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Abstract

We study the cyclicity of period annuli (or annulus) for general degenerate quadratic
Hamiltonian systems with an elliptic segment or a saddle loop, under quadratic per-
turbations. By using geometrical arguments and studying the respective Abelian
integral based on the Picard-Fuchs equation, it is shown that the cyclicity of period
annuli or annulus for such systems equals two. This result, together with those of
[8],[10],[11],[18],[19], gives a complete solution to the infinitesimal Hilbert 16th prob-
lem in the case of degenerate quadratic Hamiltonian systems under quadratic pertur-
bations.
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1 Introduction and main results

The second part of the well-known Hilbert 16th problem is to find the maximal number
and the positions of the limit cycles for planar autonomous differential equations of the
following form {

ẋ = Xn(x, y),
ẏ = Yn(x, y),

(1.1)

where Xn and Yn are polynomials of degree n. To date, this problem remains unsolved
even for the quadratic case, i.e., n = 2. In [1], V. I. Arnold proposed a weaker version of
the problem by restricting (1.1) to the form






ẋ =
∂H(x, y)

∂y
+ εf(x, y),

ẏ = −∂H(x, y)

∂x
+ εg(x, y),

(1.2)
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where ε is a small parameter, H is a polynomial of degree n + 1, and, f and g are polyno-
mials of degree less than or equal to n. Thus, (1.2) is a perturbation of the Hamiltonian
system 




ẋ =
∂H(x, y)

∂y
,

ẏ = −∂H(x, y)

∂x
.

(1.3)

To tackle the Hilbert 16th problem for (1.2), besides the Hopf bifurcation and homoclinic
(or heteroclinic) bifurcation analysis, a crucial step is to study the cyclicity of period

annulus of XH which is roughly the total number of limit cycles (counting multiplicity)
that can be bifurcated from a period annulus (or annuli) of (1.3) (see Section 2 for precise
definition of cyclicity of period annulus).

In this work, we will give a complete answer to the cyclicity of period annulus (or
annuli) for the degenerate cases of (1.3) when n = 2. Recall that quadratic planar systems
(1.1) with at least one center are always integrable. Based on their algebraic invariants,
systems of such nature can be classified into the following four classes: Hamiltonian (QH

3 ),
reversible (QR

3 ), Lotka-Volterra type (QLV
3 ) and co-dimension 4 type (Q4) (see [20]). In

particular, a vector field XH belonging to QH
3 must have the form (1.3), where H(x, y) is

a real cubic polynomial. Such a vector field XH ∈ QH
3 is said to be generic if it does not

belong to other integrable classes. Otherwise, it is called non-generic or degenerate.
It is shown by E. Horozov and I. D. Iliev in [9] that any cubic Hamiltonian can be

transformed into the following normal form

H(x, y) =
1

2
(x2 + y2) − 1

3
x3 + axy2 +

1

3
by3,

where a, b are parameters lying in the region

G =

{
(a, b) : −1

2
≤ a ≤ 1, 0 ≤ b ≤ (1 − a)

√
1 + 2a

}
,

and moreover, their respective vector fields XH are generic if (a, b) ∈ G∗ = G \ ∂G
and degenerate if XH ∈ ∂G. Figure 1 is adopted from [9] which shows all possible phase
portraits of XH for different ranges of a, b, where G∗ is divided into three parts G1, G2 and
G3 by two curves l2 and l∞. Along l2 two singularities of XH coincide, and along l∞ one
singularity of XH tends to infinity. Hence, besides the two critical situations along l2 and
l∞, XH has one, two or three saddle points for (a, b) ∈ G1, G2 and G3, respectively. It is
shown in [9] that if (a, b) ∈ G3, then the cyclicity of period annulus of XH under quadratic
perturbations equals two. A recent work [7] concludes the same for (a, b) ∈ G1 ∪ G2. If
(a, b) ∈ ∂G, then in suitable coordinates all XH ’s have an axis of symmetry, and as shown
in Figure 1, their respective basic dynamics can be classified into the following eight types
consisting of:

(1) a saddle loop with a double singularity at infinity if (a, b) = O = (0, 0);
(2) a saddle loop with two more saddles if (a, b) lies on the segment OT ;
(3) a triangular heteroclinic loop if (a, b) = T = (1, 0);

2



G G
1

2 3

l l2

a

b

l2

l

T

P

N O

G

Figure 1 The phase portraits of XH ∈ QH
3

(4) a hyperbolic segment loop if (a, b) lies on the arc TP ;
(5) a parabolic segment loop if (a, b) = P ;
(6) an elliptic segment loop if (a, b) lies on the arc PN ;
(7) a non-Morsean point if (a, b) = N = (− 1

2 , 0);
(8) a saddle loop and a pair of complex singularities if (a, b) lies on the segment NO.

The case (1), referred to as the standard elliptic Hamiltonian having the normal form
H(x, y) = y2 − x3 + x, has been extensively studied in [2],[13]-[16],[10]. For the cases
(2)-(8), XH admit invariant straight lines, hence their respective Hamiltonian functions
can be transformed into the following normal form

H = x
[
y2 + Ax2 − 3(A − 1)x + 3(A − 2)

]
, (1.4)

where A ∈ R is a parameter (see [10]). The cases (2)-(8) in the above correspond to the
parameter ranges A ∈ (−∞,−1), A = −1, A ∈ (−1, 0), A = 0, A ∈ (0, 2), A = 2 and
A ∈ (2,∞), respectively.

It has been proved in [11] that the cyclicity of period annulus of the Hamiltonian
triangle (case (3)) is 3. The cases (1), (4), (5), (7) and (8) are studied in [10] (Theorem
3), [19],[10] (Theorem 4), [18] and [8], respectively, and the cyclicities of all these cases are
known to be 2.

In this paper, we will study the remaining cases (6) and (2), i.e., A ∈ (0, 2) and
A ∈ (−∞,−1), which respective phase portraits are shown in Figures 2 and 3 respectively.
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Figure 2 The case A ∈ (0, 2) Figure 3 The case A ∈ (−∞,−1)

We note that the elliptic segment case (6) is the only one in the above list which admits
two period annuli.

The main results of the paper are stated as follows.

Theorem 1. Consider the Hamiltonian H in (1.4) with A ∈ (0, 2). Then n1 + n2 ≤ 2,
where n1 and n2 denote the cyclicities of the two period annuli of XH under quadratic

perturbations, respectively.

Theorem 2. Consider the Hamiltonian H in (1.4) with A ∈ (−∞,−1). Then the cyclicity

of period annulus of XH under quadratic perturbations equals 2.

Combining results of [8],[10],[11],[18],[19] with Theorems 1, 2 above, we then conclude
the following.

Theorem 3. For any degenerate quadratic Hamiltonian system, the cyclicity of period

annulus (or annuli) under quadratic perturbations is 3 for the triangle case and 2 for all

other cases.

Acknowledgment. This work is done when the second and third authors were visiting
the National University of Singapore. The second author is partially supported by grants
from NSFC and RFDP of China. The third author is partially supported by NSF grant
DMS9803581. Also, the authors would like to thank the referee for valuable comments
which lead to significant improvements of the paper.

2 Outline of proof

For the reader’s convenience, we outline the proof of Theorem 1 in this section. As we will
see in Section 6, the proof of Theorem 2 is very similar and in fact even simpler.
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Let us first give the precise definition of cyclicity of period annulus. Suppose that hc

is the critical value of H corresponding to the center of XH , and hs is the value of H for
which the period annulus terminates at a saddle loop (homoclinic or heteroclinic cycle).
Without loss of generality we assume that hc < hs. For any h ∈ (hc, hs), denote by d(h, ε)
the displacement function of XH + εY , starting from a point on H−1(h) ∩ γ, where γ is a
transversal segment to XH , Y is any polynomial vector field in (x, y) of degree ≤ 2 and
0 < ε � 1. In [10],[11], by considering so-called essential perturbations, I.D. Iliev proved
that if XH is generic, then the displacement function has the form

d(h, ε) = εM1(h) + O(ε2),

where

M1(h) =

∫

H=h
(α + βx + γy)y dx, h ∈ (hc, hs); (2.1)

and, if XH is degenerate, then the additional symmetry of XH results in a decrease of the
number of zeros of M1(h) and the displacement function (except the Hamiltonian triangle
case) has the form

d(h, ε) = ε2M2(h) + O(ε3),

where

M2(h) =

∫

H=h
(α + βx + γx−1)y dx, h ∈ (hc, hs), (2.2)

and α, β and γ are constants.
We note that to obtain the maximal number of limit cycles for the perturbed systems

using the expansion form of d(h, ε), one needs to apply the implicit function theorem and
make use of the compactness of the interval of h.

Definition 2.1 For any ξ ∈ (hc, hs), let Nξ be the maximal number of limit cycles in

the compact region ∪h∈[hc,ξ]H
−1(h) which can be bifurcated from XH under all quadratic

perturbations. The cyclicity of period annulus of XH under quadratic perturbations is

equal to supξ∈(hc,hs) Nξ.

Remark 2.1 (i) If the period annulus is bounded by a homoclinic loop, then by a theory

of R. Roussarie ([15]), the cyclicity of period annulus gives the total number of limit

cycles including the ones bifurcated from the homoclinic loop, as pointed out in [7].
Hence the result in Theorem 2 can be extended to the boundary of the annulus.

However, the result in Theorem 1 needs not be extended to the boundaries of annuli

due to the unavailability of a similar theory in the heteroclinic case.

(ii) In Definition 2.1, the perturbations are made of all polynomials in (x, y) of degree

less than or equal to 2, even if they are tangent to the Hamiltonian stratum.

(iii) As we will see in the present cases, for any ξ ∈ (hc, hs), Nξ = 2, hence the cyclicity

equals 2.
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2.1 Main ideas

The proof of our results makes use of a result of I.D. Iliev ([12], Theorem 3, case v(i)),
which, in term of Definition 2.1, can be rewritten as the following.

Lemma 2.1 Consider a period annulus of a Hamiltonian H in (1.4) with A 6= −1 and let

hc and hs denote the critical values of H as the periodic orbits in the annulus shrink to

the center and expand to the separatrix loop, respectively. Then, the cyclicity of the period

annulus under quadratic perturbations equals the maximal number of zeros in (hc, hs) or

(hs, hc), counting multiplicity, of the function M2(h) defined by the Abelian integral (2.2).

Thus, with this lemma, the proof of Theorems 1 and 2 amounts to a careful analysis
of the Abelian integral (2.2). For this purpose, we rewrite (2.2) as

I(h) = αI0(h) + βI1(h) + γI−1(h), (2.3)

where Ik(h) =
∫
Γh

xkydx, k = 0, 1,−1, and, Γh = {(x, y) : H(x, y) = h} for h lying in
between hc and hs.

Note that if h 6= hc, then I0(h) is just the area of the region bounded by Γh and I ′0(h)
is the period of the orbit Γh which is monotone ([4]). We thus have

I0(h)I ′0(h)I ′′0 (h) 6= 0, h 6= hc, (2.4)

which allows us to define the C∞ functions

P (h) =
I1(h)

I0(h)
, Q(h) =

I−1(h)

I0(h)
. (2.5)

After a rescaling, we assume that γ = 1 (see Section 3) and hence the formula (2.3) can
be rewritten as

I(h) = I0(h)(α + βP (h) + Q(h)). (2.6)

We now label the right and left period annulus of H by i = 1, 2 respectively (see
Figure 2) and consider the respective curves

Σ
(i)
A =

{
(P,Q)(h) : h ∈ (h(i)

c , h(i)
s ) or (h(i)

s , h(i)
c )
}

, i = 1, 2, (2.7)

in the (P,Q)-plane. It is easy to see that if h 6= h
(i)
c , then the number of zeros of (2.6)

equals the number of intersections of the curve Σ
(i)
A with the straight line

Lα,β : α + βP + Q = 0, (2.8)

counting multiplicity. Thus, if #(Σ
(i)
A ∩ Lα,β) = mi denotes the smallest upper bound of

the number of intersections of Σ
(i)
A with Lα,β for all α, β ∈ R, then Theorem 1 is equivalent

to the following.

Theorem 2.1 m1 + m2 ≤ 2, m1, m2 = 0, 1, 2.
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, i = 1, 2

This clearly follows from the following theorem.

Theorem 2.2 The curve Σ
(1)
A (resp. Σ

(2)
A ) is located in the first (resp. third) quadrant, and

it is strictly monotone with the vertical asymptote {P = P1(0) > 0} (resp. {P = P2(0) < 0} ).

Moreover, dQ
dP

∣∣∣
Σ

(i)
A

< 0, (−1)(i+1) d2Q
dP 2

∣∣∣
Σ

(i)
A

> 0, for i = 1, 2, (see Figure 4).

Thus, the most important step is to prove the convexity of the curve ΣA, which will
be carried out by showing the following:

- For a given (α, β) the zeros of I(h) is given by the intersection of Lα,β ∩ ΣA (see
(2.6)), where ΣA is parameterized by h ∈ (hc, hs).

- For the same (α, β), the zeros of I ′′(h) is given by the the intersection of Lα,β ∩ΩA,
where the curve ΩA is also parameterized by h ∈ (hc, hs), see (2.11) and (2.12).

- If Lα,β is tangent to ΣA at a point (P,Q)(hT ), then Lα,β must cut ΩA transversally
at a unique point corresponding to h̃, see Figure 5.

- Since I(hc) = 0, we must have h̃ < hT , hence the curvature of ΣA is everywhere
nonzero, see Figure 9.

2.2 Technical ingredients

We now summarize the key steps and technicalities involved in the proof of Theorem 2.2.
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First of all, we show that both curves Σ
(i)
A are regular in the sense that P ′(h) 6= 0 for

h 6= h
(i)
c , i = 1, 2 (see Section 3). The second, it is easy to see that

P (h) → x(i)
c , Q(h) → 1

x
(i)
c

as h → h(i)
c , (2.9)

where x
(i)
c 6= 0 is the x-coordinate of the center in the i-th period annulus for i = 1, 2

respectively. It is also easy to see from (1.4) that h
(1)
s = h

(2)
s = 0 and x

(1)
c x

(2)
c < 0 for all

A ∈ (0, 2). Hence, both curves Σ
(1)
A , Σ

(2)
A are positioned as shown in Figure 4 with the end

points M1 = (x
(1)
c , 1

x
(1)
c

) and M2 = (x
(2)
c , 1

x
(2)
c

) respectively, where the arrows in the figure

correspond to the increasing order of the parameter h ∈ (h
(1)
c , 0) ∪ (0, h

(2)
c ).

The crucial part of the proof is the convexity of Σ
(i)
A . The study of the global behavior

of Σ
(i)
A is in general difficult since P (h) and Q(h) are given implicitly. As suggested by [6] in

studying certain bifurcations for an integrable, non-Hamiltonian quadratic system under
quadratic perturbations, one could derive a 3-dimensional system of ordinary differential
equations for (h, P,Q), in which the curve Σ becomes the projection of a 1-dimensional
stable (or unstable) manifold onto the (P,Q)-plane, and each of its inflection point cor-
responds to an intersection point of the manifold with the surface in the (h, P,Q)-space
governed by the equation Q′′(h)P ′(h)−Q′(h)P ′′(h) = F (h, P,Q) = 0. Unfortunately, due
to the dependence on parameter A, this method is not directly applicable to the present
study.

After a rescaling, we can assume without loss of generality that A ∈ (0, 1] (see Sec-
tion 3). Since by (2.4) I ′′0 (h) 6= 0, the functions

ω(h) =
I ′′1 (h)

I ′′0 (h)
, ν(h) =

I ′′−1(h)

I ′′0 (h)
(2.10)

are well defined, and hence

I ′′(h) = αI ′′0 (h) + βI ′′1 (h) + I ′′−1(h) = I ′′0 (h)(α + βω(h) + ν(h)). (2.11)

We now consider the curves

Ω
(i)
A =

{
(ω, ν)(h) : h ∈ (h(i)

c , h(i)
s ) or (h(i)

s , h(i)
c )
}

, i = 1, 2, (2.12)

generated by the new functions ω, ν. If, for i = 1 or 2, Ω
(i)
A is strictly convex, which implies

that I ′′(h) has at most two zeros, one then has a control on the number of zeros of I(h).
However, difficulties arise in the present case due to the existence of a point of inflection

on Ω
(2)
A for all A ∈ (0, 1] (see Section 5).

As in [5], we will study the curves Σ
(i)
A and Ω

(i)
A simultaneously by identifying the

(P,Q)-plane with the (ω, ν)-plane. Consider

L
(i)
T =

{
Lα,β : Lα,β is tangent to Σ

(i)
A at a point on Σ

(i)
A

}
. (2.13)
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The key point is to show that any Lα,β ∈ L
(i)
T cuts Ω

(i)
A at a unique point, and the

crossing is transversal. This will imply that the curvature of Σ
(i)
A is everywhere non-zero.

For otherwise, some Lα,β ∈ L
(i)
T would be tangent to Σ

(i)
A at a point with tangency at least

three. Then I(h) must have at least four zeros, counting the multiplicity, since I(h
(i)
c ) = 0.

Hence I ′′(h) admits at least two zeros for h 6= h
(i)
c , i.e., Lα,β cuts Ω

(i)
A at more than one

point, a contradiction.

The analysis of course depends on the geometric nature of Ω
(i)
A . At first glance, the

study of Ω
(i)
A seems no easier than that of Σ

(i)
A . Nevertheless, ν(h) can be expressed as a

function of h and ω(h), and ω(h) satisfies a Riccati equation. In this way, the study of Ω
(i)
A

can be made within a 2-dimensional system. The upshot is that we can re-write (2.11) as

I ′′(h) = kI ′′0 (h)(h − h∗)(ω(h) − U(h)), (2.14)

where k, h∗ are constants depending on A, α and β, and, U(h) is a ratio of two linear

functions of h which also depends on A, α and β. Let C
(i)
ω and CU be curves in the

(h, ω)-plane defined by ω = ω(h) and ω = U(h) respectively. We further show that for

Lα,β ∈ L
(1)
T and A ∈ (0, 1], C

(1)
ω is always strictly increasing and it intersects only one

branch of CU , which is always strictly decreasing, and, they do not intersect at h∗ (see

Section 5). It follows that I ′′(h) admits a unique zero, i.e., Lα,β ∈ L
(1)
T cuts Ω

(1)
A at a

unique point, and the crossing is transversal. This shows the convexity of Σ
(1)
A .

The study of Σ
(2)
A varies with respect to two parameter ranges of A. It will be shown

in Section 5 that there is a value Ā ≈ 0.8177, which is the unique root of the equation

7A3 − 63A2 + 141A − 77 = 0 (2.15)

for A ∈ (−∞,−1) ∪ (0, 1] such that the behavior of Ω
(2)
A (as well as Ω

(1)
A ) is as shown in

Figures 5(a) and 5(b), depending on whether A ≥ Ā or A < Ā.

More precisely, if A ∈ [Ā, 1], then the analysis is completely similar to that of Σ
(1)
A .

If A ∈ (0, Ā), then C
(2)
ω has a unique maximum which corresponds to the turning point

N̄ ∈ Ω
(2)
A and divides Ω

(2)
A into two parts Ω

(21)
A ∪Ω

(22)
A with Ω

(22)
A being convex. Moreover,

the upper end point N2 of Ω
(2)
A precisely meets the tangent line of Σ

(2)
A at M2 and is

always above all other Lα,β ∈ L
(2)
T , while the lower end point of Ω

(2)
A is always below

any Lα,β ∈ L
(2)
T since (ω, ν)(h) → (0,−∞) as h → 0. Thus, #(Lα,β ∩ Ω

(21)
A ) ≤ 1 and

#(Lα,β ∩Ω
(22)
A ) ≤ 1, which imply that #(Lα,β ∩Ω

(2)
A ) = 1 since this number must be odd.

The convexity of Ω
(22)
A will be shown using an argument of variation of the parameter

A. The ideas are as follows. We first show the convexity of Ω
(22)
A near N2 for all A ∈ (0, Ā)

(it is obvious that Ω
(22)
A is always convex near N̄), and, for a particular A, say A = 1

2 ,

Ω
(22)
1/2 is globally convex. If there is a A′ such that Ω

(22)
A′ is not convex, then it must admit

at least two points of inflection. Varying A from 1
2 to A′, we then find a Â ∈ (1

2 , A′) such

that Ω
(22)

Â
has a quadruple or higher order degenerate point. But as both XH and the

perturbation are quadratic, this is impossible (see Section 5 for more details).
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Figure 5 The behavior of Ω
(i)
A

3 Basic properties

3.1 The monotonicity of P (h)

Lemma 3.1 For H(x, y) in (1.4), we have that P ′(h) 6= 0 for all h ∈ (h
(i)
c , h

(i)
s ) or

(h
(i)
s , h

(i)
c ).

Proof: Consider a perturbation of XH as follows

{
ẋ = 2xy,
ẏ = −3Ax2 + 6(A − 1)x − 3(A − 2) − y2 + δ(α + βx)y,

(3.1)

where α, β are constants, δ is a small parameter. Since the quadratic system (3.1) has
an invariant line {x = 0}, it has at most one limit cycle, and, this limit cycle must be
hyperbolic, if it exists ([3],[17]). Hence the corresponding Abelian integral

I(h) = αI0(h) + βI1(h) = I0(h)(α + βP (h)) (3.2)

has at most one zero, counting multiplicity, i.e., P ′(h) 6= 0.
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3.2 Rescaling of parameters

Using rescaling, we can make γ = 1 and A ∈ (0, 1].
By using Lemma 3.1 and comparing (2.3) with (3.2), we see that if γ = 0, then the

Abelian integral I(h) has at most one zero, which is simple if it exists. So throughout the
rest of the paper, we will assume that γ 6= 0 and re-scale it to 1. The fact that γ 6= 0 can
be explained from a different point of view. If we add a perturbation term δx−1y to the
second equation of (3.1), then the bifurcation diagram in (α, β, γ)-space has a cone-like
structure (see [6], Section 2). Therefore, it is sufficient to consider the intersection of the
bifurcation diagram with the half sphere

{
α2 + β2 + γ2 = 1, γ ≥ 0

}
. Then the equator

γ = 0 corresponds to the heteroclinic (and homoclinic) bifurcation – a case which we do
not treat in this paper.

For A ∈ (1, 2), we consider the following rescaling:

x =
A − 2

A
u, y =

√
2 − A

A
v, dt =

√
A

2 − A
dτ.

Then the form of the unperturbed part of (3.1) remains unchanged if we replace A ∈ (1, 2)
by 2 − A ∈ (0, 1), and (x, y, t) by (u, v, τ). Therefore, throughout the rest of paper, we
will assume without loss of generality that A ∈ (0, 1].

3.3 The Picard-Fuchs and Riccati equations

By using a standard procedure (see [10]), we have the following Picard-Fuchs equation for
(I0(h), I1(h), I−1(h)):




1 0 0
0 4A 0
0 −3(A − 1) 2A







I−1

I0

I1


 = M




I ′−1

I ′0
I ′1


 , (3.3)

where

M =




3h −6(A − 2) 3(A − 1)
−3(A − 1)h 6Ah −3(A − 3)(A + 1)
2(A − 2)h −4(A − 1)h 2Ah


 .

A straightforward computation shows that (3.3) is equivalent to

G(h)
d

dh




I0

I1

I−1


 =




a00 a01 a02

a10 a11 a12

a20 a21 a22







I0

I1

I−1


 , (3.4)

where

G(h) = 6h(h − (A − 3))(A2h − (A + 1)(A − 2)2),

a00 = 4A2h2 − 2(A − 1)(2A2 − 4A − 9)h,
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a01 = −12Ah,

a02 = A(A − 1)h2 − (A + 1)(A − 2)(A − 3)h,

a10 = −A(A − 1)h2 + (A − 2)(A2 − 2A + 9)h,

a11 = 6A2h2 − 6A(A − 1)(A − 2)h,

a12 = 2h2,

a20 = A(9A2 − 18A + 1)h − 9(A2 − 1)(A − 2)(A − 3),

a21 = −6A2(A − 1)h + 6A(A + 1)(A − 2)(A − 3),

a22 = 2A2h2 − 2(A2 − 1)(A − 3)h.

Using (2.5) and (3.4), we then obtain the following differential equations for (h, P,Q):




ḣ = G(h),

Ṗ = a10 + a11P + a12Q − P (a00 + a01P + a02Q),

Q̇ = a20 + a21P + a22Q − Q(a00 + a01P + a02Q).

(3.5)

Differentiating (3.3) with respect to h, we have



−2 0 0
3(A − 1) −2A 0
−2(A − 2) (A − 1) 0







I ′−1

I ′0
I ′1


 = M




I ′′−1

I ′′0
I ′′1


 (3.6)

in which the variable I ′1 is already eliminated. By further removing I ′
−1 and I ′0 in (3.6),

we then have

I ′′−1 = (− 4A(A − 1)

(A + 1)(A − 3)
+

6(A − 2)

h
)I ′′0 + (

8A2

(A + 1)(A − 3)
− 9(A − 1)

h
)I ′′1 , (3.7)

which, when substituting into (2.10), yields

ν(h) =
(8A2h − 9(A2 − 1)(A − 3))ω(h) − 4A(A − 1)h + 6(A + 1)(A − 2)(A − 3)

(A + 1)(A − 3)h
. (3.8)

By differentiating (3.6) with respect to h one more time and also substituting (3.7)
back to (3.6), we obtain the following equation for (I ′′

0 , I ′′1 ):

T (h)
d

dh

(
I ′′0
I ′′1

)
=

(
b00 b01

b10 b11

)(
I ′′0
I ′′1

)
, (3.9)

where

T (h) = (A + 1)(A − 3)G(h),

b00 = −4A2(3A2 − 6A − 5)h2 + 6(A2 − 1)(A − 3)(3A2 − 6A − 5)h

− 6(A + 1)2(A − 2)2(A − 3)2,

b01 = 8A3(A − 1)h2 − A(A + 1)(A − 3)(17A2 − 34A − 3)h

+ 9(A − 1)(A − 2)(A + 1)2(A − 3)2,

b10 = −A(A − 1)(A2 − 2A + 5)h2 + (A − 2)(A + 1)2(A − 3)2h,

b11 = −2A2(3A2 − 6A − 17)h2 + 6(A − 1)(A + 1)2(A − 3)2h.

12



Finally, from (2.10) and (3.9), we obtain the following Riccati equation for (h, ω):

{
ḣ = T (h),
ω̇ = −b01ω

2 + (b11 − b00)ω + b10 = φ(h, ω).
(3.10)

4 Local behaviors of Σ
(i)
A and Ω

(i)
A

In the sequel, for simplicity, we sometimes suspend the up-script (i) on ΣA, ΩA, P (h),
Q(h), etc. if there is no confusion.

Consider the following equation associated to the Hamiltonian (1.4):

{
ẋ = 2xy,
ẏ = −3(A − 2) + 6(A − 1)x − 3Ax2 − y2.

(4.1)

For A ∈ (0, 1], the system (4.1) clearly has two centers C1 = (1, 0) and C2 = (A−2
A , 0), two

saddle points S1 = (0,
√

3(2 − A)) and S2 = (0,−
√

3(2 − A)) (see Figure 2). In this case,
we have hS1 = hS2 = 0, and,

h1 = hC1 = A − 3 < 0, h2 = hC2 =
(A + 1)(A − 2)2

A2
> 0. (4.2)

It follows from (2.9) that

(P (h), Q(h)) → (1, 1), as h → h1;

(P (h), Q(h)) →
(

A − 2

A
,

A

A − 2

)
, as h → h2.

(4.3)

It is not difficult to see that the linearized matrix of (3.5) at the singularity (h, P,Q) =
(h1, 1, 1) reads

B = 24(−A + 3)




1 0 0
− 1

12 (A + 1) −1 0
− 1

12 (A + 3) 0 −1




which clearly has a simple eigenvalue 24(−A + 3). We are interested in the unstable
manifold W u = {(h, P (1)(h), Q(1)(h))} of (3.5) at the singularity (h, P,Q) = (h1, 1, 1)

associated to the simple eigenvalue 24(−A + 3), as Σ
(1)
A is just the projection of W u onto

the (P,Q)-plane. Consider the expansions

h = h1 + t,

P = 1 + a1t +
1

2
a2t

2 + · · · ,

Q = 1 + b1t +
1

2
b2t

2 + · · ·
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and substitute them into (3.5). We then obtain (a1, b1), (a2, b2) successively, which gives
that

P ′(h1) = a1 = − 1
24(A + 1),

Q′(h1) = b1 = 1
24(A + 3),

P ′′(h1) = a2 = − 1
10368 (A + 1)(55A2 − 18A + 63),

Q′′(h1) = b2 = 1
10386 (55A3 + 147A2 + 369A + 549).

(4.4)

Hence,

dQ

dP

∣∣∣∣
h1

=
Q′(h1)

P ′(h1)
= −A + 3

A + 1
,

d2Q

dP 2

∣∣∣∣∣
h1

=
Q′′(h1)P ′(h1) − Q′(h1)P ′′(h1)

(P ′(h1))3
=

20

A + 1
.

A similar analysis can be made at the singularity (h2,
A−2

A , A
A−2).

Summarizing up, we have the following result.

Lemma 4.1 For A ∈ (0, 1] and (P,Q)(h) ∈ Σ
(i)
A , i = 1, 2, we have

dQ

dP

∣∣∣∣
h1

= −A + 3

A + 1
,

d2Q

dP 2

∣∣∣∣∣
h1

=
20

A + 1
,

dQ

dP

∣∣∣∣
h2

= − A2(A − 5)

(A − 3)(A − 2)2
,

d2Q

dP 2

∣∣∣∣∣
h2

= − 20A3

(A − 3)(A − 2)3
.

We now turn to system (3.10). There are six distinct singularities: three saddles
(h1, ω1), (0, ω0), (h2, ω2) and three nodes (h1, 1), (0, 0), (h2, ω

′
2), where






ω1 =
5A2 − 6A − 3

5A2 + 6A + 9
, ω0 =

2(A − 2)

3(A − 1)
,

ω2 =
(A − 2)(5A2 − 14A + 5)

A(5A2 − 26A + 41)
, ω′

2 =
A − 2

A
.

(4.5)

Clearly, ω1 < 0, ω0 > 0, ω′
2 < 0 and ω2 − ω′

2 > 0 for all A ∈ (0, 1]. Since as h → hi the
level curve Γh shrinks to the center Ci, I ′′′0 (h) is bounded for h near hi. Let h → hi. It
follows from the first equation of (3.9) that

lim
h→hi

ω(h) = lim
h→hi

−b00

b01
= ωi, i = 1, 2. (4.6)

Hence, C
(1)
ω = {(h, ω(h)) : h ∈ (h1, 0)} (resp. C

(2)
ω = {(h, ω(h)) : h ∈ (0, h2)}) is the stable

manifold of (3.10) at the saddle point (h1, ω1) (resp. (h2, ω2)).
By using a similar argument as for Lemma 4.1, we have the following.
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Lemma 4.2 For all A ∈ (0, 1] and (h, ω)(h) ∈ Ω
(i)
A , i = 1, 2,

ω′(h1) =
5(A + 1)(A − 3)p11(A)

24(5A2 + 6A + 9)2
> 0,

ω′′(h1) =
5(A + 1)(A − 3)p12(A)

10368(5A2 + 6A + 9)3
,

ω′(h2) =
5A(A + 1)(A − 3)p21(A)

24(A − 2)(5A2 − 26A + 41)2
,

ω′′(h2) = − 5A3(A + 1)(A − 3)p22(A)

10368(A − 2)3(5A2 − 26A + 41)3
,

where p21(A) is the left hand side of (2.15), and

p11(A) = 7A3 + 21A2 − 27A − 9,

p12(A) = 1925A7 + 8967A6 + 31689A5 + 27027A4 − 85617A3 − 41067A2

− 11421A − 5103,

p22(A) = 1925A7 − 35917A6 + 300993A5 − 1420937A4 + 3910879A3 − 6074679A2

+ 4780955A − 1389619.

A straightforward computation using Lemma 4.2 and (3.8) yields the following.

Lemma 4.3 For all A ∈ (0, 1] and (ω, ν)(h) ∈ Ω
(i)
A , i = 1, 2,

dν

dω

∣∣∣∣
h1

= − q11(A)

(A + 1)(A − 3)p11(A)
> 0,

d2ν

dω2

∣∣∣∣∣
h1

= − 28(5A2 + 6A + 9)3q12(A)

5(A + 1)(A − 3)(p11(A))3

dν

dω

∣∣∣∣
h2

= − A2q21(A)

(A + 1)(A − 3)(A − 2)2p21(A)
,

d2ν

dω2

∣∣∣∣∣
h2

=
28A3(5A2 − 26A + 41)3q22(A)

5(A + 1)(A − 3)(A − 2)3(p21(A))3
,

where

q11(A) = 7A5 + 21A4 − 450A3 − 990A2 − 837A − 567,

q12(A) = 55A4 + 204A3 + 162A2 − 324A − 81,

q21(A) = 7A5 − 91A4 − 2A3 + 2626A2 − 8965A + 9241,

q22(A) = 55A4 − 644A3 + 2076A2 − 4532A + 2431.
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Remark 4.1 For A ∈ (−∞,−1) ∪ (0, 1], the polynomials pij, qij have real roots approxi-
mately as follows, p11(A): Ã ≈ −3.9037 and −0.2785; p12(A): −2.563 and −0.4462; p22(A):
0.6422; q11(A): −8.6919 and −1.466; q12(A): −0.2306 and 0.9802; q21(A): −5.814; q22(A)
has no real root in this region.

5 Global behaviors of C (i)
ω and Σ

(i)
A

We first study some global properties of

C(1)
ω ∪ C(2)

ω = {(h, ω(h)) : h ∈ (h1, 0) ∪ (0, h2)} .

Observe that the function φ defined in (3.10) is a polynomial of h and ω both of order 2,
and moreover,

φ(h1, ω) = k1(ω − 1)(ω − ω1),
φ(0, ω) = k2ω(ω − ω0),
φ(h2, ω) = k3(ω − ω2)(ω − ω′

2),
(5.1)

where ki, i = 1, 2, 3, are non-zero constants depending on A. Hence each branch of the 0-
clines (i.e. the curves (h, ω0(h)) in (h, ω)-plane defined by φ(h, ω) = 0) of (3.10) meets the
lines {h = h1}, {h = 0} and {h = h2} only at the singularities of (3.10), and the crossings
are all transversal. From (3.10), we also see that, for h ∈ (h1, h2),

φ(h, 0) = k∗
1h(h − h∗

1), h∗
1 > 0,

φ(h, ω1) = k∗
2(h − h1)(h − h∗

2), h∗
2 /∈ (h1, 0),

φ(h, ω0) = k∗
3h(h − h∗

3), h∗
3 < 0,

φ(h,
ω′

2h
2h2

) = k∗
4hΦ(h,A),

(5.2)

where k∗
i , i = 1, 2, 3, 4, are non-zero constants, Φ(h,A) = m3h

3 + m2h
2 + m1h + m0, and,

m3 = 8A5(A − 1) < 0,

m2 = −A3(A + 1)(29A3 − 133A2 + 175A − 47),

m1 = A(A − 1)(A − 2)(A + 1)2(37A3 − 190A2 + 237A + 32) > 0,

m0 = −4(4A + 1)(A − 3)2(A + 1)3(A − 2)3 > 0.

We claim that Φ(h,A) 6= 0 for h ∈ (0, h2). Since Φ(0, A) = m0 > 0 and Φ(h2, A) =
2
A(A + 1)3(A − 2)3(5A2 − 2A − 31) > 0, Φ(h,A) must admit an even number of zeros for
h ∈ (0, h2), and, since Φ(h2, A) > 0 and m3 < 0 there is a zero of Φ(h,A) for h ∈ (h2,∞).
Thus, if Φ(h,A) has two zeros for h ∈ (0, h2), then Φ′

h(h,A) should have at least two zeros
for h ∈ (0,∞), a contradiction to the fact that m1m3 < 0.

It is not difficult to find that the slopes of the 0-clines of (3.10) at the singularities
(h1, ω1), (0, 0) and (h2, ω2) are

ω′
01 = 2ω′(h1) > 0, ω′

00 > 0, ω′
02 = 2ω′(h2) (5.3)
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respectively, where ω′(h1) and ω′(h2) are as in Lemma 4.2.

The first two formulas in each of (5.1)–(5.3) together imply that there is a branch C
(1)
0

of the 0-clines of system (3.10) connecting the points (h1, ω1) and (0,0). Since ω1 < 0 and

ω′
01 > 0, we claim that C

(1)
0 must be strictly increasing with respect to h for all A ∈ (0, 1].

For otherwise, we would find a horizontal line {ω = ω} which cuts C
(1)
0 for at least three

times. This contradicts the fact that φ(h, ω) is a polynomial of h of order 2. Similarly,

the last two formulas in each of (5.1)–(5.3) together imply the existence of a branch C
(2)
0

of the 0-clines of (3.10) which connects the singularities (0, 0) and (h2, ω2). From (4.5) we

see that ω′
2 < 0 and ω2 − ω′

2
2 > 0. By the same argument as above, we conclude that if

A ≥ Ā, where Ā ≈ 0.8177 is the unique root of p21(A) for A ∈ (0, 1], then C
(2)
0 is also

strictly increasing; and, if A < Ā, then C
(2)
0 has a unique extremum point, which must be

a maximum point, see Figures 6(a) and 6(b).

ω

ω

2

ω2
,

Cω
(2)

C(2)
0

C 0

(1)

Cω
(1)

hh 21

0

ω1

ω0

h

(a) The case A ∈ [Ā, 1]

ω

C

2
,

Cω
(1)

hh 21

0

ω1

ω0

h

ω

ω2

Cω
(2)

C0

(2)

0

(1)

(b) The case A ∈ (0, Ā)

Figure 6 The behavior of C
(i)
0 and C

(i)
ω

Now, by using (5.2), the first and third formulas of (5.3), the monotone property of

C
(i)
0 , and the fact that (0, 0) is an improper node of (3.10), we immediately obtain the

following.

Lemma 5.1 C
(1)
ω is the stable manifold of (3.10) from the saddle (h1, ω1) to the node

(0, 0) which stays in the region {(h, ω) : h1 < h < 0, ω1 < ω < 0} and is strictly increasing

with respect to h for all A ∈ (0, 1]; C
(2)
ω is the stable manifold of (3.10) from the saddle

(h2, ω2) to the node (0, 0) which stays in the region
{

(h, ω) : 0 < h < h2,
ω2h
2h2

< ω < ω0

}
,

is strictly increasing with respect to h for all A ∈ [Ā, 1], and has a unique extremum (in

17



fact, maximum) point for all A ∈ (0, Ā).

Next, substituting (3.8) into (2.11), we have that

I ′′(h) =
I ′′0 (h)

h
(ξh + 6(A − 2) + (ηh − 9(A − 1))ω(h)), (5.4)

where

ξ = α − 4A(A − 1)

(A + 1)(A − 3)
, η = β +

8A2

(A + 1)(A − 3)
. (5.5)

If
L0 = 3(A − 1)α + 2(A − 2)β + 4A = 0, (5.6)

then

ξh + 6(A − 2) = −2(A − 2)

3(A − 1)
(ηh − 9(A − 1)),

and, (5.4) becomes

I ′′(h) =
I ′′0 (h)

h
(ηh − 9(A − 1))(ω(h) − ω0), (5.7)

where ω0 is as in (4.5). By Lemma 5.1, (C
(1)
ω ∪ C

(2)
ω ) ∩ {(h, ω) : ω = ω0} = ∅. Hence, by

(5.7), if η = 0, then I ′′(h) 6= 0 for all (h, ω) ∈ C
(1)
ω ∪ C

(2)
ω ; and, if η 6= 0 and I ′′(h∗) = 0,

where

h∗ =
9(A − 1)

η
=

9(A2 − 1)(A − 3)

(A + 1)(A − 3)β + 8A2
, (5.8)

then h = h∗ is the unique zero of I ′′(h) which is also simple.
If L0 6= 0 and (ηh− 9(A− 1)) = 0, then ξh + 6(A− 2) 6= 0, and I ′′(h) 6= 0. In the case

that (ηh − 9(A − 1)) 6= 0, i.e. h = h∗ is not a zero of I ′′(h) for η 6= 0, we rewrite (5.4) as

I ′′(h) =
1

h
I ′′0 (h)(ηh − 9(A − 1))(ω(h) − U(h)), (5.9)

where

U(h) = − ξh + 6(A − 2)

ηh − 9(A − 1)
. (5.10)

We note that

U ′(h) =
3(A + 1)2(A − 3)2L0

(ηh − 9(A − 1))2
, (5.11)

where L0 is as in (5.6). Let CU = {(h, ω) : ω = U(h)}. If η = 0, then CU is a straight line,
and, if η 6= 0, then CU consists of two strictly monotone branches which admit the same
vertical asymptote {h = h∗} and the same horizontal asymptote {ω = ω∗}, where

ω∗ = − ξ

η
= −(A + 1)(A − 3)α − 4A(A − 1)

(A + 1)(A − 3)β + 8A2
. (5.12)

It is clear that #(Lα,β∩Ω
(i)
A ) = #(C

(i)
ω ∩CU ) for Lα,β ∈ L

(i)
T , and this number is controlled

by the number of points on CU at which the vector field (3.10) is tangent to CU . Thus,
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we need to consider the zeros of (−U ′(h), 1) · (ḣ, ω̇) along CU . Note that, by (3.10) and
(5.10), we have

ω̇ − U ′(h)ḣ|ω=U(h) =
h(n3h

3 + n2h
2 + n1h + n0)

(ηh − 9(A − 1))2
, (5.13)

where nj, j = 0, 1, 2, 3, are constants depending on A,α and β.

Lemma 5.2 For A = 1
2 , the curve Ω

(2)
1/2 has a unique point of inflection.

Proof: By taking A = 1
2 in (4.2), (4.5) and (3.8), we have that h2 = 27

2 , ω0 = 2,
ω2 = 1

13 , ω′
2 = −3, and

ν(h) = V (h, ω(h)) = −8h + 270 + (16h − 135)ω(h)

30h
. (5.14)

Hence by (3.10), (T (h))2(ν ′′(h)ω′(h) − ω′′(h)ν ′(h)) can be expressed as

TVhhφ + 2Vhωφ2 − Vh(Tφh + (φω − Th)φ) =
45λ(h, ω(h))

2048h2
,

where λ(h, ω) = l3ω
3 + l2ω

2 + l1ω + l0, and,

l3 = 1024h4 + 29916h3 + 524880h2 − 6506325h + 7381125,

l2 = 4416h4 + 122364h3 + 1125900h2 + 7709175h − 29524500,

l1 = 48h4 + 182052h3 + 2157840h2 + 13067325h + 29524500,

l0 = −2h(476h3 − 16056h2 + 181035h + 2460375).

Let

Cλ = {(h, µ(h)) : µ = µ(h) is defined by λ(h, µ) = 0 for h ∈ (0, h2)} .

Then the number of points of inflection of Ω
(2)
1/2 equals #(C

(2)
ω ∩ Cλ). Since

λ(0, ω) = 7381125ω(ω − 2)2,

λ(
27

2
, ω) = 9447840(13ω − 1)(ω + 3)2,

λ(h, 2) = 6250h2(2h + 45)2,

λ(h, 0) = −2h(476h3 − 16056h2 + 181035h + 2460375) 6= 0, for h ∈ (0,
27

2
),

it follows from Lemma 5.1 and the same analysis as we did for the 0-clines of (3.10) that

there is a unique branch of Cλ in the region where C
(2)
ω exists. Moreover, both Cλ and

C
(2)
ω share the same end points (0, 0) and ( 27

2 , 1
13). At (0, 0), C

(2)
ω and Cλ have slopes ∞

and 1
6 respectively; while at ( 27

2 , 1
13), they have the same slope – 475

73008 , but Cλ has a bigger
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second derivative. Hence #(C
(2)
ω ∩ Cλ) ≥ 1. A straightforward calculation shows that the

equations 




λ(h, ω) = 0,

∂λ

∂h
ḣ +

∂λ

∂ω
ω̇|(3.10) = 0

(5.15)

admit a unique solution for h ∈ (0, 27
2 ), ω ∈ (0, 2) at (h, ω) ≈ (2.469, 0.180). By the saddle

property of (3.10) at ( 27
2 , 1

13), if #(C
(2)
ω ∩Cλ) ≥ 2, then there would be at least two points

on Cλ at which the vector field (3.10) is tangent to Cλ, i.e., (5.15) would admit at least

two solutions, a contradiction. Thus, #(C
(2)
ω ∩ Cλ) = 1.

Lemma 5.3 Let Ω
(22)
A be the portion of Ω

(2)
A from N2 to N̄ (see Figure 5(b)). Then Ω

(22)
A

is convex with negative curvature for all A ∈ (0, Ā).

Proof: By Lemma 5.1, ω(h) > 0 for 0 < h � 1 and limh→0+0 ω(h) = 0. Hence by

(3.8) limh→0+0 ν(h) = −∞, i.e., {ω = 0} is an asymptote of Ω
(2)
A . On the other hand, C

(2)
ω

has a maximum point for A ∈ (0, Ā), which implies the existence of a turning point N̄

on Ω
(2)
A (see Figure 5(b)). It follows that Ω

(2)
A has at least one point of inflection lying on

Ω
(2)
A \Ω

(22)
A . Thus, by Lemma 5.2, Ω

(22)
1/2 has no point of inflection. By Lemma 4.3 we have

d2ν
dω2

∣∣∣
Ω

(2)
A

< 0 for all A ∈ (0, Ā) and h near h2. If for some A′ ∈ (0, Ā), Ω
(22)
A′ has a point

of inflection, then it must have at least two, because the convexity near two end-points

of Ω
(22)
A are the same and remain unchanged for all A ∈ (0, Ā). Using the smoothness of

the vector field, we let A vary from 1
2 to A′. Then there must be a value Â in between

1
2 and A′ such that Ω

(22)

Â
has non-zero curvature except at a possible quadruple or higher

order degenerate point (ω, ν)(ĥ), ĥ ∈ (0, h2). This means that if Lα̂,β̂ is the tangent line

of Ω
(22)

Â
at (ω, ν)(ĥ) (hence β̂ = − ν′(ĥ)

ω′(ĥ)
), then CÛ (with this (α̂, β̂)) must meet C

(2)
ω at

the point (ĥ, ω(ĥ)) with tangency of order at least 4. Then by (5.13), for h 6= 0, CÛ and

C
(2)
ω have tangency at most 4. Hence along CÛ there is no other point at which the vector

field (3.10) is tangent to it. We now show that this is impossible. In fact, the convexity

of Ω
(22)

Â
and Lemma 4.3 imply that

β̂ = − ν ′(ĥ)

ω′(ĥ)
> − ν ′(h2)

ω′(h2)
≡ σ2 > 0.

Using Lemma 4.3 again, we have

(A + 1)(A − 3)β̂ + 8A2 < (A + 1)(A − 3)σ2 + 8A2

=
A2(A + 1)(A − 3)(7A3 − 77A2 + 241A − 251)

(A − 2)2(7A3 − 63A2 + 141A − 77)
,
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which is negative for A ∈ (0, Ā). Hence, by (5.8), ĥ∗ < 0, which implies that only the

right branch of CÛ can meet with C
(2)
ω . On the other hand, we have

U(0) =
2(A − 2)

3(A − 1)
= ω0 > 0. (5.16)

Thus, if C
(2)
ω and CÛ have a tangent point of order 4, then there are only two possibil-

ities: a) C
(2)
ω and CÛ have one more intersection point for h ∈ (0, h2) (see Figure 7(a)),

which then gives one more “tangent point” on CÛ with respect to the vector field (3.10),
a contradiction to (5.13); b) CÛ cuts {h = h2} above the saddle point (h2, ω2) (see Fig-
ure 7(b)), which also generates one more “tangent point” on CÛ by the saddle property,
a contradiction to (5.13) again. This completes the proof.

ω

^

ω

U

0

h

h2
0

C

Cω
(2)

The case (a)

ω

ω

^

0

C

h

h2
0

Cω
(2)

U

The case (b)

Figure 7 Hypothetical relative positions of C
(2)
ω and C

Û

6 Proof of main results

6.1 Proof of Theorem 1

As explained in Section 2, it suffices to prove Theorem 2.2. By Lemmas 3.1, 4.1 and (2.5),
we have that

P ′(h) < 0 for h ∈ (h1, 0) ∪ (0, h2),

P (1)(h) > P (0 − 0) > 0, Q(1)(h) > 0 for h ∈ (h1, 0),
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P (2)(h) < P (0 + 0) < 0, Q(2)(h) < 0 for h ∈ (0, h2),

lim
h→0−0

Q(1)(h) = ∞, lim
h→0+0

Q(2)(h) = −∞;

dQ

dP

∣∣∣∣
Σ

(i)
A

< 0, (−1)i+1 d2Q

dP 2

∣∣∣∣∣
Σ

(i)
A

> 0 for 0 < |h − hi| � 1, i = 1, 2.

Hence, if we can prove that the curves Σ
(i)
A , i = 1, 2, keep non-zero curvatures (i.e.

d2Q
dP 2

∣∣∣
Σ

(i)
A

6= 0) at all points, then Theorem 2.2 follows.

For this purpose, we will show that any straight line Lα,β ∈ L
(i)
T (see (2.13)) cuts Ω

(i)
A

at a unique point, and the crossing is transversal. This is equivalent to show that, for all
A ∈ (0, 1],

#(C(i)
ω ∩ CU ) = 1, i = 1, 2. (6.1)

Consider the multiple limit cycle bifurcation curve, defined in (α, β)-plane by

Σ̃
(i)
A = {(α, β) : Lα,β ∈ L

(i)
T } = {(α, β)(h) : Lα,β is tangent to Σ

(i)
A at (P,Q)(h) ∈ Σ

(i)
A },

where h ∈ (h1, 0) for i = 1 and h ∈ (0, h2) for i = 2. In other words, (α, β)(h) ∈ Σ̃
(i)
A

satisfies the equations {
α + βP (h) + Q(h) = 0,
βP ′(h) + Q′(h) = 0.

(6.2)

Applying the theory of Clairaut equation to the present case (see [6], Section 8, [5], (IV),

Lemma 4.5), Σ̃
(i)
A is the envelope of a family of straight lines {α + P (h)β + Q(h) = 0}

parameterized by h ∈ (h1, 0) for i = 1 and h ∈ (0, h2) for i = 2. If Σ
(i)
A is convex in

the (P,Q)-plane, then so is Σ̃
(i)
A in the (α, β)-plane; and, if Σ

(i)
A has a point of inflection,

then Σ̃
(i)
A has a cusp point for the corresponding value of h. Lemma 4.1, (6.2) and (4.3)

now imply that the curve Σ̃
(1)
A (resp. Σ̃

(2)
A ) is tangent to the Hopf bifurcation line L1 =

α+P (h1)β+Q(h1) = α+β+1 = 0 (resp. L2 = α+P (h2)β+Q(h2) = α+ A−2
A β+ A

A−2 = 0)
at the point H1 = (α1, β1) (resp. H2 = (α2, β2)) of Hopf bifurcation of order 2, where

α1 = −2(A+2)
A+1 , β1 = A+3

A+1 ,

α2 = − 2A(A−4)
(A−2)(A−3) , β2 = A2(A−5)

(A−3)(A−2)2 ;
(6.3)

and, as h slightly increases from h1 (resp. slightly decreases from h2), Σ̃
(1)
A (resp. Σ̃

(2)
A )

keeps its convexity and is located above the straight line {(α, β) : L1 = 0} (resp. {(α, β) :
L2 = 0}), again denoted by L1 (resp. L2), for (α, β) near H1 (resp. H2), since the absolute

value of the slope of Lα,β ∈ L
(i)
T , 1

|P (h)| , is increasing. It is easy to check from (5.6) and

(6.3) that Hi ∈ Li ∩ L0, i = 1, 2, as shown in Figure 8, where the relative positions of
L0, L1 and L2 are qualitatively the same for all A ∈ (0, 1] (when A = 1, L1 and L2 are
symmetric with respect to β−axis).

Thus, Σ̃
(i)
A also stays above L0 for 0 < |h − hi| � 1, which implies that U ′(h) < 0 for

(α, β) ∈ Σ
(i)
A but near Hi, i = 1, 2.
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Figure 8 The relative positions of L0, L1, L2, L3, Σ̃
(1)
A

and Σ̃
(1)
A

On one hand, using (5.5) and (5.6), it is easy to check that the point

H̄ = (
4A(A − 1)

(A + 1)(A − 3)
,

−8A2

(A + 1)(A − 3)
),

at which ξ = η = 0, is also located on the line L0 lying in between the points H1 and H2.

Hence for 0 < h−h1 � 1 and (α, β) ∈ Σ̃
(1)
A we have ξ < 0 and η > 0, which, together with

(5.12), implies that ω∗ > 0. On the other hand, C
(1)
ω is increasing, and, by Lemma 5.1,

stays below the ω axis. Hence, it can meet only one branch of CU , which is decreasing

since U ′(h) < 0. This yields that #(C
(1)
ω ∩CU ) ≤ 1. But since I(h1) = 0 for all A ∈ (0, 1],

if Lα,β ∈ L
(1)
T , then I ′′(h) must have a zero for some h̃1 ∈ (h1, hT ) (see Figure 9). It follows

that #(C
(1)
ω ∩ CU ) = 1 for (α, β) ∈ Σ̃

(1)
A near H1.

I (h)

h h

h

T1
~
h1

0

Figure 9 The behavior of I(h) for (α, β) ∈ Σ̃
(1)
A

As h increases, we have that (α, β)(h) ∈ Σ̃
(1)
A stays above L0, while ξ(h) and η(h) keep

negative and positive signs respectively. This implies (6.1) for all h ∈ (h1, 0) in the case
of i = 1.
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We have shown in the above that (α, β)(h) ∈ Σ̃
(2)
A stays above L2 (and L0) and admits

positive curvature for 0 < h2 − h � 1, hence α > α2 > 0, β > β2 > 0, ξ > 0. By (5.8),
(5.5) and (4.2)

h∗ − h2 = −(A + 1)2(β − β2)

A2η
> 0, if η < 0;

h∗ =
9(A − 1)

η
< 0, if η > 0.

Thus, by (5.10), if η = 0, then CU is a straight line with negative slope, and, if η 6= 0,

then only one branch of CU , which is strictly decreasing, can meet with C
(2)
ω . In any case,

by (5.16), this branch of CU will pass through the point (0, ω0).

By Lemma 5.1, if A ∈ [Ā, 1], then C
(2)
ω is strictly increasing and the same conclusion as

for Σ̃
(1)
A holds. If A ∈ (0, Ā), then C

(2)
ω is divided into two parts C

(21)
ω ∪C

(22)
ω by the max-

imum point (h̃, ω(h̃)), where C
(21)
ω (resp. C

(22)
ω ) is strictly increasing (resp. decreasing),

hence
#(C(21)

ω ∩ CU) ≤ 1. (6.4)

It remains to show that
#(C(22)

ω ∩ CU) ≤ 1. (6.5)

Since #(C
(22)
ω ∩ CU ) = #(Lα,β ∩ Ω

(22)
A ) for Lα,β ∈ L

(2)
T , and Ω

(22)
A is convex with negative

curvature (Lemma 5.3), we only need to show that the endpoint N2 = (ω(h2), ν(h2)) of

Ω
(22)
A is always above Lα,β ∈ L

(2)
T as in Figure 5(b).

Consider

U(h2) − ω2 = − L3

A(A − 2)(5A2 − 26A + 41)(β − β2)
, (6.6)

where

L3 = A(A − 2)(5A2 − 26A + 41)α + (A − 2)2(5A2 − 14A + 5)β + A2(5A2 − 38A + 101).

A straightforward calculation shows that the straight line {(α, β) : L3 = 0}, again denoted
by L3, also passes through the point H2, and, the slope of which, if positive, is bigger than

the slope of L2 (see Figure 8). If Lα,β ∈ L
(2)
T , then the unique zero of I ′′(h) cannot vanish

at h = h2 (see Figure 10). Hence Σ̃
(2)
A must stay to the right of L3, which, by (6.6), implies

that U(h2) − ω2 < 0, i.e., in the (α, β)-plane, N2 is above the straight line Lα,β ∈ L
(2)
T for

A ∈ (0, Ā) and 0 < h2 − h � 1.

Finally, since limh→0+0(ω(h), ν(h)) = (0,−∞), we have that #(C
(2)
ω ∩ CU ) is odd,

which, together with (6.4) and (6.5) implies (6.1) for i = 2 and 0 < h2 − h � 1. As h
decreases, all conditions above remain unchanged and the same conclusion holds for all
h ∈ (0, h2).

6.2 Proof of Theorem 2

As the basic idea of the proof for Theorem 2 is the same as that for Theorem 1, we will
mainly indicate the differences between these two.
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h
~
h h0

(h)

2 2Th

I

Figure 10 The behavior of I(h) for (α, β) ∈ Σ̃
(2)
A

For A ∈ (−∞,−1), system (4.1) has a center at (1, 0), corresponding to h1 = A−3 < 0,
and three saddle points, two of which are on the invariant line {x = 0} and the third one

is at (A−2
A , 0), corresponding to h2 = (A+1)(A−2)2

A2 < 0 (see Figure 3). In this case, we have

h1 < h2 < 0. (6.7)

Using (2.5), Lemma 3.1 and (4.4), we obtain the following.

Lemma 6.1 P (h), Q(h), P ′(h) > 0 for all A ∈ (−∞,−1) and h ∈ (h1, h2).

Similarly to Lemma 4.1, we also have the following.

Lemma 6.2 If A ∈ (−∞,−1) and (P,Q)(h) ∈ ΣA, then

dQ

dP

∣∣∣∣
h1

= −A + 3

A + 1
,

d2Q

dP 2

∣∣∣∣∣
h1

=
20

A + 1
< 0.

For A ∈ (−∞,−1), system (3.10) has three saddle points at (h1, ω1), (h2, ω2) and
(0, ω0); and three nodes at (h1, 1), (h2, ω

′
2) and (0, 0), where ω1, ω2 and ω′

2 are as in (4.5).
But in this case, we have that

ω1 − 1 =
−12(A + 1)

5A2 + 6A + 9
> 0, ω′

2 − ω2 =
−12(A − 2)(A − 3)

A(5A2 − 26A + 41)
> 0.

Therefore, similar to Lemma 5.1, we have the following.

Lemma 6.3 Cω is the unstable manifold of (3.10) from the saddle (h1, ω1) connecting to

the node (h2, ω
′
2). It is strictly decreasing for A ∈ (−∞, Ã] and has a unique extremum

(in fact, a maximum) point for A ∈ (Ã,−1), where Ã ≈ −3.9037 is as in Remark 4.1.

Like the treatment for Ω
(2)
A in the proof of Theorem 1, when A ∈ (Ã,−1), we divide

ΩA into two parts Ω
(+)
A ∪Ω

(−)
A , corresponding to the increasing and decreasing part of Cω

respectively. Then similar to Lemma 5.3, we have the following.
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Lemma 6.4 Ω
(+)
A is convex with negative curvature for all A ∈ (Ã,−1).

If we denote k0 as the slope of L0 (see (5.6)), then

k0 + 1 = − (A + 1)

2(A − 2)
< 0 for A < −1.

α

β

ΣΑ

0

∼

L L01

H1

Figure 11 The relative positions of L0, L1 and Σ̃A for A ∈ (−∞,−1)

Instead of Figure 8, the relative positions of L0 and L1 are now shown in Figure 11.
Since 1

|P (h)| is decreasing as h increases from h1, Σ̃A stays below L1 and is tangent to L1 at

H1 for 0 < h−h1 � 1. Hence Σ̃A also stays below L0, which implies that U ′(h) > 0. The
remaining proof of Theorem 2 is completely the same as for Theorem 1. The behaviors of
ΣA in the (P,Q)-plane and ΩA in the (ω, ν)-plane are shown in Figure 12, where the two
planes are identified.
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(a) The case A ∈ (−∞, Ã]
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(b) The case A ∈ (Ã,−1)

Figure 12 The behavior of ΣA and ΩA for A ∈ (−∞,−1)
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