential 
equations for N coordinates and their N conjugate mo­
menta, or a 2N + 1 variable partial differential equation, 
Liouville's equation. A quite general treatment of the 
correspondence limit for the relationship between quan­
tum mechanics and classical mechanics can be developed 
if we focus on the Liouville equation. 

In 1932, Wigner published a paper25 aimed at obtain­
ing quantum corrections to formulas for thermodynamic 
equilibrium. In doing so, he formulated a quantum-

-mechanical generalization of Liouville's equation that be­
comes Liouville's equation in the correspondence limit 
(i.e., as li--+0). The remarkable feature of this correspon­
dence limit which we will exploit here is that it is formal­
ly isomorphic to the connection between the master equa­
tion and the macrovariable equations, specifically to the 
connection between (18) and (19). Moreover, by applying 
the same procedure10

• 
15

• 
17 to get from (18) to (24), we can 

also obtain an equation for the fluctuations associated 
with the Wigner-Liouville connection. Throughout this 
presentation the role of !1 -I is played by li, and naturally 
11--+ oo corresponds with li--+0. The consequences of 
these considerations for the correspondence limit when 
the classical dynamics is strongly chaotic are radical. 

Consider the Hamiltonian 

n Pf 
H= ~ --+V(x1x 2 • • ·xn). 

k=I2mk 
(32) 

The Wigner distribution for this n-coordinated system is 
defined25 by 
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W(x, ... x.p, ... Pn )= [ ~ r I ... I dy, ... dy.,P*(x, +y, ... x. +y. )1/J(x,-y, ... x. -y.) 

Xexp [2! (p 1y 1 + · · · +p.y.)] , (33) 

in which the P; 's are ordinary parameters rather than differential operatoFs as in the quantum interpretation of (32). W 
is not a probability distribution because it is sometimes negative. However, both of its reduced distributions are the 
correct probability distributions,25 as is easily proved: I ···I dp 1 • • • dpn Wis the probability distribution for the x/s 
and I · · · I dx 1 • • • dxn W is the probability distribution for the p;'s. Wigner showed25 that the time evolution of W is 
given by 

in which the second line is a summation over all 
· · A. 1 + · · · + "-n that are odd. The remarkable features of 

this equation are that the 17-independent terms are identi­
cal with Liouville's equation for Hamiltonian (32) treated 
classically, and the remaining terms are at least of order 
fil and contain at least the third derivative of the poten­
tial, V. This is the equation that parallels the Kramers­
Moyal equation ( 18) with li in the role of n - 1• Clearly, 
all that remains, if li---+0, is the classical Liouville equa­
tion, that parallels Eq. ( 19). It has a Dirac 6 function 
solution that follows the solution to Hamilton's equations 
ofm0tion: 

d P;(t) 
-x.(t)=--
dt 1 m; 

(35) 

_i!_p .(t)=-~V(x (t')···x (t)). 
dt I ax. l n 

I 

(36) 

In parallel with our treatment of macrovariable fluc­
tuations, Eq. (34) may be analyzed 10

• 
15

• 
17 to determine the 

quantum fluctuations attending the classical motion. We 
introduce the scaled deviations, JL; and q;, (fluctuations) 
from the classical motion, x;(t) andp;(t), defined by 

X· =x.(t)+li112,. 
I I r-1 ' 

P; =p;(t)+li112q; . 

(37) 

(38) 

Replacing X; and P; in (34) by (37) and (38), and Taylor­
expanding V with respect to the JL; 's eventually yields an 
equation for the distribution of the fluctuations, l/J(p,, q, t ): 

a qk a 
-atl/J(p,,q,t)=- --a -l/J(p,,q,t) 

mk ILk 

+ [a a~ v]JLj aa l/J(p,,q,t) 
xj xk qk 

+O(h 112 ). (39) 

In order to satisfy Heisenberg's uncertainty principle, 
this equation must have the initial distribution (for 

(34) 

minimum uncertainty) given by 

(40) 

so that 

. (41) 

which is the scaled version [see (37) and (38)] of the 
Heisenberg uncertainty requirement. Notice that, unlike 
(24), Eq. (39) contains no second-order derivatives in JL; 's 
or q;'s, i.e., no terms like the R (2) terms in (24). This fact 
reflects the intrinsic difference between macrovariable 
equations described by either (1) or (14) which are dissipa­
tive, and Hamiltonian equations described by either (34) 
or (35) and (36) which are conservative. The diffusive R (2) 

term in (24) also shows up in the covariance equation 
(28). We will now turn to the analog of (28) for the 
present case. 

Let z; fori= 1,2, ... , 2n be defined by 

z 1 =x;, i=l,2, ... ,n (42) 

and 

Z; =p;-n, i =n + l,n +2, ... , 2n . (43) 

Hamilton's equations (35) and (36) may be written in the 
form 

. an 
x;= ap; ' 

. an 
P;=--a . 

X; 

Let the 2n X 2n matrix l be defined by 

1=[3~~]. 

(44) 

(45) 

(46) 
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in which Q is the n X n zero matrix and E. is the n X n 
identity matrix. With L Eqs. (44) and (45) may be rewrit­
ten in the form 

z;=Iij aan . 
zi 

(47) 

(Iii reflects the so-called symplectic structure26 of Hamil­
tonian dynamics.) The Jacobi matrix J;i for this dynam­
ics is just 

a2H 
Jij =I;k a a 

zi zk 

a 2n X 2n matrix. Now, let 1J; be defined by 

z . =z.(t)+li112n. 
I I "II 

i.e., 

'T/; =J.L;, i = 1,2, ... , n 

'TJ; =qi-n' i =n + l,n +2, ... , 2n 

Therefore (39) becomes 

a a -a l/J('fl,t)= -Jij'Tii-a l/J('fl,t), 
t 'T/j 

(48) 

(49) 

(50) 

(51) 

(52) 

which has precisely the same form as the streaming term 
in (24). 

Let the covariance matrix Cii be defined by 

cij = < 'fli'Tij > , (53) 

in which( .) defined averaging with respect to l/J('q,t). 
Equation (52) implies 

d 
dt cij =Jik ckj + C;kJjk (54) 

and (40) implies the initial conditions for C;i given by 

C;i=a2B;i' i,j=l,2, ... ,n . (55) 

1 
C;i=--

2 
B;i' i,j =n +l,n +2, ... ,2n (56) 

4a 

cij = 0 otherwise . (57) 

This differs from (28) since there is noR (2 l inhomogenei­
ty. However, for (28) the initial condition on the covari­
ance matrix was that it vanished, and R (2 l causes it to be­
come nonzero, reflecting the underlying fluctuation­
dissipation relation.5•

7
•

15 In (54), there is noR (2 l term be­
cause the underlying dynamics is conservative, but 
Heisenberg's uncertainty principle requires the initial C;i 
to be nonzero. Nevertheless, just as with (28), this equa­
tion has a Liapunov exponent defined by (30) and satisfy­
ing identity (31) where this time A is the largest positive 
Liapunov exponent implied by the classical dynamics (47) 
and governed by the Jacobi matrix (48). This, of course, 
means that if the classical trajectory is chaotic (A> 0 ), 
then the covariance matrix will diverge, or, in other 
words, the quantum fluctuations become macroscopically 
large. 

The correspondence limit applies when a classical­
mechanical motion is described using the underlying 

quantum mechanics. The correspondence limit is verified 
when one shows that the quantum-mechanical treatment 
yields the classical motion plus ignorable quantum 
corrections. As we have shown above, a minimum uncer­
tainty distribution can be chosen so that the coordinates 
have a very small quantum variance, i.e., a may be taken 
to be very small. However, this implies that the covari­
ance for the conjugate momenta goes like 1 /2a. If the 
expectation values for the momenta are "classical," then 
it is still possible to have the variances 1 /2a be very 
small compared to the expectations. This is the essence of 
the classical correspondence limit for the quantum dy­
namics. (We may also consider the situation in which the 
roles of coordinates and momenta are reversed.) Using 
the Wigner distribution, we see that these conditions 
translate into Liouville's equation, the classical limit of 
(34), along with an initial distribution which is essentially 
a Dirac B function, since its scaled representation is 
governed by the initial distribution for (39), i.e., (40), 
which is as narrow as one would like in both the coordi­
nates (a) and the conjugate momenta ( 1 /2a /momentum 
expectation value). As long as (39), or equivalently (54), 
implies that the covariances do not grow large, compared 
to the expectation values, this classical limit, the 
"correspondence" limit, is maintained. But chaos in the 
classical notion clearly invalidates this correspondence 
because the Jacobi matrix for the classical motion 
governs the growth of quantum fluctuations through Eq. 
(54) and creates a positive Liapunov exponent for the 
classical motion as · well as for the covariance matrix 
equation. Thus, when the classical motion is chaotic, 
Liouville's equation does not have a Dirac B function 
solution for all time. Its solution is not equivalent to 
Hamilton's equations of motion since averaging over its 
non-Dirac B function solution will not reproduce 
Hamilton's equations [cf. (21) and (22)]. One must not at­
tempt to contract the Wigner equation description in 
such a case. This means one must simply stay with the 
original Schrodinger equation for the entire description. 

Even though the Schrodinger probability distribution 
can be made initially to be as sharp as one would like 
around the initial classical variables, strong chaos makes 
it grow broad rapidly. These remarks are entirely paral­
lel to our earlier remarks regarding the master equation 
and the macrovariable equations and chaos. This also 
means there is an identical proviso, i.e., the need to use 
quantum mechanics for the description of a chaotic 
classical-mechanical motion depends on the initial size of 
the quantum fluctuations (li and a) and on the size of A. 
It is sometimes possible that the quantum fluctuations 
will not become too large to ignore on the time scale of 
the computation or experiment involved. One will need 
to ascertain by simulation whether or not chaos forces 
the abandonment of the classical description. Surely, 
chaotic classical motion in the Solar System27 is an exam­
ple where the quantum fluctuations may safely be ignored 
even on an "astronomical" time scale. For more down to 
Earth examples, the possibility of macroscopically large 
quantum fluctuations in an otherwise classical system is 
now seen to be a very real possibility. In parallel with 
our earlier picturesque statements for macrovariable 
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chaos, one may say that ·to properly describe classical­
mechanical chaos, one must do quantum mechanics. 

In a companion paper,28 a detailed account of how the 
correspondence principle works for the nonchaotic or 
very weakly chaotic classical case, and then fails for_ the 
strongly chaotic case, is given for the periodically kicked 
pendulum. We have used extensive numerical computa­
tion to study the rapid growth of quantum fluctuations in 
this example when the classical dynamics is strongly 
chaotic. 

IV. EXPERIMENTALCONFIRMATION 

There are tw·o specific examples that may readily lead 
, to experimental testing which we will now discuss. One 

is a macrovariable problem: hydrodynamic turbulence; 
and the other is an essentially quantum-classical 
correspondence _problem: the laser. Our initial remarks 
apply to both cases. 

There does not appear to be any reason to have to in­
vent new kinds of experiments to test the ideas in this pa­
per. Experimenters already use a statistical approach to 
these types of problems. There are a wide variety of tech­
niques for measuring moments of variables, entire distri­
bution functions, correlation functions and their power 
spectra, for doing light scattering, etc. With either a hy­
drodynamics paradigm or a laser paradigm, there is a set 
of deterministic equations which are used to model the 
physical system. These equations are usually deemed ap­
propriate on the basis of equilibrium or steady-state mea­
surements and computations. By obtaining parameter 
settings that make the solutions to the equations chaotic, 
the experimenter can attempt to arrange his apparatus 
settings to mimic the mathematical chaos. In reality, 
there are various sources of noise that make this compar­
ison difficult. However, noise terms may be added to the 
equations used as a model and the influences of these 
noise terms can then be deduced by numerical simula­
tion. 29 The basic point is that the predicted statistics for 
deterministic equations which include various noise 
terms (additive and/or multiplicative) are different from 
the predictions based upon an underlying master equa­
tion (or the underlying quantum mechanics). For exam­
ple, if we add Gaussian fluctuations to Eq. (1), a Fokker­
Planck equation can be derived in which the streaming 
term is governed by the F/s. However, for chaos, if we 
take the view expressed in this paper, we must instead use 
the master equation underlying (1), and since (1) is no 
longer a valid contraction, the F/s do not appear aQy-

1A. J. Lichtenberg and M. A. Lieberman, Regular and Stochas­
tic Motion (Springer-Verlag, New York, 1983), Sec. 5.2b. 

2L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, 
London, 1959). 

3G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical 
Mechanics (American Mathematical Society, Providence, Rl, 
1963), Chap. VII. 

4
D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, 

and Correlation Functions (Benjamin/Cummings, Reading, 

where in this alternative description. We clearly get two 
distinct predictions. 

Hydrodynamics presents an extra difficulty to which 
we alluded in Sec. II. There is as yet no accepted under­
lying master equation. This can probably be attributed to 
a combination of the intrinsic difficulty in obtaining one 
and, till now, not having any compelling reason to con­
struct one.7

•
30 Nevertheless, the Navier-Stokes equations 

produce numerical chaos, 22 and to date no one has been 
able to claim quantitative agreement between numerical 
work and physical measurements. The situation is very 
much better for nonchaotic hydrodynamic states created 
in the Benard system and in the Taylor-Couette system. 31 

The agreement between Navier-Stokes and measurements 
is then excellent. 

The laser problem not only involves the quantum­
classical correspondence but also has the character of a 
macrovariable problem. This is a consequence of using a 
few, highly contracted, variables to treat the laser, rather 
than the full density matrix.32 By now, it is very evident 
that these equations do not adequately model the behav­
ior of real lasers when the lasers are operated under con­
ditions which the laser equations predict lead to strong 
chaos. 33 Clearly, one should attempt to do a much better 
mesoscopic, or even full density matrix, modeling job. 
The quantum fluctuations have become so large that the 
contraction down to simple semiclassical equations in 
terms of intensities and molecular state populations is in­
valid. Nevertheless, the measurements already undertak­
en are probably adequate to test these ideas; it is the 
correct mesoscopic description and treatment which is 
presently lacking. · 

Another experimental paradigm for the study of large 
quantum fluctuations may be the Josephson junction. · Its 
behavior can be treated as a periodically modulated 
damped pendulum. 34 The Wigner-Liouville correspon­
dence analysis of Sec. III is easily applied to this concrete 
case in the undamped case. The damping may present an 
unfortunate difficulty, however: 
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The correspondence limit is illustrated for the periodically kicked pendulum. The classical dy­
namics of this system can be represented by a discrete map. A corresponding quantum map is de­
rived and then rendered in the Ehrenfest formulation for expectation values. The Ehrenfest repre­
sentation is studied for a minimum uncertainty Gaussian wave packet. It is shown that as li gets 
very small, followed by a decrease in the variance of the wave packet, the quantum map shadows 
the classical map with an error approaching zero for a length of time approaching infinity. The 
Gaussian form of the wave packet is preserved by the time evolution provided (J)0 T << 1. This con­
straint implies that the classical map is predominantly not chaotic with very small regions of very 
weak chaos. As (J)0 Tapproaches 1, where the classical map becomes strongly chaotic, the ·propaga­
tion in time of the Gaussian wave packet completely breaks down. The possible significance of t~is 
breakdown is discussed. 

I. INTRODUCfiON 

Generalizing the ideas associated with chaos in classi­
cal dynamical systems to the quantum-mechanical con­
text has proved to be less than straightforward. In the 
classical-mechanical context chaos is characterized 1 by 
the existence of a positive Liapunov exponent, that 
represents quantitatively the extreme sensitivity of 
phase-space trajectories to initial conditions. It is not im­
mediately_ obvious how to implement this characteriza­
tion quantum mechanically where the idea of a precise 
classical trajectory in a phase space has been replaced by 
the time evolution of a probability amplitude in a Hilbert 
space. One approach to "quantum chaos" is to accept 
this incompatibility at the outset, and to define2 quantum 
chaos to be the study of the quantum-mechanical behav­
ior implied by a Hamiltonian that when treated purely 
classically exhibits chaos. One then looks for the signa­
ture of the classical chaos in the properties of the quan­
tum system. Another approach3 is to attempt to r-einter­
pret the classical ideas of trajectories and Liapunov ex­
ponents in a quantum-mechanical setting. In this ap­
proach, the space of expectation values for all of the 
quantum operators is studied. Trajectories created by the 
time evolution of the expectation values can be analyzed 
for positive Liapunov exponents, just as in the classical­
mechanical setting. This approach was originally4 ap­
plied over a decade ago to the study of two-level quantum 
systems interacting with a resonant electromagnetic field 
in a laser cavity. Subsequently, the mechanism3•5 under­
lying the observed chaos in this system was discovered. 
It turned out that in this case, it was virtual transitions 
that created periodic modulations of an underlying pen­
dulum dynamics that were responsible for the chaos. 
This case enhances our perspective because virtual transi­
tions have no classical correspondence, and we may con­
clude that this system exhibits quantum chaos (positive 
Liapunov exponents for the trajectories of expectation 
values) without there being any classical correspondence. 

In this paper, however, we wish to study the correspon­
dence limit for a system which does have both a classical 
and a quantal manifestation, and we want to do it from 
the perspective of expectation value trajectories. 

The system to be studied in this paper is the periodical­
ly kicked pendulum.6 It has been chosen because of its 
simplicity. Even so, we shall see that its analysis is by no 
means trivial. It is a close cousin of the periodically 
kicked harmonic oscillator, which when confined to a 
torus, classically yields the Arnol'd cat map.7

•
8 Very re­

cently,9 it has been claimed that the correspondence limit 
fails for the quantized version of this model system. Our 
kicked pendulum exhibits the correspondence limit for 
one region of parameter space, whereas the same deriva­
tion fails for another region. These regions correspond to 
no chaos or very weak chaos and strong chaos, respec­
tively, when the system is treated classically. 

The paper is divided into several sections. In Sec. II 
the dynamical details, both classically and quantally, are 
given. The dynamics is reduced to a discrete mapping in 
both cases. Our mappings are for just prior to the nth 
kick to just prior to the (n + 1 )th kick. This is the stan­
dard choice6 for the classical picture, but curiously, the 
choice previously used6 for the quanta} picture was the 
mapping from just after a kick to just after the next kick. 
To study the correspondence limit, we, of course, had to 
make the same choice for both cases. In Sec. III we 
derive the fundamental tool for the analysis of the 
correspondence limit: the Ehrenfest theorem for the 
mappings. Since the Ehrenfest theorem is so illuminating 
in the usual quantal-classical correspondence context, we 
thought it would be useful for the mappings as well. It is. 
There is one subtlety, however. The angle variable for 
the pendulum has a finite domain [0,21T]. This means 
there are boundary-value terms in the Ehrenfest formula­
tion, that are usually absent when a dynamical coordinate 
has an infinite domain. We exhibit this fact first for the 
free rotor, before showing it for the kicked pendulum. In 
Sec. IV we show that the · boundary-value terms are 
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indeed correct, 9-JJ !•naly~ing a _disjoint~ exhaustive decom~ 
position of them in simple physical terms. In Sec. V we 
analyze the application of the idea of a minimum uncer­
tainty wave packet to . this _problem. We ·do so b~cause 
this is how the correspondence limit is usua1ly achieved 
in the context of the Ehrenfest formulation. The finite 
domain for 8 once again creates a difficulty which we 
overcome. Instead of a simple Gaussian wave packet, a 
series of Gaussians is required to achieve a minimum un­
certainty and to simultaneously respect the 217' periodicity 
in the 8 dependence of this quantum system. We show 
that the Gaussian structure of the minimum uncertainty 
wave packet is -preserved under -the quantum mapping 
provided that its variance is sufficiently small, that a clas­
sical amount of action ( >>li) is initially given to the 
kicked pendulum, and that (J)0T << 1. This preservation 
persists for a time which grows longer as li~o. In Sec. 
VI we analyze in detail the correspondence limit. We 
find it to be a double limit taken in a proper order. First 
li~O, and then the variance of the Gaussian wave packet 
goes to zero. Moreover, if we denote the variance by a, 
then a goes to zero like li1 13 guarantees that the quantum 
map will produce expectation value trajectories which 
shadow the classical map trajectories with an error that is 
vanishing, for a time that is growing infinite in the limit. 
The constraint (J)0T << 1 restricts the behavior of the clas­
sical map to stable, nonchaotic or to very weakly chaotic 
trajectories. For (J)0 T ~ i, the classical map can be 
strongly chaotic, but then the same derivation fails. 

We present a detailed account of the correspondence 
limit for' a dynamic system that can exhibit chaos. While 
the methods used reflect the particular structure of this 
special model (many Bessel functions are used), the guid­
ing philosophy behind the methodology should prove 
fruitful generally. 

is 

II. DYNAMICS OF THE KICKED PENDULUM 

The Hamiltonian for the periodically kicked pendulum 

p2 
H= ~ -m/2(J)6(cos8)Bp(t IT) , 

2m/ 
(1) 

in which the periodic delta function B p is given by 
00 

Bp(tiT)= L B(j -tiT) 
j=-oo 

00 

= 1 +2 L cos(2n1Tt IT) . (2) 
n =l 

Tis the time between kicks, (JJo is the small amplitude fre­
quency, 1 is the pendulum length, and m is its mass. 

Hamilton's equations of motion are simply 

jJ 8 = -m/ 2(J)6(sin8)f>p(t IT) , (3) 

_- (J-b Pe · 
m/2 . 

(4) 

We are interested in the change in the values of p 8 and 8 
from just before the nth kick to just before the (n + 1 )th 
kick. Straightforward integration produces the classical 
mapping6 

Pn -+ 1 = Pn- m/2(J)6T sin8n 

(Jn+l=8n+Pn+lTiml 2 · 

(5) 

(6) 

Quantum mechanically, the kicked pendulum is de­
scribed by the Schrodinger equation 

. a ~ a2 

zliatt/J=- 2m/2 a8~ ..p- m/z(J)6(cos8)Bp( t IT)t/J . (7) 

This implies that there is an essentially discontinuous 
change in 1/J across a B-function kick, given by6 

[ 
mlz(J)2T l 

t/J + = 1/J-exp i li 
0 

cos8 , (8) 

where 1/J - .denotes 1/J just before a kick, and 1/J + denotes t/J 
just-after the kick. We will denote the recurring quantity 
in the exponent by 

- m/2(J)6T 
K= 

li 
(9) 

We may also expand 1/J in terms of free rotor wave 
functions: 

1 
t/J( 8, t) = V21T 

00 

n=-oo 

- From just before the nth kick to just after it, we have 

(10) 

1/J( (J, ( n T) + ) = V 1 .i A q ( ( n T)- )e i K cos8 e iq 8 • (11) 
217' q =- 00 

Using identity (AI) from the Appendix, this becomes 

1/J( 8, ( n T) +) 

00 00 

(12) 

The time evolution from ( n T) + to [ ( n + 1 ) T]- is the evo­
lution_of a free rotor. Each free rotor eigenstate, 
( 11V21T)ein8, evolves as 

(11V21T)ein 8exp(-itEnlli), 

where En =n 21i2 12m/ 2
• We will denote a second recur­

ring quantity by 

_ liT 
r--­- m/2 . 

Therefore we may write 

(13) 

(14) 
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But we may also write 

(15) 

These two equations yield the quantum mapping 
00 

A (n)i'-qJ (K)e - ir
2
r/2 

q r-q ' 
(16) A,(n +1)= 2 

q=-oo 

in which A,(n + 1) is shorthand for A,[((n + 1 )T)-]. 

III. EHRENFEST'S THEOREM 

Ehrenfest's theorem relates to each other the expecta­
tion values of the quantum operators corresponding to 
the classical variables that appear in Hamilton's equa­
tions of motion. Ordinarily the derivation involves in­
tegration by parts with boundary-value terms which van­
ish. This is not the case for the kicked pendulum; the 
corresponding boundary terms do not vanish. To illus­
trate this special situation, we first consider the simple, 
free rotor with Hamiltonian 

2 

H=~ 
2ml 2 • 

The classical, Hamiltonian equations are 

jJ9=0' 

0~ - - P9 
m/2 . 

(17) 

(18) 

(19) 

The derivation of the Ehrenfest identities is as follows: 

(ft6) = f0
2
" d IJ [ [ ;, 1/J*]PB¢+1/J* P6 :t 1/J l 

= ~ J
0

2
1Td8[(Ht/J*)p91/J-t/J*p6Ht/J] 

= ~ Jo21T d8 t/J*[H,p9]tP 

= ~ f 21T d 8 1/J*Ot/J 
li 0 

=0 

QCI 

(p9(n +1))= 2 · liqA;(n +UAq(n +I) 
q=-ao 

QCI QCI QCI 

(20) 

and 

= _i_ f 2
1T d 8[ (H 1/J* )81/J-t/J*8H 1/J] 

li 0 

=j__f"diJ?{J*[H,IJ]?{J+ iii~ [1/1•~-t/J~ ll 
li 0 ml a8 a8 8=21T 

= (p9; +iii~ [1/J·~~t/J~ ll . (21) 
ml ml a8 a8 9=21T 

In both (20) and (21), it is the third equality on the right­
hand side that' requires integration by parts in order to 
manifest the Hamiltonian character of H. In (20), noth­
ing special happens because all other factors in the in­
tegrand are 21T periodic, but in (21), the factor 8 is not 21T 
periodic, causing the boundary-value terms. Their essen­
tial importance is easily checked by considering 
Ehrenfest's identities [(20) and (21)] for the time-evolving 
pure state 

·'· 1 [· . 8 . lin 2 l 'f'=--=-exp zn -z--t . 
V21T 2ml2 

(22) 

The non-21r-periodicity of 8 causes more complicated 
boundary-value terms to appear in the Ehrenfest identi­
ties for the kicked pendulum. In addition, we will not ex­
hibit Ehrenfest's theorem for the differential equations, 
but instead derive it for the maps. Using the notation in 
(15) and (16), we may write 

(8(n))=-I-J21Td8 i i A,*(n)As(n)e-ir98eis9 
21T 0 r=-ao s=-ao 

ao A,*(n)As(n) 
=1T+ 2 (23) 

r=Fs=-ao i(s -r) 

and 

( ) I f 21T ao . 6 . 9 p ( n) =- d 8 ~ A • ( n) A ( n )e-" p e rs 
6 21T 0 ~ r s 9 

r,s=-ao 

QCI 

= 2 lisAs*(n)As(n) . (24) 
s= - ao 

Now, using the quantum mapping (16), we may also write 

= 2 liq 2 2 A,*(n)( -i)q-r As(n)iq-sJ
9

_,(K)Jq-s(K) 
q=-ao r=-ao s=-ao 

QCI QCI 

= 2 ;r-s 2 liqJq_,(K)Jq-s(K)A,*(n)As(n) . (25) 
r,s =-eo q=-ao 

Using identity (AS) from the Appendix, this becomes 
QCI 

( p 9( n + 1 ) ) = 2 i'-sli[ fK( 5, _ s, 1 + 5, _ s, _ 1 ) + r5 rs ] A,* ( n) As ( n) 
r,s =- oo 

(26) 
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Now, 

1 f 21T ao . 8 . 9 (sin8(n)}=- d8 ~ A:(n)As(n)e-" (sin8)eu 
21T 0 r,s=-ao 

~ A *(n)A (n)-1- J2
1T d8~(e -ir9+is9+i9_e -ir9+is9-i9) 

~ ' s 21T o 2z r,s=- ao 

= 
1 . 

A: ( n ) As ( n ) li ( B,- s, 1 - B, - s, - 1 ) 
r,s =-ao 

= ~ i [A:(n)A,+ 1(n)-A:(n)A,_ 1(n)] . 
r=-ao 

Using this and (24) in (26) yields the first half of Ehrenfest's theorem for the maps: 

(pe(n + 1)} = (p9(n)} -IlK( sin8(n)} . 

Again using the quantum mapping (16), we may also write 

(8(n +1)}=-1- i A;(n +OAq(n +Uf
2
1Td8e-i<p-qW8 

27T p,q = _ 00 0 

- 21T p,q~- ~ ' ·' ~- ~ A,*(n) A,(n )( -i)l' -';•-'Jr,(K )J• _,(K)exp [i; (p
2
-q

2
)] J0

2
" diJ e -i (p -•

19
0 

= ,,}-~ A,*(n)A,(n) 2~ J0
2
" diJIJ [Pi~ ( -ir'J__,(K)exp [i ;p

2
-ipiJ ]] 

2955 

(27) 

(28) 

X [ .1~ (i)•-'J•_,(K)exp [ -i; q
2
+iqiJ ]]· (29a) 

From (Al), we get 

i iq-'Jq_,(K)exp [~i; q2+iq8] = i ikJk(K)exp [-i:!..(k +r)2+i(k +r)8] 
q=-ao k=-ao 2 

= i .. ikJk(K)exp [~k(8-rr)-i.!...k 2 ]exp [ir8-i.!...r 2
] 

k=-oo 2 2 
. '· 

=exp [ir8-i.!...r2 ]exp [i.!...~] i ikJ (K)eik(fJ-rT ) 
2 2 ae2 k = - 00 k 

=exp [iriJ-i; r 2 ]exp [i; 3~ ]exp[iK cos(IJ- rT)] (29b) 

and by complex conjugation 

When these identities are inserted into (29a), we get 

( 8(n + 1)} = · i A5*(n)A,(n)-
1
- f

2
rr d8 8exp [-is8+i.!_s 2

] [exp [-i.!_ a
2

2
]exp[ -iKcos(8-sr)] l 

r,s=-oo 27T 0 2 . 2 ae 

Xexp [iriJ-i; r 2 ] [ exp [i; :;2 ]exp[iK cos( IJ-r~)]l (30) 

Using identity (A6) from the Appendix, we see that 
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exp [ -.SO+i; s2 ]exp [ -i; aa~ ]exp( -iKCOS(0-sT)] 

=exp [ -i; :~ ]exp [ -.SO+i; s2 ]exp [s'T aao]exp [-is 2
; ]exp( -iKcos(0-sT)] 

=exp [-i.!_ a
2
2 ]e-i59exp( -iKCOS8) 

2 a8 

and that 

exp [irO-i; r2 ]exp [i; :;2 ]exp[iK cos(O- rT)] 

41 

(31) 

=exp [i; aa~ ]exp [ir0-i; r2 ]exp [r'T a~ ]exp [ir2
; ]exp(iKCOS(0-rT)j 

=exp [i; :;2 ]e''9exp(iKcos0) . (32) 

When these transformations are inserted into (30), we obtain 

( 8(n + 1)) = i A5*(n)Ar(n)-
1
- f 2

1r d8 8 [exp [-i; a
2
2 ]e -iseexp( -iKcos8) l 

r,s =- 00 21T 0 a8 

X [exp [i; :~ ]e''9exp(iKcos0) ]· (33) 

It is desired to evaluate this expression using integration by parts (repeatedly), but the non-21T-periodicity of the factor 8 
prevents this from being straightforward. Nevertheless, the following, extended argument achieves the goal. 

Let us rewrite the 8 integral of (33) in the form 

2~ (~dO 0/(0)exp [i; :;2 ]g(O):;o (Of exp [i; aa;2 H , (34a) 

where 

j(8}=exp [-i.!_~ ]e-isee-iKcose g(8)=eir9eiKcose. 
2 a82 ' 

Therefore 

(8! ex [i.!_~] ) = ~ [i(-r/2 )]n (8!~ ) . 
p 2 a82 g n~O n ! a82n g 

(34b) 

Then =0 term is trivial. For n*O, integration by parts justifies 

( 
a2n ) ( a2n ) 1 2n - 1 [ am l [ a2n -1-m ll 2

7r 

8f a82n g = g a82n (8j) + 21T m~O ( -l)m a8m (8j) a82n -1-m g 0 (34c) 

Since both f and g are 21T periodic, 

[ 
am l [ a2n -1-m ll 2

7r [ am l [ a2n -1-m ll 2
7r [ am l [ a2n -1-m ll 

a8m (8/) a82n-1-mg 0 =8 a8mf a82n-1-mg 0 =21T a8mf a82n-1-mg 9=21r. (34d) 

Therefore 

(8/ex [i.:!_~ l )=( ex [i.!_~ ](81))+ ~ [i(-r/2)]n 2~1(-l)m ~~~] [ a2n-1-m ll 
p 2 a82 g g p 2 a82 ~ ' ~ a8m a82n - 1-m g n = 1 n . . m =0 9=21r 

(35a) 

Now, 

f=exp [-i; aa;2 ]e -i'
9

1 
~~ ~ (-dJI(K)e -i/

9= ~~~~ ( -iJIJI(K)exp [i; (s + 1)
2-i($ + /)0] : (35b) 



: .<· ... _: 

. : ·-~ 
'· . · ~ . 

· ... .. _ .. : ~ 

· . ... ~ .-

41 CHAOS AND THE CORRESPONDENCE LIMIT IN THE ... 2957 

Therefore 

[ amm~ll = i (-i)1JI(K)exp [i;(s+/)2 ](-i(s+l)]m. 
ae 9=21T 1=-oo 

(35c) 

Similarly, 
00 

g =eir9eiKcc;se= }: ik Jk(K)ei(r+k)9 (35d) 
k=-oo 

so that 

a2n -1-m I oo 
~ ikJk(K)[i(r +k)]2n -1-m • 

an2n -1-m g ~ 
u 9= 21T k =- 00 

(35e) 

Thus 

[ -i_!_(r +k)2 r 
l,k ~-oo ;<k-llJk(K)J,(K)exp [i; (s +1)2 ].~, 2 

n! [ 
-i ]1-[(s +1)/(r +k)]2

n 

r +k 1-[(s +1)/(r +k)] 

i i(k -nJk(K )J
1
(K )i 1-exp{ i( T /2)[ (s + /)

2
- ( r + k )

2
]} 

1, k = - oo · ( r + k)- ( s + /) (36a) 

Equation (35a) is now expressible as 

(
nf [·~_£._] )=( [ ·~_£._ ](Ll/))+ ~ ·(k-l)J ( )J ( ).1-exp{i(r/2)[(s +1)

2
-(r +k)

2
]} 

u exp z 2 2 g g exp z 2 2 u ~ z k K 1 K z ( + k) _ ( + 1) ae ae l,k =- 00 r s 
(36b) 

The first term on the right-hand side contains the factor 

[ 
. r a

2 
] e [ . r a

2 
] £) + . a exp z-- exp -z-- =u zr-

2 ae2 2 ae2 ae 
(36c) 

as is well known from a commutator series expansion of the left-hand side. We are now prepared to return to (33), 
which becomes 

(8(n +1))= i As*(n)A,(n) [-
1-J 2

1Td8e;'9exp(iKcos8) [e+iraan ]e-is9exp(-iKcos8) 
r,s =- oo 21T 0 u 

+ ~ ·(k-l)J ( )J ( ). 1-exp{i(r/2)[(s +1)2-(r +k)2
]} ] 

I, k ~- oo l k K I K l ( r + k)- ( S + l) . 
(37a) 

The e term reduces to ( 8( n) ) . The iT( a ;ae) term simplifies by noting that 

1 J 21T · e · e a · e · e 1 J 21r · e · e · e · e · e · e _ d()elr elKCOS iT-e-IS e-IKCOS =- d()elr elKCOS (TSe-IS -IKCOS -TKSinee-IS -IKCOS) 

21r o ae 21r · o 

1 
=rsB,s -rK-

2
. (B,_s -1-Br-s 1) • , l , , 

(37b) 

In (37a), these terms be~ome 
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00 

[ · 1 l T . r,s~-oo As*(n)A,(n) -rsB,, 5 -TK 
2
i(B,-s,-I-Br-s,I) =~((p8(n))-1Uc(sm0(n)}). (38) 

The final result is the second half of Ehrenfest's theorem for the maps: 

(O(n +l))=(O(n))+ ~ (pe(n +1))+ i As*(n)A,(n) i Jk(K)JJ(K)i 1-exp{i(:/~k~s-~l):~)(r+k2)]} 
r,s=-oo k,l=-·oo r s 

(39) 

wherein we have used (28) to simplify (38). 
Using (9) and (13), we can rewrite the classical mapping in the form 

(40) 

T 
On+I=On+~Pn+I' . (41) 

which is to be compared with the quantum mapping, in the Ehrenfest formulation, given by (28) and (39). We see the 
presence of the boundary-value terms which result from the non-21r-periodicity of 0. In a study of the correspondence 
limit, we must see how these boundary terms disappear, and how the expectation values go over into the classical vari­
ables. 

IV. ANALYSIS OF THE BOUNDARY-VALUE TERMS 

It will be useful below to have a deeper appreciation of the content of the boundary-value terms in (39). By analyzing 
them in detail, we also confirm their validity. 

Using expression (23) and the quantum mapping (16), we may perform a direct evaluation of ( O(n + 1)), which may 
be rendered: 

00 

( 0( n + 1) ) = 1T + ~ 
r=Fs =- oo 

A
5
*(n + l)A,(n + 1) 

i(r -s) 

(42) 

This is to be compared with the boundary-value terms in (39). The comparison is facilitated by changing dummy in­
dices in (39). First change (r,s) into (q,p) so that the boundary term becomes 

00 

A *( )A ( ) ~ ·k-IJ ( )J ( ).1-exp{i(-r/2)[(s +1)2-(r+k2
)]} 

p n q n ~ l k K I K l ( k)-( [) 
k, 1 = - oo r + s + p,q=- 00 

00 

·r-q-(s-plJ ( )J ( ). 1-exp{i(r/2)[s2-r
2

]} 
l r -q K s -p K l , 

r-s r,s =- oo 

(43) 
00 

p,q =- 00 

wherein the right-hand side comes from the additional change of (k, l) into (r -q,s-p ). Both (42)· and (43) contain 
00 

~ A;(n)Aq(n) 
p,q =- 00 

and 
·r-q-(s-p)J ( )J () 
l r-q K s-p K • 

The r -s summation in (43) may be broken up into three pieces: 

~ ·r-q-(s-plJ ( )J ( ).1-exp(i(r/2)(s 2-r2
)] 

~ l r-qK s-pKl 
r,s=-oo r -s 

i ir-q-(s-p)Jr-q(K)Js-p(K)~+ ~ jP-qJk-q(K)Jk-p(K)( -rK). 
r=Fs = - 00 s r k =- 00 

(44) 

The first term of the right-hand side of (44) matches the direct evaluation expression in (42). From (25) we see that the 
third term will generate -(r/fz)(p8(n + 1 )) in (43). The second term may be evaluated by noting that 



_1_I21Td88e-i(s-r)8=-'-·-. 
21T o s -r 

Therefore 

~ ·r-q-(s """""P>J ( )J ( )-i-
~ l r-q K s-p K 

r*s=-oo . S -r 

= _:_ _1_ I21T d8 8 i ir-q -(s -p>J,-q(K)Js -p(K)e -i(s -r)8 

21T 0 r=l=s =- oo • 

=--21 I21Td88 [ i ir-q-(s-p>J,-q(K)Js-p(K)e-i(s-r)8_f>pq l 
1T 0 r,s =- oo 

=1Tf>pq __ 1_f"d88 [ i i'-qJ,-q(K)eir(J l [ i ip-sJs-p(K)e-is(J l 
21T 0 . r=-oo s=-oo 

1 I 21T . ll • ll • 8 . ll 1 I 21T .( )ll =1rf> __ d88elquelKCOSue-lp e-lKCOSu=1Tf> __ d88e' q-p u' 
pq 21T 0 pq 21T 0 

wherein (A1) has been used again. When this is inserted into (43), we finally obtain TT-(8(n)). Thus, when 
pose the boundary-value terms in (39) into the three portions exhibited in (44), we find 

( 8( n + 1) ) = ( 8( n.) ) + ~ ( p e ( n + 1) ) 

+ ~ ~ - ·r-q-(s-p>A*( )A ( )J ( )J ( )exp[i(r/2)(s
2
-r

2
)] 

~ ~ l P n q n r-q K s-p K .( _ ) 
p,q =- 00 r=l=s =- 00 l r s 

which is identical with (42). 
In addition, we have checked (28) and (39) by numeri­

cal computation and direct comparison with computa­
tions based on the quantum map (16). 

V. TIME EVOLUTION OF MINIMUM UNCERTAINTY 
WAVE PACKET 

If 8 were on the infinite interval, then a simple Gauss­
ian wave function would provide the minimum uncertain­
ty wave packet. However, 8 is restricted to the finite in­
terval [0,2TT] and 1/J must be 2TT periodic. We know from 
the theory of diffusion that a simple Gaussian on an 
infinite interval becomes a series of Gaussians on a finite 
interval with absorbing boundaries. Therefore we try 

1/1(8,0)-- i (2Tru2)-t/4exp [-(a -8+22TT[)2]e;be' 
/=-oo 4u 

(48) 

where b is an integer. If u is sufficiently small, this wave 

function is a very sharply peaked Gaussian 
around a in the interval [0, 2TT]. In any case, it 
festly 2TT periodic. 

For very small u, 

I 21T 1 [ (a - 8 )
2

] ( 8),...., d 8 8 2 t /2 exp - 2 ,...., a 
o (2Tra ) 2a 

and 

( ~82) --u2 , 

where ~8= 8- ( 8). Similarly, 

< ) . I 21T 1 [ (a -8 )
2

] p e ,...., z fz d 8 8 
2 112 

exp -
2 o (2Tra ) 2u 

X [ib- (8-a) l 
2u2 

--fzb 

and 
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Therefore for sufficiently small a. In (48) we see the Gaussianness 
in the (J dependence, whereas in ·(55) we see it )n the n 

(53) dependence. · · ( < t::..fP) >112( < t::..p~) >1 12= ~ , 
The fundamental question is the following: how does 

confirming that we have a minimum uncertainty wave 
packet. 

The wave-packet nature of (48) is clearer if we write 

· the minimum uncertainty wave packet evolve in time? It 
is easiest to explore this question through the evolution of 
the An's, beginning with (55). 

1 
1/J(fJ,O)= V21T 

Therefore 

00 

··(54) 
n=- oo 

From th~ ·quantum map (16) we have 
00 

'(56) 
r=- oo 

Use the integral representation 
A (0)= J21Td(J 1 e-inO~'·((J 0) 

n 0 V21T 'f/ ' 

,..,.,J21Td(J 1 e-in~(21Ta2)_-1/4 
Jm_,(K)=-1-J'TT dlf>e-i(m-rltf>+iKsintf> form -r~O 

21T -1T . 

o V21r · 

Xexp [- (a -(J)2]eihe 
4u2 

(57 a) 

and 

for m - r =::: 0 (57b) 

(55) and (55) to write 

[ 

-1M . . 

Am(l)=-1-J'TT dlf>eiKSint/> 1T2] e-im
2
T/2 [ i . ei(b-r)ae-u

2
(b-d;m-re-i(m-r)t/> 

- 217" -1r 2u r =- oo 

+ i ( _1 )'-mei(b-rlae -u2(b-d;m -re - i(r-m)t/>] 
r=m +1 

=-1-J~ dlf>eiKSint/J ~~ l-1
/
4
e-im 2T/2 [ mib e-isae-u

2
s

2
;m-b-se-i(m-b-s)t/J 

21T 1T 2a s=-oo 

+ i (- 1rs+b-me-isae-u
2
s

2
;m-b-se-i(s+b-m)t/>l, (58) 

s=m+l-b 

wherein the substitution s = r - b was made. For sufficiently small a, we may convert the summations into integrals. 
We do this by setting x =us and let dx =a correspond to the interval from s -1 to s. Thus we may write 

m-b m-b v- -u
2
s

2 
[ 4> +( /2)' l """' -u2s 2 is(t/J-a) · -s- """' 1T e . -a 1T T1T 

~ e e z - ~ a--
4 

/ exp z as 
s=-oo s=-oo a v 1T a 

_ v; f (m -b)/CTd e -x
2 

[. ljJ-a +( 1T /2) + 1T l --- x---==-exp zx 
a -oo V 1T a 

(59 a) 

where we used i =exp[ -i(1T/2)±i1T], and also 

"""' -u2s2 -is("'+a)( 1)s·-s- """' 1T e . ljJ+a -(-r/2)±1T-1T 00 00 v- -u
2
s2 [ l 

~ e e 'f' - z - ~ u-- exp -zus.-
s=m+1-b s=m+l-b a v1T a 

- v; J 00 d e -x
2 

[ • </J+a -( 1T /2)±1T-1T l - -- x---==-exp -zx -
a (m -bl!u V 1T a ' 

(59b) 

where we have also used -1 =ei1r. Notice that the lower limit of the last integral is (m -b)/a and not (m + 1-b)/u 
because the differential dx matches the interval from m - b to m + 1 -b. We may now express Am ( 1 ) as 
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(60) 

Three cases must be considered: m > b, m < b, and m =b. For sufficiently small a, the upper limit of the first x in­
tegral and the lower limit of the second x integral may be replaced by oo, - oo, and 0 for m > b, m < b, and m = b, re­
spectively. This means that for m > b, only the first integral contributes, that for m < b, only the second contributes, 
and for m = b both integrals contribute. Therefore we obtain for m > b: 

I [ 4>- a + ( 1T /2) + 1T f ] 

I ]
-I /4 · exp - 2 

Am ( 1 )= __!!__ e -im 2T12;m -bJ 1T' d¢> eiK(sinf/J)-i(m -b)f/J 
4
a ' (61a) 

2a2 -1T' (41Ta2)I_I2 

form <b: 

and form =b: 

I [ [ 4>- a + ( 1T /2 ) + 1T f ] 
Am(l)= __!!__ e-ib2T/2+J1T' dtf>eiK(sinf/J> 4a [ l

-I/4 exp - 2 

2a2 -1T' (41Ta2)I/2 

X [ 1 - i P-a + ( 1T /2) + 1T F . [ _!_ .1_. [ P-a + ( 1T /2) + 1T f ]] 
v 1Ta I I 2 ' 2 ' 4a2 

exp [- [<f>+a -(~;)±1T-1T]' l 
+-----=----------~ 

(41Ta2)I12 

X [1-i p+a -( 1T/2 )±1T-1T 
V1ra 

x · F ,1..1_. [p+a -(1T/2)±1T-1T]2ll] 
I I 2' 2' 4a2 ' 

(61b) 

(61c) 

in which IF I is a degenerate hypergeometric function. In order to execute the remaining ¢> integrations we again use 
the fact that for sufficiently small a, the Gaussian integrands are very sharply peaked. In ( 61 a) and in the first term on 
the right-hand side of(61c) we change variables to 71=¢>-a +(1T/2)+1T, whereas in (61b) and in the second term on the 
right-hand side of (61c) we change variables to 71=¢>+a -(1T/2)±1T-1T. Now each Gaussian is centered around 71=0. 
However, the limits of integrations have shifted. The results of these changes are form > b: 

A (1) - [ 1T ~-I/4 -im2T/2·m-bJ-a+(31T'/2)=F1T'd { ." [. [ + 1T+ ]] m - -- e l 7J exp l K sm 7J a - - _1T 
2a2 -a-(1T'/2)=f1T' 2 

- "( -b) [ + - ~± l ) exp( -y2 /4a2) 
l m 1J a 2 1T (41Ta2)112 ' (62a) 
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Now, observe that 

e -i(m -b)[1J+a -(1T/2)±1T)=e -i(m -b)1Je -i(m -b)a(- i)m -b (63a) 

and that 

(63b) 

We will also employ the Taylor expansions 

sin [11+a- ; ±1r I =sin [a- ; ±1T I +11 cos [a- ; ±1T 1-!112sin [a- ; ±1T I +0( 113
l 

= ( cosa) -71( sina)- t112( cosa) + 0( 713 ) (64a) 

and 

sm[,-a +; h+1T 1 =sin [-a+; h+1T 1 +,cOs [-a+; 'f1Th l-t,2sin [a+; 'f1T+1T 1 +0(,3
) 

= ( cosa) + 71( sina)- t112( cosa) + 0 ( 713 ) • -( 64b) 

We are now in a position to determine whether to use the upper or lower sign in each of these expressions, which till 
now have carried this ambiguity along. The objective is to span 71=0. In (62a) and in the corresponding integral in 
(62c), the upper sign is used for a E[0,1T/2] and the lower sign is used for a E[1T/2,21T], whereas in (62b) and in the 
corresponding integral in (62c), the upper sign is used for a E[0,31T/2] and the lower sign is used for a E[31T/2,21T]. 
The smallness of u implies that once we have spanned 71=0, we can replace the upper and lower limits of integration by 
+ oo and - oo, respectively, to a very high degree of approximate accuracy (to be discussed in greater detail later). The 
result, for all three cases, is · · 

A~(l)= [_.!!_ ~-I/
4

e-im 2-r12e-i(m-b)a+iKcosaexp [--'-(Ksina +m -b)2 [-1-+iKcosa ~-
1

][(1+2iKu2cosa)- 1 ] 112 
2u2 2 2u2 ' 

provided Ka
3 << 1. This provision is required in order to 

ignore the 0 ( 713 ) terms in (64a) and (64b). However, we 
find that the order 712 terms in (64a) and (64b) change the 
variance in exp( -712 /4u2), which is 2u2, into 
( 1 /2u2 + i K cosa) -I. Our use of · the sharply peakedness 
of the Gaussian requires the further provision that 
Ka

2 << 1, in order that we can safely ignore the increase 
in the variance that is created by the imaginary term 
iK cosa. If Ka

2 << 1, then the condition Ka
3 << 1 is cer­

tainly guaranteed since a is so small. We will, therefore, 
assume that Ka2 << 1 in order to write 

(65b) 

(65a) 

Note that if we combine the notation used in (49) and (51) 
with that used in (40) and (41), the classical map, we may 
write 

so that, in particular, we would have 

b1 =b-Ksina 

(66a) 

(66b) 

(67) 

a 1 =a +b(T. (68) 

We see the combination (67) in (65b), but not the com­
bination (68). This is because there are two m 2 factors in 
(65b) and we must combine them (by "completing the 
square") before we see everything in proper form. After 
a bit of tedious algebra, (65b) transforms exactly into 
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A (1)- [ 11' ]-
114 

iKcosa iba [ [ b -Ksina ]
2 

[·T ? 7
4 ]] - -- e e exp z-------

m 2a2 1 +? 14a4 2 2a2 16a6 

X 
[ 
_ . [ + T( b - K sina) ]] [ _ ( ~ + . 12 ) [ _ ( b - K sina) 1· 

2

] exp zm a 
2 

exp . a z T m 2 4 • 
1-ir12a 1 +r 14a 

(69) 

Let us suppose that not only is a very small but that rla2 << 1 as well. We will discuss the physical meaning of this 
supposition in detail, below. Keeping terms to first order in r I a 2 yields 

This is to be compared with An(O) of (55). There are 
four changes created by the map. The phase factor e iba in 
(55) is more complicated in (70). We show below that this 
phase factor has no effect on e or p () expectation values. 
Thee -ina factor in (55) has become e -im [a +nb -KSina)] in 
(70). This exhibits the classical map (68) of the angle. 
The factor e -u

2
(b -n)

2 
of (55) has become 

e -(u
2
+ir/2)[m -(b -KSina)]

2 of (70). This exhibits the classi-
cal map (67) of the momentum, and a change in the vari­
ance from a 2 to a 2 + i r 12. This last · change is identical 
to what happens to the variance for a free particle Gauss­
ian wave packet, and as in that case, may be reinterpreted 

- 1 i 
V211' m=-oo 

(70) 

by reverting to t/J( e, 1 ), as. we must do for the phase factor 
discussion. 

The key point is that if a<< 1, Ka
2 << 1, and rla2 << 1, 

then the form of the minimum uncertainty wave-packet 
coefficients (55) is preserved, except for a slight increase 
in the variance. Obviously, this feature will persist for 
many iterations of the map until the variance has grown 
too much. The time for this to happen will be of order 
a 2 lr. More will be said about this later. 

Many of the discussion points we have deferred till 
later hinge on the structure of 1/J( e, 1) which we obtain 
from (70) by the inverse process used in (55): 

(71) 

wherein the last line defines a, /3, and r for ease of computation. Therefore we get 

t/J(O, 1)~---=- ~ 11' e'rf oo dx eix(9-a)!(u2+ir!2) 112 _e_· _· ---=---1 

[ l-1/4 [ ]1/2 -[x -(u2+ir/2)J/2p]2 

11211' 2a2 a 2+irl2 -oo V 11' 

-(2 )-1/4 a1/2 ir ;QI()-a) [ 1 (0-a)2 l - 11' e e fJ\ exp -- . 
· (a2+iTI2)112 4 a 2+iTI2 

(72) 

Thus 

(73) 

that the variance has grown from a 2 to a 2( 1 +?I 4a4 ). 
As far as expectation values of e or its powers 
are concerned, the phase factor, r = K cosa + ba 
+(TI2)(b -Ksina)2, which was just ba in (55), is of no 
consequence. 

as compared with [remember: a=a +T(b -Ksina)] 

lt/J(O,O)I
2
= \ 112 exp [-t(O-a)2~ l· 

(211'a .) a 
(74) 

For sufficiently small a, we see that the overwhelmingly 
dominant Gaussian in (48), centered at a, has moved its 
center to a + 1"( b - K sina ), the classical map shift, and 

Equations (55) and (70) can be used to write 

(75) 

and 

(76) 
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which shows that the m·o-mentum probability distribution 
is also a normalized Gaussian. According to (24), the ex­
pectation values of p 9 and its powers depend on these 
squared moduli, and are, therefore, independent of. the 
phase factors. Finally, note that because the phase factor. 
has no index dependence (n or m ), it cannot even affect 
cross correlations between 0 and p 9 or their powers. _ 

By repeating the mapping, the structure of (70) remains 
invariant. The a's and b's evolve according to (66a) and 
(66b), the phase gets more complicated-but remains in­
consequential, and the variance grows through the factor 
a 2+NiTI2 where N is the number of iterations of the 
map. This makes the variance in ll/J(O,N)I 2 equal to 
a 2( 1 + N 2il 14a4

), so that we get a factor of 2 increase in 
a 2 when 

(77) 

This is a large number when the condition T I a 2 << 1 is 
satisfied. Recall that a measures the variance around 
( 0). It is dimensionless. Let us take it to be 10-8• This 
is very small. Nevertheless, p 9 is an angular momentum, 
which means its units are the same as those for fz, i.e., ac­
tion. The variance around (p 9 ) was found to be fz12a. 
For a= 10-8, this is 10-27 I( 2 X 10-8 ) erg sec= 5 X 10-20 

erg sec. Now, for a typical small molecule in thermal 
equilibrium at room temperature, the value for (p 9 ) is of 
order 10-26 erg sec. Thus a variance of 10-19 erg sec is 
very large from a molecular perspective, i.e., a quantum 
perspective, but from a classical viewpoint, the size of 
(p9 ) is of order 1 erg sec. That is to say, classically we 
would deal with an object measured by grams and cen­
timeters on a time scale measured in seconds. Conse­
quently, if the b in (51) is a classical b, then it is of order 
1027, which makes a variance of 10- 19 erg sec very small 
indeed (compared with hb = 10-27 X 1027 erg sec). Simi­
larly~ the definition ofT, (13), for a classical pendulum, 
being kicked classically, would involve factors ofT lml2 

of order 1 (erg sec) -I. Thus T would have the dimension­
less value 10-27

• Therefore, with a= 10-8, we find 
,. la2= 10-27 110- 16 = to-ll<< 1, which implies that 
N 2 = 2a2 IT= 2 X 10 n. Since each map iteration corre­
sponds with a kick, the time over which N 2 kicks take 
place is N 2 T, i.e., of order 1011 sec-- 30 000 years! Note 
that this result is inversely proportional to fz. 

We have checked the propagation of the Gaussian 
form of the wave packet by numerical computation. 
Needless to say, we found it much easier to use rather 
smaller values of the exponents for the various parame­
ters. · We chose b = 106, fz= 10-6, ·,.= 10-6, K= 102, and 
a= 10-2. These choices imply N2 =200. With 14 digits 
of accuracy, computing on a Cyber 855, we verified the 
repeated propagation of Eq. (70). This numerical 
confirmation of our formulas provides a great deal of 
confidence in the approximations used. 

VI. THE CORRESPONDENCE LIMIT 

The correspondence limit is some appropriate limit in 
which the Ehrenfest formulation of the quantum map, 
Eqs. (28) and (39), is indistinguishable from the classical 

map, Eqs. (40) and (41). We have already seen that for 
very small a, the initial expectation values for 0 and p 9 -

can match the classical values a and b, respectively, and 
that after one iteration of the map the new expectation 
values match the classical iterates [Eqs. (66)-(68)]. In 
fact, the invariance of the Gaussian wave packet under 
the mapping (for very small a, Ka2 << 1, and for 
T I a 2 << 1) suggests that this "correspondence" will con­
tinue. Of course, the variance is slowly growing during 
this process, and we used this fact to deduce the N 2 
bound on the number of iterations allowed before the 
variance doubles to 2a2. This is not the only relevant 
consideration for the correspondence limit. The quan­
tum mapping in the Ehrenfest formulation, Eq. (28), in­
volves the nonlinear expectation value: (sinO( n)). For 
the classical mapping correspondence, (sinO( n)) must be 
compared with sin ( 0( n) ) , i.e., the expectation of a non­
linear function must be compared to the nonlinear func­
tion of the expectation. Only if these two quantities are 
very close in value can the correspondence hold. 

Looking back at (73), and recalling the ensuing discus­
sion, we may conclude ·that for N < N 2 (and a << 1, 
Ka

2 << 1, and Tla~ << 1 ): 

where aN is the Nth classical iterate of 0 starting from 
O=a initially. Now, the key is that this 0 distribution is 
Gaussian. Therefore 

(sinO(N))=~ [<ei(J(Nl)-(e-i(J(Nl)] 
2l . 

_ 1 [ iaN -(I/2Ha2+N2.?/4a2) 
- 2i e e 

-iaN -(l/2)(a2+N2.?/4a2)] -e e 

=sinaNe-(1!2Ha2+N2.?;4a2). (79) 

Moreover, (78) implies, consistent with all of the previous 
discussion, that aN= ( 8( N) ) . Therefore, even if N = N 2, 
( sinO(N)) and sin ( 8(N)) differ by a factor of only 

2 
(1-e -a ) which for a<< 1 is very accurately approxi-
mated by a 2, i.e., 

I ( sinO( N 2 ) ) -sin ( 8( N 2 ) ) I _ 2 
( sin8(N2)) -a << 1 (80) 

In Sec. V we used the value a= 10-8, which in that con­
text implied N2 =2X lOll. In that number of iterations, 
the error given in (80) will have grown to 
2 X 1011 X 10- 16=2 X 10-5

, which may still be considered 
quite acceptable accuracy from a numerical point of 
view, and is certainly unnoticed graphically. In our nu­
merical computations, this error became 2X 10-2. 

No other nonlinear terms appear in the Ehrenfest for­
mulation of the quantum mapping, Eqs. (28) and (39). 
However, there is still the question of the behavior of the 
boundary-value terms for a << 1 and T I a 2 << 1. There 
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are two approaches to .. this question: a direct evaluation, 
and an indirect evaluation. The direct evaluation utilizes 
the asymptotic expressions for Bessel functions: 

J±v(K)~ [ :K r [co+'f; v-; l +0 ~~ ]] , (8J) 

for very large K. 

From (9), it is seen that K is inversely proportional to fz. 
Thus, in the correspondence limit, as fz-+0, K becomes 
enormous. Moreover, from ( 16) we also see that 

(82) 

If we choose values of w0 and T so that w0T is of order 
unity, then KandT are essentially reciprocals of each oth­
er. The parameter values chosen in Sec. V that made 
r-- 10-27 will now make K-- 1027• Thus K is very large 
indeed. This means that to very high accuracy, (81) may 
be used to replace the Bessel functions in (39) by their 
asymptotic cosines. It turns out that when the factor 

;k -I in (39) is replaced by ei(1T/2)(k -n, and one repeatedly 
uses the (k, /)++( - k, -I) dummy index exchange, along 
with the integer character of I and k, the k, I summation 
identically vanishes. A few key steps are given in the fol­
lowing lines: 

00 

S= _I, ;k-/Jk(K)J1(K)i 
k,l=- 00 

00 

X 1-exp{i(r/2)[(s +1)2-(r +k)2]} 
(r +k)-(s +I) 

.I, ;k -r-(1 -s)Jk _,(K)JI-s(K )i 
k,l =- 00 

X 1 ~exp{i(r/2)[(1 2 -k 2 )} 
. k -1 

(83) 

because of the index change: (k,l)-+(k -r,1-s). Now, 
use (81) to write 

s~;s-r ~ ;k-I_COS K--(k -r)-- COS K--(1-s)--
oo 2 [ 11' 11' l [ 11' 11' ]· e; (., /2 >U 2- k 2 >- 1 

k, I = - 00 1T'K 2 4 2 - 4 I - k 

=;s-r i -1 
[sin [2K-!!._(k +I) ]cos [!!._(r +s)] +cos [2K- 11' (k +I) ]sin [!!._(r +s)] 

k, 1 = _ 00 1T'K 2 2 2 2 

1

11' l 111' l [ 11' l [ 11' ]] . e ; ( -r 12 >U 
2 

- k 
2 

> _ 
1 

+cos 2 (/ - k) cos 2 ( r - s) -sin 2 (/ - k) sin 2 ( r - s) e d 1T 12 )( k - n 
1 

_ k , 

wherein the last expression follows from application 
of elementary trigonometric identities. Now, (k,l) 
++( - k, - /), and the fact that sin( n 11') = 0 for any integer 
n, may be used to show that S =0. 

On the one hand, this is very satisfying. In the 
correspondence limit (i.e., fz-+0) K-+ oo and S =0. How­
ever, one should now look at the first correction to (81) to 
see how large this boundary-value term really is as the 
limit is approached. This means we should use 

J±v(K)""I :K r [cos IK'F; v-; l 

(85) 

When this is used instead of (81), the k,l summations are 
very much more difficult and no simple expressions are 
obtained. All we can say is that the next corrections to 
S = 0 are each of order 1 I~, but the k, 1 summation is 
doubly infinite, so this is of no real help. Further work 
on the direct evaluation method may well prove fruitful, 
and there is no reason to expect a surprise. 

The indirect approach obviates the need to properly 
conclude the preceding approach. The size of the 

(84) 

boundary-value term in (39) can also be approached 
by estimating the size of ( (:J( n + 1 ) ) - ( ·e( n) ) 

-(r/fz)(p 9(n +U). But from what we have already 
seen, if we keep the number of iterations n < N 2, then the 
Gaussian, minimum uncertainty wave packet evolves in 
time preserving its Gaussian form (provided a << 1 and 
r/a2 << 1 ), and we find 

((:J(n +1))=an+l, (86) 

( (:J(n)) =an , (87) 

(88) 

which satisfy the classical mapping, Eqs. (66a) and 
(66b). It would appear that ( (:J( n + 1))- ( (:J( n)) 
-(r/fz)(p9 (n +1))=0. However, both (49) and (51) re­
mind us that these identities are approximate because of 
the approximation in doing the integrals: 

f 21Td(:J 1 I ((:J-a)2] 
o (2Tra2)112 exp - 2a2 ... 

__,. J oo d(:J 1 exp 1- ((:J-a)2]·.. (89) 
- oo (2Tra2 )112 2a2 · 

Therefore identities (86)-(88) are approximate and a de­
tailed inspection of the approximation in (89) brings in er­
ror functions, which for a<< 1, introduces a measure of 
the error made by the approximation. This error is ob­
tained by noticing 
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Now, provided that whatever the integrand factor 
represented by · · · happens to be, that it is not growing 
exponentially with t 2 (it is not for either(} or p 0 ), then the 
two negative corrections may be estimated by the asymp­
totic formulas for the complementary error function, and 
are exp[ -(21T-a)2 12a2

] and exp( -a 2 12a2
), respectiv.e­

ly. These are extremely small for a<< 1, except when a is 
extraordi~arily close (within a) to either 0 or 21T. Even 
for the classical map, these are unusual (} values since the 
(} variabld evolves mod21T. In conclusion, we see that 
while the boundary-value term in (39) cannot be precisely 
zero, it is extremely small for a << 1. 

We have now exhausted the considerations associated 
with the correspondence limit which takes (28) and (39) 
into (40) and (41). Two limits are required, and their or­
der is crucial. We must have a << 1 and T I a 2 << 1, 
r I a 2 ~o must precede a ~o. r~o is the same as li~o 
if all other physical parameters (m,/,(1)0, T) are fixed. As 
rla2~o, N2 ~oo. -This may be phrased in the following 
form: as li~o, the length of time for which the Ehren­
fest formulation of the quantum map shadows the classi­
cal map with an error of order a 2 N 2 is N 2 T. The quanti­
ty a 2N 2 occurred in the ( sin(}(N)) analysis [see Eq. (80)]. 
Therefore we want 

a~o . , 

(91) 

(92) 

(93) 

as a succession of limits in the order given. These multi­
ple desires may be achieved easily by the following scal­
ing argument. We already have r--li. Suppose a -liE, 
such that E > 0, which guarantees (92). Limits (91) and 
(93) require, respectively, 

1 - 2c > 0 and 4c- 1 > 0 , (94) 

which is satisfied by 

(95) 

Therefore the error a 2 N 2 goes to zero as the length of 
time N 2 T goes to infinity in the correspondence limit. 

However, our analysis also requires Ka 2 << 1 in order 
that the Gaussian wave packet propagates in time as a 
Gaussian wave packet. Equation (82) tells us that 
Ka

2 << 1 and T I a 2 << 1 require 

(96) 

(90) 

For the classical map, it is known6 that the time evolu­
tion is predominantly nonchaotic or very weakly chaotic 
in this parameter regime. Thus we have shown the valid­
ity of the correspondence limit (both with formulas and 
by numerical computation) only for the situation wherein 
the classical map is not chaotic or only very weakly 
chaotic. In addition,. the details of the analysis in Sec. V 
clearly show that for (J)0T= 1, say, so that Ka

2 >> 1, the 
straightforward Gaussian integration we employed is in­
valid. This means that the minimum uncertainty wave 
packet does not propagate as such, even for a single itera­
tion of the maps. we· were also able to confirm this nu­
merically. In short, the same derivation fails to hold for 
parameter values for which the classical map can produce 
strong chaos. 

In a sequel to this paper, we will present our numerical 
evidence for the assertion that the quantum time evolu­
tion and the classical time evolution are different when 
the parameter values correspond with strong classical 
chaos. 

VII. CONCLUDING REMARKS 

The preceding study shows how the trajectories (map­
pings) of quantum expectation values can mimic the cor­
responding classical trajectories, and under what condi­
tions. The correspondence limit is an ordered, double 
limit and the error in the mimicry gets smaller for longer 
times as the limit is approached. However, this 
correspondence limit holds only for parameter values for 
which the classical map produces no chaos or is only very 
weakly chaotic. For parameter values for which the clas­
sical map can be strongly chaotic, the same derivation 
fails, because the Gaussian, minimum uncertainty wave 
packet does not propagate as such. Instead, the quantum 
time evolution and the classical time evolution are 
different for initial starting conditions for which a 
minimum uncertainty wave packet has been constructed 
so that its expectation values match the classical initial 
conditions. Which time evolution is physically correct? 
Is the quantum time evolution also chaotic in its own 
way? These are questions we are actively pursuing with 
numerical computation. 

It has been argued that because the Schrodinger equa­
tion is linear, it is not possible for quantum mechanics to 
exhibit chaos, a putative hallmark of nonlinearity. How­
ever, even for a classically chaotic system, it is possible to 
describe the classical mechanics of the phase-space trajec­
tories by the Liouville equation for the trajectory distri-
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bution function. The· ·Liouville equation is linear and 
"lives" in a Hilbert space, in parallel with the 
Schrodinger equation. The Liouville equation always 
possesses a special solution which is a Dirac B function 
distribution which precisely follows the classical trajecto­
ry _emanating from a precise initial phase-space point~ 
Thus, initially nearby Liouville distributions can ex­
ponentiate apart just like their corresponding classical 
trajectories. There is no conflict with the linearity of the 
Liouville equation, but there is the necessity that it pos­
sess a properly continuous eigenspectrum in the chaotic 
case. The same holds for the Schrodinger equation. If 
the Hamiltonian given in (1) has a continuous spectrum 
when treated quantum mechanically, then chaos is possi­
ble in the pure quantum mechanics. Since this Hamil­
tonian is time dependent it could well produce a continu­
ous spectrum, but the spectral analysis is very difficult. It 
is perhaps noteworthy to remark that the Dirac B func­
tion solution to Liouville's equation is an unstable solu­
tion for a chaotic trajectory. Since quantum mechanics 
implies that precise initial conditions for the classical tra­
jectories are a physical impossibility, then an initial Dirac 
B function for Liouville's equation is an idealization. 
Even the quantum uncertainty initially (li > 0) will re­
quire the initial B function to be replaced by a broader 
distribution, which the instability will cause to eventually 
grow to the order of the size of the available phase space. 

When studying pure quantum chaos through expecta­
tion value trajectories, one generally will not have a 
minimum uncertainty w,ave packet, and each set of initial 
expectation values will correspond with a bundle of tra­
jectories corresponding with all the different wave func­
tions which have identical initial expectation values, but 
different subsequent time evolutions. For chaos we ex­
pect to see a positive Liapunov exponent for the separa­
tion of initially, closely adjacent expectation values for 
two sets of initial conditions, irrespectively of which pair 
of representative wave functions is chosen from the two 
bundles. This remains to be studied. It is also of interest 
to study the separation (or nonseparation) of two wave 
functions from the same bundle. We are in the midst of 
such studies (numerical) and hope to report our findings 
in the near future. 
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APPENDIX 

We have 
00 

eiKCOS6= ~ jSJs(K)eis6 ' (Al) 
s=-oo 

where Js is a Bessel function. 10 Look at 

00 

~ qJq-r(K)Jq-s(K) 
q=-oo 

00 00 

k=-oo k=-oo 

(A2) 

where k =q -rand v=r -s. Both series on the right­
hand side may be evaluated using the Bessel function 
"summation theorem": 11 

00 

eivtf!Jv(mR)= ~ Jk(mp)Jk+v(mr)eikt/J, 
k=-oo 

where 

and 

R =(r2+p2-2rpcos¢)112 • 

For p=r and ¢=0, R =0, and 

1-e -it/> I 
~--.- =-1' 

1..;_e'4> t/J=O 

which implies t/J=1T /2. Therefore the summation 
theorem reduces to 

00 

eiv(1r/2lJ v(O)= ~ Jk(K)Jk +v(K) · 
k=-oo 

For v~ 1, J )0)=0, and J 0(0)= l. This implies 

00 

~ Jk(K)Jk +v(K)=Bv,O · 
k=-oo 

The summation theorem may be used to write 
00 

~ kJk(K)Jk +v(K) 
k=-oo 

= -i dd¢1 k j._ ~ Jk(K)Jk+v(K)eik~l.=o 

= -i ddt/> [e;~J v(KV2-2 cos¢ )]ltf>=O . 

First note that 

-i d~ Jv(Kv'2-2cos¢)1tf>=O 

=J~(O)Kt(2-2 cos¢)- 1122 sin4>1¢=o 

_ , sinp 
-J v(O)K 2 sin(lf>/2) 

=J~(O)K 

and that12 

J~(O)=t(J v-1 (0)-J v+1 (0)]=tBv,1-tBv,-1 · 

Therefore 

(A3) 
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-i :tf> [e 1""J.Cd2-2c~stf>)] t~o 
= -i exp [iv; I ( -J-1>., 1--j-ll.,-I ), 

-iJ)O)_tj_e;vt/1 I . · 
dt/J q,=o 

However, J v(O)=Bv,o and 

_tj_e;vt/11 =ivexp [iv.!!_ ]!l.!/!_ I . 
dt/J q,=o 2 dt/J q,=o 

But, e2;"'=( 1-e -;q,)/( 1-e;q,) implies 

2ie 2;f/!!li!_ I ie -;q,+ie;q,_2i I =i 
dt/J q,=o ( 1-e;q,)2 q,=o 

Therefore 

or 

2i exp [2i .!!._ ] !!_j_ I = i 
2 dt/J q,=o 

!l.!/!_1 =-1 
dt/J q,=o T . 
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A master equation is constructed that provides a stochastic description underlying the logistic 
map. In an appropriate macroscopic limit, the underlying master map (equation) yields the logistic 
map. It also describes intrinsic fluctuations associated with the logistic map. When the logistic 
map parameters are chosen so that the map produces a chaotic trajectory, the variance of the asso­
ciated fluctuations diverges. This means that the distribution function determined by the master 
map becomes very broad and that the logistic map no longer results from averaging with respect to 
the master map distribution function. Numerical examples of this behavior and its interpretation 
are discussed. 

I. INTRODUCTION 

There is a long tradition behind the description of mac­
roscopic dissipative processes by phenomenological equa­
tions, e.g., hydrodynamics, electrical circuits, and mass 
action chemical reactions. It is now widely appreciat­
ed 1-

8 that a complete macroscopic description of these 
processes must include intrinsic molecular fluctuations as 
well as the deterministic macrovariables, both of which 
reflect underlying microscopic dynamics. 1•2•8 Indeed, 
these fluctuations provide the basis for our understanding 
of light scattering, 9 electrical noise, and other noise mea­
surements for macroscopic systems. 10 Recently, the 
effect of dynamical chaos on these ideas was explored in 
detailed and general ways. 11 

A general approach to the effect of chaos on macro­
variable fluctuations is provided by the master equation 
idea. 10

-
20 Given a macrovariable dynamics, a master 

equation is constructed such that an appropriate macro­
scopic limit yields the macrovariable dynamics ·as well as 
a description of the fluctuations. The construction pro­
cess involves the underlying physics. 8 For chemical reac­
tions it is very well established how this construction 
works, 8• 

10
• 
16

• 
17 but for hydrodynamics it is not so 

straightforward, so that, to date, there is no single master 
equation for all fluid density regimes. 10• 13 - 15 

The purpose of this paper is to exhibit the effect of 
chaos on the description of intrinsic fluctuations in a very 
simple setting, the logistic map. The fluctuations de­
scribed in this paper are intrinsic fluctuations and must 
be carefully distinguished from externally introduced 
fluctuations. A number of authors have explored the 
consequences of introduced external fluctuations on the 
behavior of the chaotic systems. See, for example, Refs. 
21-24. Below we will address the appropriateness of 
these earlier studies in the context established here (and 
in Ref. 11) that results from the interplay of chaos and in­
trinsic fluctuations on the description of chaotic dynam­
ics. 

In classical physics, chaos is characterized by sensitive 
dependence of trajectories on initial conditions. 25 This 
idea is made quantitative by the Liapunov exponent. 25 A 

42 

positive Liapunov exponent implies chaos. As was shown 
elsewhere, 11

•
25

•
26 the value of the Liapunov exponent is 

related to the Jacobi matrix for the macrovariable dy­
namics, and the Jacobi matrix also determines the time 
evolution of the fluctuations. 11 The salient consequence 
recently discovered 11 is that a positive Liapunov ex­
ponent (chaos) for the macrovariable dynamics implies a 
divergence of the covariance matrix for the fluctuations. 
Moreover, this circumstance implies that the macroscop­
ic limit procedure breaks down so that the macrovariable 
equations no longer follow from the underlying master 
equation. 11 Instead, the distribution function determined 
by the master equation becomes very broad and the 
dynamical description is only correctly given entirely at 
the master equation level. Clearly, it is inappropriate to 
introduce external fluctuations21

-
24 into macrovariable 

equations that are no longer valid; instead, external fluc­
tuations will have to be introduced into the master equa­
tion level of description. 

Because relatively few scientist are fluent in master 
equation ideas, this paper has been written to present a 
very simple example of the essential ideas and their 
consequences. This objective is realized by constructing 
a master map (equation) for the logistic map. We have 
chosen the logistic-map paradigm because it is virtually 
the simplest example possible and because of its funda­
mental and historical significance with respect to chaos. 27 

In Sec. II, a master map for the logistic map is con­
structed. In Sec. III, the Liapunov exponent concept is 
developed for both the logistic map and the master map. 
In Sec. IV, the breakdown of the macroscopic limit is 
presented, along with an account of the numerical evi­
dence. In Sec. V, concluding remarks are offered. 

II. LOGISTIC MAP AND MASTER MAP 

The logistic map is given by27 

Xn +1 =4A..xn( 1-xn) ' (1) 

in which the x's are mapped from the unit interval onto 
the unit interval and the tunable parameter A is taken 
from the unit interval as well. It is now well understood27 

1946 @ 1990 The American Physical Society 
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that for A. < 0. 25 the logistic map has a globally stable 
fixed-point attractor at x =0; for 0.25 <A-<0.75, x =0 
becomes unstable and x = 1 - 1 I 4A. becomes the globally 
stable fixed-point attractor; and for 0.75 <A., there are ne 
fixed-point attractors. Instead, a sequence of bifurcations 
yielding 2k cycles ensues up to about A.=O. 892 48 .... 
Beyond this value there are regions of chaos interspersed 
with windows of all possible cycles not expressible as 2k. 
At A.= 1, the chaotic attractor covers the entire unit in­
terval. 

For the sake of the presentation in this paper, we take 
the perspective11 that Eq. (1) is a macrovariable map. 
This means that we are thinking of the x's as describing a 
macroscopic amount of something (rescaled to the unit 
interval). In fact, in the original context of population 
biology, the x's represented populations of a species from 
generation to generation. Therefore we expect intrinsic 
fluctuations to be associated with the macrovariable x 
that represent variations induced at the level of individu­
al organisms. We may achieve a more refined description 
by introducing a master map (equation) that describes the 
process at the more microscopic level of individuals and 
yields the logistic map as its moment map in the macro­
scopic limit. 

The master map is constructed as follows. We first 
rewrite Eq. (1) on the real numbers between 0 and N: 

(2) 

This map takes real numbers from the interval 0 to N 
onto the same interval. Clearly, in the limit N ~ oo , 

Yn IN ~xn. This limit is what we will call the macro­
scopic limit. Next, we introduce the probability distribu­
tion for the population in the nth generation W ( q, n), in 
which q only takes on integer values from 0 to N. The re­
striction of the argument of W to the integers introduces 
an effective noise level of size 1 IN. Of course, as N ~ oo, 
this noise vanishes. The master map 'determines how the 
probability distribution changes from generation to gen­
eration. With this simple example, we are attempting to 
exhibit a more general phenomenon11 that occurs in real 
physical systems, e.g., chemical reactions. For them, the 
underlying physics determines the form of the master 
equation, whereas in this simple example we are free to 
choose any one of many possible constructions since we 
are dealing with a paradigm and not with a real process. 

Initially, we construct it in the following simple way: 

W(q,n + 1}= fNdq 1BN(q -4A.q 1(N -q~)IN)W(q 1,n) , 
0 

(3) 

in which BN( ) is not precisely a Dirac delta function, but 
instead picks out the largest integer value q contained in 
4A.q 1 

( N - q 1 
) IN, and, therefore, has some dispersion of 

order 1 IN. A computer program realization of this map­
ping may be found in the Appendix. 

In the literature, 22
•
23 this equation is known as the 

noisy Frobenius-Perron equation and has been intro­
duced in the context of adding external noise to the logis­
tic map. Consequently, it would appear as though the 
two problems of intrinsic noise and external noise reduce 
to an identical analysis. There are two important reasons 

why this is not so, however. The first reason is that the 
particular master map picked in Eq. (3) is quite arbitrary, 
i.e., many master maps can be constructed that reduce to 
the logistic map in the macroscopic limit (N ~ oo ), and 
the one we have picked is the same as the noisy 
Frobenius-Perron equation by accident. The expression 
4A.q 1(N -q~)INin Eq. (3) can be augmented by any func­
tion of q' of an order higher than N- 1 and there will ac­
crue no difference in the macroscopic limit. Had I 
chosen such an expression at the outset, there would be 
no cause for confusion with the noisy Frobenius-Perron 
equation. The second reason is deeper. As is shown 
below and elsewhere, 11 the consequence of chaos on the 
macroscopic limit is to invalidate the logistic map as a 
stable contracted description of the behavior of the un­
derlying master map. This consequence is caused by the 
intrinsic noise, the variance of which becomes enormous. 
The addition of external noise cannot be made at the level 
of the logistic map in this situation, as it is in Ref. 22 and 
23, but must be made at the master map level instead. 

III. LIAPUNOV EXPONENTS 

For the logistic map, the Liapunov exponent A may be 
computed from the formula28 

· 

A= lim_!_ i In I !!I_ I 
n-a:~ n i=l . dy; 

(4) 

where f is given by 

f =4A.y(N -y)IN. (5) 

The quantity df ldy; is the Jacobi matrix for a one­
dimensional map. For a map in r dimensions, the Jacobi 
matrix is r X r dimensional. If we represent the r vari­
ables of an r-dimensional map by z, then the Jacobi ma­
trix J determines how a small deviation from z will map: 

6.z(n +1)=J(n)6.z(n). (6) 

If we have some way of averaging over these deviations, 
e.g., there is an underlying master map probability distri­
bution, then the covariance of the fluctuations (devia­
tions) defined by 

C;i = ( bu;llZi) (7) . 

satisfies the mapping26 

C(n + l)=J(n)C(n)Jt(n) , (8) 

in which Jt is the adjoint of J. We have shown how to 
define a Liapunov exponent for this covariance equa­
tion 11

•
26 and have proven the identity that for the one­

dimensional case it has e~actly twice the value deter­
mined from Eq. (4). This factor-of-2 relationship also 
holds in r dimensions. 11

•
26 

The impact of this identity is that the covariance of the 
fluctuations becomes very large when the Liapunov ex­
ponent is positive. For the present situation in which we 
have a one-dimensional map, the covariance matrix sim­
ply degenerates into the variance for the fluctuation (de­
viation) for y n' i.e., ay n' which satisfies the degenerate 
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version of Eq. (6): 

- df 
llyn +1- df:lyn 

Yn 
(9) 

If we now use the master map probability distribution to 
determine the averaged variance, i.e., (llyn llYn), then we 
see that df !dyn determines both the Liapunov exponent 
for the logistic map [Eq. (4)] and the growth of the vari-
ance [Eq. (9)]. · 

The dual role of the Jacobi matrix in these considera­
tions is crucial and occurs in a much broader class of sys­
tems than represented by the simple example in this pa-
per. 11 · 

IV. MASTER MAP-- LOGISTIC-MAP TRANSITION 

We will now describe the consequences of the preced­
ing results. The reader may wish to avail himself/herself 
of the advantages of following our remarks with a com­
puter simulation. In this way the reader can see firsthand 
the numerical evidence we ourselves have seen for the re­
marks that follow (see also the figures in Ref. 23). The 
program in the Appendix will provide assistance. 

Succinctly put, we find that when the Liapunov ex­
ponent is not positive, it is always possible to choose N 
sufficiently large that the distribution function deter­
mined by the master map follows the logistic map's out­
put with a very sharp distribution. However, when the 
Liapunov exponent for the logistic map is positive, no 
matter how large an N is chosen, the distribution func­
tion determined by the master map becomes very broad 
and after only a few iterations neither its mean nor its 
maximum bear any relationship to the output of the 
logistic map. In the first case, i.e., nonpositive Liapunov 
exponent, averaging over the distribution function will 
produce a mean value for y which is precisely equal to the 
output of the logistic map in the macroscopic limit. This 
is a consequence of averaging Eq. (2) and finding that the 
right-hand side, the average of a nonlinear expression, 
can be replaced with very high accuracy by the nonlinear 
expression of the average 

(yn +1) =4A(yn(N -yn)) IN =4A(yn )(N- (yn) )/N . 

(10) 

It is this replacement that breaks down in the second 
case, i.e., positive Liapunov exponent, for which the dis­
tribution is too broad, 

The following remarks elaborate the content of the 
preceding paragraph in much more detail. Because there 
are so many special cases, some involving complicated 
transient behavior, far too many figures would have been 
required for this paper. The reader may reproduce those 
cases of interest to him on a computer. Our remarks are 
presented in the order of increasing complexity. In each 
case, unless stated otherwise, all of the initial probability 
is placed in bin no. 25, i.e., W(25, 1 )= 1. 

(1) N=100, A=0.3. The logistic map output ap­
proaches the attractor at x = t· The distribution func-

tion stays sharp and follows the logistic map output with 
a precision of 1~. 

(2) N=400, A=0.3. This is the same as case (1), except 
the precision is now ~. 

(3) N=100, A=0.8. The logistic map output ap­
proaches the two-cycle (0 .. 513 045, 0.799 455). The distri­
bution function stays sharp and follows the logistic map 
output with a precision of 1~. This means that the distri­
bution function also describes a two-cycle. 

(4) N=400 A=0.8. This is the same as case (3), except 
the precision is now ~ . 

(5) N=100, A=0.865. The logistic map output ap­
proaches the four-cycle (0.413 233, 0.838 951, 0.467 488, 
0.861 343). The distribution function stays sharp and fol­
lows the logistic-map output with a precision of 1~. This 
means that the distribution function also describes a 
four-cycle. The distribution is sharper around th*.! two 
larger cycle values than it is around the two smaller 
values. If we reduce the bin subdivision parameter from 
50 to 10, then the results are qualitatively the same al­
though somewhat less smooth. 

(6) N=400, A=0.865. This is the same as case (5), ex­
cept the precision is now ~ . 

(7) N = 100, A= 0. 886. The logistic-map output ap­
proaches the eight-cycle (0.3642, 0.8206, 0.5216, 0.8843, 
0.3625, 0.8190, 0~5254, 0.8837). The approach to this 
eight-cycle takes several hundred iterations before the 
fourth digit of accuracy is obtained. This contrasts 
mArkedly with the preceding examples. The 1~ precision 
of the master map produces a distribution function that 
cannot follow this eight-cycle. Instead, the distribution 
settles down on a four-cycle associated with the values 
(0.36, 0.82, 0.52, 0.88). While the distribution is still 
quite sharp around ·the two larger values, it is rather 
broad around the two lower values and is in fact bimodal 
around both 0.36 and 0.52. Thus, if we were to use the 
average of y determined by this .distribution function, it 
would describe a four-cycle that is not identical with any 
four-cycle of the logistic map for any value of A. This 
consequence of the noise in the master map output can be 
eliminated by reducing the noise level by increasing N 
(see below). It is also noteworthy that the apparent four­
cycle reached by the master map distribution function is 
reached in relatively few iterations, i.e., in much less than 
100 iterations. 

(8) N=400, A=0.886. This is the same as case (7), ex­
cept the precision is now ~ . This precision is still not 
good enough because a precision of at least ,doo is needed 
in order to distinguish each separate eight-cycle point. 

(9) N=4000, A=0.886. Now the precision is high 
enough for the distribution function to follow the 
logistic-map output. The time required by the computer, 
however, has grown enormous. 

(10) N=400, A=0.886, W(208,1) = 1. This time we 
have started the master map distribution function with 
all of its probability on one of the eight-cycle points 
(0.5216, 400X0.5216=208.64). We must also initialize 
the logistic map with y = 208. The behavior of the mas­
ter map distribution function is now dramatically 
different. It can follow the eight-cycle accurately. For 
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the large cycle values .-(0.88)jt is extremely sharp, and it is 
somewhat less sharp for the smallest values (0.36), but for 

· the intermediate values (0.52) it is rather broad. Never­
theless, the distribution function is clearly peaked at 
0.5216 and 0.5254, respectively, in spite of the fact tha:t 
its rather broad structures for these two-cycle points 
overlap greatly. By contrasting the results for cases 
(7)-(10), we see that the outcome depends crucially on 
the initial conditions. It is clear that a trajectory with a 
transient will create a growth in the master map distribu­
tion function that will persist even after a stationary state 
has been reached, whereas the absence of such a transient 
permits the master map distribution function to follow 
the logistic map even when the noise level would indicate 
that there is insufficient precision. Even though by start­
ing on one of the eight-cycle points, the probability distri­
bution. follows the logistic-map output, averages with 
respect to this distribution do not satisfy Eq. (10). It is 
simply the peaks of the distribution that follow the 
logistic-map output. The averages satisfy Eq. ( 11) for 
N =400. By increasing N, Eq. (10) is approached more 
and more accurately. 

(11) N = 100, 1..=0.9. The value of A. implies chaos for 
the logistic map. The Liapunov exponent for this A. is 
0.183. Scrutiny of an attractor plot for the logistic map29 

shows that the attractor for 1..=0.9 is made up of two dis­
joint regions. One region cover~ the x interval from 
about 0.3 to about 0.6 whereas the other region covers 
the x interval from about 0.8 to about 0.9. The invariant 
measure on these regions is . not uniform. 29

• 
30 The 

logistic-map output quickly reaches the attractor and 
then jumps about chaotically on the attractor. The mas­
ter map distribution function, however spreads out on the 
two attractor regions and alternately hops from one to 
the other. After only a few dozen iterations, the distribu­
tion function reaches a steady two-cycle behavior. This 
two-cycle is between two broad subdistributions. Any 
average over this behavior would look like a two-cycle. 
Equation ( 11) is strongly the case. Most remarkable of 
all, however, is the fact that the union of the two subdis­
tributions very closely matches the invariant measure for 
the logistic map attractor. By increasing N, this match 
gets better. Thus we see that the master map's probabili­
ty distribution may be identified with a noisy average of 
the invariant measure for the deterministic logistic map. 

(12) N= 100, 1..=0.95. The value of A. implies chaos for 
the logistic map. The Liapunov exponent for this lambda 
is 0.435. Scrutiny of an attractor plot for the logistic 
map29 shows that the attractor for A.=O. 95 is now made 
up of just one region. Once again the master map proba­
bility distribution quickly approaches a steady distribu­
tion that closely matches the invariant measure for the 
logistic map with A.=O. 95. Since the Liapunov exponent 
here is bigger than in case ( 11 ), the steady distribution is 
reached correspondingly more quickly. Again, by in­
creasing N, the correspondence with the invariant mea­
sure is improved. Because there is now only one region 
covered by the very broad distribution function, or by the 
invariant measure for that matter, an average over the 
master map distribution function yields a simple fixed 
value that bears no resemblance to the chaotic trajectory 

of the logistic map . 
(13) N= 100, 1..=0.96. This value of A. produces a 

three-cycle for the logistic map (0.1494, 0.4879, 0.9594). 
This is in one of the periodic windows of the attractor 
plot. 29 The corresponding Liapunov exponent is 
-0.0044. This is clearly not chaotic. However, the tran­
sient for the approach to the three-cycle causes the mas­
ter map distribution to grow very broad before the three­
cycle attractor is reached. Consequently, the distribution 
ends up ·steady and broad and looking very much like the 
invariant measure for a chaotic A just below 0.96. Be­
cause there is again only one region covered by the very 
broad distribution function, an average over the master 
map distribution function yields a simple fixed value that 
bears no resemblance to the three-cycle trajectory of the 
logistic map. 

(14) N=300, 1..=0.96, W(l46,1)=1. This is the same 
as case (13) except that the initialization of both the mas­
ter map and the logistic , map has been switched to a 
three-cycle point (0.4879). The distribution function now 
attempts to follow the logistic map's three-cycle and does 
so quite sharply for over a dozen internations, but by 
iteration 15 it has developed a broad background. Never­
theless, a steady distribution is not the outcome as it was 
in case (13). A three-cycle distribution results in which 
each of the three subdistributions has three peaks and a 
broad background spanning the space between the peaks. 
The peak corresponding to the cycle point of the logistic 
map is the largest in each case, and accounts for 99% of 
the total probability, whereas the background accounts 
for less than 0.1% of the probability, while the two lesser 
peaks make up the remainder, about 1%. This three­
cycle distribution is reached in about two dozen itera­
tions. 

(15) N = 100, A.= 1. For the logistic map, this is the 
strongest chaos with a Liapunov exponent of 0.693. The 
master map probability distribution rapidly spreads over 
the entire unit interval and assumes a form very similar 
to the invariant · ineasure for the logistic map. 29

•
30 ·Be­

cause the entire unit interval is covered by the distribu­
tion function, an average over the master map distribu­
tion function yields a simple fixed value that bears no 
resemblance to the chaotic trajectory of the logistic map. 
By increasing N, the correspondence between the proba­
bility distribution for the master map and the invariant 
measure for the logistic map gets better. 

V. CONCLUDING REMARKS 

These examples demonstrate how very different the 
logistic map and the master map behave. When A is less 
than 0.892 48 ... , the Liapunov exponent for the logistic 
map is less than zero and the master map can produce a 
distribution function that follows the behavior of the 
logistic map as accurately as desired provided N is taken 
sufficiently large. Indeed, in the macroscopic limit they 
have identical behavior. In practice, however, N may 
have to be enormous in order to have the master map dis­
tribution follow a 2k cycle with k > 5. For A greater than 
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0.892 48 ... , chaos ensues for· most A values. For the 
chaotic A.'s, the master map distribution grows broad and 
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cycle distribution of subdistributions). This steady distri-
bution has a very accurate resemblance to the invariant 
measure on the attractor for the logistic map. It is made 
more accurate by increasing N, which is tantamount to 
decreasing the noise. For }., values corresponding with 
periodic windows, the Liapunov exponent is again less 
than zero. Nevertheless, points not on the periodic at­
tractors tend to exponentiate part until their iterates 
reach the periodic attractors. The master map distribu­
tion function in this situation depends strongly on the ini­
tial conditions. A trajectory with a transient will result 
in a broad and steady distribution. By starting on a cycle 
point, however, a periodic distribution will result that fol­
lows the logistic map and also possesses a low level but 
broad background. 

The point of this paper is to take the view that this 
simple paradigm represents physical reality as regards 
the relationship between a macrovariable description and 
an underlying microscopic or master equation descrip­
tion.11·26 In this view, the master map is viewed as physi­
cal reality whereas the logistic map is viewed as a con­
tracted description created by averaging with respect to 
the master map's distribution function. As long as the 
distribution is sharply peaked, Eq. (10) may be expected 
to hold and one can have faith in the contracted descrip­
tion. But when the distribution is not sharply peaked, 
Eq. (11) must hold instead and the contraction is no 
longer valid. This circumstance occurs whenever the 
contracted description (the logistic map) predicts chaos, 
because of the connection of the Liapunov exponent to 
the Jacobi matrix anci the connection of the Jacobi matrix 
to the covariance of the fluctuations. 11·26 Therefore, un­
der these circumstances, the only recourse is to abandon 
the logistic map and to use the master map instead. This 
consequence is of special significance when it comes to in­
troducing external fluctuations into consideration. 21 - 24 

Since the logistic map is no longer valid, external fluctua­
tions must be introduced into the master map in order to 
properly see their effects. The chaos of the logistic map is 
a mathematical artifact of an equation that no longer has 
physical significance. It is, nevertheless, significant that 
the invariant measure for the chaotic attractor produced 
by the logistic map is so similar to the stationary proba­
bility distribution produced by the master map, in the 
low noise limit. This fact is readily explained by looking 
at the equation for the invariant measure on the logistic 
map's attractor (the Frobenius-Perron equation):23·28 

P(x)= f 1
dz o(x -4A.z(l-z ))P(z) , 

0 
(12) 

in which the kernel, o( ), is a genuine Dirac delta func­
tion [cf. Eq. (3)]. Clearly, the invariant probability distri­
bution determined by Eq. (3) is equivalent to P in the 
macroscopic limit. The importance of these thoughts in 
realistic physical contexts has been explored else­
where.11,26,31 

APPENDIX 

This program produces a plot of the master map distri­
bution function. In fact, it yields the scaled logarithm of 
the distribution because the distribution function ranges 
over many orders of magnitude, but it can easily be 
modified to yield the distribution function directly if 
desired. It also plots the position of the output from the 
logistic map as a pair of points just below and above the 
distribution function plot. This makes it easy to compare 
the two types of output. We develop the program in the 
following simple steps. The restriction of q to the in­
tegers may remind one of maps on the integers, 32 but 
here this restriction only occurs in the master map: 

FOR q =0 toN 

IF W(q,N, 1) > 0 then 

FORm =0 toN 

IF m =INT( 4A.q (N -q)/N] then 

LET W(m,n + 1,2)= W(m,n,2)+ W(q,n, 1) 

END IF 

NEXT m 

END IF 

NEXT q. (A1) 

In this mapping, a third variable, taking on the values 1 
or 2, has been introduced into W. After completing the 
FOR-NEXT cycle above, the W values are updated for 
another cycle of Eq. (A1) by the FOR-NEXT cycle below: 

FOR q =0 toN 

LET W(q,n + 1,1 )= W(q,n + 1,2) 

LET W(q,n + 1,2)=0 

NEXT q. (A2) 

This master map does not achieve our desired result very 
effectively. In fact, it produces a probability distribution 
that follows the modified, diophantine logistic map, 

(A3) 

precisely if W(q,O, 1)= 1 when the initial value of y for 
Eq. (A3) is y 0 =q. Since we really want to follow Eq. (2) 
with a master map and not Eq. (A3), we must make our 
master map a bit more complicated. The desired result is 
achieved by subdividing the integer interval between q 
and q + 1 into a large number of equal subintervals and 
distributing the probability uniformly among them before 
mapping the probability into the next generation. This is 
achieved by the following mapping: 
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FOR q =0 to N .~l 

IF W(q,n, 1) > 0 then 

FORm =0 toN 

FOR j = 1 to 50 

MA;)l~K ~\,lUAllUN .I:"UK lHJ:!. LUUl;)lll,; MA.t" 

IF m =INT { 4A.(q + j /50)(N -(q + j /50)]/N} then 

LET W(m,n + 1,2)= W(m,n,2)+ W(q,n, 1 )/50 

END IF 

NEXT j 

NEXT m 

END IF 

NEXT q 

LET q =N 

IF W(N,n, 1) > 0 then 

LET W(O,n + 1,2)= W(O,n,2)+ W(N,n, 1) 

END IF. (A4) 

This FOR-NEXT cycle must be followed by Eq. (A2). In this example, 50 subdivisions have been invoked. It should be 
clear that in the macroscopic limit this fine subdivision will have no effect on the logistic-map limit. However, it will 
just as clearly affect the fluctuations because probability in the integer interval from q to q + 1 will now potentially end 
up in more than one integer valued probability bin, W(m,n + 1,2). In this way, the master map follows the behavior of 
of the logistic map, Eq. (2), with a noise level of 1 IN. A version of the entire program, written in the true-basic 
language o_f Kemeny and Kurtz, 33 follows for a Macintosh II computer. 

REM LOGISTIC MAP MASTER MAP 

SET WINDOW 0, 640, 0, 460 

DIM W(O to 10000,2) 

PRINT "What is N?" 

INPUT N 

PRINT "What is lambda?" 

INPUT lambda 

LET i =0 

LETs =0 

MAT REDIM W(O to N,2) 

LET W(25, 1 )= 1 

LET y =25 

DO 

FOR q =0 to N -1 

IF W(q, 1) > 0 then 

FORm =0 toN 

FOR j = 1 to 50 

IF m =INT { 4*lambda*(q + j /50)*[N -(q + j /50)]/N} then 

LET W(m,2)= W(m,2)+ W(q, 1 )/50 
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END IF 

NEXT j 

NEXT m 

END IF 

NEXT q 

LET q =N 

IF W(N, 1) > 0 then 

LET W(0,2)= W(0,2)+ W(N, 1) 

END IF 

LET y =4*lambda*y*(N -y)/N 

LET i =i + 1 

CLEAR 

FORm =0 toN 

PLOT 100+m,300+ 10*log( W(m,2)+ 1e -50] 

LETs =s + W(m,2) 

NEXT m 

PLOT 100+y,50 

PLOT 100+y,350 

PR-INT i, "sum= ";s, "lambda="; lambda, "N = ";N 

PRINTy 

FORm =0 toN 

LET W(m, 1)= W(m,2) 

LET W(m,2)=0 

NEXT m 

LETs =0 

LOOP 

END 

In this program, the initial probability is entirely put into bin no. 25. This is an arbitrary choice. The subdivision by 
50 is also aribtrary. · Becuase the mapping is now embedded in a DO-LOOP, we no longer need the reference to n and 
n + 1 inside W. The variable-s checks the normalization requirement after each mapping interation. 
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ABSTRACT 

A quantitative method for the treatment of large scale intrinsic 
fluctuations ·amplified by chaotic trajectories in macrovariable 

physical systems is presented. Paradigmatic results for the Rossler 
model and preliminary computational results for chaotic Josephson 

junctions and for chaotic multi-mode Nd:Y AG lasers are described. 

These studies are directed towards identification of a real physical 

system in which experimental confirmation may be realized. The 
probability distribution on the intrinsic-noise-modified, chaotic 

attractor is identified as a likely candidate for comparison of 

experiment and theory. 
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I. introduction 

In several recent papers 1 •2•3•
4

, we showed that chaotic 
dynamics can cause macroscopic growth of intrinsic fluctuations 1n a 
macrovariable system. Implications of this effect were suggested for 
systems as diverse as chemical, hydrodynamic, electronic, and 

quantum. In this paper, we propose a highly accurate approach to 
the theoretical description of such large scale fluctuations. Our 
proposal is based upon a limit theorem for Markov chains proved by 
T. G. Kurtz5•6 in 1975, long before its relevance for chaotic dynamics 
could be appreciated. 

That chaotic dynamics and the growth of intrinsic fluctuations 
are related to each other is a consequence of each being 
fundamentally tied to a dynamical quantity called the Jacobi matrix2 . 

A quantitative characterization of chaos is provided by the largest 
Liapunov exponent, which when positive, implies chaos 7 . The 
computation of the largest Liapunov exponent directly utilizes the 
instantaneous values of the Jacobi matrix8 . Similarly, the growth of 

the intrinsic fluctuations is made quantitative by following the time 
evolution of the covariance matrix9•10 . Again, the computation of the 
covariance matrix evolution directly u·tilizes the instantaneous values 
of the Jacobi matrix2• This dual role of the Jacobi matrix and the 
consequence that intrinsic fluctuations become very large in a 
chaotically dynamic system was apparently noticed for the first time 
only recently 1.2.4. 

In order to make this connection explicit, imagine a 
macrovariable system described by N macrovariables Mi ( t) for 

i=l ,2, ... N satisfying N coupled, nonlinear, ordinary, differential 
equations: 

(1) 



2 

In which the Fi's are N, generally nonlinear functions of the Mk's. The 

Jacobi matrix, Jik(t), is defined7 by __ 

a F. 
I 

(2) 

for each instant of time. It has been shown that the largest Liapunov 
exponent for this dynamics, A., is given by8 : 

limit 1 
A. = t~oo 2 t ln(Trace [jt(t)J(t)]) (3) 

In which jt(t) is the adjoint of J (t). On the other hand, it has also been 

established that if (1) is the macroscopic limit of an embedding (see 
below) master equation (i.e. some "largeness parameter", say Q, is 

allowed to go to an infinite limit), and if the scaled linearized 
deviations from the deterministic solutions to ( 1) are denoted by 
JJ.i(t)=Q 1 '2~Mi(t) (where ~Mi(t) is the unsealed deviation), and if the 

covariance matrix for these deviations (fluctuations) is denoted by 

Cik(t)=<JJ.i(t)JJ.k(t)> where < ... > denotes averaging with respect to the 

master equation's probability distribution, then Cik(t) satisfies: 

In which Rik(t) is explicitly determined from the master equation. 

The exponential divergence of fluctuations in the limit of large Q IS 

reflected in the fact that Eq (3) is also valid if C t ( t) and C ( t) are 

substituted in place of jt(t) and J (t) on the right-hand side 1•4 . 

The covariance matrix evolution equation involves a 
linearization of the macrovariable dynamics instantaneously In time. 

This, of course, produces the Jacobi matrix dependence, but it also 

means that once the fluctuations have grown even a little bit, the 
linearized equations lose their validity. In our earlier work1•2•4 we 
stressed this point, and noted that while the covariance matrix 
evolution permitted computation of the largest Liapunov exponent, it 
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did not accurately describe the fluctuations once they grew to 
macroscopic size. In order to obtain -the large scale fluctuations, a 
mesoscopic underpinning of the macrovariable equations is 
required 2•3 . One way to accomplish this is to embed the 
macrovariable equations in a mesoscopic master equation and 
deduce the time evolution of the underlying probability distribution. 
Given the master equation, which is not generally agreed upon for all 

interesting contexts (e.g. hydrodynamics9 ), one must solve it, albeit 
numerically. This last task is formidable for multi variable systems 
and has prompted us to look for alternative approaches. 

One alternative to solving the master equation for the 
probability distribution is to implement the process described by the 
master equation as a stochastic process9 . This requires performing 
many realizations of the stochastic process in order to build up the 
equivalent probability distribution. A theorem due to Kurtz5•6 is 
closely related to this approach and establishes a highly accurate 
approximation to the stochastic process needed. Because the 
implementation of Kurtz's theorem. for this purpose looks very much 
like merely adding extrinsic fluctuations to the macrovariable 
equations, we will attempt to distinguish clearly the important 
differences. 

Kurtz's theorem may be implemented either as a stochastic 

process or as an equivalent Fokker-Planck equation. In the latter 
guise it is a so-called nonlinear Fokker-Planck equation that is 
used 11 . In other contexts, objections to ~uch an equation have been 
voiced 12 . The chief objection is that the averaged quantities 

determined by a nonlinear Fokker-Planck equation do not satisfy the 
macrovariable equations because averages of nonlinear expressions 
are not equal to identical nonlinear expressions of the averages. 
However, this is precisely the circumstance that is relevant when 
intrinsic fluctuations grow to large scale. Thus, we again find it 
necessary to contrast what is done here with earlier applications of 
some closely related methods. Context will prove to be the crucial 
distinguishing element. 
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The remainder of this paper is divided into three sections. In 
section "II, we define a variety of kinds of noise or fluctuations. We 
do this because. earlier work 13 does,· not distinguish the many types 

of noise discussed here and the same words we use are used with 

different meaning in these earlier papers. In section III, we discuss 

the transition from a mesoscopic picture to a macrovariable 
dynamics. Both the traditional view 11 of this transition and Kurtz's 

theorem5•6 will be presented. Certain technical matters regarding the 

application of Kurtz's theorem to OQr problems will be addressed. In 

section IV, we conclude the paper with three examples. The Rossler 

model 14 is used as a paradigm for the description of the growth of 

fluctuations on a chaotic trajectory. We establish the probability 
distribution on an attractor as a good candidate for the comparison of 
experiment and theory. The amplification of intrinsic noise on chaotic 
trajectories produces a probability distribution noticeably different 

from the corresponding, noise-free invariant measure. Preliminary 

re~ults from a detailed theoretical study of fluctuations in a chaotic 
Josephson junction 15 are presented. Similar results, with the 

possibilty of future experimental confirmation, for a chaotic multi­
mode Nd:YAG laser16 are outlined. These examples provide insight 
into the methods and their consequences. 
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II. Noises 

In order to minimize misunderstanding, we will distinguish 
among several distinct types of noise 13

' 
17

. In the vast literature 
covering noise in physical systems, words such as "noise", 
"fluctuations", and "random" have been applied to · processes of rather 
different origin. In some cases the established usage is so ingrained 
that alternative usage is easily misconstrued. To define our usage 
here as clearly as possible, five classes of "noise" are distinguished: 

1) instrumental, 

2) initial data, 

3) external reservoir, 

4) intrinsic molecular, 

5) deterministic chaos. 

Instrumental noise is the systematic noise associated with 
making observations, either in real experiments or in numerical 

simulations. It is the noise associated with the limits of resolution 1n 
the observation procedure. If, for example, cr is the standard 

deviation for the limit of resolution, no observation will resolve 
quantities below the cr scale. At the sam-e time, observations will also 
be no worse than the scale set by cr. This feature is in marked 

contrast to what will be seen regarding intrinsic fluctuations, below. 

Uncertainties in the precision of the initial data introduces 
another kind of noise. One must consider what happens to an 
ensemble of initial states each of which is consistent with the limited 
precision of the initial data. If the dynamics is dissipative and 
involves an attractor, then the ensemble of initial data will end up as 
an ensemble distributed over the attractor. For an ergodic attractor, 
this final ensemble will be an invariant distribution quite 
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independent of its initial properties. Therefore, properties of the 
stationary ergodic attractor really don't depend on the initial data 

notse. 

Identifiable physical systems . are isolated from the rest of the 

world by container boundaries. These container walls are in contact 
with the rest of the world. In this way, every system is coupled to a 

heat bath, or a pressure reservoir, etc.. This introduces another kind 

of noise that we will call extrinsic noise. It is essentially independent 

of the nature of the system, depending instead on how the system is 

isolated from the rest of the world. In mathematical modeling, this 

type of noise is introduced by simply adding noise terms to the 
deterministic equations. The noise properties are introduced through 

various parameters that ·are fundamentally independent of the 

system and . the system state. Most earlier studi~s of the interaction 
of noise and chaos concerns this sort of extrinsic noise 13• 17 . 

The type of noise upon which we focus attention in this paper 
is intrinsic molecular noise. By this expression we refer to the 

molecular composition of real physical systems that are otherwise 

described by macrovariable equations. The macrovariables refer to 
macroscopic amounts of matter, and, therefore, represent some sort 

of averaging over an underlying microscopic, or perhaps mesoscopic, 
description 9 • Consequently, associated with each macrovariable is an 

intrinsic fluctuation of molecular origin. Frequently, these 

fluctuations are ignored and only the macrovariables are studied. 
However, light scattering18 from a hydiodynamic system can be 

accounted for quantitatively only by working out the dynamics of 
the fluctuations as well as the macrovariables. Near full equilibrium 

or near a stable steady state, the fluctuations in no way affect the 

macrovariable dynamics. For chaotic macrovariable dynamics, 
however, we have shown that the intrinsic fluctuations are amplified 

to macroscopic size so that the macrovariable description might be 
markedly modified. The central purpose of this paper is to present a 

procedure for an accurate quantitative treatment of chaotic dynamics 
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including amplified intrinsic fluctuations. This treatment of chaotic, 

intrinsic fluctuations does not appear,. in any of the earlier literature. 

-
The reader should not confuse our object of study, namely the 

amplification of intrinsic fluctuations by chaotic dynamics, with a 

prevalent usage in the literature wherein wild macrovariable 

trajectories of chaotic dynamics are themselves referred to as 

"enhanced fluctuations". This latter usage is consistent with the 

notion of "deterministic randomness" that also has wide currency. 

These usages ignore intrinsic molecular fluctuations and refer only to 

the chaotic macrovariable trajectories as noise. In this light, it is 

significant that recent research 19 has begun to emphasize the 

ordered structure of chaotic macrovariable trajectories by showing 

how to systematically approximate them in terms of unstable 

periodic orbits. These researches are shifting the emphasis from 

"deterministic randomness" to "ordered chaos". Perhaps this shift will 

help to eliminate confusion between the wild, chaotic macrovariable 

trajectories and amplification of intrinsic notse. 
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III. Mesoscopic to Macroscopic Transition 

The macroscopic description9• 11 of physical systems, e.g. 
hydrodynamics and chemical reactions, involves macrovariable 
equations in which the dependent variables refer to quantities 
representing averages over the properties of many constituent 

molecules. When intrinsic fluctuations are totally ignored, a 
deterministic description is obtained, usually in the form of ordinary 
or partial differential equations with precise initial and/or boundary 
conditions. Measurements on such systems often involve scattering 
probes, e.g. light scattering, that necessitate a quantitative 
treatment 18 of the intrinsic fluctuations since the scattering is 

determined by fluctuation correlations. This leads to a stochastic 
adjunct to the macrovariable description. 

There are several ways to obtain a quantitative description of 
the intrinsic fluctuations. For the linear regime near full equilibrium 
or near a stable steady state, the Onsager theory has been 
generalized20 so that the fluctuation equations may be written down 

directly from the macrovariable equations through imposition of the 

fluctuation-dissipation relation which connects the strength of the 
fluctuations to the magnitude of associated dissipative parameters. 
For example, in hydrodynamics, the magnitude of the velocity field 
fluctuations is determined by the viscosity. In order to treat the 
fluctuations in the dynamical regime further away from full 
equilibrium or a stable steady state, where nonlinearities may be 
important, it is necessary to go beyond just the fluctuation­
dissipation relation and to obtain a fuller treatment of the dynamics 
of the intrinsic fluctuations9 . While some special cases have been 
successfully treated by kinetic theory 21 , a more general approach is 
that of the master equation9• 11 • This approach is a mesoscopic 
description that provides the time evolution of the entire probability 
distribution for the intrinsic fluctuations and subsumes all of their 
properties including the fluctuation-dissipation relation. 



9 

For spatially homogeneous chemical reactions, the master 
equation approach is well developed22 . In fact, several quite rigorous 
limit theorem23_ results, also due ·to .. Kurtz, have been obtained in this 

case. For hydrodynamics9•11 , however, a generally acce.pted master 

equation for all fluid densities does not exist yet, although in the 

dilute fluid regime, Boltzmann's equation can be thought of as 
serving the purpose. Therefore, some of what we have to say about 

master equations can already be realized in certain contexts, whereas 

in other contexts, the master equation itself is still to be constructed. 
Nevertheless, after reviewing the properties of the master equation 

to macrovariable equation transition, we will present a new 

approach5•6 to large scale fluctuations that does not require the 

master equation description per se, even though this alternative 1s 

also mesoscop1c. 

Equation ( 1) represents a typical macrovariable equation In the 
form of an ordinary differential equation.. Without loss of generality, 
we will restrict our remarks in this paper to such equations because 

most partial differential equations can be recast as ordinary 
differential equations either through expansions in Fourier modes or 

by discretizing space. In fact, the typical nonlinear partial differential 

equation must be treated numerically, in which case one or the other 

of these treatments is required. The objective of the master equation 
treatment associated with equation ( 1) is two-fold. First, the master 
equation must imply equation ( 1) in the macroscopic limit for which 
some scaling parameter, Q say, is made _infinitely large11 . Second, this 

same limit must yield the equation for the intrinsic fluctuations 

associated with the macrovariables by the master equation. The 

proper physical interpretation of these relations is that the 

fundamental physics is ~iven by the master equation and both the 
deterministic macrovariable equations and the fluctuation equations 
are approximate representations of the information contained in the 
master eguation. the approximation bein~ the better as Q ~oo. 

The form of the general master equation associated with 
equation (1) is 11 •22 • 
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a 
atP(m,t)= f dNm'(W(m,m')f(m',t)-W(m',m)P(m,t)) (5) 

tn which P(m ,t) is the probability density for M (t) values, i.e. 
P(m ,t)dm is the probability that the values of M (t) at time t are 

between m and m +dm, component by component; W(m ,m' )dt is the 

transition probability for M (t) values to change from m' to m in dt; 
and W(m ,m') is of order n. for I m -m' I of order 1/0.. In the limit 
n. ~ oo, we identify the macrovariable as the average 

M(t) = <m> = J dNm m P(m ,t) (6) 

The transition moments 11 are defined by 

(7) 

(8) 

and so on. The n. properties of W imply 23 that K(l)=0(1), K(2)=0( 1/0.) 
and generally K(n)=O( 1/0. n-l ). Using these transition moments, the 

master equation may be rewritten in the equivalent Kramers-Moyal 
form24,25: 

a 00 (-1)n n a (n) 
-a P(m,t) = L , <II -a -) <Kk k k (m) P(m,t)) (9) 

t 1 n . m kJ· 1 2 · · · n 
n= j=1 

With these properties, the macroscopic limit, t.e. n.~oo, implies2: 
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a a (1)oo -a P (m,t) = --a -(K. (m) P oo (m ,t)) 
t oo m· I 

I 

(10) 

,. . . t 

where the repeated indices in both (9) and ( 1 0) imply a summation 

and where the sub(super)-script oo denotes the macroscopic limit of 

the corresponding quantity. This partial differential equation is very 

special since its derivatives are all first order. This means that if the 
initial values for the m components are precisely given, i.e. Poo(m,O) 

= o(m -mo), then the solution to (10) is simply2: 

Poo(m,t) = o(m-m(t)) 

where m (t) satisfies the system of coupled ordinary differential 

equations 

d ( 1 )oo 
d t mi(t) = Ki (m (t)) 

(11) 

(12) 

Moreover, if we apply the averaging defined In ( 6), we obtain the 

equations 

d (1)oo (1)oo (1)oo 
d t ~(t) = < ~ (m) > = ~ (<m>) =I) (M (t)) (13) 

. . 

on account of the Dirac delta function solution ( 11 ). Thus M ( t) is the 

same as m (t) since both solve the same equation with the same 

initial condition m (0) = M (0) = m 0 . Ha 'f-ing constructed the master 

equation so that K~l)oo = Fi for the Fi's of equation (1), we achieve an 

embedding of the macrovariable equations in the master equation 

description as the macroscopic limit. 

We can also obtain a dynamical description of the intrinsic 

fluctuations with this master equation approach. Generally, the 

intrinsic fluctuations in the macrovariables scale 11 like 1/Q 112 . This 

means that they simply vanish in the macroscopic limit. In the spirit 

of the central limit theorem of probability theory23 , it is possible to 
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rescale the fluctuations so that their limiting behavior may be 
rigorously deduced. This is done by yconsidering the deviations of the 
m components _from the determini'sti'c solution to the macroscopic 
limit equation (12). i.e. m(t), scaled with n-112 : 

m = m(t) + n-l/2 tJ. ( 14) 

which defines the scaled intrinsic fluctuations Jl. This scaling implies 

that as Q ~ oo, the Jl components are of order unity. We shift attention 

from the probability distribution P(m ,t) to the probability 
distribution for the scaled intrinsic fluctuations, <l>(J.L,t). It is then 

possible to show2 that in the macroscopic limit (i.e. Q ~oo ), we obtain 

a - a a ( 1 )oo 
~a = - -a (-a K. (m (t)) JJ.J· <1>) 

t Jli mj t 

. h. h R( 2 ) d f. d b 1n w 1c ij 1s e 1ne y 

(2) limit (2) 
R .. = A Q K .. (m(t)) lJ ~~~00 -1J 

This is a Fokker-Planck equation for a non-stationary, Gaussian, 

Markov process. The non-stationarity results from the explicit 

(15) 

(16) 

dependence on m ( t) in both K ~ 1 
)oo and R ( 2). Since this m ( t) is found 

l 

from (12), the deterministic macrovariable equations, we say that 

the intrinsic fluctuations "ride on the back" of the deterministic 
motion. We will refer to the rigorous proof of this result as "Kurtz's 

first theorem". 
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Several remarks are In order2 . The time dependent coefficients 

of the first order JJ.-derivatives in ( 15) are precisely the components 

of the Jacobi matrix for the deterministic macrovariable equations 

(either (1) or (12)): 

a ( 1 )oo 
J··(t) = -K 

IJ am· I 
J 

Defining the covariance matrix for the intrinsic fluctuations by 

Cik(t)=< J.Li(t)JJ.k(t)> · 

where < ... > denotes averaging with respect to <l>(tJ.,t), leads to the 

equation (derived from (15)) 

d (2) 
d t Cik(t) = Jij(t)Cjk(t) + Cij(t)Jkj(t) + Ri k (t) 

(17) 

(18) 

(19) 

This is exactly (4) of the introduction ((17) is precisely (2) because of 

(6)), and shows how the Jacobi matrix for the deterministic motion 

arises in the dynamics of the intrinsic fluctuations. The following and 

final remark is the central issue of this paper. If the deterministic 

motion is chaotic. then the Jacobi matrix will create an unbounded 

growth of the Cik components2.4. Since the derivation of (15), and 

hence of (19), assumes that the Jl components remain of order unity, 

it would be inconsistent to use (19) when the fluctuations grow 

larger than this. As will be shown below, there exists· an alternative 

treatment5•6 for this case in which the intrinsic fluctuations can grow 

large. 

One way to express the content of the limit theorem2 3 

reviewed above is to write: 

(20) 

In which < ... > t is the average with respect to P(m ,t). This says that 

the deterministic equations' solution approximates the expected 
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values of the underlying mesoscopic master equation with an error 
of order 1/Q 112, i.e. an error the size of the fluctuations. The proper 

interpretation of this result is that the more fundamental physical 
description is given by the mastef equation, whereas the 

deterministic macrovariable equation is an approximate description. 
In the macroscopic limit where intrinsic fluctuations may be ignored 

(provided that they don't grow large), it is far easier to use the 

macrovariable equations than to use the master equation. However, 

if the intrinsic fluctuations grow too large for this treatment to· be 
valid (seen as chaos at the macrovariable level), then another limit 

theorem is available, "Kurtz's second theorem"5•6 . Not only does 

Kurtz's second theorem allow one to handle the large intrinsic 
fluctuations, but it does so with even greater accuracy than 
expressed in (20). If we denote the solution to this alternative 
treatment, to be elucidated below, by M f(t), then Kurtz's second 

theorem5 ~6 implies: 

Mf(t) = <m>t + O(lnQ/Q) 

M f(t) combines both the macrovariable behavior and the large 

fluctuations and its probability distribution satisfies the Fokker­
Planck equation 

a a ( 1 )oo 

at
Pf(m ,t) =. - -(K (m) Pf(m ,t)) am· 1 1 

1 a2 (2)oo 
+2 a a ( K. . ( m ) P f( m , t)) 

m· m· 1J 
1 J 

so that 

(21) 

(22) 

(23) 

I 

I 
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When this limit theorem was originally obtained5 ·6 , the chaotic 

amplification of intrinsic fluctuations __ -was not yet clearly 

understood9•10 .- Since the typical app"tications involved near 

equilibrium states or stable steady states away from critical points, 

for which intrinsic fluctuations remained small, a vanishingly small 

difference in behavior resulted from using (22) instead of the more 

tractable ( 15). Thus, this treatment remained largely ignored. On 

occasion, however, an objection to (22) has been voiced 12 because the 

averagtng defined by (23) implies 

d ( 1 )oo ( 1 )oo 
d t (Mf(t))i = < ~ (m) > * ~ (<m>) (24) 

since (22) does not have a Dirac. delta function solution ( cf. equations 

(10-13)). For intrinsic fluctuations that remain small, the difference 

between the :two expressions on the right-hand side of (24) is only 
order 0( 1/0 112), i.e. ignorable. For intrinsic fluctuations that grow 

large, this same inequality is a sign of the breakdown of the 

macrovariable limit altogether, as has been shown earlier1 •2• 

Therefore, Eq(22) is perfectly suited to the situation we are 

confronting. 

Because the direct solution to (22) numerically is demanding, 

we prefer to use a more tractable, equivalent9 method, the nonlinear 

Langevin treatment. This is possible because to every probability 

distribution equation satisfying (22) ther_e is associated a unique 

Langevin-like equation. However, great care is required in order to 

express the Langevin equivalent correctly since there are two valid, 

yet distinct, versions of stochastic calculus by which the equivalence 

can be realized, the Ito and the Stratonovich versions 26 . The proof of 

the limit theorem5•6 that produces (22) makes use of Martingale 

properties 26 and in so doing arrives at (22) in the Ito context. 

Numerical realizations of · Langevin equations in our hands are done 

a la Stratonovich27 using the traditional Newtonian calculus. 

Therefore, we need to obtain the Stratonovich Langevin equation 

equivalent to the Ito probability distribution equation (22). This is 
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done as follows. Suppose M f(t) satisfies the stochastic differential 

equation 
. ~ 

d dt (M f(t))i = ~j(M f(t)) + ~ij(t) gj(t) (25) 

where the derivatives are to be manipulated according to the usual 
calculus and where the gj's are statistically independent Gaussian 

white noises with zero means and covariances of unit strength, 1.e. 

(26) 

(27) 

in which < ... > denotes averaging with respect to the gk distributions. 

The Fokker-Planck equation satisfied by the Stratonovich stochastic 

process in Eq(25) is26 

a a 1 a a 
atPf(m,t) =- am.(<li(m) Pf(m,t)) + 2 am· ~ik(t) amJ· Pjk(t) Pf(m,t) (28) 

1 1 

which may be rearranged as 

a a 1 a 
-a Pf(m,t) = -~a <li(m) Pf(m,t) + 2 (-a . ~ik(t)) ~jk(t) Pf(m ,t)) (29) 

t mi ~ 

In both (28) and (29) repeated indices are summed. To identify the 
correct a and P to be used in Eq(25), we need only compare Eqs(22) 

d (29) S. K(2)oo . . . . h an . 1nce . . IS a symmetnc, non-negative matrix at eac 
~ . 

(2)oo 
instant of time, the square-root of K.. will also be symmetric and 

IJ 

one finds that 

(30) 
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( 1 )oo 1 ( a ) 
ai(t) = Ki (t) - 2 ~ amj ~ik(t) ~jk(t) (31) 

( 1 )oo 
Generally, ~ is of order 1/Q 112 so that a differs from K. only to 

1 

order 1/Q and this "Ito-Stratonovich shift" is ignorable9 , but when 

the intrinsic fluctuations are large, not only will this difference be 

important, but (25) will differ markedly from the purely 

deterministic macrovariable equation (12) . (equivalently (1)). 

There is an additional advantage to using equation (25) for the 

study of chaotically amplified intrinsic fluctuations. The only feature 

of the underlying mesoscopic master equation that remains in 
· (2 )oo { 1 )oo 

Eqs(25), (30) and (31) is the matrix K.. (the vector K. is 
· 1J 1 

predetermined_ by the macrovariable equations). Thus, we need not 

know the underlying master equation in full detail but only the 

second moment of the transition probability (see (8)). With physical 

. . • h . b "bl 1 K( 2 )oo . h b · · Insig t, It may e poss1 e to correct y guess . . wit out o taining 
1J 

the full master equation. Hydrodynamics may be an example of this 

circumstance9 . 

The description of large scale intrinsic fluctuations by 

equations (25-27 ,30,31) combines the macrovariable and the 
intrinsic fluctuation dynamics in one quantity, M f(t), unlike the 

situation for small fluctuations wherein two sets of equations, 

equations (12) and (15), are obtained. The intrinsic fluctuations no 

longer "ride on the back" of the deterministic macrovariables and, 

indeed, no autonomous macrovariable equation exists (see (24 )). 

When the intrinsic fluctuations grow large, the distribution function 
Pf(m ,t) becomes broadly spread out, unlike the extremely sharp 

distribution given by ( 11 ), which is only valid when the fluctuations 

remain small9 . For this reason the concept of a deterministic 

macrovariable is lost. While one may still use (23) to define an 
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"average" value, there is no longer an autonomous dynamics for the 
M f components because of the broaaness of the Pf distribution2. 

The breakdown of the autonomous macrovariable equations 

associated with large scale intrinsic fluctuations forces a 

reassessment of the meaning of chaos in real physical systems. 

Conceptually, one must shift focus from the wild deterministic 

macrovariable trajectories to large scale intrinsic fluctuations. A 

variety of new characterizations need to be developed, and the 

examples that are presented in the next section are meant to indicate 

some possible avenues for this development. In· ·each of the 

examples, we will use the approach represented by equation (25), 

since it is the most tractable and is also a highly accurate 

representation of the mesoscopic level of description. 

One should not confuse this approach with prevtous work that 

treats the effects of extrinsic noise on macrovariable systems 13 •17 

using similar equations. In these treatments, some of which have the 

same form as (25), the aj's are just the K~ 1 
)co's (i.e. the Fi's of 

equation ( 1 )), and the ~ik 's are not connected to the state of the 

system, i.e. there is no "intrinsic fluctuation-dissipation relation" as tn 

(30), because the fluctuations are extrinsic and not intrinsic. That is, 

the strength of the extrinsic noise does not depend on the state of the 

system. Moreover, if the intrinsic fluctuations have grown large scale, 

the breakdown of the autonomous macrovariable equations implies 

that extrinsic fluctuations should be introduced directly at the 

mesoscopic level, not at the deterministic macrovariable level, which 

ts no longer valid. 

All the preceding considerations must be qualified by the 

observation that the growth of intrinsic fluctuations depends upon 

two quantities, their rate of growth (this is related to the largest 

Liapunov exponent) and their initial size (this is determined by (30) 

at t=O). In the Josephson junction 15 example that follow~, both of 

these quanttttes are "large", whereas in the laser16 example both of 

these quantities are "small". In the Rossler14 paradigm, we explore 



1 9 

both regimes and motivate our expectations for the real physical 
systems. ,-· 
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IV Examples 

The purpose of these example-s is two-fold. They make the 

general ideas concrete, and they help to make contact with real 

experiments. Ultimately, we wish to identify a real physical system 

on which quantitative measurements can be used to explore the 

amplification of intrinsic fluctuations. Significant progress in this 

direction is reported. 

As our first example, which exhibits behavior like both of the 

following examples, we look at a purely mathematical model, the 

Rossler model 14•28 . This model was invented to show the minimal 

ordinary differential equation system that can have chaos. We have 

chosen it because of its great simplicity. The route to chaos in this 

model is period doubling of a limit cycle. The equations, in three 

independent variables, X, Y, and Z, are 

d 
d t X=- (Y + Z) (32) 

d 1 
-Y=X+-Y 
d t 5 

(33) 

d 1 
-z=-+ Z(X-J.L) 
d t 5 

(34) 

In which J.1 is an adjustable parameter. For J.L=2.6, the asymptotic state 

is a simple limit cycle attractor. It has a period of about 5.8 time 

units. The unit of time is dimensionless, and power spectra show a 

fundamental at about 0.17 Hz (cycles per unit of dimensionless time). 

(In the literature 14 , the unit of time is arbitrarily taken to be .01 sec, 
so that the fundamental becomes 17 Hz.) For J.1=3.5, the limit cycle 

has bifurcated once, while for J.1=4.1 it has done so twice. After this, 

much smaller changes in Jl lead to increasing numbers of bifurcations 

until around J.1=4.2 infinitely many have occurred and the motion 

becomes chaotic. For JJ.=4.23, the largest Liapunov exponent is A.= .0 14. 
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This system of equations does not describe a real physical 

system. Therefore, construction of an underlying master equation 

cannot benefit from physical insight into real molecular substructure. 

Nevertheless, for the sake of illustration, we can imagine that such an 

underlying, mesoscopic ,' molecular picture really does exist. This 

means that we must construct an underlying master equation for the 

Rossler model, based on an imagined underlying molecular basis. 

There are many ways to do this that yield the Rossler model in the 

macroscopic limit but produce different fluctuations. Whichever 

specific choice we make, we can circumvent the actual construction 

of the master equation by Invoking Kurtz's second theorem. We do so 

by merely adding an intrinsic noise term to equation (34), say, in 

accord with Kurtz's second theorem as discussed in the previous 

section. While arbitrary for the Rossler model, this procedure serves 

to illustrate how noise amplification can be seen in models of real 

physical systems wherein the specification of the added noise is 

entirely determined by the nature of the physical system. The noise 

to be added to the Rossler model is Gaussian, white noise with state 

independent strength, so that no lto-Stratonovich shift is required. 

Note that what we are doing looks similar to what others have 

done to treat the addition of extrinsic noise to the Rossler model. 

However, the interpretation is significantly different. For extrinsic 

noise, X, Y ,and Z retain their meaning and their values merely become 

noisy, but for intrinsic molecular noise, the underlying probability 

distribution implicitly in mind when we _ construct the mesoscopic 

description, either by a master equation are by Kurtz 's second 

theorem, becomes broad because of chaos-amplification of noise, and 

X,Y, and Z cease to be meaningful variables. No autonomous dynamics 

exists for them. In other words, the macrovariable picture breaks 

down 2.4 and the mesoscopic description is required for a correct 

quantitative treatment. 

Let us now return to our ad hoc mesoscopic treatment of the 

Rossler model. The observation of the amplification of intrinsic noise 

by chaotic trajectories is achieved in the following manner. First we 
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run equations (32-34) numerically and plot the attractor (after the 

transients have died away) in the x ... ~y plane (X along the horizontal 

axis and Y alon-g the vertical axis r this is shown in figure 1 for 
f.J.=4.23. Also shown is a horizontal line cutting the left-hand portion 

(X<O) of the attractor along Y=O. We numerically determine 

probability distribution (in the noise-free case, this is called the 

invariant measure) for X values. This is shown in figure 2. Next, we 

redo all of this with the noise present. As indicated above, this is 

done by using equations (32-33) as is and by adding Gaussian~ white 

noise with zero mean, g, to (34 ), i.e. 

d 1 
d t Z =5 + Z(X-f.J.) + g (35) 

tn which g has correlation formula 

<g(t)g(t')> = 2cr8(t-t') (36) 

tn which cr is an adjustable noise strength. In a real physical model, 

this noise strength would be determined by the underlying physics 

through the master equation. For our illustrative purposes, it is 

adjustable so that we can explore how effects depend on its size. 

Figures 3 and 4 show the results paralleling figures 1 · and 2 for 
f.J.=4.23 and cr= 1 o-8 . It is extremely difficult to discern any differences 

between figures 1 and 3, but there is very clear smoothing of the 

probability distribution of · figure 2 in figure 4 as a result of intrinsic 

noise amplification. If, instead, our noise had been instrumental, then 

we would see it as a smoothing of figure 2 with a Gaussian smoothing 
function with standard deviation equal to cr 112 , a magnitude of 1 o-4 , 

that would not produce a visually observable effect on figure 2. 

However, amplification of intrinsic noise produces the clearly 

observable effect seen in figure 4 and shows that the amplification ts 

to macroscopic size (i.e. order unity). Figures 5 and 6 show what 
happens when cr= 1 o-6 • Now both figures are visually effected, and 

the attractor shows only two bands instead of four. The attractor in 

figure 5 could be mistaken for the more chaotic, noise-free attractor 
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tn figure 7 obtained for IJ.=4.3, but the corresponding invariant 

measure of figure 8 is easily disting,uished from figure 6. 

These cases clearly suggest ~hat the way to observe the chaotic 

amplification of intrinsic noise is to contrast the resulting probability 

distribution with the noise-free invariant measure. Even when the 

corresponding attractor plots show no discernable differences, the 

differences in the probability distributions can be very marked. For 

big enough ·noise, even the attractor plots may become · 

distinguishable. The following two examples illustrate this diagnostic 

approach in models of real physical systems. 

The Josephson junction is a real, electronic, physical system in 

which conditions can be arranged so that it appears to exhibit chaos. 

A simple mathematical description of the phenomenon in terms of 

either a macrovariable current, or a macrovariable voltage (or 

associated phase), also can exhibit chaos. Incidentally, this is one of 

those examples, alluded to in the introduction, for which published 

accounts 15 refer to the chaos tn the macrovariable time dependence 

as a "noise rise". This usage is not what we mean by "chaotically 

amplified intrinsic noise", and one must make an effort to avoid 

confusion. 

The inacrovariable model for superconductor-insulator­

superconductor (SIS) Josephson junctions operated in the classical 

regime (i.e. ei0 R < K8 T, to be interpreted below) is 15 : 

dV V 
C d t + R + 10 sin<!> = led + lrf sinrot (37) 

in which <1> is the macroscopic quantum phase of the supercurrent, C 
is the capacitance of the junction, R is its resistance, 10 is the critical 

current, Ide is the applied d-e current, lrf is the amplitude of the 

applied r-f current with frequency ro, and V is the junction voltage, 

related to <1> by 

(38) 
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in which ft is Planck's constant (divided by 21t) and e is the charge of 

an electron. One may proceed with .the two coupled equations (37-

38), or convert_ to one second-order' equation 

(39) 

This form of the equation suggests defining the junction frequency, 
ro0 , by 

-hC 
ro - <--)-1/2 

0 - 2el 0 
( 40) . 

and the dimensionless time, 't, by 

(41) 

29 
2ei0 R 2C 

If we also introduce the McCumber parameter , ~c = 11 , and 

ld c lrf 
the ratios · p = -1- and p 1 - I , equation (39) becomes: 

0 0 

d 2ct> 1 dct> . ro 
- 2 + -'A -d + stncp = p + p1 sin(- 't) 
d 't "JJC 't roo 

(42) 

which is the canonical form for the Josephson junction, and is seen to 

be the equation for a periodically perturbed, damped, planar 

pendulum30 , well known for its capacity to exhibit chaos. 

This description of the junction is macroscopic, and the 

macrovariable current represents many Cooper electron pairs. 

Individual Cooper pair motions show up as intrinsic fluctuations tn 

the macrovariable current. This is not unlike the picture of current 

fluctuations in a classical resistor9 , i.e. Johnson noise, except that the 

electrons are not paired, and in addition, Johnson noise occurs in a 

resistor in series with a voltage, whereas Josephson junction noise 

occurs with a resistor and a capacitor in parallel with the junction 

~oltage. 
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In principle, we should now try to construct a master equation 
that has equation ( 42) as its macroseopic limit and contains the 

correct physics -for the determinatio~6 
·of K( 2)oo. This is not an easy 

task. However, in other electronic circuits with a configuration of 
capacitor and resistance identical to. that for Eq(37) (i.e. in parallel 

with the voltage), the determination of the strength of the 

fluctuations, through a master equation, has already been 

successfully obtained9 . This allows us to use Kurtz's second theorem 

to obtain a stochastic realization of the mesoscopic description. The 
result is to add a stochastic term to the right-hand side of (37) of the 
form g f(t), where f is Gaussian, white noise with zero mean and 

< f(t)f(t')> = o(t-t') 

g = (2K8 T/R) 112 

(43) 

(44) 

in which KB is Boltzmann's constant, T is the junction temperature, 
and R is the junction resistance. (Note that for Johnson noise, g _ R 112 

when quantities are expressed as functions of frequency instead of 

time.) This amounts to the addition of t w0 
112 f(t) to the right-hand 

side of ( 42), where 

<f(t)f(t')> = o(t-t') (45) 

Since· the numerical integration of this non-integrable equation 1s 

easter to implement as two coupled first- order equations, we recast it 
as 

d<t> 
-=v (46) 
dt 

d v 1 ro IT 
- +- v + sin<P = p + p sin(- t) +(?.:- )112Pc -114f(t) (47) 
d t ..Jpc 1 roo -lo 

where ( 46) defines the variable v, and in ( 4 7) we have introduced 
the "thermal current", IT, defined by 
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(48) 

and. have used the identity 

gro 1/2 I . 

1: = <2j: )112~c -1/4 (49) 

We see from ( 49) that the fluctuation-dissipation relation 

maintains its usual . significance in this case because the mean square 
of the fluctuation has a strength proportional to both 2KB T and ~c -l/2. 

Moreover, it is inversely proportional to the system size, in this case 
10 , which itself is proportional to the cross-sectional area of the 

junction. The cross-sectional area of the junction is the macroscopic 
parameter, i.e. Q, characteristic of this system. A particularly nice 

feature of this example is that the fluctuation strength is 

independent of the state of the_ system (in so far as R is). This IS why 
there is no "~-correction to a" (see equations (30-31 )) in ( 4 7). Said 

another way, the Ito-Stratonovich distinction IS irrelevant in this 

case. 

We have done numerical studies of equations (42) and (46-47). 

The results will be reported in detail elsewhere31 . Using physically 
(1) 

derived parameters (~c=4, p=O, p 1 =.91, and - =.5655), the scaled 
. . roo 

parameters in ( 47) are all roughly of order unity except for the noise 

strength given in (49). It works out to be of order 10-2. There is no 

freedom here because this magnitude is determined by the 

fluctuation -dissipation relation expressed by ( 44) and depends on 

predetermined macroscopic parameters (i.e. T and R). This magnitude 

is relatively very large. For comparison, a typical hydrodynamics 

problem cast in dimensionless form such that the macrovariable 

magnitudes are order unity has a mean squared noise strength of 

order 10- 10 . Moreover, the largest Liapunov exponent for (42) with 
the same parameters is A-=0.112, which implies a sizeable 

amplification of the intrinsic noise in only 10-100 dimensionless time 

units. This does show up in the attractor plots with the noise 
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compared with those with no noise (see figures 9 and 11 ). This is like 
the Rossler case of J.L=4.23 with a= 1 o-6. In addition, dramatic .. · 

differences in the probability distributions are seen, as is shown In 

figures 10 and 12. 

Recent studies of a class-B Nd:Y AG laser containing a nonlinear 

intracavity crystal exhibited chaotic output intensity 16 . The dynamics 

was shown to be very well modeled by equations such as: 

(50) 

(51) 

for j,k = 1 ,2~3. These equations represent only one of many possible 

cases studied. In this case, three modes polarized in the same 
direction have intensities Ij and gains Gj for j = 1 ,2,3. In other cases,_ 

six, or even eight, modes are used and the equations are 
correspondingly enlarged. The cavity round trip time, 'tc, is set equal 

to .2 nsec, the flourescence time, 'tf, is set equal to 240J.Lsec, the cavity 

losses, <Ij, are set equal to .01, the nonlinear crystal coupling 

coefficient, £, is set equal to 5xlo-5 , the self-saturations, ~k' are each 

set equal to 1, the cross-saturations, ~ik' are each set equal to .6, and 
0 

the pump parameters, G j , are each set equal to .04. The parameter g 

is a variable configuration parameter depending on the relative 

orientation of the laser and nonlinear crystals. For different choices 

(g is always in the interval [0, 1]) stable, periodic, chaotic and 

intermittent output intensities are produced. The correspondence 

between the numerical simulation of . equations (50-51) and real 

laser measurements for which all of the above parameters were 

determined is good in the periodic regime when the time course of 

the total intensity is compared. Spontaneous emission is the . physical 

basis for intrinsic noise in this laser system (pump noise may also 

prove important but appears to be very small in this case), and in 
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other laser contexts32 it has been v~ry accurately simul~ted by 
adding Gaussian, white noise to equations that are the analogues to 
(50-51). We may do the same here,_ in the spirit of Kurtz's second 
theorem. 

Chaos is confirmed for the equations by computing the 
Liapunov exponent which turns out to be A.=4.6x 104 sec·1 33. The 

magnitude of the white noise that should be used to model 
spontaneous emission is of order . 10·8• The probability distribution 

for the total intensity shows a significant effect in our preliminary 
studies, and this characterization is currently under investigation. A 
detailed account of the comparison of the theory with experiment is 

In preparation33 • 

Generally, a num-erical simulation of model equations will 
determine whether or not amplification of intrinsic noise will be 
significant. If the initial intrinsic noise level is n0 and the largest 

Liapunov exponent is A., then the time required for the noise level to 

reach n is of the order ot4: 

1 n 
t =-In(-) 

A. no 
(53) 

It may take much longer because this value assumes pure 
exponential growth whereas after a certain noise level, nonlineari ties 

will begin to suppress the noise growth. 
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Figure Captions 

Figure 1. X-Y plot of the Rossler attractor for JJ.=4.23 and cr=O. 

Figure 2. Invariant measure for the attractor in figure 1 projected 
onto the negative X axis at Y =0. The vertical axis gives the 
percentage of crossing points in an X-axis bin. 1024 bins were used 
over the range of X values indicated in the ·figure. 

Figure 3. X-Y plot of the Rossler attractor for JJ.=4.23 and cr= 1 o-8 . 

Figure 4. Probability distribution for the attractor in figure 3 
projected onto the negative X axis at Y =0. All other aspects of the 
figure are the same as in figure 2. 

Figure 5. X-Y plot of the Rossler attractor for JJ.=4.23 and cr= 1 o-6 . 

Figure 6. Probability distribution for the attractor in figure 5 
projected onto the negative X axis at Y =0. All other aspects of the 
figure are the same as in figures 2 and 4. 

Figure 7. X-Y plot of the Rossler attractor for JJ.=4.3 and cr=O. 

Figure 8. Invariant measure for the attractor in figure 7 projected 

onto the negative X axis at Y=O. All other aspects of the figure are the 
same as in figures 2,4 and 6. 

Figure 9. Invariant measure for the Josephson junction equations 
with no noise. 

Figure 10. Projection of figure 9 along the v=O axis yielding a the <1> 

distribution. 

Figure 11. Probability distribution for the Josephson junction with 
intrinsic noise. 
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Figure 12. Projection of figure 11 along the v=O axis yielding a the <P 

distribution. 
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Annual Technical Report for Grant: AFOSR-90-0158, " On the 
Theory of Turbulent Dy~amics"-, __ for the time period 901001 to 91 1130 
Ronald F. Fox, P.l., (Georgia Tech,P-roject # G-41-613). 

In February, 1991 the paper "Amplification of intrinsic 
fluctuations by chaotic dynamics .:-in physical systems", co-authored 
with Joel Keizer appeared in Physical Review A43, pp. 1709-1720. In this 
paper we present the theory for the quantitative treatment of large scale 
fluctuations created by chaos. This theory is based on a limit theorem by T. 
Kurtz which enables one to approximate a master equation description by a 
Langevin equation with an accuracy of Log(Q)/Q, which is much better than 
the usual Kramers-Moyal based central limit theorem result of order 1/Q 1/2, 
where n is the system size. If one can determine the magnitudes of the 
intrinsic fluctuation correlations without a detailed construction of the 
underlying master equation, it is possible to go directly to the Langevin 
description from the macroscopic level of description. This is very much like 
the situation for the Onsager-Machlup theory in the linear relaxation regime, 
only now we are dealing with the non-linear regime and with fluctuations 
that may grow to macroscopic size. Thus, the first objective of this research 
program has been achieved with the establishment of this new approach. 

Keizer and I have just finished a long paper on the application of this 
approach to the Lorenz system for hydrodynamics entitled; "On the growth 
of molecular fluctuations for nonstationary systems: 
hydrodynamic fluctuations for the Lorenz model". This paper has 
been submitted to The Physics of Fluids and after one round of refereeing 
we expect the paper to be accepted soon. In it, we present extensive 
supercomputer simulation results for the Lorenz model including the 
appropriate fluctuations. This is an example in which the correlations of the 
fluctuations driving the equations are known independently of a detailed 
knowledge of the underlying master equation so that the actual construction 
of the master equation is circumvented. We find that even though there is 
dramatic amplification of the fluctuations, the stationary probability 
distribution formed is indistinguishable from the invariant measure for the 
noiseless simulation. This is in marked contrast with the results, presented in 
Phys. Rev.A in February, for the Rossler model with fluctuations, and we 
observe that the reason for this may have to do with the size of the Liapunov 
exponent which is relatively very large for the Lorenz case. With my student, 
Tim Elston, whom is subported by this grant, we have looked for a regime in 
which the Liapunov exponent is smaller and have found several, originally 
discovered by Sparrow. In these new regimes, clear effects are discemable 
and we are collecting together our results for publication. In adsdition, by 
looking instead at the laser-Lorenz model of Haken, in the complex 



representation, not only do we also see results like for the Rossler model with 
a smaller Liapunov exponent, but _w~;'-also see a period doubling cascade. 
Another advantage to the model is that it is more closely tied to a real 
physical system than is the hydro-Lorenz model so that our results can in 
principle be tested more easily experimentally. 

With Elston, I have also been looking at the problem of pattern 
formation in the Rayleigh-Benard system. This problem is based on the 
experimental work of the Ahlers group in Santa Barbara, with whom we 
have had numerous communications. They see a stochastic component to 
their studies but have found its magnitude to be much bigger than predicted 
by hydrodynamic fluctuation theory, and this has lead to a bit of a puzzle. 
While this is not a chaotic system, we thought we should look at it. We found 
that we could reproduce the fits to experiment with a stochastic theory that 
included only an initial value distribution (as was suggested to us by M. 
Rabinovitz) and no stochastic driving force, as opposed to the Ahlers model 
which uses only a stochastic driving force. This result, "Stochastic Effects 
in Rayleigh-Benard Pattern Formation", has been accepted by 
Physical Review A as a short paper that will appear soon. There is still a 
puzzle because our initial value fluctuations are also larger than pure thermal 
fluctuations would be, and we suspect that they have to do with systematic 
imperfections in the experimental apparatus. 

With Raj Roy and one of his students, I have looked at the chaotic 
amplification of intrinsic fluctuations (spontaneous emission) in a multimode 
laser. Again, one can go directly to the Langevin description since the 
intrinsic fluctuation correlations are independently known. Numerical 
simulation of model equations clearly shows the effect with amplification 
over many orders of magnitude. Stationary distributions and invariant 
measures, however, are indistinguishable so that we have studied transient 
effects in order to see if an experimentally accessible quantity can be 
identified. In our paper "Amplification of Intrinsic Noise in a 
Chaotic Multimode Laser System", already accepted by Physical 
Review A, we discuss the experimental possibilities. In addition, our 
transient studies uncovered a new effect of the intrinsic noise that can be seen 
even in non-chaotic lasers. Thus, the study of noise amplification in a system 
where noise was originally left out altogether has lead to appreciation of a 
noise effect totally unexpected. This is mentioned in our paper and will be the 
subject of subsequent study. 

In addition to these completed programs, Elston and I are still working 
on 2-d turbulence which has lead to numerous computational difficulties. The 
availability of the Navy supercomputer for this work has been essential. 



Georgia Tech has shut down its mainframes this year. The administration's 
philosophy has been that researchers &,hould shift to workstations instead. 
This works for those who have access o'f the wherewithal to obtain access. So 
far my program has not been adversely affected because the School of 
Physics purchased an IBM risk workstation to be shared by Flannery, U zer 
and myself. Elston does most of his computer program development on this 
machine and is able to use the supercomputer for big runs. However, I 
envisage that the growing demand for our risk station by more of the students 
in our three groups, and by the postdocs, will make this a short term solution. 
Eventually I will have to procure a dedicated workstation myself, prior to 
which I will need to procure the funding. Will the Navy-Airforce be able to 
support such a· request in the next year or so? 



Final Technical Report for Grant: AFOSR-90-0158, "On the 
Theory of Turbulent Dynamics", for ~he time period 900301 to 920930 
Ronald F. Fox, P.I., (Georgia Tech Proj~ct # G-41-613). 

-
Four papers supported by this grant have appeared in print. They are: 

1) "Amplification of intrinsic fluctuations by chaotic dynamics in 
physical systems", R.F. Fox and Joel Keizer, Physical Review A43, pp. 
1709-1720 (1991). 

2) "Stochastic Effects in Rayleigh-Benard Pattern Formation", 
T.C. Elston and R.F. Fox, Physical Review A44, pp. 8403-8405 (1991). 

3) "Amplification of Intrinsic Noise in a Chaotic Multimode Laser 
System", C. Bracikowski, R.F. Fox and R. Roy, Physical Review A45, 
pp. 403-408 (1992). 

4) "Reply to 'Comments on the Amplification of Intrinsic 
Fluctuations by Chaotic Dynamics' ", J.E. Keizer and R.F. Fox, 
Physical Review A46, pp. 3572-3573 (1992). 

Two more papers are submitted for publication at this time. They are: 

1) "On the growth of molecular fluctuations for nonstationary 
systems: hydrodynamic fluctuations for the Lorenz model", J .E. 
Keizer, R.F. Fox and J. Wagner, submitted to Physics Letters A (1992). 

- . 

2) "AmplificatiQn of Thermal Noise by the Lorenz Equations", 
R.F. Fox and T.C. Elston, submitted to Physical Review A (1992). 

A book chapter will appear in the Proceedings of the International 
Workshop on Statisical Physics (IWSP-1992) held at Beijing Normal 
University, Beijing, P.R. China, October 19-22, 1992. Its title is: 

"Amplification of Intrinsic Fluctuations by Chaotic Dynamics", 
R.F. Fox (1992). 

T.C. Elston, the co-author of two of the papers listed above, is a 
graduate student. The first two years of his research work were supported by 
this grant which greatly facilitated his ability to focus solely on his research. 
He is presently completing his thesis with NSF support. I expect him to 
graduate in May of 1993. C. Bracikowski, the co-author on another paper, 
was also a graduate student with support from co-author R. Roy. 



Elston's research was aided by ac.eess to a Navy Cray supercomputer. 
This facility made possible large scale ·c6mputations that otherwise could not 
have been achieved with our local computational resources. 

-

Acceptance of our discovery of amplification of intrinsic fluctuations 
by chaotic dynamics has been slow. We have been able to identify several of 
the mental blocks experienced by others and have successfully clarified our 
position for some of these people. But it has been a slow process. The 
principal problem has been that some earlier researchers saw amplification 
of intrinsic fluctuations in their own work but failed to recognize its 
significance. These include Robert Graham and B. Huberman. The two 
conceptual insights they have missed are: 1) such amplification invalidates the 
contraction of the description from the mesoscopic level to the macroscopic 
level; and 2) the centrality of the Jacobi matrix in the theory since i(connects 
the magnitude (and sign) of the largest Liapunov exponent with the growth of 
the fluctuations. The first oversight by others follows from their failure to 
embed the phenomenon in the context of levels of description. Rather, in 
their work, they have simply added fluctuations to macroscopic equations 
and investigated what happens. The second oversight results from not 
suspecting a connection in the first place. I have had success in 
communicating these thoughts toM. Berry and D. Campbell and am in the 
process of bringing Robert Graham around as well. 
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A quantitative method for the treatment of large-scale intrinsic fluctuations amplified by chaotic 
trajectories in macrovariable physical systems is presented. Paradigmatic results for the Rossler 
model and preliminary computational results for chaotic Josephson junctions and for chaotic mul­
timode Nd:Y AG (yttrium aluminum garnet ) lasers are described. These studies are directed to­
wards identification of a real physical system in which experimental confirmation may be realized. 
The probability distribution on the intrinsic-noise-modified, chaotic attractor is identified as a likely 
candidate for comparison of experiment and theory. 

I. INTRODUCTION 

In several recent papers, 1-
4 we showed that chaotic 

dynamics can cause macroscopic growth of intrinsic fluc­
tuations in a macrovariable system. Implications of this 
effect were suggested for systems as diverse as c~emical, 
hydrodynamic, electronic, and quantum. In this paper, 
we propose a highly accurate approach to the theoretical 
description of such large-scale fluctuations. Our proposal 
is based upon a limit theorem for Markov chains proved 
by Kurtz5

··
6 in 1975, long before its relevance for chaotic 

dynamics could be appreciated. 
That chaotic dynamics and the growth of intrinsic fluc­

tuations are related to each other is a consequence of 
each being fundamentally tied to a dynamical quantity 
called the Jacobi matrix. 2 A quantitative characteriza­
tion of chaos is provided by the largest Liapunov ex­
ponent, which when positive, implies chaos. 7 The com­
putation of the largest Liapunov exponent directly uti­
lizes the instantaneous values of the Jacobi matrix. 8 

Similariy, the growth of the intrinsic fluctuations is made 
quantitative by following the time evolution of the co­
variance matrix. 9• 

10 Again, the computation of the co­
variance matrix evolution directly utilizes the instantane­
ous values of the Jacobi matrix. 2 This dual role of the 
Jacobi matrix and the consequence that intrinsic fluctua­
tions become very large in a chaotically dynamic system 
was apparently noticed for the first time only recent­
ly. 1, 2.4 

In order to make this connection explicit, imagine a 
macrovariable system described by N macrovariables 
Mi ( t) for i = 1, 2, .. . , N satisfying N coupled, nonlinear, 
ordinary, differential equations 

d 
d{Mi(t)=Fi(M(t)) (1) 

in which the Fi 's are N, generally nonlinear functions of 
theM~.; 's. The Jacobi matrix Jik(t) is defined 7 by 

aFi 

43 

for each instant of time. It has been shown that the larg­
est Liapunov exponent for this dynamics f.. is given by 8 

f..= limit-
1
-In [ Tr(J: t ( n )J: ( n ) ]J 

n~ x 2n 
(3 ) 

in which J:t( n) is the adjoint of J: ( n ). On the other hand, 
it has also been established that if Eq. ( 1) is the macro­
scopic limit of an embedding (see below) master equation 
(i.e., some "largeness parameter," say n, is allowed to go 
to an infinite limit), and if the scaled linearized deviations 
from the deterministic solutions to Eq. ( 1) are denoted by 
/-1) t) = n I 12 tlMi ( t) [where tlMi ( t) is the unsealed devia­
tion], and if the covariance matrix for these deviations 
(fluctuations) is denoted by c ik ( t)=(f-L i ( l )f-Lk(t ) ), where 
( ) denotes averaging with respect to the master 
equation 's probability distribution, then c ik ( t ) satisfies 

d . 
d{Cik U) =Jij( t )Cjk ( t) + C iJ( t )Jfj U ) + R ik ( t ) , (4l 

in which Rik ( t) is explicitly determined from the master 
equation. The exponential divergence of fluctuations in 
the limit of large n is reflected in the fact that Eq. (3) is 
al.so valid if ~T(t) and ~( t) are substituted in place of 
J: T( n) and J:( n) on the right-hand side. u 

The covariance matrix evolution equation involves a 
linearization of the macrovariable dynamics instantane­
ously in time. This, of course, produces the Jacobi ma­
trix dependence, but it also means that once the fluctua­
tions have grown even a little bit , the linearized equations 
lose their validity. In our earlier work 1.2.4 we stressed 
this point, and noted that while the covariance matrix 
evolution permitted computation of the largest Liapunov 
exponent, it did not accurately describe the fluctuations 
once they grew to macroscopic size. In order to obtain 
the large-scale fluctuations, a mesoscopic underpinning of 
the macrovariable equations is required. 2·

3 One way to 
accomplish this is to embed the macrovariable equations 
in a mesoscopic master equation and deduce the time 
evolution of the underlying probability distribution. 

1709 © 1991 The American Physical Society 
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K ) 1 1(m,t )= I dsm' ( m / -m i) W (m',m ), (7) 

K iT( m,t)= I dsm' (m/-m i)( m j -m1 )W (m' , m ), (8) 

etc. The n properties of w imply23 that K ( I ) ; o u"\ 
K 12 1::::::0(1/!1), and generally K ('1J::::::0(1/!1 11

-
1). -"'Usin g 

these transition moments, the master equation may be 
rewritten in the equivalent Kramers-Moyal form24.-~-~ ~ 

-P(m t)= ~ -- fl --a X ( - 1 )" I 11 a ] 
at ' n = l n! j= l amk} 

X[Kl"~ ·" k (m)P(m,t)]. (9) 
I 2 11 

With these properties, the macroscopic limit, i.e., !1- oo, 

implies2 

a _ a [ ( 1 l x ) -a P x( m ,t)---a- Ki (m)Poc(m,t) , 
t m i 

( 10l 

where the repeated indices in both Eq. (9) and (10) imply 
a summation and where the subscript (superscript) oo 

denotes the macroscopic limit of the corresponding quan­
tity. This partial differential equation is very special 
since its derivatives are all first order. This means that if 
the initial values for the m components are given precise­
ly, i.e. , P :c (m,0)=8(m -m0 ); then the solution to Eq. 
(10) is simply2 

P x( m,t)=8(m-m(t)), (11) 

where m( t) satisfies the system of coupled ordinary 
differential equations 

d -m -(t)=K!Ilx(m(t)). 
dt I I 

( 12) 

Moreover, if we apply the averaging defined in Eq. (16), 
we obtain the equations 

(13 ) 

on account of the Dirac 8-function solution (11 ). Thus 
M ( t ) is the same as m( t ), since both solve the same equa­
tion with the same initial condition m(O)=M(O)=m0. 

Having constructed the master equation so that 
K} 11 

x = Fi for the Fi 's of Eq. (1 ), we achieve an embed­
ding of the macrovariable equations in the master equa­
tion description as the macroscopic limit. 

We can also obtain a dynamical description of the in­
trinsic fluctuations with this master-equation approach. 
Generally, the intrinsic fluctuations in the macrovariables 
scale 11 like 1 / !1 112

. This means that they simply vanish 
in the macroscopic limit. In the spirit of the central limit 
theorem of probability theory , n it is possible to rescale 
the fluctuations so that their limiting behavior may be 
rigorously deduced. This is done by considering the devi­
ations of the m components from the deterministic solu­
tion to the macroscopic limit equation ( 12), i.e., m ( t ) 

scaled with f! - I 12: 

(14) 

which defines the scaled intrinsic fluctuations f-1 · This 
scaling implies that as n - oo, the f-1 components are of 
order unity . We shift attention from the probability dis­
tribution P ( m, t) to the probability distribution for the 
scaled intrinsic fluctuations Cl> (f-1, t). It is then possible to 
show2 that in the macroscopic limit (i.e. , n- oc ), we ob­
tain 

affi_ a I a K i l l :~: ( ( ) ffi ] a£'~'-- af-l i ami i m t ) f-1) '~' 

1 a
2 

[R 12 1( )ffiJ +-a a ij m ( t ) 'V ' 
2 f-l i f-1 ) 

in which R 1~2 ' is defined by 

R r2 ' = lim !1K r2 J(m(tl) 
I} !l - X I} • 

( 15 ) 

(16) 

This is a Fokker-Planck equation for a nonstationary, 
Gaussian, _Markov process. The nonstationary results 
from the explicit dependence on m( t ) in both K) 11 

x and 
R ! 2 J. Since this m( t) is found from (12), the deterministic 
macrovariable equations, we say that the intrinsic fluc­
tuations "ride on the back" of the deterministic motion. 
We will refer to the rigorous proof of this result as 
''Kurtz's first theorem." 

Several remarks are in order. 2 The time-dependent 
coefficients of the first-order f-1 derivatives in Eq. ( 15 ) a re 
precisely the components of the Jacobi matrix for the 
deterministic macrovariable equations [either (1 ) or ( 12 )] 

J - (t)=-a-K _r l l x 
I} a I " 

m i 
( 17) 

Defining the covariance matrix for the intrinsic fluctua­
tions by 

\ 18) 

where ( ) denotes averaging with respect to Cl> (f-1 , t ), leads 
to the equat·ion [derived from Eq. ( 15 )] 

This is exactly (4) of the Introduction [( 17) is precisely (2) 
because of Eq. (6)] and shows how the Jacobi matrix for 
the deterministic motion arises in the dynamics of the in­
trinsic fluctuations. The following and final remark is the 
central issue of this paper. If the deterministic motion is 
chaotic, then the Jacobi matrix will create an unbounded 
growth of the C ik components. 2.4 Since the derivation of 
(15), and hence of ( 19), assumes that the f-1 components 
remain of order unity , it would be inconsistent to use Eq. 
( 19) when the fluctuations grow larger than this. As will 
be shown below, there exists an alternative treatmenr 5

·() 

for this case in which the intrinsic fluctuations can grow 
large. 

One way to express the content of the limit theorem 2
·' 

reviewed above is to write 

(20) 
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in which ( ) 1 is the average with respect to P ( m, t). This satisfying (22), there is associated a unique Langevin-like 
says that the deterministic equations' solution approxi- equation. However, great care is required in order to ex-
mates the expected values of the underlying mesoscopic press the Langevin equivalent correctly , since there are 
master equation with an error of order 1 /!1 112

, i.e., an er~- .two valid, yet distinct versions of stochastic calculus by 
ror the size of the fluctuations. The proper interpretation: -~which the equivalence can be realized, the Ito and the 
of this result is that the more fundamental physical v. Stratonovich versions. 26 The proof of the limit 
description is given by the master equation, whereas the _ theorem 5

•
6 that produces Eq. (22 ) makes use of Mar­

deterministic macrovariable equation is an approximate~· tingale properties26 and in so doing arrives at Eq. (22 ) in 
description. In the macroscopic limit where intrinsic -- the Ito context. Numerical realizations of Langevin 
fluctuations may be ignored (provided that they do not equations in our hands are done in the manner of Strata-
grow large), it is far easier to use the macrovariable equa- novich 27 using the traditional Newtonian calculus. 
tions than to use the master equation. However, if the in- Therefore, we need to obtain the Stratonovich Langevin 
trinsic fluctuations grow too large for this treatment to be equation equivalent to the Ito probability distribution Eq. 
valid (seen as chaos at the macrovariable level), then (22). This is done as follows. Suppose M /( t ) satisfies the 
another limit theorem is available, "Kurtz's second stochastic differential equation 
theorem." 5

·
6 Not only does Kurtz's second theorem al­

low one to handle the large intrinsic fluctuations, but it 
does so with even greater accuracy than expressed in (20). 
If we denote the solution to this alternative treatment, to 
be elucidated below, by Mf(t), then Kurtz's second 
the~rem 5 · 6 implies 

M/(t)=(m) 1 +0(ln!1/!1). (21) 

M f (t) combines both the macrovariable behavior and the 
large fluctuations and its probability distribution satisfies 
the Fokker-Planck equation 

a )- a [ ( j ):x: ] -a Pf(m,t ---a- K 1 (m)P1 (m,t) 
t m 1 

(22) 

so that 

M f (t)= J d Nm mP1(m,t) (23) 

When this limit theorem was originally obtained, 5·
6 the 

chaotic amplification of intrinsic fluctuations was not yet 
clearly understood. 9• 

10 Since the typical applications in­
volved near equilibrium states or stable steady states 
away from critical points, for which intrinsic fluctuations 
remained small, a vanishingly small difference in behavior 
resulted from using (22) instead of the more tractable 
( 15). Thus this treatment remained largely ignored. On 
occasion, however, an objection to (22) has been voiced 12 

because the averaging defined by (23) implies 

!i_(M ( t)) . =(K ' 11x( ml) =F K -1 1 1x ((m)) (24) dt j I I I 

smce Eq. (22 ) does not have a Dirac 8-function solution 
[cf. Eqs. (10)-(13)]. · For intrinsic fluctuations that 
remain small, the difference between the two expressions 
on the right-hand side of (24) is only order 0 ( 1 / !1 1 n), 
i.e., ignorable. For intrinsic fluctuations that grow large, 
this same inequality is a sign of the breakdown of the ma­
crovariable limit altogether, as has been shown earlier. 1.

2 

Therefore, Eq. (22) is perfectly suited to the situation we 
are confronting. 

Because the direct solution to t22) is numerically 
demanding, we prefer to use a more tractable, equivalent9 

method, the nonlinear Langevin treatment. This is possi­
ble because to every probability distribution equation 

d 
-(Mf (t)) 1=a1(M1(t))+(311 ( t )g

1
lt l , 

dt 
(25 l 

where the derivatives are to be manipulated according to 
the usual calculus and where the g1 's are statistically in­
dependent Gaussian white noises with zero means and 
covariances of unit strength, i.e., 

(gk(t ) )=O' 

(gi(t)gk(t'))=8 ik8(t -t' )' 

(26 l 

(27 ) 

in which ( ) denotes averaging with respect to the g f.. dis­
tributions. The Fokker-Planck equation satisfied by the 
Stratonovich stochastic process in Eq. (25) is26 

a a -a Pf (m,t)=--a-[a1(m )P1 (m,tl] 
t m 1 

(28 ) 

which may be rearranged as 

:t PI(m,t)=- a!, [ a ,( m )Pfl m,t l 

+f [ a!/"l tl l/3i,l t lPJ im,t l I 
1 a2 

+-
2 

a a (31J..( t l(31J..( t lP r (m,t l . l29 l 
m 1 m1 

In both (28) and (29 ), repeated indices are summed. To 
identify the correct a and (3 to be used in Eq. !25 ). we 
need only compare Eqs. (22 ) and (29 ). Since K)/ ' z is a 
symmetric, non-negative matrix at each instant of time , 
the square root of K/t z will also be symmetric and one 
finds that 

(3( t ) = [ K ( 2 I z ( t ) ] I / 2 ' (JQ) 

a 1( t l =K) 1 ' z( t ) -_!_ [-aa (31k( t l ] (3Jk( t). U l l 
2 m1 

Generally , (3 is of order 1 / !1 112 so that a differs from 
K,' 1 1 

x only to order 1 / !1 and this "Ito-Stratonovich 
shift" is ignorable, 9 but when the intrinsic fluctuation s 
are large, not only will this difference be important, but 
(25 ) will differ markedly from the purely deterministic 
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macrovariable equation (12) [equivalently (1 )]. 

There is an additional advantage to using Eq. (25) for 
the study of chaotically amplified intrinsic fluctuations. 
The only feature of the underlying mesoscopic master 
equation that remains in Eqs. (25), (30), and (3 0 js the 
matrix Ki~?.h (the vector K ) 1 

l ::x: is predetermined ... _hy-ihe 
macrovariable equations). Thus we need not know · the 
underlying master equation in full detail, but onJy. the 
second moment of the transition probability [see · i.Sl ]. 
With physical insight, it may be possible to correctly 
guess Ki] 1 

x without obtaining the full master equation. 
Hydrodynamics may be an example of this cir­
cumstance. 9 

The description of large-scale intrinsic fluctuations by 
Eqs. (25) - (27), (30), and (31) combines the macrovariable 
and the intrinsic fluctuation dynamics in one quantity 
M f( t ), unlike the situation for small fluctuations wherein 
two sets of equations [Eqs. (12) and (15)] are obtained. 
The intrinsic fluctuations no longer "ride on the back" of 
the deterministic macrovariables and, indeed, no auto­
nomous macrovariable equation exists [see (24)]. When 
the intrinsic fluctuations grow large, the distribution 
function Pf( m, t) becomes broadly spread out, unlike the 
extremely sharp distribution given by ( 11 ), which is only 
valid when the fluctuations remain small. 9 For this 
reason, the concept of a deterministic macrovariable is 
lost. While one may still use (23) to define an "average" 
value, there is no longer an autonomous dynamics for the 
M f components because of the broadness of the Pf distri­
bution. 2 

The breakdown of the autonomous macrovariable 
equations associated with large-scale intrinsic fluctua­
tions forces a reassessment of the meaning of chaos in 
real physical systems. Conceptually, one must shift focus 
from the wild deterministic macrovariable trajectories to 
large-scale intrinsic fluctuations. A variety of new char­
acterizations needs to be developed , and the examples 
that are presented in Sec. IV are meant to indicate som~ 
possible avenues for this development. In each of the ex­
amples, we will use the approach represented by Eq . (25), 

since it is the most tractable and is also a highly accurate 

y = 0 

FIG. 1. X- Y plot of the Rossler attractor for p = 4. 23 and 
u=O. 

representation of the mesoscopic level of description. 
One should not confuse this approach with previous 

work that treats the effects of extrinsic noise on macro­
variable systems 13

· 
17 using similar equations. In these 

treatments, some of which have the same form as (25 1, 
the a i 's are just the K ! 11x's [i.e. , the Fi·s of Eq. ( l l] and 
the f3 ik 's are not connected to the state of the system, i.e. , 
there is no " intrinsic fluctuation-dissipation relation .. as 
in (30), because the fluctuations are extrinsic and not in­
trinsic. That is, the strength of the extrinsic noise does 
not depend on the state of the system. Moreover, if the 
intrinsic fluctuations have grown by a large scale, the 
breakdown of the autonomous macrovariable equations 
implies that extrinsic fluctuations should be introduced 
directly at the mesoscopic level, not at the deterministic 
macrovariable level, which is no longer valid. 

All the preceding considerations must be qualified by 
the observation that the growth of intrinsic fluctuations 
depends upon two quantities, their rate of growth (thi s is 
related to the largest Liapunov exponent ) and their initial 
size (this is determined by (30) at t =0] . In the 
Josephson-junction 15 example that follow s, both of th ese 
quantities are "large," whereas in the laser 10 example. 

2.0~----------------------------------------------------------~ 
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X 

FIG. 2. Invariant measure for the attractor in Fig. 1 projected onto the negative X axis at Y =0. The vertical axis gi ves the per­
centage of crossing points in an X-axis bin. 1024 bins were used over the range of X values indicated in the figure . 
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both of these quantities are "small." In the Rossler 14 

paradigm, we explore both regimes and motivate our ex­
pectations for the real physical systems. 

. ..: 

IV. EXAMPLES 

The purpose of these examples is twofold. They mal.<e 
the general ideas concrete and they help to make conta.ct­
with real experiments. Ultimately, we wish to identify a .­
real physical system in which quantitative measurements 
can be used to explore the amplification of intrinsic fluc­
tuations. Significant progress in this direction is report­
ed. 

As our first example, which exhibits behavior like both 
of the following examples, we look at a purely mathemat­
ical model, the Rossler model. 14

•
28 This model was in­

vented to show the minimal ordinary differential equation 
system that can have chaos. We have chosen it because 
of its great simplicity. The route to chaos in this model is 
period doubling of .a limit cycle. The equations, in three 
independent variables, X, Y,_ and Z, are 

_E'_X=-(Y+Z) 
dt 

_E'_Y=X+~Y 
dt ) ' 

_E'_z =.J...+Z (X -f.l ) 
dt 5 

' 

(32) 

(33) 

(34) 

in which f.l is an adjustable parameter. For f.l = 2. 6, the 
asymptotic state is a simple limit cycle attractor. It has a 
period o·f about 5.8 time units. The unit of time is dimen­
sionless, and power spectra show a fundamental at about 
0.17 Hz (cycles per unit of dimensionless time). (In the 
literature, 14 the unit of time is arbitrarily taken to be 0.01 
s, so that the fundamental becomes 17 Hz.) For f.l = 3. 5, 
the limit cycle has bifurcated once, while for f.l = 4. 1, it 
has done so twice. After this, much smaller changes in f.l 
lead to increasing numbers of bifurcations; until around 
f.l =4. 2, infinitely many have occurred and the motion be­
comes chaotic. For f.l =4. 23, the largest Liapunov ex­
ponent is A.=0.014. 

This system of equations does not describe a real physi­
cal system. Therefore, construction of an underlying 

... 

y = 0 

FIG. 3. X- Y plot of the Rossler attractor for ,u = 4. 23 and 
a=w - ~ . 

master equation cannot benefit from physical insight into 
real molecular substructure. Nevertheless, for the sake of 
illustration, we can imagine that such an underlying, 
mesoscopic, molecular picture really does exist. This 
means that we must construct an underlying master 
equation for the Rossler model, based on an imagined un­
derlying molecular basis. There are many ways to do this 
that yield the Rossler model in the macroscopic limit bur 
produce different fluctuations. Whichever specific choice 
we make, we can circumvent the actual construction of 
the master equation by invoking Kurtz's second theorem. 
We do so by merely adding an intrinsic noise term to Eq. 
(34), say, in accord with Kurtz's second theorem as dis­
cussed in Sec. III. While arbitrary for the Rossler model, 
this procedure serves to illustrate how noise amplification 
can be seen in models of real physical systems, wherein 
the specification of the added noise is determined entirely 
by the nature of the physical system. The noise to be 
added to the Rossler model is Gaussian, white noise with 
state independent strength, so that no Ito-Stratonovich 
shift is required. 

Note that what we are doing looks similar to what oth­
ers have done to treat the addition of extrinsic noise to 
the Rossler model. However, the interpretation is 
significantly different. For extrinsic noise, X, Y, and Z re-

2.0,----------------------------------------------------------. 
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I .... 
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FIG. 4. Probability distribution for the attractor in Fig. 3 projected onto the negative X axis at Y =0. All other aspects of the 
figure are the same as in Fig. 2. 
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y = 0 

FIG. 5. X-Y plot of the Rossler attractor for ,u=4. 23 and 
a= w- o. 

tain their meaning and their values merely become noisy, 
but for· intrinsic molecular noise, the underlying probabil­
ity distribution ·implicitly in mind when we construct the 
mesoscopic description, either by a master equation or by 
Kurtz's second theorem, becomes broad because of chaos 
amplification of noise, and X , Y, and Z cease to be mean­
ingful variables. No autonomous dynamics exists for 
them. In other words, the macrovariable picture breaks 
down, 2•

4 and the mesoscopic description is required for a 
correct quantitative treatment. 

Let us now return to our ad hoc mesoscopic treatment 
of the Rossler model. The observation of the 
amplification of intrinsic noise by chaotic trajectories. is 
achieved in the following manner: First, we run Eqs. 
(32)-{34) numerically and plot the attractor (after the 
transients have died away) in the X- Y plane (X along the 
horizontal axis and Y along the vertical axis). This is 
shown in Fig. 1 for fl =4. 23. Also shown is a horizontal 
line cutting the left-hand portion (X < 0) of the at tractor 
along Y =0. We determine numerically the probability 
distribution (in the noise-free case, this is called the in­
variant measure) for X values. This is shown in Fig. 2. 
Next , we redo all of this with the noise present. As indi­
cated above, this is done by using Eqs. (32) and (33) as is, 
and by adding Gaussian, white noise with zero mean g to 
Eq. (34), i.e., 

d -z =~+Z ( X -fl)+g 
dt ) 

(35 ) 

in which g has correlation formula 

< g ( t)g ( t I ) ) = 2a 8(t - t I ) 7 (36) 

in which a is an adjustable noise strength. In a real ph ys­
ical model, this noise strength would be determined by 
the underlying physics through the master equation. Fo r 
our illustrative purposes, it is adjustable so that we can 
explore how effects depend on its size. Figures 3 and 4 
show the results paralleling Figs. 1 and 2 for fl = 4. 23 and 
a= 10- 8

• It is extremely difficult to discern any 
differences between Figs. 1 and 3, but there is very clear 
smoothing of the probability distribution of Fig. 2 in Fig. 
4 as a result of intrinsic noise amplification . If, instead , 
our noise has been instrumental, then we would see it as a 
smoothing of Fig. 2 with a Gaussian smoothing function 
with standard deviation equal to a 112

, a magnitude of 
10-4, that would not produce a visually observable effect 
on Fig. 2. However, amplification of intrinsic noise pro­
duces the clearly observable effect seen in Fig. 4 and 
shows that the amplification is to macroscopic size (i.e., 
order unity). Figures 5 and 6 show what happens when 
a= 10- 6

. Now both figures are visually effected and the 
attractor shows only two bands instead of four. The at­
tractor in Fig. 5 could be mistaken for the more chaotic , 
noise-free attractor in Fig. 7 obtained for p =4. 3, but the 
corresponding invariant measure of Fig. 8 is easily dis ­
tinguished from Fig. 6. 

These cases clearly suggest that the way to observe the 
chaotic amplification of intrinsic noise is to contrast the 
resulting probability distribution with the noise-free in­
variant measure. Even when the corresponding attractor 
plots show no discernible differences, the differences in 
the probability distributions can be very marked. F o r big 
enough noise , even the attractor plots may become di stin­
guishable. The following two examples illustrate this di­
agnostic approach in models of real ph ysical sys tems . 

The Josephson junction is a real , electronic , ph ys ical 
system in which conditions can be arranged so that it ap­
pears to exhibit chaos. A simple mathematical descrip­
tion of the phenomenon in terms of either a m acrova ri­
able current, or a macrovariable voltage (or associated 

2.0~--------------------------------------------------~ 
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second-order equation 

... . .. ~ 

fz C d 2 dJ fz 1 d dJ . f de f rf . 
----· +--- - -+sm<h=-+-smwt. (39 ) 

.. ~ 2e 10 dt 2 2e I 0R dt 10 10 

y = 0 
·.-. ··~· This form of the equation suggests defining the junction 

frequency cu0 by 

FIG. 7. X-Y plot of the Rossler attractor for ,u=4.3 and 
a=O. 

phase), also can exhibit chaos. Incidentally, this is one of 
those examples, alluded to in the Introduction , for which 
published accounts 15 refer to the chaos in the macrovari­
able time dependence as a "noise rise." This usage is not 
what we mean by "chaotically amplified intrinsic noise," 
and one must make an effort to avoid confusion. 

The macrovariable model for superconductor-
insulator-superconductor (SIS) Josephson junctions 
operated in the classical regime (i .e., el 0 R < k 8 T to be in­
terpreted below) is 15 

C~~ + ~ +I0 sin¢>=Icte+Irrsinwt, (37) 

in which ¢> is the macroscopic quantum phase of the su­
percurrent, C is the capacitance of the junction, R is its 
resistance, I 0 is the critical current, I de is the applied de 
current, I rf is the amplitude of the applied rf current with 
frequency w, and Vis the junction voltage related to <h by 

V=_fl_ d<h 
2e dt 

(38) 

in which fz is Planck's constant (divided by 2rr) and e is 
the charge of an electron. One may proceed with the two 
coupled equations (37) and (38), or convert to one 

I 1

- 1/ 1 
fzC -

wo= --
2el0 

and the dimensionless time T by 

(40 ) 

(41 ) 

If we also introduce the McCumber parameter2
q 

f3c = 2el 0R 2C lfz and the ratios p =I de I I 0 and p 1 =I rr I I 0 , 

Eq. (39) becomes 

d 2¢> + 1 d <h + . -1. + . I (!) I --, ~- smw=p p 1sm -~ , 
dr yl f3c d1 w0 

(42 ) 

which is the canonical form for the Josephson junction 
and is seen to be the equation for a periodically per­
turbed, damped, planar pendulum, 30 well known for it s 
capacity to exhibit chaos. 

This description of the junction is macroscopic and the 
macrovariable current represents many Cooper electron 
pairs. Individual Cooper-pair motions show up as intrin ­
sic fluctuations in the macrovariable current. This is not 
unlike the picture of current fluctuations in a classical 
resistor, 9 i.e., Johnson noise, except that the electrons are 
not paired and, in addition, Johnson noise occurs in a 
resistor in series with a voltage, whereas Josephson­
junction noise occurs with a resistor and a capacitor in 
parallel with the junction voltage. · 

In principle, we should now try to construct a master 
equation that has Eq. (42) as its macroscopic limit and 
contains the correct physics for the determination of 
K 12

l :c . This is not an easy task. However, in other elec ­
tronic circuits with a configuration of capacitor and resis­
tance identical to that for Eq. (37) (i.e. , in parallel with 
the voltage), the determination of the strength of the fluc­
tuations through a master equation , has already been ob­
tained successfully. 9 This allows us to use Kurtz' s 
second theorem to obtain a stochastic realization of the 
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.. : 

0 ft. 2n. 

FIG. 9. Invariant measure for the Josephson-junction equa­
tions with no noise. 

mesoscopic description. The result is to add a stochastic 
term to the right-hand side of (37) of the form g j(t), 
where f is <;Jaussian, white noise with zero mean and 

(j(t)j(t'))=8(t-t')' 

g =(2k 8 T /R )112 , 

(43) 

(44) 

in which k 8 is Boltzmann's constant, T is the junction 
temperature, and R is the junction resistance. (Note that 
for Johnson noise, g- R 112 when quantities are expressed 
as functions of frequency instead of time.) This amounts 
to the addition of (g I I 0 ku6 12f ( r) to the right-hand side 
of (42), where 

(f(-r)/ (-r') )=8( r--r' ) . (45) 

Since the numerical integration of this nonintegrable 
equation is easier to implement as two coupled first-order 
equations, we recast it as 

. . ~ 

deb 
-d = u' 

T 

du + 1 + . A. . r UJ I -d ~u sm!f'=p+p 1sm l-r 
t Vf3c Wo 

I 
I 1

112 

+ 2___!_ (3 - 1/ 4/ ( -) I c ~ . , 
0 

(46) 

(47) 

where (46) defines the variable u, and in Eq . (47 l we have 
introduced the "thermal current" I T defined by 

2ek 8 T 
Ir=-fz-

and have used the identity 

gwo- = 2 ___!_ fJ; I/4. I/) I I II 12 

Io Io 

(48 ) 

(49 ) 

We see from (49) that the fluctuation-dissipation rela­
tion maintains its usual significance in this case because 
the mean square of the fluctuation has a strength propor­
tional to both 2k 8 T and f3; 112

. Moreover, it is inversely 
proportional to the system size, in this case I 0 , which it­
self is proportional to the cross-sectional area of the junc­
tion. The cross-sectional area of the junction is the mac­
roscopic parameter, i.e. , D., characteristic of this sys tem . 
A particularly nice feature of this example is that the 
fluctuation strength is independent of the state of the sys­
tem (insofar as R is). This is why there is no .. (3 correc­
tion to a" [see Eqs. (30) and (3 1)] in (47). Said another 
way, the Ito-Stratonovich distinction is irrelevant in this 
case. 

We have done num~rical studies of Eqs. (42) , (46 ), and 
(4 7). The results are planned to be reported in detail else­
where. 31 Using physically derived parameters ((3,. = -+, 
p=O, p 1 =0. 91, and w!w0 =0. 5655l, the scaled pa rame­
ters in (47) are all roughly of order unit y, except for the 
noise strength given in (49 ). It works out to be of order 
10 - 2

. There is no freedom here because this magnitude is 
determined by the fluctuation-dissipation relation ex­
pressed by (44) and depends on predetermined macro­
scopic parameters (i.e ., T and Rl. This magnitude is rela­
tively very large. For comparison, a typical hydro­
dynamics problem cast in dimensionless form, such that 
the macrovariable magnitudes are order unit y, has a 
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<1:> 
FIG. 11. Probability distribution for the Josephson junction 

with intrinsic noise. 

mean-squared noise strength of order 10 - 10. Moreover, 
the largest Liapunov exponent for (42) with the same pa­
rameters is A=O. 112, which implies a sizable 
amplification of the intrinsic noise in only 10-100 dimen­
sionless time units. This does show up in the attractor 
plots wi~h the noise compared with those with no noise 
(see Figs. 9 and 11 ). This is like the Rossler case of 
,u=4.23 with CJ= 10 - 6

. In addition, dramatic differences 
in the probability distributions are seen, as is shown in 
Figs. 10 and 12. 

Recent studies of a class-B Nd:Y AG laser containing a 
nonlinear intracavity crystal exhibited chaotic output in-

. 16 Th d . tensity. e ynamtcs was shown to be very well 
modeled by equations such as 

dJ. I 3 I ~'c d: = G) -a1 -gEl) -2gE ~ h 11 , 
/.:. ; J 

(50) 

dG . I 3 I ~'f-;J/-=G?-G1 1+(3111 + k~J (3Jk h , (51) 

for j, k = 1, 2, 3. These equations represent only one of 
many possible cases studied. In this case, three modes 
polarized in the same direction have intensities I . and 

. J 
.. ~ gams G1 for j = 1, 2, 3. In other cases, six , or even eight 

modes are used and the equations are correspondingly en­
larged. The cavity round-trip time T c is set equal to 0.2 
ns , the fluorescence time r f is set equal to 240 ,u s, the 
cavity losses a J are set equal to 0.01 , the nonlinear crystal 
coupling coefficient E is set equal to 5 X 10 - 5

, the self­
saturations !3~-:. are each set equal to 1, the cross satura­
tions (3ik are each set equal to 0.6 and the pump parame­
ters G? are each set equal to 0.04. The parameter g is a 
variable configuration parameter depending on the rela­
tive orientation of the laser and nonlinear crystals. For 
different choices (g is always in the interval [0, 1 ]), stable, 
periodic, chaotic, and intermittent output intensities are 
produced. The correspondence between the numerical 
simulation of Eqs. (50) and (51) and real laser measure­
ments for which all of the above parameters were deter-
mined is good in the periodic regime when the time 
.course of the total intensity is compared . Spontaneous 
emission is the physical basis for intrinsic noise in thi s 
laser system (pump noise may also prove important , but 
appears to be very small in this case), and in other lase r 
contexts, 32 it has been very accurately simulated by add­
ing Gaussian, white noise to equati.ons that are the ana­
logs to Eqs. (50) and (51) . We may do the same here. in 
the spirit of Kurtz's second theorem. 

Chaos is confirmed for the equations by computing the 
Liapunov exponent , which turns out to be A= 4. 6 X 104 

s - 1
• 

33 The magnitude of the white noise that should be 
used to model spontaneous emission is of order w - ~ . 
The probability distribution for the total intensity shows 
a significant effect in our preliminary studies, and thi s 
characterization is currently under investigation. A de­
tailed account of the comparison of the theory with ex­
periment is in preparation. JJ 

Generally , a numerical simulation of model equations 
will determine whether or not amplification of intrinsic 
noise will be significant. If the initial intrinsic noise level 
is n 0 and the largest Liapunov exponent is A, then the 
time required for the noise level to reach n is of the order 
of 4 
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Stochastic effects in Rayleigh-Benard pattern formation 

-T. C. ElstO-rr'and Ronald F. Fox 
School of Physics, Georgia-:lnsdt:.Ute of Technology, Atlanta, Georgia 

(Received 15 July 1991) 
~ . 

Results of recent experiments on the Rayleigh-Benard system indicate that stochastic driving forces 
are important in the evolution of flow patterns. · -However, the strength of the noise needed to reproduce 
the experimental results is four orders of magnitude larger than that of thermal noise. In this report , we 
present evidence that suggests that the source of noise comes from an uncertainty in the initial condi­
tions rather .than from a stochastic driving force. 

PACS number(s): 47.20.Ky, 05.40.+j 

The Rayleigh-Benard problem of heating a fluid from 
below is a classic example from hydrodynamics in which 
a nonlinear dissipative system undergoes a transition 
from a spatially uniform state to one of lower symmetry. 
The important parameter in this problem is t~e Rayleigh 
number R, which is proportional to the temperature gra­
dient ilT across the fluid. Below its critical value Rc, a 
pure conduction state exists in the fluid with no velocity 
field present. When R is greater than R 0 the conduction 
state is unstable and any small perturbation will cause the 
onset of convection. In most experimental systems, con­
vection will actually occur when R is below Rc because of 
imperfections in the experimental apparatus. The main 
source of these imperfections comes from thermal gra­
dients at. the boundary due to the differences in thermal 
diffusivities of the container wall and the fluid. This 
sidewall forcing not only causes subcritical bifurcations, 
but also causes the emerging flow patterns to possess the 
same symmetry as the container. In an attempt to study 
the effect of stochastic processes on pattern evolution, 
Meyer and co-workers [1] have constructed an experi­
mental cell whose walls are made from a gel with a 
thermal diffusivity which is almost identical to that of 
water, thus eliminating sidewall forcing. When this was 
done the flow patterns that emerged had randomly 
oriented convection cells that were not reproduced on 
subsequent runs of the experiment. These results imply 
that stochastic processes play an important role in pat­
tern formation. 

A more convincing argument for the importance of 
stochastic processes in this system is found through mea­
surements of the convective heat current jconv. The bifur­
cation from the conductive to the convective state and 
the amplitude of the resulting velocity field for R slightly 
greater than Rc are described by the Landau amplitude 
equation, 

dA 3 r-=eA-A +h 0 dt 
(1) 

where € is given by R IRe -1 or ilT /D.Tc -1, and h 
represents any imperfections in the system. r 0 is used to 
scale time to the vertical thermal diffusion time and for 
the case under consideration, r 0 =0.0552. The A =0 
conductive state is a stable solution to the Landau equa-

44 

tion when € < 0. When € becomes positive, this solution 
is unstable and the resulting convective heat current can 
be found from jconv =A 2 . In the experiments performed 
by Meyer, Ahlers, and Cannell [2], € was ramped linearly 
in time, i.e., e=e0 +{3t. Using the Landau amplitude 
equation, Meyer, Ahlers, and Cannell were able to very 
accurately reproduce experimental data obtained for the 
convective heat current with h the only adjustable quanti­
ty. They found a reasonable fit to the data was obtained 
with h taken to be constant, however, a stochastic h (s to­
chastic driving force) produced noticeably better results. 
While this provided convincing evidence for the presence 
of a stochastic process, the strength of the stochastic 
force needed to fit the data was four orders of magnitude 
larger than the strength of the thermal noise predicted by 
fluctuating hydrodynamics [3,4]. The source of this noise 
has remained a mystery. 

At the suggestion of Rabinovich [5], we decided to in­
vestigate the possibility that the noise source in this ex­
periment was an uncertainty in initial conditions rather 
than a stochastic driving force. Two ramp rates for € 

were studied, {3=0. 27 and 0.08. For each value of {3 , the 
Landau amplitude equation with a time-dependent € was 
numerically integrated for three different cases. In the 
first run, h was taken to be a deterministic constant force. 
For {3=0.27, h=l.lOXI0 - 4 and for (3=0. 08, 
h =1.2X10 - \ which are the same values as those used 
by, Meyer, Ahlers, and Cannell [2]. The second run was 
preformed with h being a Gaussian white noise driving 
force. In each case (h(t)h(t' )) =2d708(l -t' ), where 
d=5.3X 10- 7 for (3=0.27 and d =6 X 10 - 7 for (3=0.08, 
which are again identical with the work by Meyer, 
Ahlers, and Cannell [2]. A final run was made with ran­
dom initial conditions and no forcing term. The initial 
value distribution was Gaussian with ;verage value 0 and 
variance of 8X 10- 6 for (3=0.27 and 10 -~s for (3=0.08 . 
In Fig. 1, we show the results for the case (3=0. 27. The 
solid line represents the deterministic case and the dashed 
line represents both the stochastically driven and random 
initial condition cases since the two curves are nearly 
identical. Figure L. is the same as Fig. l except with 
(3= 0. 08. Once again there is virtually no difference be­
tween the stochastically driven and the random initial 
condition cases. In Figs. 3 and ·~, we show plots of the 
standard deviation of p:onv as a function of time for 

8403 © 1991 The American Physical Society 
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FIG. 1. The convective heat current as a function of time for 
{3=0.27. The solid line is the deterministic case and the dashed 
line corresponds to both the stochastic driving force and the 
random initial condition cases. The time is measured in units of 
the thermal diffusion time. 

{3=0.27 and 0.08 respectively . Here, the solid line 
represents the randbm initial condition case, and the sto­
chastically driven case is shown as the dashed line. While 
slight differences can now be seen, the two curves are 
very similar. All averages were taken over 10 000 realiza-
tions to ensure adequate statistics. · 

The only notable difference between the work of 
Meyer, Ahlers, and Cannell [2] and our own is that in 
their simulations the actual ramp rates varied in time and 
in ours were constant. This difference, however, only 
affected the late time magnitudes slightly and none of the 
qualitative features. We have shown that the source of 
noise in this experiment need not be attributed to a sto­
chastic driving force, but may well come from an uncer­
tainty in initial conditions. We suspect the initial value 
fluctuations we get from fitting the data represent some 
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FIG. 2. The convective heat current as a function of time for 
{3=0.08. The solid line is the deterministic case and the dashed 
line corresponds to both the stochastic driving force and the 
random initial condition cases. The time is measured in units of 
the thermal diffusion time. 
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FIG. 3. The standard deviation of the convective heat 
current as a function of time for {3=0.27. The solid line corre­
sponds to random initial conditions and the dashed line to a sto­
chastic driving force. 

systematic uncertainty in the experimental setup. One 
possibility is suggested from consideration of the mea­
surement technique used in the experiment. While we do 
10 000 stochastic realizations to get a mathematical fit, 
only a single experiment is performed. This difference is 
explained [6] by the observation that in this single experi­
ment, a Nusselt-number measurement is performed 
which effectively integrates the heat transport by many 
individual patches of convection in different parts of the 
container. If the detailed states for each patch initially 
show a variation in the amplitude A comparable with the 
initial value distribution we have used, then this may be 
the underlying cause. 

It should be noted, however, that the magnitude of the 
initial value fluctuations is much larger than one would 
expect from thermal fluctuations. In all of the work 
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FIG. 4. The standard deviation of the convective heat 
current as a function of time for {3=0.08. The solid line corre­
sponds to random initial conditions and the dashed line to a sto­
chastic driving force. 
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quoted above, the origin of time in the figures, t = 0, was of time now taken in the very distant past. The variance 
chosen as the time when E=O. In fact, Meyer, Ahlers, for h used earlier, d, was of order 10- 7 to 10- 6 and was 
and Cannell generally took Eo= -{3 in E=E0 +{3t so !.~.._at . , h found to be about four orders of magnitude larger than 
the system aged for a unit time interval before E=7Jt ::..- the thermal fluctuation variance. Therefore let us call the 
Thus, in the equations, the origin of time is the time when thermal variance for hr in (4) d', so that d' is of order 
the ramping begins in E=E0 +{3t. How does this ch9ic~ 10- 11 to 10- 10

. The equilibrium variance for A resulting 
affect the outcome and how does it relate to the size ~of from (4) is 
the initial value thermal fluctuations? 

Since Eo < 0, the nonlinear term in ( 1) remains very 
small and may be ignored during this aging process. The 
appropriate equation for this stage ( 0 < t < 1 ) is 

(2) 

First consider using only an initial value distribution, i.e., 
h = 0. The variance of A grows in accord with (since the 
mean value remains zero all the time) 

(3) 

At time t = 1 (i.e., when E=O), this yields a factor of 
exp( -{3). As compared with our results for the origin of 
time used in the figures, taken when E=O, we need only 
adjust our initial value variance ( -10- 5 ) by exp({3) in or­
der to get identical results if we start at the earlier time, 
i.e., at the onset of ramping. This is just a factor of order 
unity and creates no significant effect. 

In order to consider the size of initial-value thermal 
fluctuations, we must consider another type of aging. 
The system must be allowed to achieve thermal equilibri­
um before the ramping begins. During this aging pro­
cess, the value of E is just the constant Eo because the 
ramping has not yet begun. If the only source of initial 
value fluctuations is thermal fluctuations, then the value 
for ( A 2

( 0) ) to be used in (3) would be obtained from the 
equation 

(4) 

with hr representing thermal fluctuations and the origin 
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The largest this quantity can be for the parameter values 
used earlier is of order 10- 8

• This is far short of the 
-10- 5 we had to use for ( A 2(0)). This is why the as­
sertion was made that "the magnitude of the initial value 
fluctuations is much larger than one would expect from 
thermal fluctuations." 

Nevertheless, we see from this result that if the ramp­
ing function is chosen instead to beE= -{3'+{3t in which 
{3' is three or four orders of magnitude smaller than {3, 
i.e., the system is just barely subcritical, and if we let the 
initial value variance ( A 2( 0) ) , be determined by 

r d A = - {3' A + h 
0 dt T 

(6) 

instead of by (4), then in place of (5) we obtain 

d' 
( A2)=-{3, ' 

'To 
(7) 

which is now of order 10- 5 as required. The description 
of the experiments [2], however, appears to definitely rule 
out the possibility of such small values for {3', which no 
doubt would be difficult to achieve. We point out this 
possibility merely to indicate that slightly subcritical re­
laxation can enhance the apparent size of initial-value 
thermal fluctuations. 
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Amplification of intrinsic noise in a chaotic multimode laser system 
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The output intensity of an intracavity-frequ<:~y-doubled Nd: yttrium aluminum garnet (Y AG) laser 
can exhibit chaotic variations under certain condi~!ons. It has been predicted that the intrinsic noise due 
to spontaneous emission present in this laser system can be amplified by the chaotic dynamics. We re­
port here the observation of noise amplification in a mathematical model of this laser system in a param­
eter regime that produces chaotic intensity variations. The amplification was observed in the evolution 
of the distribution of an ensemble of noisy trajectories, originating from identical initial conditions. The 
observed amplification occurred at a rate given by the largest Liapunov exponent and is consistent with 
the theoretical predictions of Fox and Keizer [Phys. Rev. A 43, 1709 (1991)]. However, anomalous 
amplification was also observed and occurred at a rate - 10 times the Liapunov exponent. The mecha­
nism for this effect is elucidated. 

PACS number(s): 42.50.Lc 

I. INTRODUCTION 

When a nonlinear potassium titanyl phosphate (KTP) 
crystal is placed inside a Nd:Y AG laser cavity, the out­
put intensity can exhibit chaotic variations [1]. The non­
linear crystal converts some of the 1064-nm fundamental 
laser light into green light at ,...., 532 nm by the processes 
of second-harmonic generation and sum-frequency gen­
eration. Sum-frequency generation creates nonlinear glo­
bal coupling among the lasing modes (each mode is cou­
pled to all other modes) which causes. the laser output to 
vary periodically or chaotically under certain conditions. 
We have previously developed a deterministic rate equa­
tion model of this laser system which accurately repro­
duces the experimentally observed stable, periodic, and 
chaotic dynamics [2-5]. 

In this paper we present results which show the 
amplification of intrinsic noise in a parameter regime for 
which the laser equations produce chaotic intensity varia­
tions. A measure of this amplification is obtained by 
comparing the evolution of an ensemble of 20 noisy tra­
jectories with a deterministic trajectory started from the 
same initial conditions. Fifteen sets of simulations were 
performed, each with a different noise strength. The 
noise strengths varied over 14 orders of magnitude. A 
plot of the mean time to reach a given separation between 
noisy trajectories and the deterministic one shows an ex­
ponential dependence on noise strength as was predicted 
by Fox and. Keizer [6]. We find good agreement between 
the rate of the exponential separation and the calculated 
value of the Liapunov exponent for the dynamics. 

In addition to the predicted noise amplification by the 
chaotic dynamics, we have observed an anomalous 
amplification of the noise that results in a trajectory sepa­
ration rate about 10 times the Liapunov exponent. 

In Sec. II the laser model that will be used in this paper 
is reviewed. The theory for the chaotic amplification of 
noise is discussed in Sec. III. We then describe the nu­
merical observation of noise amplification in these rate 
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equations in a parameter regime producing chaotic inten­
sity variations. Section IV contains an analysis of these 
results, including a discussion of the mechanism responsi­
ble for the observed anomalous noise amplification. 

II. LASER MODEL 

We have previously developed a deterministic rate 
equation model of an intracavity-frequency-doubled 
Nd:Y AG laser system which accurately reproduces the 
experimentally observed stable, periodic, and chaotic dy­
namics [2-5]. The model includes the polarizations of 
the cavity modes and the fact that the Y AG rod may be 
birefringent. Figure 1 is a schematic of the intracavity 
doubled Nd:Y AG laser we have modeled. The laser cavi­
ty contained a nonlinear KTP crystal which served as the 
frequency-doubling element. The intensity at the funda­
mental wavelength is highest within the laser cavity. 

. Since the intensity of frequency-doubled light produced 
by the KTP crystal is proportional to the square of the 
intensity at the fundamental wavelength, the KTP crystal 
was placed inside the laser cavity. The laser is pumped 
by a ten-element phased-array laser diode with a max­
imum output power of 200 mW at around 810 nm. The 
highly divergent and elliptical pump beam is first col­
limated and then circularized before being focused into 
the cylindrical Y AG rod by a 5-cm focal length lens. The 

phased array 

laser diode 

cavi ty high 

reflector fast 

3XIS axis 

I.H-~ ~ 
laser 

output 

FIG. 1. Schematic of the diode-pumped Nd:Y AG (neodymi­
um doped yttrium aluminum garnet) laser with an intracavity 
KTP (potassium titanyl phosphate) crystal. The KTP crystal 
produces green light at half the wavelength of the fundamental 
emission ( 1064 nm) from the laser. 
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flat front face of the Nd:Y AG crystal served as the cavity where T c (0.2 ns) and T 1 (240 f-LS) are the cavity round-trip. 
high reflector, and was coated to be highly reflecting at time and fluorescence lifetime of the Nd3+ ion (the active 
both the fundamental ( ~ 1064 nm, infrared) and doubled ion in Nd:Y AG), respectively; h and Gk are, respective-
(- 532 nm, green) wavelengths and highly transmitting~,c;~,t·.~- ~. :1y, the intensity and gain associated with the kth longitu­
the pump wavelength. The KTP crystal w~rs -~·-~- dinal mode; ak is the cavity loss parameter for the kth 
antireflection coated at both the fundamental and dou- · , mode; y(O. 05) is the small signal gain which is related to 
bled wavelengths. The laser output coupler was higlily­
transmitting at the doubled frequency and highly·'.:­
reflecting ( > 99.9%) at the fundamental, such that only 
the fundamental circulated in the laser cavity; the dou­
bled frequency is simply transmitted by the output 
coupler. The Nd:YAG and KTP crystals were both 5 
mm long and the entire laser cavity was about 3.5 em 
long. The threshold pump power for this laser was about 
lOmW. 

As first pointed out by Oka and Kubota [7], a complete 
analysis of this laser system must include the polariza­
tions of the cavity modes. These polarizations are given 
by the eigenvectors of the round-trip Jones matrix M for 
this laser cavity which are real and orthogonal [2]. These 
two eignevectors are the only two polarization states that 
are unchanged after one round trip in the cavity. Since 
the eigenvectors of the matrix Mare real, the laser output 
will .co"nsist of linearly polarized components along one or 
both of the two orthogonal eigenvector directions. 

Nd:Y AG normally lases at 1064 nm in the infrared. 
However, the KTP crystal converts some of this funda­
mental light into green light at -532 nm. Green light is 
produced in the KTP crystal by second-harmonic genera­
tion from a single-cavity mode and by sum-frequency 
generation between pairs of modes. In second-harmonic 
generation, two photons from the same cavity mode of 
fundamental frequency ill combine to create one photon 
of green at frequency 2ill. In sum-frequency generation 
one photon from a cavity mode at frequency ill 1 and one 
photon from a different mode at frequency (1)2 combine to 
create one photon of green at frequency (ill 1 +ill2). The 
amount of green light produced by sum-frequency gen­
eration depends on whether the contributing fundamental 
modes are polarized parallel or orthogonal to each other. 
The two processes for the generation of green light must 
be included in the laser rate equations as nonlinear loss 
terms for the fundamental intensity. The variations in 
the output intensity that are observed for some parameter 
values arise from the global coupling created among the 
lasing modes (each mode is coupled to every other mode) 
due to sum-frequency generation. 

Each cavity mode can exist in one of the two orthogo­
nal eigenpolarization directions, which we label as x and 
y . Let m and n be the number of modes polarized in the 
x andy directions, respectively, where N =m +n is the 
total number of lasing modes. The deterministic rate 
equations for the fundamental intensities h and gains G k 

are [2,8] 

(1) 

the pump rate above threshold; f3 (0.6) is the cross satura­
tion parameter; and g (0. 1) is a geometrical factor whose 
value depends on the angle between the YAG and KTP 
fast axes, as well as on the phase delays due to their 
birefringence. For modes having the same polarization 
as the kth mode, f-1 jk = g, while f-1 jk = ( 1-g ) for modes 
having the orthogonal polarization. This difference is 
due to the different amounts of sum-frequency generated 
green light produced by pairs of parallel polarized modes 
or by pairs of orthogonally polarized modes. Here, E 

( 5 X 10-6 ) is a nonlinear coefficient whose value depends 
on the crystal properties of the KTP and describes the 
conversion efficiency of the fundamental intensity into 
doubled intensity. In these rate equatio-ns we have made 
the simplifying approximation that the gain r (0.05 ) and 
cross saturation parameter /3 (0.6) are the same for all 
modes. The individual mode losses are assumed to differ 
only slightly, with ak -0.01. The parameter values given 
above represent typical experimental operating condi­
tions. 

As was mentioned earlier, these deterministic ra te 
equations (1) have been found to accurately reproduce ex­
perimentally observed periodic and chaotic intensity vari­
ations. For the investigation of noise effects it is more 
convenient to use the entirely equivalent equations for 
the electric fields 

dt [ I 
( £ r )k 

Gk -ak -geh -2e --~ J-l j l j -
2
- , 

J \ =k) ' 

In the remainder of this paper we will discuss how intrin­
sic noise added into the rate equations is amplified when 
the model is integrated with parameter values which 
deterministically produce chaotic vanatwns. This 
amplification is not present in the case of nonchaotic time 
traces. 

III. AMPLIFICATION OF INTRINSIC NOISE 
BY CHAOTIC DYNAMICS 

Reference [6] contains a detailed account of the theory 
for amplification of intrinsic noise by chaotic dynamics 
and of the technique employed to obtain accurate numer­
ical simulations of this effect. To obtain the equations 
used in the numerical simulations, three steps are fol­
lowed. In the first step , a mesoscopic master equation is 
constructed for the time evolution of a probability distri­
bution, the mean values of which correspond to the mac­
roscopic variables, i.e. , the quantities I k and Gk in the 
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present case. This probability distribution also describes form random deviates (x 1 )k and (x 2 )k on (0, 1 ). When 
the intrinsic fluctuations, or noise, associated with the the discrete time step ~t used in the numerical integra-
macroscopic variables. Kurtz [6] has proved a limit .. . : t_,ion is included, the noise terms (/ 1 ) k and (/ 2 ) k are 
theorem that yields a nonlinear Fokker-Planck equation·· :-given by 
that is a very accurate approximation to the full mast~f.'' ·: "" 
equation. This Fokker-Planck equation constitutes th_e (/l )k =y-4D~tln[(xl )k ]cos[21i( x2 ) k] 

(5 ) 
second step, and its diffusion terms determine the magrii-_: 
tudes of the intrinsic noise correlations. Numerically, · 
both the master equation and the nonlinear Fokker­
Planck equation are extremely difficult to implement 
efficiently. The third step recognizes that there exists a 
set of Langevin equations, equivalent to the nonlinear 
Fokker-Planck equation, in which the noise terms are 
predetermined by the correlations implied by the 
diffusion terms in the nonlinear Fokker-Planck equation 
(the fluctuation-dissipation relation in this context). 
When these correlations are independent of the state vari­
ables, i.e., the h, E k, and G k, the resulting Langevin 
equations have the form of the original macrovariable 
equations, Eqs. (2) in this case, with additive Gaussian 
white-noise terms~ Eqs. (3) given below. The correlations 
of the noise sources are explicitly determined in the 
manner described above. Since the noise correlations can 
be determined without actually constructing the master 
equation, the first two steps may be bypassed, and one 
simply writes Eqs. (3) directly, as we do below. This is a 
consequence of the fact that the intrinsic noise is a result 
of spontaneous emission for which the correlations, Eqs. 
(4), are already known from earlier work. 

Spontaneous emission noise in the laser is included as 
additive Gaussian white noise in the manner and for the 
reasons given above: 

dt 
[Gk -ak -gEh 

-2E ~ f.Ljlj l [ (E~ ) k l +(/1 )k , 
j ( =1=- k ) 

[Gk -ak -gEh 

-2E ~ f.Lj/j l 
j (=1=- k ) 

dGk 
r f dt= y - [1 +h +(3 ~ Ij ]Gk , 

j (=1=- k ) 

(3) 

where (Er )k and(£,- )k are the real and imaginary parts of 
the electric field of the kth mode. Here (/ 1 )k and (/2 )k 

represent spontaneous emission noise and are Gaussian 
white (8 correlated) noise terms with the following prop­
erties: 

([j,- (t) h) =0 ' 
(4 ) 

( (/,- (t)]d//s)Jm) =2D8ij8km8(t -s) , 

where i = 1,2. The strength, 2D, of the correlations is 
predetermined by the laser system. 

In the integration of these field rate equations, the 
Gaussian distributed noise terms (/1 )k and (/2 )k are cal­
culated using the Box-Muller method (9] from two uni-

such that (/ 1 ) k and (/ 2 ) k have zero mean and variance 
equal to 2D. The fact that the sine and cosine are used in 
Eqs. (5) means that (/ 1 )k and (/ 2 )k are uncorrelated. 
The fact that, for each k and at each time step two 
different uniform random deviates (x 1 )k and (x 2 )k are 
used, means that (/ 1 )k and (/ ,- )m are uncorrelated. This 
justifies Eqs. (4). 

The integration of the stochastic equations (3) was car­
ried out as follows. The deterministic equations (2) were 
numerically integrated using the IMSL subroutine 
DGEAR for intervals of 10 nsec. Noise terms were gen­
erated using the algorithm in Eqs. (5) with ~t = 10 nsec 
and added to the fields at the end of each interval. The 
parameter values used in the rate equations are given 
above in Sec. II. The field rate equations were integrated 
for various noise strengths from 2D = 10 - 20 to 10 - 6 

sec -I, each started with the same set of initial conditions. 
For each noise strength, 20 trajectories were calculated, 
each trajectory using a different set of random numbers 
to generate the noise. An integration without noise was 
also performed. For each noise strength, the total inten-
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FIG. 2. (a) Time for the separation between noisy and deter­
ministic trajectories produced by an integration of the numeri­
cal model to reach 1% of their mean saturated value. The three 
different symbols represent the different cases of initial condi­
tions (discussed in the text) used in the calculations. (b) Mean 
time for the separation between noisy and deterministic trajec­
tories produced by an integration of the numerical model to 
reach 1% of their mean saturated value. The rate of exponen­
tial separation is -4. 6 X 105 sec - 1
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sity averaged over 20 realizations was compared with the 
total intensity for the deterministic trajectory to compute 
a separation parameter S ( t): 

where M is the number of trajectories (M = 20 in this ~~se 
here), I k ( t) is the intensity of the kth realization for.:-a 
particular noise strength at time t, and I 0 (t) is the inten­
sity of the deterministic trajectory at timet. 

The time for the separation S ( t) to reach 1% of the 
mean saturated value was recorded. This calculation was 
repeated using the same noise strengths, but starting 
from a different set of initial conditions. A third set of 
calculations was done in which the initial conditions for 
each value of noise strength were different. This last in­
tegration was done in order to sample a wider domain of 
phase space. The mean separation time for each of these 
three calculations was determined. The time for the 
mean separation of the trajectories to reach 1% of the 
mean saturated value (the reference level) is plotted 
against noise strength in Fig. 2(a) for the three calcula­
tions just described. Figure 2(b) shows all three sets of 
data averaged together. It is . very clear that the mean 
time to reach the reference level increases exponentially 
as the noise strength decreases, as predicted by Fox and 
Keizer, and the rate of this exponential increase is 
~ 4. 6 X 105 sec -I. If the traditional linearized fluctuation 
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FIG. 3. (a) Mean time for the separation between noisy and 
deterministic trajectories produced from an integration of the 
numerical model to reach a variable reference level for a noise 
strength of 2D = 10- 20 sec -I. The rate of exponential separa­
tion is -2. 8 X 105 sec - 1

• (b) Mean time for the separation be­
tween noisy and deterministic trajectories produced from an in­
tegration of the numerical model to reach a variable reference 
level for a noise strength of 2D = 10- 17 sec - 1

• The rate of ex­
ponential separation is -2. 3 X 105 sec -I . 

theory were used instead, an average over an ensemble of 
sufficient size would yield zero for this difference. This is 
because the linearized theory predicts a symmetric 
Gaussian distribution of the stochastic trajectories about 
the deterministic trajectory. Kurtz's nonlinear fluctua­
tion theory [6), however, predicts an asymmetric distribu­
tion not centered on the deterministic trajectory. In this 
case the average of the stochastic trajectories diverges ex­
pOJ?.entially from the chaotic deterministic trajectory at a 
rate given by the largest positive Liapunov exponent. 

For two of these three cases of initial conditions, the 
average, largest Liapunov exponent was also computed 
for the noise strengths 2D = 10-9

, 10- 13
, and 10 - 17 

sec- I. The largest Liapunov exponent for these three 
noise strengths in all the cases considered was about 
3. 3 X 104 sec - 1

• The technique used here to compute the 
largest Liapunov exponent is discussed in Ref. [ 1 0). 
However, the exponential rate of mean trajectory separa­
tion is about ten times larger than the largest Liapunov 
exponent. This discrepancy is explained below. 

For the noise strengths of 2D = 10- 20 and 10- 17 sec- 1
, 

the average time for the separation to reach a variable 
reference level is found to increase exponentially as the 
reference level increases, as predicted by Fox and Keizer. 
The rate of this exponential increase is ~ 2. 8 X 105 sec- 1 

and ~ 2. 3 X 105 sec -I for these two cases, respectively 
[Figs. 3(a) and 3(b)]. These rates are again about ten 
times the value of the largest Liapunov exponent. 

This discrepancy can be understood by analyzing a plot 
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FIG. 4. (a) Separation of a noisy (2D = w -- l? sec - I) and a 
deterministic trajectory with time. The rate of exponential sepa­

ration is -2. 1 X 105 sec -I which is the slope of the linear fit to 
the data (dashed line). This slope is approximately ten times the 
value of the 1argest Liapunov exponent calculated for the data. 
(b) Close-up view of Fig. 4(a). The rate of exponential separa­
tion is -4.2 X 104 sec - 1

, which is the slope of the linear fit to 
the data (dashed line). This slope is approximately equal to the 
value of the largest Liapunov exponent calculated for the data. 
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of the separation of a single noisy and the corresponding 
deterministic trajectory with time as shown in Fig. 4. 
Figure 4(a) shows that this separation saturates after 
about 80 J.LSec. The overall separation is observed tO: 1.q ~ · . ~ 
crease approximately exponentially at the rate<::of -.;,.. 
~2.1 X 105 sec- 1

, which is about the same as the rates of 
exponential increase discussed above. Note, however,.-.the 
presence of sudden discrete steps in the difference b~': ­
tween the two trajectories. The two steps in Fig. 4(a) 
occur at about 30 and 65 J.LSec. Furthermore, Fig. 4(b) 
shows that, in the first 30 J.LSec, just prior to the first step 
the separation increases approximately exponentially at 
the rate of ~ 4. 2 X 104 sec -I, which is about the same as 
the value of the largest Liapunov exponent calculated for 
the dynamics. The calculated value of the largest 
Liapunov exponent is only negligibly influenced by the 
presence of the steps since the time over which the steps 
occur is small relative to the time over which the calcula­
tion is performed. However, the time for the difference 
to reach the reference level is shortened due to the pres­
ence of the steps. If the steps did not occur then the sep­
aration of the deterministic and noisy trajectories would 
take place at a rate given by the largest Liapunov ex­
ponent just as in the case of the separation of two deter­
ministic trajectories started from slightly different initial 
conditions (Fig. 5). The reason for the occurrence of the 
steps in the difference between noisy and deterministic 
trajectories is explained in Sec. IV. 

The Liapunov exponent is the rate at which two initial­
ly close trajectories diverge in the complete phase space 
that is determined by all of the fields and gains. The sep­
aration between the total intensities of two deterministic 
trajectories whose initial intensities differ by 10- 10 is 
plotted in Fig. 5. The fit to this data reveals an exponen­
tial separation at the rate of ~ 3. 23 X 104 sec - 1, which is 
virtually the same as the Liapunov exponent calculated 
for the dynamics. Notice that no steps are observed in 
the plot of the separation. For comparison, when the 
laser equations are integrated with parameter values. that 
yield a stable time trace, no exponential separation is ob­
served between a noisy (2D = 10- 10 sec - 1) and a deter­
ministic trajectory as shown in Fig. 6. The difference 
plotted in Fig. 6 simply fluctuates about its saturation 
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FIG. 5. Separation of two deterministic trajectories produced 
from an integration of the numerical model whose initial inten­
sities differ by w- 10

. The rate of exponential separation is 
- 3. 2 X 104 sec - I. This rate is approximately equal to the value 
of the largest Liapunov exponent calculated for the data. 
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FIG. 6. Separation of a noisy (2D = 10 - 10 sec - I ) and a deter­
ministic trajectory using parameter values that yield a stable 
time trace. 

value of~ 5 X 10- 3
. When parameters yielding a chaotic 

trajectory were used, the saturation value of the separa­
tion was approximately unity [Fig. 4(a)]. 

Even though gain variations are the driving force 
behind the intensity variations, the gain terms contribute 
negligibly to the value of the Liapunov exponent. The 
gain variations are only about 2% and the intensity varia­
tions are about 100% each relative to its respective mean 
value (Fig. 7). This explains why the exponential di ver­
gence rate in Fig. 5 is approximately equal to the 
Liapunov exponent even though only the total intensities 
are being considered. We have computed the value of rhe 
Liapunov exponent using all intensity and gain terms and 
using only the intensity terms and have found that they 
are identical up to eight decimal places. 
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FIG . 7. (a) Gain variations produced from an integration of 
the numerical model. (b) Intensity variations produced from an 
integration of the numerical model. 
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IV. 'DISCUSSION 

The discrepancy of a factor of 10 in the rate of 
amplification of noise in all of the data described above 
can be explained by the presence of the s~eps as sh?~n ip 
Fig. 4(a). It is a property of the laser dynamics her~.l}l~t 

some of the laser modes may occasionally turn ·off 
(perhaps due to the particular initial conditions) w~n- the 
mode gain Gk remains less than the mode loss df<.' for 
sufficiently long. Typically the modes with the higher 
losses, being closer to their threshold, will turn off more 
frequently then than lower loss modes. In a typical deter­
ministic trajectory calculated here, if a mode turns off, 
the value of the intensity is reduced to an unphysically 
small value that is less than the ·spontaneous emission lev­
el in the laser. However, in the stochastic trajectory, the 
added noise prevents the intensity from decreasing to un­
physical values such that, when Gk- ak for that mode 
becomes-positive, the mode will turn back on sooner and 
the exponential rate of this turn on is given by the value 
of Gk-ak. We have observed Gk-ak to be fairly con­
stant over the time in which the mode turns back on. In 
fact, the value of G k -a k is approximately ten times the 
Liapunov exponent. 

We have observed that the large step at ~ 65 p,sec [Fig. 
4(a)] is caused by only one particular mode that turns off. 
It then turns back on in the stochastic trajectory (due to 
the additive noise) before it turns back on in the deter­
ministic trajectory. The difference between the intensity 
value of this mode in the stochastic and deterministic tra­
jectories was so large that it dominated the total 
difference between the trajectories, i.e., the total 
difference was slaved to the difference in this one mode. 

It is thus possible to account for the anomalous 
amplification associated with the "steps." The remaining 
divergence of the initially close deterministic trajectories 
and the divergence of a stochastic trajectory (or an aver­
age over an ensemble of stochastic trajectories) from its 

[1] T. Baer, J. Opt. Soc. Am. B 3, 1175 ( 1986). 
[2] G. E. James, E. M. Harrell, II, C. Bracikowski, K. 

Wiesenfeld, and R. Roy, Opt. Lett. 15, 1141 (1990). 
[3] K . Wiesenfeld, C. Bracikowski, G. E. James, and R. Roy, 

Phys. Rev. Lett . 65, 1749 (1990). 
[4] C. Bracikowski and R. Roy, Phys. Rev. A 43, 6455 (1991). 
[5] C. Bracikowski and R. Roy, Chaos 1, 49 (1991). 
[6] R. F. Fox and J. Keizer, Phys. Rev. A 43, 1709 (1991). 
[7] M. Oka and S. Kubota, Opt. Lett. 13, 805 ( 1988). 
[8] G. E. James, Ph.D. dissertation, Georgia Institute of 

deterministic relative both at a rate given by the 
Liapunov exponent are manifestations of the chaotic dy- · 
namics as predicted by Fox and Keizer [6]. 

In order to test the Fox and Keizer theory experimen­
tally on a laser system, the laser noise strength must 
somehow be manipulated and some measurable quantity 
must be found whose value can change in the presence of 
noise when the laser is in a chaotic state. An experimen­
tal technique to control the amount of intrinsic noise in a 
laser has been described by M ussche and Siegman [ 11]. 
The nonorthogonality of the transverse modes in unstable 
resonator lasers and gain-guided lasers creates an 
enhancement of the linewidth and hence excess intrinsic 
noise. Mussche and Siegman have shown that the 
amount of excess noise can be changed by varying the 
geometrical magnification of an unstable resonator. This 
technique seems promising as an experimental method 
for examining the effect of spontaneous emission noise in 
a chaotic system. 

In conclusion, the amplification of noise by the chaotic 
dynamics in the rate equation model of a multimode laser 
system has been observed. The separation of noisy and 
deterministic trajectories occurs at a rate given by the 
Liapunov exponent. In addition to this type of chaos­
induced amplification, an anomalous amplification pro­
ducing trajectory separations at about ten times the value 
of the Liapunov exponent has also been observed. This 
effect is a result of the fact that a mode turns on faster 
with added noise than without, and is not related to the 
presence of chaos. 
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Reply to "Comments on the amplification of intrinsic fluctuations by chaotic dynamics" 
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We believe that the criticisms of Nicolis and Balakrishnan (preceding Comment, Phys. Rev. A 46, 
·3569 ( 1992)] reflect a misunderstanding of the basis of our claims. Here, we repeat a number of points al­
ready made in our papers [Phys. Rev. A 43, 1709 (1991); 42, 1946 (1990); Phys. Rev. Lett. 64,249 (1990)] 

in order to dispel ambiguity and misunderstanding. 

PACS number(s): 05.40. + j, 05.45. + b 

Nicolis and Balakrishnan [1] have criticized our sug­
gestions (i) that chaotic dynamics can amplify spontane­
ous fluctuations so that the contraction of a master equa­
tion description into a macrovariable description is in­
valid; and (ii) that a nonlinear Fokker-Planck equation of 
the sort suggested by a theorem ofT. G. Kurtz may be 
used to accurately describe these large-scale fluctuations. 
These criticisms seem to reflect a misunderstanding, re­
peated throughout the · Comment, of the basis of our 
claims. We find this surprising since, in Sees. I-III of 
Ref. [2], these and related issues are addressed rather 
thoroughly. 

A key_ point that Nicolis and Balakrishnan seem to 
have missed is that the magnitude of the correlation of 
the intrinsic fluctuations is not a free quantity but is 
uniquely determined by the underlying physics in each 
specific case. Thus, while the limits noted in Eqs. {1)-(3) 
of their Comment are, indeed, true for f approaching 
zero, f is not zero for intrinsic fluctuations. It is well 
known through numerical simulations by us [2] and oth­
ers [ 3-5] that the invariant densities in the deterministic 
case (E = 0) and the stochastic case ( E=FO) are .distinct 
both for discrete maps and for stochastic differential 
equations. The degree of difference between the two den­
sities depends on the magnitude off and the dynamics of 
the chaotic attractor. 

Nicolis and Balakrishnan suggest that we incorrectly 
identify the macrovariables with the mean values rather 
than with the most probable values, and that "macro­
scopic behavior is generally not associated with the 
mean ... , but rather with the most probable values." In 
fact, the most probable values of the variables do not 
satisfy the usual system of autonomous macrovariable 
equations when the distribution is broad. They do so 
only asymptotically in the limit of small fluctuations, in 
which case the Gaussian form of the conditional proba­
bility density implies that the mean and the most prob­
able values are the same. When the macrovariable equa­
tions possess a chaotic attractor, conditional fluctuations 
are small for only a brief period of time, after which nei­
ther the mean nor the most probable values satisfy the 
autonomous macrovariable equations. Nonetheless, our 
simulations, which employ a stochastic modification of 
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the macrovariable equations, make it clear that the ma­
crovariable equations provide the skeleton that supports 
the flesh of the molecular fluctuations. 

Our views about the utility of the nonlinear Fokker­
Planck equation are based on two theorems by Kurtz 
[6,7]. Kurtz's theorems justify various approximations to 
sample paths of the master equation in the thermo­
dynamic limit. Kurtz's "first" theorem justifies ·the use of 
a linear process with a Gaussian conditional probability 
density for finite times. For that case the most probable 
and mean values are identical. As we have shown [8], 
this approximation has a linearly divergent covariance 
when the mean has a stable limit cycle and an exponen­
tially divergent covariance when the mean behaves chaot­
ically. In the chaotic case the "finite" time interval, 
which is not otherwise determined by Kurtz's theorem, is 
of the order of the reciprocal of the largest Liapunov ex­
ponent. 

For limit cycles and for chaotic attractors, Kurtz 's 
"second" theorem provides a much improved approxima­
tion in the following senses: (i) the conditional covariance 
no longer diverges, despite the fact that the fluctuations 
may grow to the size of the attractor; and (ii) in the 
mathematical limit of very small noise, simulations of the 
probability density derived from the corresponding non­
linear Langevin equation converge to the invariant mea­
sure of the deterministic attractor [2]. In this approxima­
tion the nonlinearities succeed in saturating the growth of 
the fluctuations. While Kurtz's second theorem also has 
been proved only for finite times, it is obviously a much 
improved approximation to the thermodynamic limit and 
would appear to work for times much longer than the re­
ciprocal of the largest Liapunov exponent. 

Our confidence in the Fokker-Planck equation (or 
equivalent nonlinear Langevin equation) that is given by 
Kurtz's theorem is reinforced by recent work of 
Mareschal and De Wit [5]. Using a direct simulation of 
the Boltzmann equation, these authors have simulated bi­
furcation to a limit cycle in a chemical reaction and "find 
agreement between the microscopic simulation results 
and a Langevin description ... below and beyond the bi­
furcation point [5]." Three types of Langevin description 
were used in this work to obtain the asympotic, long-time 

3572 © 1992 The American Physical Society 



46 COMMENTS 3573 

statistical distribution, including that given by Kurtz's 
second theorem. All three gave good agreement with the 
Boltzmann simulations. : -:~·,:: . .... 

In our work, we have used Kurtz's second theotemj {) 
obtain an approximate representation of a master equa­
tion by a nonlinear Fokker-Planck equation [~,9_, 10]. 
This Fokker-Planck equation can be equivalently: ·ren­
dered as a Langevin equation. The Langevin equation 
happens to be a stochastic version of the macrovariable 
equation with a well-defined noise correlation determined 

·from this correspondence. Unlike external noise with an 
arbitrary noise strength, the intrinsic noise is uniquely 
determined by the underlying physics. In our investiga­
tion of the effect of this noise we have considered several 
classes of examples: two heuristic ones, namely, the 
Rossler equations [2] and a "master" map for the logistic 
equation [9], as well as hydrodynamic fluctuations for the 
Lorenz equations [11], Johnson noise for the Josephson 
junction [2], spontaneous emission for multimode lasers 
[10], and chemical noise for mass action kinetics [8]. For 
each of the examples with a physico-chemical origin, the 
nonlinear Fokker-Planck equation comes directly from 
an underlying master equation [ 12]. 

We know of no examples in the literature, including 
those cited by Nicolis and Balakrishnan, which demon­
strate that the nonlinear Fokker-Planck equation suggest­
ed by Kurtz's second theorem "at best . . . may give 

[1] G. Nicolis and V. Balakrishnan, preceding Comment, 
Phys. Rev. A 46,3569 (1992). 

[2] R . F. Fox and J. Keizer, Phys. Rev. A 43, 1709 (1991). 
[3) B. White, SIAM J. Appl. Math. 32, 666 (1977). 
[4) P. Jung and P. Hanggi, Phys. Rev . Lett. 65, 3365 (1990) . 
[5) M. Mareschal and A. De Wit, J. Chern. Phys. 93, 2000 

( 1992). 
[6] T. G. Kurtz, J. Appl. Prob. 8, 344 (1971). 
[7] T. G. Kurtz, Stoch. Proc. Appl. 6, 223 ( 1978). 
[8] J. Keizer and J. Tilden, J. Phys. Chern. 93,2811 (1989). 

reasonable results [for] ... a single point attractor al­
though even in this case examples are known for which it 
can fail badly." While it is true that attempts have been 
made to formulate other Fokker-Planck equations using 
completely macroscopic ideas [13], in the thermodynamic 
limit, even for linear systems, they disagree with the un­
derlying master equation results as one departs from 
equilibrium (cf. Ref. [12], pp. 173-175). 

On the other hand, we agree with Nicolis and Balak­
rishnan that the growth of molecular fluctuations is "yet 
another manifestation of the sensitivity to initial condi­
tions of chaotic dynamics." The point, however, is that 
even in the absence of external noise and uncertainty in 
the initial conditions, molecular fluctuations destroy the 
utility of predictions based on the macroscopic kinetic 
equations within a time of the order of the reciprocal of 
the largest Liapunov exponent. Furthermore, if the noise 
is sufficiently large, as seems to be true for the driven 
Josephson junction [2], the invariant distribution on the 
chaotic attractor may be modified significantly. Even in 
cases like the Lorenz system, for which fluctuations have 
a hydrodynamic origin and are small, one finds an 
amplification of fluctuations of approximately two orders 
of magnitude above the values for thermal equilibrium · 
[11]. Such increases in the noise level like that seen near 
critical points, should be detectable by experiment. 

[9] R . F. Fox, Phys. Rev. A 42, 1946 (1990). 
[10] C. Bracikowski, R . F. Fox, and R. Roy, Phys. Rev . A 45, 

403 (1992). 
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J. Keizer, R . F. Fox, and J. Wagner (unpublishedl. 
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by Chaotic---Dynamics 

by 
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Abstract 

When the deterministic description of a macroscopic physical system 
- . 

exhibits chaotic dynamics, the associated intrinsic fluctuations are amplified, 

in some situations by many orders of magnitude. This effect has been seen 

numerically in the Lorenz model, which is a hydrodynamic system, in the 

Josephson junction, and in a multimode laser system. A related phenomenon 

occurs for a quantum system that exhibits chaos when treated classically. In 

this case the variances of the quantum observables initially grow 

exponentially. These effects may have a variety of experimentally observable 

consequences. 
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Intrdouc tion 

The work reviewed in this pape(-_has appeared in a number of 
publications 1-9. While it is clear that much of it has been published, it has not 
always been easy to get it published and several recent extensions have been 
pending publication for some time. This is a consequence of the startling 
implications of the results at least for some people, and I have taken solace at 
times in the anonymous quotelO: 

"Every novel idea in science passes through three stages: 
First people say it isn't true. 
Then they say it's true but not important. 
And finally they say it's true and important, but not new." 

Fortunately there has also been a fourth stage as well, people understand and 
accept the idea. In what follows, I will attempt to communicate the essence of 
the idea in such a way that most of you will reach this fourth stage. 

The presentation is divided into two parts: classical, macroscopic 
physics and quantum mechanical physics. In the first part, the central 
importance of the Jacobi matrix will be exposed. This quantity 
simultaneously determines whether the largest Liapunov exponent is 
positive, the hallmark of classical chaos, and the nature of the time evolution 
of the fluctuations. When the dynamics is chaotic, the fluctuations are 
amplified. For the second part it is necessary to initially consider what it will 
mean to talk about chaos at all since the classical notions of trajectory and 
Liapunov exponent do not automatically go over into quantum mechanics. 
Instead, we find that for a system treated classically and found to be chaotic, 
the corresponding quantum mechanical treatment leads to initially 
exponential growth of the variances of the quantum observables. This 
becomes the hallmark of what we will refer to as "quantum chaos". The 
connection between these two views of the physical world is made with the 
Wigner distribution3. 

Amplification of Fluctuations by Chaos. 

Consider a dynamical system described by N coupled nonlinear 
ordinary differential equations (ODE's), or by N coupled nonlinear partial 
differential equations (PDE's). In the latter case, a mode expansion results in 
infinitely many coupled nonlinear ODE's for the mode amplitudes. Galerkin 
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truncation of this infinite system to N mode amplitudes again produces a 
system of N coupled ODE's. This is·$e.context for the following discussion. 
Such a system is given by the equations .;. 

in which x(t) denotes the N variables and the Fi's are generally nonlinear 
functions of the x(t) components. 

(1) 

Chaos is extreme sensitivity to the initial conditions of the trajectories 
produced by solutions of ( 1 ). This idea is made quantitative by introducing 
the Liapunov exponents 11. If there is a positive Liapunov exponent, the 
dynamics may be said to be chaotic, and usually the largest positive Liapunov 
exponent is used to provide a measure of the chaos. If we let ~(0) denote a 
small difference in the initial conditions for (1), and if A. is the largest 
positive Liapunov exponent, then we find 

Llx(t) - 'eA.t Llx(O) (2) 

i.e. there is an exponential separation of initially nearby trajectories. This 
· exponential separation is governed by the time evolution of the Jacobi matrix 

for system (1), which is defmed by 

(3) 

To see this, consider the trajectories of two initially nearby points: x(t) and 
x(t) + Llx(t). Clearly, we have (1) and also 

(4) 

In addition 

Fi(x(t) + ~(t)) = Fi(x(t)) + Jik(x(t)) Llxk +... (5) 

where the summation over k is implicit. Combining equations ( 1) and ( 4-5) 
yields 
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(6) 

where the time dependence of the J a~:opi matrix is determined by the solution 
to (1). The formal solution to (6) requires a time ordered exponential: 

t 
~x(t) = Texp( J ds J(x(s))) ~(0) 

0 

(7) 

It is now clear that the time evolving eigenvalues and eigenvectors of J(t) will 
determine the positivity of A. in (2). Thus, the Jacobi matrix is the key to the 
existence of chaos for system (1). 

The Jacobi matrix also governs the time evolution of the fluctuations 
associated with ( 1 ). This statement requires a bit of development since the 
system ( 1) does not include fluctuations as it stands. We review the results 
below, but the reader must go to the references6 for details. It is possible to 
invoke a mesoscopic perspective given by a master equation12,13. Let P(x,t) 
be the probability distribution (p.d.) for anN component vector x. We use 
the notation x because of the connection with (1), but xis not x(t). The x 
components are simply coordinates in anN-dimensional probability space. 
P(x,t) satisfies the master equation 

a 
at P(x,t) = f dNx' (W(x,x') P(x' ,t) - W(x' ,x) P(x,t)) (8) 

in which W(x,x') is the transition rate distribution, i.e. the transition 
probability density per unit time for a change from x' to x. For certain types 
of jump processes 14, there exists a macroscopic parameter, n, such that the 

· · K(n) 1 ·th n d. transition moments, i 1 i2 .. .in' sea e WI ~~ ace or Ing to: 

- Q-(n-1) 

The Kramers-Moyal expansion 12 provides an infmite order PDE equivalent 
to (8) given by: 
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~ oo ~ <-:_!E ~- ;:_ ;.l_ (n) . 
at P(x,t} = L n! .H dx . (Kk1 kz ... kn (x) P(x,t)) (10) 

n=1 J =9~~- · kJ 

in which the summation over the kj 's is-implicit. If we now contemplate the 
limit Q ~ oo, (10) reduces to Liouville's equation 

a a (1) 
at P(x,t) =- axk (Kk (x) P(x,t)) (11) 

which has the solution 

P(x,t) = O(x- x(t)) (12) 

where x(t) solves the system of ODE's: 

d (1) 
dt Xi(t) = Kj (x(t)) (13) 

These equations are identical with (1) provided that the first moments of the 
transition rate distribution satisfy 

K~ 1 ) =F· 
1 1 

In this way, the master equation description reproduces the deterministic 
macroscopic description as the limit n ~ oo. 

(14) 

There are also two, more delicate limits that produce the dynamics for 
the fluctuations. The frrst is in the spirit of the central limit theorem of 
probability theory14. Defme the scaled fluctuation in x, y, by 

x = x(t) + Q-1/2 y (15) 

wherein x(t) solves (13). Let <I>(y,t) denote the p.d. for the fluctuations, y. <I> 
satisfies the linear Fokker-Planck equation: 

a a a (1) 
at <I>(y,t) =- ayi < axj Ki (x(t)) Yj <I>(y,t)) (16) 
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a2 (~)~ ;:. ~ 
+ 1/2 a a (R·. ,~' (xl_ :t)) ct>(y t)) Yi Yj IJ -r~ -J ' 

in which ~~2) is defmed by 

(2) limit (2) 
R: · (x(t)) =n Q K· · (x(t)) A!J .u;~oo IJ (17) 

which exists on account of the scaling property (9). In these expressions, !<[1
) 

and ~~2) are functions ofx(t). We already see the Jacobi matrix for the 

deterministic motion given by (13-14) in the first term of the right-hand side 
of (16). Define the fluctuation correlation matrix, Cij: by 

r .·-<y·y·> '-1J- 1 J t (18) 

in which the averaging symbols, < ... >t , denote an average with respect to 
ct>(y ,t). Cij satisfies the equation 

(19) 

in which Jij is the Jacobi matrix in (3) (cf. (14)). We have shown1,6 that if the 
deterministic motion is chaotic, then the presence of J in (19) implies an 
exponential divergence of C (at twice the rate of the largest Liapunov 
exponent). 

Clearly, an exponential growth of the fluctuations will eventually 
invalidate equation ( 19) and the linear Fokker-Planck equation ( 16) from 
which it is derived. For this eventuality, there is a second limit theorem 15 
yielding a nonlinear Fokker-Planck equation 

a a (1) 
at Pt{x,t) = -ax· ( Kj (x) Pt{x,t)) 

1 
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a2 (2) 
+ 1/2 dxid~J; ~?j (x) Pr(x,t)) 

,:.r, ~- -·./< 

-:~-.. -

. h. h K ~ 1) d K ~ 2) f . .·f~-- ( ) d . h. h h m w IC ... i an ... ij are unctions o x, not x t , an In w IC we ave 

denoted the p.d. for x by Pt to distinguish it from the P(x,t) that solves (10) 
(or (11)). 

The physical interpretation of these two limits is as follows. For either 
a non-chaotic motion, or for the initial fluctuation growth phase for the 
chaotic motion, we have the equations (13) and (16), i.e. the deterministic 
equations and the equation for the fluctuation p.d .. The latter has coefficients, 

the Jacobi matrix and R (
2
), that depend on the deterministic solution to (13). 

However, for the time evolved chaotic case, we just have the p.d. equation 
(20). The distribution Pf is sufficiently non-gaussian and is broad enough that 

d (1) (1) 
dt <xi>t = < Ki (x)>t ~ Ki (<x>t) (21) 

where< ... >t denotes averaging with respect to Pt(x,t). We no longer get the 
deterministic equations we got from (11-13). Another way to say this is to 
say that the Dirac delta function solution (12) to Liouville's equation (11) is .. 
unstable with respect to fluctuations if the trajectory is chaotic. Thus, we are 
reduced to a fundamental description at the level of Pt(x,t), given by (20). 

· Determination of Pt(x,t) requires numerical methods in general, on 
account of the non-integrability of (20). We achieve the same information by 
implementing a numerical integration of a Langevin equation equivalent with 
(20). There are some associated technical matters concerning the lto­
Stratonovich stochastic calculus that must also be dealt with6. Furthermore, 

since only the first two moments ofW, Kf1) and ~)2), appear in (20), and 

since Kfl) is already fixed by (14), only ~2) needs to be determined. In the 

equivalent Langevin treatment6, this quantity corresponds with the matrix of 
correlations for the components of the stochastic force. It is in essence the 
content of the fluctuation-dissipation relation of the Onsager theory for near 
equilibrium fluctuations. For hydrodynamics, we need only replace the 
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equilibrium quantities in this relati<;>~ _with their local equilibrium values in 

order to get this quantity, i.e. ~~2) :~i~fi,fue far from equilibrium situations. 

This is what we have done in our s~qies of the Lorenz model. 

Quantum Chaos 

That concensus on a defmition of quantum chaos has not yet been 
reached is often attributed to the putative fact that the natural definition of 
chaos in classical systems cannot be carried over into quantum mechanics. In 
the classical setting, one looks at phase space trajectories and characterizes 
chaos in terms of the positivity of the largest Liapunov exponent. Since we 
are taught that quantum mechanics does not allow us to maintain the idea of a 
phase space trajectory, we no longer can use the Liapunov criterion for a 
definition of quantum chaos. Many researchers have concluded that the only 
remaining tactic is to study the quantum mechanical properties of known, 
classically chaotic Hamiltonian systems; this approach has been dubbed 
"quantum chao logy" .16 

In earlier work 17, we have argued that the Liapunov criterion can be 
applied in quantum mechanics by looking at expectation value trajectories in 
a "quantum phase space". Heisenberg's uncertainty principle tells us that 
these trajectories have associated, non-vanishing variances for all of the 
variables. This fact does not a priori prevent us from using the expectation 
value trajectories as analogues to the classical trajectories. However, this 
tactic only remains sensible so long as the root-mean-square deviations from 
the expectations (i.e. the variances) remain small compared to the 
expectations. 

Sometimes it is asserted that you cannot have chaos in quantum 
mechanics because the Schrodinger equation is a linear partial differential 
equation and you need non-linearity for chaos. That this is wrong was shown 
above. Every classical Hamiltonian system can be recast by the linear 
Liouville equation for a probability distribution in phase space. This 
distribution can be taken initially to be a Dirac delta function (localized on 
the initial coordinates and momenta), ·and as a consequence of the first order 
derivative nature of Liouville's equation, the solution will evolve as a Dirac 
delta function for all time. Thus, for a chaotic system, the Liouville 
distribution follows the chaotic trajectories precisely. 

Earlier, we studied the behavior of a fully quanta! system, the 
periodically kicked pendulum2,5. We found that when its classical analogue 
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was chaotic, the quantum description ip terms of an expectation value phase 
space became very remarkable. Th~:Y~9ances grew exponentially fast to 
large size compared to the expectations, and the quantum expectation 
trajectories soon bore no resemblance to the classical trajectories. For 
example, classically, the sequence of!Jendulum angles from kick to kick was 
a chaotic sequence that jumped all over the interval [0,21t], but quantally the 
expected angle quickly converged on 1t (the "down" position). This was a 
result of the variance of the angle growing so large that the quantum 
probability distribution for the angle became broadly spread out over all of 
[0,21t]. We expect that this will generally be the case for fully quanta! 
treatments of classically chaotic systems3. One way to see this is to investigate 
the behavior of the Wigner distribution,especially in the limit where Planck's 
constant vanishes. We have shown3 that this limit can be cast such that it . 
parallels very closely the master equation analysis given above in equations 
(8-20). Remarkably, we obtain an equation for the quantum fluctuations of 
the form 

(22) 

in ~hich Cik(t) is the quantum covariance matrix and Jij(t) is the Jacobi 
matrix for the associated classical dynamics that is obtained in the limit of 
vanishing Planck's constant. Thus, when the corresponding classical 
dynamics is chaotic, the Jacobi matrix engenders an initially exponential 
growth of the quantum covariances. In parallel with the instability of the 
Dirac delta function solution to Liouville's equation caused by chaos, and 
referred to above, a Gaussian, Feynman path integral rendering of quantum 
mechanical time evolution is also unstable when its classical core is chaotic. 

One tantalizing experimental application of this effect occurs in 
reaction kinetics for molecular beams. Consider a beam of molecules initially 
prepared in a sharply defmed rotation state. Intramolecular rotation­
vibration coupling can create chaotic evolution of the rotation state 
distribution that shows itself as exponential growth in the rotation state 
variance. This greatly enhances channel availability for reactions with 
molecules in crossed beams. Reaction rates would appear anomalously 
greater than would be expected on the basis of the reaction rate for the initial 
sharp rotation state. 

We are also pursuing experimental applications in lasers8 and in 
Josephson junctions6. 
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