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SUMMARY 

In this investigation, the necessary and sufficient conditions 

are established for a 2 X 2 matrix of real rational functions to be 

realizable as a short-circuit admittance matrix of a transformerless active 

three-terminal two-port network utilizing either ±R,C or RC networks and 

one controlled source or one negative impedance converter. A synthesis 

procedure is developed to realize the admittance matrix that satisfies 

the sufficient conditions as a two-port network. 

The necessary and sufficient conditions for a 2 X 2 matrix to be 

realizable as a short-circuit admittance matrix of a ±R,C or RC two-port 

network with one controlled source or one negative impedance converter 

embedded in it are 

1. The given matrix must be expressible as the sum of a ±R,C or 

RC admittance matrix and a matrix of rank one. 

2. The number of non-compact poles that are common to both driving-

point admittances of the ±R,C or RC admittance matrix must be equal to or 

greater than the order of the elements of the matrix of rank one when the 

latter is expressed with a common denominator. 

The method of synthesis requires that the given matrix, which satis

fies the realizability conditions, be decomposed into a ±R,C (RC) admit

tance matrix and a matrix of rank one. [Here ±R,C (RC) indicates two 

simultaneous developments of the ±R,C and RC class of networks.] The 

excess admittance that is not needed to realize the matrix of rank one 

is removed from the ±R,C (RC) admittance matrix and realized separately 
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as a ±R,C (RC) two-port network. The remaining admittance is realized 

as a ±R,C (RC) two-port network with a controlled source or negative 

impedance converter embedded in it. By connecting these networks in parallel 

the given admittance matrix is realized by an active RC two-port network. 

In the situation when the given matrix contains functions with 

only simple real poles, a decomposition procedure has been developed for 

determining whether the necessary and sufficient conditions are satisfied. 

These realizability conditions are expressed in the form of two inequality 

equations; one is concerned with the residues of the poles located on 

the negative real axis including the pole at infinity and the other is 

concerned with the residues of the poles located on the positive real axis 

including the origin of the complex-frequency plane. The realizability 

conditions require that a single real constant exist such that both equa

tions are satisfied simultaneously for all poles including the poles at the 

origin and infinity. The sufficiency of these conditions is established by 

the synthesis procedure. However, in the special situation when one or 

both of the given driving-point admittances are ±R,C (RC); then decomposi

tion is always possible and, therefore, a realization can readily be accom

plished. 

As a collateral interest, the synthesis technique is adapted to real

ize any two general rational functions as short-circuit admittances of a 

three-terminal RC two-port network with one controlled source. Trans

formers are not required. No control can be placed on the other two admit

tance functions. 

As an application of the synthesis procedure, a method is pre

sented whereby equivalent circuits of active devices can be obtained. By 



way of illustration, equivalent circuits of a transistor are determined. 

The equivalent circuits are developed from a set of short-circuit admit

tance functions which are obtained by approximating a set of experimen

tally determined magnitude and phase characteristics using the half-line 

approximation technique. This application provides a method to obtain 

general equivalent circuits for a transistor valid over any desired fre

quency range with any degrees of predetermined accuracy by synthesis. 

Three equivalent circuits of a transistor are presented, each with 

varying degrees of accuracy and network complication. The first equiva

lent circuit is developed with the form of the approximating network pre

determined. The form of this network is specifically chosen to be a simple 

three-terminal RC network containing one voltage-controlled current source. 

The controlling voltage appears across the input terminals of the network. 

The controlled current source is embedded in the RC network, shunting the 

output terminals. In order to keep this first model simple, the approxi-

mating admittances are allowed only one common pole and two zeros. The 

equivalent circuit obtained by this procedure is compared with the con

ventional equivalent circuit for the transistor -- the hybrid-it model --

in terms of network elements, accuracy of approximation, and frequency 

range. The comparison shows considerable similarity in both circuits for 

the frequency range from dc to approximately 100 mc. 

The accuracy of the approximations is improved in the second and 

third equivalent circuits. For these networks the approximating admit

tances contain two common poles and three zeros. This requires increased 

network complexity. The second model is developed with the form of the 



network predetermined as in the first network. The accuracy of the approxi

mation in this case is substantially Improved, In thd third model the net

work is not restricted in form and a slight further improvement is obtained 

over the second model, 



CHAPTER I 

INTRODUCTION 

Active network synthesis has made marked advances in the last 

decade. This has been partly due to advancement in fields such as semi

conductors, low-temperature systems, and feedback amplifiers„ With the 

advent of these devices, the passivity and bilateralness or reciprocity 

restrictions can be removed from the traditional passive network synthesis 

requirements that the elements be finite, lumped, linear, passive, and 

bilateral. At present, numerous active synthesis procedures have been 

developed, employing such devices as negative impedance converters, con

trolled sources, gyrators, and negative resistors (1,2). Most of the 

present active synthesis procedures employing these active devices use 

positive resistances and positive capacitance as the passive network ele

ments. 

This investigation is concerned with determining the necessary and 

sufficient conditions for realizing-a short-circuit admittance matrix, 

by a two-port network utilizing ±R,C or RC and one controlled source 

or one negative impedance converter, A synthesis procedure is developed 

to realize the admittance matrix that satisfies the sufficient conditions 

by a two-port network. As an application of the synthesis procedure, 

equivalent circuits of a transistor are developed from a set of short-

circuit admittance functions which have been obtained to approximate a set 

of experimentally determined magnitude and phase characteristics, 
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Considerable progress has been accomplished in the active synthesis 

field using negative resistance, negative impedance converters, and con

trolled sources,, When it is desired that a 2 X 2 matrix of real rational 

functions be realized by an active RC network, there are only three possi

ble techniques available. None of these techniques is completely suitable 

for all practical applications,, 

One of these synthesis techniqueis was developed by Phillips and 

Su (3, 4). Their synthesis procedure employs the negative resistance as 

the active network element. The procedure synthesizes a two-port network 

using ±R,C when all three admittance functions y.., -y.2, and y22 

are prescribed and satisfy the necessary and sufficient conditions for 

physical realizability. (Here ±R,C refer to a class of networks that 

contains negative resistances, positive resistances, and positive capaci

tances.) 

Sandberg (5,6) has presented two methods for an arbitrary N X N 

matrix of real rational functions to be realized as a short-circuit 

admittance matrix of a transformerless active RC N-port network con

taining either N negative impedance converters whose chain matrices 

have the form 

±1 .. 0 

0 +k 

or N controlled sources whose admittance matrices have the form 

M 
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Therefore, an arbitrary 2 X 2 matrix can be realized by an RC two-port 

network with two negative impedance converters or two controlled sources. 

Application of Phillips and Su*s synthesis procedure for ±R,C 

two-ports is very limited because of the restrictive character of the 

realizable short-circuit admittances. A realization by Sandberg's general 

synthesis procedure normally requires two controlled sources or two nega

tive impedance converters and a large number of elements., In the light 

of this situation, there is an obvious void between the synthesis tech

nique of Phillips and Su for realizing a special type of symmetric admit

tance matrix and Sandberg's realization of a general 2 X 2 rational matrix. 

The following question arises; "What are the possibilities of a synthesis 

procedure utilizing ±R,C or RC and one controlled source or one negative 

impedance converter?" 

This problem has been partially considered. The possibility of 

realizing admittances by RC and one controlled source or one negative 

impedance converter has been considered by Sipress and Sandberg. Sipress 

(7) utilized the properties of a negative impedance converter in conjunc

tion with four RC two-port networks to. realize any two rational functions 

as short-circuit admittances of,an active RC two-port network. This pro

cedure is so specialized that no control can be placed oh the other admit

tances. Sandberg (6) observed that a necessary condition for a short-

circuit admittance matrix to be realizable by an active RC two-port network 

with one controlled source imbedded in it is that the matrix be expressible 

as the sum of an RC short-circuit admittance matrix and a matrix of rank 

one. The exact nature of these two matrices and the sufficiency of the 

condition have not been established* 
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Thus, it is highly desirable to develop a method to realize an 

admittance matrix with ±R,C (RC) and only one controlled source or one 

negative impedance converter,, [Here ±R,C (RC) indicates two simultaneous 

developments of the ±R,C and RC class of networks]. Additional motivation 

is obtained when existing synthesis procedures are not suitable for 

realizing approximated short-circuit admittances of a transistor when 

only one controlled source is allowed. 

The first part of this investigation is concerned with determining 

the necessary and sufficient conditions for physical realizability of a 

2 X 2 matrix by this class of network, and establishing a synthesis pro

cedure to realize the matrix that satisfies these realizability conditions. 

The second part of this; investigation is concerned with applying 

the synthesis procedure developed to obtain equivalent circuits of some 

active devices. The use of equivalent circuits to characterize active 

devices such as transistors, vacuum tubes, and electric motors is not new. 

For yearŝ  physicists have been determining equivalent circuits for active 

devices mainly on the basis of physical processes that occur within the 

device. Often circuits obtained this way have varying degrees of accuracy 

and are only applicable over a limited range of frequency. Thus, the 

purpose of this part of the investigation is to demonstrate a procedure 

whereby more general equivalent circuits for these active devices might 

be obtained. 

The procedure for obtaining the equivalent circuits is to first 

approximate a set of experimentally measured characteristics, specified 

in both magnitude and phase, in order to obtain a set of short-circuit 

admittance functions. These functions are then realized by the synthesis 
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procedure. In particular, this procedure is illustrated by obtaining 

equivalent circuits for a common emitter transistor. This application 

provides a method to obtain equivalent circuits for a transistor valid 

over any desired frequency range with any degrees of predetermined 

accuracy by synthesis, 
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CHAPTER II 

THE NECESSARY AND SUFFICIENT CONDITIONS 

The necessary and sufficient conditions for a 2 X 2 matrix to be 

realizable as a short-circuit admittance matrix of a ±R,C (RC) two-port 

network with one controlled source embedded in it are 

1. The given matrix must be expressible as the sum of a ±R,C (RC) 

admittance matrix and a matrix of rank one. 

2. The number of non-compact poles that are common to both 

driving-point admittances of the ±R,C (RC) admittance matrix must be 

equal to or greater than the order of the elements of the matrix of rank 

one when the latter is expressed with a common denominator. 

That these conditions are both necessary and sufficient for this class 

of networks will be shown presently. 

A given 2 X 2 matrix that satisfies the necessary and sufficient 

conditions for realization by a short-circuit admittance matrix of a two-

port ±R,C (RC) network with one controlled source embedded in it is reali

zable as a parallel combination of two two-ports -- one of which is a 

±R,C (RC) network and the other is a two-port that consists of ±R,C (RC) 

and one controlled source as shown in Figure 1. 

Since the realization of ±R,C (RC) two-port network will be used 

in this development it is convenient to state the necessary and sufficient 

# 
Sufficient conditions for realizing a set of short-circuit admit

tance functions as a three-terminal RC two-port network have not been 
completely established. Thus, even though all necessary conditions have 
been fulfilled, a realization may not be possible by RC. 



±R,C (RC) 
Network 

±R,C (RC) 
Plus one 

Controlled Source 

Figure1 1. The Network Configuration that Realizes 
the 2 X 2 Matrix as a Short-Circuited 
Admittance Matrix,, 

conditions for realizing this class of networks (8, 9, 10). These condi

tions shall be expressed in terms of the short-circuit admittanqe func

tions, 

n k'M s 
Y n Kn Kn ii ' L s+.(». 

i= l 

n - k < * > 
-v = k + k(oo)

s + k (o)/s+y J2— 
y 12 k12 K 1 2 S ^ k 1 2 / s

 ZJ s + d . i= l 

n kt^s 
y = k + k(oD)s + k(o)/s+V -2^1 y 22 K22 K22 *22f L s + d . 

i= l 

(1) 

For a +R,C two-por t 

1. All coefficients are r e a l , 

2 . when d. > 0; k;1/ > 0 and k'iV > ° 
l ' 11 ~ "22 — 

when d. < 0; k £ < 0 and k ^ < 0 
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3. k^Y > 0 and k ^ > 0; kj°' < 0 and k ^ < 0 

4. in all poles i = 0,1,2,3,.. .n,« k^ k22 - (k^J ) > 0 

and for an RC two-port network the conditions are 

1. all coefficients are real 

2 k(°) = k(°) = k(°) = o 
^° Kll K22 K12 U 

3. k > 0 and k22 > 0 

4. d > 0, k ^ > 0 , and k ^ > 0 

5. in all poles i = 0,1,2,3,.«.n,« 

2 
and k nk 22 " ̂

k12^ - ° 

k(n k22 " ( k ? 2 ^ ° 

Phillips and Su have developed a synthesis procedure which will 

synthesize a two-port network when all three short-circuit admittance 

functions, y.., -y.„, and y' are prescribed and satisfy the neces

sary and sufficient conditions for physical realizability. Their synthesi 

procedure utilizes a parallel ladder development in which a network is 

developed that will realize each type of pole. An attempt has been made 

to keep the number of negative resistors to a minimum. In Appendix II the 

networks that realize these poles are presented. 

In order to establish the necessary and sufficient conditions for 

physical realizability of a rational matrix as a ±R,C two-port network 

with one controlled source embedded in it, the ±R,C (RC) four-port network 

in Figure 2 is first considered. The short-circuit admittance matrix 

of this active four-port is symmetric [y.. = y..] and can be written 

as 
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yll Y12 y13 Y14 

Y21 Y22 Y23 Y24 

31 y32 y33 y34 

Y41 Y42 Y43 Y44 

(2) 

A sufficient condition for the transformerless realization of this 4 X 4 

matrix is that the matrix be dominant. A matrix is dominant if each of 

its main-diagonal residues is not less than the sum of the absolute values 

of all the other residues in that pole in the same row, including the con

stant term (11). 

h ±'R,C (RC) Network h 
^ 

±'R,C (RC) Network 

V" 
,V 

±'R,C (RC) Network 

u 

±'R,C (RC) Network 
fE-

K 

Figure 2. The Arrangement for an Active 
±R,C (RC) Four-port Network. 

There is no limitation on the type of controlled source to be 

considered in this research. However, this particular derivation is 

only applicable to three types of controlled-sources. The fourth type 

requires a different treatment. The details of this different treatment 

are discussed in Appendix I. The controlling qualities are placed at port 

3 and the controlled quantities at port 4. The controlling quantities , 

[either E~ or I~] are related to the controlled quantities [either 

E. 6r I.] by matrix relationship 
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[p]x (3) 

Here [p] is a matrix containing only one real non-zero element. It 

can be anyone of the following three matrices 

o o" 

9 q. 

"o R" 

_0 0_ 

V o" 

0 0_ 
(4) 

The first matrix is applicable for a current-controlled current source, 

the second for a current-controlled voltage source, and the third for a 

voltage-controlled voltage source* 

As an example, if the controlled source is a current-controlled 

voltage source the network configuration is that indicated in Figure 3. 

I , I „ 
-J— ±R,C (RC) Network - • 2 U 

1 

X" J 4 

2 • o 

E3=° 

E4 * RI3 

Figure 3. The Arrangement of an Active ±R,C (RC) 
Two-port Network with One Current-
Controlled Voltage Source 
Embedded in it. 

As the controlled source in this development is arbitrary, the 

network of Figure 3 will be used for the purposes of illustrating the 

development without loss of generality. Solving for the admittance 

matrix [V], which is defined by 
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- [Y] x 

Y Y 
11 12 

Y Y 
21 22 

'El 
x 

.E2 

(5) 

of the active two-port network of Figure 3 by substituting Equation (3) 

into Equation (2) and simplifying, yields 

[Y] = 
11 

r21 

12 

r22 
1 " RY34 

14 

24 
tv1: Y23] (6) 

It can be deduced that the admittance matrix, is represented by 

the sum of matrices 

[y] -

Yll Y12 

Y21 Y22 

(?) 

which is a ±R,C (RC) short-circuit admittance matrix, and 

[y(0)] -
12 Yll 

" (o) 

y 2 i y, 
(o) 
22 

1 
1 -Ry 34 

14 

24 

Ly13 y23^ 
(8) 

which is a matrix with rank one. 

Therefore, one necessary condition, for a matrix to be realizable 

as a short-circuit admittance matrix of a ±R,C (RC) two-port network with 

one controlled source embedded in it, is that the matrix be expressible 

as the sum of two matrices^ one having the character of a ±R,C (RC) short-

circuit admittance matrix and the other matrix having a rank of one. 

The ±R,C (RC) short-circuit admittance matrix in Equation (7) can 
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always be written into the following form, 

[y] -

Yll Y12 

Y21 Y22 

vii y{2 
+ 

*21 Y22 

v£i 0 

+ 
0 Y22 

v"' 0 
yll 

0 y 
22 

(9) 

The three matrices in Equation (9) are designated as 

[y'] = 

rn 

Y21 

12 

'22 

[y«] = 
11 

'22 

[ym] = 
rn 

'22 

The admittances y'" and y"' represent the private admittances of y. 

and y22, respectively. The residues in each of the poles in the admit

tances y' , y' , and y' all satisfy the compact condition. Thus, 

the admittances y" and y" represent the admittance removed from the 

non-compact poles of the original matrix in the process of making the 

residues in the poles of y' , y' , and y' compact. This is accom

plished by removing the surplus in these non-compact poles in such a way 

that a non-zero part is assigned to each of the admittances y" and y" , 

The most general representation of a rational 2 X 2 matrix of 

rank one is 

P Pu a b 

P P , 
a d 

Vc 

P.P 
d c 

(10) 

The private admittances y"' and y'" do not contain any com
mon poles. 
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The polynomials P , P, , P , P., and Q are completely general. 

If a given matrix of rank one does not have the same denominator in its 

elements, Q polynomial represents the lowest common denominator. This 

matrix can always be written as 

P Pw 

a b 

p p^ a d 

P K P 
b c 

p^ p 
d c 

1 
Q [p. p ] cJ (11) 

Clearly the right hand side of Equation (11) has a form that is similar 

to that of the admittance matrix of rank one in (8). In order to show 

how the quantities in Equation (11) can be identified with the admit

tances in (8), a few definitions are needed. 

First let the maximum degree of the polynomials P P. , P, P , 
a D D C 

P P., P.P , and Q be equal to or less than M, where M is an 

arbitrary number. In addition let the degree of P P, be equal to M. 

Thus, if the degree of P is n, and that of P. is n~, then 

n1n2 = M. 

Now choose a polynomial g = g,g„ which contains only simple real 

zeros (for RC case, g must contain only simple real zeros located on 

the negative real axis of the complex frequency plane and g(0) / 0) 

and is of degree equal to or greater than M. Let the degree of the poly

nomials g. and g2 be n, and oj, respectively. Then, clearly 

n ' > n.. Now let 

i - Ry?4 = Q/g 

or 

y 3 4 - •• | (i - Q/g) (12) 
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In addition, let 

1 P K P 

1 _b y a 
"Y14 ' y x g 2 "Tl3 R X 9l 

P P (13) 

1 _d r _c 
"Y24 = r X 9o "Y23 = R X 9i 

where Y is a constant. Each of these admittances satisfies the require

ments of ±R,C (RC) admittance functions. This is clear as the degree of 

P is n.. and P, is n~. Since P,P is of degree equal to or less a 1 b 2 b a 

than M, the maximum degree that P can be is n.. Similarly, the maxi

mum degree that P, can be is n2» Hence, each of these admittances has 

a denominator that has only simple real poles and of order equal to or 

greater than the order of its numerator. 

However, in order to realize the four-port network of which these 

admittances are elements, obviously the admittances y" and y" must 

contain sufficient ±R,C (RC) admittances such that the transfer admit

tances in Equation (13) can be realized. 

Thus, a second necessary condition for a matrix to be realizable 

as a short-circuit admittance matrix of a ±R,C (RC) two-port network with 

one controlled source is that the number of the non-compact poles common 

to both driving-point admittances of the ±R,C (RC) admittance matrix 

[i.e. y" and •'• y««] must be equal to or greater than the degrees of 

both numerator and denominator polynomials of the matrix or rank one when 

the latter is expressed with a common denominator. That is, it is required 

that y", and ŷ * contain at least the admittances Pii/g and P^^/g > 

respectively, where these functions are ±R,C (RC) driving-point admittances 
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and are of order equal or greater than M. 

We shall now show that these two necessary conditions for a given 

2 X 2 matrix to be realizable as a short-circuit admittance matrix of a 

±R,C (RC) two-port network with a controlled source are also sufficient by 

indicating a synthesis procedure. 

When given a 2 X 2 matrix that is to be realized by this class 

of network the first step in the realization procedure is to write this 

matrix as the sum of a ±R,C (RC) admittance matrix and a matrix of rank 

one* The ±R,C (RC) admittance matrix is then expressed in the form of 

Equation (9). Now, consider the ±R,C (RC) admittance matrix y,'̂  Y-i'o 

and y' from Equation (9). This matrix which satisfies the necessary 

and sufficient condition for realizability as a ±R,C (RC) two-port network, 

can be realized by a ±R,C (RC) two-port and connected in parallel with the 

other two-port which realizes the remainder of the given matrix. In 

addition, the private ±R,C (RC) admittances y'" and y"' from Equation 

(9) satisfy the realizability requirements for ±R,C (RC) driving-point 

admittances and can, therefore, be realized as ±R,C (RC) admittances and 

connected in shunt across the terminals of ports 1 and 2, respectively. 

In order to realize the remaining ±R,C (RC) admittance and the 

general matrix of rank one, recall that the remainder of the ±R,C (RC) 

admittance matrix is now y" and y''0 and that these admittances can 

be written as Pu/9 and P93/g, respectively. These ±R,C (RC) admit

tances satisfy the realizability conditions for ±R,C (RC) driving-point 

admittances and are of order equal to or greater than M. The transfer 

admittances -Y13> " Y ^ ~y2V ~Y24' a n d "Y34 a r e sP e c i f i e d in 

Equations (12) and (13) and represent ±R,C (RC) transfer admittances. In 
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(8), these transfer admittances form a matrix of rank one. Thus, it has 

been shown that the remainder of the given 2 X 2 matrix can be expressed 

by these admittances. 

Prior to showing that these admittances can always be realized as 

±R,C (RC) transfer admittances of ±R,C (RC) two-port networks, it can be 

observed that in Equation (13) all the transfer admittances -y. , ~vi4! 

-y0_, and —yOA contain a constant multiplier, either l/y or y/R. 
23' 24 

In addition, the admittances y and y44 from the original four-port 

network, Equation (2), are not specified in Equation (6). Therefore, it 

is apparent that these ±R,C (RC) driving-point admittances are arbitrary 

and can be expressed as y33 = P33/g and y44 = P44/g. 

Upon substituting these specified admittances into the 4 X 4 

matrix for the four-port ±R,C (RC) network there results 

11 
g 

r^a 
R gx 

Y g 0 

22 
g 

p 
_ r «£ 

R g ] L 

, l P A 
Y g0 

p 
x .-§. 

" R 9X 

rPs 
R gx 

P 33 

Rv gJ 

.li" 
Y g2 

E l 

i p d 

Y9- 2 
X 

E2 

1(1-9) E 3 

P44 

g 
E4 

(14) 

Now it is apparent that the constants l/y and y/R can always be 

selected such that the dominance condition is satisfied in the first two 

rows. The functions Poo/g and PAA/9 c a n always be selected to be 

large. Since all elements are ±R,C (RC) admittances and the diagonal 

elements can always be made as large as desired, the 4 X 4 matrix of Equa

tion (14) can always be made to be dominant. To complete the realization 
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these admittances are realized as ±R,C (RO) four-port networks and con

nected together to realize the ±R,C (RC) network with a controlled source. 

This network is connected in parallel with the previously realized 

±R,C (RC) networks* Thus, the given 2 X 2 matrix is realized and the 

necessary conditions are also sufficient* 

Although the synthesis procedure has been presented from the view

point of a particular controlled source^ any controlled source could have 

been used with similar results. In an alternate development it would be 

necessary to identify the admittances of the matrix of rank one with the 

polynomials of the matrix of rank one in a similar manner. 

Thus it has been shown that if the given matrix [Y], can be 

expressed as 

[Y] = [y«] + [y»]+ [y'»] + [y(o) ] (15) 

the sum of a ±R,C (RC) admittance matrix and a matrix of rank one where 

the number of the non-compact poles in the driving-point admittances of 

the ±R,C (RC) admittances matrix are sufficient, then it is always possi

ble for the given 2 X 2 matrix to be realized as a short-circuit admit

tance matrix of a ±R,C (RC) two-port network with one controlled source 

embedded in it. 
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CHAPTER III 

SYNTHESIS OF A MATRIX WITH ONLY SIMPLE REAL POLES 

Although the necessary and sufficient conditions for a 2 X 2 matrix 

to be realizable as a short-circuit admittance matrix of an ±R,C (RC) 

two-port network with one controlled source have been established and a 

synthesis procedure indicated in Chapter II, some additional considerations 

are required. Normally a problem is given in the form of four admittances 

Y,,, Y. ̂ , Y^,, and Y^, which are to be realized. In order to deter

mine whether these admittances satisfy the necessary and sufficient condi

tions for a realization, it is required to express these functions as the 

sum of the matrices in Equation (15)., This step is accomplished by first 

expanding each of the given admittances into partial fraction form. Since 

complex and multiple poles are readily determined these elements are 

grouped and identified as part of matrix [y ].. The remaining func

tions have only simple real poles. If the residues in these poles satisfy 

the ±R,C (RC) realizability conditions, then these functions are identified 

with matrices [y'], [yM] , and [ y m ] . The remaining functions have 

simple real poles but do not satisfy the ±R,C (RC) realizability condi

tions. For these functions to be realized, the residues in each set of 

poles must be decomposed so that these functions can be appropriately 

allotted to matrices [y] and [y ] • 

Since the denominator Q of [y ] can contain both simple real 

poles (g«) and complex and multiple poles (Q')> it is helpful to let 
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P„P~ P,P 
y 

15 
11 " g3 Q' 

(16) 

(o) ^ 3 + ^ 
'Y12 g3

 + Q' 

(o) 1^2 + m 
Y21 g^ Q' 

(o) ^ 3 +
 F^6 

Y22 g^ + Q' 

Here polynomials P,, P2, P.,, P4, P_, P6, and Q' are completely 

general. An alternate way of expressing this matrix is obtained by inter

changing the quantities of -y' with -ŷ l. . This is a completely gen

eral representation of a matrix of rank one. 

Obviously when a given problem requires that the matrix [y ] 

contains only complex and multiple poles (Q')> then P^ = P = 0 and 

the Equation (16) reduces to Equation (11) with Q' = Q. Polynomials 

P., P4, Pp. P., and Q' are readily identified as previously men

tioned. 

When the given problem requires matrix [y ] to contain both 

types of poles [indicated by g and Q'] methods for decomposition 
o 

of the functions with simple real poles that are not ±R,C (RC) is less 

apparent. This is because polynomials P. and P. appear in the numer

ators of both the complex and multiple poles (Q') and the simple real 

poles (g«J. A special case occurs when the given problem specifies that 

P. = h. and P. = h, where h. and h are constants, then decomposition 

of the functions that are not ±R,C (RC) can be readily accomplished. 
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When the matrix [y J contains only simple real poles (g~), 

then P,. = P, = 0. The problem of determining polynomials P., P_, 

P., P., and g to facilitate the decomposition of functions that are 

not ±R,C (RC) will now be considered, 

The Determination of the Realizability of a Matrix 

The necessary and sufficient conditions for a 2 X 2 matrix that 

contains only simple real-axis poles to be realizable as a short-circuit 

admittance matrix, where this matrix has the form 

a , . s 
v J. W j . • (o ) / . r a n 
Yn = g n + a n s + an/ s + L — i = l 

n-;a(A}.s 
-Y12= 91 2 + a 1 2 s + a i 2 / s + ^ . r E 5 : 

i = l X 

n „ ( i ) _ 
(17) 

-*2i - * 2 i + 4^+4?/'+E rk 
i = l 

n al1' s 
Y22 = g22 + a g s + a ^ / s + I ^ 

' i= l 

as a ±R,C (RG) two-port network with one controlled source embedded 

in it are 

1. all the coefficients must be real, 

2. at least one value of h exists such that the following equa

tions are satisfied for all sets of residues that do not satisfy the 

realizability conditions of a ±R,C (RC) network: 
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a. For the pole at infinity and for all poles on the negative 

real axis, 

. / (i) , (i) x . 2 (i) (i) /10\ 
' 1 : 2 a21 ' " all a22 ^ ' 

2 (For an RC realization h'(g,« + g9,) - h g. < g 9 9 must also be 

satisfied) 

for i = 1,2,3,. • •••, n,°P . 

b. For the pole at zero and for all poles on the positive 

real axis, the following equation must be satisfied 

. , (i) , (i)x ,2 (i) (i) , s 
M a 1 2 + a.22 ) " h ttn > a22 ^ ' 

(not applicable for RC case) 

for i = 0,1,2,,.., n 

That these conditions represent the necessary and sufficient con

ditions for this class of network will now be demonstrated. This is 

accomplished by expressing the given matrix in partial-fraction form and 

expressing it as the sum of the partial-fraction forms of a ±R,C (RC) short-

circuit admittance and a matrix of rank one, and thereby satisfying the 

first necessary and sufficient condition for a 2 X 2 matrix to be realized 

by this class of network. 

The most general form of [y ] when it contains only simple 

real poles is in Equation (16) with P, = h, and P. = h, where h. 

and h are constants. In this situation, it is possible to specify both 

polynomials P« and P- independently, especially when they are expanded 

in partial-fraction form. Otherwise, little control can be exercised over 

the residues. With no loss in generality it is assumed that h. = 1 and 



P 2 (o) > (<*>) d ^ s 
- - = d + d l o 7 s + dK 's + ~ — • -
g 3 s + d . 

P 3 . . . ( o ) , . . (») d ( i ) s 
- - = d. + d.x V s + °\ + , „ 
g 0 1 1 ' 1 s +d. 

3 I 
h P 2 UA X K ^ ( ° ) / MUA^) x h d ( i ) s —•r- = hd + hd V s + hd s + — 
g 3 s + d . 

- ^ = hd, + hd o ) / s + hd } s + - 4 — 
g 2 l i ' l s + d . 

where all coefficients are real and i = 1,2,3,...,n. Equation (1 

now be written as the sum of Equations (l) and (20) as 

n n ( i ) e 
(«0 (o) / r 11 

i= i i 

* « ( i )
B 

-Y - Q , a(°°)-, , . J o ) / - ; , V a 1 2 s 
Y i 2 " 9 i 2 + a i 2 s + a i 2 / s + L F T 7 7 

i= l x 

" a ( i ) s 
-Y - a + « ( 0 0 ) , + a M ^ + V 2 1 

Y21 " 9 21 + a 21 S + a 2 1 ' b + L s + 3 7 
i= l 1 

n J i } s 
(°°) (o) / T 22 

-Y 2 2 - g 2 2 + a 2 2 ' s + a 2°>/s + £ ^ -
i= l i 

= k 1 1 + ) > W 7 ) s + y llSi!! + d + d(o)/B + d(-)8+y i ^ s 
11 11 ' 11 Z _ . s + d . ' Z j S + d . 

i = l 1 i = l 1 

- k l 2 + k [ ° 2 V s + k [ 2 » s ^ ! ^ + c l ] + d ( ° > / s + d(~)s+£ i ! l 
i= l 1 i = l 1 

-^ • • f f / .^ * ! ^•*** (0)/.*« (-'.+i ^ 
i = i x i= i x 

n b-vi) n h j ( i ) Q 

= k22 + 4°2Vs<2>s E ^ 7 + «1+
!
M(o) / .+M(-). E ^ _ 

. , 1 . . 1 

1=1 1=1 
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or 

a ( i ) = k ( i ) + d(i) 

all Kll * a 

(i) _ (i) (i) 
a 1 2 - k12 + dl 

(22) 

4 i , - . 4 i , + w ( 1 ) 

a ( i ) = k ( i ) +hd ( i ) 
a22 K22 nal 

for i = 0,1,2,3,... ,n,°°. 

To establish the necessary conditions for a 2 X 2 admittance 

matrix to be realized by this class of network, it is sufficient to 

establish the necessary restrictions on a's. This can be accomplished 

by imposing the previously outlined requirements on residues k.. , 

k.^ , and k̂ i . These conditions are: 

A. (i) For a. > 0 as well as i = °°, it is necessary 

that k̂ i > ° and k22 - ° or 

d ( i ) < a [ ; } and hd<i} < a ^ ? (23) 

(For RC case, k,, > 0 and k22 > 0 mqst be included 

Therefore, d < g.. and hd. < g29) 

(ii) For a. < 0 as well as i = 0, it is necessary 

that k ^ < 0 and k)£ < 0 or 

d(i) >a[\] and hd^i} > a ^ (24) 

(Not applicable to RC case.) 
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B. I t i s necessary t h a t k-i<? = k -̂i or 

^ • • 4 i ) - ^ ) - ! 1 , - 4 i ) - " ( 1 ) <»> 

for i = 0 , l , 2 , 3 , . . . " , n , « » . 

C. I t i s necessary t h a t k-j. x ' k i « - (k-j9 ) > 0 or 

' " n ' " d < i ) ) i a £ ) • ™\l)) -{a2l - h d ( i ) ) 2 > O (26) 

2 
(For RC case, k.. x k̂ ^ - (k _) > 0 must also be included) 

for i = 0,1,2,.. o ,n,°°. 

Solving for d from Equation (25) yields 

d j 0 = («j^ - a ^ ) + h d
( i ) (27) 

Substituting Equation (27) into Equation (26) and solving for d , it 

is possible, after some manipulation, to write 

(i) For a. > 0 as well as i = c:o, 

( ( i ) K ' W I 2 

rf*1' < nM + 2 1 " " . C2R) 
d * ' " h(„<» + a ^ ) - ( h 2 a ^ + ^ i ' ^ 

assuming h ( a ^ } + a ^ 5 ) - O ^ a ^ * + a ^ ) < ° o r 

. , . ( i ) ( i K h 2 ( i ) . ( i ) /9Qx 
n U i 2 + a 2 1 ' ~ 11 22 

Since in Equation (23), d '; < cu. , Equation (29) must hold. 

Equation (28) is stronger than Equation (23). Hence Equation 

(28) will control the value of d in this case. 
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(For RC case it is also required that 

(g 2 1 - h9u) 
d - 9 11 + ~~"~"—~— 2 

h ( g 1 2 ' + g 2 1 ) - (h g u +. g 2 2 ) 

2 
and h ( g 1 2 + g 2 1 ) - h g ^ < g 2 2 ) 

( i i ) For d. < 0, as well as i = 0, 
l 

(<.<*> - h a U b 2 
d * a n + ., a + ~ n r ( h 2 „ i) . U K (30) 

n l a ^ + a 2 , ; - kh a, , + a 2 2 ; 

assuming h ( a ^ + <4l^- " (all'h2 + a22'> ̂  > ° o r 

h(a^2 + a21') - h a^' > a 2 2 (31) 

In Equation (24), d ^ > a ^ , . thus Equation (30) must hold. 

Equation (30) is stronger than Equation (24). Therefore, Equa

tion (30) will control, the value of d . 

In other words, it is always possible for a single set of real 

axis poles, including the poles at zero and infinity, to be partitioned 

into the form of Equation (22) provided a real value of h can be deterL 

mined such that the appropriate Equation, either (29) or (31), be satisfied, 

It can be noted at this point that if the alternate form of the 

expression for a matrix of rank one is used identical results are obtained. 

In a similar development, hd*1' and d^ are interchanged in rows 2 

and 3 of Equation (16). But, slightly different forms for these equa

tions are obtained if h = 1 in Equation (16). In this case the con

stant is relocated in Equation (22.) as 
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a
( i ) = k(i) + h d ( i ) 

all *11 V 

a ( i ) = k ( i ) +hd ( i> a12 K12 + nlal 
(32) 

a(i) = k(i) Vd(i> a21 K21 a 

a22 = k22 + dl 1 

Equations (28) and (29) would now have the form 

r ( O K ( i ) ^ 2 

H ( i ) < J D + ((112 " h l a 22 } ,__, 
d l ^ a l l + . , ( i ) . ( i K , .2 (i) - ( i ) , {33) 

h l ( a12 + a21 } " ( h l a22 + a l l } 

and 

, / ( i ) ( i ) v 2 ( i ) ( i ) , v 
h l ( a 1 2 + a21 } " h l a22 < a l l ( 3 4 ) 

Similar changes would be reflected into the other equations. Therefore, 

it can be concluded that the form of Equations (29) and (31) are independ

ent of the original form of the matrix with a rank of one. 

Obviously, by choosing an appropriate value of h, it is always 

possible to satisfy Equation (29) when cu, > 0 and/or alJ > 0 and 

Equation (31) when cu, < 0 and/or a\0 < 0. However, it is not always 

possible to select a value of h such that both these equations will be 

satisfied for all poles. This condition is particularly apparent in Equa

tion (29) when both aJJ < 0 and aii < 0 and in Equation (31) when 

a}?" > 0 and aio ^ 0# Under this latter condition only a very restricted 

range of values fdr h will satisfy these equations. Since a solution i,s 

not always possible under these conditions, it is desirable to determine 
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when restrictions need to be placed on the a 's so that a value of h 

always exists and thereby guaranteeing that the inequality equations will 

be satisfied. 

In Equation (29) when both a[^ < 0 and a^i < °> i-t i s 

desirable to determine what value of h will make the quantity 

h, (i) . ,(i)x h2 (i! 
12 21 " 11 

have the most negative value as compared to the negative a L . This 

corresponds to finding the value of h which will make this quantity a 

maximum negative number. This value of h is determined by differentiating 

this quantity with respect to h, setting it equal to zero, and solving 

for h. Thus, 

_d_ 
dh 

. / (i) . (i)x .2 (i) 
h(a^2

7 + a21 ) -
 h . a n = 0 

or 

(i> , •: (i) 
i-rt " + a«* 
12 21 

max 2a (D 11 

Upon substituting this value of h into (29) (keeping in mind that 

a,, and a\J are negative numbers) there results 

/f t(i) + J O x 2
> 4 ( i) (i ( a 1 2 + o 2 1 ) > 4 a n a 2 2 

(i) (i) (35) 

for o*. > 0, including i = °°. 

( i ) 

( i ) 

From this equation it is clear that when both a,, < 0 and 

a^^ < 0 for poles located on the negative real axis and for the pole 
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at infinity it is necessary for Equation (35) to be satisfied in order for 

a solution to exist with this class of network. 

A similar treatment of Equation (31) when both a-.-. > 0 and 

a* > 0 would correspond to establishing the value of h which would 

make the quantity a minimum. Substituting this value of h into Equatioh 

(31), it can be established that a necessary condition for a solution to 

exist, when both tf,. > 0 and a99 > 0 for poles located along the posi

tive real axis and for the pole at zero, is that the equation 

(a12X + 4l}> >A*U a22} (36) 

be satisfied for o. < 0, including i = 0. 

In summary, it has been established that it is always possible to 

partition any single set of poles that are simple and restricted to the 

real axis in the complex frequency plane, into a ±R,C (RC) short-circuit 

admittance matrix and a matrix of rank one provided that 

A. For the pole at infinity and for a pole located along the 

negative real axis, (d. > 0) if both residues cu, < 0 

and a ^ < 0 

(For RC case g.. < 0 and g~r> < 0 must be included), 

or B. For the pole at zero and for a pole located along the posi

tive real axis, (d. < 0) if both the residues a,, > 0 and 
I 11 

dp,- > 0, the a residues satisfy the equation 

r 

(a^ +4^) 2> 4 aU)a22)" (35^6) 

2 
(For RC case (g.~ + g„.) > 4g g must be included.) 
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in order for a solution to exist. 

Therefore, it has been established that the only necessary condi

tion, for partitioning a single set of poles into the required form, is 

that a value of h exists such that Equation (29) or (31) be satisfied. 

In order to extend the range of poles to be considered to i = 0,1,2,...,n,oo, 

it is sufficient to require as a necessary condition that at least a single 

value of h exist such that Equation (29) and (31) are satisfied simul

taneously for i = 0,1,2,. o .,n,oo„ 

That this condition is sufficient as well as necessary will be now 

shown by a synthesis procedure. 

The Synthesis Procedure 

Since the necessary condition is established for an admittance 

matrix with simple real poles, it is now possible,to present a method of 

synthesis for this admittance matrix to show the sufficiency of this con

dition. No transformers will be needed. The previous development utilized 

a current-controlled voltage source. This same controlled source will be 

used here with no loss in generality. 

To facilitate the development of the realization procedure, a par

tial-fraction expansion is first obtained for each of the individual admit

tances, Y.., _vi2, ~voi> and ^oo> which comprise the given matrix [Y]. 

This expansion will have the form of Equation (17) which is repeated here. 

^i-'n**'*^/.*!^-
i = l i 

-*12.-g12 • . ! - > . - l l V J "r l 1 

i=l i 

n ( 0 , ( 1 7 ) 

-Y21 = g21+a27>s+a2°Vs + I ^ 

1=1 1 
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, n. a ( i ) s 

Y 2 2 = g 2 2 + a g ) s + a ( ° 2 V s + [ 1̂ 

1=1 " i 

All the residues in each set of poles are examined. Those 

individual set of admittances which satisfy the necessary and suffi

cient conditions for a realization by a ±R,C (RC) network are removed 

from Y.,, -Y.?, -Y~., and Y^. These admittances are realized 

utilizing the synthesis procedure of Phillips and Su [see Appendix If] 

for a ±R,C realization or any convenient method for an RC realization. 

This network will be connected in parallel with the ±R,C (RC) network 

containing one controlled source when the latter network is realized, 

as indicated in Figure 1. 

The remaining sets of residues in each of the admittances Y,,, 

-Y. 9, -Y .., and Y» are analyzed individually to determine a single 

value of h that will simultaneously satisfy the equations 

h < i [ 2 ) + 4 i ' ) > - h 2 ° i i ) < , " 2 2 ) (29) 

2 
(For RC case, also h(9i:>

 + 991) -
 h 9ii < 92o) when 6. > 0, including 

i = oo. 

And 

./ (i) (ih ,2 (i) . (i) /.n 

12 21 " 11 22 ' 

when a. < 0, including i = 0. 

This single value of h is most readily obtained by determining 

the permissible range of h in each of the equations. Then, comparing 
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all the ranges of h, it is possible to select a single value which will 

satisfy all the equations simultaneously. 

The range of value that h can assume in any one equation is most 

readily established by replacing the inequality sign in this equation by 

the equality sign. The resulting biquadratic equation can be solved for 

h. Generally two values of h will be obtained. These represent limit

ing values in the original inequality equation which h should not assume. 

Generally, it is a simple matter to determine whether the permissible range 

lies inside or outside these two values of h« Three possible exceptions 

to this procedure can occur. One of these occurs when the original equa

tion contains only the linear term (a-i-i = 0) • 1° this case the range 

of h is obvious. The second and third instance occurs when h has 

complex or repeated rootSo These situations result when cu, and cioo 

have the same sign and, in addition, cu?" aii ^ ^ai2 + a21 ' Z4' In 

these situations, any real value of h [except the repeated value] can 

be selected, and the appropriate equation will be satisfied when d. > 0 

and both a,. and <xi« are positive and when d. < 0 and both a,. 11 22 ^ l 11 

and a«« are negative. Should the signs be reversed on the a's, then 

no solution would exist as Equations (35) and (36) would be violated. 

Once the value of h has been selected, it is possible to rewrite 

the individual admittances Y..., -Y.,?, -Y«., and Y«« into the 

decomposed form of Equation (21). 

The value of d ' has been previously specified by Equation (28) 

when d. > 0, including i = 0O. 
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However, if the dominance condition is to be assured for the first two 

rows of the admittance matrix in Equation (2), (the order of yJ', and 

y" will be equal to or greater than the order of [y ]) it is neces

sary 

d ( i ) < n ( i ) . '"21 h " U } , . 
d < an + h, (0 . (iK (h2At) + UK

 (3 ' 
h U 1 2 + a21 ; - (,n a ^ + a 2 2 ) 

This condition assures that the residues in each of the poles in the admit

tance matrix [y] will not be compact. 

From Equation (30), d^ ' must be specified dis 

H(i) . (i) . («21- " ""ll }\ ,-x 

d >a^ \ i ^ T ^ p r i ^ p T ^ (38) 

when a. < 0, including i = 0. Similarly, this condition assures that 

the residues in these poles of [y] will be non-compact. 

Since d^1' is specified in Equations (37) and (38), d^ is 

now determined from Equation (27) as 

4°= ^ • • S i 1 ' ) + h d ( i ) (27) 

Since/ dj and d are now known, it is possible to solve for the 

remaining coefficients k|* , kj* > and k^p from Equation (22). 

There results 

kn } = a n } " d ( 0 (39) 

k ( i ) = k ( i ) = ( i ) _ d ( i ) (40) 
K12 K21 a 1 2 a l V ' 
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and 

k£> -a£> -M[i] (41) 

for i = 0,1,2, . . . ,n,°°. 

The only remaining terms to be specified are the conductances d, 

d , k , k , and ^99* They can be expressed as 

g n = k + d 

(42) 

g12 = k + dx 

g21 = k21 + hd 

922 = k22 + hdl 

Since k,, and k̂,-, can be either positive or negative in a ±R,C 

realization, it is always possible to make this decomposition regardless 

of the value of h. The only consideration in determining the values of 

'these coefficients is to try and keep the number of negative resistors to 

a minimum. Unfortunately, there are no general guide lines to ensure that 

a specific realization uses the minimum number of -R's. This point will 

be emphasized in the following example. 

Having solved for all of the coefficients in Equation (21), this 

equation can be written into the more compact form 

Y n = Pu/g + P2/q 

-Y12 = P12/g + P3/g 

(43) 

-Y21 - P12/9 + hPg/g 

Y22 = P2o/q + W3/9 



34 

From Equation (43) it is clear that the admittance matrix [Y], can 

always be realized along the lines previously indicated in Chapter II. 

This is because each of the constituent matrices of Equation (43) have been 

determined in such a manner that they will always satisfy the necessary 

and sufficient conditions for a realization by this class of network. 

Thus, the necessary conditions for the given 2 X 2 matrix containing only 

simple real poles are also sufficient. 

Special Cases 

A special case of considerable interest occurs when Y., and/or 

Y~~ of matrix [Y] are ±R,C (RC) driving-point admittances. In this 

situation it is always possible to realize the given matrix by the synthesis 

procedure. This results from the fact that both Equations (29) and (31) 

can always be satisfied for i = 0,1,2,... ,n,°°« In particular, consider 

the case when Y ^ is a ±R,C admittance. This corresponds to the residues 

in the poles of Y^^ having the following properties: when <s. > 0, then 

ai 9 > 0 and when a . < 0, then ai 9 < 0. Clearly for the case in point, 

Equations (29) and (31) can always be satisfied with h = 0. This is because 

with h = 0, these equations reduce to the necessary requirements that 

ai 0 > 0 when a. > 0 and cLv, < 0 when a. < 0, which must be fulfilled 22 I 22 i ' 

by the fact that Y^2 is a ±R,C (RC) driving-point admittance. Hence, a 

solution always exists. If Y,. is a ±R,C (RC) driving-point admittance, 

then, h can be selected large to satisfy both Equations (29) and (31) 

simultaneously. Possibly a more preferable solution would be obtained in 

this situation by using the alternate development. Now the constant h. 

in Equation (32), can be set equal to zero as in the case when Y^^ is a 
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±R,C admittance. In either situation, the previously developed equations 

are always valid and a solution readily obtained. 

An Example of the Synthesis Procedure 

As an example of this synthesis procedure, consider the realiza-

tion of the following matrix by a network composed of ±R,C and one current^ 

controlled voltage source. 

v = J>L -2-5- f o 
xll s+2 s+6 

Y = -5L -21 
12 s+2 " s+6 (44) 

Y -£§ 10? 1 
21 " ;s+2 " s+6 " 

x22 s+2 s+6 

First, it is necessary to establish a value of h to satisfy 

Equation (29). 

For 0 = 2 , Equation (29) gives 

1 -2h - 6h2 < -7 

which requires , 

h < -0.925 or 1.258 < h 

For 6~ = 6 

-13h + 2h2 < -: 

which gives 
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0.08 < h < 6.42 

Clearly both equations would be satisfied if h = 2. Letting h = 2 and 

solving for d ^ form Equation (37) yield d'^ < 2.22 and d ^ < -3.90. 

Thus, the following values for d's are chosen: 

d(l) = 3/2 d(2) = - 11/2 d = -1 

The rest of the coefficients in the expansion of Equation (21) can be 

solved for. After this has been accomplished, there results 

11 

-Y 12 

9/2 s 7/2 s 
's + 2 V s + 6 J 

2s s 
+ - T T + 1 

-Y 21 

s + 2 s + 6 

• 5 ^ - + . ^ ? - r + l s + 2 s + 6 

Y = 3S + -2L- + 5 *22 . i S + 2 S . + 6 

3 /2 s . 
:s + 2 

11/2 s 
s + 6 

-a.s 
: s + 2 

4:s 
s + 2 

35s 
§ + 2 

l i s 
S + 6 

-10:s 8:s 
s + 2 :s + 6 

- 1 

- 1 

- 2 

- 2 

(45) 

The first matrix is a ±R,C admittance matrix in which all residues satisfy 

the non-compact condition. Rewriting this matrix in the form of Equation 

(9) yields 

r 
li 

-Y 12 

-Y 21 

22 

£- + .-£- + l 
;s+-2 s+6 

-^+4z+ i 
s+2 s+6 

-2S- + -S-+ i 
s+2 s+6 

L1 
-2L + -^ + i 
s+2 s+6 

s+2 s+2 

+ 2 

+ r4r' + r — + 4 + 2 
s+2 S+6 

3/2 s l l / 2 s _ 
Cs + 2 

1 
§ + 2 

l l / 2 s _ 
Cs + 2 

1 

[-56 4S 
- i 

1 
Ls + 2 s + 6 

~3/2 s 11/2 s 
1 s + 2 s + 2 1 

~ -5fe . -46 
-

—— + 1 :S + 2 S + 6 

(46) 
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The first group of terms (in brackets) is realized by a ±R,C two-port net

work. The remaining functions are identified with the form of the active 

±R,C network when a current controlled voltage source is used. That is 

R v" + 
yll 1-Ry 34 

(y *( y ) = -ZfL J5_ 5/2_cL 
v y14 n yl3 ; s + 2 s + 2 

1-Ry34 ^
y14^y23^ 

H R ^ ( y 2 4 ) ( y i 3 ) + 2 

v" + (v Hv ) = —---- + — — +4 + 2 
Yoor ••.__.. ^24My23; s+2 s+6 r ^ r z 22 1-Ry 

34 

3/2s 
s +2 

11/2 is 
s + 6 " 

" -5;s 
s +2 

_ j*s__ r 
s + 6 

[3/2 S 
s + 2 

_liZ2_s.i l 
:s + 6 

"-5Ss 
s +2 -'

4S ^ l l s + 6 _ 

(47) 

The individual admittances are readily identified as 

v „ = 5/2 s 5/2 s + 
y l l s + 2 s + 6 y. + TT 

6s 
22 s + 2 s + 6 

+ 4 

_y , I t&ts.ll/Zi ) = r (-55_ _ _4s_ _ } 
y13 R vS + 2 s + 2 ; y23 R ' s + 2 s + 6 ; (48) 

-y 14 ~ r - y43 = ° -y 24 " y 

Now, the following constants are chosen to simplify the realization: 

± = 1.80 

r 
R = -2 .78 

Therefore 

-y = 1 . 8 0 

- 0 . 3 s . 1.10s 

- y 2 4 = 3.60 

(49) 
0.8s 

-vis • F T ! + tvt+ °-20 -y23 • i f e + IT! + °-20 

_liZ2_s.il


Since y^ and y4d are arbitrary, they are chosen to be 

v J,h£2M + i-^JL + 0.4 y33 "i +2 s + 6 
(50) 

YAA = 5 » 4 0 

144 

to satisfy the dominance condition. The total network is shown in Figure 4. 

0.55 
• v W W 

(4) 0.278 
vWs/V-

(±R,C Network) units in ohms and farads 

Figure 4. The Active Network that Realizes 
the Admittance Matrix of 
Equation (44)* 

Next if the same admittance is to be realized without using 

•R's, it would be required that h also satisfy the equation 



(g12 + g21) - h g u < g 22 

or 

h(-l) - 2h2 < 3 

Clearly h = 2 also satisfies this equation. In addition, it is 

required that d satisfy 

d < g + 
(921 - hg n) 

h(g12 + 9 2 1)-(hg n+g 2 2) 

which gives d < -0.77. If d = -1 is chosen, there results 

11 

-Y 12 

-Y 21 

22 

2 s s 
-=—• + -~- + 3 
s+2 s+6 J 

s+2 s+6 ^ 

2s s 
s+2 s+6 

_2s_ , _s_ , ^ 
S+2 s+6 I s+2 

+ 544+.S^6 +1 + 
s + 2 s + 6 

3/2 s ll/2s 
s + 2" s + 6 

-5s 4s 
s+2 s+6 

- 3 

+ 2 

+ ,r— + 6 + 2 s+6 

3/2 s 11/2s 
:s + 2 " s + 6 

-5s 4s 
s+2 s+6 - 3 

Fortunately, it is possible to realize all the short-circuit admittance 

functions in this particular example by RC three-terminal networks. In 

general, there is no guarantee that this can be done. The realized RC 

network is indicated in Figure 5» 
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U) 

1.67 
-\AAAA-

(4) 0.834 
vVWV-

0.232^-

Figure 5. The Active Network that Realized 
the Admittance Matrix of Equation 
(44) with RC and One Controlled 
Source. 

The Realization of Any Two General Short-Circuit Admittances 

Up to this point, the investigation of ±R,C (RC) networks with 

one controlled source has been concerned with the realization of an admit

tance matrix. The admittance matrix realized is not completely general. 

Limitations are placed on the admittances Y.,, Y-2, Y21, and Y 2 2 in 

order for a solution to exist. In this section an investigation was con

ducted to determine whether some admittance functions can be more general 

or not when fewer admittances are specified. The results of this investi

gation have established that any two arbitrarily specified rational functions 

file://-/AAAA-
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can be realized as the short-circuit admittances of an RC two-port network 

with one controlled source embedded in it. Since two completely general 

admittances will be realized; no control can be placed on the other two 

admittance functions. 

In the following three sections the results of this investigation 

will be presented. The general form of the admittance matrix of the 

±R,C (RC) two-port network with a current-controlled voltage source can 

be written as 

+ —. R Yll yll 1 -~Ry34
 y14 x y13 

V X 

"Y,12 = "Y12 I l~Ry34
 Y14 X Y23 

(52) 

V — J. 

'Y21 ~ "y21 lrRy34
 Y24 X Y13 

R 
Y22" y22 l-'Ry34

 Y 2 4 X Y23 

This general form for the admittance matrix of a ±R,C (RC) two-port 

network with this particular controlled source will now be used to realize 

any two arbitrarily specified rational functions as short-circuit admit

tance functions. All the individual admittances [represented by lower

case y's] will be restricted to RC functions. 

I. Simultaneous Realization of Y.^ and Y21» To realize the transfer-

admittance Y«9 and Y«., the admittances are expressed as 

P12(s) P21(s) 

"Y i2 = -QHT a n d "Y2i = " Q T S T ( 5 3 ) 
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where these admittances are completely general. ?.„{&), P^.Cs), and 

Q(s) are polynomials. The denominator, Q(s), are assumed to be identi

cal. If this is not the case, the functions may be augmented so that the 

denominators are identical and Q(s) represents the lowest common denomi

nator. 

gives 

Now equating Equations (52) and (53) and setting -y19 = -y91 = 0 

Y
 P12 ( i ) R 

"Y12 ' "QlsT " 1 " Ry34
 Y14 X Y23 

P21(s) R 

"Y21 Q(s) " 1 - Ry34
 Y24 X yi3 

A solution is readily obtained by the following identification: 

(54) 

1 D Qi£] r p i 2 ( s ) 

1 - ^34 = g # ^14 = R X"cJTsT 

v =-1 v = 1 ^ l ( S ) - J : 
-y2 3 Y -y24 R x g^-y- -y1 3 - r 

(55) 

Clearly if these transfer admittances are to be RC, it is necessary to 

select the arbitrary polynomial g(s) such that it contains only simple 

zeros on the negative real axis with g(0) / 0 and of degree equal to or 

greater than the highest degree of the polynomials P1<?(s), P (s), and 

Q(s). These individual admittance functions -y. , ~Yr>o> "vi4> ~^OA> 

and -Yq4 are the transfer admittances of a four-port RC network. The 

driving-point functions of this network y1.,
 v99» Y Q V anc* Y44 n a v e 

been left unspecified. For a realization to exist these unspecified 
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driving-point admittances should be chosen such that the RC network can be 

realized readily. Hence, a solution is always possible. 

II. Simultaneous Realization of Y., and Y^. These general driving-

point admittances can be realized readily by this class of network. First 

let 

Yll= W" 3nd Y22=-§fsT (56) 

Here again Q(s) represents the augmented common denominator. Choose 

two arbitrary RC admittances, y . =K p11(s)/g(s) and y22 = K^P^UVgU) 

where K and K, are constants. Let g (s) be a polynomial of degree 

which is equal to or greater than the highest degree of the polynomials 

PjiCs), P22(s), and Q('s'). Also it is required that g(0) / 0, 

p (0) / 0 and p2 (0) / 0. Y and Y 2 2 of Equation (56) can be 

written in terms of Equation (52) as 

Pn(s)g(s) - Kpn(s)Q(s) R 

'Q(B-) gU) " = i"rRy^ y i 4 x yi3 

m 

P22(s)g(s) - KlP22(s)Q(s) R 

Q(s) g(s) _ = 1 - Ry34
 y24 X y23 

(57) 

now K and K. are chosen such that 

Pn(s)g(s) - K Pll(s)Q(s) = RjCsJ'R^U)-

P22(s)g(s) -Kx p22(s)Q(s) = P1(s)P2(s) 

where R9(s) and P^(s) are polynomials of degree m. Then define 

(58) 
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! R v -214 v - l x ^ -v - I x S 
1 " Ry34 " g t f l Y14 " T X g(s) Y13 " R X 1W 

(59) 
x PjU.) r

 P 2 ( S ) 

"y24 = y-gtfcT "Y23 = R X g(sT 

where y is a constant. Now the constants y* and R can always be 

selected so that the dominance condition is satisfied for y.. and y2o» 

The driving-point admittances y ^ and y44 have been left unspecified. 

These admittances can be chosen such that the RC four-port network is easily 

realized. Therefore, the synthesis procedure is always workable. 

III. Simultaneous Realization of Y,. and v
12*

 T h e si m u l" t a n e o u s reali

zation of one driving-point admittance and one transfer admittance is accom

plished in a straightforward manner. Although the procedure to be presented 

is concerned with the realization of Y,, and Y,2, any other desired com

bination could be realized in a similar manner by suitably altering this 

procedure. Therefore, define 

Pn(sj P19(s) 
Y i i = W a,nd - Y i2 = W ( 6 0 ) 

As before Q(S) represents the augmented denominator. Also as before, 

select an RC admittance y,, = k P. .(.s)/g(s) where k is a constant and 

g(s) is of degree m which is equal to or greater than the highest degree 

of the polynomials P..(s), P (s), and Q(s). In addition, it is 

required that g(0) / 0 and p., (0) / 0. In a similar manner it is 

possible to write Y., in terms of Equation (52) as 



Pu(s)g(s) - K pn(s)Q(s) R 

g(fe-) Q(S) ~ " = l^Ry^ Y14 X Yl 

K is selected such that 

Pn(s)g(s) - K P11(s)Q(s) = R1(s)R2(s) 

where R2(s) has m distinct negative real zeros with all 

ficients. Obviously it is possible to write 

' - " ^ - ^ f r 
= _1_ 

"y14 y 

Y Rr(s) 
and -Yl3 = R X WT 

where each of these functions are RC transfer admittances. 

For -Y-|,p, when from Equation (52) with -y. ̂  = 0 

Y
 P12<5> R . 

"Y12 QTSJ" 1-Ry34
 y14 x y23 

or 

P12(s) R R2(s) 

therefore, 

Y P12 ( S ) 

"y23 " R RJW 
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Thus, the synthesis procedure is complete by selecting the 

arbitrary RC admittances y^, y , and y44 so that they accommodate 

the specified! transfer admittances and have sufficient magnitude such that 

the dominance condition is satisfied. Again, the synthesis procedure is 

always workable. 
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CHAPTER IV 

AN ALTERNATE SYNTHESIS PROCEDURE 

The controlled source has had considerable application in the 

field of active network synthesis. However, it is not the only active 

device to achieve such distinction. One other active device that also 

has an enviable.reputation in the active network synthesis field is the 

negative impedance converter. The negative impedance converter, which 

is often abbreviated as NIC, is an active two-port device that is char

acterized by the following chain matrix 

A , B 

C " D_ 

::: 
~±\ 0~ 

_° +1-

Here (kJ is a constant positive weighting factor. The ± signs denote 

the type of NIC. The upper sign is associated with a current-inversion 

NIC, and the lower sign is associated with a voltage-inversion NIC. 

It is of interest to determine if this active device could be 

embedded in a ±R,C (RC) two-port network such that an admittance matrix 

which satisfies the necessary and sufficient conditions for a realization 

with ±R,C and one controlled source could be realized. If this is possi

ble, then an alternate method of realizing this class of matrix can be 

developed. The result of the investigation of this problem will now be 

presented. 

The circuit of Figure 6 is used as the starting point for this 
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development. The short-circuit admittance matrix for the ±R,C two-port 

fnetwork with one NIC embedded in it can be written as 

Io 
Y] (68) 

] l ±R,C Network is 
M 

±R,C Network 

IV _/"\ 

h 

±R,C Network 

V h 

±R,C Network 

V 
NIC E 2 t -

±R,C Network 

IV NIC E 2 t -

±R,C Network 

IV NIC 

±R,C Network 

NIC 

±R,C Network 

Figure 6. The Arrangement of an.Active Two-port 
Network Containing ±R,C and One NIC. 

To establish the character of this admittance matrix, [v], for 

the two-port network in Figure 6, it is convenient to consider the ±R,C 

four-port. The short-circuit admittance matrix for this ±R,C four-port 

network can be written as 

+ y u +y12 +y13 +y14 

+y21 +y22 +y23 +y24 

+y31 +y32 "^33 +y34 

+y41 +y42 +y43 +y44 

(69) 

where y.. = y... The NIC in Figure 6 is connected between ports 3 and 4. 

From Equation (67) with the lower sign, it is possible to write 
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•k2 0 

+1 

E3 
X 

-h 
(70) 

Now if Equations (70) and (69) are used to solve for the short-circuit 

admittance matrix, [Y], of the active two-port, there results 

[Y] = 

Yll Y12 

21 y22 

+(k2y44"y33"y43+k2y34) 

(y13-k2y14) 

ly23-k2y24) 

(y31+y41)(y32+y42) 

(71) 

Clearly in Equation (71), the matrix 

11 

21 

12 

22 

(72) 

represents a ±R,C short-circuit admittance matrix. The matrix product 

(k2y44"y33"Y43+k2y34) 

(y13-k2y14) 

(y23-k2y24) 

(yi3+y14)(y32+y42) (73) 

has a rank of one. Since Equation (71) has exactly the same form as Equa

tion (6), it can be concluded, that if the general matrix of rank one can 

be realized by a ±R,C two-port network with one NIC, the alternate method 

for realizing the admittance matrix will have been established. Prior to 

showing that the matrix product in (73) is capable of realizing the general 

matrix 
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P W P 

b a 
p. p 

b c 1 1 
Q Q 

P#.P P J P 

rt a d c 

(12) 

which has a rank one, the following definitions are required. 

Let the maximum degree of the polynomials P.P , pwp
r>

 p^p > 

P ,P , and Q be M. In addition, let P.P be of maximum degree M, 

where P is of degree n_ and P. is of degree n... Thus, n.n_ = M'. 
a 2 b •' 1 ' 1 2 

Now select a polynomial g = g. g2 which is of degree equal to or greater 

than M and contains only simple real zeros. (For an RC realization g 

must have only simple real zeros on the negative axis and g(0) / 0). Let 

g. and g9 be of order n. and n', respectively. Obviously, n' > n«. 

Now it is possible to equate Equation (73) to Equation (12), Then, 

identify each of the groups of individual admittances such that they realize 

the general matrix of rank one and at the same time ensuring the individual 

admittances have ±R,C character- When this is done, there results 

H2Q 
(k2y44-y33-y43+k2y34) = g 

(-y13+k2y14) = H^' (-y^W Hg, 
(74) 

(-y23+k2y24) = j--^ (-Yô -Ŷ o) 23 y42; Hg, 

Solving for the inplividual t ransfer admittances yields 
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"Yi3 H(i+k(jy 

koPv, P 
2 b + __a_ 

'Y14 H(l+k2) 

1 k2Pd +
 Pc 

gl 92 

l P 

c 
92 

Pd 
Y23 H(l+k2) 

k2Pd +
 Pc 

gl 92 
y24 H(l+k2) 

P 

c 
92 

, 91 

-y 34 ' ° 

(75) 

Clearly P /g0, P /g0, P ,/g:., PK/g, and Q/g satisfy the requirements 
a Z. Q, £. 0 1 D 1 

to be ±R,C (RC) transfer admittances. Thus, -y. , ~voo> ~Yi4> ~ Y 9 4 

and -Yo4 a ^ a r e ±R>C (RC) transfer admittances. It is clear that it is 

always possible to realize the general matrix of rank one by ±R,C (RC) 

transfer admittances. 

In order to be able to realize these transfer admittances, as in 

the case of the controlled source, the number of non-compact poles, that 

are common to both driving-point admittances [y,, and y^o] of the ±R,C 

admittance matrix, must be equal to or greater than M. Thus, if this 

admittance matrix contains sufficient admittance of the form P../g and 

P„n/g, clearly it is always possible to realize the four-port network. 

This is because the constant (H) can always be chosen to ensure that the 

dominance conditions is satisfied for the first two rows of the four-port 

admittance matrix. In addition y and y44 can always be selected to 

facilitate a ±R,C (RC) realization and, at the same time, ensuring that 

their difference satisfies Equation (74). 

Thus, it has been shown that is is possible for a given 2 X 2 

matrix that satisfies the necessary and sufficient conditions for a reali

zation by a ±R,C two-port network containing a controlled source to be 

realized also by a ±R,C two-port network containing an NIC. The synthesis 
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procedure can be carried out along similar lines as presented for syn

thesizing an active two-port using one controlled source. 
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CHAPTER V 

TRANSISTOR EQUIVALENT CIRCUITS 

As an example of the practical application of the synthesis proce

dure developed, the procedure will be applied to obtain transistor equiva

lent circuits that are more accurate and valid over a wider range of fre- ; 

quency than the simple conventional equivalent circuits. 

For many years, simple equivalent circuits have been used to 

approximate the performance characteristics of many three-terminal active 

nonreciprocal devices for small-signal applications. The transistor and 

the vacuum tube, are but two of many such devices. The equivalent circuit 

representation for these active devices were primarily determined by physi

cists who were concerned with physical processes that took place inside 

the device. The transistors equivalent circuit, for example, was largely 

determined on the basis of the migration of holes and electrons. Element 

values for these equivalent circuits are determined by making electrical 

measurements at a particular frequency. The resulting equivalent circuit 

is referred to as a low, mid, or high-frequency equivalent circuit depending 

upon the relative frequency used to determine the element values and the 

complexity of the equivalent circuit. Usually, the performance character

istics of these equivalent circuits differ in varying degrees from the 

measured characteristics. An example of these two groups of characteristics 

are shown in terms of the admittances y. , -y , -yr and y [which 
7ie' Jre' 7fe 7oe L 

correspond to the conventional two-port designation of Y.., -Y.„, ""̂ 01 > 

and Y0Q respectively] in Figure 10 as solid and dashed curves for the 
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case of a common-emitter transistor. The solid curves represent actual 

measured characteristics of the transistor. The dashed curves represent 

the characteristics that are obtained when the high-frequency hybrid-it 

equivalent circuit model is used. This hybrid-it equivalent circuit is 

presented in Figure 7. [This equivalent circuit was calculated specifically 

for this example. It represents the measured characteristics of the 

actual transistor in Figure 10 to within ±10% in magnitude and ±10° in 

phase.] 

1.7 pf 

g = 36 x 10 mhos 
3m 

Figure 7. The High-frequency Hybrid-it 
Model of a Transistor. 

It is seen that the conventional type of equivalent circuit, the 

hybrid-it model, represents the actual transistor rather accurately up to 

the neighborhood of 10 mc. However, most equivalent-circuit representa

tions of this type do not approximate the transistor performance even this 

closely. With the demand for greater accuracy that is required in computer 

simulated studies, it is of interest to determine if a better method can 
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be developed to obtain equivalent circuits for active devices -- a method 

that would not be as limited in approach as the present technique. The 

results of this investigation have shown that it is possible to obtain 

very accurate equivalent circuits for the transistor by using a rigorous 

synthesis approach. This approach involves first the approximation of a 

set of measured characteristics that describes the transistor by a set of 

short-circuit admittance functions. These admittance functions are then 

realized by the previously developed synthesis procedure to obtain an 

equivalent-circuit representation. An equivalent circuit developed by this 

technique has many advantages. Probably the most important of these are 

that the resulting equivalent circuit is always obtained from the actual 

characteristics of the active device and that circuit model obtained is 

representative of the device over a wide range of frequencies. 

A transistor is a three-terminal, active, nonreciprocal device that 

can be completely characterized by a third order indefinite admittance 

matrix. This matrix has the property that the sum of the elements of 

every row and of every column equals zero. To be more specific, consider 

the general three-terminal device of Figure 8. This device is completely 

GEi 

3-Terminal 
Device 

o 
Figure 8„ Representation of a Three-terminal, 

Active, Nonreciprocal Device. 
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described by the following third-order admittance matrix 

yll y12 y13 

21 y22 y23 

y31 y32 y33 

(77) 

Of all the short-circuit admittances that appear in this matrix only four 

of these are independento In order to determine a set of independent 

admittances, Kirchhoff's current law is applied at the external node of 

Figure 8„ This yields 

h + *2 + *3 = ° (78) 

Substituting the admittances of Equation (77) into Equation (78) gives 

(Yn+Yai+YaPEj + (y12+y22+y32)E2 + (y13+y23+y33)B3 = 0 (79) 

The applied voltages E., E~, and E- are arbitraryD To ensure that 

this condition is preserved in Equation (79), it is required that the 

coefficient of each of the voltages be zero; that is 

Yll +Y21 +Y 3l
 = 0 Yl2 + Y22 +''32 = 0 * 1 3 + Y23 +^3= ° (80) 

Thus, from this development it is concluded that only four of the short-

circuit admittances in Equation (80) can be specified independently. 

If any one voltage is set equal to zero in Figure 8, that terminal 

to which the source is connected becomes the common terminal of the other 

two sourceso For example by setting E_ = 0, terminal 3 becomes a common 
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terminal to sources E.. and E0 and the network reduces to the standard 
L Z 

two-port designation. In this situation, Equation (77) reduces to 

11 y12 

y21 y22 

(81) 

Hence, these four short-circuited admittances completely specify the 

active device. 

Summing up, it is clear from the foregoing discussion that it is 

possible to completely describe an active device in two ways -- either by 

considering it as a three-terminal device and, therefore, describing it by 

the indefinite admittance matrix or by considering it as a grounded two-

port and describe it in terms of a 2 X 2 short-circuit admittance matrix. 

Either method is completely general and it is ;easy to go from one designa

tion to the otherQ Thus for the case in point, these equations offer a 

very simple analysis of all the possible )transistor configurations. In 

the following presentation the transistor will be considered as a grounded 

two-port with the emitter as the common terminal. 

The Approximation Problem 

In order to obtain an equivalent circuit by the synthesis tech

nique developed in this research, a set of four admittance functions must 

be obtained that not only approximate the measured characteristics [both 

in magnitude and phase] of the active device but also are realizable by 

this special class of networks. The approximation method to be presented 

is developed for the transistor.,, However, the approach is adaptable to 

any type of active three-terminal device. 
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An approximation problem is by its very nature tedious,, The task 

is more difficult when four short-circuit admittance functions [y. , 

-y , -yf , and y ] are to be simultaneously approximated. When 

these four functions are specified in magnitude as well as in phase, the 

task quickly develops into a major undertaking,, This is especially so 

when these four functions are required to be related and integrated into a 

realizable active RC network,, When the active elements are restricted to 

one controlled source and possibly one or two negative resistors, then the 

difficulty of the approximation increases considerably. 

There are numerous approximation techniques available, such as 

Taylor, Pade, least mean square, Chebyshev, potential analog, and the 

half-line approximation technique, to mention but a few* Of all these 

techniques, only the half-line approxiionation technique lends itself to 

simultaneously approximating several functions specified in both magnitude 

and phase. Fortunately, the half-line approximation technique is directly 

applicable to the given admittance characteristics,, However, a direct 

application of this method without due regard to a possible network con

figuration or the number of elements would yield functions of very high 

order. Each of these functions would have different poles and the reali

zation would be impractical. In an effort to obtain a simple network config

uration, the poles of the four admittance functions should coincide. 

In each of the three equivalent networks to be presented, the 

approximation of the magnitude and phase characteristics for each of the 

admittances is accomplished approximately as follows. A few deviations are 

discussed with each specific network. 

A. The given data of the transistor is plotted (12). 
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B. Stencils are constructed to represent the response of a 

single pole (or zero) both in magnitude and phase to the scales of the 

plotted characteristicso 

C. The first step in the actual approximating technique involves 

locating the first necessary zeros for the four admittance functions. 

This is accomplished by referring to the magnitude and phase curves for 

each admittance function simultaneously,, TheJt>es± location of the zero 

for y. , -y , -yr s or y is determined readily with the aid of 7ie 7re' 7fe • 7oe 7 

the stencils describing the phase and magnitude response for a zero. The 

zero is located where the closest fit is obtained at the low end of the 

frequency range of interest for both the magnitude and phase plots. In 

each case a compromise is made for the best approximation of both the 

magnitude and phase,, The function -y. requires no initial zero. 

D. The second step in the approximating procedureris to deter

mine the best frequency to locate the first common pole to all admittances. 

This process is usually the most difficult one,, The most expedient method 

is by a slight modification of a trial-and-error procedure. This.proce

dure consists of selecting three preliminary frequencies for the location 

of the single pole. The response of each pole is plotted individually in 

both magnitude and phase with the aid of the stencils and a pair of dividers. 

A comparison of the response of each pole determines the pole which exhibits 

the closest overall fit on the set of eight curves. With this pole as a 

reference, two additional poles are plotted in a similar manner, one higher 

and the other lower, in frequency than the reference. A comparison of the 

response due to each of these poles indicates whether the reference was a 

best fit or not. The process is repeated until a best fit is obtained. 
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Again another compromise is necessary. The best location for the pole to 

obtain minimum error for each of the functions is not obvious. This is 

especially apparent when only one common pole is allowed. In this situa

tion the location of the pole is critical. However, when more poles are 

allowed some readjustment is possible. 

E. The remaining steps are merely a repeat of the first and 

second until the four admittances are approximated to the desired accuracy. 

Network I 

In the field of network synthesis a unique solution is very rare. 

More often than not, there is an infinity of solutions for any given 

problem. So it is with the current problem. The equivalent circuits to 

be presented in each of the three cases considered are obtained under 

various network restrictions. These restrictions required slight modifi

cations of the outlined approximation procedure. However, in each case the 

primary aim is to obtain the best approximate equivalent circuit with the 

least number of elements., As might be expected, the greater number of 

network elements allowed the better the possibility of improving the over

all approximation. Whenever possible, the error in each of the approxi

mated admittance functions is distributed equally between the magnitude and 

phase functions. 

The first equivalent circuit, Network I, is required to have the 

form of the network indicated in Figure 9. This network is a simple RC 

network which contains only one active device — a voltage-controlled 

current source. The form of this active network is chosen specifically to 

enable a comparison of network elements between the hybrid-ir model of Fig

ure 7 and the synthesized equivalent circuit, which will be abbreviated as 
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SEC. Since the first SEC model is to be very simple [comparable to the 

high-frequency hybrid-n: model], the number of allowable poles and zeros 

the approximating functions y. , -yv , -yf and y can have are also 

specified. In this simple case the approximating admittances are allowed 

only one pole and two zeros. 

Figure 9? The Form of the Active Network that 
is to Approximate an Equivalent 
Circuit for a Transistor. 

The character of the approximating admittances yie, -ype> "Yfe' 

and y is predetermined by the form of the active network. That is, yoe 

the admittances y. , -y , and y must be RC admittances. The for-
le re oe 

ward transfer admittances -y. can have ± R,C character except for the 
te 

residue in the pole at infinity. This residue must be positive and equal 

to or less than the corresponding residue in the reverse transfer admit

tance, -y . In addition, it is required that the residue in the pole 

' 7re 
at infinity of -y be equal to or less than the residues in the corre-

' re 
sponding poles of the input and output admittances, y. and yQe. Finally, 
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the poles of all the admittances must be common. If these conditions are 

not satisfied then a three-terminal RC realization by the simple RC net

work of Figure 9 would not be possible, 

These conditions, placed on the admittances y. , -y , -y. , and 
1 e re re 

y , correspond to restricting the possible locations of the approximating 

zeros as well as the poles. This further complicates the approximating 

procedure. This is particularly apparent when the functions -y and 

-y, are being approximated. For example, to improve the approximation of 

-y in Figure 10, it is desirable to locate the last zero (the one located 

at the higher frequency) at a lower frequency than it is located for this 

example. Also, the approximation of -yf could be improved by relocating 

the last zero (a negative zero) at a higher frequency. However, neither 

can be readily relocated because the present location is the best of a com

promise situation. The restriction in this case stems from the requirements 

placed ion the residues in the poles of -y and -yf at infinity, to be 

at most equal. 

After applying the approximation procedure and incorporating all. 

the necessary restrictions to ensure that the developed admittances would 

satisfy the necessary and sufficient conditions for an RC realization the 

following admittance functions are obtained 

y i e = 

K u ( s + 1.5 x 2K X 1 0 6 ) ( S + 100 x 2K x l O 6 ) 

(s + 2K x 11 x 10-) 

K (s + 1 X2K x l O J ) ( s + 2 2 x 2 * x 106) 
.y = . • ; — • — • 

r e (s + 2ir x 11 x 106) 

K (s + .140 x 2K X 1 0 6 ) ( S - 210 x 2K X 106) 
(82) 

-y 
f e (s .+ 2rt x 11 x 106) 
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oe 

K2_(s +0.125 x2rr X10 6)(S + 55 x 2n; x 10°) 

(s + 2* xll xlO6) 

These admittances approximate the measured characteristics of a transistor 

rather closely as can be observed by comparing the solid curves, which 

represents the measured characteristics, with the dot-dashed curves which 

represent these approximating functions, in Figure 100 

An equivalent circuit is obtained by applying the synthesis proce

dure developed previously. First the admittances are expanded into partial-

fraction form as 

Y i e = 
l o 7 7 £ . + 3.67 x 10"9s + 0.314 

s + 69 x l O 
x 10 

-3 

-Y 
r e 

"' ° a 2 7 6 S , + 1.9^5 x 10 ' 9 s + 0.025 x l 0 ~ 3 

s + 69 x 10* 
x lO 

-3 

- y fe 

oe 

2 9 °4^ r + 1.^95 x l 0 ~ 9 s - 3 3 . 5 
s + 6 9 x 10 

x 10 -3 

l a 4 6 9 s , + 5.37 x 10"9s +0.0211 
s +69 xlO 

x 10 -3 

(83) 

It can be observed that y„ and y are both RC admittances. A reali-
/ie oe 

zation can be obtained by allowing h to be zero as this is one of the 

special cases previously mentioned in Chapter III. Matrix (83) can readily 

be written into the necessary decomposed form of an RC matrix of rank one 

and realized by the standard synthesis procedure. In this particular case, 

when a voltage-controlled current source is the active device, the equiva

lent circuit is shown in Figure 11. 
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Figure 11. The Synthesized Equivalent Circuit 

Because the SEC model in Figure 11 approximates the measured char

acteristics of the transistor as accurately as the high-frequency hybrid-it 

model form dc to 200 mc, a reasonable amount of similarity between the two 

approximating circuits is expectedo For example, the transconductance of 

-3 
the SEC model is 33.5 x 10 mhos which is comparable to that of the 

-3 
hybrid-it model, which is 36 x 10 mhos. 

There are other similarities. For example,5 simplified high-frequency 

equivalent circuits are obtained for both the hybrid-it model and the SEC 

model. In the case of the hybrid-it, a simplified model is obtained by 

removing the extrinsic header and the overlap-diode capacitances. In the 

SEC model, the shunt capacitances that exist among all terminal pairs are 

omitted. The resulting equivalent circuits are shown in Figure 12. Both 

equivalent circuits are reasonably similar and sufficiently accurate from 

dc to approximately 10 megacycles. 

Similar comparisons can be made. For instance, it is possible to 

obtain three more simple equivalent-circuit models that are of considerable 

interest because of the ease these circuits lend themselves to calculations. 
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Figure 12. Simplified High-frequency Models, (a) The 
Hybrid-it Model, (b) The SEC Model. Both 
Models Valid from dc to Approximately 
10 Megacycles. 

Prior to presenting these simplified models it is necessary to redevelop 

two of the admittances of the SEC model in a first Foster form rather than 

the second Foster form used in Figures 11 and 12. The simplified high-

frequency SEC model will now have the form illustrated in Figure 13. 

As a first step in obtaining these simplified models a few rough 

calculations are required to determine the relative importance of the 

resistors and capacitors that are in shunt in this model. Since the shunt

ing resistors 
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2 l l R 2 C 2 2K x 31 .8 x 1 0 " i 2 x 2.64 x 10 3 
= 1.9 mc (85) 

are equal to the reactance of the capacitors at these frequencies. There

fore, at frequencies much below these values the shunting resistors pre

dominate because the reactance of the capacitors are large. Conversely, 

at higher frequencies the capacitive terms will dominate. Thus, by 

restricting the frequency range of interest, it is possible to make an 

engineering approximation and obtain simpler equivalent circuits by neglect

ing these capacitors and resistors that have a negligible effect in that 

frequency range. In a like manner 

^ ^ S 2% x 173 x 10"12 x 0.725K 
= 13 mc (86) 

Since the reactance of C is ten times larger than R~ at 1.3 mc, at 

frequencies below 1.3 mc it is possible to neglect the effect of the 103-ohm 
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resistor and C.? In this case, R« can be removed as it is in series with 

the current source,, 

In an identical manner, when similar calculations are made for the 

simplified hybrid -it model of Figure 12, the following two frequencies are 

obtained 

2w x 2.3 x 1 0 " 1 2 x 18.9 x 10 6 
= 3.7 KG (.87) 

±. = lo7 mc (88) 
•2K x 33 x 10" 1 2 x 2o86 x 103 

These frequencies are comparable to the previously calculated values for 

the SEC model. 

In the simplification of the hybrid-it model, these two frequen

cies are used to divide the electrical behavior of ..the... hybrid-it model into 

three distinct frequency ranges. Since, these frequencies are very close 

to those calculated for the SEC model, they will also be used to divide 

the electrical behavior of the SEC model. The three frequency ranges to 

be considered are low, mid, and high-frequency ranges. For the low-fre

quency case it is of interest to obtain a simplified equivalent circuit for 

a f r equency rang e from d c to a few huriidred Cyc 1 e s *• In this ca se the capa c i • 

tors in the SEC model and the hybrid model can be neglected. The resulting 

equivalent circuits are illustrated in Figure 14„ A comparison indicates 

that if the 18.9(M( and 4C(M< resistors are neglected, then the input impedance 

into these circuits are approximately 3.17K for the hybrid-it model and 

3.19K for the SEC model. 

Extending this comparison further, mid-frequency [approximately lOkc 
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Figure 14. Simplified Low-frequency Equivalent Circuits 
for (a) the Hybrid-it Model and (b) the 
SEC Model. These Circuits are Valid from 
dc to Approximately Several Hundred Cycles. 

to 1 mc] equivalent circuits are obtained by neglecting the resistors 

and capacitors that have insignificant effect. In this particular case, 

the equivalent circuits are shown in Figure 15, it is clear that both the 

hybrid-it and the SEC model contain the same number of elements. However, 

the S#C model is more adaptable to simple calculations because the input 

voltage is the controlling voltage. Again the range of element values 

in each circuit are quite similar. 

Finally, it is possible to obtain simplified high-frequency [approxi' 

mately lmc to lOmc] models of both the SEC and the hybrid-*: models. Just 

as in the previous case, elements are neglected when they have a negligi

ble effect in the circuits. The resulting equivalent circuit models for 

this case are illustrated in Figure 16» 
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Network II 

The previous development clearly indicates the possibilities of 

obtaining equivalent circuits to approximate the characteristics of 

active devices by employing the synthesis technique. The development of 

Network I is primarily concerned with obtaining a very simple model to 

approximate the transistor characteristics. As a result, a great deal of 

accuracy is not attainable, especially at higher frequencies. Clearly, in 

Figure 10 the approximation of the input admittance y. , the forward 

transfer admittance -yr , and the output admittance y , could be 
'te' r 'oe 

improved. 

It is the purpose of this section to develop and synthesize ah equiva

lent circuit that will be more accurate at high-frequencies than the first 

SEC model. This circuit is also to have the simple form of the RC network 

in Figure 9. However, in this network one, negative resistor is allowed 

to give the approximating functions a slightly greater freedom. Furthermore, 

the approximating functions are allowed to have three zeros and two poles. 

The approximation procedure in this case is substantially the same 

as that indicated for Network I., However, the addition of the negative 

resistor permits the removal of the previous requirements placed on the 

pole at infinity for the function -y . Because of this condition, the 

location of the approximating zeros of -y are no longer restricted and 

can be located arbitrarily. The approximation of the input admittance, 

y. requires a compromise in locating the last zero. This zero has to be 

located at a frequency slightly lower than that of the best location in 

order to be assured of an RC realization. It is also worthwhile to mention 

that the location of the second pole is truly a compromise. The input 
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admittance, y. would best be approximated,if this pole is located at 

160 mc rather than 250 mc. The location of 250 mc is ideal for the reverse 

transfer admittance, -y „ The forward transfer admittance however, would 
J 7re ' 

be approximated better if the pole is located at a slightly higher fre

quency -- approximately 350 mc0 Finally, the output admittance, y is 

best approximated if the pole is omitted completely., 

As a result of applying the approximation procedure, the following 

approximating admittance functions are obtained? 

K. (s + 2 K X 1 . 5 X 106) (s -I- 2* x 74 x 106) (s + 2rc x 668 x 106) 

16 (s +2TE x 11 x 106)(s + 2ir x 250 x .lb6) 

K (s^2rc-iLD*DlJc 106) (s*+ 2K X 19 x 106) (s + 2K x 300 x 106) 
_y 

(89) 

re £s + 2K x 11 x 106)(s + • 2ic x 250 x 106) 

Kfe(s +2K X70X106)(S-••-' 2K x 250 x 106) 

fe (s + 2ic x 11 x 106) (s -h 2it x 250 x 106) 

K (s +2it x 0.125 xl06)(s+2it x 60 x 106) (s +2ic x 300 x 106) 

06 (s + 2K xll xl06)(s + 2K x 250 x 106) 

These admittances approximate the measured characteristics with greater 

accuracy as illustrated in Figure 17Q The solid curve indicates the meas

ured characteristieso The dashed-dotted curve represents the newly approxi

mated admittance functions and the dash curve represents the high-frequency 

hybrid-it model. Clearly these approximating admittances represent the 

measured characteristics very closely and with a substantial improvement 

over the hybrid-it representation., However, this improvement requires 
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increased network complexity0 Specifically a realization of these admit

tances shows that almost twice as many network elements are required in 

addition to one negative resistor, 

To obtain an equivalent circuit representation from the admit

tances in Equation (89) it is necessary to write these admittances in the 

partial-fraction form 

y, 
l e 

1.7S + ™ 
3.49 s 

s + 2it x 11 x 106 s + 2nr x 250 x 106 
+ 1,81' x l 0 ~ 9 s +0 .314 x l O 

-3 

- y 
re 

+ 1.81xl0~9s +0.236 x l O ' 3 xlO"3 

(90) 

- y fe 
-30.8s -7.88$ 

s + 2TC x 11 x 106 s + 2rc x 250 x 106 
+ 33.5 x 10 

-3 

1.5 IS 1.07s 
oe s +2rc x 11 x 106 s +2it x 250 x 10 6 

+ 4 .1 x l 0 " 9 s + 0 . 0 2 1 1 x 10 -3 

Here, as in the previous case, the input admittance and output admittance 

are obviously RC functions and h can be set equal to zero. By following 

the synthesis procedure outlined in Chapter III, an equivalent circuit is 

obtained and presented in Figure 18. 

The accuracy of the SEC of Figure 18 in approximating the transistor 

behavior is quite adequate for almost all practical purposes. This net

work has been synthesized in such a way that it still has the general 

appearance of Figure 9, so that the comparison with the hybrid-ir model can 

be made. As the next section will show, still better accuracy can be 

achieved if the network is not restricted to have the arrangement of Fig

ure 9. 



81 

'630 S320 

•AAAAA 
9K 

- A / W W 
1.8K 

3.2K 

0.527pf 0 .1 pf 

- <^r23pfTlo85pf 

715 ̂  S2„2§Pf 

20o2prL-

X 

43 K 

-A/VW-
-143 K 

r—| . ( — 

i-WV-1 

H h 
L-VVW1 

<5D g v m̂ 

74K 12.IK 

0.00022 pf < X 
-144K 

q =0.1 mhos 

Figure 18. A Synthesized High-Frequency 
Equivalent Circuit. 

Network III 

As another alternative development, the restrictions on the net

work will now be removed. Without this restriction, the approximation 

problem is less tedious since all limitations on the approximating zeros 

have been removed. To illustrate the approximation procedure md the 

improveiTfe-ilt obtained when the zeros of the admittance are not restricted, 

the approximation of the previous example will be improved. This is 

accomplished by adapting the admittances in Equation (89) to these less 

stringent conditions. For the input admittance, ŷ  , this allows the 

last zero to be relocated to the more desirable location of 876 me as com-

pared tp the previous value of 668 mc. The approximation of the reverse 

transfer admittance -y , is improved by locating the last zero at a 



higher frequency of 350 mc as compared to the previous 300 mc location. 

A slight improvement in the forward transfer admittance -yc , is ob

tained by locating a zero at 2,200 mc. Lastly, the approximation of the 

output admittance, y , is improved substantially by completely removing 

the pole located at 250 mc and the zeros at 300 mc. 

That these slight adjustments in the approximating functions actually 

improves the approximation of the measured characteristics is clearly 

indicated in Figure 19. Here the solid curves represent the measured _ 

characteristics and the dot-dash curves represent the newly approximated 

admittance functions. For comparison purposes the hybrid-ir characteris

tics are plotted as dashed curves. 

The approximating admittances are 

K. (s + 2it x l . 5 x l 0 6 ) ( s +2it x74 x l 0 6 ) ( s + 2TT x 872 x lO 6 ) 
l e  

y = i i i i . . . i . i . , . . . . . . — . . I i 

1 6 (s + 2it x 11 x 10 6 ) ( s+2ic x 2 5 0 x l 0 6 ) 

K (s + 2n xO.01 xlO ) ( s+2 ic x 19 x 10 ) (s + 2% x 350 x 10°) 
r e "  

r e ( s +2* x l l x l 0 6 ) ( s + 2n x250 x 106) 

K£ (s +2TT x70 x l 0 6 ) ( s - 2it x 250 x l 0 6 ) ( s + 2TT x 2200 x 106) 
re 

.y = , _ —- — 
• e (s +S!TI x l l x l O ° ) ( s +2% x250 x 10 ) 

K (s +2TT x 0.125 xlO ) ( s + 2it x 60 x 10 ) 
oe 

Y, 

(91) 

o e (s + 2it x 11 x 106) 

To realize these admittances, they are expanded into the following partial-

fraction form 
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Yie 
1.75s 

s + 2 i t x 1 1 x 1 0 s+2 i t x 2 5 0 x 1 0 

^ 7f)e; - Q 
^ U S - + 1 . 4 2 x ^ 0 s +0 .314 x lO 

-3 

-Y 
r e 

0.101s ., _ 0.95s , . _ , . l n - 9 - n 0 0 , ,~-3 
+ _——..——__—_ + 1,565x10 s+0.236x10 

-Y fe 

s + 2it x 11 x 106 s + 2* x 250 x 106 

-32.1s. - 7 . 3 5 s ' „ A i ^ -9 ^ 0 0 K 

+ _ - . __. _ 0 . 4 x 1 0 s + 33.5 

x l O ' 3 

(92) 

s + 2it x 11 x 106 s + 1570 x 106 
x 10 

-3 

oe 
1.54s 4 .93 x l O ~ 9 s + 0 . 0 2 1 1 

s +2TC xll xlO 
x 10 -3 

These admittances are realized by the standard synthesis procedure of 

Chapter III. However, here a current-controlled source is used as the 

active device. The SEC network for this particular case required twenty-

two resistors and capacitors and two negative resistors. The SEC is shown 

in Figure 20. 
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APPENDIX I 

±R,C (RC) TWO-PORT WITH A VOLTAGE-CONTROLLED 

CURRENT SOURCE 

It will now be shown that a 2 X 2 matrix of real rational func

tions, that satisfies the realizability conditions for this class of net

work, can be realized as a 2 X 2 impedance matrix of a ±R,C (RC) two-port 

network with one voltage-controlled current source. These realizability 

conditions are 

1. The given matrix must be expressible as the sum of a ±R,C (RC) 

impedance matrix and a matrix of rank one. 

2. The number of the non-compact poles that are common to both 

driving-point impedances of the ±R,C (RC) impedance matrix must be equal 

to or greater than the order of the elements of the matrix of rank one 

when the latter is expressed with a common denominator. 

To do this it is sufficient to show first that a ±R,C (RC) two-port 

network with one voltage-controlled current source can be expressed as 

the sum of a ±R,C (RC) impedance matrix and a matrix of rank one. 

H^vv* 

Figure 21. Arrangement of an Active Two-port Network Containing 
±R,C (RC) and One Voltage-Controlled Current Source. 
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The circuit arrangement used in this discussion is shown in Figure 

21. The four-port network is a ±R,C (RC) network where port 3 contains 

the controlling voltage E- and the controlled current source I. is 

connected to port 4. The impedance matrix of the active four-port network 

is defined by the equation 

[E] = [Z] [I] 

or 

El 

E2 

E3 

_E4 

11 12 

'21 

'41 

'22 

z,, '31 32 

'42 

Z13 

'33 

Z43 

14 "V 
24 

X 

J 2 

34 X3 

44 _y 

(93) 

The open-circuit impedance matrix for the ±R,C (RC) two-port network 

with the controlled source can be written as 

• [z] 
Z Z 11 12 

z z 
^21 22 

(94) 

To establish the character of this impedance matrix, [z], it is 

necessary to impose the requirements that 1,= 0 and I4 = q E in 

Equation (93). Now solving for [z], it is possible to write 

[Z] = 
'11 12 

'21 22 

m 
9mZ34 

'14 

'24 
K: z23] (95) 
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Clearly in Equation (95), the matrix 

[z] = 

zll Z12 

Z21 Z22 

(96) 

represents a ±R,C (RC) open-circuit impedance matrix. The matrix 

product 

[z ( 0 )]=^ 9 m 

9mz34 

14 

•24 
K: z23 ] (97) 

has a rank of one. 

The form of Equation (95) is identical to that of Equations (6) 

and (71) for the development of the admittance cases. Matrix [z] is 

the sum of a ±R,C (RC) impedance matrix and a matrix of rank one. It is 

an easy matter to identify the individual impedances in matrices [z] and 

[z ], in a similar manner as presented in Chapters II and IV for the 

admittance case, as 

_ X. Ik zl4 g x g„ *m ^2 

*24 ' 9m X <>2 

1 Pa 
Z, _ " ~ X 

13 Y 9X 

1 !£ 
Z23 " Y x gT 

z 3 4 = ;^(l-Q/g) 

In order to ensure that the 4 X 4 matrix [z] be realizable, it is 

necessary to show that not only [z] can always be made dominant, but 
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also that z „ and zAA can be made as large as desired and, the 
"33 '44 

transfer impedances z,„, z~~, z,4, z~4> and z«4 can be made suf

ficiently small by selecting y and g large. 

Since the dominance condition alone is not always sufficient for 

the realizability of an open-circuit impedance matrix, it is necessary to 

prove that the 4 X 4 impedance matrix [z], can always be made suffi

ciently dominant so as its inverse is realizable as a short-circuit admit

tance matrix. This is accomplished by first identifying [z] as 

[z] « 

Zll Z12 

z21 Z22 

az13 CZ23 

bz14 dz24 

az 

cz 

13 

fz 

23 

33 

ez 34 

bz 14 

dz 24 

ez 34 

•h-z 44 

(98) 

where a, b, c, d, and e are real constants and h and f are 

real positive constants. 

Assume that [z] is nonsihgular and solving for [z] = [Y] 

where 

[Y] = 

yll y12 y13 

y21 y22 y23 

Y31 Y32 y33 y34 

14 

'24 

y41 y42 Y43 r44 

(99) 

It is possible to write 



+ 2z34eZ24dz23C " (d224} Z23f 

+ az 1 3 cz 2 3 hz 4 4 - dz14cz ez - b y z d z J 4 

+ az13(dz24) + bz14z22ez34 - bz14cz23dz24 

- az13dz24cz23 - bz14z22fz33 - bz14(cz23) 

-(bz14.} fZ33 + 2ez34bz].4aZ13 

(az ) dz 2 4 + bz14z fz - bz14cz23az13 

- ( b z14 ) z22] 

93 

11 A h f Z22Z33Z44 " Z22(eZ34)2 " hz44(cz23)2 (100) 

21 
'Y12 " A -az13eZ34d224 " hf Z12Z33Z44 + Z12(eZ34) (101) 

~Y13 = A L : • Y i o B — I z 12 C z 23 h z 44 " Z 1 2 d z 2 4 e z 3 4 " a z 13 Z 22 h Z 44 (102) 

_ ̂ 1 
"Y14 " A "Z12CZ23eZ34 + z12f233dZ24 + azl3

Z22eZ34 (103) 

22 A 
1 rzllfz33hZ44 " Z12(SZ34)2 " ^ez

34
)2hz44 

(104) 

= zl 
"Y23 A 

-zncz23hz44 + zndz24ez34 + az13z12hz44 

" az13dz24bz14 " bz14e234z12 + (bz14)2cz23] 

(105) 

= ^ 
'Y24 A Z11CZ236Z34 " zlldz24fz33 " az13Z126Z 34 (106) 

_> 1 
r33 " A ( Z 11 Z 22 " Z 12 ) h Z 44 " Z l l ( d z 2 4 ) 2 + 2 z 1 2 d z 2 4 b z 1 4 ( l 0 7 ) 
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Y34 = A L^Z11Z22 " z12^ez34 " zlldz24pz23 + Zlldz24az13 ^108^ 

bz14z12CZ23 " bz14z22aZ13 

y44 = i [ ( z l l Z 2 2 " Z 12 K z 33 " Z 11 ( C Z 23 ) 2 " ( a z 1 3 ) 2 z 22 (109) 

+ 2z1 2cz23aZ l 3] 

A = (zllZ22 " Z 1 2 ) 2 h f Z33Z44 " (zllZ22 ' Z12 ) ( e Z34 ) 2 (ll0) 

2 2 2 2 
+ (cz2 3) [ - z u h z 4 4 + (bzM ) ] + ( d z 2 4 ) [ - z

1 1
f z 3 3 + ( a z

1 3 ) ] 

) [-zoofz<:icJ + 2 b z l J Z '\nrzr>A*zi'i ~ z10cz0Qez •14' L "22 33 14L fc12 24' 33 12 23 34 

" az13CZ23dz24 + az13Z22eZ34l " ( a z13 } Z22hz44 

+ 2 b z14 a Z13 ( c Z23 h Z44" e z34 d z24 ) + 2zllez
34

dz24dz23 

Now is a, b, c, d, and e are selected to be small in comparison 

with h and f, which are selected large, and if each z., is replaced 

by its residue k.k , where i = 0, 1, 2,...,n,°° in Equations (100) 

through (110), it is possible to show that the dominance of the residues 

in the diagonal of the matrix [Y] can always be satisfied. This is 

accomplished by first expressing 

res [ y n ] > |res [y 1 2]| +|res[y13]| + |res[y14]| (111) 

res [ y 0 J > | res [y ] | + | r e s [ y 0 J | + | r e s [ y 0 J | 
22- 12 23- '24-

r e s ty23^ - ' r e S t v 1 3 ] I + l r e s [ y 2 3 ] | + | r e s [ y 3 4 ] | 

(112) 

(113) 



95 

r e s [Y44] > l r e s [ Y I 4 ] | + l r e s [y24]l + l r e s [Y34] I <114) 

[The situation presented here is for the RC case with poles located on 

the negative real axis including the pole at infinity of the complex 

frequency plane. A similar development is possible for the ±R,C case.] 

Neglecting the insignificant small terms, there results 

res[yn] % hf k^> k£ kg > |hf kg kg kg | (115) 

res[y22] S hf kg kg kg > J hf kg kg kg (116) 

res[y33] S [kg kg - (kJ^J^hk^) > (117) 

tttgkg-ikgflekg) 

res[y44] S [kg kg - lkg)2]fkg > (118) 

/ ' \ l * g * g -l*g)2-l»*g\' 

These equations reduce to the following requirements 

4 ^ ^ I"!?' Ul9) 

•yg > i*g..\ •••••• (120) 

**g > i«kii}i <i2i> 

f k 3 ^ > l e k ^ l (122) 
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For matrix [z] to be a ±R,C (RC) open-circuit impedance matrix, 

one realizability condition is 

k<*> ki i> - <k<i>)2 > o 
11 22 

for i = 0,1,2,... ,n,°°. (For RC case k..k -v- (k^) > 0 must also 

be satisfied). Recall that in the development for realizing a short-

circuit admittance matrix [ Y ] , the short-circuit ±R,C (RC) admittance 

matrix [y] in Equation (9) is expressed as 

[y] = [ y ' ] ' + [ y " ] + [ y m ] (9) 

where 

[y] -

r 
v " 
Y l l 

0 

0 

y 22 

( i ) . Since the off-diagonal terms of this matrix are zero, k* = 0 for 

i = 0,1,2,. ..,n,°° including k-2 = 0. Thus, Equations (119) and (120) 

now require only that 

kii) ̂  ° k2^'-* ° 

This condition is always satisfied because [z] is a ±R,C (RC) open-

circuit impedance matrix. Clearly Equations (121) and (122) will always 

be satisfied also as h » |e| and f » |e|. 

Therefore it can be concluded that it is always possible to 

realize the 4 X 4 matrix [z] by realizing it's inverse as a short-

circuit admittance matrix [Yl. 
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APPENDIX II 

THE SYNTHESIS OF ±R,C ' NETWORKS 

The general synthesis technique developed by Phillips and Su 

for synthesizing a two-port network when all three short-circuit 

admittance functions, y,,, "YIOJ
 an'd Yoo> a r e prescribed and satisfy 

the realizability conditions for a realization by ±R,C two-port network 

involves developing a separate component network for each type of pole 

that is realizable by a ±R,C network. The short-circuit admittance 

functions are then realized by the parallel connection of the required 

component networks. The component networks will be presented in Figures 

22, 23, 24, and 25 in the order that the functions appear in Equation 

(l). All of these networks are developed for the case of compact 

poles. If the pole is not compact, sufficient admittance should be 

subtracted from y.. or y^ to make the pole compact. This admit

tance can be realized in shunt across the input or output of the net

work. The number of negative resistors are reduced by combining parallel 

resistors. 
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