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Abstract—A wireless channel sounder based upon the conven-
tional spread spectrum sliding correlator implementation uses
unfiltered pseudo-random noise (PN) at both the transmitter
and receiver to generate a time-dilated copy of the channel’s
impulse response. However, in addition to this desired impulse
response, the sliding correlator also produces a noise-like, wide-
band distortion signal that decreases the measurement system’s
dynamic range. Careful selection of the sliding correlator’s low-
pass filter can significantly reduce this distortion, but no amount
of filtering will remove it completely. In contrast, using filtered
PNs at both the transmitter and receiver enables one to remove
this distortion in entirety and realize a measurement system
whose dynamic range closely approximates the theoretical ideal
for spread spectrum systems.

Index Terms—Swept time-delay, sliding correlator, spread
spectrum technology, impulse response measurements.

I. INTRODUCTION

THE utility of the spread spectrum sliding correlator
stems from its PN-based time-dilated autocorrelation,

which packs a wideband probing signal into a relatively
narrowband output. This bandwidth compression combined
with the time-dilated autocorrelation’s large dynamic range
has made the spread spectrum sliding correlator an extremely
popular platform for performing wideband impulse response
measurements [1]–[4]. Despite the architecture’s success, real-
izing the large dynamic range enabled by the spread spectrum
sliding correlator’s time-dilated PN autocorrelation has long
been hindered by the presence of an in-band, noise-like dis-
tortion signal. This distortion can severely diminish the output
signal’s dynamic range and necessitates exhaustive numerical
simulations for complete characterization [5], [6].

For most practical applications, however, an impulse re-
sponse measurement system based upon the spread spectrum
sliding correlator will use PNs that have been low-pass filtered,
whether deliberately, as illustrated in Fig. 1, or incidentally
due to system bandwidth limitations. By using filtered PNs
in concert with a judiciously chosen slide factor, one can
eliminate the troublesome distortion signal that has plagued
the sliding correlator architecture and realize a probing signal
whose dynamic range closely approximates the theoretical
ideal. Following a brief review of the conventional sliding
correlator implementation, we investigate the impact of using
filtered PNs and develop a simple design rule that ensures a
distortion-free time-dilated impulse response measurement.

Manuscript received October 18, 2008; revised February 18, 2009; accepted
April 4, 2009. The associate editor coordinating the review of this paper and
approving it for publication was A. Molisch.

This work was supported by a National Science Foundation Graduate
Research Fellowship.

The authors are with the Propagation Group at the Georgia Institute of
Technology (http://www.propagation.gatech.edu).

Digital Object Identifier 10.1109/TWC.2009.081388

Fig. 1. A complex-baseband diagram of the spread spectrum sliding
correlator-based wireless channel sounder highlighting the PNs’ low-pass
filters that enable a distortion-free time-dilated impulse response. The spread
spectrum sliding correlator’s time-dilated PN autocorrelation is the probing
signal used to measure the complex-baseband wireless channel’s impulse
response.

II. PSEUDO-RANDOM NOISE

Pseudo-random noise (PN), denoted x(t), may be derived
from a maximal length pseudo-random binary sequence, ai ∈
{0, 1} [7]. The sequence ai is periodic such that ai+L = ai,
and x(t) is a biphase, unit amplitude analog representation of
ai with a spectrum, X(f), given by [6]
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where Z is the set of all real integers, fc is the chip rate, δ(ξ)
is the Dirac delta function, and sinc(x) = sin(πx)

πx .

III. SLIDING CORRELATION: UNFILTERED PNS

Consider the sliding correlation of two unfiltered PNs, x(t)
and x′(t), with chip rates, fc and f ′

c, respectively, derived from
a maximal length pseudo-random sequence, ai, of length L.
The chip rates are related by the slide factor, γ, according to
[2]

f ′
c = fc

γ − 1
γ

(2)

where γ > 1 such that fc > f ′
c. In the time-domain, the

sliding correlator multiplies and then subsequently low-pass
filters the two PNs. Thereby, the time-domain output of the
sliding correlator is given by

y(t) = hc(t) ⊗ [x(t)x′(t)] (3)

where ⊗ denotes convolution and hc(t) is the impulse re-
sponse of the sliding correlator’s low-pass filter. It is elucidat-
ing to examine the sliding correlator’s output in the frequency
domain. Denoting Y (f) and Hc(f) as the Fourier transforms
of y(t) and hc(t), respectively, Eq. (3) becomes

Y (f) = Hc(f)[X(f) ⊗ X ′(f)] (4)

1536-1276/09$25.00 c© 2009 IEEE



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 7, JULY 2009 3455

Carrying out the convolution in (4) yields [6]

X(f) ⊗ X ′(f) = Qc(f) + Qd(f) (5)

where Qc(f) is the spectrum for the desired time-dilated
autocorrelation as given by

Qc(f) =
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and Qd(f) is the spectrum for the unwanted noise or distortion
as given by
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In Eq. (7), primed and unprimed summation indices corre-
spond to X ′(f) and X(f), respectively. Note that the double
summation in Qd(f) excludes indices related by k′ = −k,
which are the indices from the convolution of X ′(f) and
X(f) in (5) that correspond to the time-dilated autocorrela-
tion, Qc(f). Thus, Qd(f), contains the leftover terms from
X(f) ⊗ X ′(f) that do not correspond to Qc(f).

Combining (4) and (5) leads to

Y (f) = Hc(f)Qc(f) + Hc(f)Qd(f) (8)

Ideally, we would have Y (f) = Hc(f)Qc(f) whereby the
distortion spectrum, Qd(f), is completely removed from the
sliding correlator’s output signal. However, as illustrated by
Fig. 2(a), the problem with using unfiltered PNs in the sliding
correlator is that Qc(f) and Qd(f) will always overlap in
the frequency domain. Thereby, no choice of the low-pass
filter, Hc(f), will completely remove the sliding correlator’s
distortion spectrum, Qd(f). Increasing the slide factor will
reduce the contribution of Qd(f) but will never completely
eliminate it [6], [8]. The end result is a realized dynamic range
well below the theoretical ideal of 20 log10(L) dB [3], [5], [6].

IV. SLIDING CORRELATION: FILTERED PNS

Fortunately, for many practical applications, the PN will
be low-pass filtered to restrict the signal’s bandwidth. Let us
consider the spectrum of a PN with chip rate, fc, that has
been filtered by an ideal low-pass filter, H(f), with a cut-off
frequency at βfc:

H(f) =
{

1 for |f | ≤ βfc

0 for |f | > βfc
(9)
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Fig. 2. Envelopes of the time-dilated autocorrelation spectrum and distortion
spectrum produced by a sliding correlator using PNs of length L = 15 and
a slide factor of γ = 4L + 1: (a) unfiltered PNs and (b) filtered PNs using
filters characterized by β = β′ = 2.

Using (9), the filtered PN’s spectrum, denoted X̂(f), may be
expressed as

X̂(f) = X(f)H(f) (10)

Equivalently, X̂(f) corresponds to the original spectrum de-
fined in (1) whereby the infinite summation is truncated such
that k is restricted to

|k| ≤ kmax = �(βL)� (11)

In Eq. (11), �(·)� denotes the floor function.
Similarly, filtering the PN spectrum X ′(f) (with chip rate

f ′
c) by an ideal low-pass filter, H ′(f), defined as

H ′(f) =
{

1 for |f | ≤ β′f ′
c

0 for |f | > β′f ′
c

(12)

produces a filtered PN spectrum, X̂ ′(f) given by

X̂ ′(f) = X ′(f)H ′(f) (13)



3456 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 7, JULY 2009

This is equivalent to truncating X ′(f)’s infinite summation
with respect to the summation index k′ such that

|k′| ≤ k′
max = �(β′L)� (14)

A. Bounds on Time-Dilated Autocorrelation Spectrum

With these bounds on the summation indices, k and k′,
for the filtered PN spectra, X̂(f) and X̂ ′(f), respectively,
consider the filtered PNs’ time-dilated autocorrelation spec-
trum, Q̂c(f). By inspection of the unfiltered PNs’ time-dilated
autocorrelation defined in Eq. (6), it may be found that the
maximum frequency at which the filtered PNs’ time-dilated
autocorrelation is nonzero is given by

f Q̂c
max = max

{
fck

γL

}
(15)

whereby

Q̂c(f) = 0 for |f | > f Q̂c
max (16)

In (15), max{(·)} denotes the maximum value of the set {(·)}.
Recalling that Q̂c(f) corresponds to X̂(f)⊗X̂ ′(f) for the case
that k′ = −k, we find that f Q̂c

max is maximized by setting k
to the minimum of kmax and k′

max. With the aid of Eqs. (11)
and (14), (15) becomes

f Q̂c
max =

fc

γL
�(min{β, β′}L)� (17)

In (17), min{(·)} indicates the minimum value of the set
{(·)}. Thereby, f Q̂c

max specifies an upper bound on the nonzero
spectral content of Q̂c(f).

B. Bounds on Distortion Spectrum

For the filtered PNs’ distortion spectrum, denoted Q̂d(f),
we are interested in identifying the smallest positive frequency
at which Q̂d(f) is nonzero. Therefore, we seek to minimize
the argument of the Dirac delta function in Eq. (7):

f Q̂d

min = min
{

fc

L

[
k + k′

(
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γ

)]}
(18)

whereby

Q̂d(f) = 0 for |f | < f Q̂d

min (19)

Determination of f Q̂d

min is considerably more involved than
f Q̂c
max, and details of the derivation may be found in the

Appendix. The final result is

f Q̂d

min =
fc
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γ
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]
(20)

with the added constraint that γ > �(min{β′, β +1/L}L)� so

as to ensure that f Q̂d

min > 0.

C. Condition for Orthogonal Spectra

Provided that f Q̂d

min > f Q̂c
max, Q̂c(f) and Q̂d(f) will have no

overlap in their spectra. Thereby, with an appropriate choice
of low-pass filter, one may completely remove the sliding
correlator’s distortion spectrum, Q̂d(f) without altering the

time-dilated autocorrelation spectrum, Q̂c(f). The condition
for the slide factor that ensures orthogonality in the spectra is

γ > �min{β, β′}L� + �min{β′, β + 1/L}L� (21)

For the case of β = β′, dividing Eq. (21) by L leads to the
following convenient design equation:

γ

L
> 2β (22)

Figure 2(b) presents the filtered PNs’ time-dilated auto-
correlation spectrum, Q̂c(f), and distortion spectrum, Q̂d(f),
for the case of L = 15, β = β′ = 2, and γ = 4L + 1.
Note that, aside from using filtered PNs, this corresponds
directly to the spectra presented in Fig. 2(a). In contrast to the
unfiltered PNs, the filtered PNs’ distortion spectrum is clearly
orthogonal to the time-dilated autocorrelation spectrum. This
enables removal of Q̂d(f) with appropriate selection of the
low-pass filter, Hc(f).

D. Distortion-Free Time-Dilated Autocorrelation

Provided that Eq. (21) is satisfied, one may completely
remove Q̂d(f) without alteration to Q̂c(f) by using an ideal
rectangular low-pass filter whose pass-band extends to f Q̂c

max

and whose stop-band begins at f Q̂d

min. Thereby, we require the
sliding correlator’s low-pass filter Hc(f) to have the following
properties:

Hc(f) =

{
1 for |f | ≤ f Q̂c

max

0 for |f | ≥ f Q̂d

min

(23)

Replacing Qc(f) and Qd(f) in Eq. (8) with Q̂c(f) and Q̂c(f),
respectively, and using the frequency bounds on the spectra
given in (16) and (19) in concert with an Hc(f) satisfying
(23), one finds that the sliding correlator’s output is exactly
Q̂c(f):

Y (f) = Hc(f)[Q̂d(f) + Q̂d(f)] = Q̂c(f) (24)

The sliding correlator’s distortion-free time-dilated autocorre-
lation will have a dynamic range, DR, that closely approxi-
mates the dynamic range of a PN’s autocorrelation:

DR ≈ DR,ideal = 20 log10 L (dB) (25)

The approximation in Eq. (25) arises due to Q̂c(f)’s finite
bandwidth, which results from the necessary filtering opera-
tions. The PN’s low-pass filters H(f) and H ′(f), as well as
the sliding correlator’s filter, Hc(f), remove high-frequency
content from Q̂c(f) and smooth the otherwise sharp, triangular
pulse of the PN’s autocorrelation. This leads to a reduced
peak amplitude as well as an increase in the pulse’s full-width
half-maximum. The resulting reduction in dynamic range and
temporal resolution will depend on the specific choice of L,
β, and β′, but will generally be around one or two dB.

V. PHYSICALLY REALIZABLE FILTERS

Although the preceding analysis assumed ideal rectangular
low-pass filters, the dynamic range of the sliding correlator
will also improve if the PNs are filtered with physically
realizable low-pass filters. To demonstrate this, we simulated
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Fig. 3. A comparison of the dynamic range of the spread spectrum sliding
correlator for various PN filter orders, nPN, sliding correlator filter orders,
nSC, and PN lengths, L. The dynamic range at nPN = 0 corresponds to the
performance of a spread spectrum sliding correlator using unfiltered PNs.

using Butterworth filters for both the PNs’ low-pass filters,
H(f) and H ′(f), and the sliding correlator’s low-pass filter,
Hc(f). The PNs were filtered by Butterworth low-pass filters
of order nPN with a −3 dB cut-off corresponding to the PNs’
chip rates, fc and f ′

c, respectively (β = β′ = 1). The resulting
filtered PNs were multiplied and subsequently filtered by the
sliding correlator’s low-pass filter, Hc(f), which was realized
by a Butterworth low-pass filter of order nSC with a −3 dB
cut-off at fc/γ. The slide factor was set to γ = 2βL + 1, and
the sliding correlator’s dynamic range was calculated using
[6]

DR = 20 log10

⎛
⎝ max

∣∣∣F−1
{
LQ̂c(f)Hc(f)

}∣∣∣
max

∣∣∣F−1
{
LQ̂d(f)Hc(f) − 1

}∣∣∣
⎞
⎠ dB

(26)
where F−1 denotes the inverse Fourier transform.

Figure 3 presents the dynamic range of the sliding correlator
based on filtered PNs for L = {31, 127, 511}; unfiltered PNs
corresponding to nPN = 0. As Fig. 3 indicates, unfiltered
PNs lead to the worst dynamic range for a given PN length,
L, and sliding correlator low-pass filter order, nSC. More
so, the improvements afforded by filtering the PNs were
considerable for Butterworth filters of reasonably small order
(e.g., nPN ≈ 3). It should be emphasized that this was
achieved with Butterworth filters; filter topologies like the
Chebyshev filter, which has a sharper transition from pass-
band to stop-band, should provide comparable dynamic range
improvements with lower order filters.

VI. CONCLUSION

By low-pass filtering the PNs and selecting a slide factor
that satisfies the inequality presented in Eq. (21), it is possible
to completely eliminate the distortion signal that has plagued
the sliding correlator architecture. This enables the spread

spectrum sliding correlator to produce a distortion-free time-
dilated autocorrelation with a dynamic range that closely
approximates the theoretical ideal.

APPENDIX

We begin by rewriting (18) as

f Q̂d

min =
fc

L
min

{
k + k′ γ − 1

γ

}
(27)

Enforcing the requirement that f Q̂d

min > 0, we observe that

k′ > −k
γ

γ − 1
(28)

Recalling that (γ−1)/γ ∈ (0, 1), inspection of Eq. (27) reveals
that f Q̂d

min can only be minimized for integer k and k′ if

sgn(k) = −1 (29)

In (29), sgn(·) indicates the sign of (·). Using (29), (28) may
be reexpressed as

k′

−k
>

γ

γ − 1
> 1 (30)

Consideration of Eq. (30) in the the context of the overarching
minimization problem reveals that we require the smallest ratio
of k′/(−k) that is greater than γ/(γ−1). Provided that k′ < γ,
this is achieved by

k = 1 − k′ for k′ < γ (31)

where
k′ = min{k′

max, kmax + 1} (32)

For k′ ≥ γ, (27) allows for f Q̂d

min ≤ 0 such that Q̂d(f) has no
minimum positive frequency component. Thus we require that
k′ < γ. Substituting (31) and (32) into (27) yields the final
result presented in Eq. (20).
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