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SUMMARY 

 

This study utilized (a) actual measured agricultural water use along with (b) geostatistical 

techniques, (c) crop simulation models, and (d) general circulation models (GCMs) to 

assess irrigation demand and the uncertainty associated with demand projections at 

spatial scales relevant to water resources management. In the first part of the study, crop 

production systems in Southwest Georgia are characterized and the crop simulation 

model error that may be associated with aggregated model inputs is estimated for 

multiple spatial scales. 

  

In the second portion of this study, a methodology is presented for characterizing regional 

irrigation strategies in the Lower Flint River basin and estimating regional water demand. 

Regional irrigation strategies are shown to be well represented with the moisture stress 

threshold (MST) algorithm, metered annual agricultural water use, and crop management 

data. Crop coefficient approaches applied at the regional scale to estimate agricultural 

water demand are shown to lack the interannual variability observed with this novel 

approach. 

  

In the third portion of this study, projections of regional agricultural demand under 

climate change in the Lower Flint River basin are presented. GCMs indicate a range of 

possible futures that include the possibility of relatively small changes in irrigation 

demand in the Lower Flint River basin. However, most of the GCMs utilized in this work 

project significant increases in median water demand towards the end of this century. In 
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particular, results suggest that peak agricultural water demands in July and August may 

increase significantly. 

  

Overall, crop simulation models are shown to be useful tools for representing the intra-

annual and interannual variability of regional irrigation demand. The novel approach 

developed may be applied to other locations in the world as agricultural water metering 

programs become more common. 
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Chapter 1: Introduction 

 

Agricultural water use dominates consumptive use of water in many parts of the world, 

but reliable estimates of historical and future agricultural water demand are lacking. 

Individual farmers generally do not monitor or record their water applications in a 

systematic manner and often existing statutes do not require them to explicitly report 

their water use to any governing body. This presents significant challenges for 

retrospective analysis of interannual and seasonal water demand and has resulted in 

climate change impact assessments based on assumptions about historical and future 

irrigation practices that are not supported with data at the scales relevant to water 

resources management. While global climate models provide plausible scenarios of 

future climate associated with increasing greenhouse gas concentration, water resources 

stakeholders lack tools to translate these climate scenarios into useful assessments of 

agricultural water demand. 

 

Crop simulation models are playing an increasing role in utilizing past and future climate 

data to provide useful information for a range of stakeholders. These models overcome 

the ‘black box’ nature of less mechanistic, empirical models by integrating current 

knowledge from disciplines such as agrometeorology, soil physics, and agronomy into a 

set of mathematical equations that represent the dynamic, nonlinear interactions between 

weather, soil water and nutrient dynamics, crop characteristics, and management 

practices. In addition, crop simulation models serve as surrogate laboratories that allow 

for rapid and inexpensive experimentation that compliments traditional field experiments 
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(Brumbelow et al., 2003; Challinor et al., 2009). Typical environmental inputs include 

daily weather data, soil properties, and crop management factors. 

 

While crop simulation models are developed and tested at the spatial scale of a 

homogenous plot or field, stakeholders are often interested in climate impacts at the 

district, watershed or broader scales where significant spatial variability in environmental 

inputs may exist (Hansen and Jones, 2000; Kersebaum et al., 2007). The outputs from 

these models are intensive variables (e.g. ‘crop yield’ or the amount of a crop harvested 

per unit area) expressed as spatial averages that must be scaled up to the scales relevant to 

water resources management and regional crop production.  

 

Crop simulation models have been used in studies all over the world and have the 

potential to become vital components of interdisciplinary research on climate change 

impacts. However, upscaling their outputs to obtain meaningful information is not 

straightforward. Questions that influence the development of assessments include: what 

spatial scales relevant to water resources managers and planners allow for comparison of 

model outputs with available agricultural data sets; how can the variability in weather, 

soil, and management conditions be represented in the modeling framework; can 

approaches be developed to take advantage of local expert knowledge of management 

practices; can irrigation demand be simulated with a consistent approach to represent 

current as well as future conditions? 
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1.1 Research Objective 

This research aims to develop and demonstrate a novel approach for applying crop 

simulation models to assess the impacts of climate change on agricultural water demand. 

Some relevant questions addressed in this work include: 

 

� What are realistic and consistent approaches for mimicking the farmer’s decision 

to irrigate historically and in the future;  

� How does simulation error change as spatial scale increases;  

� What conclusions can be drawn about the benefit of crop models in comparison 

to simpler empirical models when conducting agricultural water demand 

assessments;  

� Can crop models be utilized to translate historical climate data and scenarios of 

future climate into useful information for water resources stakeholders?  

 

The research scope of this work includes (1) a quantitative assessment of a crop 

simulation model’s ability to represent the relationship between atmospheric forcing, 

soils, irrigation input, and yield at different spatial scales; (2) scale dependent model 

calibration guidelines and characterization of uncertainty associated with calibration 

parameters; (3) a comparison with existing approaches; and (4) an assessment of climate 

change impacts on agricultural water demand. 
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1.2 Case Study System 

The agriculture industry plays a huge role in Georgia’s economy, contributing billions of 

dollars annually. In addition, the state’s water resources are intrinsically tied to the 

agricultural sector since both surface water and groundwater are used by farmers to 

irrigate crops throughout the state. Although Georgia is typically considered to be a state 

with plentiful water resources due to average annual rainfall exceeding that of many other 

parts of the United States, the competing demands placed on water resources by the 

municipal, industrial, agricultural, and ecological sectors make water resources 

management and planning a significant challenge for stakeholders and policy makers. 

This is complicated further by the uncertainty surrounding agricultural water use due to a 

lack of observed data associated with seasonal irrigation volumes or the timing of water 

applications during the crop season. Furthermore, climate change has the potential to 

decrease the availability of water resources due to probable changes in rainfall 

distribution and increases in potential evaporative demand (Hatch et al., 1999; Xu and 

Singh, 2004; Zhang and Georgakakos, 2011). 

 

1.3 Thesis Organization 

Following a review of the relevant literature on empirical crop response models, crop 

simulation models, and agricultural water demand assessments, Chapters 3 through 6 

consist of the methods and results of this research. In Chapter 3, the uncertainty 

associated with upscaling crop simulation model outputs is characterized. In Chapter 4, a 

methodology is presented for estimating irrigation demand with regional irrigation 

strategies and measured agricultural water use data. In Chapter 5, projections of 
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agricultural water demand under climate change are presented. Finally, Chapter 6 

consists of conclusions and recommendations for future work. 
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Chapter 2: Literature Review 

 

2.1 Introduction to empirical crop response models 

The positive response of agricultural crops to well timed water applications (i.e. 

irrigation) has been acknowledged by humanity for millennia. Some of the earliest 

engineering projects involved drainage and irrigation of fields to improve crop 

production and provide an adequate supply of food and fiber. Human reliance on a 

sufficient and timely supply of water for crop production continues (Eash et al., 2008).  

 

Quantifying the relationship between management factors (such as irrigation and applied 

nutrients) and crop response has been of interest to farmers and scientists for a long time. 

As a result, farmers and scientists have dedicated significant amounts of time and 

resources to the study and improvement of agricultural production. For example, John 

Bennet Lawes devoted his family estate in England to the study of agricultural production 

and conducted chemical experiments in a laboratory in his house. He patented a process 

for manufacturing superphosphate in 1842 and his subsequent research on various crops 

in field plots led to many publications in scientific journals (Overman and Scholtz, 2002). 

 

One of the earliest approaches for determining crop water “requirements” is still popular 

and is known as the Blaney-Criddle (1950)equation (Banerjee et al., 2007). By 

disregarding many relevant factors, the original form of the method determines seasonal 

consumptive use of water as a function of empirical crop coefficients, monthly 

temperature and monthly percentage of annual daytime hours.  The equation is  
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U Kf=    

where  is the consumptive use in inches;  is a monthly crop coefficient;

( ) /100 is the monthly consumptive use factor;  is the mean monthly

temperature in degrees Farenheit;  is the monthly per

U K

f t p t

p

= ×

centage of daytime hours

(as a percentage of the annual total).

 

 

On a seasonal basis, the equation is given by 

1 1

( ) /100

where  is a seasonal crop coefficient and  is the number of months in a season.

m m

i i s i i

i i

s

U K f K t p

K m

= =

= = ×∑ ∑   

 

Although the Blaney-Criddle (1950)equation has been modified for use at shorter time 

scales and to incorporate wind speed and humidity (Allen and Pruitt, 1986; Doorenbos 

and Pruitt, 1977; USDA, 1970), it still is based on crop coefficients that may not be 

applicable at locations other than where the coefficients were determined. Furthermore, 

this approach disregards many significant factors (e.g. soil moisture, timing of water 

applications, management practices, water logging, etc.) and does not provide 

information about crop yield. Rather it assumes that crop growth and yield is not limited 

by inadequate soil moisture at any time during the growing season. Thus, the Blaney-

Criddle equation can be classified as a “full irrigation” method. 

 

2.2 Evapotranspiration driven crop water use methods 

Soil water can evaporate directly from the soil or it can be absorbed by the roots of a 

plant and evaporate from small openings on the leaves of plants referred to as stomata. 

The latter process is called transpiration and the combination of evaporation from the soil 
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and the leaves of plants is known as evapotranspiration. Potential evapotranspiration is 

the rate of evapotranspiration that would occur in an area of dense vegetation cover when 

soil moisture supply is not limiting. The amount of water evaporated from leaf surfaces 

and consequently discharged to the atmosphere is far greater than the amount of water 

consumed in the formation of plant matter. The actual rate of transpiration depends on the 

species and growth stage of a plant, as well as the soil and weather conditions. Thus, 

actual evapotranspiration drops below its potential level as the soil becomes unsaturated 

(Bras, 1990; Chow et al., 1988; J.E.Pallas et al., 1979). 

 

2.2.1 Reference crop methods 

Many approaches have been developed to determine crop water requirements that are 

based on methods for calculating open water evaporation with adjustments to account for 

the condition of the vegetation and soil (Bras, 1990; Monteith, 1980; Van Bavel, 1966). 

While these methods are typically considered easy to use and understand, (1) they do not 

express a relationship between applied water and yield in absolute terms and (2) 

parameters (i.e. coefficients) may vary by location and crop. 

 

A fundamental assumption when reference crop methods are applied is that water supply 

does not limit evapotranspiration (ET). Thus, there is a fundamental assumption that no 

water stress is experienced by the crop of interest. A common approach is to assume the 

basic rate of ET is the “reference crop ET”, i.e. “the rate of evapotranspiration from an 

extensive surface of 8 cm to 15 cm tall green grass cover of uniform height, actively 

growing, completely shading the ground and not short of water” (Doorenbos and Pruitt, 
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1977). A relationship between the calculated ET for the reference crop and the ET of the 

crop of interest is utilized and applied to determine crop water needs.  

 

Two common approaches for estimating reference crop ET are the Penman-Monteith 

equation and a method based on field experiments by Priestley and Taylor (1972). 

Monteith (1965) showed how the Penman (1948)equation for evaporation from a free-

water surface can be modified to calculate ET from a vegetated surface by incorporating 

resistance to vapor flux through leaf stomata and unsaturated soil. Priestly and Taylor 

(1972) demonstrated with experimental evidence that ET could be approximated as the 

product of a constant and the term in the Penman (1948)equation that represents the 

evaporation rate due to net radiation (Dingman, 2002). 

 

The potential evapotranspiration (ETc) of the crop of interest may be calculated by 

multiplying the reference crop evapotranspiration (ETref) by an empirical crop coefficient 

(Kc). Crop coefficients vary with crop phenology, i.e. stage of growth of the crop. As 

crops develop, Kc increases to a maximum value and then decreases as the crop 

approaches maturity. A procedure for irrigation scheduling(Brumbelow et al., 2003), the 

decision of when and how much to irrigate, with crop coefficients can be expressed as  

, max, min, ,

, , ,

,

, ,

( , , , , , .)

0,if 

, if < 
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max minwhere  is an index indicating the time increment,  is maximum temperature,  is

minimum temperature,  is relative humidity,  is net solar radiation,  is wind speed,

 is irrigation, and  i

n

t T T

RH R u

I P s precipitation.

 

 

Reference crop methods have limited value for estimating agricultural water use because 

many production situations do not allow for full irrigation, i.e. irrigation scheduling that 

prevents the crop from experiencing any significant degree of water stress. Although full 

irrigation methods are intended to maximize yield, competing demands on water supplies 

in many river basins necessitate a more sustainable demand management strategy that 

allows for deficit irrigation, i.e. situations where total applied water is less than potential 

ET (Brumbelow, 2001; Farahani et al., 2009; Kijne et al., 2003). 

 

2.2.2 Deficit irrigation methods 

Empirical production functions that relate harvestable yield to ET are commonly used in 

agricultural yield and water demand assessments (Cai et al., 2003). By far, the most 

influential method based on this approach is FAO Irrigation and Drainage Paper no. 33, 

Yield Response to Water (Doorenbos and Kassam, 1979).The basis of this approach is a 

relationship between relative yield and relative ET given by 

m a m a
y

m m

Y Y ET ET
K

Y ET

   − −
=   

   
   

where  and  are the maximum and actual yield;  and  are the maximum and 

actual evapotranspiration, and  is a yield response factor that varies with species, 

variety, irrigation method and 

m a m a

y

Y Y ET ET

K

management under deficit evapotranspiration.
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While equation (2.4) may be applied for an entire season (Kirda, 2002), Doorenbos and 

Kassam (1979) also specified a model that allowed Ky to vary with growth stage. Rao et 

al. (1988)proposed a multiplicative form that is given by 

,

,

1 ,

1 1
n

a ia
y i

im m i

ETY
K

Y ET=

  
= − −   

   
∏    

where  is an index for growth stage and  is total number of crop growth stages.i n An  
 

additive form was also supported by Rao et al. (1988)and is given by 

,

,

1 ,

1 1
n

a ia

y i

im m i

ETY
K

Y ET=

 
= − −  

 
∑    

 

While the Doorenbos and Kassam (1979)equation and similar equations are still quite 

popular today (Cai et al., 2009), using the Ky values that the authors reported in Yield 

Response to Water may lead to significant errors (Kaboosi and Kaveh, 2011). For 

example, Dehghanisanij et al. (2009) reported the seasonal Ky for winter wheat as 1.03 

and 1.23 for two different locations in Iran, while Doorenbos and Kassam (1979) 

presented it as one. In another study, Moutonnet (2002) presented Ky for the vegetative 

stage of cotton in Argentina and Pakistan as 0.75 and 0.8 respectively while it was given 

as equal to 0.2 by Doorenbos and Kassam (1979). 

 

Thus, determining the coefficients in the Doorenbos and Kassam equation and similar 

equations may require lengthy and expensive local experiments (Fourcard et al., 2008; 

Tsuji et al., 1998). In addition, the coefficients derived at a given site from experiments 
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may not be valid at locations with different soil properties, climate, crop varieties, or 

management practices. Furthermore, yield is not expressed in absolute terms.  

 

Although these empirical approaches are widely accepted and allow for analytical 

methods of parameter estimation and error propagation, there are significant limitations 

to their application and factors other than evapotranspiration that influence agricultural 

yield and water demand are not taken into account (Brumbelow, 2001). Furthermore, 

plant water stress is dictated by a combination of potential ET, plant extractable soil 

moisture, root distribution, canopy size as well as other plant and environmental factors 

(Hoogenboom, 2000). For the representation of spatially aggregated response to the 

interactive effects of climate and management, the physiological detail in crop simulation 

models is required (Hansen and Jones, 2000). 

 

2.3 Introduction to crop simulation models 

From the mid-1960s through the 1990s, crop physiologists contributed a great deal to the 

understanding of plant physiology (Boote and Sinclair, 2006). After these scientists’ 

discoveries improved the understanding of photosynthesis in different plant species in the 

1960s (Hesketh, 1963; Hesketh and Moss, 1963), the mechanistic basis of crop-water 

relations was revealed in the 1970s and 1980s (Boyer, 1969; Hsiao, 1973). By the 1990s, 

the work of researchers investigating crop response to elevated CO2 and temperature 

allowed for scientific discussion on the impacts of global climate change on agricultural 

production (Allen, 1990; Kimball, 1983; Rogers et al., 1983). 
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In the late 1960s, computers had evolved enough to allow for crop growth modeling to 

emerge as a means of integrating knowledge about plant physiological processes in order 

to explain whole-plant response, i.e. the functioning of a plant as a whole (Bouman et al., 

1996). Over the next few decades, new insights into the underlying mechanisms and 

processes associated with crop growth and development were expressed using 

mathematical equations and integrated in simulation models. As a result of the interaction 

between biologists, mathematicians and computer scientists, plant growth modeling and 

simulation has progressed significantly (Fourcard et al., 2008). 

 

2.3.1 Dynamic system models 

Crop growth models are considered ‘process based’ or ‘physiologically based’ because 

they take into account the physiological processes involved in growth and development 

such as water and nutrient dynamics, photosynthesis, and carbon partitioning (Gifford 

and Evans, 1981). The term ‘crop simulation model’ refers to a dynamic system of 

differential or difference equations, which describe the interaction of a crop with the soil 

by calculating both rate and state variables over time (Hoogenboom, 2000). Thus, a crop 

simulation model is a mathematical representation (Wallach et al., 2006) of the soil-plant-

atmosphere system (SPA system) given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 , ;

, ;
n n n

X t t X t g X t w t

X t t X t g X t w t

+ ∆ = + θ  

+ ∆ = + θ  
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( ) ( ) ( )

( )

T

where  is time;  is some time increment that is often one day; 

, ,  is the vector of state variables at time ;   is the number of 

state variables;  is the vector of input variables 

i n

t t

X t X t X t t n

w t

∆

=   K

at time ;   is the vector of

parameters; and  is some function.

t

g

θ
 

Environmental conditions (such as climate variables and soil characteristics) and crop 

management practices (e.g. irrigation amounts and dates) are typical inputs, while state 

variables could include leaf area index (i.e. leaf area per unit land area), grain weight, 

root density in each soil layer, soil water content in each soil layer, etc. Crop simulation 

models typically operate on a daily time step and aspatial scale of a homogenous plot or 

field (Hansen et al., 2006). When one integrates the equations of the crop simulation 

model, this is commonly referred to as “running” the model (Wallach et al., 2006). These 

equations contain parameters that remain unchanged from one simulation to another after 

the model is calibrated. For the purposes of agricultural and water resources management, 

the model results or outputs of interest are typically state variables at the end of the 

season (e.g. irrigation depth) or at particular times during the season (e.g. daily water 

stress and irrigation applications). Crop models can be considered deterministic in that 

differences in outputs are only due to variations in input data (Lichtfouse et al., 2009). 

 

2.3.2 Primary modules 

For more than a decade, many in the agricultural system modeling community have made 

a concerted effort to promote  more effective model development and documentation 

approaches (Porter et al., 1999). Although models have become more complex in a sense 

as new components have been added or modified, many modeling groups have 

implemented a modular structure and modular programming techniques that allow for 
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more cooperation amongst experimentalists, model developers, and model users (Hunt et 

al., 2001; Jones et al., 2001). As a result, three main modules are common in most crop 

simulation models: the soil module, the plant module, and the soil-plant-atmosphere 

module which links the soil and plant modules (Jones et al., 2003). 

 

The soil module computes water infiltration, drainage, and redistribution within the soil 

profile. Water inputs such as precipitation and irrigation are the source of water that 

infiltrates into the soil. Crop simulation models may compute soil nitrogen and carbon 

processes due to fertilizer applications and crop residue as well (Lichtfouse et al., 2009). 

 

The plant module computes growth of the plant (i.e. the accumulation of biomass) and 

the development of the crop. The crop grows and develops by expanding its canopy and 

deepening its root system as it progresses through its growth stages (Steduto et al., 

2009).Canopy growth is driven by assimilation of carbon through photosynthesis, while 

the development of the crop is driven by temperature and photoperiod, i.e. the duration of 

the plant’s daily exposure to light. 

 

The soil-plant-atmosphere module allows interactions between the plant and soil 

modules. In particular, when potential root water uptake is limited by soil water content, 

physiological processes such as photosynthesis and cell expansion are reduced depending 

on the level of water stress (Lichtfouse et al., 2009). 
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2.3.3 Production situation classification 

 

Figure 2.1.Classification of agricultural production systems proposed by the C.T. de Wit 

Graduate School of Production Ecology (Rabbinge, 1993). 

 

At the start of any research study with crop simulation models, classifying the 

agricultural system allows for progress to be made although this is an obvious simplified 

representation of reality (Bouman et al., 1996).A popular classification of crop 

production systems was introduced by the C.T. de Wit Graduate School of Production 

Ecology (see Figure 1.1). Potential yield is defined by the concentration of atmospheric 

CO2, solar irradiance, temperature, and characteristics of the crop. Attainable yield is 

limited by the availability of water and nutrients. Actual yield is reduced from attainable 
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yield by factors such as weeds, pests, diseases, and pollutants (Hoogenboom, 2000; 

Rabbinge, 1993). Crop simulation models capable of simulating potential production 

processes (i.e. photosynthesis, respiration, partitioning, phenology) were the first 

developed. These models were modified to allow for simulation of soil water dynamics, 

and later nitrogen dynamics and use. Ongoing efforts attempt to incorporate additional 

determinants of actual crop production such as models of phosphorous dynamics, pests, 

diseases and other factors (Delonge, 2007; Hansen and Jones, 2000; Willocquet et al., 

1998). 

 

2.4 Spatially aggregated response applications 

The availability of input data presents significant challenges to the application of crop 

simulation models at regional and larger scales. The environment of the agricultural 

system modeled is defined by the inputs which typically consist of daily weather 

observations, soil properties, and crop management practices. Due to data and cost 

constraints, in many studies regional crop response is often based on one or a few 

“representative” locations. However, outputs simulated with data from representative 

locations may not necessarily represent the spatial average or the interannual variability 

of regional values due to aggregation error (Hansen and Jones, 2000; Lichtfouse et al., 

2009). 

 

When historical data is available at the scale of model development and application, 

calibration of model parameters and inputs can correct for sources of error (Rastetter et 

al., 1992). This can be achieved by utilizing a nonlinear optimization algorithm to 
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determine representative parameters and environmental inputs. For applications involving 

climate variability, several years of observed data at multiple sites in the region of 

interest is desirable for calibration but often not available (Hansen and Jones, 2000; 

Persson et al., 2008).  

 

Temporal trends in historical water demand and yield data can be attributed to changes in 

technology or land-use patterns if weather is regarded as stationary (Garcia et al., 2006; 

Xu and Singh, 2004). This can be accounted for by calibration of model outputs since 

crop models simulate the current range of agricultural technologies (Hatch et al., 1999). 

For example, the difference or ratio of mean observed yields and yields simulated with 

fixed management may provide an adequate technology trend adjustment. The lower 

frequency tend may be attributed to technology while higher frequency deviations are 

primarily associated with weather variability (Bell and Fischer, 1994; Hansen and Jones, 

2000; Jagtap and Jones, 2002). 

 

2.5 Linking global climate and crop simulation models 

As decision makers begin to integrate climate change into ongoing and new programs 

and policies, the climate change impacts, adaptations and vulnerability (IAV) research 

community needs to “sharpen the rigor of its analyses in regard to clarity of its mental 

constructs, data, and standards of evidence” (Rosenzweig and Wilbanks, 2010). The 

benefit of using general circulation (global climate) models (GCMs) for climate change 

impact assessments is that they allow one to account for mean change in temperature and 

precipitation as well as change in variability in a climatically consistent manner 
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(Brumbelow and Georgakakos, 2007). These models allow for scenarios of future climate 

to be generated that are based on our current understanding of the coupled atmospheric 

and oceanic processes that govern the Earth’s climate (Zhang and Georgakakos, 2011). 

Due to the mismatch in spatial scale between outputs from GCMs and inputs for crop 

simulation models, simulation of climate change impacts includes the use of downscaling 

techniques to link climate models and crop simulation models (Xu and Singh, 2004). 

However, one should spatially and temporally downscale climate model outputs in a 

manner that preserves both the meaningful features of the climate scenarios as well as the 

relevant properties of the historical daily sequences (Hansen and Jones, 2000). 

 

2.5.1 Raw daily climate model output 

The simplest option for calibrating daily GCM output to match observed mean local 

climate is to apply an additive or multiplicative shift (Hansen et al., 2006). An additive 

shift is appropriate for temperature and solar irradiance. However, for precipitation, a 

multiplicative shift is more appropriate and given by 

, /i i GCM obs GCMP P P P′=    

,where  and  refer to raw and calibrated GCM rainfall on day i, respectively; 

and  are long-term mean observed and simulated rainfall, respectively, for a given

time of year.

i GCM i obs

GCM

P P P

P

′

 

 

There are other methods proposed that allow for calibrating both the frequency and 

intensity distributions of GCM rainfall (Baron et al., 2005; Schmidli et al., 2006). 

However, the value of daily GCM outputs may be limited more by the model’s ability to 
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simulate rainfall with a realistic time structure (Hansen et al., 2006; Ines and Hansen, 

2006). 

 

2.5.2 Synthetic weather conditioned on monthly GCM output 

An alternative approach is to constrain stochastically generated daily sequences to match 

the monthly values of GCM outputs. A simple additive shift may be adequate for 

temperature. Rainfall sequences are generated and tested until monthly totals are within 

some percentage (e.g. 5%) of monthly GCM targets. Then, the generated sequence is 

corrected with a multiplicative shift to match the target value (Hansen and Indeje, 2004; 

Kittel et al., 2004). Hansen and Ines (2005) found that this approach performed better 

than adjusting the parameters of the weather generator to reproduce statistical properties 

of monthly rainfall targets (Hansen et al., 2006; Hoogenboom, 2000). 

 

2.5.3 Constructed analogues 

Hidalgo et al. (2008) developed a new method for statistically downscaling daily 

temperature and precipitation from GCMs to determine the effects of climate change. The 

method utilizes a library of previously observed daily weather patterns to construct an 

analogue for a course scale GCM output of interest. The weather patterns for several days 

serve as predictors that are combined to construct the analogues. The method is used to 

downscale GCM output to obtain daily temperature and precipitation on a 1/8 x 1/8 

degree resolution grid for the contiguous U.S. The authors found that the number of wet 

days is overestimated producing a very light “drizzle” on some days. Overall, the 
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downscaling method was found to skillfully reproduce the variability of daily average 

temperature and precipitation as well as seasonal cycles. 

 

2.6 Agricultural assessments and farmer behavior 

Crop simulation models are often called upon to reproduce past production situations and 

assess future scenarios where management decisions by farmers are needed as inputs.  

Consequently, decision rules are useful ways to relate a decision variable (e.g. water 

application depth and date) to other input variables (e.g. rainfall) or state variables (e.g. 

plant stress or soil moisture content at a user-specific soil depth) in a manner that is 

consistent from the past to the present or the future. When the goal is modeling water 

demand for irrigation in a region, the criteria for judging a decision rule is how closely it 

imitates farmer behavior (Cros et al., 2003; Wallach et al., 2006). 

 

When investigating historical irrigation at numerous fields, it is more reasonable to try to 

characterize “irrigation strategies” than to determine irrigation dates and amounts for 

every field in the study region. An irrigation strategy corresponds to a set of rules that 

relate irrigation decisions to relevant factors such as soil moisture, climate, and state of 

crop development (Jones et al., 2003). It is useful for mimicking farmer behavior because 

the irrigation strategy of a farmer may be assumed to be relatively stable, while irrigation 

depths and dates may exhibit significant interannual variability. Thus, simulating a 

representative irrigation strategy for a region is a useful alternative to approximating total 

irrigation for many discrete irrigated fields. Furthermore, it is a reasonable approach for 

future or hypothetical situations as well (Wallach et al., 2006). 
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Most historical yield and water demand assessments utilize irrigation strategies that are 

not developed with monitored agricultural water use data in the region of interest. This is 

due to the fact that recorded measurements of agricultural water use by individual 

farmers are not common. For example, only in recent years have measurements of 

agricultural water use in Georgia become available as a result of the research conducted 

by the Agricultural Water Pumping Program and the Soil Water Conservation 

Commission. The most common irrigation strategy encountered in the literature is to 

suppose that irrigation is applied to fully satisfy crop water “needs”. A number of studies 

utilizing either empirical models or crop simulation models are based on this approach. 

The latter typically involves simulating irrigation so that yield in maximized or is some 

arbitrary percentage of potential yield. These approaches avoid the more difficult 

challenge of modeling actual farmer behavior and consequently agricultural water 

demand (Cros et al., 2003; Wallach et al., 2006).  

 

Few studies have evaluated irrigation strategies over a region. A transparent and 

defensible approach is interviewing a sample of farmers and deducing a regional 

irrigation strategy from their responses. This strategy is determined by comparing 

simulated results with observed water consumption data for the whole region (Leenhardt 

et al., 2004). Alternatively, Maton et al. (2005) interviewed farmers and developed a 

typology of irrigation strategies (Wallach et al., 2006).  
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2.7 Assessments of agricultural water demand in the Southeast U.S. 

J.R. Bramblett (1995) provides an overview of the agricultural water demand study 

conducted by the U.S. Department of Agriculture’s Natural Resources Conservation 

Service in 1994 as part of a broader Comprehensive Study of water resources in the 

Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) River 

Basins in Alabama, Georgia, and Florida. This study relies on historical data from 1970-

1992 and makes projections of water demand for crop and orchard irrigation, aquaculture, 

livestock, and poultry through 2050. However, projected future water demands were 

developed through a consensus of expert opinion.  In addition, the author notes that a 

complete record of county commodity data for the 1970-1992 time period is not available 

for every county in all years. Furthermore, many individuals and groups questioned the 

“static” nature of the study’s annual distribution of withdrawals and annual totals (Hook 

et al., 1999). 

 

Blood et al. (1999) evaluate several methods for deriving irrigated acreage, water 

application rates, and annual irrigation water volume for four counties in SW Georgia, 

and compare these results with the ACT/ACF River Basins Comprehensive Study 1995 

projected irrigated acres and irrigation withdrawals. The authors present the scope of data 

sources (UGA-CES, NASS, USDA NRCS-NRI, GA DNR-EPD, SPOT satellite images) 

available and the trends in the resulting estimates. The authors suggest that regardless of 

the method for calculating the volume, the differences among counties were largely 

determined by the acreage under irrigation. However, only an average water application 

rate and volume were calculated for the four approaches for comparative purposes. 
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Hook et al. (1999) use crop growth and water use models to determine potential water 

withdrawals by month for Georgia’s primary irrigated crops during dry, normal, and wet 

years. The authors suggest that permitted pump capacity is not very useful for 

determining agricultural water use since the permitted pump capacity of the irrigation 

systems exceeds 8 billion gallons per day. However, they agree with Blood et al. (1999) 

in their conclusion that previous estimates of irrigated acreage by UGA-CES are certainly 

more reliable than their estimates of irrigation amounts. In this study, records from 1961-

1990 were utilized from four to six meteorological stations in or near each basin that 

were located above selected gauging stations. However, for each region and crop, the 

crop model made 100 simulations in which a weather station, weather year, soil type, and 

crop variety were chosen by random selection with replacement. Planting dates were 

selected from a “random-normal distribution of dates centered on the optimal planting 

date”. Irrigation to keep yield within 93-97% of optimal no water stress yields were 

ranked and the average quartile values were used to determine irrigation amounts needed 

for dry, normal , and wet years. The results were compared with actual farmer irrigation 

records for 7 to 11 years from the Southwest Georgia Agribusiness Association and the 

USDA National Peanut Laboratory (Dawson, GA). Farmer data showed wider spread of 

irrigation application than the models. 

 

Martin et al., 1999 show a simplistic methodology for estimation of agricultural water 

uses in the Cape Fear River Basin of North Carolina to aid the NC Division of Water 

Resources (NCDWR) in current and future water resources management issues such as 
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water conservation measures, water supply allocations, and inter-basin transfers. Due to 

time and budgetary constraints, detailed interviews with farmers and irrigation equipment 

dealers were not feasible. A procedure was ultimately developed that was intended to be 

easily updated and allowed for sensitivity analyses. This procedure utilized readily 

available published agricultural data (42 years of crop acreage data from 1940-1998) and 

interviews with selected agricultural extension agents and irrigation experts. Simulation 

of sub-county scale agricultural water use for the 1930-1998 time period is demonstrated, 

but the crop water demand curves utilized were developed for optimal conditions and rely 

on static season lengths. However, expert knowledge of the pumps, irrigation systems, 

and irrigation practices currently utilized by farmers suggest that the methodology 

produced reasonable estimates of crop irrigation within the basin. 

 

Hatch et al. (1999) conducted an analysis to determine potential effects of climate change 

on field crops in Georgia. Simulations with CROPGRO and CERES crop models were 

forced with historical (1975-1993) and projected (1975-1995, 2021-2040 and 2080-2099) 

daily weather data from the VEMAP project (Kittel et al, 1997) and consequently, the 

United Kingdom Meteorological Office, Hadley Center for Climate Prediction and 

Research model (Hadley). Planting dates in simulations occurred on the first date with 

one representative range of adequate soil moisture and soil temperature. Average values 

of yield, water use, mean growing season temperature, precipitation, and days to maturity 

were determined for the three 20-year time periods considered by averaging one to nine 

variety - planting date combinations for the five crops (peanut, corn, soybean, wheat, and 

sorghum) evaluated. The U.S. Department of Agriculture, Agriculture Research Service 
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economic model, PNTPLAN, was used to assess potential crop mix adjustments and 

management changes associated with economic optimization of a representative 200-acre 

farm for each county.  In addition, sensitivity analysis was used to assess how water use 

might be affected as non-irrigated land is converted to irrigated agricultural land. The 

results show increased water efficiency in future yield due to increased atmospheric CO2 

concentration that results in lower agricultural water use despite increased irrigated 

acreage. 

 

Salazar et al. (2012) evaluate the CSM-CERES-Maize crop simulation model with 

observed irrigation data from the Ag Water Pumping program from 2000 to 2004. The 

authors estimate historical irrigation requirements from 1950 to 2007 in 88 counties in 

Georgia with an approach that allows irrigation to be triggered on days when the 

available water holding capacity of the simulated soil profile falls below approximately 

60% of field capacity. Comparison between annual simulated and observed irrigation for 

five counties suggest that the CSM-CERES-Maize model has potential as a tool for 

estimating supplementary irrigation requirements and agricultural water demand. 
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Chapter 3: Characterization of System Model Response 

 

A “cropping system” may be defined as the crops, their succession order and the crop 

production systems associated with each crop (Leenhardt et al., 2010). In this chapter, 

crop production systems in Southwest Georgia are characterized and the crop simulation 

model error that may be associated with aggregated model inputs is estimated for 

multiple spatial scales. The estimated aggregation error associated with projections of 

agricultural water demand in subsequent chapters is presented in this chapter. 

 

3.1 3.1 Introduction 

A “system model” is an abstraction of the system of interest that is often indispensable 

when exploring the effect of alternative policies (Walker et al., 2003). For assessments of 

agricultural water demand, the system model encompasses the crop simulation model as 

well as the assumptions associated with model development and application to regional 

water demand projections. The crop production systems in the Southeast U.S. that utilize 

irrigation are the motivation for this work and the data, policies, and context associated 

with them have consequently influenced how crop simulation models are utilized to 

assess irrigation demand.  

 

While crop simulation models allow for a simplified mathematical representation of the 

real-world agricultural systems investigated, it is impossible to include all the interactions 

between the environment and the crop production systems of interest in a computer 

model (Hoogenboom, 2000). When information describing the system model and its 
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interactions are limited, not available or do not exist, modeling assumptions must be 

made that are consonant with the crop production systems and environment of interest.  

Crop simulation models have considerable potential for the exploration of management 

and policy decisions. However, an important limitation to broader, more transparent use 

of these models is our relatively limited knowledge of the uncertainty in the models’ 

outputs (Bert et al., 2007; Boote et al., 1996). 

 

 

Figure 3.1. The system model as part of the policymaking process (adapted from Walker 

et al., 2003). 

 

Uncertainty implies that error, unreliability, and imperfection affect our knowledge and 

understanding of the agricultural systems of interest (Li and Wu, 2006). Uncertainty can 



 

31 

directly affect policy in cases where the actions by decision makers when ‘best estimates’ 

are provided do not align with the decisions made when quantitative expressions of 

uncertainty are considered as well (Katz, 2002). Due to the different dimensions of 

uncertainty, a conceptual framework for the systematic treatment of uncertainty allows 

for a better understanding of model outputs and their implications for decision support 

(Walker et al., 2003). 

 

3.2 3.2 Systematic Uncertainty Characterization 

Uncertainty is often not given the attention it deserves even though it affects every aspect 

of modeling. It can be caused by incomplete data, limitations of models, and lack of 

understanding of the underlying processes. Incomplete data are a common problem in 

crop simulation modeling at scales broader than a field. Often the data necessary to 

evaluate the crop simulation model are not available and the techniques for evaluating 

models have not been perfected (Aggarwal, 1995).  

 

Typically crop simulation models suppose that the simulated plot or field is homogenous 

with respect to input data. Thus, regardless of the size of the simulated field there exists 

only one soil type, uniform weather conditions, and the same agricultural management 

practices (i.e. fertilizer applications, irrigation, etc). Since agricultural observations, 

experiments, and crop simulation model evaluation are typically performed at small 

spatial scales (i.e. several square meters to hectares) over relatively short time spans (a 

few weeks to years), the challenge for modelers is to find bounds to the application of 
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crop simulation models developed from studies conducted under a limited range of 

conditions (Luxmoore et al., 1991; Schulze, 2000). 

 

If simulation results are to be useful for water resources planning and other purposes, 

analysts must provide information about crop simulation model adequacy and limitations 

(Li and Wu, 2006). This is particularly relevant when decision makers need to consider 

the risk of extreme weather events such as droughts or heat waves (e.g. Horton et al, 

2011). These events can have a significant impact on agricultural water demand and their 

frequency of occurrence is influenced by variability as well as mean values of model 

input variables (Mearns et al., 1997; Semenov and Porter, 1995).  

 

3.2.1 Nature 

The nature of uncertainty may be described by two basic kinds of uncertainty with 

fundamental differences: ontological (variability) and epistemic uncertainty. Ontological 

uncertainty is associated with phenomena that are inherently variable over time, space, or 

populations. It originates from variability in the underlying stochastic process. For 

example, variability exists in the annual precipitation amount at a given location over 

consecutive years or the soil properties across a field and a probabilistic model may be 

adopted for their description. On the other hand, epistemic uncertainty is dictated by our 

ability to measure, understand, and describe the system of interest. It arises from 

incomplete knowledge about the system under study (Merz and Thieken, 2005). For 

example, seasonal irrigated acreage is rarely known for every farm in a given county for a 
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given crop and, yet, approaches have developed for estimating irrigated acreage at the 

county scale. 

 

Within a given crop simulation model, input variables, parameters, and the model 

structure (system dynamics) are all subject to uncertainty. Rarely does one encounter 

only one type of uncertainty in practical applications (Merz and Thieken, 2005). A case 

with only natural uncertainty or ‘pure variability’ would suggest that all relationships and 

their parameters which describe the system are exactly known. On the other hand, ‘pure 

epistemic uncertainty’ suggests that a deterministic process is considered but the relevant 

information describing the system is not available (Helton et al., 2004).  

 

Crop simulation model based decision support exercises must characterize the different 

dimensions of uncertainty in order to truly add value to the policymaking process. Walker 

et al., 2003 distinguish three dimensions of uncertainty that allow for a better 

understanding of uncertainty and better communication amongst analysts.  
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Figure 3.2. Uncertainty depicted in three dimensions characterized by nature (epistemic 

uncertainty and variability), location, and level (adapted from Walker et al., 2003). 

 

3.2.2 Location  

The system model locations are unique to the conceptual formulation and crop simulation 

model that compose the system model in question. In this work, the Decision Support 

System for Agrotechnology Transfer (DSSAT) suite of crop models is utilized.  DSSAT 

was originally developed by an international network of scientists, cooperating in the 

International Benchmarks Sites Network for Agrotechnology project (IBSNAT, 1993) to 

facilitate the application of crop models in a systems approach to agronomic research. It 

has been in use for more than 20 years by researchers in over 100 countries worldwide 

(Jones et al., 1998).   
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3.2.2.1 Context 

Irrigation accounts for the largest consumptive use of freshwater (i.e. approximately 

60%) in the United States where over 55 million acres of cropland are irrigated (Howell, 

2001; Minchenkov, 2009). In the Flint River Basin agricultural water use accounts for the 

majority of consumptive water use between May and September and exhibits marked 

interannual variability, depending on the prevailing climate during the growing season. 

While Georgia is typically considered to be a state with plentiful water resources due to 

average annual rainfall exceeding that of many other parts of the United States, the 

competing demands placed on water resources by the municipal, industrial, agricultural, 

and ecological sectors make water resources management and planning a significant 

challenge for stakeholders and policy makers.  

 

River basin management requires projecting irrigation demand under uncertain climate 

even though observed data related to irrigation volumes and application timing is often 

sparse, unreliable, or only available for a few continuous years. Climate change has the 

potential to decrease the availability of water resources due to probable changes in 

rainfall distribution and increases in potential evaporative demand. Physiologically based 

crop simulation models are regarded as embodying our current understanding of crop 

environmental response (Saarikko, 2000). As a result, crop simulation models are playing 

an increasing role in translating information about climate variability into predictions 

tailored to the needs of stakeholders and policymakers (Hansen et al., 2006).   
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3.2.2.2 Model Structure 

The equations used in crop simulation models are a representation of the elementary 

processes in the soil-plant-atmosphere (SPA) system. The Decision Support System for 

Agrotechnology Transfer (DSSAT) suite of crop models are a group of physiologically 

based models that simulate important processes in crop growth and development 

including daily meteorological forcing, soil water transport, plant water uptake, 

phenological development, and agricultural management inputs (Tsuji et al., 1998). The 

DSSAT cropping system model (DSSAT-CSM) simulates the growth, development and 

yield of a crop growing on a uniform area of land under prescribed or simulated 

management as well as the changes in soil water, carbon, and nitrogen that take place 

under the cropping system over time. More than 28 different crops can be simulated with 

DSSAT-CSM, including maize, wheat, rice, barley, sorghum, millet, soybean, peanut, 

dry bean, chickpea, cowpea, faba bean, velvet bean, potato, tomato, bell pepper, cabbage, 

bahia and brachiaria and bare fallow (Hoogenboom et al., 2010; Jones et al., 2003). 

 

The DSSAT-CSM simulates monocrop production systems considering weather, 

genetics, soil water, soil carbon and nitrogen, and management in single or multiple 

seasons and in crop rotations at any location where minimum inputs are provided. The 

DSSAT-CSM has a main driver program, a land unit module, and modules for the 

primary components that make up a land unit in a cropping system. The primary modules 

are for weather, soil, plant, soil-plant-atmosphere interface, and management 

components. The modular structure of the DSSAT-CSM incorporates all crops as 

modules using a single soil model (Jones et al., 2003).  
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3.2.2.2.1 Soil Water Balance 

The functional soil water balance model used in DSSAT requires parameters for 

establishing how much water the soil will hold by capillarity, how much will drain out 

due to gravity, and how much is available for root water uptake. Soil water content 

(volumetric fraction) inputs for each soil layer required for calculation procedures include 

the lower limit of plant water availability (LL), the drained upper limit (DUL), and soil 

water content at field saturation (SAT). The LL water content corresponds to the limit 

where capillary forces exceed gravitational force (wilting point) and water potentials of -

15 bar. The DUL corresponds closely to field capacity concepts and to water potentials in 

the range of - 0.1 to - 0.33 bar. Other parameters needed for soil water balance include a 

single value of soil surface albedo, the limit of first stage soil evaporation, the runoff 

curve number, and a drainage coefficient (Ritchie, 1998). 
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Figure 3.3.Water balance within a hypothetical soil profile (Brumbelow, 2001; Ritchie, 

1998). 

 

The soil water balance model computes the daily changes in soil water content by soil 

layer due to infiltration of rainfall and irrigation, vertical drainage, unsaturated upward 

flow, soil evaporation, and root water uptake processes (see Fig. 2). This one-dimensional 

model uses a ‘tipping bucket’ approach for computing soil water drainage when a layer’s 

water content is above a drained upper limit parameter. Thus, for soil water redistribution 

during infiltration, water is moved downward from the top soil layer to lower layers in a 

cascading approach. Drainage from a layer takes place only when the soil water content 

(SW) in a given layer is between field saturation (SAT) and the drained upper limit (DUL) 

for that layer. The drainage at the bottom of the soil profile is the drainage flux of the 

bottom layer. Upward flow can be caused by root water uptake due to transpiration and 
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soil evaporation. It is computed using a conservative estimate of the soil water diffusivity 

and differences in volumetric soil water content of adjacent layers (Ritchie, 1998).  

 

Daily water balance calculations begin with the soil water content (θj, t) of each soil layer 

from the previous day. If precipitation (P) and/or irrigation (I) occurs on a given day, the 

amount of runoff is determined, and the remainder (f1) infiltrates into the top soil layer. 

In addition, soil evaporation (Esoil) and plant transpiration (Tplant) are determined and 

subtracted from the top soil layer’s moisture content. Drainage (fj-k; Dprofile), upward 

flow (pj-k), and root water uptake (RWUj) are determined before soil water content (θj, 

t+1) for each layer is found to be referenced the next day (Brumbelow, 2001). 

 

Actual soil evaporation is based on a two- stage process (Ritchie 1972). After the soil 

surface is first wetted due to either rainfall or irrigation, evaporation occurs at the 

potential rate until a cumulative soil evaporation amount since wetting is reached. Then, a 

soil-limiting daily soil evaporation amount is computed as a square root function of time 

since stage one ended. Potential evapotranspiration (ET) and soil water availability 

govern evaporation from the top soil layer and transpiration from the root zone. Potential 

ET is partitioned into soil evaporation and plant transpiration, assuming that evaporation 

depends on the energy that reaches the soil surface and transpiration is proportional to the 

energy intercepted by the crop canopy. Actual transpiration is the minimum between 

potential transpiration and total root water uptake (Ritchie, 1972).  
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This method for computing evapotranspiration is a functional approach for determining 

water stress in the plant without explicitly modeling water status in the plant component. 

The ratio of actual ET to potential ET, if less than 1.0, indicates that stomatal 

conductance would decrease some time during the day to prevent plant desiccation. This 

ratio is typically used in the plant modules to reduce photosynthesis in proportion to 

relative decreases in transpiration. Similarly, a ratio of potential root water uptake and 

potential transpiration is used to reduce plant turgor and expansive growth of crops. 

 

3.2.2.2.2 CROPGRO 

CROPGRO was developed as a generic approach for modeling crops in the sense that it 

has one common source code, yet it can predict the growth of a number of different crops 

(Boote et al., 1998). Currently, the CROPGRO plant growth and development model 

simulates cotton; seven grain legumes (soybean; peanut; dry bean; chickpea; cowpea; 

velvet bean and faba bean), and non-legumes such as tomato, cabbage, bell pepper, and 

two grasses: bahia and brachiaria. CROPGRO is process oriented and considers crop 

carbon balance, crop and soil N balance, and soil water balance. In this approach, state 

variables are the amounts, masses, and numbers of tissues whereas rate variables are the 

rates of inputs, transformations, and losses from state variable pools.   
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Figure 3.4. Sources and sinks of C and N as modeled in CROPGRO (Boote et al., 1998; 

Brumbelow, 2001). 

 

The crop carbon balance includes daily inputs from photosynthesis conversion and 

condensation of C into crop tissues, C losses due to abscised parts, and C losses due to 

growth and maintenance respiration (see Fig. 3). Supply of C is from the current day's 

photosynthesis process and from mobilized C from reserves (C in leaves and/or stems). 

Mobilized C depends on the availability of C stored in vegetative tissue as well as the 

availability of N for growing new tissue and the potential growth rates of the tissue. The 

crop N balance processes include daily N uptake, N2-fixation, mobilization from 

vegetative tissues, rate of N use for new tissue growth, and rate of N loss in abscised 

parts (Boote et al., 1998). Nitrogen may be taken up from the soil, mobilized from plant 

tissue, and assimilated through symbiotic N2-fixation. The daily allocation of C and N in 
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the model is based on source-sink concepts. In the model, N mobilization is computed 

first, followed by root uptake of N. N uptake from the soil can replenish the N mined 

from vegetative tissue up to a seasonally varying maximum concentration. If these 

sources of N satisfy the demand for N, then growth proceeds at its potential rate, using all 

of the day's available C, and no N2-fixation occurs. If there is a shortage of N, relative to 

that needed for potential growth, then some C is made available to nodules for N2-

fixation. 

 

Crop development in CROPGRO uses a flexible approach that allows development 

during various growth phases to be differentially sensitive to temperature, photoperiod, 

water deficit, and N stresses.  Crops like soybean are sensitive to day length, whereas 

other crops such as peanut are not. There are up to thirteen phases, each having its own 

unique developmental calculator starting at a unique phenological stage. The 

physiological time development rate during any one day in a phase is typically a function 

of temperature, photoperiod, and water deficit. If conditions are optimal, one 

physiological day is accumulated per calendar day. The number of physiological days 

required for a phase to be completed is equal to calendar days if temperature, 

photoperiod, and water status are optimal (Boote et al., 1998).  

 

3.2.2.2.3 CERES 

The CERES models include simulation procedures for wheat (Triticumaestivum L.), 

maize (Zea mays L.), rice (Oryza sativa L.), barley (Hordeumvulgare L.), grain sorghum 

(Sorghum bicolor L.), and pearl millet (Pennisetumamericanum L.). The CERES-Maize, 

Wheat and Barley models were modified for integration into the modular DSSAT 



 

43 

cropping system model. For these CERES models, the plant life cycle is divided into 

several phases, which are similar among the crops. Rate of development is governed by 

thermal time, or growing degree-days (GDD), which is computed based on the daily 

maximum and minimum temperatures. The number of GDD occurring on a calendar day 

is a function of a triangular or trapezoidal function defined by a base temperature, one or 

two optimum temperatures, and a maximum temperature above which development does 

not occur. 

 

The potential biomass of a crop can be thought of as the product of the rate of biomass 

accumulation times the duration of growth. The rate of biomass accumulation is 

principally influenced by the amount of light intercepted over an optimum temperature 

range. Daylength may affect the total number of leaves formed by altering the duration of 

the floral induction phase, and thus, floral initiation. Currently, only temperature and, in 

some cases, daylength, drive the accumulation of growing degree-days (GDD); drought 

and nutrient stresses currently have no effect. During the vegetative phase, emergence of 

new leaves is used to limit leaf area development until after a species-dependent number 

of leaves have appeared. Thereafter, vegetative branching can occur, and leaf area 

development depends on the availability of assimilates and specific leaf area. Leaf area 

expansion is modified by daily temperature (GDD), and water and nitrogen stress. 

 

Daily plant growth is computed by converting daily intercepted photosynthetically active 

radiation (PAR) into plant dry matter using a crop specific radiation use efficiency 

parameter. Light interception is computed as a function of leaf area index, plant 

population, and row spacing. The amount of new dry matter available for growth each 
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day may also be modified by the most limiting of water or nitrogen stress, and 

temperature, and is sensitive to atmospheric CO2 concentration. Above ground biomass 

has priority for carbohydrate, and at the end of each day, carbohydrate not used for above 

ground biomass is allocated to roots. Roots must receive, however, a specified stage 

dependent minimum of the daily carbohydrate available for growth. Leaf area is 

converted into new leaf weight using empirical functions. If the daily pool of carbon is 

insufficient to allow growth at the potential rate, a fraction of carbon can be remobilized 

from the vegetative to reproductive sinks each day. Kernels are allowed to grow until 

physiological maturity is reached (Jones et al., 2003). 

 

3.2.2.3 Inputs and Parameters 

Input data are required to run crop simulation models for decision support applications. 

Input variables (also sometimes referred to as explanatory variables) consist of data that 

is measured or observed for each situation where the model is applied (or based on 

measured or observed values). The simplest source of uncertainty comes from measuring 

an unknown physical variable (e.g. daily rainfall, temperature, or solar irradiance). While 

it is generally considered straightforward to estimate the precision of the instruments on 

which measurements are based, the detection of systematic error can be more difficult 

and this component of measurement error is commonly ignored (Katz, 2002; Li and Wu, 

2006). It is common for researchers to derive input values for crop simulation models 

from indirect measurements or relationships with other variables in some cases. In 

addition, measurements or estimations at locations other than the simulation site may be 

used to fill data gaps or considered to be representative (Bert et al., 2007). 
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A major portion of the uncertainty in model outputs may be ascribed to incomplete 

information associated with crop, soil, weather, and management input values (Aggarwal, 

1995). The availability of input data of adequate quality and spatial coverage presents 

challenges to the application of crop models at regional or larger scales (Hansen and 

Jones, 2000). This is due in part to the fact that the outputs from crop simulation models 

are typically non-linearly related to their inputs due to model complexity. As a result, the 

outputs are affected by the spatial aggregation of input variables and parameters that may 

occur when models are applied in practice to a region of interest (Lorite et al., 2005).  In 

many cases, soil and weather data are approximated using spatial interpolation, 

geographic information systems (GIS) and/or stochastic weather generators (e.g. WGEN) 

(Aggarwal, 1995). Alternatively, many studies utilize representative input values based 

on available data and consultation with local experts (e.g. Bouman 1994) that account for 

the spatial variation associated with input variables and parameters. However, outputs 

simulated with data from representative locations may not necessarily represent the 

spatial average or the interannual variability of regional values (Hansen and Jones, 2000). 

As a result, when making long term decisions under uncertainty, many stakeholders often 

prefer projection ranges as opposed to a single ‘most likely’ value (Horton et al., 2011).  

 

While input variables can differ depending on the situation, a parameter is by definition 

constant across similar situations of interest. For example, in some cases parameters may 

change in space but are constant in time. However, crop parameter values could be 

significantly uncertain due to random errors related to the size and number of 
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observations when experimental data is utilized to determine parameters. In addition, 

there may be systematic errors related to bias in the experimental, measurement, 

observation and calibration procedures used to derive them. Alternatively, parameter 

values may be derived from bibliographic reviews or expert opinion.  

 

3.2.2.4 Model Outcomes 

Model outcomes contain all errors that result from the various assumptions and 

simplifications that occur over the course of model development. While the structure of 

crop simulation models is generally considered to be adequate, the results may be 

uncertain depending on the assumptions made (Aggarwal, 1995). The uncertainty 

associated with the assumed form of the model is problematic because it is rarely easy to 

quantify the model outcome error. One important reason is that model error may vary for 

different applications. For example, when model development involves calibration of 

model parameters, model error may increase when the model is applied to another area or 

another time period. In addition, a fundamental choice is made during model 

development about which state variables, input variables, and parameters are to be 

included in the model. In this case a basic decision is made about what is important in 

determining the dynamics of the system. Furthermore, the functional form of 

relationships in the model may be specified incorrectly. However, any model can only be 

viewed as an approximation at best. Thus, some simplifications are inevitable so that the 

model is manageable (Katz, 2002).  

 

3.2.3 Level 



 

47 

Geophysical processes may exhibit real systematic differences over space and time as 

well as inherent randomness (Katz, 2002).While crop simulation models are developed 

and tested at the spatial scale of a homogenous plot or field, water resources stakeholders 

are often interested in climate impacts at the county, watershed or broader scales where 

significant spatial variability may exist (Hansen and Jones, 2000; Kersebaum et al., 

2007). Typical input variables include soil properties (e.g. wilting point, field capacity, 

saturation water content, slope, bulk density, saturated hydraulic conductivity, etc.) , 

daily weather data (e.g. solar irradiance, minimum and maximum temperature, 

precipitation, etc.), and management conditions (e.g. crop variety, planting density, row 

spacing, nutrient applications, irrigation, etc).   

 

3.2.3.1 Recognized Ignorance 

Ideally, there would be multi-horizon soil property data, daily weather data, and crop 

management information for every agricultural field in a region of interest when water 

demand for agriculture is being assessed with crop simulation models. However, this 

information is rarely (if ever) available and, as a result, simulation studies have often 

inferred regional crop response to soil and climate variability based on a limited number 

of sites or “representative locations” within the study area (Hansen and Jones, 2000).  It 

is not uncommon for researchers to derive input values for crop simulation models from 

indirect measurements or relationships with other variables in some cases due to data 

constraints. In addition, measurements or estimates at locations other than the simulation 

site may be used to fill data gaps or considered to be representative (Bert et al., 2007). 

Regional crop management parameters such as planting depth, crop variety, and row 
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spacing may be assessed by consulting local experts (i.e. farmers, agricultural extension 

agents, and agricultural researchers), but reliable estimates of irrigation demand benefit 

from comparison with observed water application data in addition to consultation with a 

sample of farmers about their decisions regarding when to irrigate and how much water 

to apply (i.e. an irrigation strategy).  In Chapter 4, there is additional discussion about 

characterizing regional irrigation strategies. 

 

3.2.3.2 Scenario Uncertainty 

Scenarios allow all inputs to evolve in time in a contextually consistent manner so that 

model outcomes of interest can be evaluated that correspond to plausible manifestations 

of reality. Scenarios are postulated sequences of events that help policymakers focus 

attention on causality, impacts, and tradeoffs. While scenarios alone are not an adequate 

means of addressing model outcome uncertainty, scenario analysis is quite popular in the 

climate change impacts, adaptations, and vulnerability (IAV) research community (Katz, 

2002).  

 

Climate change impact studies typically identify a baseline scenario associated with 

current or recent conditions that allows for the projection of future impact. The model 

outcomes of interest from the baseline scenario are compared with outcomes derived 

from scenarios of future climate in order to assess climate change impacts. There is 

recognized ignorance underlying long range projections of irrigation demand due to 

volatility in agricultural markets, technological innovations, and genetic development that 

increases water use efficiency (Bramblett, 1995). As opposed to the impossible task of 
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identifying a “most likely” climate scenario, exploring a range of plausible future 

conditions with multiple climate scenarios allows for system resilience (Daniels et al., 

2012) . 

 

To obtain daily data for future scenarios, many studies that utilize crop simulation models 

have simply adjusted historical data by doubling ambient CO2 concentrations and/or 

modifying observed local temperature, solar radiation, and precipitation with rather 

arbitrary relationships (Saarikko, 2000).  However, global climate models (GCMs) used 

in conjunction with weather generators (e.g. WGEN) provide stochastic sequences of 

daily weather that are intended to be statistically representative of future climate 

conditions.  Alternatively, monthly mean GCM averages are often projected onto 

historical data with a simple and low-cost downscaling technique known as the delta 

approach (Horton et al., 2011). Dynamic downscaling uses a regional climate model 

(RCM) nested within a GCM in an attempt to better represent regional climate (Daniels et 

al., 2012).Both statistical and dynamic downscaling approaches are frequently utilized in 

the climate change IAV research community. There is no consensus on the best method 

for downscaling GCM outputs. While these techniques assist in providing greater spatial 

and temporal detail than GCM outputs at courser scales, the assumptions associated with 

the downscaling approaches introduce another aspect of uncertainty. There is no 

individual downscaling approach that has yet to be identified as the most appropriate for 

climate change studies (Southworth et al., 2002). 
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3.2.3.3 Statistical Uncertainty 

There are different methods for evaluating the impacts of uncertainty in model inputs 

with varied degrees of complexity, effort, and data requirements. Notably Aggarwal 

(1995) assesses the implications of uncertainties in crop, soil, and weather inputs in the 

spring wheat WTGROWS crop simulation model by representing the uncertainty of each 

input with a statistical distribution of values based on literature review, measurements, 

and expert judgment. Monte Carlo simulation was utilized to assess total uncertainty in 

simulated yield. One hundred combinations of random values were generated from the 

specified distributions and the uncertainty in simulated outputs was expressed as the 

percentage deviation in the output as compared to the deterministic output associated 

with fixed input values. The author evaluates potential, irrigated, and rainfed production 

environments for three contrasting crop seasons and concludes that deterministic model 

outputs have a larger bias in water and N limited environments in comparison to a 

potential production environment. However, non-linear crop simulation model response 

to variation in input variables and parameters was not taken into account. Furthermore, 

no significant spatial correlation existed amongst the randomly generated input variables 

and parameters.   

 

Spatial interpolation methods are popular tools for estimating values of environmental 

variables at unsampled locations with data from point observations (Guerra et al., 2007). 

A recent review of comparative studies of spatial interpolation methods in environmental 

sciences by Li and Heap (2011) found that inverse distance weighting (IDW), ordinary 

kriging (OK), and ordinary co-kriging (OCK) are the most commonly used methods. In 
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general, kriging methods performed better than non-geostatistical methods when the 

statistics of the differences between measured and predicted values at sampled points are 

used to evaluate performance (Li and Heap, 2011).  

 

3.3 3.3 Aggregation Error Assessment 

Many problems associated with “scale transfer” or “scale change” occur due to scale 

differences between the model and observations on one hand and the model and policy 

makers on the other hand. The term “scale” has a colloquial sense (as opposed to the 

cartographic sense) that is used in this work, in which “large scale” refers to large areas. 

The “extent” is the area that is of interest for the study. The extent may be divided into 

smaller areas that are called “support units” and the “support” is the information available 

on some or all support units. The support units associated with crop simulation models 

typically correspond to the simulation units which are the spatial units considered to be 

homogeneous for the model application. In most cases, the crop simulation model is run 

independently for each simulation unit. Thus, the possible interactions between the 

simulations units are not taken into account. When the spatial interactions are important 

and need to be considered, the crop simulation model may be coupled with a different 

model for an integrated assessment. For example, the coupling of a crop model with a 

hydrological model allows one to obtain simulation results at the watershed outlet. 

 

The scaling problem has been identified by Beven and Fisher (1996) as the pursuit of a 

set of concepts that allow information gathered, or a model developed, at one particular 

scale to be used in making predictions at another scale (Schulze, 2000). The terms 
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“upscaling” and “downscaling” refer to increasing and decreasing the support 

respectively in this work and are commonly referred to as “aggregation” and 

“disaggregation” respectively. While the characteristic scales of a crop simulation model 

are both spatial and temporal, this chapter will focus primarily on changes in spatial 

scale.  In Chapter 5, there is additional discussion about challenges and solutions 

associated with changes in temporal scale. 

 

When crop simulation models developed at the field scale are used to make decisions at a 

broader scale such as the county scale, the extent and the support unit of the study 

becomes larger than a field or individual cropping system. All input data inevitably will 

not be available for all fields in the county. Thus, a common assumption is that many 

fields have the same characteristics and, consequently, the crop simulation model can be 

run with same input data for all the fields considered. The support unit in this case is a set 

of fields although the units associated with the input data remain unchanged. In this case, 

upscaling (or aggregation) is accompanied by a change of support as well as a change in 

extent. 

 

The integration of crop simulation model outputs across the range of variability of the 

environment within a region of interest results in a spatial average for an intensive 

variable (e.g. crop yield or irrigation depth). For example, the average irrigation demand 

over a two-dimensional region in a given year is given by 
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3.3.1 Background 

Few studies have addressed the response of crop simulation models to variations in the 

level of input data and parameter aggregation. However, spatial averaging biases the 

variability of daily time-series weather data. This is particularly important for 

precipitation because of its influence crop water stress response which depends on soil 

water balance dynamics. Furthermore, soil heterogeneity has significant implications for 

crop simulation model applications (Hansen and Jones, 2000).This work aims to evaluate 

the aggregation error introduced by the aggregation of inputs in crop simulation 

modeling. 

 

Lorite et al. (2005) assess the impacts of input parameter and data spatial and temporal 

aggregation on the assessment of irrigation scheme performance through the simulation 

of average irrigation schedules and the corresponding crop yields. This study is carried 

out using the Genil-Cabra irrigation scheme which covers an area of 6990 hectares in the 

province of Cordoba (Spain). Four irrigation seasons (1996/1997 – 1999/2000) are 

considered in analysis and the most frequent crops were winter cereals, sunflower, and 

cotton which occupy about 55% of the area. Daily meteorological data was obtained from 

a weather station in the irrigation area and information about irrigation application 
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methods, practices, and sowing dates was obtained by visiting each field during each 

irrigation season, consulting the scheme manager, and surveying farmers (about 10% of 

farmers responded). The water balance model relied on the USDA Soil Conservation 

Service (1972) curve number method and infiltrated water was distributed following a 

cascade approach along ten equal layers for a given soil profile. The Penman-Monteith 

formula was utilized to calculate reference evapotranspiration and subsequently 

maximum crop evapotranspiration. The ratio of seasonal actual evapotranspiration to 

seasonal maximum evapotranspiration allowed for a yield reduction estimate using a 

production function approach (Doorenbos and Kassam, 1979). Irrigation application 

efficiency and the depth of water necessary to refill the soil profile are utilized to 

determine gross irrigation requirements.  

 

Three levels of aggregation (aggregation level 1 ~ the entire area, aggregation level 2 ~ 

83 command areas, and aggregation level 3 ~ approximately 800 parcels) were defined to 

evaluate the effects of input parameter aggregation on the estimation of scheme water 

requirements. To extend the validity of this analysis to situations where the variability in 

soil properties is different, four different soil scenarios were generated by varying the 

variance of the soil water holding capacity (i.e. the difference in soil water content 

between field capacity and wilting point) but keeping constant its average over the 

irrigation area. Five temporal aggregation levels (daily, weekly, monthly, quarterly, and 

annual) were defined for the temporal aggregation analysis that utilized the effective 

rainfall concept (as opposed to the curve number model) and a soil evaporation model 

lumped into a single crop coefficient (Allen et al., 1998; Doorenbos and Pruitt, 1977).  
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The authors found that irrigation requirements estimated with aggregation level 1 were 

about 0.5% and 1% less than those estimated with aggregation level II and III 

respectively. They argue that such differences are unexpectedly small and deserve closer 

analysis. However, soil variation was shown to influence the magnitude of the 

aggregation effect. Its impact was most marked for deep-rooted crops in rainy years (i.e. 

20% error associated with highest soil variability evaluated for sunflower in 

1997/1998).Temporal aggregation had little effect on the simulation of irrigation 

requirements up to monthly time steps. The authors did not observe interaction between 

temporal and spatial aggregation.  

 

The full integration of crop simulation models and GCMs remains a challenging 

endeavor due to the different scales at which processes take place. In order to quantify the 

bias in yield simulation introduced by the spatial aggregation of precipitation inputs, 

Baron et al. (2005) conducted a case study in Senegal where 17 rain gauges were 

available inside a grid box with a size (i.e. 17° W to 14.2° W and 12.6° N to 15.4° N) 

similar to a GCM grid box. A smaller box approximately 1° square was also defined as 

an intermediate level of aggregation. The authors interpret GCM output as a spatial 

average as opposed to a point observation.  

 

The SARRA-H crop modeling platform was utilized with daily weather records (1950-

1980) to simulate millet production on a sandy soil with a water holding capacity of 100 

mm m
-1

. The water balance model consisted of two soil layers. Runoff and evaporation 
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was simulated daily and the remaining water was partitioned into storage, drainage, and 

transpiration. Plant transpiration and carbon assimilation are reduced as the soil water in 

the root zone decreases. Maximum evapotranspiration (ET) was determined by a crop 

factor while potential evapotranspiration (PET) is governed by FAO guidelines for 

different species (Doorenbos and Kassam, 1979; Doorenbos and Pruitt, 1977). Grain 

yield simulations were performed by averaging weather inputs or with individual weather 

station inputs (with subsequent averaging of simulated yields). Both grain yield and crop 

biomass were significantly overestimated as a result of aggregated rainfall input. The 

authors argue that the distortion of rainfall frequency and intensity caused overestimation 

of ‘agronomically effective precipitation’ or the fraction of rainfall that is ultimately 

transpired.  

 

3.3.2 Study area 

The Apalachicola – Chattahoochee – Flint (ACF) basin extends across 50 counties in 

Georgia, 10 counties in Alabama and 8 counties in Florida. The basin is drained by the 

Apalachicola, Chattahoochee and Flint rivers. The Flint River drains an area of 8,460 

square miles and is characterized by humid, subtropical climate with long summers and 

mild winters (USGS, 2007). Agricultural irrigation represents the largest consumptive use 

of water in the Flint River basin (Hook et al., 1999). 
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Figure 3.5. Map of Apalachicola – Chattahoochee – Flint Watersheds: Buford, 

West Point, George, Montezuma, Albany and Woodruff-Bainbridge (Kimaite, 2011). 

 

The study area (31°32’ N, 84°31’W to 31°36’ N, 84°27’W) is approximately 10,000 

acres and lies in Baker County, GA which has over 20,000 acres of irrigated acreage 

(USDA, 2007). Water withdrawals for agriculture in Baker County were estimated to 
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exceed 40 million gallons per day (MGD) in the year 2000 (USGS, 2009).  This area lies 

in the Lower Flint – Ochlockonee water planning region (WPR) which is in the southern 

portion of the Flint River basin.  

 

 

Figure 3.6. Irrigated acreage in Baker County, GA (adapted from Hook et al 2010). 

 

Mean annual temperature ranges from 56 °F in the mountains to 69 °F near the coast in 

Georgia (Perkins, 1987). Annual precipitation ranges from 43 inches (1,100 mm) to 75 

inches (1,900 mm) and is caused by two different processes (frontal and convective). 

While rainfall occurs mainly as a result of fronts during the fall and winter (i.e. October 

to March), the spring and summer (i.e. April to September) are characterized by 

convective processes, tropical storms, and small concentric patterns. Significant 

correlation in monthly rainfall exists at distances as large as 600 km in the ACF basin 
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during January. However, the range decreases to 200 km in the month of July due to the 

different atmospheric physics causing rainfall during the convective rainy season 

(Baigorria et al., 2007).  

 

3.3.3 Weather Data  

Daily historical weather records were obtained from the Georgia Environmental 

Monitoring Network (GAEMN) for 38 automated weather stations. The data consists of 

daily values of solar radiation (MJ/m
2
), minimum/maximum temperature (°C), and 

precipitation (mm/day). The GAEMN is a valuable resource that is utilized frequently by 

farmers and agricultural researchers in the Southeast U.S. 

 

 

Figure 3.7. The Georgia Environmental Monitoring Network (GAEMN, 2011). 
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3.3.4 Soils Data 

Soil profile data is derived from bulk and core soil samples collected for multiple soil 

horizons in fifty counties (Perkins, 1987). In addition, USDA – Natural Resources 

Conservation Service (NRCS) soil characterization database and soil maps were utilized 

to develop the data set.  Soil properties are also derived using methods incorporated into 

the SBUILD software program that accompanies the DSSAT suite of crop models 

(Hoogenboom et al., 2010; Jones et al., 2003; Perkins, 1987; Salazar et al., 2012; Tsuji et 

al., 1998). The soil profile data selected to develop the variogram function presented in 

this chapter included drained lower limit, drained upper limit, as well a geographic 

coordinates for each soil profile.  

 

3.3.5 Methodology 

In order to assess the aggregation errors associated with spatially aggregated inputs, a 

hypothetical region is developed and partitioned into a grid of homogenous land units. 

Each land unit is assigned unique soil properties and weather data. Spatial fields of daily 

weather data and soil properties are generated with geostatistical techniques and 

described below. Land units are aggregated into blocks at various levels of aggregation 

and then CSM-CROPGRO-Peanut is forced with aggregated inputs. Comparison is made 

between model outcomes with “true” weather inputs (i.e. non-aggregated input data) as 

opposed to aggregated inputs. 
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3.3.5.1 Geostatistics 

Consider the problem of estimating soil properties (e.g. field capacity) or daily rainfall at 

an unmeasured location. The available information consists of soil property data and 

measured daily precipitation data at point locations in space. To estimate values at any 

location other than the measured locations, a mathematical model of spatial variability is 

needed. The kriging systems allows for spatial random field analysis and the “best 

estimation” of a random field by utilizing point measurements (Luo, 2007). The structural 

distance between model estimates and true values is measured and the most accurate 

estimate is subsequently obtained (Kitanidis, 1997). Baigorria et al. (2007) utilized 

kriging to quantify spatial correlations of daily and monthly rainfall events in the 

Southeast U.S. and to produce realizations of daily weather that preserve spatial patterns 

associated with historical rainfall events. 

 

Geostatistical techniques consider the set of unknown values as a set of spatially 

dependent random variables related to the same attribute (Nour et al., 2006). The 

variogram function is utilized to represent spatial variability when utilizing the most 

common geostatistical model, the intrinsic isotropic model (Kitanidis, 1997; Nour et al., 

2006). The best linear unbiased estimation (BLUE) methodology is applied and the mean 

square error of estimation is considered a rational measure of prediction reliability (Luo, 

2007). The assumptions associated with the intrinsic model are that (1) the mean is an 

unknown constant and (2) the variogram may be represented as a function of the distance. 

Consider that n measurements have been collected: 

Z(x1), Z(x2),…, Z(xn) 
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where Z(xi) and xi represent the spatial random function and the set of spatial coordinates 

under consideration respectively. For any location x0, a method called kriging can obtain 

the best estimate of z(x0) as well as the error associated with the estimate. The 

semivariogram (hereafter referred to as the variogram) is closely related to the covariance 

function which is given by 

C(h) = σ
2
 – γ(h) 

where σ
2
is the stationary variance, C(h) is the covariance, and γ(h) is the variogram 

function at Euclidean distance h. 

 

3.3.5.2 Realizations 

The best estimation of a random field is in fact just one realization of the random field.  

For this study, a number of realizations conditioned on the known measurements Z(xi) are 

needed that that allow for statistical analysis (Luo, 2007). The procedure utilized for 

generating a conditional realization is as follows:  

1. An unconditional realization Zuc(xi) is generated with a mean of zero and the 

covariance matrix for the attribute of interest (i.e. daily rainfall or available water 

holding capacity). 

2. The n differences Z(xi) - Zuc(xi) are used for kriging over the extent of the area of 

interest. 

3. The unconditional realization is added to the kriged differences over the extent of 

the area of interest. The conditional realization is given by 

2

0 0

1

( ) ( ) [ ( ) ( )]
n

c uc i i uc i
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where Zuc(x0) is the unconditional realization at the location of interest and λiare the 

kriging weights associated with each measurement Z(xi). The simple kriging system is 

utilized to generate unconditional realizations with mean zero and the covariance matrix 

developed with the known measurement values and locations. The linear equation system 

is given by 

Aλ = b 

with 
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where the kriging weights associated with the minimum mean square error are chosen 

such that 

0

1

( ) ( )
n

j i j i

j

C C
=

λ =∑ x , x x , x  

and the estimator is unbiased in that the expectation of the estimator and the actual value 

is zero, i.e.,  
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The ordinary kriging system exactly reproduces known values Z(xi) at the measurement 

locations xi utilized to develop the covariance matrix. However, the kriging weights 

become subject to the constraint  

1

1
=

λ =∑
n

i

i

 

where 

0

1

( ) ( )
n

j i j i

j

γ ν γ
=

− λ + = −∑ x , x x , x  

and υ is a Lagrange multiplier. While the simple kriging system is utilized to generate 

random spatial fields that have a mean of zero with the desired spatial correlation 

structure in step 1, ordinary kriging is utilized to ultimately develop random fields that 

honor the true observations at measurement locations in step 2. 

 

3.3.5.3 Variogram 

The raw and experimental variograms contains information about the scale of spatial 

variability. The raw variogram is the scatter plot of the square difference [Z(xi) - Z(xj)]
2
/2 

and the separation distance for all n(n-1)/2 measurement pairs. The experimental 

variogram is a common tool used in applied geostatistics to visualize spatial 

interdependence and it allows for a means to infer the distribution of spatial variability 

(Kitanidis, 1997). Examination of the experimental variogram is often a preliminary step 

used to estimate the variogram function and it is given by 
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where the axis of the separation distance has been discretized into k consecutive intervals 

(spatial lag classes) hk and N(k) is the number of data pairs separated by distance hk. The 

experimental variogram is formed graphically by connecting all the points given by the 

separation distance intervals hk and the corresponding average square differences.  

 

There are limitations to the experimental variogram that are important when fitting a 

variogram model. While the experimental variogram is a useful tool for exploratory 

analysis, it is often sensitive to the number of intervals used to discretize the separation 

distance range. Furthermore, fitting a variogram model data to the experimental 

variogram does not ensure that the model is adequate.  

 

Alternatively, the concept of the stochastic process may be invoked and a probability 

distribution is established for the residuals. The actual error and the normalized error of 

the kriging estimate are given by 

ˆ( )  and
i i i

i
i

i

x

σ

δ = −

δ
ε =

z z

 

where δi is the actual error, σi = 2γ(x1,x2) is the standard error, and εi is the normalized 

(orthonormal) residual at the i-th measurement location. All εi are orthonormal in that 

they are uncorrelated with each other and normalized to have unit variance. In fact, the 

orthonormal residuals must be uncorrelated if kriging is a minimum variance unbiased 

estimator (Kitanidis, 1997). 

 



 

66 

The residuals may be thought of as random variables and consequently, their probability 

distributions may be calculated. The evaluation of the variogram is based on statistical 

tests (Q1 and Q2) involving the residuals. Under the null hypothesis, Q1 is normally 

distributed with mean zero and variance 1/(n-1). Alternatively, Q2 is normally distributed 

with mean one and variance 2/(n-1). In addition, (n-1)Q2 follows the chi-square 

distribution with parameter (n-1).  

 

Figure 3.8. Raw variogram cloud (black circles) and fitted exponential variogram model 

(blue dashed line) associated with available water holding capacity (AWHC). 

 

The exponential variogram model is given by 

γ(h) = σ
2
[1-e

-h/l
] 
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where σ
2
> 0 and l> 0. While the spatial structure of the available water holding capacity 

(AWHC) may be described with one exponential variogram model (see Figure 3.6), daily 

rainfall is modeled as a collection of temporally correlated random spatial functions 

(Nour et al., 2006). Stochastic simulation of rainfall occurs on all days in which at least 

one weather station recorded rainfall.  

 

Realizations or random spatial fields of the rainfall distribution are constructed for the 

days under consideration (Nour et al., 2006). In this work, a drought year (i.e. 2002) is 

considered and exponential variogram parameters are estimated for all the wet days of the 

crop season. The geographic coordinates (i.e. latitude and longitude) included with the 

soil profile data allowed for a variogram cloud to be developed and subsequently a 

variogram function to be evaluated. 

 

Figure 3.9. Example of raw variogram cloud (black circles) and fitted exponential 

variogram model (blue dashed line) associated with daily rainfall (May 17
th

, 2002). 
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Figure 3.10. Fitted variogram models associated with daily rainfall. 

 

3.3.5.4 Spatial Aggregation 

Stochastic simulation algorithms have become more common over the last two decades 

for uncertainty modeling in soil science although assessing uncertainty about soil 

attributes is rarely the goal. Rather it is typically a precursor to a more in depth in 

investigations concerning the propagation of errors through complex functions or models 

(Goovaerts, 2001). In this work, input sampling is employed by simulating crop response 

to stochastic realizations of soil and weather that are sampled in a manner that captures 

the spatial heterogeneity of the environment. While aggregation by stochastic input 

sampling and crop model simulation is data and computationally intensive, it allows for 

the characterization of uncertainty associated with applying the crop simulation model at 

a scale different from the one for which it was developed (Hansen and Jones, 2000). 
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Representative management practices consistent with the recommendations of 

agricultural extension agents and farmers in the Lower Flint River basin are employed. 

The CSM-CROPGRO-Peanut model was used to simulate irrigated peanut production. 

The popular Runner type variety “Georgia Green” is selected due to its widespread use 

over the last decade by farmers in the Flint River basin. One planting date (May 5
th

) was 

used and irrigation scheduling was automated with the irrigation threshold (IT) approach. 

This approach allows irrigation events (i.e. water applications of 25 mm, 100% 

efficiency) to be automatically simulated whenever soil moisture falls below a set 

threshold value (IT = 50%) at a given management depth (40 cm). The application of a 

fixed amount is consistent with irrigation systems commonly used by farmers in this 

region (see Fig. 3.11). 

 

Figure 3.11.Plant water availability in the soil column (adapted from Ines et al., 2001). 
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One hundred realizations of daily precipitation inputs and soil properties (drained upper 

limit and lower limit) have been generated for each land unit and the crop simulation 

model was run to obtain crop water demand at each land unit. There are 2,304 land units 

that form the 48 cell by 48 cell grid that covers approximately 40 square kilometers. 

Rainfall at the boundaries of the conditional realizations exactly reproduced rainfall at the 

Arlington, GA and Camilla, GA weather stations adjacent to Baker County, GA. 

 

Next, precipitation and soil inputs are averaged for blocks of land units and the crop 

simulation model is run utilizing these various levels of spatial aggregation. Statistical 

comparison between the model outputs generated using the “true” input data associated 

with individual land units and the outputs generated using spatially aggregated inputs will 

provide valuable insight into the effects of aggregation error on estimates of agricultural 

water demand. 

 

Several preliminary analyses were conducted before assessing the full aggregation 

scenario (all 2,304 grid cells aggregated). The effects of aggregation on irrigation demand 

are shown in Figures 3.13 – 3.15 for blocks of 4 grid cells, 9 grid cells, and 16 grid cells 

for one stochastic realization of AWHC and precipitation. The smoothing of the irrigation 

demand surface is evident as a result of the aggregation of inputs. 



 

71 

 

Figure 3.12.Simulated irrigation demand with no aggregation. 

 

 

Figure 3.13.Simulated irrigation with aggregation of blocks of four grid cells. 

 

 



 

72 

 

 

Figure 3.14.Simulated irrigation demand with aggregation of blocks of nine grid cells. 

 

 

Figure 3.15.Simulated irrigation demand with aggregation of blocks of sixteen grid cells. 
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The model outcome (i.e. irrigation demand) errors resulting from the conditional 

realizations generated form an empirical cumulative distribution function (see Figure 

3.16). As the level of aggregation increases, the results show that the distribution spreads 

and the magnitude of simulated errors increases. The box plot of aggregation errors 

associated with full aggregation (i.e. all 2,304 grids) in shown in Figure 3.17. The 

standard deviation of aggregation error is plotted against spatial scale in Figure 3.18. 

 

 

Figure 3.16. Empirical cumulative distribution functions of aggregation error. 
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Figure 3.17. Box plot of crop water demand error associated with full aggregation. 

 

 

Figure 3.18.Standard deviation of aggregation error with increasing spatial scale. 
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3.3.6 Summary 

The soil profile data selected to develop the variogram function presented in Chapter 3 

included drained lower limit, drained upper limit, as well a geographic coordinates for 

each soil profile. The soil profiles were developed by agricultural researchers at the 

University of Georgia with USDA - Natural Resources Conservation Service (NRCS) 

soil maps, bulk and core soil samples collected for multiple soil horizons in fifty counties 

(Perkins, 1987), as well as the SBUILD software program that accompanies the DSSAT 

suite of crop models. The geographic coordinates (i.e. latitude and longitude) allowed for 

a variogram cloud to be developed and subsequently a variogram function to be 

evaluated. This is now described in more detail in the thesis. 

 

Ideally a network of weather stations with an average distance between stations of about 

0.4 square kilometers (i.e. 0.16 square miles or a spatial scale of 100 acres) would be 

utilized to develop the variogram functions of daily precipitation described in Chapter 4.  

However, there is no such weather station network in existence due to the high costs 

associated with the desired spatial density and consequently, consultants and planners 

typically use representative or aggregated weather inputs from the nearest weather 

station(s) for water resources planning applications. Thus, the precipitation data from the 

Georgia Environmental Monitoring Network is utilized and the geostatistical techniques 

described in Chapter 4 are employed for this research. The work presents a technique to 

evaluate the potential benefit of a denser weather network when utilizing aggregated 

weather inputs to assess agricultural water demand.  
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Radar-derived precipitation derived may present a useful means of evaluating real-time 

drought stress at a relatively high resolution (McNider et al., 2011). For planning 

applications and climate change projections, actual measured data from rain gauges is 

typically used. Furthermore, radar data must be used in conjunction with ground based 

measurements in order to characterize the uncertainty associated with radar-derived 

precipitation. Future work may evaluate the potential benefits of radar data for describing 

the spatial variability of daily rainfall and aggregated weather inputs for agricultural 

water demand assessments.  

 

In this chapter, geostatistical techniques are utilized to represent the heterogeneous nature 

of soils, crop management, and climate at multiple scales. A methodology for estimating 

the aggregation error associated with forcing crop simulation models with aggregated 

inputs is presented. Results suggest that the standard deviation of model error is 

approximately 23 mm at a spatial scale of 1/8 degree. In chapter four, irrigation strategies 

are characterized by simulating observed irrigation depths. The results from this chapter 

inform model calibration guidelines for estimating parameters to represent regional 

irrigation strategies in the Lower Flint River basin.  
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Chapter 4: Agricultural Water Demand in the Southeast U.S. 

 

In this chapter a methodology is presented for characterizing regional irrigation strategies 

in the Lower Flint River basin and estimating regional water demand. Previous research 

with the AWP data set has shown that the moisture stress threshold (MST) irrigation 

scheduling algorithm (Brumbelow, 2001) has the potential to represent regional irrigation 

demand under current climate conditions in the Flint River basin (Braneon and 

Georgakakos, 2011).County-scale irrigation strategies are determined with metered 

irrigation data from the GSWCC for 2007 and the MST irrigation scheduling algorithm. 

Historical assessments of agricultural water demand are subsequently conducted in the 

Lower Flint River basin that utilize the 2007 baseline irrigated acreage developed by 

Hook et al. (2009). In Chapter 5, agricultural water demand assessments under climate 

change are presented. 

 

4.1 Introduction 

In order to effectively develop water management plans and policies in the Southeast 

U.S., estimation of water demand in the agricultural sector is essential. Agricultural water 

use is the dominant form of consumptive water use in the Flint River basin and many 

river basins throughout the world. While measurements of municipal and industrial 

abstractions have been available for many years, comprehensive measurements of 

agricultural water demand remain scarce (GWRI, 2012). Furthermore, Georgia’s 

significant population growth and expansion of irrigated agriculture over the last four 
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decades (see Fig. 4.1) has raised concerns about whether flows in the Flint River will be 

sufficient during periods of drought or below average rainfall.  

 

 

Figure 4.1.Georgia irrigated acreage trend (Kimaite, 2011). 

 

The doctrine of “riparianism” forms the basis of Georgia’s modern water rights and 

dictates that land ownership entitles the property owner to “reasonable use” of surface 

and ground water (Hodgson, 2006). These water rights are “usufructary” in that land 

owners have a right to the use and enjoyment of water within the state but no property 

right (Hodgson, 2006). Reasonable use of surface water suggests that a property owner 

adjacent to a waterway must leave enough water in the waterway so as not to inhibit 

reasonable use by downstream users. Amendments to Georgia’s Groundwater Use Act of 

1972 and Water Quality Control Act were made in 1988 to require agricultural water 

users to obtain permits from the Environmental Protection Division (EPD) of the Georgia 

Department of Natural Resources (DNR). 
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While agricultural irrigators that use more than 100,000 gallons per day on a monthly 

basis are required to obtain permits from the EPD (see Fig. 4.2), permit records do not 

include enough information to estimate actual water consumption by irrigators. Permit 

records identify permitted agricultural water users by (1) type of water source(s), (2) 

county of withdrawal, (3) pumping limit, and (4) total possible irrigated area(s). 

However, no information is provided in permitted records regarding which crops are 

irrigated or what types of irrigation systems are utilized.  

 

 

Figure 4.2. EPD permitted withdrawals for irrigation within the state of Georgia (adapted 

from GSWCC, 2013)  
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In the last fifteen years there have been significant efforts to strengthen the quality and 

spatial extent of agricultural water use data in Georgia. The Ag Water Pumping (AWP) 

monitoring program included monthly field visits to more than 800 irrigated fields from 

1999 to 2004 (Hook et al., 2005). A stratified random sampling approach was developed 

when identifying potential participants in this voluntary irrigation monitoring program. 

While AWP contributed much needed information regarding irrigation depths applied 

during the 2000 to 2002 drought by agricultural producers in Georgia, uncertainty 

regarding the spatial distribution of irrigated acreage throughout the state remained a 

water planning challenge. As a result, a comprehensive map of irrigated area was 

developed by Hook et al., 2009 as part of EPD led research efforts to support regional 

water planning groups. The map formed a common irrigated area baseline that is 

representative of 2007 land use. Approximately 1,450,000 acres of irrigated cropping 

systems were mapped and water sources were identified for most irrigated fields by 2009.  

 

The Georgia Soil and Water Conservation Commission (GSWCC) took on the challenge 

of reading and maintaining meters for all permitted water withdrawals for irrigation in 

2003. However, it would be several years before the majority of irrigated fields in 

Georgia actually had meters installed on their irrigation systems. In 2011, an analysis of 

metered locations from 2007 to 2010 showed that groundwater users used about a third 

more irrigation volume than surface water users on average. However, normalization of 

applied irrigation by irrigated acreage nearly eliminates the disparity between 

groundwater and surface water irrigation demand. Evaluation of metered irrigation data 
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shows that more irrigation (water depth per acre) was applied in dry years with less 

rainfall such as 2007 and 2010. Over 10,000 meters were installed by the end of 2010 

(Torak and Painter, 2011).  

 

 

Figure 4.3. Precipitation depth (April to September) at GAEMN weather station in 

Mitchell County and metered irrigation depth in the Lower Chattahoochee-Flint River 

basin (Torak and Painter, 2011). 
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4.2 Methodology 

While estimates of agricultural water demand were utilized to develop the Flint-

Ochlockonee Regional Water Plan, the Council has indicated that there is a need for 

improved “quantification of agricultural water withdrawal permit limits, based on use 

over a number of years “(Georgia State-Wide Water Management Plan, 2011).  A better 

understanding (i.e. “quantification”) of actual agricultural water use “may provide for 

more predictable and fair management of agricultural water demand in drought periods” 

(Georgia State-Wide Water Management Plan, 2011). 

 

4.2.1 GSWCC Metering Data 

The GSWCC currently oversees Georgia’s legally mandated Agricultural Water Use 

Measurement Program that began in 2004. Ultimately, all permitted agricultural irrigation 

wells and pumps must have a measurement device installed (see Fig. 4.13 and 4.14). 

Installation of annually reported meters progressed to completion in the Lower Flint 

River basin in time to monitor agricultural water use during the 2007 growing season 

(Torak and Painter, 2011).  
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Figure 4.4. Map showing the counties that form the Lower Flint-Ochlockonee Region 

(adapted from Georgia State-Wide Water Management Plan, 2011). 

 

Data from the GSWCC that is presented in this dissertation is used solely in a manner 

consistent with the intent of Georgia General Assembly House Bill 579 (Georgia General 

Assembly, 2003) and the Privacy Act of 1974 (U.S. Department of Justice, 2010). The 

right to privacy of each farmer is protected as only aggregated data and analyses are 

presented without reference to specific water use by individual farmers. 

 

A thorough quality-assurance program was developed by GSWCC to ensure internal 

consistency of metered agricultural water use data. Annually reported meter data from the 

Chattahoochee-Flint River basin was assessed to determine if “roll-back” or “roll-
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forward” may have occurred (Torak and Painter, 2011). Roll-back occurs when the 

impeller of the water meter rotates in reverse and consequently, measured water use is 

reduced. Roll-back may be attributed to (A) suction in the supply pipe containing the 

meter after the pump is turned off or (B) negative air pressure in a well due to a water 

level drop in the aquifer. Roll-forward may be caused by rising water levels in wells but 

this phenomenon is more difficult to detect. 

 

4.2.2 Data Sampling Procedure 

Metered sites are randomly sampled from the population of sites associated with a given 

county within the Lower Flint River basin (see Fig. 4.15). Approximately 75% of 

irrigated acreage in the Lower Flint River basin is associated with maize, peanut, and 

cotton (see Fig. 4.16). Furthermore, these field crops have been shown to be well 

represented with the DSSAT suite of crop models by several researchers in the Southeast 

U.S. (e.g. Hook et al., 1994; Brumbelow and Georgakakos, 2001; Salazar et al., 2012) 

Thus, only metered sites that could be identified as growing one of the three primary 

irrigated field crops in isolation were allowed to comprise the county populations utilized 

for random selection. These sites are assumed to rotate crops in order to reduce the 

prevalence of plant disease and achieve higher yields (see Fig. 4.17). The sampled sites 

were further reduced to sites that did not utilize well-to-pond systems and sites that 

applied less than thirty-five inches during the year.  

 

The decision to irrigate is mimicked by utilizing the moisture stress threshold (MST) 

algorithm to represent regional irrigation strategies. Consultation with farmers, 
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agricultural extension agents, and agricultural researchers revealed that in some instances 

an inch or water may not be applied to large fields (e.g. a 250 acre field in one day). 

Furthermore, while many farmers have irrigation systems that are able to irrigate multiple 

fields with one source and minimal manpower, some farmers have irrigation systems that 

require manual adjustments that may result in situations in which an irrigation event 

occurs over a time period that exceeds one day. In order to focus on the farmer’s decision 

to apply irrigation on a daily basis and the environmental heterogeneity associated with 

increasing the spatial scale, only permitted sites that included less than one hundred acres 

of irrigated area are selected to characterize irrigation strategies. This final constraint is 

imposed to reduce the likelihood of operational constraints that prevent water from being 

applied to the entire irrigated area in one day.  
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Figure 4.5. Sites in Statistical Region 1 (adapted from Torak and Painter, 2011). 
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Figure 4.6. Historical crop acreage in Georgia (Lin et al., 2007)  

 

 

Figure 4.7. Peanut yield estimates for various maize (MZ), peanut (PN), and cotton (CO) 

rotations (USDA, 2008). 

 

4.2.3 Irrigation Strategy Characterization 

A random sample of twenty-one to thirty-two metered sites was selected from each 

county population. The MST algorithm (Brumbelow, 2001) is implemented with the 

DSSAT suite of crop models in order to quantify the irrigation strategy utilized at each 

metered site. 
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Irrigation demand is represented with a dynamic system model as 

( ) ( ) ( ) ( ), ;+ ∆ = + θ  mI t t I t d X t w t

 
where I(t) = total applied irrigation at the end of day t, ∆t is one day, dm is a daily water 

demand function associated with the crop simulation model, X(t) is the vector of state 

variables, w(t) is the vector of daily climatic forcing, and θ is the vector of parameters. 

 

Physiological moisture stress is a phenomenon that is observable at the field scale by 

farmers (Brumbelow, 2001). However, farmers are influenced by a variety of factors 

when scheduling irrigation. Many irrigators in the Flint River basin rely on “visual 

inspection of the plant” and “general experience” as a means to determine how much 

water to apply (Yu et al., 2005). The irrigation demand planning framework utilized in 

this work relies on a plant stress index (state variable) calculated by the DSSAT suite of 

physiologically-based crop models. Thus, plant water stress (or moisture stress) is 

assumed to be the primary cause for irrigation by agricultural producers in the Southeast 

U.S.  

 

After numerous discussions and extensive correspondence with agricultural researchers 

and producers in the Lower Flint River basin, a regional irrigation scheduling approach 

was developed that allows approximately 33 mm of water to be applied at 75% efficiency 

when plant water stress exceeds a crop-specific moisture stress threshold (MST). The 

implementation of the irrigation scheduling approach follows: 
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1. The daily moisture stress index is determined form the daily plant stress factor as: 

MST = TURFAC 

TURFAC (i.e. turgor factor) is the most sensitive of the plant stress factors 

determined daily for all crops in DSSAT. It directly affects the growth rates of 

most plant organs and ranges from zero (i.e. extreme plant stress) to one (i.e. no 

plant stress).  

2. At each metered site, irrigation is scheduled in a dynamic approach so that an 

irrigation application is applied any time the MST exceeds the user defined MST 

target. The crop-MST combination that results in a seasonal irrigation depth that 

is closest to the observed irrigation at each metered site is retained as a plausible 

irrigation strategy.  

 

Developing irrigation strategies based on maintaining soil moisture stress below a 

particular threshold is justified in that this approach implicitly incorporates crop 

development stage, precipitation, and soil moisture. Agricultural producers aim to 

prevent plant water stress because water is used by plants for temperature regulation, 

chemical transport, structural integrity, as well as photosynthetic processes (Brumbelow, 

2001). TURFAC is a drought stress index affecting cell expansion that is a function of the 

ratio of potential plant water uptake to potential transpiration. The index is represented 

mathematically as: 
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where RWUl is root water uptake in soil layer l, n is the number of soil layers, and Tpot is 

potential transpiration. Thus, when total potential root water uptake is 125% of potential 

transpiration, cell expansion is reduced to 83% of the potential transpiration rate. 

 

4.2.4 Weather Data 

Daily weather data is utilized from the Global Summary of the Day (GSOD) dataset 

(NCDC, 2010) as well as the Georgia Environmental Monitoring Network (GAEMN). 

The GSOD dataset is derived from hourly observations associated with the Integrated 

Surface Hourly (ISH) database. This database is composed of surface weather 

observations from about 20,000 stations worldwide (see Fig. 4.18). The data in the ISH 

database is collected and stored from sources such as the Automated Weather Network 

(AWN), the Global Telecommunications System (GTS), and the Automated Surface 

Observing System (ASOS). The GAEMN is described in section 3.3.3 and Figure 3.7 of 

chapter three. 
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Figure 4.8. NCDC weather stations in the Southeast U.S. (adapted from NCDC, 2010). 

 

The daily temperature and precipitation inputs utilized for each metered site are spatially 

interpolated from GSOD weather stations in the Southeast U.S. The inverse distance 

weighting procedure applied is given by 
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Where wj is the daily weather variable being estimated for metered site j, wi is the value 

of the weather variable of interest at weather station i, di,j is the distance between the 

metered site j and weather station i, and n is the number of weather stations utilized for 

the estimation procedure. Conversely, daily solar radiation inputs are utilized from the 

nearest GAEMN weather station as climatic forcing for crop simulations at metered sites. 

 

4.2.5 Soils Data 

Soil profile data is utilized that was developed as part of the Agricultural Irrigation Water 

Demand study completed by Hook et al, 2009 (see Table 4.1). The data set is described in 

section 3.3.4 of chapter three and includes several soil properties such as saturated 

hydraulic conductivity as well as soil water content of the drained upper limit (i.e. field 

capacity) and lower limit (i.e. wilting point) of plaint available soil water. Simulated 

irrigation water demand estimates that are utilized to assess irrigation strategies are 

weighted by the estimated proportion of each soil type associated with irrigated 

production within selected counties. 
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Table 4.1. Soil profiles utilized in crop model simulations (Hook et al., 2009). 

 

 

4.2.6 Management Practices 

The field management practices utilized as fixed parameters in crop model simulations 

were developed after consultation with agricultural specialists, researchers, and farmers 
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in the Lower Flint River basin. These practices are consistent with recommendations 

from agricultural extension agents in southwest Georgia. 

 

Table 4.2. Field management practices utilized in crop simulations.  

 

 

4.2.7 Regional Irrigation Strategies 

The farmer’s decision to irrigate is mimicked with the MST algorithm by simulating 

water applications during the crop season when daily plant water stress (i.e. [plant water 

uptake] / [potential transpiration]) exceeds a threshold MST value. While MST values 

may theoretically range from zero (i.e. high stress) to one (i.e. no stress), the box plot 

shown in Figure 4.20 reveals that the central tendency amongst randomly sampled 

irrigated fields in the Lower Flint River basin is approximately 0.77. MST values and 

irrigation demand are shown for several counties in Figures 4.21 - 4.44. 
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Figure 4.9. Simulated and measured irrigation demand at Calhoun County farms. 

 

 

Figure 4.10. Box plot of MST values associated with Calhoun County. 
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Figure 4.11. Simulated and measured irrigation demand at Terrell County farms. 

 

 

Figure 4.12. Box plot of MST values associated with Terrell County. 
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Figure 4.13. Simulated and measured irrigation demand at Crisp County farms. 

 

 

Figure 4.14. Box plot of MST values associated with Crisp County. 
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Figure 4.15. Simulated and measured irrigation demand at Baker County farms. 

 

 

Figure 4.16. Box plot of MST values associated with Baker County. 
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Figure 4.17. Simulated and measured irrigation demand at Dooly County farms. 

 

 

Figure 4.18. Box plot of MST values associated with Dooly County. 
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Figure 4.19. Simulated and measured irrigation demand at Early County farms. 

 

 

Figure 4.20. Box plot of MST values associated with Early County. 
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Figure 4.21. Simulated and measured irrigation demand at Miller County farms. 

 

 

Figure 4.22. Box plot of MST values associated with Miller County. 
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Figure 4.23. Simulated and measured irrigation demand at Decatur County farms. 

 

 

Figure 4.24. Box plot of MST values associated with Decatur County. 
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Figure 4.25. Simulated and measured irrigation demand at Sumter County farms. 

 

 

Figure 4.26. Box plot of MST values associated with Sumter County. 
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Figure 4.27. Simulated and measured irrigation demand at Worth County farms. 

 

 

Figure 4.28. Box plot of MST values associated with Worth County. 
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Figure 4.29. Simulated and measured irrigation demand at Mitchell County farms. 

 

 

Figure 4.30. Box plot of MST values associated with Mitchell County. 
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Figure 4.31. Simulated and measured irrigation demand at Seminole County farms. 

 

 

Figure 4.32. Box plot of MST values associated with Seminole County. 
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4.3 Historical Irrigation Water Demand Assessment 

Historical assessments of agricultural water demand are prerequisite for the climate 

change assessments that will be discussed in chapter five. In the remaining sections, the 

approach utilized for characterizing regional frequency distributions of irrigation demand 

is presented as well as an evaluation of the irrigation strategies discussed in section 4.2.  

 

 

Figure 4.33. Local drainage areas and county boundaries in the Lower Flint River basin. 
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Figure 4.34. Schematic of irrigated acreage in Southwest Georgia and local drainage 

areas (LDAs) in the Lower Flint River basin: Albany, Bainbridge, Iron City, Milford, 

Newton, and Woodruff. The grid mesh associated with historical precipitation and 

temperature data is also shown (Hook et al., 2010). 

 

4.3.1 Weather Data 

The model-derived dataset of daily precipitation and temperature (minimum and 

maximum) developed by the University of Washington’s Surface Water Modeling group 

is utilized for the historical assessment. The dataset spans the period (1950-2010) and has 

a 3-hr time step with a spatial resolution of 1/8 degree. The dataset was developed by 

forcing a macroscale (i.e. > 10 km) hydrological model, the variable infiltration capacity 

(VIC) model (Liang et al., 1994), with observed meteorological data. Data inputs for the 
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VIC model are derived from the National Oceanic and Atmospheric Administration 

(NOAA) Cooperative Observer (Co-op) network as well as the parameter-elevation 

regressions on independent slopes (PRISM) model (Daly et al., 1994). The VIC model 

balances both surface energy and water at each time step over all grid cells (Maurer et al., 

2002). The grid mesh is shown along with local drainage areas and irrigated area in 

southwest Georgia in Figure 4.46. 

 

Daily solar radiation data is utilized from the National Renewable Energy Laboratory 

(NREL, 2007) National Solar Radiation Database (NSRDB). The 1991–2005 NSRDB 

contains hourly solar radiation (including global, direct, and diffuse) and meteorological 

data for 1,454stations. This update builds on the1961–1990 NSRDB, which contains data 

for 239 stations. 

 

Atmospheric carbon dioxide concentration data is obtained from NOAA. The data 

utilized is shown in Figure 4.47. 
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Figure 4.35.Historical atmospheric carbon dioxide concentration (NOAA, 2012). 

 

4.3.2 Soils Data 

The soils data has been previously described in section 4.2.5.  

 

4.3.3 Assessment Approach 

Historical assessments of agricultural water demand are conducted for local drainage 

areas in the Lower Flint River basin. The county-scale irrigation strategies discussed in 

section 4.2 are utilized along with scaling factors that were derived for each county. 

Metered sites utilized to develop the irrigation strategies are associated with row crops 

that may be less water intensive(i.e. applied water/acre) than other crops (e.g. vegetables) 
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that may contribute significant irrigation demand in some counties. Thus, county 

specific-factors were developed by taking the ratio of the irrigation depth of sampled sites 

and the irrigation depth of all metered sites within each county (see Table 4.2). 

 

Table 4.3. County-specific scaling factors 

 

 

Each grid cell is associated with a county in the Lower Flint River basin. Each year a 

crop-MST combination is randomly sampled from the collection of irrigation strategies 

previously determined for the county of interest. This crop-MST combination is the 

irrigation strategy that drives irrigation scheduling when the DSSAT model is run. After 

weighting the crop simulation outputs based on the representative soil profiles, the 

scaling factor is applied to estimate irrigation depth for the grid cell. Finally, model 

outputs for all grid cells within a local drainage area are weighted equally to obtain 

historical irrigation demand estimates. 
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4.3.4 Model Evaluation 

The results show that median historical irrigation demand varies between about six and 

ten inches. There is significant interannual variability in demand though. The highest 

demands are associated with the drought periods in the 1980s (see Figure 4.49) 

 

 

Figure 4.36. Box plots of historical irrigation demand for local drainage areas in the 

Lower Flint River basin. 

 

A comparison with EPD estimates of agricultural water demand shows the value of 

estimating irrigation demand with this novel approach. While EPD estimated irrigation 

depth takes on only two values, the irrigation depths estimated with the approach 

described above display the interannual variability that is expected as weather and soil 

conditions vary from year to year. 
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Figure 4.37. Comparison between different demand estimation approaches for the 

Newton local drainage area (GWRI, 2012). 

 

A negative correlation may be observed between annual rainfall and irrigation depths. 

However, for all the drainage areas, the negative correlation increases when seasonal (i.e. 

May - Sept.) rainfall is considered instead of annual rainfall (see Table 4.3).  

 

Table 4.4.Correlation between historical irrigation demand and precipitation. 
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4.3.5 Summary 

In this chapter a methodology is developed for identifying irrigation strategies with field 

scale agricultural water use and management data. Historical projections of regional 

water demand in the Lower Flint River basin are presented that utilize these crop 

management strategies. This novel approach utilizes agricultural water use data as well 

crop simulation models to estimate irrigation strategies and subsequently, regional water 

demand. The irrigation demand projections are negatively correlated with seasonal 

precipitation as expected. Furthermore, simulated irrigation demands demonstrate greater 

interannual variability than methods relying on crop coefficient methods that are often 

used in practice. The uncertainty associated with the projections presented in this chapter 

is described in chapter three. In chapter five, the methodology presented in this chapter is 

applied to assessments of agricultural water demand under climate change.  

 

There is some uncertainty that is not addressed regarding permitted sites that are greater 

than one hundred acres in area. These larger areas may have differing water use 

efficiency than sites with less acreage and this research does not fully address how water 

is delivered to large fields or multiple fields with one source of water. In order to evaluate 

the additional uncertainty associated with large irrigated fields and sites with multiple 

fields, an adaptive approach must be developed that relies on the distribution of field 

sizes and associated irrigation technologies. Future work may include an assessment of 

irrigated fields greater than one hundred acres and permitted sites that are associated with 

multiple fields. 
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While the FAO-56 approach and other crop coefficient techniques are still used by 

researchers to assess irrigation requirements, better results are generally expected by 

using crop models that operate on a daily time step for assessments of agricultural water 

demand. Physiological crop models account for the fact crops respond not only to 

monthly or seasonal conditions, but also to the dynamics of weather events (Allen et al., 

1998; Suleiman et al., 2007).  

 

For projections of irrigation demand under climate change, crop coefficients developed 

with historical data may not be appropriate for assessments under future climate 

conditions. The approach presented in this chapter utilizes actual regional irrigation data 

to develop irrigation strategies that are applied with crop simulation models under 

historical and future climate conditions. The crop simulation models also are 

advantageous in that they allow for varying irrigation practices to be taken into account in 

the modeling framework. 
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Chapter 5: Projections of Future Agricultural Water Demand 

 

In Chapter 3, the aggregation error associated with simulated irrigation demand is 

characterized. In Chapter 4, regional irrigation strategies are presented and applied with 

crop simulation models to assess historical irrigation demand in six local drainage areas 

(LDAs) in Georgia. In this chapter, projections of regional agricultural demand in the 

Lower Flint River basin are presented. 

5.1 Introduction 

 

The United Nations Intergovernmental Panel on Climate Change (IPCC, 2007) has 

reported that “warming of the climate system in recent decades is unequivocal”.  

Furthermore, the large-scale hydrological cycle may be linked to the observed warming 

during the 20
th

 century. The area of land on Earth classified as “very dry” has more than 

doubled over the last four decades and the “proportion of land surface in extreme drought 

at any one time is projected to increase”. Regionally, large scale changes in agricultural 

water demand are expected (IPCC, 2007). 

 

The Apalachicola-Chattahoochee-Flint (ACF) River basin has historically been 

vulnerable to droughts that are associated with low lake levels and significant reductions 

in river flows. Thus, potential changes in the climate of the Southeast U.S. could have 

significant impacts on the agricultural sector and agricultural water demand (Hatch et al., 

1999). Irrigation water use is estimated to account for 90% of water used during the 

April-September growing season in the Flint River basin (EPD, 2009). As a result, water 
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demand management is now recognized as a prudent compliment to water supply 

management for integrated and sustainable water resources management. Agricultural 

water use data and agricultural water demand projections are valuable resources as 

planners and policymakers seek to enhance conservation efforts and develop water 

management strategies that increase the ability of regional water resources systems to 

support society during periods of low water supply (Kimaite, 2011).  

 

 

Figure 5.1. Map of the ACF basin (USACE, 1997). 
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5.2 Methodology 

Climate change impact studies typically identify a baseline scenario associated with 

current or recent conditions that allows for the projection of future impact. The model 

outcomes of interest from the baseline scenario are compared with outcomes derived 

from scenarios of future climate in order to assess climate change impacts. There is 

recognized ignorance underlying long range projections of irrigation demand due to 

volatility in agricultural markets, technological innovations, and genetic development that 

increases water use efficiency (Bramblett, 1995). As opposed to the impossible task of 

identifying a “most likely” climate scenario, exploring a range of plausible future 

conditions with multiple climate scenarios allows for system resilience (Daniels et al., 

2012).  

 

Projections of future climate are uncertain due to (A) the uncertainty in forecasts of future 

anthropogenic and natural forcings, (B) the imperfection of climate models, and (C) the 

internal variability of the climate system. However, projections of future climate provide 

valuable information about the range of future conditions associated with a changing 

climate. In this work, a baseline period of 1986-2005 is utilized such that climate change 

is expressed as a change with respect to a recent period of history. The future conditions 

(i.e. “time slices”) evaluated consist of twenty year time periods (2046-2065 and 2081-

2100) that allow for some interannual-to-interdecadal variability and relatively 

monotonic anthropogenically induced forcing trends (Horton et al., 2011).  

 

5.2.1    Historical conditions 
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The model-derived dataset of daily precipitation and temperature (minimum and 

maximum) developed by the University of Washington’s Surface Water Modeling group 

is utilized for the historical assessment. The dataset spans the period (1950-2010) and has 

a 3-hr time step with a spatial resolution of 1/8 degree. Daily solar radiation data is 

utilized from the National Renewable Energy Laboratory (NREL, 2007) National Solar 

Radiation Database (NSRDB). These datasets are described in more detail in Chapter 4 

(see Section 4.3.1).  

 

5.2.2    Carbon emission scenarios 

Scenarios allow all inputs to evolve in time in a contextually consistent manner so that 

model outcomes of interest can be evaluated that correspond to plausible manifestations 

of reality. Scenarios are postulated sequences of events that help policymakers focus 

attention on causality, impacts, and tradeoffs. While scenarios alone are not an adequate 

means of addressing model outcome uncertainty, scenario analysis is quite popular in the 

climate change impacts, adaptations, and vulnerability (IAV) research community (Katz, 

2002).  

 

There are four IPCC storylines (i.e. carbon emission scenarios) that form the basis of 

most studies on climate change impacts on water resources. The A1 and B1 scenarios 

assume that the world economy is dominated by global trade and alliances, while the A2 

and B2 scenarios assume less globalization and cooperative agreements. In this work 

irrigation demand projections from two time slices (2046-2065 and 2081-2100) and two 
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emission scenarios (A1B and A2) are compared with historical demand projections (see 

Figure 5.2). 

 

 

Figure 5.2. Summary characteristics of the four IPCC Special Report on Emissions 

Scenarios (SRES; adapted from IPCC, 2007). 

 

5.2.3    Future conditions 

Projections of future climate are based on six available GCM configurations with outputs 

available in the World Climate Research Programme (WRCP) Coupled Model 

Intercomparison Project, phase 3, (CMIP3) multimodel dataset (Meehl et al., 2007).  The 

six GCMs and two emission scenarios (i.e. A1B and A2) considered combine to produce 
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12 output sets. These output sets are utilized as climatic forcing in order to evaluate 

impacts common to a range of possible future conditions.  

 

 

Figure 5.3. Description of GCMs (Jiang and Yang, 2012). 

 

The bias correction and constructed analogues (BCCA) method is utilized to obtain daily 

climatic forcing of temperature and precipitation (Hidalgo et al., 2008). The method 

utilizes a library of previously observed daily weather patterns to construct an analogue 

for a course scale GCM output of interest. The weather patterns for several days serve as 

predictors that are combined to construct the analogues. The method is used to downscale 

GCM output to obtain daily temperature and precipitation on a 1/8 x 1/8 degree 

resolution grid. Daily solar radiation was derived from the downscaled daily air 

temperatures and rainfall using the Weather Generator for Solar Radiation (WGENR) 
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(Hodges et al., 1985), as modified and evaluated by Garcia y Garcia and Hoogenboom 

(2005) and Garcia y Garcia et al. (2008).  

 

5.2.4    Demand projections 

In this work, the Decision Support System for Agrotechnology Transfer (DSSAT) suite 

of crop models is utilized to estimate regional irrigation demand. Historical and future 

projections of agricultural water demand are informed by regional irrigation strategies 

that are represented with the moisture stress threshold (MST) algorithm (see Section 

4.3.3). The farmer’s decision to irrigate (i.e. the irrigation strategy) is represented with 

the MST algorithm by simulating water applications during the crop season when daily 

plant water stress (i.e. [plant water uptake] / [potential transpiration]) exceeds a threshold 

MST value (see Sections 4.2.2 and 4.2.3). Soils data and field management practices are 

described in sections 4.2.5 and 4.2.6 respectively. 
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5.3 Regional Water Demand Assessments 

In the appendix, box plots of historical and future projections of agricultural water 

demand are presented for the six local drainage areas (see Figure 5.4) that compose the 

Lower Flint River basin. Annual and monthly irrigation demand projections are presented 

for two future time slices (i.e. 2046-2065 and 2081-2100), two emission scenarios (i.e. 

A1B and A2) and six GCMs. A discussion of key findings and conclusions is presented 

in Section 5.3.1. 

 

 

Figure 5.4. Schematic of irrigated acreage in Southwest Georgia and local drainage areas 

(LDAs) in the Lower Flint River basin: Albany, Bainbridge, Iron City, Milford, Newton, 

and Woodruff.  
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Table 5.1. Agricultural water demand expressed in inches (A1B Scenario, 2046-2065). 

 

 

Table 5.2. Agricultural water demand expressed in inches (A1B Scenario, 2081-2100). 

 

 

Table 5.3. Agricultural water demand expressed in inches (A2 Scenario, 2046-2065). 

 

 

Table 5.4. Agricultural water demand expressed in inches (A2 Scenario, 2081-2100). 
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5.3.1 Discussion 

There is an emphasis in this work on assessing the impacts of climate change on 

agricultural water demand with current irrigation technologies and management practices. 

The results of this work provide valuable information regarding the policy instruments, 

technological developments, and irrigation efficiency gains that are needed to address 

potential increases in agricultural water demand under climate change in the Southeast 

U.S. 

 

The approach for estimating irrigation demand presented in this work is novel in that it 

utilizes actual metered irrigation data to develop irrigation strategies to estimate regional 

irrigation demand under historical and future climate conditions. The development of the 

irrigation strategies incorporated the errors associated with model structure and 

aggregated inputs at a spatial scale up to one hundred acres. However, it should be noted 

that GCM outputs have uncertainty at spatial scales greater than one hundred acres. 

 

While results presented in section 5.3 suggest that annual irrigation demand will increase 

over the next century in the Lower Flint River basin, the magnitude and timing of 

demand increases varies depending on the climate change scenario. In general, the most 

significant climate change impacts may be associated with the A2 scenario and the 2081-

2100 time slice. However, in some instances the annual irrigation demand associated with 

the 2046-2065 time slice doe not vary much between the two emission scenarios. The 

GFDL and MIROC3 models typically are associated with the largest projections of 

median agricultural demands. On the other hand, the MIUB model is often associated 
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with median demands that are less than or not significantly different than historical 

demands. 

 

The monthly irrigation demands show the greatest increases during the peak crop water 

demand months of July and August. The largest changes in projected monthly irrigation 

demand are generally associated with the 2081-2100 time slices and the A2 emission 

scenarios. However, some significant increases in irrigation demand are also observed in 

June and September for some scenarios.  Overall, there is minimal projected change in 

May irrigation demands.  
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Chapter 6: Conclusions and Recommendations 

 

6.1 Summary of contributions and key findings 

Although Georgia is typically considered to be a state with plentiful water resources due 

to average annual rainfall exceeding that of many other parts of the United States, 

population growth, rapid urbanization, and the competing demands placed on water 

resources by the municipal, industrial, agricultural, and ecological sectors make water 

resources management and planning a significant challenge for planners and policy 

makers. In addition, agricultural water use represents the primary consumptive use of 

water with over eighty percent of agricultural water demand occurring between the 

months of May and August. Furthermore, in dry years with rainfall totals significantly 

below average and reduced streamflow, agricultural water demands are higher. Thus, this 

research presents an important contribution towards improved water resources 

management and planning by presenting a new approach for estimating agricultural water 

demand under historical and future climate conditions. 

 

This research uses a novel approach to estimate regional agricultural water demand with 

a consistent framework that may be applied to historic as well as future demand 

projections. The study utilizes (a) actual measured agricultural water use along with (b) 

geostatistical techniques, (c) crop simulation models, and (d) general circulation models 

(GCMs) to assess irrigation demand and the uncertainty associated with demand 

projections at spatial scales relevant to water resources management. The study has 

several important scientific contributions: 
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� Calibration of geostatistical models that describe the spatial variability of daily 

precipitation and soil water properties in the Lower Flint River basin (Chapter 3). 

� Characterization of the uncertainty associated with crop simulation model outputs 

that utilize aggregated soil and climate data; development of a relationship 

between the standard deviation of model error and spatial scale (Chapter 3). 

� Development and evaluation of procedures for representing regional irrigation 

strategies with the moisture stress threshold (MST) algorithm and metered 

irrigation data. (Chapter 4). 

� Assessment of historical agricultural water demand in six local drainage areas 

(LDAs) in Southwest Georgia; comparison with existing approaches (Chapter 4). 

� Assessment of future agricultural demand in the Lower Flint River basin under 

climate change with two emission scenarios and six GCMs (Chapter 5). 

 

The main findings of the assessment are summarized below: 

� The spatial variability of daily rainfall in Southwest Georgia may be represented 

with exponential variogram models with ranges that can exceed 200 km.  On the 

other hand, available water holding capacity was found to have a range less than 

20 km. 

�  The standard deviation of aggregation error is estimated to be approximately 23 

mm or 10-15% of the spatial mean at a scale of 1/8 degree (i.e. 144 km
2
). A 

logarithmic relationship is developed that is consistent with the exponential 

variogram models used to represent the spatial variability of soils and climate. 
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� Regional irrigation strategies are well represented with the MST algorithm, 

metered annual agricultural water use, and crop management data. The novel 

approach developed may be applied to other locations in the world as agricultural 

metering programs become more common. 

� Crop coefficient approaches applied at the regional scale to estimate agricultural 

water demand lack the interannual variability observed with this novel approach. 

Crop simulation models are useful tools for representing the intra-annual and 

interannual variability of regional irrigation demand.  

� GCMs indicate a range of possible futures that include the possibility of relatively 

small changes in irrigation demand in the Lower Flint River basin. However, most 

of the GCMs utilized in this work project significant increases in median water 

demand towards the end of this century. In particular, results suggest that peak 

agricultural water demands in July and August may increase significantly. 

 

 

 

 

 

 

 

 

 

 



 

130 

6.2 Recommendations for Future Work 

The outcomes of this research create opportunities for future work related to (1) 

assessment of surface water and groundwater resources impacts, (2) evaluation of 

regional water demand in adjacent river basins, and (3) assessment of water management 

strategies during drought conditions. The following specific recommendations are made 

regarding future research areas to expand this work: 

1. Consideration of farmer adaptation – This research focused on row crops (i.e. 

maize, peanut, and cotton) and held field management practices constant under 

future conditions. Although this approach allows for a transparent comparison 

between historical and future irrigation demands, farmers are likely to alter some 

crop management practices in a changing climate. This work may be improved by 

allowing planting dates to change based on soil moisture conditions and projected 

climatic trends. 

2. Estimation of surface water and groundwater demand – Annual and monthly 

demand is assessed under current and future climates in this work. These 

assessments would be more valuable to water resources managers if demand was 

partitioned into surface water and groundwater demand. A significant amount of 

data regarding water sources utilized by irrigators has been collected in recent 

years and this information may allow for surface water and groundwater demand 

estimates.  

3. Integration with river basin models – The demand projections developed in this 

work are estimated at spatial scales relevant to water resources management. This 
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work may be improved by simultaneously assessing integrated water resources 

impacts. 

4. Further evaluation of aggregation error – A logarithmic function was developed to 

estimate the standard deviation of aggregation error as a function of spatial scale. 

The spatial variability of soils and climate in Southwest Georgia may not be 

representative of other regions in the world though. This work may be improved 

by characterizing aggregation error at larger spatial scales and in other regions. 
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Appendix 

 

Figure A.1. Center pivot irrigation system in operation in the Lower Flint River basin 

(May, 2011). 
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Figure A.2. Center pivot irrigation system in operation in the Lower Flint River basin 

(May, 2011). 
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Figure A.3. Drip irrigation system (May, 2011).  

 

Figure A.4. Hose-pull traveler type irrigation system (May, 2011). 
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Figure A.5.Well-to-pond system (May, 2011). 

 

Figure A.6. Center pivot irrigation system in operation in the Lower Flint River basin 

(May, 2011). 
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Figure A.7. Linear irrigation system (SIRP, 2011). 

 

 

Figure A.8. Richard Royal (left) discusses Flint-Ochlockonee Regional Water Planning 

Council activities with researchers and agricultural producers at Stripling Irrigation 

Research Park (SIRP, 2011). 
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Figure A.9. Schematic of propeller-style metering device (GSWCC, 2013). 

 

 

Figure A.10. Example of propeller-style metering device (GSWCC, 2013). 
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Figure A.11. An agricultural extension agent examines an irrigated field in the Lower 

Flint River basin (June, 2011). 
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Figure A.12. Annual demand in Albany under A1B emissions scenario (2046-2065). 

 

 

Figure A.13. Annual demand in Albany under A1B emissions scenario (2081-2100). 
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Figure A.14. Annual demand in Albany under A2 emissions scenario (2046-2065). 

 

 

Figure A.15. Annual demand in Albany under A2 emissions scenario (2081-2100). 
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Figure A.16. Annual demand in Bainbridge under A1B emissions scenario (2046-2065). 

 

 

Figure A.17. Annual demand in Bainbridge under A1B emissions scenario (2081-2100). 
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Figure A.18. Annual demand in Bainbridge under A2 emissions scenario (2046-2065). 

 

 

Figure A.19. Annual demand in Bainbridge under A2 emissions scenario (2081-2100). 
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Figure A.20. Annual demand in Iron City under A1B emissions scenario (2046-2065). 

 

 

Figure A.21. Annual demand in Iron City under A1B emissions scenario (2081-2100). 
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Figure A.22. Annual demand in Iron City under A2 emissions scenario (2046-2065). 

 

 

Figure A.23. Annual demand in Iron City under A2 emissions scenario (2081-2100). 
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Figure A.24. Annual demand in Milford under A1B emissions scenario (2046-2065). 

 

 

Figure A.25. Annual demand in Milford under A1B emissions scenario (2081-2100). 
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Figure A.26. Annual demand in Milford under A2 emissions scenario (2046-2065). 

 

 

Figure A.27. Annual demand in Milford under A2 emissions scenario (2081-2100). 
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Figure A.28. Annual demand in Newton under A1B emissions scenario (2046-2065). 

 

 

Figure A.29. Annual demand in Newton under A1B emissions scenario (2081-2100). 



 

148 

 

Figure A.30. Annual demand in Newton under A2 emissions scenario (2046-2065). 

 

 

Figure A.31. Annual demand in Newton under A2 emissions scenario (2081-2100). 
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Figure A.32. Annual demand in Woodruff under A1B emissions scenario (2046-2065). 

 

 

Figure A.33. Annual Demand in Woodruff under A1B emissions scenario (2081-2100). 
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Figure A.34. Annual demand in Woodruff under A2 emissions scenario (2046-2065). 

 

 

Figure A.35. Annual demand in Woodruff under A2 emissions scenario (2081-2100). 
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Figure A.36. May demand in Albany under A1B emissions scenario (2046-2065). 

 

 

Figure A.37. May demand in Albany under A1B emissions scenario (2081-2100). 
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Figure A.38. June demand in Albany under A1B emissions scenario (2046-2065). 

 

 

Figure A.39. June demand in Albany under A1B emissions scenario (2081-2100). 



 

153 

 

Figure A.40. July demand in Albany under A1B emissions scenario (2046-2065). 

 

 

Figure A.41. July demand in Albany under A1B emissions scenario (2081-2100). 
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Figure A.42. August demand in Albany under A1B emissions scenario (2046-2065). 

 

 

Figure A.43. August demand in Albany under A1B emissions scenario (2081-2100). 
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Figure A.44. Sept. demand in Albany under A1B emissions scenario (2046-2065). 

 

 

Figure A.45. Sept. demand in Albany under A1B emissions scenario (2081-2100). 
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Figure A.46. May demand in Albany under A2 emissions scenario (2046-2065). 

 

 

Figure A.47. May demand in Albany under A2 emissions scenario (2081-2100). 
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Figure A.48. June demand in Albany under A2 emissions scenario (2046-2065). 

 

 

Figure A.49. June demand in Albany under A2 emissions scenario (2081-2100). 
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Figure A.50. July demand in Albany under A2 emissions scenario (2046-2065). 

 

 

Figure A.51. July demand in Albany under A2 emissions scenario (2081-2100). 
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Figure A.52. August demand in Albany under A2 emissions scenario (2046-2065). 

 

 

Figure A.53. August demand in Albany under A2 emissions scenario (2081-2100). 
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Figure A.54. Sept. demand in Albany under A2 emissions scenario (2046-2065). 

 

 

Figure A.55. Sept. demand in Albany under A2 emissions scenario (2081-2100). 
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Figure A.56. May demand in Bainbridge under A1B emissions scenario (2046-2065). 

 

 

Figure A.57. May demand in Bainbridge under A1B emissions scenario (2081-2100). 
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Figure A.58. June demand in Bainbridge under A1B emissions scenario (2046-2065). 

 

 

Figure A.59. June demand in Bainbridge under A1B emissions scenario (2081-2100). 
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Figure A.60. July demand in Bainbridge under A1B emissions scenario (2046-2065). 

 

 

Figure A.61. July demand in Bainbridge under A1B emissions scenario (2081-2100). 
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Figure A.62. August demand in Bainbridge under A1B emissions scenario (2046-2065). 

 

 

Figure A.63. August demand in Bainbridge under A1B emissions scenario (2081-2100). 
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Figure A.64. Sept. demand in Bainbridge under A1B emissions scenario (2046-2065). 

 

 

Figure A.65. Sept. demand in Bainbridge under A1B emissions scenario (2081-2100). 
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Figure A.66. May demand in Bainbridge under A2 emissions scenario (2046-2065). 

 

 

Figure A.67. May demand in Bainbridge under A2 emissions scenario (2081-2100). 
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Figure A.68. June demand in Bainbridge under A2 emissions scenario (2046-2065). 

 

 

Figure A.69. June demand in Bainbridge under A2 emissions scenario (2081-2100). 
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Figure A.70. July demand in Bainbridge under A2 emissions scenario (2046-2065). 

 

 

Figure A.71. July demand in Bainbridge under A2 emissions scenario (2081-2100). 
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Figure A.72. August demand in Bainbridge under A2 emissions scenario (2046-2065). 

 

 

Figure A.73. August demand in Bainbridge under A2 emissions scenario (2081-2100). 
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Figure A.74. Sept. demand in Bainbridge under A2 emissions scenario (2046-2065). 

 

 

Figure A.75. Sept. demand in Bainbridge under A2 emissions scenario (2081-2100). 
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Figure A.76. May demand in Iron City under A1B emissions scenario (2046-2065). 

 

 

Figure A.77. May demand in Iron City under A1B emissions scenario (2081-2100). 
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Figure A.78. June demand in Iron City under A1B emissions scenario (2046-2065). 

 

 

Figure A.79. June demand in Iron City under A1B emissions scenario (2081-2100). 
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Figure A.80. July demand in Iron City under A1B emissions scenario (2046-2065). 

 

 

Figure A.81. July demand in Iron City under A1B emissions scenario (2081-2100). 
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Figure A.82. August demand in Iron City under A1B emissions scenario (2046-2065). 

 

 

Figure A.83. August demand in Iron City under A1B emissions scenario (2081-2100). 
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Figure A.84. Sept. demand in Iron City under A1B emissions scenario (2046-2065). 

 

 

Figure A.85. Sept. demand in Iron City under A1B emissions scenario (2081-2100). 
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Figure A.86. May demand in Iron City under A2 emissions scenario (2046-2065). 

 

 

Figure A.87. May demand in Iron City under A2 emissions scenario (2081-2100). 
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Figure A.88. June demand in Iron City under A2 emissions scenario (2046-2065). 

 

 

Figure A.89. June demand in Iron City under A2 emissions scenario (2081-2100). 
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Figure A.90. July demand in Iron City under A2 emissions scenario (2046-2065). 

 

 

Figure A.91. July demand in Iron City under A2 emissions scenario (2081-2100). 
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Figure A.92. August demand in Iron City under A2 emissions scenario (2046-2065). 

 

 

Figure A.93. August demand in Iron City under A2 emissions scenario (2081-2100). 
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Figure A.94. Sept. demand in Iron City under A2 emissions scenario (2046-2065). 

 

 

Figure A.95. Sept. demand in Iron City under A2 emissions scenario (2081-2100). 
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Figure A.96. May demand in Milford under A1B emissions scenario (2046-2065). 

 

 

Figure A.97. May demand in Milford under A1B emissions scenario (2081-2100). 
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Figure 5.98. June demand in Milford under A1B emissions scenario (2046-2065). 

 

 

Figure A.99. June demand in Milford under A1B emissions scenario (2081-2100). 
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Figure A.100. July demand in Milford under A1B emissions scenario (2046-2065). 

 

 

Figure A.101. July demand in Milford under A1B emissions scenario (2081-2100). 
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Figure A.102. August demand in Milford under A1B emissions scenario (2046-2065). 

 

 

Figure A.103. August demand in Milford under A1B emissions scenario (2081-2100). 
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Figure A.104. Sept. demand in Milford under A1B emissions scenario (2046-2065). 

 

 

Figure A.105. Sept. demand in Milford under A1B emissions scenario (2081-2100). 



 

186 

 

Figure A.106. May demand in Milford under A2 emissions scenario (2046-2065). 

 

 

Figure A.107. May demand in Milford under A2 emissions scenario (2081-2100). 



 

187 

 

Figure A.108. June demand in Milford under A2 emissions scenario (2046-2065). 

 

 

Figure A.109. June demand in Milford under A2 emissions scenario (2081-2100). 
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Figure A.110. July demand in Milford under A2 emissions scenario (2046-2065). 

 

 

Figure A.111. July demand in Milford under A2 emissions scenario (2081-2100). 
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Figure A.112. August demand in Milford under A2 emissions scenario (2046-2065). 

 

 

Figure A.113. August demand in Milford under A2 emissions scenario (2081-2100). 
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Figure A.114. Sept. demand in Milford under A2 emissions scenario (2046-2065). 

 

 

Figure A.115. Sept. demand in Milford under A2 emissions scenario (2081-2100). 
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Figure A.116. May demand in Newton under A1B emissions scenario (2046-2065). 

 

 

Figure A.117. May demand in Newton under A1B emissions scenario (2081-2100). 
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Figure A.118. June demand in Newton under A1B emissions scenario (2046-2065). 

 

 

Figure A.119. June demand in Newton under A1B emissions scenario (2081-2100). 
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Figure A.120. July demand in Newton under A1B emissions scenario (2046-2065). 

 

 

Figure A.121. July demand in Newton under A1B emissions scenario (2081-2100). 
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Figure A.122. August demand in Newton under A1B emissions scenario (2046-2065). 

 

 

Figure A.123. August demand in Newton under A1B emissions scenario (2081-2100). 
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Figure A.124. Sept. demand in Newton under A1B emissions scenario (2046-2065). 

 

 

Figure A.125. Sept. demand in Newton under A1B emissions scenario (2081-2100). 
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Figure A.126. May demand in Newton under A2 emissions scenario (2046-2065). 

 

 

Figure A.127. May demand in Newton under A2 emissions scenario (2081-2100). 
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Figure A.128. June demand in Newton under A2 emissions scenario (2046-2065). 

 

 

Figure A.129. June demand in Newton under A2 emissions scenario (2081-2100). 
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Figure A.130. July demand in Newton under A2 emissions scenario (2046-2065). 

 

 

Figure A.131. July demand in Newton under A2 emissions scenario (2081-2100). 
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Figure A.132. August demand in Newton under A2 emissions scenario (2046-2065). 

 

 

Figure A.133. August demand in Newton under A2 emissions scenario (2081-2100). 
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Figure A.134. Sept. demand in Newton under A2 emissions scenario (2046-2065). 

 

 

Figure A.135. Sept. demand in Newton under A2 emissions scenario (2081-2100). 
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Figure A.136. May demand in Woodruff under A1B emissions scenario (2046-2065). 

 

 

Figure A.137. May demand in Woodruff under A1B emissions scenario (2081-2100). 
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Figure A.138. June demand in Woodruff under A1B emissions scenario (2046-2065). 

 

 

Figure A.139. June demand in Woodruff under A1B emissions scenario (2081-2100). 
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Figure A.140. July demand in Woodruff under A1B emissions scenario (2046-2065). 

 

 
Figure A.141. July demand in Woodruff under A1B emissions scenario (2081-2100). 
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Figure A.142. August demand in Woodruff under A1B emissions scenario (2046-2065). 

 

 

Figure A.143. August demand in Woodruff under A1B emissions scenario (2081-2100). 



 

205 

 

Figure A.144. Sept. demand in Woodruff under A1B emissions scenario (2046-2065). 

 

 

Figure A.145. Sept. demand in Woodruff under A1B emissions scenario (2081-2100). 
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Figure A.146. May demand in Woodruff under A2 emissions scenario (2046-2065). 

 

 

Figure A.147. May demand in Woodruff under A2 emissions scenario (2081-2100). 
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Figure A.148. June demand in Woodruff under A2 emissions scenario (2046-2065). 

 

 

Figure A.149. June demand in Woodruff under A2 emissions scenario (2046-2065). 
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Figure A.150. July demand in Woodruff under A2 emissions scenario (2046-2065). 

 

 

Figure A.151. July demand in Woodruff under A2 emissions scenario (2081-2100). 
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Figure A.152. August demand in Woodruff under A2 emissions scenario (2046-2065). 

 

 

Figure A.153. August demand in Woodruff under A2 emissions scenario (2081-2100). 
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Figure A.154. Sept. demand in Woodruff under A2 emissions scenario (2046-2065). 

 

 

Figure A.155. Sept. demand in Woodruff under A2 emissions scenario (2081-2100). 
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