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SUMMARY 

  

The following dissertation investigates the development of a methodology suitable for the 

evaluation of advanced propulsion concepts.  At early stages of development, both the 

future performance of these concepts and their requirements are highly uncertain, making 

it difficult to forecast their future value.  Developing advanced propulsion concepts 

requires a huge investment of resources.  The methodology was developed to enhance the 

decision-makers understanding of the concepts, so that they could mitigate the risks 

associated with developing such concepts.     

 A systematic methodology to identify potential advanced propulsion concepts and 

assess their robustness is necessary to reduce the risk of developing advanced propulsion 

concepts.  Existing advanced design methodologies have evaluated the robustness of 

technologies or concepts to variations in requirements, but they are not suitable to 

evaluate a large number of dissimilar concepts.  Variations in requirements have been 

shown to impact the development of advanced propulsion concepts, and any method 

designed to evaluate these concepts must incorporate the possible variations of the 

requirements into the assessment.  In order to do so, a methodology was formulated to be 

capable of accounting for two aspects of the problem.  First, it had to systemically 

identify a probabilistic distribution for the future requirements.  Such a distribution would 

allow decision-makers to quantify the uncertainty introduced by variations in 

requirements.  Second, the methodology must be able to assess the robustness of the 

propulsion concepts as a function of that distribution.   
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 This dissertation describes in depth these enabling elements and proceeds to 

synthesize them into a new method, the Evolving Requirements Technology Assessment 

(ERTA).  As a proof of concept, the ERTA method was used to evaluate and compare 

advanced propulsion systems that will be capable of powering a hurricane tracking, High 

Altitude, Long Endurance (HALE) unmanned aerial vehicle (UAV).  The use of the 

ERTA methodology to assess HALE UAV propulsion concepts demonstrated that 

potential variations in requirements do significantly impact the assessment and selection 

of propulsion concepts.  The proof of concept also demonstrated that traditional 

forecasting techniques, such as the cross impact analysis, could be used to forecast the 

requirements for advanced propulsion concepts probabilistically.  “Fitness”, a measure of 

relative goodness, was used to evaluate the concepts.  Finally, stochastic optimizations 

were used to evaluate the propulsion concepts across the range of requirement sets that 

were considered.   
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1 INTRODUCTION 

 

Scientists and meteorologists are searching for new means of obtaining data from 

hurricanes, in hopes of improving the accuracy of hurricanes’ forecasts.  “Hurricane 

Hunters” currently fly directly into the storm to gather data, but they are expensive and 

do not have the endurance required to monitor the storm continuously.  Satellites are not 

capable of accurately measuring important indicators, such as barometric pressure and 

wind speed.  High-Altitude, Long-Endurance (HALE) unmanned aerial vehicles (UAV) 

could potentially fill this void, but the concept needs further development before could do 

so.  One technological obstacle hindering the development of such vehicles is that 

existing propulsion systems consume too much fuel to enable the vehicles’ required 

endurance.  Numerous propulsion concepts have been proposed, but the uncertainty 

surrounding the future concepts’ performance and the specific vehicle requirements and 

characteristics make it difficult for decision-makers to identify which propulsion concepts 

will best serve the vehicle.   

 The following manuscript outlines the creation of a method that will allow 

decision-makers to compare advanced propulsion concepts to one another quantitatively, 

given uncertainty in both the requirements and the technological capability of the 

concept.  The Evolving Requirements Technology Assessment (ERTA) method was 

developed to incorporate these uncertainties into the assessment of the concepts.  The 

high development costs and uncertainty inherent to developing such complex systems 

limit the number of propulsion concepts that the industry can develop.  Decision-makers 

need to have the ability to compare advanced propulsion concepts to one another, and 
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identify which concepts are the most robust.  If such information could be provided, then 

they would be able to allocate resources more effectively, thus mitigating the risks 

associated with developing advanced propulsion concepts.   

 The requirements for advanced propulsion systems will be mostly dictated by 

vehicle characteristics and mission parameters—quantities that can be projected, but will 

evolve throughout the development of the propulsion system.  The selection of the 

propulsion concept, then, had to incorporate those uncertainties into its assessment.  The 

propulsion concept that was ultimately selected had to be robust with respect to 

uncertainties inherent to the development process, but it must also be robust with respect 

to perturbations in requirements.   

 Developing a method to tackle an engineering problem is an unconventional 

technical dissertation.  Every effort was made to ensure that the development of the 

method followed the scientific method.  The need for such a method is discussed in the 

introduction, and observations as to how this problem is currently addressed and 

shortfalls of such approaches are raised throughout the introduction, literature review and 

hypotheses discussion.  Ten specific research questions emerged from those observations, 

and the answers to those questions formulated four hypotheses statements.  Those 

hypotheses were tested when the ERTA method was used to evaluate potential HALE 

propulsion concepts.  In the manuscript’s concluding section, the success of those 

hypotheses is discussed. 

1.1 Motivation 

 The ERTA method was developed to give decision-makers the ability to 

incorporate the uncertainty of requirements into the assessment of technological 

concepts.  While product design and selection methods have advanced rapidly over recent 

years, the methods that decision-makers currently use to select technological concepts 



3 

rarely incorporate the uncertainty of the requirements into the selection of concepts.  If 

decision-makers had an understanding of how sensitive the goodness of technological 

concepts is to particular requirements, they could mitigate risks of development by 

selecting the technological concepts that are most robust to the potential variations in 

requirements.     

1.1.1 Uncertainty Inherent to Requirements 

 As technology develops and systems become more complicated and intricate, the 

time and resources required to develop technological systems increase.  This trend is 

especially visible in the aerospace industry.  In 1986, Augustine noted that “…the cost of 

an individual airplane has unwaveringly grown by a factor of four every 10 years,” [3] 

[29] while Eskew correlated the development period for a tactical aircraft with the 

aircraft’s eventual procurement cost [29].  Throughout that period, the requirements that 

the technological concepts must meet do not remain stationary—they evolve.  The greater 

the development time, the more uncertain the requirements are.  Additionally, consumers 

such as the government often choose to extend the service life of existing systems, rather 

than pay to upgrade to next generation systems [67].  Throughout that extended lifespan, 

systems are used in different ways, adding another source of uncertainty inherent to the 

intended requirements.   

 Many of the requirements for the HALE UAV’s propulsion system are quite 

uncertain.  At what altitude should the vehicle fly?  What speed should the vehicle be 

capable of cruising?  The altitude and cruise speed will dramatically affect the 

performance of propulsion concepts, and need to be taken into account.  Additionally, the 

vehicle configuration has yet to be specified.  The vehicle configuration will determine 

the amount of drag that the vehicle produces, which determines the amount of thrust that 
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the propulsion system must provide.  The propulsion system that is developed to power 

the HALE vehicle should be robust to these uncertainties.   

 There are several examples in the aerospace industry alone of the requirements for 

a technological concept changing throughout its development period.  Sometimes, those 

changes have been great enough to eliminate the need for the technological development.  

In other cases, the changes have been just enough to question the original concept 

selection.  Consider the unducted fan (UDF).  The UDF was conceived during the fuel 

crisis of the 1970’s as an ultra efficient jet engine, capable of reducing fuel consumption 

by approximately 20% to 30% [72].  Unfortunately for the UDF, fuel prices returned to 

normalcy, and the requirement for fuel-efficient engines no longer superseded the need 

for quiet, traditional engines.  Development was halted before the engine was fully 

developed because the requirements that made the engine a worthwhile investment 

changed.   

 Another example of technological concepts becoming obsolete throughout 

development is the nuclear turbojet concept.  General Electric and the US government 

began actively developing a nuclear turbojet engine to power a large supersonic vehicle, 

capable of cruising subsonicly for long a period of time in 1951.  By 1961, however, the 

military’s objectives of such large system changed, and the program was cancelled as it 

“suffered considerably from lack of prompt decisions and from frequent changes in 

emphasis and goals” [97].   

 The industry faces similar questions in the future.  The environmental constraints 

that governments will place on aircraft and the maximum cruise Mach number that the 

aircraft is allowed to fly over land will significantly impact the potential value of 

aeropropulsion concepts in the future.  Eliminating CO2 emissions will require the 

infusion of alternative fuel concepts, while the Mach number significantly affects the 

efficiency range of aeropropulsion concepts.    
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 Should decision-makers consider the potential variations in requirements when 

they are selecting which technological concepts to develop?  In conceptual design, 

decision-makers select the best alterative(s), given that the final product must ultimately 

meet one or two particular sets of requirements.  As the requirements diverge from the 

expectations, the chance that the selected alternative is actually the best choice, or even 

feasible, is reduced.  Decision-makers need to take uncertainty of requirements into 

account, when selecting technological concepts, so that they can select the concepts that 

are the most robust, with respect to potential variations in requirements.   

 This notion becomes even more important when decision-makers begin to 

consider advanced propulsion concepts.  Advanced propulsion concepts require greater 

expenditures of resources and take longer periods of time to development.  The longer 

development cycle ensures that there is more uncertainty inherent to the requirements, 

and the large expenditure of resources increases the stakes of the investment.  In the 

words of Norman Augustine, “It costs a lot to build bad products,” [3]. 

1.1.2 Methods Currently Used to Select Technological Concepts 

 Traditionally, commercial entities use a broad range of methodologies to select 

the technological concepts to which they will devote Research and Development (R&D) 

resources.  Commercial entities make a distinction between developing technological 

concepts for one particular use or end product (product development) and developing 

technological concepts for a more general, potential applications (technological 

development) [8].  Selecting a propulsion system to meet the requirements of a HALE 

vehicle falls somewhere between the two categories.  While a product is being developed 

for a specific purpose, commercial entities usually limit product development to proven 

technological capability [8].  Unfortunately, the proven technological concepts will most 

likely not be capable of meeting the requirements for the HALE vehicle.  For this reason, 
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the author examined the methods used to select concepts for both product development, 

and technological development.   

 The methodologies used to select technological concepts for product development 

vary significantly, but almost all successful methodologies have a few common steps or 

phases included in them [25].  First, the methodologies contain a “problem definition” 

phase, in which teams develop a thorough understanding of the problem, and gather 

necessary information.  The requirements for the product are defined here.  Second, the 

methodologies contain a “generation of alternatives” phase, where possible alternatives, 

or technological concepts, are identified.  Third, methodologies contain an “evaluation of 

alternatives” phase, where decision-makers select which of the alternatives to bring 

forward to the next phase of development or a more detailed design.  A multitude of 

means by which developers carry out these three essential phases of product development 

exist, and those means are discussed in the literature review, in sections 2.2.1, and 2.2.3.  

The shortfall of these methods is that they do not give the decision-maker the ability to 

compare technological concepts to one another, while concurrently accounting for 

requirements variations.   

 Too often, in the aerospace community, the methods that companies rely upon to 

select technological concepts to develop are “ad hoc or lack rigor” [49].  According to 

Cetron, traditional approaches to allocating R&D funding are rarely scientific or 

objective [15] [49].  Often funds are allocated based on which programs make the most 

noise, or which programs have achieved the greatest success in the past [15] [49].  While 

the state of the art of R&D selection methods has improved drastically over the past thirty 

or forty years, few industrial entities use the advanced methods [67] [49].  Some of the 

advancements in R&D selection methods are discussed in section 2.1.  A few of the 

technology development methodologies discussed in that section do provide the decision-

maker with the ability to compare incorporate the uncertainty of requirements into the 
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evaluation of the technologies, but those methods cannot be used to evaluate advanced 

propulsion concepts.   

1.1.3 Expectations for ERTA Methodology 

 The ERTA method is not intended to replace the methodologies currently used by 

industrial entities to select technological concepts for resource allocation.  The ERTA 

method, instead, is intended to enhance the amount of information that decision-makers 

have when they are evaluating those concepts.  The method was developed in the context 

of evaluating propulsion concepts that are best suited to powering a HALE vehicle.  The 

author expects that the method could be used in other fields to enhance decision-makers’ 

information, but demonstrating this supposition is beyond the scope of this investigation. 

 The ERTA method was created to assess how well each technological concept 

will satisfy the requirements of the future, relative to competing concepts.  In order to do 

so, the methodology must have three components.  First, the method must generate a 

probabilistic forecast of the requirements that future technological concepts will have to 

meet.  The requirements for the HALE propulsion system are not fixed, and potential 

variations in the requirements could substantially impact the goodness each propulsion 

concept.  It is important that the probabilistic set of requirements captures the likely 

variation in requirements.  The robustness of each concept should be measured relative to 

a likely distribution of requirements instead of being measured against any distribution.  

Second, the method must assess the relative goodness of each concept across the 

distribution of requirements.  Such an assessment would give decision-makers an 

understanding of which HALE propulsion concept(s) are best, and how sensitive that 

goodness is to particular requirements.  Finally, the methodology must incorporate the 

uncertainty inherent the development of technological concepts into the assessment.  The 

maturity of the potential propulsion concepts ranges dramatically.  There is more 
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uncertainty inherent to the less mature concepts.  That uncertainty needs to be 

incorporated into the evaluation of technological concepts.   

 The ERTA method was developed specifically to tackle the problem of 

comparing advanced propulsion concepts to one another, given uncertain requirements.  

Next generation propulsion concepts are usually considered revolutionary in nature, as 

are fundamentally different from conventional propulsion systems.  The fact that the 

ERTA method was developed to tackle the evaluation and comparison of advanced 

propulsion is significant because such technologies have to be evaluated in a different 

manner than evolutionary technologies or concept designs can be evaluated.  There are 

many more variables to consider when evaluating advanced propulsion concepts, and 

accordingly, the design space is much larger.  Also, little is known about the application 

or integration of such concepts, so modeling them becomes more difficult. 

 The author sees no reason why the methodology could not be applied to the 

comparison of evolutionary technological concepts, but methodologies already exist that 

enable decision-makers to compare such technologies to one another, and many of those 

methods allow decision-makers to incorporate the uncertainty inherent to the 

requirements into the evaluation.  The author’s definitions of evolutionary and 

revolutionary technologies are explained in section 1.4.1.   

1.2 Technical Barriers  

 If incorporating the variation of requirements into the analysis of technological 

concepts is important, why has it not been done in a methodical fashion before?  There 

are several technical challenges preventing such a comparison.  First, the problem is so 

large that it is difficult to grasp.  Comparing a few technological concepts to one another, 

given a fixed set of requirements, is difficult enough in its own rite.  Another challenge is 

the ability to forecast the requirements for future technological systems.  Industrial 
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entities are good at predicting the capability of future technological systems because 

those predictions are based on physical analyses.  The evolution of the requirements, 

however, will be dictated by less tangible forces, such as government restrictions and 

market fluctuations.  Including that uncertainty in the evaluation only increases the 

magnitude of the problem.  Finally, traditional figures of merit will probably not be 

useful benchmarks, as they are often not valid across the entire range of concepts and 

requirements.   

1.2.1 Identifying Requirements for Future Technological Concepts 

 In the aeropropulsion industry, advanced propulsion concepts have to be 

developed for years before they are ready for the market.  In those fields, decision-makers 

must select the technological concepts to invest R&D resources into years before the 

concepts can be produced.  The potential concepts are evaluated and compared based on 

the decision-maker’s perception of how well each concept can meet a particular set of 

requirements.  Unfortunately, as mentioned earlier, during the development time, those 

specific requirements are likely to change, or evolve.  Predicting the requirements that the 

revolutionary technological concept will have to meet once it is developed, then, is 

challenging.  The requirements for future technological concepts will be functions of a 

range of factors, from unpredictable market forces and government policies to the 

technological maturity of the interacting and surrounding systems.  As mentioned above, 

the requirements for the HALE propulsion system will be dictated by the vehicle 

characteristics mission profile, as well as other customer requirements, such as costs and 

emissions constraints.  It is difficult for developers to predict how those requirements will 

evolve with time—especially if the requirements are dictated by forces that are outside of 

the developer’s area of expertise.   
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 Another problem hampering the prediction of requirements for future concepts is 

that many of the requirements for advanced propulsion concepts are going to be highly 

dependent upon one another.  Any forecasting will have to incorporate the dependencies 

of multiple requirements into its forecast—a difficult endeavor.  Consider the 

configuration for the HALE and the cruise speed.  Those two parameters are likely to be 

highly dependent upon one another.  As cruise speed increases, the chances that the 

configuration will be lighter than air vehicle decreases significantly.  Any forecast of 

requirements would have to incorporate dependencies of requirements upon one another, 

because the concept must be able to meet all of the requirements simultaneously.    

1.2.2 Justly Comparing Technological Concepts to one Another 

 Technological concepts, such as advanced propulsion concepts, are often 

fundamentally different from one another.  Those differences make it difficult to compare 

them to one another in a just, quantitative, and methodical fashion.  First and foremost, it 

is difficult to predict the mature capability of advanced propulsion concepts, before they 

have been developed.  Advanced propulsion concepts are complex, highly coupled 

systems, completely outside of the realm of industry’s experience.  Unfortunately, 

empirical data and relationships cannot be used to evaluate advanced propulsion 

concepts.  Analyses cannot use trends or relationships previously identified by the 

industry to project the performance of future advanced propulsion concepts.  The 

evaluation of advanced propulsion concepts, then, must rely solely upon the fundamental, 

physical relationships upon which the concept is conceived.  One problem with this 

analysis is that it can be highly inaccurate.  While component efficiencies, material 

constraints, and integration losses can all be easily factored into the analysis, the values 

of those parameters are highly uncertain.  Performance estimates can be highly sensitive 

to those parameters.   
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 Another factor hindering decision-makers ability to accurately compare 

technological concepts to one another is that analyzing advanced propulsion concepts is 

simply too computationally exhaustive to allow for a full exploration of the design space 

of advanced propulsion concepts.  Before these concepts can be truly evaluated, however, 

the optimal designs for each technological concept need to be identified, which presents a 

challenge of its own.   

 The magnitude of this problem cannot be overestimated.  Comparisons of 

technological concepts can only be conducted if each of the concepts is specifically 

designed to meet the particular set of requirements that the concepts must meet.  Each 

concept has a different, but lengthy, set of design variables; all of which must be 

optimized.  In the context of a traditional turbofan engine, the pressure ratio of the 

compressors and bypass ratio of the engine must be optimized to the specific mission 

profile of the aircraft.  Because system parameters are not simple functions of the design 

variables, this is an exhaustive task.  This challenge has been overcome in order to 

optimize conventional, well-understood concepts by using sophisticated modeling 

techniques.  Even when these techniques are employed, optimizing the local design 

variables is time consuming and the process is particular to the individual concepts that 

are being optimized.  It is not feasible to automate the process to optimize and evaluate 

an unspecified number of advanced propulsion concepts. 

 Another technical challenge preventing the comparison of advanced propulsion 

concepts to one another is the unknown mature performance of each of the advanced 

propulsion concepts.  Advanced propulsion concepts are immature by definition.  There 

is a high degree of uncertainty associated with developing each of the components and 

integrating them into one, cohesive, concept.  The efficiency, the volume, and the weight 

of the aeropropulsion concepts, for example, are difficult to predict at early stages of 

development.  Those parameters will significantly impact the evaluation of the concepts.   
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 Finally, comparing multiple advanced propulsion concepts to one another requires 

some figure of merit that is applicable over the entire range of concepts being considered.  

Often times, the traditional metrics used to evaluate goodness have no meaning when 

applied to advanced propulsion concepts.  Consider the figure of merit traditionally used 

to evaluate propulsion systems, fuel consumption.  When evaluating advance propulsion 

systems that rely upon solar energy or hydrogen, fuel consumption has no meaning.  

Before the HALE propulsion alternatives can be compared to one another, a figure of 

merit applicable across the entire range of alternatives must be generated.   

1.2.3 Incorporating the Variation of Requirements 

 As discussed above, the analysis required to compare technological concepts is 

exhaustive; each concept must be specifically designed to meet each particular set of 

requirements, and the uncertainty associated with the concept’s development must 

somehow be considered in the comparison.  Unfortunately, an infinite number of 

potential requirement sets that the advanced propulsion concepts may have to meet exist.  

It is infeasible to conduct an exhaustive comparison of all technological concepts, given 

each potential set of requirements.  How then, can the impact of the potential variation of 

requirements be considered when evaluating advanced propulsion concepts? 

1.3 High-Altitude, Long-Endurance Vehicle 

 As discussed above, the ERTA method was developed to enable the comparison 

of various propulsion concepts proposed to propel a HALE vehicle.  The vehicle itself is 

being developed to track hurricanes and cyclones, with the intention of studying and 

learning more about their formation.  Selecting a propulsion system for the HALE is a 

difficult problem worthy of investigation because conventional aeropropulsion concepts 

will most likely not be capable of propelling such a vehicle.  Conventional propulsion 

systems are simply not efficient enough to give the vehicle the endurance it would need 
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to track the hurricanes.  If such a vehicle is to be developed, advanced propulsion 

concepts will also need to be developed in order to propel the vehicle, and decision-

makers are not sure as to which of the numerous proposed concepts offers the greatest 

chance of success.   

 Existing conventional propulsion concepts are currently driven by the combustion 

of hydrocarbon fuels.  Such processes, while mature, reliable and cheap, are not fuel 

efficient enough to give the vehicle the endurance that is required.  Even if the concepts 

are dramatically improved, they would probably not be capable of monitoring the tropical 

storm area for more than a few days, without refueling.  Alternative energy sources, such 

as regenerative fuel cells, will most likely be required.  The likely requirements for the 

hurricane-tracker will be investigated and forecasted, and used to assess the value of 

advanced propulsion concepts. 

1.4 Background 

 The following section provides background information that may be helpful for 

reading later sections of this paper.  First, the terms evolutionary and revolutionary are 

defined as they apply to technology in this manuscript.  Second, the evolution of the term 

“robustness” is discussed.  While most of the terms used in this investigation are common 

and widely used, there may be some ambiguity associated with them.  Also, they may 

take on a new meaning in the context of this dissertation.  The following section attempts 

to eliminate any potential confusion by clearly defining some of those terms. 

1.4.1 Evolutionary and Revolutionary Technology 

 Most people have an intuitive understanding of the differences between 

evolutionary technology and revolutionary technology, but it is not always easy to 

classify a technological development as evolutionary revolutionary.  The difference 
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between the two is partially subjective.  Merriam-Webster defines the terms evolution 

and revolutionary appropriately below: 

 

Evolution: a process of continuous change from a lower, simpler, or 

worse to a higher, more complex, or better state 

Revolutionary: constituting or bringing about a major or fundamental 

change 

 These definitions lay the foundation for defining revolutionary and evolutionary 

technology, but alone, they are not sufficient.  Revolutionary technology can be described 

as a system that replaces or fundamentally changes the existing system, but revolutionary 

technologies will require evolutional development before they can produce feasible 

alternatives.  Should the technological developments that incrementally advance 

revolutionary systems be considered revolutionary or evolutionary?  It is the author’s 

supposition that the incremental technological developments that improve the 

performance of one component of a new or revolutionary system are evolutionary in 

nature.  Revolutionary technologies, then, can be limited to the theoretical concepts that 

will replace existing systems, developments that initiate fundamental changes to the 

existing system, and advancements that integrate the entire revolutionary system.  The 

author’s classification of evolutionary and revolutionary technology is detailed below. 

 

Evolutionary Technology: a technological development that will 

incrementally advance the state of the art by improving upon 

one element of a system 

Revolutionary Technology: a technological development or theoretical 

concept that initiates a fundamental change in the way that the 

existing system operates or makes such a change possible  
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 Unfortunately, these definitions alone are not enough to clarify the differences 

between revolutionary and evolutionary technology completely.  A perspective of system 

definition is required before the discrepancy can truly be made.  For example, consider a 

technology that would replace the way that the fuel is ignited in a traditional turbofan 

engine, while allowing the entire rest of the system to operate as usual.  If the entire 

engine were considered “the system”, the technology would be considered evolutionary, 

because it would allow for the incremental improvement of the entire system through the 

improvement of one its parts.  If, on the other hand, just the combustor were considered 

“the system”, the technology would be revolutionary, as it would necessitate a 

fundamental change in the way that the system operates. 

 A similar and appropriate example of how revolutionary technology can be 

confused with evolutionary technology given different points of references is the switch 

from examining the entire aircraft to considering just the aircraft engine as the system.  

When the box is drawn around the entire vehicle, (in a fashion similar to a control 

volume) novel propulsion concepts are simply evolutionary advancements.  When the 

box is drawn around only the propulsion system, however, those novel concepts become 

revolutionary technologies.  Clearly defining “the system” paves the way for 

unmistakable distinction between evolutionary and revolutionary technologies. 

 Because the definitions of evolutionary and revolutionary technologies are 

dependent upon the system reference, it makes sense to clarify the term system.  A 

system can be defined for this purpose as a group of components or processes that are 

interconnected to serve one purpose.  Throughout this paper, the term system refers to the 

integrated engine that is necessary to fulfill the requirements.  From hereon, the term 

alternative, or solution, will be used to refer to one specific configuration for a system.  A 

concept, on the hand, will refer to the set of alternatives that all fit into a specific 

classification.  For example, a turbofan engine with a bypass ratio of 5 and an overall 
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pressure ratio of 40 is one alternative.  A turbofan engine with a bypass ratio of 1 and a 

overall pressure ratio of 15 is another alternative.  Both alternatives are different types of 

the same concept, a dual-spool turbofan engine.  Evolutionary technologies allow for 

alternatives that are derivatives of the conventional concept to be created.  Revolutionary 

technologies allow entirely new concepts to be created.  The advanced propulsion 

concepts investigated in this paper are revolutionary concepts.   

1.4.2 Evolution of “Robustness” in Engineering 

 The ERTA method was developed so that decision-makers could measure the 

robustness of advanced propulsion concepts, given uncertainty in requirements.  

Robustness first emerged in the engineering world as a term to reflect products’ ability to 

withstand uncontrollable variations in production and usage.  The term has taken on 

many applications since is original usage, and given the current state of the aerospace 

engineering industry, a new meaning of robustness has evolved.  Robustness can now be 

used to refer to the ability of a concept to withstand changes in requirements that evolve 

though time. 

 Since robustness was first introduced to engineering, entire fields of study have 

emerged that focus on increasing value through a more intelligent early development 

process.  Designing for Six Sigma has become the catch phrase that refers to ensuring 

that the acceptable lower and upper boundaries for product characteristics are each at 

least six standard deviations from the nominal target—ensuring fewer than 3.4 defects 

per million products.  Six Sigma incorporates many methods developed over the past few 

decades to ensure robustness.  The Taguchi Method identified which product 

characteristics were least sensitive to uncontrollable variations, and associated a loss 

function with that deviation.  Quality Function Deployment (QFD) sought to fully grasp 
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customer requirements and then translate those requirements into product and process 

design.   

 Today, development of aerospace engineering products can span across 

decades—not just years.  Most aerospace vehicles are expected to have lifetimes of thirty 

years or longer.  Frequently, those same vehicles remain in service even longer than they 

were originally intended.  For this reason, when designing vehicles, decision-makers now 

need to incorporate the robustness of systems to variations in requirements.  The ability 

of an aerospace vehicle to adapt and be capable of meeting a different sets of 

requirements from which it was originally intended is an attribute that should be sought 

after and designed for.  Similarly, when selecting which advanced propulsion concepts to 

develop the potential for derivatives of the original concept to meet the evolving 

demands—the robustness of a concept to evolving requirements—needs to be considered.   
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2 LITERATURE REVIEW  

 

Before potential advanced propulsion concepts could be investigated, a systematic 

methodology to identify potential advanced propulsion concepts and assess their 

robustness was needed.  The author first investigated existing advanced design 

methodologies to determine whether current methods could be used to evaluate the 

robustness of advanced propulsion concepts.  The following chapter overviews advanced 

design methodologies that have been used to identify or evaluate technological systems in 

the past.  Unfortunately, none of the methods was suitable for the evaluation of the 

immature advanced propulsion concepts either because it would be difficult to employ to 

evaluate a large number of concepts, or because it was not well suited to assessing the 

robustness of a concept with respect to requirements.  This chapter is broken down into 

two main sections: a review of methodologies that help decision-makers identify and 

evaluate future concepts and technology, and an exploration of tools that may be used to 

understand and forecast requirements and tools that can be used to enhance the 

understand of complex design spaces. 

2.1 Current State of the Art in Technology Forecasting 

 The following section investigates advanced design methodologies that have been 

developed to identify and or evaluate advanced technological concepts.  The first 

methodology, the Theory of Inventive Problem Solving (TRIZ) was developed to identify 

new solutions or concepts capable of satisfying a set of posed requirements.  TRIZ is 

noteworthy because it is an attempt at systematically identifying the best concepts.  The 
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other methodologies discussed use qualitative assessments to evaluate the technology or 

concept.  These methodologies measure the robustness of each technology or concept to 

potential variations in requirements or technological maturity. 

2.1.1 Theory of Inventive Problem Solving (TRIZ) 

 The Theory of Inventive Problem Solving (TRIZ) is primarily a technique for 

concept generation.  Altshuller developed the TRIZ as a systematic approach toward 

creative problem solving [91].  TRIZ encompasses many theories and methodologies, but 

the basis of it is applying “inventive principles” to tackle current, complex engineering 

problems [63].   

 Altshuller, a patent expert, analyzed thousands of patents and identified physical 

contradictions that occurred across industries and tracked their solutions [63].  He labeled 

the innovative solutions that occurred over and over “inventive principles”.  He then 

came up with is a systematic problem solving process that breaks the problem down an 

existing system.  Problems within the system are compared to similar problems 

encountered previously in other industries.  TRIZ identifies the physical contradictions in 

those systems, and uses inventive principles to identify a solution [91].   

 TRIZ is noteworthy because it is a novel approach to identifying new solutions or 

new concepts.  Unfortunately, TRIZ does not provide any insight into determining which 

of the proposed alternative solutions would be best to implement.  Within the 

aeropropulsion industry, many concepts have been proposed as next generation 

alternatives, but a significant amount of resources are required to develop any of those 

alternatives.  TRIZ does not give developers guidance in making a sophisticated 

distinction between the proposed concepts.  Additionally, TRIZ is best suited toward 

improving existing systems, not identifying revolutionary systems.  Finally, TRIZ is not 
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easy to conduct; it requires breaking a system down into a “cause and effect” diagram 

which is cumbersome and difficult to automate.   

2.1.2 Quantitative Technology Forecasting Methods  

 While the main intention of TRIZ was to identify new solutions or concepts, other 

noteworthy methodologies have been developed to quantitatively evaluate technological 

concepts.  These methods employ rigorous modeling and simulation to forecast the 

impact of future technological concepts.  Those impacts are then used to evaluate the 

technological concepts.  A few of these methods are described below.   

 All of the methods described use “k-factors” or technology dials to model the 

level of technological maturity of a subsystem or component.  K-factors are 

dimensionless numbers that are used to perturb disciplinary metrics slightly within 

complex designs [58].  The setting for disciplinary metrics reflect the state of the art 

being modeled; they are often referred to as “technology dials” because they can be 

changed to reflect the level of technology infused into the system [62].  An example of 

the use of a k factor can be easily seen within a turbojet propulsion system.  The 

efficiency of one of the main components, the high-pressure compressor (HPC), can be 

considered a disciplinary metric.  Throughout time, the efficiency of that component will 

most likely increase.  Raising that efficiency in a model through use of a k-factor shows 

advancement in the state of the art, or an infusion of technology into the design.  The 

overall impact of a technology that allows the HPC to operate more efficiently can thus 

be quantified by using appropriate k-factors to perturb the suitable disciplinary metrics.  

It is important to note that technology k-factors can be used to model degradations 

associated with new technologies as well.  For example, consider the same hypothetical 

technology that improved the performance of the HPC.  That technology may negatively 

affect other disciplinary metrics, such as the weight of the HPC.  To model that 
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degradation, another k-factor is used which affects the forecasted weight of the HPC 

directly.  The system level analysis will allow developers to quantify the overall system 

level impact of advancing and degrading various disciplinary metrics will have on the 

overall system.   

 K-factors can be used to model the impact of specific technologies, as is done in 

exploratory forecasting, or they can be used to conduct gap analyses [51].  Decision-

makers can use k-factors normatively to play “what if” games—meaning that they can 

quantitatively answer the question of what would happen to system level metrics if 

various metrics were improved or degraded.   

2.1.2.1 Unified Tradeoff Environment  

 Baker developed a technique referred to as the Unified Tradeoff Environment 

(UTE) to quantify the impact of changes in requirements, vehicle attributes and 

technologies to system-level metrics [4].  Essentially, he created a surrogate model that 

captured the variation of the responses with respect to the variability of the independent 

requirement (mission parameters), concept parameters, as well as technology variables.  

The surrogate model served as the basis for an interactive environment that allowed 

decision-makers to see the impact of small changes upon the design in real time.  A 

generic example of the real time environment is shown in Figure 1. 
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Figure 1: Unified Tradeoff Environment Example [4] 

 UTE is a noteworthy methodology because it gives decision-makers the capability 

to identify the sensitivity of system-level metrics to variations in requirements, vehicle 

attributes and technology.  Unfortunately, because UTE relies on surrogate models, in 

requires that the system-level metrics are well behaved with respect to the variables and 

the variable ranges.  Additionally, UTE requires the development of a surrogate model 

for each concept under consideration.  Finally, UTE does not incorporate a systematic 

strategy to account for the variability in requirements in its analysis. 

2.1.2.2 Joint Probability Decision Making  

 Bandte developed Joint Probability Decision Making (JPDM) as a decision-

making methodology that uses the Probability of Success (POS) as a means of designing 

and evaluating a concept [5].  Instead of lumping all criteria together into one overall 

measure of goodness, JPDM allows decision-makers to evaluate the potential of a 
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concept to meet multiple requirements simultaneously [5].  For each specific set of 

requirements, JPDM measures whether a specific design will be feasible (can satisfy all 

of the requirements simultaneously).  A noise distribution is then placed upon the 

requirement variables, and Monte Carlo trials are used to calculate the likelihood that an 

alternative will be feasible.  This likelihood is defined as the POS.  POS, once calculated, 

can be used as a single, all-inclusive figure of merit to evaluate different designs.  

Because JPDM requires the use of thousands of Monte Carlo trials to accurately measure 

the POS, the analysis that calculates feasibility must not be too computationally 

exhaustive.  Surrogate models can be used to relate the variation in system-level metrics 

to the variability of requirements and vehicle attributes.   

 JPDM is an effective methodology for evaluating technological systems, given an 

uncertain set of requirements, but it would be difficult to employ when evaluating 

advanced propulsion concepts for a HALE vehicle.  First, a new model has to be created 

for each concept under consideration, which would be time-consuming.  Additionally, 

JPDM does not incorporate a likely distribution of requirements into the assessment.  

Finally, JPDM’s figure of merit, POS, does not capture the relative goodness of feasible 

alternatives.  When two alternatives can satisfy a fixed set of requirements, one of those 

alternatives may still be superior to the other.  POS does not capture the relative goodness 

of each alternative, only whether it is feasible.  Even though two alternatives could have 

an approximately equivalent likelihood of being feasible, one alternative could be 

superior. 

2.1.2.3 Technology Identification, Evaluation and Selection  

 The Technology Identification, Evaluation and Selection (TIES) methodology 

was created to give developers a systematic method of exploring complex design space, 

determining whether new technologies need to be developed, and identifying which 
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technologies would be best suited to the design.  TIES has been well documented by 

Kirby and Figure 2 shows an overview of the methodology [49].  In the first few steps of 

TIES, the problem solver strives to understand the problem fully [49].  This involves 

identifying the system-level requirements and the defining the concept parameters, or 

independent variables, that make up the design space are determined.  Some of those 

variables are continuous, while others are discrete.  Next, the developer sets up the 

system level analysis that will be use to prorogate the changes of design variables to 

system level metrics (response) [49].   

 

 

Figure 2: Overview of TIES Methodology [49] 

In complex systems, the analysis will be exhaustive; consequently, statistical models that 

accurately capture the variation of the responses as functions of the variability of the 

independent variables are used to explore the design space thoroughly.  Armed with the 

statistical model, the developer can determine, quickly and accurately, whether there is 

feasible design space with current, off the shelf, technology [50].  If that is the case, the 

problem is solved, as the developer can optimize the solution within the feasible design 

space using the optimization method of his choice. 

 In most complex problems, however,  there is no feasible space, and technologies 

need to be considered to “open up” the design space and ensure that it contains feasible 
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solutions [49].  If that is the case, potential technologies need to be identified, and their 

expected impacts on appropriate disciplinary metrics—or k-factors—need to be 

determined.  Each technology essentially becomes characterized by a particular set of k-

factors.  At this point, a new statistical model is created to relate the system level metrics, 

or responses, to the k-factors [49].  The impact of infusing each technology can be 

determined in real time by generating a second statistical model that relates the variability 

of the system level metrics to the variation of the k-factors [62].   

 In order to model the infusion of multiple technologies to a design, the set of k-

factors required to model each technology are added together.  For example, consider two 

technologies, A and B.  Technology A is expected to increase the efficiency and weight 

of the HPC by 2% and 5%, respectively, while Technology B is expected to increase the 

efficiency and weight of the HPC by 3% and 4%, respectively.  If Technologies A and B 

are compatible, together they would increase the efficiency and weight of the HPC by 5% 

and 9% respectively.  In TIES, multiple technologies are characterized by the sum of the 

k-factors that represent each technology contained in the set.  The developer can quickly 

quantify the impact of infusing any set of technologies to the design space using the 

statistical model that relates the variation in system metrics to the variability of the k-

factors.  Armed with that information, the problem solvers can make informed and 

objective decisions as to which technologies to develop further.   

 Unfortunately, it would be difficult to use TIES to evaluate advanced propulsion 

concepts.  First, it assumes an existing baseline concept.  While the baseline concept is 

optimized, if the decision-maker originally considered an inferior concept, he or she 

would be stuck with the concept later on.  Second, TIES best suited for evaluating the 

impact of evolutionary technologies, or technologies that are applied to an existing 

baseline.  TIES can only model technologies that improve or degrade small parts of the 
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existing system.  It cannot model technologies that replace the system, or require the 

infusion of an entirely new system. 

2.1.2.4 Summary of Quantitative Technology Forecasting Methods  

 None of the existing qualitative forecasting methods that were investigated was 

well suited for the evaluation of HALE propulsion concepts.  The propulsion concepts 

under consideration are very immature.  Little is known about the future performance of 

the advanced propulsion concepts, and consequently, the modeling and simulation 

environments that can be used to assess them are limited.  Additionally, none of the 

methodologies systematically generates a distribution of requirements.  JPDM and TIES 

quantify uncertainty with respect to noise distributions in the requirement and technology 

variables.   

 Additionally, none of the methodologies is suitable for comparing fundamentally 

different concepts to one another, given an uncertain set of requirements.  UTE can be 

used to compare a small number of concepts to one another, but the need to create a 

surrogate model for each concept prohibits decision-makers from considering a large 

number of concepts.  It would be difficult to use JPDM to evaluate a large number of 

concepts, as a surrogate model will have to be developed for each concept.  Additionally, 

decision-makers could not use JPDM to compare feasible alternatives or concepts to one 

another.  POS only measures whether an alternative is feasible—not how good a feasible 

alternative is.  Finally, TIES is only suitable to evaluating technologies that incrementally 

improve existing systems—not technologies that replace existing systems. 

2.2 Literature Search of Tools 

 The previous section overviewed methods that have been used to increase the 

amount of information decision-makers have to evaluate technological systems.  Most of 

the methods discussed above enhance the information that is provided to decision-
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makers, but are not alone sufficient to differentiate between dissimilar concepts in the 

presence of uncertain requirements.  The following section explores some tools that could 

be used to enhance the information that decision-makers have when comparing advanced 

propulsion concepts to one another.   

 The author first turned to an emerging field of research, entitled Technology 

Futures Analysis (TFA) [77].  TFA was an initiative to unite various forecasting methods 

aimed at predicting the impact of technology.  The TFA methods discussed in this secton 

are broken into three categories.  The first grouping of methods discussed below can be 

best described as brainstorming organization methods, as they organize and synthesize 

information from disciplinary experts.  The second classification of methods discussed 

below can be used to forecast future states or conditions.  These methods use information 

currently available, such as trends or expert opinion, and project that information to 

create a forecast of the future.  The third classification of methods discussed in this paper 

are those which aid in decision-making, given a set of objectives.   

 Unfortunately, most TFA methods have not addressed the problem of analyzing 

and modeling the increasingly complex technological systems—an essential step to 

forecasting technology of the future.  Consequently, this section also explores some 

mathematical and statistical techniques that can be used for this purpose.  Exploration 

methodologies specifically examine methods aimed at introducing as much knowledge 

about the multi-dimensional space as efficiently as possible.  Meta-modeling techniques 

look at surrogate models that can be used to reduce the computational time required to 

model technological concepts.  Finally a few common stochastic optimizations are 

examined.  These methods can be used to optimize multimodal spaces.   



28 

2.2.1 Gathering, Organizing & Synthesizing Information 

 The first group of TFA methods that are discussed aid in the synthesizing and 

organization of expert information or problem definition.  These methods have been 

particularly valuable in the arena of systems engineering, where alternatives and 

requirements are too complex to be intuitively understood.  They can be used directly to 

forecast the future, as sometimes is the case with Delphi, but they are usually used to 

identify alternatives, or understand requirements or relationships between requirements, 

alternatives, and potential scenarios.   

2.2.1.1 Delphi Technique 

 The Delphi technique is a surveying method developed in the 1940s for military 

applications by the Rand Corporation [87].  Since it has been declassified, it has been 

widely used for technology forecasting [78].  In the same way that it has been used to 

forecast technology, it can be used to forecast the requirements that complex 

technological systems will eventually face.  The Delphi technique surveys experts, 

usually through mail.  The answers to the surveys are collected and analyzed.  

Participants are given feedback that includes the range of responses and rationales for 

various answers and then asked to answer the questions again, in light of the new 

information, but feedback allows the experts’ opinion to remain anonymous [78].  The 

process repeats itself until the experts’ opinions stabilize.  Two aspects to the Delphi 

technique make it so successful.  First, participation is usually anonymous, which 

prevents participants’ egos from forcing them to continue to promote shaky arguments 

[78], [87].  Second, both statistical evaluations of the responses and rationales are fed 

back to the participants, allowing them to understand both the degree of difference in the 

group, and the arguments for various positions [87].   
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 The Delphi technique is certainly not perfect.  Carelessness in the preparation of 

the survey or feedback can make the technique less accurate.  The iterative process is 

time consuming, and requires a fair number of participants [78].  Finally, the only way 

that the correlation between interdependent events can be accounted for is if the experts 

can account for it in their assessment [78].  The following technique attempts to capture 

experts’ opinions, but also account for the joint probability of dependent events. 

2.2.1.2 Morphological Analysis 

 Morphological analyses break a system down into its required parts, or 

subsystems.  A morphological matrix is a chart that identifies all of the possible concepts 

or systems.  It can be easily adapted to identify revolutionary alternative technologies.  A 

morphological matrix is created by listing all of the required parts or subfunctions in one 

column [25].  For each part or subfunction, the alternatives are listed across that row [25].  

A concept is made up of one unique set of alternates.  Table 1 shows a morphological 

matrix for a shoe.  The shoe is broken down into three parts, the sole, the upper material, 

and the fastener that keeps the shoe on the foot.   

Table 1: Generic Morphological Chart 

 Alternative 1 Alternative 2 Alternative 3 
Sole Material Rubber Leather Wood 

Upper Material Canvas Leather Nylon 
Fastener String  Velcro Buckle 

 

 The morphological matrix is a technique that spurs creative thinking, but it also 

gives problem-solvers an understanding of how complex the problem actually is.  The 

total number of concepts is equal to the product of all of the solutions to each part.  For 

the shoe example shown in Table 1, there would be 3 × 3 × 3 or 27, alternatives.  

Obviously, as a system is examined in greater detail or becomes more complex, the 

number of concepts grows exponentially. 
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 The functional breakdown employed by morphological charts ensures that they 

are well suited to identifying advanced propulsion concepts.  Advanced propulsion 

concepts usually consist of well-understood components—just assembled in a different 

manner.  Table 2 is a simplified morphological chart that can be used to break down a 

propulsion system.  This chart is by no means complete, but it serves as a simplified 

example of how morphological charts can be used to identify revolutionary technologies 

or concepts.  Many advanced propulsion concepts are listed within the morphological 

chart, but not by name.  In Table 2, most of the subfunctions are self-explanatory; thrust 

can be produced via either expanded exhaust, a propeller, acceleration of bypass air, or 

some combination of the previous three.  Some of the other subfunctions, such as power 

source for thrust production, are less intuitive.  This subfunction refers to the form of 

energy that is converted into thrust.  For example, if a propeller is used to generate thrust, 

that propeller can be driven either by a motor, which uses electrical energy, or directly by 

shaft work potential.  Even though the morphological chart displayed in Table 2 is 

simple, it contains 21,600 combinations of alternatives. 

Table 2: Simplified Morphological Chart of Propulsion System  

(1) (2) (3) (4) (5)

Thrust Production Propeller
Expand 
Exhaust

Bypass Air & 
Exhaust

Propeller & 
Exhaust

Thrust Type Distributed Concentrated

Energy Source Hydrocarbon Hydrogen Nuclear Fuel Solar
Stored Electrical 

Energy

Energy Extraction Combustion Fuel Cell Rxn Nuclear Rxn
Photovoltaic 

Cell
Motor

Combustion Type
Steady                  

(Constant Pressure)
Unsteady 

Detonation
Unsteady 

Deflagration
None

Oxidizer Supply On-board Ambient None
Work Performed on 

Oxidizer
Compression Heat Exchange None

Power Source for 
Thrust Production

Electricity Shaft Work
Mechanical 

Nonequilibrium  

 It is important to note that not all of the combinations of alternatives shown in the 

morphological chart would produce feasible solutions.  For example, if energy is stored 

in the form of nuclear fuel, it cannot be extracted via combustion, and an oxidizer would 

not be required.  In that case, the only feasible alternative for those subfunctions would 
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be “None”.  Each alternative consists of one combination of alternative for each 

subfunction.  The selection of alternatives that make up the conventional turbofan engine 

are shown below in Table 3. 

Table 3: Morphological Selection of Turbofan Engine  

(1) (2) (3) (4) (5)

Thrust Production Propeller
Expand 
Exhaust

Bypass Air & 
Exhaust

Propeller & 
Exhaust

Thrust Type Distributed Concentrated

Energy Source Hydrocarbon Hydrogen Nuclear Fuel Solar
Stored Electrical 

Energy

Energy Extraction Combustion Fuel Cell Rxn Nuclear Rxn
Photovoltaic 

Cell
Motor

Combustion Type
Steady                  

(Constant Pressure)
Unsteady 

Detonation
Unsteady 

Deflagration
None

Oxidizer Supply On-board Ambient None
Work Performed on 

Oxidizer
Compression Heat Exchange None

Power Source for 
Thrust Production

Electricity Shaft Work
Mechanical 

Nonequilibrium  

 Another advanced propulsion  concept that has generated much attention over the 

years is a Pulse Detonation Engine (PDE).  The PDE is a relatively simple concept that 

uses detonation waves of combustion to add heat to the air and increase the pressure of 

the working fluid.  Instead of producing a steady stream of thrust, the PDE produces a 

high frequency pulse of thrust.  Table 4 shows the subfunction alternatives that make up 

the PDE.   

Table 4: Morphological Selection of Pulse Detonation Engine 

(1) (2) (3) (4) (5)

Thrust Production Propeller
Expand 
Exhaust

Bypass Air & 
Exhaust

Propeller & 
Exhaust

Thrust Type Distributed Concentrated

Energy Source Hydrocarbon Hydrogen Nuclear Fuel Solar
Stored Electrical 

Energy

Energy Extraction Combustion Fuel Cell Rxn Nuclear Rxn
Photovoltaic 

Cell
Motor

Combustion Type
Steady                  

(Constant Pressure)
Unsteady 

Detonation
Unsteady 

Deflagration
None

Oxidizer Supply On-board Ambient None
Work Performed on 

Oxidizer
Compression Heat Exchange None

Power Source for 
Thrust Production

Electricity Shaft Work
Mechanical 

Nonequilibrium  

 Morphological charts give developers a means of breaking the problem down 

functionally, so that the entire spectrum of solutions can be examined.  The 
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morphological chart does not give the developer the capability to identify new solutions 

to problems.   

2.2.1.3 Future Wheels 

 A Future Wheel is another organized brainstorming technique.  A trend, objective, 

or event is placed in the middle of a workable space.  The primary consequences or 

impacts of that central objective or event are listed in a circle around the central objective 

or event, and are connected with “spokes”.  The secondary consequences or impacts, 

caused by the primary consequences, are then listed in a secondary circle around the 

primary circle.  This growth continues, until all impacts are understood.  Figure 3 shows a 

generic decision tree with two levels of impacts.  Notice how the impacts circle the 

central event.   

Central 
Event

Primary 
Impact

Primary 
Impact

Primary 
Impact

Primary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Central 
Event

Primary 
Impact

Primary 
Impact

Primary 
Impact

Primary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

Secondary 
Impact

 

Figure 3: Generic Decision Tree 

 Future wheels have can be used for many different things.  First, they can be used 

to identify possible consequences of trends or events in a logical fashion.  For example, if 

a corporation is considering raising prices for one of their products, they could first 

identify all of the potential consequences of that price increase, such as alienating 

customers, and increased revenue per product.  Secondary consequences would then also 
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be identified.  The corporation would be left with a logical understanding of all of the 

potential impacts of raising their prices.   

 Future wheels can also be used to forecast potential scenarios such as future 

markets.  Future wheels can also be used to identify and understand complex 

relationships between systems or objectives.  Basically, it is a method to organize 

brainstorming activity, so that potential impacts of a central theme, objective, or event 

can be better understood. 

2.2.1.4 Relevance Trees 

 Relevance trees are a means for hierarchical decompositions of topics or states or 

objectives.  They can be used simply to decompose a system or a topic into simpler topics 

or subsystems, or in conjunction with scenarios to identify possible paths to achieving 

scenarios or objectives.  Relevance trees begin with imagining a state or objective, and 

then working backward to imagine all of the circumstances that could lead up to that the 

objective or state.    

 Relevance trees can be used to identify the subfunctions in a morphological 

matrix.  They can also be used to identify possible paths that corporations may take to 

reach a certain end goal or objectives.  They are another relatively simple tool that 

increases the decision-makers’ understanding of problems at hand.  

2.2.1.5 Scenario Approaches 

 The scenario approach consists of carefully constructing a set of potential future 

states, or scenarios.  The potential scenarios and their ranges give decision-makers an 

understanding of what the future may have in store, but they also give an idea as to how 

uncertain the future actually is.  Each scenario is created from a carefully crafted, logical 

set of events.  Scenarios are an extremely popular tool for government planners, military 



34 

analysts, and corporate decision-makers [65].  It is important to note that scenarios do not 

predict the future, but instead highlight potential futures for strategists [65].   

 There are different definitions of scenarios, as well, as differing views of what 

scenario approaches are.  Some experts have defined scenarios as descriptions of future 

situations, which aid in moving forward to the future.  Other experts define scenarios as 

narrative descriptions of potential states or developments.  Scenarios are considered by 

some to be a tool that helps to clarify alternatives, while others consider it to offer 

foresight into the future.   

 Scenario approaches were first used by military strategists immediately after 

World War II.  U.S. military imagined what opponents might do, and used those 

scenarios to plan possible alternative tactics.  Scenario approaches also gained more 

notoriety in the early 1970s when Pierre Wack, a planner in the London offices of Royal 

Dutch/Shell, began to identify possible scenarios that would significantly drive oil prices 

up, such as the emerging power of OPEC.  His group identified two possible scenarios: 

first, that oil prices remain stable and second that oil prices are driven up significantly by 

OPEC.  His group also figured that in order for the former scenario to occur, something 

unexpected must happen, such as the discovery of new oil fields outside of Arab control 

[65].  The identification of the scenarios ultimately gave Shell a significant advantage 

over its competitors in the following oil crisis.   

 Numerous experts have proposed methodical approaches to building and using 

scenario techniques.  A list of such methods was compiled by Mietzner and Reger, and it 

can be found in source [65].  First, the methods specify that information is gathered and 

clarified and that key issues are identified.  Second, the driving foces and critical 

uncertainties are identified.  Next, potential plots that lead to plausible alternative futures 

are fabricated.  Finally, the key decisions or events that would guide the future in the 

direction of one scenario or another are identified.  
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 Regardless of the various details of scenario approaches, they increase the 

information that decision-makers have.  Decision-makers have an understanding of what 

the future might possibly look like, as well as a potential set of events that could have led 

up to those circumstances.  The range of potential scenarios gives an idea of how 

uncertain the future is.  Finally, the scenarios provide decision-makers with an 

environment that would allow them to identify decisions that might need to be made in 

the future and to test the effectiveness of those decisions under certain circumstances.   

2.2.2 Forecasting Methods 

 Another set of TFA best fall into the category of forecasting techniques.  These 

methods use the information available from historical trends and or expert opinion in 

conjunction with modeling and simulation to identify future scenarios and their 

likelihoods.  Three forecasting methods are discussed below: time series estimation, cross 

impact analysis (CI), and Trend Impact Analysis (TIA).  Plenty of other forecasting 

methods have been developed, to better understand or predict the future, such as Agent-

Based Modeling (ABM).  More information can be obtained on ABM methods in Gordon 

and Glenn from sources [38] and [34].  Time series estimation regresses the historical 

trends observed in metrics against one or more variables.  Those trends are then 

extrapolated to predict future changes to the metric.  The cross impact analysis (CI) 

method incorporates simulation and expert opinion to forecast the overall likelihood of 

events happening, given that the events are dependent upon one another.  TIA is a 

modified trend extrapolation that takes expected impacts of future events into account.  

ABM is a modeling and simulation technique that yields a probabilistic forecast.  

Forecasting methods can be combined to obtain the best prediction of the future 

requirements for complex systems.  
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2.2.2.1 Time Series Estimation 

 Time series estimation is a sophisticated trend extrapolation.  Variations exist 

within any observed trend.  Time series forecasting distinguishes the systematic variation 

from the random variation.  The systematic variation is then used to forecast the future 

value of the metric being forecasted.  The systematic variations can be explained by 

seasonal effects, periodic cycles, random effects, or many other causes [66].  Simple 

historical trends and seasonal effects can be modeled using simple coefficients and 

seasonal dummy variables.  Seasonal dummy variables are simple variables, set either to 

0 or 1, to indicate which season it is.  For example, if the model is broken into four 

seasons, four dummy variables would be required to specify which season it currently is.  

The values of the example dummy variables are below 24]. 

D1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,…) 

D2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,…) 

D3 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,…) 

D4 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,…) 

 At time t=1 the setting for each of the dummy variables would be as follows: D11 

= 1, while D21, D31, D41, = 0.  Statistical tools can be used in conjunction with historical 

data to determine the coefficients for the main independent variable, time, and the 

seasonal variables; the model can then be used to calculate metric y.  A linear example of 

this model is shown in Equation 1 below for any time t., but the regression equation does 

not need to be linear; it could be quadratic, logarithmic, exponential, etc.  The 

coefficients in Equation 1 are represented with β1 and γi, where the former is the 

coefficient for the main independent variable and the later is the set of coefficients that 

correspond to the set of dummy variables.  yt is the metric that is being forecasted.  

Notice in Equation 1 that there is no intercept term.  An intercept term would be 

redundant because a dummy variable exists for each season.  
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 In Equation 1, the term εt shows the variation in the data that cannot be explained 

either through the main trend or through the seasonality.  Time series forecasting attempts 

to identify the portion of that variation that is systematic and models it.  Several statistical 

techniques have been used to model systematic variation, including moving averages, 

autoregressive functions, and multivariate analyses.  Statistical software packages, such 

as JMP, a product of the SAS Institute, can aid in the regressions. 

 Regression analysis is a particular form of time series forecasting, where the 

metric is regressed against one or more exploratory variables instead of time.  In a similar 

manner as above, historical data that relates the metric to the independent variables is 

collected and regressed against the historical variables.  The curve fit that best 

approximates the trend is used to model the metric.  Statistical software packages can 

again be used to aid in the regression. Regression analyses can be highly accurate 

because they include a degree of causality.  The problem with using them to forecast 

future values of metrics is that they can only be effective if the user is capable of 

forecasting the values of the explanatory variables with a degree of accuracy. 

2.2.2.2 Cross Impact Analysis 

 Cross Impact (CI) analysis integrates expert opinion with Monte Carlo simulation 

to identify a probabilistic forecast.  First developed in 1966, it has been widely used in 

various fields to forecast probabilities associated with future events happening [43], [78].  

The key to the CI analysis is that it allows analysts to capture the dependencies of 

possible future events upon one another, without a rigorous, physics-based analysis.   

 CI accounts for the dependencies by recording the conditional probability of each 

event occurring, given that each other event did or did not occur.  The probability that an 
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event occurs is the likelihood that the event will occur; the probability of event A 

occurring is written as P(A).  The conditional probability is the probability that one event, 

will occur, given that another event did occur.  This conditional probability of event A 

occurring given that event B did occur is written as P ( A | B ).  CI analyses ask experts to 

estimate both the probability of events occurring and the conditional probability of each 

set of events occurring.  Estimating the overall probability that an event will occur is 

difficult for experts because they must take its dependency upon all other events into 

account.  Estimating the conditional probability, however, is a simpler problem for 

experts.  The CI analysis, then, is advantageous because the importance of the estimated 

probability is reduced.   

 The CI formulates a forecast by both the expert-estimated probability and expert-

estimated conditional probability.  In order to do so, the probabilities and conditional 

probabilities must be estimated for each event.  Consider an example with three events, 

labeled A, B and C.  The initial probability estimates are shown in Table 5 below.   

Table 5: Marginal Probabilities for Events A-C 

Event P( Event ) 

A P( A ) 

B P( B ) 

C P( C ) 

 The conditional probability for each event is shown in Table 6.  The probability in 

each cell is the probability that the event row will occur, given that the event column did 

occur.  For example, the cell that intersects column A with row B is the conditional 

probability that event B occurs, given that event A did occur.  Notice that the values 

along the diagonals are all equal to one.  This is because the probability of an event 

occurring, given that the event did occur, is 100%. 

Table 6: Conditional Probabilities for Events A-C 
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 A B C 

A 1 ) B|(A P  ) C|(A P  

B )A |(B P  1 ) C|(B P  

C )A |(C P  ) B|(C P  1 

 CI also requires that experts forecast the negative conditional probability.  These 

values are the likelihood that an event will occur, given that another event did NOT 

occur.  Table 7 records the negative conditional probabilities. 

Table 7: Negative Conditional Probabilities for Events A-C 

 A B C 

A  0 ) B|(A P  ) C|(A P  

B  ) A|(B P  0 ) C|(B P  

C  ) A|(C P  ) B|(C P  0 

 Notice in Table 7 that the negative conditional probabilities are all zero along the 

diagonals.  This simply shows that the P ( A|A ) must be 0, meaning that A must not 

occur, given that A did not occur.  

 After the required information in Table 5, Table 6, and Table 7 is obtained, a 

Monte Carlo simulation is used to estimate the probability of different scenarios 

occurring.  In each simulation, one event is chosen at random, and whether or not it 

“occurred” is determined probabilistically, based on the initially guessed marginal 

probability.  If that event is chosen to occur, the probability of the remaining events 

occurring then becomes the conditional probability, given that the first event did occur.  

If the first event was chosen not to occur, the probability of each of the remaining events 

happening is replaced with the negative conditional probability, or the conditional 

probability of the event happening, given that the first event did not occur.  Each of the 

remaining events is considered in a similar manner, in a random order.  Each simulation 
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trial will produce one scenario.  For a further explanation of the Monte Carlo trials, see 

source 3.  Thousands of trials will yield a distribution of scenarios that reflect the 

integration of expert opinion of both individual probabilities and conditional 

probabilities.   

 CI breaks the future down into a series of events that may happen one-at-a-time.  

Each event can happen only once.  In order to handle events that might occur multiple 

times, the subsequent occurrences of an event needs to be considered multiple events.  

For example, if finding a new source of oil reserves is one possible event and the decision 

maker wants to consider the possibility of finding multiple new sources of oil reserves, 

event A could be finding a first new reserve source.  A second event, B, could be finding 

the second set of reserves.  Obviously, in this case, event B could only happen once event 

A has already happened.  In that case, the conditional probability of event A given event 

B would be 1, and the conditional probability of event B given that event A had not 

happened would be zero.   

 As stated above, CI integrates the expert-estimated marginal and conditional 

probabilities, as it is unlikely that those values would initially match up for any set of 

events.  The values for conditional probabilities are bound by the laws that govern 

conditional probabilities, i.e., there are maximum and minimal acceptable values for 

conditional probabilities given the marginal probabilities of both events.  If the expert-

predicted conditional probability falls into the acceptable range, given the expert-

predicted marginal probabilities, they are accepted.  If not, a decision needs to be made to 

accept or not accept the conditional probability.  If there is strong evidence for the 

conditional probability value being outside of the acceptable range, it is accepted, and the 

marginal probabilities will be changed later to reflect the difference.  Bayes’ rule can also 

be used to ensure that the probability of event A given event B, P(A | B), and the 
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probability of event B, given event A, P(B | A), are correctly related.  Bayes’ rule is 

shown below in Equation 2. 

( ) ( )
( ) ( )AP
BP

A|BP
B|AP 








=  (2) 

Where:  P( A) = probability of A  

   P( B ) = probability of B 

   P( A | B ) = probability of A given B 

 After the conditional probabilities are computed, the negative conditional 

probabilities need to be determined.  These can be calculated directly from the 

conditional probabilities, as shown below in Equation 3.  

( ) ( )
( ) ( )AP
BP-1

A|BP-1
B|AP 







=  (3) 

 As was mentioned earlier, if the conditional probabilities do not all fall into the 

acceptable ranges some sort of iteration scheme is going to be needed to ensure that the 

marginal probabilities and the conditional probabilities are consistent.   

 Traditionally, CI uses a Monte Carlo simulation to estimate the marginal 

probabilities.  The process for using a Monte Carlo Simulation to determine the marginal 

probabilities is outlined below.  Porter further detailed this process in Forecasting and 

Management of Technology [78].   

1) Select one of the events at random (Event i) 

2) Determine whether that event occurs or does not occur (using a 

random number generator—i will occur P(i) percent of the time).   

3) Select a second event (Event j) from the remaining events, and 

determine whether that event occurs or not.   

 If i occurred, P( j ) = P ( j | i ); otherwise, P( j ) = P( j | i ) 

4) Steps 1-3 are repeated until all events have been selected 
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5) Record whether event i and event j occurred, and repeat steps 1-4, as a 

Monte Carlo simulation typically does. 

  

 The CI calculated marginal probability of each event occurring is the ratio of the 

number of times the event occurred in each trial divided by the total number of trials.  

Once completed, CI yields a probabilistic estimate of the probability of each event 

occurring. 

2.2.2.3 Trend Impact Analysis  

 Trend Impact Analysis (TIA) uses past trends to predict the future, as do time-

series forecasting methods.  Unlike time-series forecasting methods, however, TIA 

accounts for the impacts of potential future events upon the future trends.  Potential 

future events are considered interruptions, and experts help analysts forecast the impact 

of the interruptions on the trends, thus forecasting the impacts of the interruptions on the 

outputs.   

 The first step to TIA is creating an uninterrupted forecast of the variable of 

interest, using time series forecasting.  A curve is fitted to historical data and that curve is 

used to predict the future value of the variable.  Time-series forecasting is discussed in 

section 2.2.2.1.  That prediction represents the uninterrupted forecast, meaning the 

expected future value of the variable, given no future events impact that trend.  The 

second step of TIA is to identify a set of events that would impact those trends, and 

predict the impact that those events would have.  Parameters that dictate the time and 

degree to which a future event will impact the expected trends must be identified or 

predicted.  Specifically, the expected time that the event will initially impact the trend, 

the time that the maximum impact will occur, and the time that the steady-state impact 

will begin all need to be calculated.  In addition to those times, the maximum impact to 
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the trend and the steady-state impact must be assessed.  Figure 4 shows a generic impact 

to a trend, in percentage of the trend.  In this figure, the maximum impact is positive, 

meaning that event increases the value or amount of the variable, but the long-term 

impact actually is negative to value of amount of the variable.   

 

Figure 4: Typical Event Impact Parameters [35] 

 The impact shown in Figure 4 could follow the price of a product, in the event 

that something disrupted the supply of that product.  In the short term, the prices would 

increase, as supply is reduced, but ultimately, the demand is decreased, and prices are 

reduced in the long-term.   

 After the uninterrupted, time-series forecast is created and the impacts of future 

events are forecasted, computer programs combines them to identify an adjusted 

extrapolation.  The effect of different potential events can be calculated alone, 

independently, or the events can be coupled.  The expected value of the forecasted 

variable is tracked by summing up the potential future values and their probabilities.  The 

combined variance is also tracked, and certainty percentiles can be placed on the 

variables.   
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 TIA allows decision-makers to use historical trends intelligently to predict the 

future value of variables.  Like any forecast, it is dependent upon the assumptions that go 

into calculating it.  TIA can only predict the impact of events that can be foreseen.     

2.2.3 Decision Making Methods 

 Decision-makers have developed many methodologies to evaluate and select the 

best alternatives, given a set of objectives or criteria.  These methods are often referred to 

as Multi-Attribute Decision Making (MADM) techniques.  MADM techniques were 

investigated as a means of evaluating the advanced propulsion concepts given the 

multiple criteria.   

 The first MADM technique reviewed is commonly referred to as the Overall 

Evaluation Criterion (OEC) equation.  An OEC gives decision-makers a single measure 

by which to compare the overall goodness of various alternatives.  Each alternative’s 

ability to meat each criterion is measured relative to some baseline.  Each criterion is 

weighted appropriately relative to the other criteria.  Finally, the values for each criterion 

are summed to form one, single measure of goodness for each alternative.  Equation 4 

shows a hypothetical OEC for Alternative i, relative to a baseline.  The β term represents 

the weighting on each term.  In Equation 4, all of the objectives should be maximized.   
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 If an objective is to be minimized, the terms for that objective would be the 

inverse of what is shown in Equation 4.  If instead it is desirable to exactly meet a target, 

the absolute value of the relative difference of the alternative’s value to the target could 

be used in place of the terms shown.  OEC equations are simple, but effect measures from 

which to compare various alternatives. 
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 Another MADM tool for ranking alternatives is the Technique for Ordered 

Preference by Similarity to the Ideal Solution (TOPSIS).  TOPSIS normalizes all of the 

metrics that measure the alternatives ability to meet each objective [44].  A positive ideal 

solution that has the best attributes from each of the alternatives is created, and a negative 

ideal solution that has the worst attributes from each of the alternatives is created.  Each 

of those normalized metrics is then weighted based on the relative importance of the 

objective.  The Euclidean distance of each alternative from to the positive and negative 

ideals is calculated, and the alternatives are ranked based on those distances.  The closer 

an alternative is to the positive ideal and farther away it is from the negative ideal, the 

better its ranking.   

 TOPSIS and the OEC techniques are both heavily dependent upon the weightings 

that are given to the objectives.  Those weightings are subjective.  While decision-makers 

can choose the weightings, another MADM tool, Analytic Hierarchy Process (AHP), can 

calculate those weightings [86].  In AHP, the importance of each objective is ranked 

relative to all of the other objectives, on a scale of 1 to 9.  A matrix is created that 

contains all of the relative rankings.  The matrix is then normalized, and the average 

value of the row in the normalized matrix is used as the ranking for that objective.  

2.2.4 Exploration Techniques 

 Complex design spaces can be explored by simply sampling portions of the space.  

Before those techniques are discussed, it makes sense to explain a few terms.  Design 

space can be defined as the entire set of possible alternatives.  In a more mathematical 

sense, it is the entire multidimensional range of independent variables.  The variables can 

be either continuous or discrete.  A response is the output of the analysis for a unique 

design variable setting, or alternative.  The responses’ values are ultimately what the 

decision-maker is interested in finding out about the design space.   
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 The sampling techniques will produce a set of results, along with the input 

variables that produced those results.  The sampling can be done at regular intervals, 

deterministically, or it can be random and probabilistic.  Intelligent, predefined design 

space explorations, or Designs of Experiments, can be used to obtain all of the required 

information about the design space, while running the fewest cases, or samples possible 

[68].  Design space sampling can be used simply to understand the design space, perform 

ad hoc optimizations, or forecast distributions of output responses. 

2.2.4.1 Grid and Random Searches  

 Grid searches are the most basic and thorough explorations of design space 

through sampling.  Each dimension of the space is divided up into regular intervals and 

the outputs are calculated for every possible combination of those variable settings.  Grid 

searches got their name because if used in a two-dimensional space, the points that must 

be tested form a grid.  Simple grid searches provide decision-makers with a quick, but 

thorough understanding of the space.  The problem with grid searches is that thorough 

explorations require fine grids, and the number of cases to be analyzed increase 

exponentially as the dimensions of the problem increase.   

 Grid searches can serve as the basis for ad hoc optimization methods.  Initially, 

the space is divided into a coarse grid, and the prescribed points are tested.  From the 

initial grid search, the decision maker identifies areas of the design space where the 

optimal solution is likely to exist.  Finer grids are drawn in those areas, and the process 

repeats itself.  The optimization continues until the decision-maker is content with the 

resolution of the optimization. 

 Instead of searching the design space rigidly with a grid, random searches can be 

used.  In random searches, the values for the independent variables that are sampled are 

determined randomly.  Random searches produce a good sampling of the design space, 
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and require little overhead to set up.  The understanding of the design space that is 

explored is purely tied to how many points are examined in the random search.  Searches 

can easily be tailored to the number of designs being examined.   

2.2.4.2 Design of Experiments 

 A DoE is a prescribed set of experiments that will yield enough information about 

the design space to data to ensure that the variability of the responses can be properly 

correlated to the variation of the input parameters [68].  The inputs to the DoE are 

orthogonal to ensure that the effects of each term the experimenter is regressing against 

are not correlated with one another.  In the case of analyzing complex systems, a 

computer simulation is run in the place of conducting an experiment.  Using a DoE to 

identify the “experiments” to be conducted via simulation allows decision-makers to 

create meta-models more efficiently.   

 There are several different classes of DoEs; each provides varying amounts of 

information about different parts of the design space.  As the number of experiments that 

the DoE requires increases, the fidelity of the subsequently generated RSE will increase 

as well.  It should be noted, however, that the meta-model could still have a poor fit if the 

analysis does not behave as the meta-model predicted.  A full factorial DoE, an 

experiment in which every combination of discrete variables is tested, would be the most 

complete experiment possible, and would produce the highest fidelity meta-model.  A full 

factorial DoE would capture all possible interactions between all of the variables.  Such a 

DoE, however, usually requires too many test cases to be practical.  For an experiment 

that investigates the impact n variables, each variable has i discrete settings, requires in 

test cases.  If there were 12 variables, each with 3 settings, 531,441 cases would need to 

be run.   
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 As the number of experiments in a DoE is reduced, the fidelity of the meta-model 

produced will decrease.  Box-Behnken Designs, and Central Composite Designs (CCD) 

are just two DoEs developed to reduce the number of simulations that are required to be 

run [49].  These DoE methods reduce the number of simulations for 12 variables, each 

consisting of 3 settings, from 531,441 in a full factorial to 2,187 and 4,121, respectively.  

Additional information about these DoEs can be found in Empirical Model-Building and 

Response Surfaces [49], [10].  It should be noted that the fidelity of the meta-model 

varies throughout the design space.  DoEs that examine fewer cases at the interior of the 

design space yield RSEs with lower accuracy throughout the interior, while DoEs that 

concentrate more of the cases in the interior of the design space may produce RSEs that 

are less accurate throughout the space, but do not rely upon extrapolation as much for the 

extreme boundaries of the space.   

2.2.4.3 Monte Carlo Techniques 

 Monte Carlo techniques are random samplings designed to simulate reality.  They 

use computational simulations to determine the distribution of computer outputs, or 

responses, experimentally.  For each simulation, the independent variable inputs are 

generated randomly from a predetermined distribution, designed to reflect the actual 

distribution of the inputs.  For a large number of simulations, the distribution of the 

output responses can be found with a high degree of accuracy. 

 Monte Carlo techniques are not traditionally used for optimization, but for 

exploration.  The simplest version of a Monte Carlo technique is a random sampling.  In 

order to produce a random sampling, a uniform distribution is used to generate each 

independent variable for each case that is simulated.  The final set of cases should 

uniformly reflect the entire design space.  Random samplings are similar to grid 
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samplings, but the points are randomly chosen and not discretely dispersed throughout 

the design space.   

 Monte Carlo simulations allow decision-makers to calculate the distribution of 

probabilistic outputs based on assumed distributions of probabilistic inputs.  This 

simulation is ideal for quantifying the uncertainty inherent to any analysis.  Cumulative 

Distribution Functions (CDFs) of the outputs, or integrals of the probability density 

function, quantify the probability of meeting characteristic requirement constraints.  

Monte Carlo simulations can also be used to identify regions of multidimensional space.  

For example, if uniform distributions are placed on all of the independent variables, the 

percentage of the designs that meet multiple constraints or requirements simultaneously 

can easily be determined. 

 Because Monte Carlo techniques require a large number of test cases, or 

simulations, to portray the distribution of responses accurately, they are difficult to 

employ with complex analyses.  For this reason, they are frequently used in conjunction 

with RSEs or other meta-modeling techniques.  Thousands of cases can be run when the 

analysis consists only of simple equations, yielding a good estimate of the probability 

distribution of the response. 

2.2.5 Meta-models 

 As technological systems become more and more complex, the analyses needed to 

evaluate these systems likewise become more and more complex.  Design spaces cannot 

be fully explored, because analyzing each alternative within the design space is simply 

too time consuming.  Fortunately, several methods have been developed over the years to 

tackle the problem of evaluating large sets of complex systems.  The simplest means of 

handling these problems is to first develop a meta-model of the complex analysis, and 

thoroughly explore the entire design space using the simplified meta-model.  The 
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development of the meta-model is discussed below.  Two meta-modeling techniques are 

described below. 

2.2.5.1 Response Surface Equations 

 The most commonly employed meta-model is a Response Surface Equations 

(RSE), or a quadratic regression of a complex model.  RSEs are essentially simplified 

models of more complex analyses, or meta-models.  They capture the dependencies of 

responses, or output metrics, to the independent variables, or input parameters [49].  

RSEs are created by regressing the responses against the independent variables of 

interest.  Once an RSE is created, it can be used in place of time consuming, complex 

analyses.  While a quadratic RSE is most often used, the RSE can be linear, include 

higher order terms, or not be quadratic at all.  A quadratic RSE is shown below: 
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Where:  R = Response  

  bo = intercept term 

  bi = 1st order coefficient 

  bii = 2nd order coefficient 

  bij = interaction coefficient 

  xi = independent variable 

 The creation of RSEs has been greatly aided by the development of DoEs.  There 

are a few limitations to RSE meta-models to represent the design space.  First, the 

number of independent variables that can be considered is limited.  Although DoEs can 

be and have been designed for large sets of variables (100 variables), they become more 

difficult to come by, and often have to be generated specifically for the intended purpose.  

Second, and perhaps even more limiting, is the notion that the design space represented 

by RSEs must be smooth, continuous, and well behaved.  As the range of variables 
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considered in the design space increases, and the responses behave less linearly, meta-

models usually lose their ability to capture the variability of the response as a function of 

the variation of the independent variables accurately.  Finally, RSEs simply cannot model 

discontinuous space.   

 Once RSEs have been generated, they offer the decision maker the ability to 

conduct a plethora of analyses.  First, they can be used to quantify the sensitivity of the 

responses to the independent variables in the.  Often in highly coupled, complex analyses, 

that sensitivity is a function of the other variable settings and cannot be determined 

intuitively.  Second, the RSEs can be used in place of the complicated analysis for the 

purpose of optimization.  Because the RSEs provide direct and simple equations to 

represent each response, straightforward mathematical optimizations can used to find 

optimized design settings.  Finally, RSEs can be used in conjunction with Monte Carlo 

techniques (discussed below) to generate distributions of outputs based on assumed 

distributions of inputs.   

2.2.5.2 Artificial Neural Networks 

 Another type of meta-model that is quickly gaining popularity for its ability to 

model non-linear spaces is the artificial neural network [47].  Artificial neural networks 

are mathematical models that were inspired the biological neural network that connects 

neurons in the nervous system.   

 Artificial neural networks are actually simple mathematical models.  They define 

a function YXf →: .  The function f actually represents a composition of functions 

gi(x), which can also be further decomposed into a network structure, as is shown in 

Figure 5 [99].  In this form, the output F is ultimately a function only of X, because 

( )G  F f= , ( )H G g= , and ( )X  H h= .   
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Figure 5: Generic Artificial Neural Network Dependency [99] 

 There are multiple types of Neural Networks, and they vary in their complexity 

and ability to model various nonlinear functions [47].  They can provide a basis for the 

creation of meta-models, and they can even be used to optimize functions.   

2.2.6 Stochastic Optimizations 

 Stochastic optimizations consist of probabilistic solutions that successively 

improve from generation to generation.  They usually attempt to mimic real development 

or improvement processes, such as evolution.  Two stochastic optimization methods are 

discussed below: simulated annealing and genetic algorithms. 

2.2.6.1 Simulated Annealing 

 Simulated annealing is a sophisticated stochastic optimization aimed at finding an 

optimal solution within a multimodal design space.  Annealing is the processes of heating 

metal and then cooling it slowly.  When the metal is hot, it is very pliable, and can be 

shaped easily.  As the metal cools, however, it becomes more rigid, and less pliable.  

Simulated annealing has been developed especially to handle multimodal spaces, as the 

design points can move from good points to worse points when the temperature is hot, or 

the process is just beginning, to escape potentially local, but inferior minima.   

 Simulated annealing was proposed by Kirpatrick as an optimization routine meant 

to mimic the real process of annealing in 1983 [52].  Points within the space are selected 

at random to be the design points, and the objective function is calculated for the design 
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point.  A small step is taken in a random direction away from the design point, and the 

objective function is tested at the new point.  If the objective function of the new point, or 

offspring, is better than the objective function for the design point, or parent, the design 

point moves to the new point.  Essentially, the offspring survives, and kills off the parent.  

If the objective function for the offspring is worse than that of the parent, usually the 

parent will survive over the offspring, but there is still a chance that the offspring will 

survive.  In that case, the probability that the offspring survives decreases as the gap 

between the parent’ function value and the offspring’ function value widens.   

 Figure 6 depicts a hypothetical multimodal function in one-dimensional space that 

is to be minimized.  Two initial points were selected at random. 

 

Figure 6: Hypothetical Multimodal Objective Function 

 Notice that the objective function in Figure 6 has three local minima.  Figure 7 

shows the movement from the originally selected two points to the two new points.  

Notice that one of the points is actually worse than the original, while the other point is 

better.  Because it is early in the process—the first iteration—and the offspring is not 

significantly worse than the parent, it is likely that the offspring will survive and the 

design point will shift from the original point to the new point.  For the second set of 

points, the offspring is lower, or better, than the original point, so the offspring will 

definitely survive, and the design point will shift.   
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Figure 7: Initial Iteration of Simulated Annealing on Hypothetical Multimodal 

Objective Function 

 The process described above continues for several iterations.  Eventually, after 

several iterations, each of the design points will likely settle into local minima.  This 

process is shown in Figure 8.   

 

Figure 8: Progression of Simulated Annealing on Hypothetical Multimodal 

Objective Function 

 Complex optimization schemes, such as simulated annealing, are only used when 

the actual objective function cannot be quantitatively visualized.  If the decision maker 

truly understood the shape of the objective function, optimization techniques would not 

be required.  Unfortunately, decision–makers cannot use a convergence tolerance to 

identify whether stochastic optimizers are approaching the global minimum.  The global 

minimum is unknown, and the optimal solution found in stochastic optimization will not 

improve continuously throughout successive iterations.  Tens or hundreds of iterations 

can take place with no improvement over the best design of the set, and then suddenly, a 

new, “optimal” design point can emerge.  For this reason, decision-makers usually run as 

many simulated annealing trials as the decision maker can afford to run. 
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2.2.6.2 Genetic Algorithms 

 Optimization schemes that simulate the process of evolution by natural selection 

have generated much attention lately and have emerged as promising new techniques for 

handling multimodal spaces.  As simulated annealing mimics the real process of 

annealing, genetic algorithms attempt to mimic the process of biological evolution.   

 The theory behind genetic algorithms is that the “fittest” solutions in a gene pool 

will survive each generation.  “Fitness” in this case is directly related to the object 

function and is greater for solutions closer to the global maximum (or minimum for 

functions that are minimized).  Initially the pool consists of randomly selected solutions, 

or alternatives, but it “evolves” into a better pool through time.  Throughout each 

successive generation, the pool members are mutated, crossed with themselves, and 

reproduced selectively.  These processes allow the overall fitness of the pool to improve.   

 The concept driving genetic algorithms is simple, but the actual implementation 

of genetic algorithms can vary substantially.  Each independent variable required to 

define a solution is discretized into settings.  Each setting is represented by a binary 

number.  The binary numbers that reflect the setting for each independent variable are 

combined into one long, binary string.  The pool, then, is the set of binary strings that 

each define one solution or alternative.  In mutation, part of the binary string, or genetic 

makeup of some of the pool members is altered.  A zero switches to a one, or a one 

becomes a zero.  As the process advances, pools can head toward homogeneousness.  

Mutations ensure that there will be some diversity among the pool.  When pool members 

are crossed with one another, portions of the string from one pool member is switched 

with the same portion of binary string from a second pool member.  As the pool advances 

and becomes more homogenous, the impacts of crossover will become less and less 

evident.  Selective reproduction can be completed in a number of ways.  A “tournament 

selection” pairs pool members up randomly, and takes the best of the alternatives as the 
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next generation pool member.  Proportional replacement is a deterministic reproduction 

method that uses a formula to determine the percentage of the next generation pool that 

will be made up each pool member.  The proportional replacement formula is shown 

below. 
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 Ni needs to be rounded, as it will not usually end up as a whole number.  

Additionally, the sum of all of the Ni’s does not necessarily add up to NP.  If this is the 

case, either some of the designs that should be included in the next generation will not be, 

or additional pool members will have to be added to the pool, to ensure that the number 

in the pool is held constant.  While there is no single best optimization algorithm, genetic 

algorithms have been shown to be effective for a wide range of problems [64].   
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3 HYPOTHESES & RESEARCH QUESTIONS  

 

The following chapter discusses ten research questions that emerged while attempting to 

evaluate and compare advanced propulsion concepts.  The discussion that follows the 

questions investigate the answers to those questions.  The answers to each question lead 

or partially lead up to one of four hypotheses, listed below.  Hypothesis I is the main 

hypothesis that sets up the requirements for the Evolving Requirement Technology 

Assessment (ERTA) methodology.  The remaining hypotheses laid the foundation for the 

ERTA methodology.   

 

 Hypothesis I: Any method designed to evaluate advanced 

propulsion concepts must incorporate the possible variations of the 

requirements into the assessment. 

 

 Hypothesis II: Shape functions depicting distributions of future 

requirements can be defined using traditional, forecasting techniques. 

 

 Hypothesis III:  “Fitness”, a technological concept’s ability to 

meet a set of requirements relative to other potential concepts, can be used 

to forecast an advanced propulsion concept’s likelihood of successful 

development. 
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 Hypothesis IV: Stochastic optimizations can be used to calculate 

fitness as a function of requirements, enhancing decision-makers’ 

understanding of future technological concepts. 

 

3.1 Hypothesis I 

 In order to identify the propulsion concept best suited to propelling the HALE 

vehicle, the vehicle system and mission requirements must be known.  Given those 

parameters, analyses can be conducted to evaluate each concept, and decision-making 

tools can be used to select the concept that is best overall.  Unfortunately, the values of 

those parameters that are used to evaluate each concept are uncertain.  How sensitive is 

the comparison of each concept to the potential variations in those requirements?  Would 

the decision-makers come to a different conclusion if the requirements were only slightly 

perturbed?  These observations and questions are formalized by the research question 

below. 

3.1.1 Research Questions 

1) Does the uncertainty inherent to the requirements for technological concepts 

significantly impact the goodness of advanced propulsion concepts? 

• The impact that uncertainty in the requirements has on the goodness of 

propulsion concepts is a function of how greatly the requirements will 

vary.  If the propulsion concepts require only a short development period, 

changes in requirements will be minor, and the evaluation of the concept 

will not be impacted.  If, on the other hand, the development will span 

across years, the requirements for the concept could vary significantly, and 

the concept’s ability to meet the requirements could diminish. 
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2) Should the uncertainty in the requirements for advanced propulsion concepts be 

incorporated into the evaluation of technological concepts? 

• The uncertainty inherent to the requirements should only be taken into 

account if there is a good chance that the requirements will deviate 

significantly from their original expectations.  Otherwise, the impact of 

requirements’ variation will be negligible.  Advanced propulsion concepts 

will require years to develop, and the requirements for such concepts 

could vary dramatically.   

3.1.2 Hypothesis Statement 

Any method designed to evaluate advanced propulsion concepts must 

incorporate the possible variations of the requirements into the assessment. 

 

 The goodness of advanced propulsion concepts can only be measured relative to 

the concepts’ abilities to meet the requirements for the system.  Because advanced 

propulsion concepts require a significant amount of time and resources to be fully 

developed, the requirements that they are developed to meet can significantly change 

during the development phase.  As the requirements change, so too might the potential 

worth of any advanced propulsion concept.   

 Requirements can change, new requirements can be created, or the relative 

importance of individual requirements can fluctuate.  Consider the design of a propulsion 

system designed for a civilian aircraft.  If jets are allowed to travel supersonically over 

land, or if the aerodynamics discipline develops an aircraft shape that produces a low 

enough overhead pressure to allow for supersonic flight over land, the goodness of any 

engine is going to be significantly impacted.  Simply changing the relative importance of 

individual requirements can impact the goodness of advanced propulsion concepts.   
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 While resources may be devoted to developing many advanced propulsion 

concepts, the concepts that ultimately “survive” to become viable operating systems are 

the concepts that are most robustly capable of meeting the evolving set of requirements.  

Whether the changes in requirements stem from government policy changes, market 

forces, or enabling technology capability, they will significantly impact the worth, or 

potential goodness, of future systems.  Throughout development, changes in requirements 

could make advanced propulsion concepts obsolete before they are even fully developed.   

 There are numerous examples of technologies becoming obsolete before they ever 

had a chance to make it to the market within aeropropulsion systems alone.  Consider the 

example of the nuclear jet engine or the unducted fan (UDF).  While the testing and 

development of the nuclear jet went fairly well, perception of nuclear power and the 

requirements for such a large system changed throughout the development cycle.  The 

program was dropped entirely.  Unfortunately for the UDF, fuel prices returned to 

normalcy, and the requirement for fuel-efficient engines no longer superseded the need 

for quiet engines. 

 In order to capture the variation of requirements into the assessment of advanced 

propulsion concepts, two things need to be done.  First, a probabilistic distribution of the 

requirements needs to be identified.  The impact of uncertainty of requirements cannot 

truly be accounted for unless the uncertainty in the requirements itself is understood.  

Second, decision-makers must develop the ability to assess the robustness of the 

propulsion concepts as a function of that distribution.  The remaining research questions 

were developed while attempting to find a means of forecasting a distribution of the 

requirements, and evaluating the concepts, given that distribution of the requirements.   
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3.2 Hypothesis II 

 Once the impact of the evolution of requirements upon the selection of advanced 

propulsion concepts is established, a probabilistic understanding of the likely future 

requirements must be developed.  Identifying a probabilistic distribution for those 

requirements is a sufficient means for means of quantifying uncertainty at the early 

phases of technology forecasting.  Identifying such a distribution, however, is not trivial.  

The following questions arose when attempting to develop a probabilistic distribution of 

the requirements. 

3.2.1 Research Questions 

3) How can the evolution of requirements for complex systems be predicted? 

• Forecasting techniques have been developed and used for years in a 

variety of fields.  Technology Futures Analysis (TFA) is an initiative 

aimed at organizing the research to advance such methods.  There are 

several types of these methods, ranging from expert-opinion based 

methodologies to complex, sophisticated modeling and simulation based 

methodologies.  A few of these methods are discussed below.   

• Requirements can be directly forecasted using expert opinion.  The 

Delphi Technique is one example of methodology that could use 

expert opinion to forecast requirements directly.  It is tailored toward 

sampling expert opinion from a wide range of experts.  It was 

discussed in section 2.2.1.1.   

• Trend extrapolation can be use to project historical trends into the 

future to predict the value of particular requirements.  Time-series 

estimation is a good example of a trend extrapolation.  It was 

discussed in section 2.2.2.1.  



62 

• Scenario approaches can also be used to identify a few key scenarios.  

The divergence of the performances of the concepts under each of the 

key scenarios can eventually be used to understand the uncertainty 

associated with the various concepts.  Scenario approaches are 

discussed in section 2.2.1.5. 

 

4) How can the interdependent nature of the individual requirements be captured? 

• Requirements for complex systems, such as the HALE propulsion system 

are partially dictated by the larger-level, integrated super-system.  In the 

case of the HALE, the larger integrated super-system is the entire vehicle 

and mission.  The individual parameters in the super-system are highly 

interdependent upon one another, as they are highly coupled.  Any 

forecasting method used to place a distribution on those parameters should 

capture those dependencies.  Because identifying the requirements is only 

one part of evaluating advanced propulsion cocnepts, the forecasting 

method should be relatively simple, and easy to execute.   

• The Trend-Impact Analysis (TIA) can be used to forecast the value of 

continuous variables that are dependent upon events or other variables.  

TIA was discussed in section 2.2.2.3.  Unfortunately, TIA cannot be used 

to forecast the distribution of discrete variables. 

• The cross impact (CI) analysis is a forecasting method that can be used to 

identify a probabilistic forecast of multiple, dependent events.  CI was 

discussed in section 2.2.2.2.  With a few modifications, the CI analysis can 

capture the dependencies of requirements along in its forecast.   
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3.2.2 Hypothesis Statement 

Shape functions depicting distributions of future requirements for the 

HALE propulsion system can be defined using traditional, forecasting 

techniques. 

 

 Forecasting methods have been widely used in many industries for years.  Entire 

fields of research have been devoted to developing such methods, and the research has 

produced numerous viable methods.  The types of requirements for complex systems and 

their roots are going to vary dramatically.  Some requirements will be caused by 

government policies, and some will be functions of the free economy.  Still other 

requirements are functions of the technological development (or lack of development) in 

tangential technological systems.  Because the requirements come from such different 

sources, forecasting all of them simultaneously may be challenging.   

 Forecasting the requirements is only one part of assessing the advanced 

propulsion concepts as a whole.  As decision-makers have more time and energy to 

devote to the forecasting of requirements, the methods can become more elaborate and 

exhaustive.  For the purposes of the ERTA method, a forecasting method must be simple 

to implement, but still methodical, and the forecasting method should integrate past 

trends with future expert expectations.  Finally, the forecasting method needs to be 

transparent and traceable, so that all assumptions can be clearly stated and understood.   

 While it is difficult to validate any forecasting method, the author believes a 

useful forecast of requirements can be derived from the plethora of methods that the 

forecasting research has developed.  Table 9 compares a few forecasting techniques.  The 

symbols used to evaluate each forecasting technique are explained in Table 8. 
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Table 8: Legend Methodology Alternative Ratings 

  

Table 9: Types of Forecasting Methods 

 The cross impact analysis integrates simulation with expert opinion to identify a 

probabilistic forecast.  CI is attractive because the experts forecast the likelihood of each 

event occurring, as well as the conditional probability of each set of events occurring.  

The dependencies of individual requirements can be captured and integrated into the 

overall forecast.   

3.3 Hypothesis III 

 Once a probabilistic set of requirements is established, the ability of the 

technological concepts to meet those requirements must be assessed.  That assessment 

can then be used to compare the concepts to one another.  Before those concepts can be 

⊗ Completely Incapable of Meeting Requirement 

▬ Poorly Meets Requirement 

� Sufficiently Meets Requirement 

� Meets Requirement Well 

� Meets Requirement Exceptionally 

  
Ease of 

Implementation 
Probabilistic Transparency 

Avoid 
Biases 

Capture 
Dependencies 

Expert 
Opinion � � ⊗ ⊗ ⊗ 

Time-Series 
Forecasting � � � � 

� 

Trend Impact 
Analysis ▬ � � � � 

Cross Impact 
Analysis ▬ � � � � 

Scenario 
Forecast ▬ � � � � 

None � ⊗ ⊗ � ⊗ 
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compared on a just, “apples to apples” basis, a figure of merit that is applicable for each 

propulsion concept, across every set of requirements must be found.   

3.3.1 Research Questions 

5) What figures of merit are universal enough to be used to evaluate advanced 

propulsion concepts against one another? 

• Any metric used to compare advanced propulsion concepts to one another 

must be applicable and directly comparable across every concept, and 

every set of requirements.  Metrics that are specific to conventional 

concepts, such as thrust specific fuel consumption, often have no meaning 

when evaluating alternative concepts, such as solar vehicles. 

• System level metrics, such as vehicle weight, or emissions could be 

applicable across all requirements and concepts, but might still not be 

appropriate because the values cannot be directly compared across 

different sets of requirements.  For example, it does not make sense to 

compare gross vehicle weight, when the vehicle has to fly different 

missions.  The assumptions that go into the calculation of that parameter 

are different, and thus, can only be used to compare concepts to one 

another if the requirements are fixed. 

• Probability of Success (POS) was identified by Bandte as a figure of merit 

from which to assess various concepts.  It measured the likelihood that a 

concept would be feasible, given a noise distribution on the requirements.  

The problem with POS is that it does not give a measure of how much 

better or worse a concept is given that both are feasible. 

• “Fitness” is a relative figure of merit that specifies how well each concept 

meets the specific set of requirements relative to other potential advanced 
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propulsion concepts being considered.  Fitness can be used in conjunction 

with any quantifiable measure, or even a conglomerate measure, such as 

an overall evaluation criterion (OEC) function.   

3.3.2 Hypothesis Statement 

“Fitness”, a concept’s ability to meet a set of requirements relative to other 

potential concepts, can be used to forecast a propulsion concept’s 

likelihood of successful development. 

 

 Traditionally, the goodness of technological concepts is measured in terms of 

physical characteristics that reflect the capability of the concept.  For example, fuel 

consumption is often used to evaluate aircraft engines.  Cruise lift to drag ratio is often 

used to evaluate aircraft.  These metrics are useful when comparing different alternatives 

that are part of the same basic concept, but cannot be used to evaluate fundamentally 

different concepts.  Propulsion systems that convert solar energy to thrust cannot be 

evaluated based on their fuel consumption, just as lighter-than-air vehicles cannot be 

evaluated based on their lift to drag characteristics.   

 Instead of comparing physical parameters, decision-makers need to have a 

universal figure of merit that allows them to compare fundamentally different concepts to 

one another.  Table 10 compares various figures of merit.  The figures of merit were first 

evaluated based on how easy they were to determine.  The second category measures 

whether the figure of merit was suitable for evaluating a number of criteria.  The third 

category measured whether the Figure of merit was applicable across the entire range of 

concepts, and the final category measured whether the figure of merit was suitable to 

measure across a range of requirements.  Fitness and POS are the only figures of merit 
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that are always applicable, but only fitness gives decision-makers an understanding of 

how multiple feasible concepts compare against one another.    

Table 10: Figures of Merit 

 Fitness measures how well a concept meets the requirements relative to the other, 

competing concepts.  There are different ways that fitness can be measured, but the 

ERTA method will use a proportional measure of fitness to evaluate how well each 

concept can meet the requirements relative to other concepts.   

 Fitness is a good indicator of how likely a concept is to be successfully developed 

because it first measures whether or not a concept is capable of meeting the specific 

requirements.  If a concept cannot meet the requirements, its fitness is zero.  Second, 

measuring fitness gives decision-makers an idea of how much better (or worse) a concept 

is than the other options.  Fitness can be used to directly compare fundamentally different 

concepts in an “apples to apples” fashion, because only system level metrics that pertain 

specifically to requirements are examined.  Finally, while fitness does measure the ability 

of a concept to meet a particular set of requirements, it is applicable across any set of 

requirements, as long as at least one metric should be optimized, and not just constrained.  

The calculation of fitness is described in sections 4.2.2.  

  
Ease of 

Determination 

Ability to 
Measure 
Multiple 
Criteria 

Applicability 
Across Range of 

Concepts 

Applicability 
Across 

Range of 
Requirements 

Physical 
Characteristic � � ▬ ▬ 

OEC � � ▬ ▬ 

POS ▬ � � � 

Fitness ▬ � � � 
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3.4 Hypothesis IV 

 Now that we have found a means of identifying a requirements distribution and 

found a figure of merit that is suitable to evaluate concepts (fitness), given the varying 

requirements, the remaining questions deal with actually measuring the fitness of each 

concept, given the uncertainty inherent to the requirements, and the development of the 

propulsion concepts.  Before any of this can be cone, however, the propulsion concepts 

that are being considered need to be identified.  Once those concepts are identified, their 

performance needs to be assessed, and they have to be designed to meet the specific set 

of requirements.  Comparing concepts that are not designed specifically to each set of 

requirements will result in an unfair comparison of concepts.  Next, the fitness of each 

concept needs to be calculated.  That calculation, however, must incorporate the possible 

fluctuation of requirements and the uncertainty inherent to the development of each 

concept.  More accurate performance capabilities can be assessed for concepts that are 

more mature.  The varying level of uncertainty needs to be taken into account. 

3.4.1 Research Questions 

6) How does one identify and define potential propulsion concepts? 

• Identifying advanced propulsion concepts is not always necessary; the 

specific concepts being considered could be obvious.  Limiting the 

concepts, however, may prevent decision-makers from understanding an 

important piece of the puzzle.  Advanced propulsion concepts other than 

those specified could eventually become the mainstream technology, 

making all of the specified advanced propulsion concepts obsolete.   

• Methods for identifying propulsion concepts must be easy to implement 

and objective.  Biases can prevent decision-makers from identifying 

quality solution.  Also, the methodology should be well tailored to the 
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physical assessment, or modeling of the concept.  Table 11 compares 

various alternatives for identifying potential concepts. 

Table 11: Methods for Identifying Concepts 

  
Ease of 

Implantation 
Objective 

Range of 
Concepts 

Provided by 
Customer � ▬ ⊗ 

Brainstorming � � � 

Morphological 
Matrixes � � � 

TRIZ ▬ � � 

• TRIZ is one possible method for identifying advanced propulsion 

concepts, but is difficult to automate.  Morphological matrices (explained 

in section 2.2.1.2) may be more helpful.  By breaking a system down into 

the required subfunctions or subsystems, decision-makers can 

systematically organize all of the possible solutions to a problem.  One 

concept can be defined as one unique set of alternatives from the 

morphological matrix.  Categorizing alternatives in this way will prevent 

decision-makers’ bias from wrongly eliminating concepts.   

 

7) How can the mature performance of advanced propulsion concepts be assessed? 

• The modeling tools used to assess advanced propulsion concepts must be 

flexible enough to assess the entire range of advanced propulsion concepts 

under consideration.  Because many of the concepts are revolutionary in 

nature, empirical relationships or data cannot be used to assess these 

concepts.  A few assessment methods are compared below in Table 12. 
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Table 12: Methods for Assessing Revolutionary Concepts 

  
Ease of 

Implementation 
Accuracy 

Ability to 
Evaluate Entire 

Range of 
Concepts 

Model Future, 
Mature 

Performance 

Qualitative 
Assessment � ▬ � � 

Empirical 
Model � � ⊗ ▬ 

Empirical 
and Physics-
Based 
Modeling 

� � ▬ � 

Physics-
Based 
Modeling 

▬ � � � 

Qualitative 
and Physics-
Based 
Modeling 

▬ � � � 

• The only real way to analyze and predict performance of advanced 

propulsion concepts is through first principles analyses.  Such analyses 

can be validated using controlled experiments along with initial tests of 

immature technology.  Predicting the mature performance of the concepts 

after they have been developed, however, affords no such validation.  

Research has been done to assess mature performance of aeropropulsion 

systems at early stages of development, based on the theoretical 

limitations of the concepts [60].  That research shows that mature 

performance will be dominated by the physical limitations inherent to the 

concept.  The concepts can be modeled using the simple physical and 

thermodynamic relationships that define them, in conjunction with key 

disciplinary metrics that measure how mature the process is, such as 

efficiencies, and material limitations 
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• Using the simple physical and thermodynamic relationships is also likely 

to increase the computational speed, allowing for a more thorough 

examination of the revolutionary design space.  A combination of first 

principles analyses and qualitative assessments might also be useful.  

Depending on how much information and experience decision-makers 

have, qualitative assessments can enhance the physics-based assessment. 

 

8) How can one systematically find optimized propulsion concepts to ensure that the 

comparison is on an “apples to apples” basis? 

• Advanced propulsion concepts can only be compared to one another if 

they are both optimized to meet the specific set of requirements.  

Otherwise, the comparison would be biased.  From hereon, the specific 

alternative within a particular concept that is designed to best meet the 

specific set of requirements is referred to as the optimized concept. 

Optimized concepts can be considered as local minima in the entire 

concept space.   

• Identifying the optimized concept, however, is exhaustive.  Optimization 

methods can be used to identify the optimal concept.  Traditionally, 

optimization methods are judged for their ability to avoid local minima.  

In this case, they will be required to identify the local minima so that the 

optimized concepts can be compared.  An optimization method should 

first and foremost be capable of identify the local minima.  Additionally, it 

should be robust, and not require too much time to complete.  

Optimization routines are compared below in Table 13.  
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Table 13: Optimization Methods 

  
Set Up 
Time 

Computational 
Time 

Identify Local 
Minima? 

Robustness 

Gradient-
Based 
Methods 

▬ � ⊗ ▬ 

Random 
Search � � � � 

Genetic 
Algorithm � ▬ ▬ � 

Simulated 
Annealing � ▬ � � 

None � � ⊗ ⊗ 

• Gradient-based methods are notorious for getting “stuck” in local minima, 

but they are deterministic in nature, so the decision-maker would have to 

run one optimization for each concept under consideration to find all local 

minima.   

• Stochastic optimizing methods can help decision-makers identify the 

optimal design variable settings for advanced propulsion concepts, so that 

that the concepts are compared in an “apples to apples” fashion.  

Simulated annealing, in particular, can identify local minima within a 

design space, or optimized concepts from the entire space.  Once the 

optimized concepts are identified, the goodness of each concept can then 

be assessed relative to one another. 

 

9) How can the robustness of HALE propulsion concepts to variations in 

requirements be incorporated into the overall goodness of advanced propulsion 

concepts? 

• Fitness measures how well a concept meets the particular set of 

requirements relative to the other concepts that are considered.  The 
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distribution of fitness as a function of the probabilistic distribution of 

requirements can give decision-makers a quantitative understanding of 

how robust each concept is to variations in requirements.   

• The easiest, most accurate way to identify an output distribution is to use 

Monte Carlo (MC) trials.  Monte Carlo techniques are discussed in section 

2.2.4.3.  Unfortunately, they require thousands of trials to predict output 

distributions.  Conducting Monte Carlo trials in with the actual assessment 

is infeasible, as the assessment will likely be computationally exhaustive. 

• Fast Probability Integration (FPI) is a method that approximates a Monte 

Carlo simulation to identify a distribution of an output as a function of the 

distribution of the input.  FPI works by identifying the most probable FPI, 

and approximating the cumulative distribution function (CDF).  More 

information about FPI can be found in source [49].   

• Instead of approximating the Monte Carlo trials, the actual assessment can 

be approximated using a meta-model.  Two popular meta-models were 

considered: Response Surface Equations (RSE) and Neural Networks, 

described in section 2.2.5.1 and 2.2.5.2, respectively.   

• Different means for identifying the distribution of fitness as a function of 

the distribution of requirements are compared in Table 14.  

Table 14: Calculating the Distribution of Fitness 

  Time  
Thoroughness 
of Exploration 

Ability to 
Assess Multiple 

Criteria 

Accuracy         
(In Linear 

Space) 

MC + 
Assessment ⊗ � � � 

FPI + 
Assessment � � ⊗ � 

MC + RSE � � � � 



74 

MC + Neural 
Network � � � � 

• Monte Carlo trials were conducted using a meta-model because meta-

models can be highly accurate, but require only a fraction of the 

computational time of the actual assessment.   RSE was selected as the 

meta-model because the fitness of each concept is expected to behave 

relatively linearly with respect to the range of requirements.  The fitness is 

a relative normalization of system-level metrics, and thus should be much 

more linearly. 

 

10) How can the uncertainty associated with the development of advanced propulsion 

concepts be incorporated into the comparison of the concepts? 

• Once the uncertainty can be measured at system-level scale and quantified 

that uncertainty can be reflected in the fitness of an advanced propulsion 

concept.  The sensitivity of fitness to the maturity of disciplinary metrics 

can also be measured.  Ultimately, however, uncertainty can be taken into 

account by aggregating the fitness of a concept over the potential 

distribution of key disciplinary metrics. 

• The distribution of fitness with respect to disciplinary metrics can be 

calculated using the same methods that were used to calculate the 

distribution of fitness as a function of requirements.   

3.4.2 Hypothesis Statement 

Stochastic optimizations can be used to calculate fitness as a function of 

requirements, enhancing decision-makers’ understanding of future 

technological concepts. 
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 The final hypothesis statement encompasses the answers to that were found to 

questions 6-10.  In the third hypothesis, fitness was proposed as a figure of merit that can 

be used to evaluate advanced propulsion concepts.  The fourth hypothesis proposes a 

means of calculating the distribution of fitness as a function of the distribution of 

requirements.   

 Table 15 summarizes all of the means of assessing advanced propulsion concepts.  

The ERTA methodology uses all of the highlighted elements to assess each concept.   

Table 15: Morphological Matrix of Alternatives for Assessing Concepts 

 A functional decomposition was chosen to identify the concepts because it is an 

effective method for identifying a wide range of alternatives.  A first principles 

assessment was used to model each of the concepts because it is applicable across the 

entire range of concepts under consideration, both conventional and revolutionary.  The 

optimal concept for each set of requirements was identified using a simulated annealing 

optimization routine, and the fitness of each concept will be calculated from the set of 

optimized alternatives.  Finally, the distribution of fitness as a function of the 

Define 
Concepts 

Provided by 
Customer 

Brainstorming 
Functional 

Decomposition 
TRIZ  

Model 
Technological 

Concepts 

Qualitative 
Assessment 

Empirical 
Model 

Empirical and 
Physics-Based 

Modeling 
First Principles  Combination 

Identify 
Optimal 
Concept 

Expert 
Identification 

Design Space 
Exploration for 
each Concept 

Optimization 
Routine 

Other  

Optimization 
Routine 

Gradient-Based 
Methods 

Random 
Search 

Genetic 
Algorithm 

Simulated 
Annealing 

None 

Figure of Merit 
Physical 

Characteristic 
OEC PoS Fitness  

Capture 
Maturity/ 
Capability 

Deterministic 
Disciplinary 

Metrics 

Probabilistic 
Disciplinary 

Metrics 
   

Assess Merit 
Across 

Distribution of 
Requirements 

MC + 
Assessment 

FPI + 
Assessment 

MC + Meta-
Model 

  

Meta-Model None RSE 
Neural 

Network 
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requirements and the disciplinary metrics will be used to evaluate each of the concepts.  

The distribution of fitness will give decision-makers an understanding of how likely a 

concept is to be feasible in the future, and how that concept compares to competing 

concepts. 

 It was already determined in section 3.1.2 that any meaningful forecast of 

advanced propulsion concepts must consider the variability of the requirements.  

Advanced propulsion concepts that are feasible and viable to a wider range of 

requirements will have a greater chance of succeeding and making it to market.  

Decision-makers need a quantitative understanding of how well the advanced propulsion 

concepts would perform given varying requirements.  That, combined with a probabilistic 

understanding of how the requirements are likely to vary would yield an unbiased 

predictor of how likely to succeed various advanced propulsion concepts are.  Such 

knowledge would serve as a basis for comparison between fundamentally different 

advanced propulsion concepts, thus serving as an aid for decision-makers when allocating 

funds for research.  

3.5 Summary of Hypotheses 

 The first hypothesis stated, “any method designed to evaluate advanced 

propulsion concepts must incorporate the possible variations of the requirements into the 

assessment”.  This hypothesis established the need to develop a methodology to evaluate 

advanced propulsion concepts that took into account the uncertain nature of the 

requirements.  In order to do so, such a method would have to identify a probabilistic 

distribution for the requirements and assess the goodness of each concept as a function of 

that distribution.  The second, third and forth hypotheses were proposed as means of 

completing those two tasks. 
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 The second hypothesis proposed the means of calculating the distribution of the 

requirements.  The hypothesis stated “shape functions depicting the distributions of future 

requirements for propulsion systems can be defined using traditional, forecasting 

techniques.”  The cross impact analysis was specifically proposed as a means of 

forecasting the requirements because it is a relatively simple forecasting technique that 

takes the dependent nature of the requirements into account. 

 The third hypothesis proposed a figure of merit to be used to compare the 

advanced propulsion concepts to one another.  The hypothesis stated “‘Fitness’ can be 

used to forecast a propulsion concept’s likelihood of successful development.”  Fitness 

was proposed as a figure of merit because it directly measures how well a concept 

satisfies a specific set of requirements.  It is applicable and comparable across all 

potential requirements  

 The final hypothesis identified a means of evaluating each of the concepts, given 

the distribution of the requirements.  The hypothesis stated “stochastic optimizations can 

be used to calculate distribution of fitness for advanced concepts, enhancing decision-

makers’ understanding of future technological concepts.”  A simulated annealing 

program was proposed as a means of identifying the set optimized concepts as a function 

of the requirements and disciplinary metrics.  Fitness could then be calculated from the 

set of optimized concepts.  Monte Carlo methods were proposed as a means of 

calculating the distribution of fitness as a function of the distribution of requirements and 

disciplinary metrics.  The distribution of fitness could then be used to evaluate the 

concepts.  Decision-makers would have an understanding of how likely a concept is to 

satisfy the future requirements, as well as an understanding of how competing concepts 

compare against one another. 
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4 METHODOLOGY 

 

In Chapter 2, a review of advanced design methodologies revealed that no existing 

methodology is suitable for evaluating advanced propulsion concepts given an uncertain 

set of requirements.  The previous chapter hypothesized the need for such a methodology, 

and set up the basis for a process.  The following chapter discusses the Evolving 

Requirements Technology Assessment (ERTA) methodology itself.   

 Any method designed to assess advanced propulsion concepts, given uncertain 

requirements has to have two main elements.  First, the requirements for future 

propulsion systems must be determined.  Second, the propulsion concepts must be 

assessed with respect to that likely distribution of requirements.  As discussed in Chapter 

3, that assessment will use fitness as a figure of merit to evaluate the concepts.  Fitness 

will allow decision-makers to directly measure how well a concept meets the specific set 

of requirements.  Comparing the fitness of competing concepts will give decision-makers 

an understanding of how good each concept is relative to competing concepts.  Finally, 

the distribution of fitness, as a function of the distribution of requirements, will give the 

decision-makers an understanding of how likely each concept is to satisfy the 

requirements and how sensitive each concept is to variations in the requirements.   

4.1 Defining the Requirements 

 The first step to solving any problem is identifying and fully understanding the 

requirements.  The requirements for complex systems can be formulated in several ways.  

The ERTA methodology forecasts the requirements probabilistically, so that the 
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uncertainty inherent to the requirements can be captured.  Probabilistic requirements can 

be obtained in several different ways.  They could be obtained directly from the 

customer, forecasted, or found through an exhaustive requirements analysis.  The ERTA 

methodology uses a requirements analysis in conjunction with a forecasting method to 

identify the probabilistic requirements.  While a forecasting method would be capable of 

identifying the probabilistic distribution for the requirements, a requirements analysis is 

required to identify the possible requirements.  Table 16 shows a breakdown of methods 

that can be used to formulate requirements.  The specific means that were selected for 

each category are highlighted. 

Table 16: Morphological Matrix of Formulating Requirements 

Type of 
Requirements 

Deterministic 
(Single 

Mission) 

Multiple 
Missions or 
Scenarios 

Probabilistic   
 

  

Requirements 
Formulation 

Provided by 
Customer 

Requirements 
Analyses 

Forecast 
 Requirements 

Analysis/ 
Forecast 

 
  

Forecasting 
Methods 

Expert 
Opinion 

Time-Series 
Forecasting 

Trend Impact 
Analysis 

Cross Impact 
Analysis 

Scenario 
Forecast 

None 

Requirements 
Analyses 

Integrated 
Product 
Teams 

QFD 
Morphological 

Study 

Systems 
Engineering 

Studies  
None  

  

 The selections made in Table 16 that together specify the method of formulating 

the requirements were identified logically.  Each selection made in Table 16 is defended 

below.  For each of the categories, the different method alternatives were compared.  

Table 17 explains what each of the marks used in the comparisons mean. 
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Table 17: Legend Methodology Alternative Ratings 

 The ERTA method needs requirements to be defined probabilistically.  Table 18 

compares different ways that requirements can be defined.  Determining requirements 

deterministically refers to developing only one, set of requirements from which the 

alternatives will be compared.  While deterministic sets of requirements are simple to 

formulate, they are entirely incapable of allowing for the incorporation of uncertainty.  

Multiple missions or scenarios are often used to compare concepts that must be capable 

of meeting multiple sets of requirements.  Multiple missions or sets of requirements are 

easier to identify, and have some ability to incorporate uncertainty, but probabilistically 

defined missions provide a much better basis for incorporating uncertainty into the 

analysis.   

Table 18: Types of Requirements Forecasts 

  
Develop 

Understanding 
of Problem 

Ease of 
Identification 

Incorporation 
of 

Uncertainty 
Deterministic (Single 
Mission) ⊗ � ⊗ 

Multiple Missions or 
Scenarios � � � 

Probabilistic � ▬ � 

 Probabilistically defined requirements not only provide multiple sets of 

requirements, but they also specify a likely distribution for the different requirement sets.  

The requirements for complex systems are uncertain in nature and thus must be 

considered probabilistically.  As systems become more complex, the time and resources 

⊗ 
Completely Incapable of Meeting Requirement 

▬ Poorly Meets Requirement 

� Sufficiently Meets Requirement 

� Meets Requirement Well 

� Meets Requirement Exceptionally 
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required to develop them fully increase.  As this time increases, the requirements placed 

upon that system are given more time to evolve and become less certain.  Additionally, it 

is likely that the systems will ultimately be required to serve more than one purpose.  

Because the requirements for advanced propulsion concepts are so uncertain, evaluations 

of these systems must consider an array of requirements, not just one determinant set of 

requirements or even a few dominant sets of requirements.   

 Table 19 compares the different methods used to formulate the requirements.  

Each method was first compared based on how much how easy it was to conduct.  The 

methods were then compared based on how available the information was, and how 

suited each was to incorporate uncertainty.  The column “Availability” refers to how 

often such methods can be used to formulate requirements.  Notice that the customer 

directly providing the requirements is by far the simplest method, but the method is 

inadequate in every other category, as it develops little understanding of the problem, is 

unsuitable for incorporating uncertainty, and such a method is not always available.   

Table 19: Requirements Formulation Methods 

 Performing a requirements analysis develops a strong understanding of the 

requirements, and they can always be performed.  The problem with such an approach is 

that they are difficult to perform, and are not as well suited to incorporate uncertainty as 

forecast based methods are.  The problem with forecast-based methods is that they do not 

  

Ease of 
Implementation 

Availability  
Incorporation of 

Uncertainty 

Provided by 
Customer � ▬ ⊗ 

Requirements 
Analyses ▬ � � 

Forecast � � � 

Forecast/ 
Requirements 
Analysis 

� � � 



82 

develop as good of an understanding of the problem.  If no experts are available to give 

their input, or if no historical trends exist to project into the future, forecasting is difficult.  

A combination of forecasting and requirements analysis is the best of both worlds, 

however.  Simplified requirements analysis can be performed to identify possible 

requirements, and forecasting methods can be used to identify the likelihood of each 

possible requirement.   

 As mentioned above, a requirements analysis is necessary to identify potential 

requirements.  Performing a requirements analysis develops a strong understanding of the 

requirements, and they can always be performed.  The problem with such an approach is 

that they can be difficult to perform and time consuming.  A few requirement analyses 

are listed and compared in Table 20.  These methods can be performed in conjunction 

with one another—they are not mutually exclusive.   

Table 20: Types of Requirements Analyses 

 Experts in a variety of fields are brought together to discuss and agree upon 

requirements in Integrated Product Teams (IPT).  While they are usually beneficial, the 

most outspoken people usually dominate the group, making them very biased.  Quality 

Functional Deployment (QFD) is an encompassing method geared toward relating 

  
Ease of 

Implantation 
Avoid 
Biases 

Incorporation 
of 

Uncertainty 

Integration with 
Forecasting 

Method 

Integrated 
Product Teams � ⊗ ⊗ � 

QFD � ▬ � � 

Morphological 
Study � � � � 

None � ⊗ ⊗ ⊗ 

Systems 
Engineering 
Studies 

⊗ � � � 
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requirements to product characteristics.  Certain parts of QFD, however, are specifically 

geared toward identifying requirements.  These methods are relatively simple to 

implement, but they cannot be incorporated with the forecasting methods as well, and 

they are not well suited to incorporating uncertainty.  Systems engineering studies refer to 

the rigorous quantitative analyses of requirements.  The problem with these methods is 

that they are difficult and time consuming to implement.  Also, often, the requirements 

may lie outside of the decision-makers area of expertise.  Morphological studies are 

perfect requirement analyses because they identify all of the possible sets of requirements 

in an organized fashion, and they can be integrated with the forecasting methods easily.   

 While the requirements analysis identified potential requirements, a forecasting 

method is necessary to identify the likelihood of each of the potential requirements.  

Forecasting the future is a difficult task.  Forecasting the evolution of requirements is a 

complicated endeavor on its own.  Entire fields of research have been devoted to 

developing methods to predict the future, and the research has produced numerous viable 

methods [66].  Some of these methods were discussed in section 2.2.2.  The method that 

is most suitable depends upon the type of requirements being assessed as well as the time 

and energy that the decision maker has to devote to the forecast.  It is important to note 

that many of the requirement changes may be caused by one of a few factors: changes in 

expected horizontal technological capability, market changes, or societal policy changes.  

Horizontal technological capability refers to capability of systems or disciplines that 

work alongside of the system in a larger, integrated super-system.  For example, the 

aerodynamic and structural systems are two horizontal disciplines where technological 

progress could significantly impact the requirements placed upon a propulsion system.  

Societal policy refers to requirements driven by society or government, such as 

elimination of emissions or other environmental regulations with which the technology 

must be compliant.   
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 Table 21 compares a few forecasting methods.  The methods are compared based 

on how easy they are to implement, and how good the forecast is.  It should be noted that 

quality is a difficult figure to measure, as the accuracy of forecasting methods cannot 

really be determined.  The ability of the methods to become probabilistic is also noted.  

Transparency is important in a forecasting method because any method is going to rely 

upon many assumptions.  Additionally, the ability of the method to avoid biases is 

reflected below.  Finally, the ability of the method to capture decencies between various 

requirements is also tracked.  This trait is important because many of the requirements for 

complex systems will be highly dependent upon one another.  The methods are explained 

in greater depth in the literature search section 2.2.2.   

Table 21: Types of Forecasting Methods 

 Notice that only the methods that capture dependencies and are somewhat 

probabilistic are feasible forecasting methods for the ERTA method.  Time-series 

forecasting and TIA were not selected because they require that the requirement be a 

continuous numeric value.  This may be the case for some requirements, but will not 

  
Ease of 

Implementation 
Probabilistic Transparency 

Avoid 
Biases 

Capture 
Dependencies 

Expert 
Opinion � � ⊗ ⊗ ⊗ 

Time-Series 
Forecasting � � � � ▬ 

Trend Impact 
Analysis ▬ � � � � 

Cross Impact 
Analysis ▬ � � � � 

Scenario 
Forecast ▬ � � � � 

CI Based on 
Requirements 
Analysis 

▬ � � � � 

None � ⊗ ⊗ ⊗ ⊗ 
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always be the case.  Scenario forecasts do not really give a good idea of the likelihood of 

each of the scenarios, sot they are not as geared toward the ERTA method.  The CI 

analysis gives a probabilistic set of requirements, and captures dependencies, but as 

discussed in earlier in section 2.2.2.2, CI requires that the forecast be broken down into a 

series of discrete events.  Expert opinion and simulation is then used to determine 

whether each event occurs or does not occur.  Unfortunately, this assumption may be too 

simplistic to be of much use.  For this reason, the author proposes modifying the CI 

analysis and basing it specifically on the requirements analysis to make it more 

applicable to forecasting the requirements for complex revolutionary systems.  The 

modification of the CI method is discussed in section 4.1.1.  The modified CI approach 

was selected because it allowed the decision-makers to capture the dependencies of 

various requirements, while also being transparent, and capable of forecasting discrete 

parameters. 

4.1.1 Modifying the Cross Impact Analysis  

 Unfortunately, traditional CI is probably too simplistic to be of much use when 

evaluating complex system requirements.  Individual requirements could be continuous, 

or have more than two likely settings.  Creative methods could be employed to convert 

these requirements to sets of simple events, that either happen or do not happen, but 

doing so would probably be cumbersome.  Instead, the CI analysis could be adapted to 

include a capability to forecast the probability of events when more than two outcomes 

are possible.  Look at each event as a variable with two settings: occurring or non-

occurring.  The settings are mutually exclusive, but their probabilities must add up to one.  

That idea can be extended.  Instead of having only two mutually exclusive settings for 

each variable, more settings can be considered, but the must still be mutually exclusive, 

with a total probability adding up to one.  Consider a generic event, or variable, A. that 
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has three possible settings, A1, A2, and A3.  The probability of each occurring 

individually must sum up to one, as shown in Equation 5.      

( )  1AP
3

1
∑

=
=

i
i  (5) 

 In traditional CI, only the probability and conditional probability need to be 

estimated.  The probability of the event not occurring is one minus the former, as the 

event must either occur or not occur.  When a variable has more than one setting, 

however, the experts must estimate the probability of each setting.  The probability of 

each setting, or value, occurring reflects a probability distribution.  The sum of the 

distribution then must add up to one.  Table 22 shows such probabilities for three generic 

variables, A, B, and C. Variables A and C have three settings, while Variable B only has 

two.  

Table 22: Estimated Probabilities 

 One positive and one negative conditional probability matrix would not be 

sufficient to record all of the conditional probabilities when each variable has more than 

one setting; a more comprehensive matrix is needed.  Table 23 shows the conditional 

probability for the same three generic variables shown in Table 22.  In Table 23, the row 

indicates the variable setting that is given, and the column marks the variable setting that 

is being considered.  The value that is in the cell at the intersection of row A1 and column 

B1 is the conditional probability that B will equal one, given that A equals one.  All of 

the information contained in the positive and negative conditional probability matrixes is 

also contained in Table 23, but it is expanded to consider third possibilities for variables 

 1 2 3 

A P( A1  ) P( A2  ) P( A3  ) 

B P( B1  ) P( B2  )  

C P( C1  ) P( C2  ) P( C3  ) 
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A and B.  In Table 23, notice that the conditional probabilities along the diagonals are 

one and the conditional probabilities of two variables in one setting is zero.   

 

Table 23: Conditional Probability Matrix 

A1 A2 A3 B1 B2 C1 C2 C3
A 1 0 0 P(A1 | B1) P(A1 | B2) P(A1 | C1) P(A1 | C2) P(A1 | C3)

A2 0 1 0 P(A2 | B1) P(A2 | B2) P(A2 | C1) P(A2 | C2) P(A2 | C3)

A3 0 0 1 P(A3 | B1) P(A3 | B2) P(A3 | C1) P(A3 | C2) P(A3 | C3)

B1 P(B1 | A1) P(B1 | A2) P(B1 | A3) 1 0 P(B1 | C1) P(B1 | C2) P(B1 | C3)

B2 P(B2 | A1) P(B2 | A2) P(B2 | A3) 0 1 P(B2 | C1) P(B2 | C2) P(B2 | C3)

C1 P(C1 | A1) P(C1 | A2) P(C1 | A3) P(C1 | B1) P(C1 | B2) 1 0 0
C2 P(C2 | A1) P(C2 | A2) P(C2 | A3) P(C2 | B1) P(C2 | B2) 0 1 0

C3 P(C3 | A1) P(C3 | A2) P(A3 | A3) P(C3 | B1) P(C3 | B2) 0 0 1

B

C

A B C

A

 

 The cells in Table 23 that connect variable settings for the same variables are 

shaded and are trivial to determine, as they must be either ones or zeros.  The values for 

cells that connect different variables, however, must be determined.  These values would 

most likely be obtained from expert opinion.  It is important to note, however, that the 

sum of all of the conditional probabilities for one variable must add up to one.  Equation 

6 and Equation 7 show this principle for Variable A.  Equivalent conditions would hold 

for Variable B and Variable C.   
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 Each Monte Carlo trial would be conducted in a manner similar to that of a 

traditional CI.  One variable would be selected at random, and its value would be 

determined, based on the probabilities estimated in Table 22.  The probability distribution 

of the remaining variables would be replaced with the appropriate conditional probability 

distribution, and a second variable would be selected and from the remaining variables.  

Estimating the probability distribution of the first and second variables is trivial; the 

former is given in Table 23, and the later can be found in Table 23.  Determining the 
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value of the remaining variables becomes more involved.  The true probability 

distribution for the third variable is the conditional upon both the first variable assessed 

and the value of the second variable assessed.  Unfortunately, Table 23 does not provide 

that information; instead, it has to be estimated.  One means of estimating that probability 

would be to consider only the conditional probability distribution as determined from one 

of the variables that have already been determined.  Realistically, this would be either the 

first or the last variable that was assessed.  The biggest problem with this simplification is 

that infeasible, or impossible, combinations could be created.  Assume that two different 

variable values are incompatible with one another, or that the conditional probability for 

the combination is zero.  If the probability distribution is found as a function of only one 

of the previously determined variable values, this incompatibility could be overlooked.    

 Another approach to calculating the conditional probability distribution of one 

variable upon multiple other variables would be to average the conditional probabilities 

of all of the previous variables.  The calculation of a simple average is shown in Equation 

8.  In this equation, the probability distribution is determined for the nth randomly 

selected variable; X1,2, 3…n-1 represent all of the variables that have previously been 

determined.  

[ ]( ) ( ) ( ) ( )
  

1-n

X|XP...X|XPX|XP
X...XX|XP 1-n21
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nnn
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++≈II  (8) 

 Simple averages would ensure that the dependency of all of the previous variables 

would be accounted for, but would not eliminate impossible or infeasible combinations.  

In order to do so, the calculated conditional probability would have to equal zero if any of 

the specific condition probabilities equal zero, as shown in Equation 9. 

( ) [ ]( ) 0X...XX|XP     1   where,any for  0X|XP if 1-n21 =>≥= IInin nii  (9) 

 Logic can be introduced to the averaging of conditional probabilities, in order to 

ensure that incompatible combinations are not generated.  If the conditional probability of 
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any variable value upon the previously determined variables equals zero, the new 

probability of that variable value equals zero.  Otherwise, the probability would be a 

simple average.  This logic, however, could potentially cause problems for the Monte 

Carlo trials.  It would introduce conditions under which the constraint that all possible 

conditional probabilities sum up to 1, as shown in Equation 6 and Equation 7 is violated.  

A simple normalization of the non-zero conditional probabilities would eliminate this 

problem.  Equation 10 shows this normalization for the nth
  selected variable that has m 

potential variable settings. 
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 Once this logic is in place, Monte Carlo trials can commence.  As mentioned 

above, an initial variable is selected at random, and its value is determined 

probabilistically from the variable’s probability distribution.  A second variable is 

selected from those remaining, and its value is determined from the appropriate 

conditional probability distribution.  Values are found for each of the remaining variables 

probabilistically, in a random order.  For each of these variables, however, the intelligent, 

normalized conditional probability distribution is used. 

 It should be noted that CI alone may not be sufficient to forecast the future 

requirements.  Particular requirements may be better forecasted using other techniques, 

such as a trend regression.  For example, if a particular requirement is thought to be 

independent and can be represented by a continuous variable, it might make sense to use 

a time series forecast to model the evolution of that particular requirement. 

4.2 Assessing Advanced Propulsion Concepts 

 Once the requirements for advanced propulsion concepts have been identified, 

decision-makers can begin to assess each propulsion concept.  Hypothesis III proposed 
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that fitness be used as a figure of merit to evaluate the advanced propulsion concepts.  

Hypothesis IV proposed that the distribution of fitness, as a function of the requirements, 

be used to understand how robust each concept is to variations in requirements.  It also 

outlined a process by which to identify that distribution.   

 In order to calculate the distribution of fitness for each concept, decision-makers 

must develop a means of calculating fitness as a function of the requirements.  Once that 

is done, a Monte Carlo simulation can be used to identify the distribution of fitness.  

Directly relating fitness of each concept to requirements is not simple, however.  For each 

specific set of requirements, the optimal concepts, or the concepts’ designs that are 

optimized to the specific requirements, must be found.  This requires the ability to 

measure each advanced propulsion concept’s performance, as well as the ability to 

identify each optimal concept.  Once each optimal concept is identified, the fitness of 

each concept can be found.   

 Calculating fitness as a function of the requirements is computationally 

exhaustive.  For this reason, a surrogate model should be created to relate fitness directly 

to the variability of requirements in a less computationally exhaustive fashion.  Because 

the maturities of advanced propulsion concepts vary significantly, decision-makers will 

also have to incorporate the uncertainty inherent to technological development.  The 

surrogate model can also capture the variation in fitness as a function of the variability of 

key technological metrics.  The following section discusses the identification of the 

optimal concepts, the calculation of fitness, and the incorporation of uncertainty into the 

calculation of fitness for advanced propulsion concepts.   

4.2.1 Identifying Optimal Concepts 

 Identifying the optimal concepts is not a simple endeavor.  Each advanced 

propulsion concept must be optimized to meet the specific set of requirements.  
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Optimizations are difficult tasks.  Identify concepts under consideration.  Assess the 

concepts.  Use a simulated annealing program to identify the optimal concepts.   

4.2.1.1 Identifying the Advanced Propulsion Concepts 

 Before the advanced propulsion concepts can be assessed, they must be identified 

or defined.  Sometimes, decision-makers are only interested in comparing a few concepts 

to one another.  If that is the case, defining the concepts is trivial.  If problem is broader, 

defining the concepts becomes more difficult.   

 Brainstorming is an easy way to generate concepts, but the brainstormers’ biases 

will most likely prevent them from considering all possible alternatives.  TRIZ, which 

was explained in section 2.1.1, is a method intended to stimulate creativity and identify 

novel solutions to problems developers incur.  The problem with TRIZ is that it difficult 

to implement.  Also, while several solutions are usually identified, the range of solutions 

is not as encompassing as the author would like for the ERTA method.  Functional 

decomposition is the best way to identify concepts.  It is easy to implement and biases are 

reduced because the decision-maker functionally steps through the system and identifies 

all necessary parts or subfunctions.  When all of the means of accomplishing those 

subfunctions are identified, the set of possible combinations makes up a large 

combinatorial space that defines the possible set of concepts.   

4.2.1.2 Modeling Advanced Propulsion Concepts  

 Once the concepts have been identified or defined, the ability of each to satisfy 

the requirements must be assessed.  In order to do so, decision-makers must have the 

ability to model each concept and forecast how well it would perform, given specific sets 

of requirements.  Such a modeling method must be applicable to the entire range of 

concepts under consideration, and should be as accurate as possible.  They should also be 
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able to model the mature performance estimates of technology, even when the technology 

is immature.    

 The ERTA methodology proposes modeling the basic physics behind advanced 

propulsion concepts in order to forecast how well each concept will be able to satisfy the 

requirements.  Qualitative assessments are easy to implement and can be used to evaluate 

all of the concepts, but they lack the physics-based analysis that allows for an accurate 

comparison.  Empirical models cannot be used to evaluate advanced propulsion concepts, 

as many of the concepts are outside of the historical database.  Models that rely upon a 

combination of empirical modeling and physics-based modeling might be capable of 

assessing most concepts, and would be more accurate at modeling conventional concepts, 

because they would be based on empirical data.  Such methods, however, would be 

biased toward today’s performance, and it would be difficult to assess the future, mature 

capability of certain concepts.  Physics-based analyses are best suited toward predicting 

the mature performance of advanced propulsion concepts [60].  The performance of 

concepts will improve throughout time, but will ultimately be limited by the physical 

principles that govern the concept.  Combination methods that combine physics-based 

analyses with qualitative assessments might also be worthy, because decision-makers 

could include assessments that cannot easily be modeled by using physics-based 

principles, such as cost and ease of development or integration.   

4.2.1.3 Optimizing Advanced Propulsion Concepts 

 Once all of the concepts have been identified, a method by which to model each 

alternative and assess its ability to satisfy the requirements has been developed, each 

concept can be optimized to best satisfy the specific requirements.  As was proposed in 

Hypothesis IV, a simulated annealing program can be used to ease the process of 

identifying optimal concepts.  As was discussed earlier, a concept is a classification, or 
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grouping, of alternatives.  An alternative is a unique setting of design variables, or unique 

engine.  In order to compare concepts to one another in an “apples to apples” fashion, 

decision-makers must be able to identify the optimal concept.  Finding those optimal 

concepts accurately, however, is not simple.  Theoretically, if the concepts were well 

enough understood, expert opinion could be used to instead of an optimization to find the 

optimal concept.  Unfortunately, expert opinion incorporates biases into the evaluation of 

the concepts, and is not very accurate.  Several methods can be used to identify the 

alternative that is used to compare each concept.  They are shown in Table 24.  The 

methods are evaluated based on how easy they are to implement, whether or not they can 

easily be automated, how accurately they identify the optimal concept, and how quick 

they are.  They are also evaluated based on how able they are at finding all of the optimal 

concepts simultaneously.  Gradient-based optimization methods are robust optimizations 

to find the optimal design of one concept, however, they cannot easily find all of the 

optimal concepts.   

Table 24: Methods to Identify Optimal Alternatives within Concept 

  
 
 

Ease of 
Implementation 

Automation 
Avoid 
Biases 

Speed 

Ability to Find  
Optimal 
Concepts 

Simultaneously 

Expert 
Identification � ⊗ ⊗ � � 

Design 
Space 
Exploration  

⊗ � � ⊗ ⊗ 

Gradient-
Based 
Optimization  

� � � � ▬ 

Stochastic 
Optimization  � � � � � 
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 The optimal concept identified by experts, but given the complex nature of the 

concepts that are being identified, it is unlikely that experts would be able to accurately 

identify the optimal alternatives within the concept.  Design space exploration is a robust 

method for finding optimal or near optimal design variable settings, but it is a laborious 

process, and could not easily be automated.  Design space exploration requires evaluating 

the entire potential space, usually through the use of a surrogate model, and identifying if 

a feasible solution exists.  If multiple feasible alternatives exist, design space exploration 

finds the optimal alternative.  If no feasible alternatives exist, design space exploration 

identifies the best alternatives.  It is not practical to perform design space exploration on 

all possible concepts, when more than a few concepts are being considered.  Optimization 

routines, on the other hand, can identify the optimal settings robustly and automatically.  

The optimization routines are discussed below. 

 The ERTA method uses optimization routines to identify the optimal alternatives 

within each concept.  Instead of performing an individual optimization on every possible 

concept, the ERTA method seeks to perform one optimization method on the entire 

revolutionary design space.  An optimization routine, then, would have to be capable of  

the local minima in the space, as each local minimum reflects one optimized concept.  

The optimization routines also have to be robust enough to handle discontinuous spaces, 

as the revolutionary design space is most likely highly discontinuous.  Table 25 compares 

a few optimization routines. 
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Table 25: Optimization Methods 

 Gradient-based optimization methods are proven, deterministic optimization 

methods, but they are not appropriate for identifying the optimal alternatives within each 

concept.  First, gradient-based methods use the derivative objective function to identify a 

direction to move.  The revolutionary design space will be discontinuous, and 

consequently, the derivative will not always exist.  Second, gradient-based methods get 

stuck in local minima, but because they are deterministic, it is difficult to identify 

multiple local minima.  If multiple gradient-based optimizations were run, each starting at 

a different point, the local minima could theoretically be found, but this would be a 

cumbersome approach. 

 Random searches would give the decision-maker a good idea of what the design 

space looks like, but other optimization routines are more efficient.  Both genetic 

algorithms and simulated annealing would allow the decision maker to replicate the 

evolution of individual technological concepts probabilistically, but in very different 

ways.  As was discussed in section 2.2.6.2, genetic algorithms optimize by simulating a 

“pool” of solutions that evolve together, and thus improve throughout time.  In each 

subsequent generation, the pool members are crossed with each other and then reproduce, 

  
Set Up 
Time 

Computational 
Time 

Identify Local 
Minima? 

Robustness 

Gradient-Based 
Methods ▬ � ⊗ ▬ 

Random Search � � � � 

Genetic 
Algorithm � ▬ ▬ � 

Simulated 
Annealing � ▬ � � 

None � � ⊗ ⊗ 
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ensuring that the pool will become a more homogenous mixture of the best of the pool 

members.  While simulated annealing also consists of a “pool” of solutions that will 

hopefully evolve through time, those solutions evolve independently.  There is no 

crossing of solutions; whether or not an “off-spring” that is reproduced survives into the 

next generation is ONLY a function of the “goodness” of the offspring relative to the 

“goodness” of the parent.  In that way, the difference between genetic algorithms and 

simulated annealing can be related to the differences between sexual and asexual 

reproduction.  Each offspring would be essentially a mutation of the parent.   

 Advanced concepts will evolve as resources are invested in advancing them, but 

they will most likely evolve as isolated entities.  Because of the intricacies of 

interconnecting different parts of technological concepts, it is unlikely that parts of 

concept A will be able to be merged with parts of concept B to produce an evolved 

concept C.  Simulated annealing replicates evolution without crossing solutions in the 

pool; therefore, the author proposes using it to replicate the evolution of individual 

technological concepts, as it more accurately imitates reality.  Because the simulated 

annealing routine is stochastic, it will allow decision-makers to identify alternatives very 

near each of the optimum concepts, but it will most likely not identify each optimal 

concept. 

 The simulated annealing algorithm begins with a pool of completely random 

solutions.  In each consecutive iteration, one variable in each solution is perturbed 

slightly, or mutated, to produce an offspring.  If the offspring is more fit than the parent, 

the offspring survives to the next generation, and the parent is killed off.  If the offspring 

is less fit, the probability that the offspring survives is a function of how much less fit it 

is, and how far into the evolutionary process the algorithm is.  As the algorithm moves 

forward, just like in simulated annealing, the likelihood of an inferior offspring surviving 

over a superior parent is less and less.   
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 Throughout the process, the solutions that the pool consists of will slide into local 

minima, or valley, assuming that the objective function is to be minimized.  The 

percentage of the solutions that fall into each local minima will be directly related to the 

percentage of the design space that is take up by the global minima (breadth), and the 

steepness of the walls on either side of the minima.  The fitness of the points trapped in 

each valley will be directly related to the fitness of the optimal point in the valley (depth).  

Consider a generic, one-dimensional objective function that has three local minima as 

shown in Figure 9.   

AA AB AB

A

B

C

AA AB AB

A

B

C

 

Figure 9: Generic One-dimensional Objective Function 

 Given the function shown in Figure 9, the points in a simulated annealing pool 

would theoretically get “stuck” in the valleys labeled “A”, “B”, and “C”.  Because the 

points in the pool are generated randomly from a uniform distribution of the space, the 

percentage of the pool members stuck in Valley A would be equal to the ratio of Area A 

to the total space of AA, AB, and AC.  Because the simulated annealing program is 

stochastic in nature, the percentage of points in valley A would mostly likely not exactly 

equal the ratio, but it would approach it.  The simulated annealing program would 

ultimately identify the optimal concepts, which can later be used to fairly compare 

concepts to one another. 

4.2.2 Calculation of Fitness 

 Once the set of optimal concepts is known, the fitness of each concept can be 

calculated for a specific set of requirements.  The pool of optimized concepts is actually a 
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pool of optimized alternatives.  The fitness of each alternative in the pool is a function of 

how well that alternative satisfies the requirements, as well as a function of how well the 

other competing alternatives satisfy the requirements.  The relative fitness of each 

alternative, RFi, is a measure of the proportional goodness of each concept.  The formula 

for the relative fitness is the same formula that was used in genetic algorithms for 

proportional replacement, and can be seen below in Equation 11. 
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 As was stated earlier, an advanced propulsion concept is really a set of propulsion 

alternatives.  In the generic objective function shown in Figure 9, the “valleys” could 

each be considered subsets of the design space, and thus technological concepts.    

 After the simulated annealing algorithm progresses through a sufficient number of 

iterations, the decision maker can use the makeup of the final pool to forecast the fitness 

of each of the concepts for the specified requirements.  The alternatives present in the 

pool can each be classified into a concept, depending on the classification scheme that the 

decision maker chooses.  The overall relative fitness of a technological concept equals the 

sum of the relative fitness of the entire set of alternatives present in the final pool, as is 

shown in Equation 12. 

∑=
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 esAlternativ All
iAConcept RFRF  

(12) 

 The relative fitness of each concepts contains a measure how good the concept is, 

as the fitness of each concepts is a relative measure of goodness.  The fitness of each 
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concept also incorporates a measure of how “easy” a concept is to implement.  As was 

described above using Figure 9, the percentage of the alternatives in the optimal pool that 

are part of each concept is a function of how much of the feasible space is made up by 

that concept.  As the percentage of the optimal pool that is made up of a concept 

increases, the fitness of that concept will also increase because there are more 

alternatives’ fitness to sum.  If two or more technological concepts are mutually exclusive 

and make up the entire concept space, the relative fitness of those concepts will sum up to 

one.  This can be shown through the commutative property of addition, as the relative 

fitness of all of the alternatives present in the final pool will sum up to one by definition 

of the relative fitness in Equation 11.  The relative fitness of each technological concept 

reflects how likely it is to survive if it were allowed to mature, given the requirements 

that the analysis was based upon.   

4.2.3 Incorporating Uncertainty into Assessment of Concepts 

 The previous section detailed a method created to give decision-makers the ability 

to compare fundamentally disparate technological concepts, and determine the fittest 

concept for a set of requirements.  As was discussed earlier, however, the future 

requirements that a technological concept is required to meet are highly uncertain, 

especially given the long gestation period required to develop complex systems.  

Selecting the fittest advanced propulsion concept based on one set of requirements is 

naïve, as the decision maker would have no idea how sensitive the fitness of each concept 

is to the specific set of requirements.  In order to understand the fitness of various 

advanced propulsion concepts fully, the problem solver must consider the variability of 

the requirements when assessing the fitness of technological concepts. 

 While the requirements for future technological concepts are uncertain, the 

maturity of the concepts is also uncertain.  The maturity of advanced propulsion concepts 
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can be modeled by inputting disciplinary metrics into the analysis of the concept.  

Disciplinary metrics are variables and constraints that can be included in the physics-

based analysis.  Component efficiencies are good examples of disciplinary metrics.  

Maximum temperatures or elasticity of materials are also good examples of disciplinary 

metrics.  They allow the decision-maker to propagate elementary improvements in 

technology up to system level metrics.  The uncertainty in maturity of concepts can be 

measured by placing distributions on disciplinary metrics. 

 Decision-makers must also consider the uncertainty inherent to both the future 

requirements for the concept and the development of the concepts, to fully understand the 

goodness of any concept.  Both sources of uncertainty can be incorporated into the 

analysis by calculating the distribution of fitness as a function of both the distribution of 

requirements and the distribution of disciplinary metrics.  Performing such a calculation, 

however, is not simple.  The method to assess the fitness of technological concepts as a 

function of requirements is not a trivial analysis—it is a computationally exhaustive 

effort.  Methods discussed in Section 2.2.6 can be used to give the decision maker a 

quantitative understanding the fitness of these advanced propulsion concepts as a 

function of a distribution of sets of requirements. 

4.2.3.1 Calculating the Distribution of Fitness 

 The possible methods for identifying the distribution of an output as a function of 

the distribution of an input are listed and compared in Table 26.  Monte Carlo simulations 

are the simplest, most accurate means of forecasting the distribution of an output as a 

function of the distribution of inputs.  In order the forecast to be accurate, however, a 

large number of simulations need to be run.  Running Monte Carlo simulations with the 

actual assessment is incredibly time consuming.  Fast Probability Integration (FPI) is a 

method that approximates a Monte Carlo simulation to identify a distribution of an output 
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as a function of the distribution of the input.  FPI works by identifying the most probable 

FPI, and approximating the cumulative distribution function (CDF).  More information 

about FPI can be found in source [49].  FPI is an accurate method of approximating 

Monte Carlo simulations, and it reduces the number of runs necessary to identify a 

distribution by thousands.  Unfortunately, however, FPI is specific to individual metrics.  

Because decision-makers need to find the fitness of many concepts, FPI must be 

conducted for each concept.  Table 26 compares the three ways that the distribution of 

outputs can be calculated as a function of the distribution of the inputs. 

Table 26: Calculating Distribution of Fitness 

 Notice in Table 26 that a Monte Carlo in conjunction with the actual assessment is 

the most accurate means of calculating the distribution of the fitness.  This method 

however, is simply too computationally exhaustive to use.  The Monte Carlo trials take 

thousands of trials to calculate a distribution, and each assessment takes approximately 

30 minutes to calculate.  At that rate, it would take 200 days to run 10,000 Monte Carlo 

trials.  FPI in conjunction with the assessment would be much quicker, but the fitness of 

each concept must be determined.  FPI analyses would have to be conducted individually 

for each concept’s fitness, which is also infeasible.  Monte Carlo trials in conjunction 

with a meta-model, or surrogate model, however, would be a good way to model the 

  
Set Up 
Time 

Computational 
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Thoroughness 
of 

Exploration 

Ability to 
Assess 

Multiple 
Criteria 

Accuracy              
(In Linear 

Space) 

MC + 
Assessment � ⊗ ▬ � � 

FPI + 
Assessment � ▬ � ⊗ � 

MC + 
Meta-
Model 

▬ � � � � 



102 

distribution of the fitness.  It was infeasible to represent the variability of the 

revolutionary design space as a function of the variation in the design variables using a 

meta-model because the revolutionary design space is highly discontinuous.  The 

variability of the fitness of the technological concepts as a function of the variability of 

the requirements and disciplinary metrics, however, is a more behaved space that would 

most likely be able to be captured with a meta-model.   

4.2.3.2 Creating a Meta-Model 

 There are a few types of meta-models that can be used in place of the actual 

model to calculate fitness.  Table 27 compares two such methods: Response Surface 

Equations and Neural Networks.   

Table 27: Meta-Model Alternatives 

 The row labeled “None Meta-model refers to using the actual analysis.  Notice 

that using no meta-model is time consuming but affords many degrees of freedom, and is 

highly accurate.  Unfortunately, it is too computationally exhaustive to use in conjunction 

with a Monte Carlo Simulation.  Neural Networks are good for describing non-linear 

spaces, but the fitness of the concepts within the range of requirements and disciplinary 

metrics should be linear.  RSEs were chosen to as a surrogate model because they are 

easier to formulate, and should be accurate.  Neural Networks could replace RSEs, 

however, without a disruption to the method. 

  
Setup 
Time 

Computational 
Time 

Accuracy           
(In Linear Space) 

Degrees of 
Freedom 

None � ⊗ � � 

RSE � � � � 

Neural 
Network ▬ � � � 
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 In order to develop a meta-model that relates variability of the fitness of each 

concept to the variation of in the requirements, the decision maker needs to follow the 

steps of Response Surface Methodology (RSM).  First, the decision maker needs to 

identify the independent variables and their ranges; in this case, the independent variables 

will be the requirements used to design system.  Next, the data that relates the response, 

in this case concept fitness, to the variation in the requirements needs to be generated.  A 

DoE is used to select the design settings for requirements (independent variables) that 

must be run.  Then, the decision maker needs to regress the responses against the 

requirements, and check the validity of the meta-model.   

 Once the meta-model has been created, the decision maker can quantitatively 

observe the sensitivity of each concept’s fitness to the requirements and disciplinary 

metrics.  This will serve as a sanity check for the overall system, as erroneous physical 

correlations will become obvious, and it will increase the decision-maker’s understanding 

of the problem.  More importantly, the meta-model will serve as the analysis used in the 

Monte Carlo simulation that allows the decision maker to calculate the overall 

distribution of each concept’s fitness as a function of the forecasted distribution of the 

requirements.   

 The nature of the fitness parameter requires that it be treated carefully with a 

meta-model.  As was stated earlier, the fitness of each concept will vary between 0 and 1, 

and the sum of the fitness parameters from mutually exclusive concepts that total the 

entire space must be 1.  The relative fitness parameters of these concepts are NOT 

independent.  For this reason, the author suggests post-processing the fitness parameters 

generated by the meta-model to ensure that the fitness parameters are bounded correctly.  

The proposed post-processing routine is simple.  The following is conducted for the set of 

mutually exclusive concepts that sum up to the entire space.  If the minimum of the 

relative fitness parameters is less than zero, that parameter value is subtracted from all of 



104 

the fitness parameters.  Equation 12 shows the calculation of the minimum fitness 

parameter, Z. 

( )[ ]0,FRminminZ m=  (13) 

Where:  mFR  = set of RFi as calculated from meta-model 

 The minimum fitness parameter, Z, is subtracted from all of the meta-model 

calculated fitness parameters, to ensure that all of the relative fitness parameters are 

positive or zero.  Then, the parameters are normalized by the sum of all of the new 

relative fitness parameters.  Equation 14 shows the calculation of the relative fitness 

parameters from the meta-model predicted relative fitness parameters. 

( )∑ −
−

=
ZRF

ZRF
RF

m,i

m,i
i  (14) 

Where:  RFi = relative fitness of alternative i 

  RFm,i = meta-model predicted RF of alternative i 

  Z = minimum of RF parameters per Equation 13  

 Once the decision maker has the ability to relate the relative fitness of each 

concept to the set of requirements that the concept has to meet quickly, the decision 

maker can run the Monte Carlo simulation on the prescribed distribution for the 

requirements.  The distribution of relative fitness for each concept can be examined, or it 

can be used to determine an integrated overall relative fitness given the distribution of the 

requirements. 

4.2.3.3 Evaluating the Distribution of Fitness 

 As discussed above, the fitness of each concept will measures how well the 

concept meets a specific set of requirements.  Figure 10 shows the fitness of three generic 

concepts, given a fixed set of requirements and technological maturity metrics.  Figure 10  

is actually a probability density function, where the fitness value for each concept is 
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shown in the x-axis, and the likelihood of that value is shown in the y-axis.  Because 

Figure 10 depicts the fitness of three concepts for a fixed set of requirements and 

technology, there is no uncertainty in the fitness measures.  Concept A is infeasible, 

because its fitness is zero—it is not capable of satisfying the requirements.  Concept B 

and Concept C are both capable of satisfying the requirements, but Concept C is a 

slightly better alternative.   

 

Figure 10: Fitness of Three Generic Concepts for Fixed Requirements 

 In Figure 10, only three concepts were evaluated and all three concepts are 

mutually exclusive.  The fitness of each concept must then sum up to one.  Notice from 

the figure, that this constraint was enforced.   

 Figure 10 shows that Concept C is more attractive for the specific set of 

requirements and technology, but the figure does not give the decision-maker an 

understanding of how sensitive each concept is to variations in the requirements.  

Decision-makers must know how the uncertainty in the requirements impacts the 

distribution of fitness for each concept.  Figure 11 shows a generic distribution of the 

fitness for the same three concepts.   
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Figure 11: Fitness of Three Generic Concepts for Distribution of Requirements 

 Notice in Figure 11 that Concept C still appears to be more attractive than 

Concept B.  The figure also shows, however, that the goodness of Concept B is much 

more certain that the goodness of Concept C.  This is because the distribution of fitness 

for concept B is much tighter.  Decision-makers could use this information when 

evaluating advanced propulsion concepts at early stages of development.  The uncertainty 

in fitness can be directly related to the risks associated with developing advanced 

propulsion concepts.  Decision-makers can use the distribution of fitness for each concept 

as another figure of merit when evaluating these concepts.   

4.3 Method Overview and Summary 

 The ERTA method was developed as a means of comparing fundamentally 

different technological concepts, given an uncertain set of requirements.  The method can 

be broken down into two main parts, formulating the requirements and assessing 

advanced propulsion concepts, based on each concept’s fitness.  Figure 12 shows a flow 

chart of the ERTA methodology.   
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Figure 12: Flow Chart of ERTA Methodology 

 Notice how in Figure 12, the ERTA methodology is broken into two main parts, 

identifying the requirements probabilistically, and assessing the propulsion concepts, 

given the distribution of requirements.  A morphological matrix was used to identify 

potential requirements, and a cross impact analysis was conducted to identify the 

probabilistic distribution of those requirements.  After the concepts were identified, a 

surrogate model was created that calculated fitness as a function of requirements and 

disciplinary metrics.  That surrogate was used in conjunction with Monte Carlo 

techniques to identify the distribution of fitness for each concept.  The distribution of 

fitness could then be used to evaluate how good each concept will be, and how robust 

that goodness is to likely variations in the requirements.   

 Advanced propulsion concepts could be evaluated using a number of different 

methodologies, but the ERTA methodology is a novel approach to assessing advanced 

propulsion concepts, because it sought to assess the robustness of each concept to the 

likely distribution of the requirements.  Table 28 shows a morphological matrix of 
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alternatives for evaluating advanced concepts.  Table 28 is a relatively simple account of 

such methodologies, but it shows that there are 41,472,000 different methodologies that 

could be used to evaluate the concepts.  The alternatives chosen in the ERTA 

methodology are highlighted.   

Table 28: Complete Methodology Morphological Matrix 

Requirements 
Formulation 

Provided by 
Customer 

Requirements 
Analyses 

Forecast 
Forecast/ 

Requirements 
Analysis 

  

Type of 
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Deterministic  
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Opinion 

Time-Series 
Forecasting 

Trend Impact 
Analysis 

Cross Impact 
Analysis 

Scenario 
Forecast Forecasting 

Methods 
None     

Requirements 
Analyses 

Integrated 
Product 
Teams 

QFD 
Morphological 

Study 
None 

Systems 
Engineering 

Studies  

Need Advanced 
propulsion 
concepts? 

Expert 
Opinion 

JPDM 
Likelihood of 

Meeting 
Requirements 

Use 
Technological 
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Figure of Merit 
Physical 
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Concepts 

Qualitative 
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Empirical 
Model 

Empirical and 
Physics-Based 

Modeling 

First 
Principles 

Combination 

Identify "Best" 
Alternatives  

Expert 
Identification 

Design Space 
Exploration  

Optimization 
Routine 

Other   

Optimization 
Routine 

Gradient-
Based 

Methods 

Random 
Search 

Genetic 
Algorithm 

Simulated 
annealing 

None 

Measure Maturity 
Deterministic 
Disciplinary 

Metrics 

Probabilistic 
Disciplinary 

Metrics 
      

Find Distribution 
of Metrics 

MC + 
Assessment 

FPI + 
Assessment 

MC + Meta-
Model 

    

Meta-Model None RSE 
Neural 
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 The ERTA method combined simple requirements analyses and stochastic 

forecasting techniques to identify a probabilistic forecast of the requirements.  A 

morphological matrix was selected to identify the possible sets of requirements, because 

it is a simple, but organized, method of identifying all possibilities.  A cross impact 

analysis was used to forecast the likelihood of each of the requirements, because it uses 

expert opinion and it is a simple, but effective method for accounting for dependencies 

between requirements.    

 The ERTA method assesses advanced propulsion concepts by evaluating the 

distribution of fitness across the distribution of requirements.  Fitness gives a measure of 

the likelihood that the concept will produce feasible alternatives, as well as an 

understanding of how “good” it is, relative to competing concepts.  If the fitness of a 

concept is zero for a significant portion of the requirement space, the concept is most 

likely not a feasible alternative.  The outputs of this analysis give decision-makers an 

understanding of how sensitive the fitness of any concept is to any particular 

requirements.  Concepts that have a relatively good fitness across a wide variety of 

requirements are robust to variation in requirements.  Robustness is a key indicator of 

how successful an advanced propulsion concept could become, if developed. 
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5 PROOF OF CONCEPT 

 

The ERTA method was used to assess various advanced propulsion concepts’ ability to 

supply a HALE Hurricane tracking UAV with power and propulsion.  The requirements 

for such a propulsion system will be dictated by the vehicle, mission and NOAA 

requirements, all of which are uncertain.  Such an analysis served as an excellent 

demonstration example of the ERTA method because the requirements for the propulsion 

system are uncertain, yet complex and correlated.  Also, the results of such an analysis 

will be of interest to the aerospace industry. 

5.1 Hurricane Tracking HALE Vehicle 

 Hurricanes have become an increasingly destructive force in recent years.  The 

strong winds and storm surge that accompany the storms are dangerous and can cause 

millions of dollars of damage to infrastructure along the coast.  Unfortunately, hurricane 

forecasters are still not capable of predicting exactly when and where hurricanes will 

make landfall.  To ensure that the people are safely out of each hurricane’s path, miles of 

extra coastline are evacuated, to account for the uncertainty in the storms trajectory.  A 

hurricane-tracking vehicle could vastly increase science’s knowledge of the formation 

and path of hurricanes.  This information could be used to increase the accuracy of the 

storm’s predictions and eventually reduce the cost associated with evacuation.   

 According to NOAA, an average year will produce 11 named storms, six 

hurricanes—two of which can be categorized as major [74].  Recently, however, the 

warm waters and the wind patterns have been responsible for producing more tropical 
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storms with greater intensity.  “In 2005, the Atlantic hurricane season contained a record 

28 storms, including 15 hurricanes,” [74].  Figure 13 shows the tracks that 2005 

hurricanes took.   

 

Figure 13: 2005 Hurricane Tracks  [71] 

 Before the 2005 hurricane season, NOAA predicted that the season would be 

more active than usual, but even then, only expected 12-15 tropical storms [73].  NOAA 

is predicting an active hurricane season for 2006 as well, and expects 13-15 named 

storms [74]. 

 Scientists today are able to track the development of hurricanes through many 

sources, including ships and buoys in the water, geostationary satellites, and “Hurricane 

Hunters” that fly into the actual hurricane.  Unfortunately, none of these sources are able 

to continuously track and monitor the hurricane.  Satellites cannot detect important 
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information accurately, such as barometric pressure and wind speed.  Ships are limited 

because they are slow and vulnerable to large storm waves.  The Hurricane Hunters are 

effective, but their missions are expensive, and they cannot continuously monitor the 

hurricane.  If a vehicle could be developed that could loiter over the development of a 

hurricane, and track it though its entire cycle, meteorologists could generate much more 

knowledge about hurricanes.  That information could be inputted into forecasting models 

and eventually reduce the uncertainty in the models’ predictions.  The industry currently 

estimates that evacuating one mile of coastline costs on average one million dollars.  

Increasing the accuracy of hurricanes’ forecast even slightly could reduce the amount of 

coastline that has to evacuate, saving millions of dollars for each hurricane.   

5.1.1 Vehicle Mission and Overview 

The hurricane tracking HALE vehicle is intended to provide continuous coverage of the 

development and lifecycle of hurricanes.  It would ultimately be responsible for loitering 

over the “hot zone” where hurricanes are formed, and following a hurricane once it has 

be developed.  Active Doppler Radar, infrared imaging sensors, and Electro-optical 

imaging sensors can all be used to observe the cyclone from above.  Expendable 

observation devices, such as non-maneuvering dropsondes and small autonomous UAVs, 

can be dropped into the storm to gather information.  The small UAVs could maneuver in 

and around the cyclone eye-wall to provide a 3-dimensional map of the wind speed, 

direction, pressure, etc.  Ultimately, the vehicle, or system of vehicles, must be capable of 

taking off from the US mainland and monitoring areas over which most hurricanes 

develop.   

 The actual required speed, range, and endurance of the vehicle are currently still 

being investigated.  They could vary, depending on the required monitoring activities of 

the HALE and the capabilities of the technology used to develop the HALE aircraft.  The 
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vehicle would have fly at an altitude high enough to be safely above the hurricane, and it 

would have to travel quickly enough to keep up with the hurricane, despite any potential 

winds aloft.  The target velocity for the HALE aircraft is between 105 and 215 km/hr.  

The vehicle would also have to have an endurance that is great enough last through a 

decent portion of the hurricane season.   NASA is currently looking at mission lengths 

between 7 and 100 days.  Once the HALE identifies a cyclone, it will have to follow the 

cyclone at an unspecified speed, dropping the expendable payload as it goes.  NOAA has 

not specified what type of vehicle they are interested in pursing, meaning that the vehicle 

could ultimately appear to be anything from a helicopter to a traditional airplane to a 

blimp.  Figure 14 shows a schematic overview of the HALE UAV’s mission. 
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Figure 14: Mission Overview for HALE UAV 

5.1.2 NASA Conceptual Design Team 

 Fortunately, the demand for a high altitude, long endurance vehicle is not unique 

to NOAA.  National security would benefit from having such a vehicle to provide 

surveillance for borders and other sensitive areas.  Society in general would benefit from 

having a HALE vehicle provide communications relay.  HALE vehicles could provide 

more powerful coverage than satellites, but be more flexible and easier to upgrade than 
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towers.  Additionally, they could serve as the communications infrastructure in a 

catastrophic situation, such as Hurricane Katrina.  Emergency relief was hindered there 

by the failure of the cellular telephone infrastructure.   

 Because of the interest in a HALE vehicle, NASA assembled a conceptual design 

team to investigate the requirements and assess the feasibility of such a vehicle.   The 

design team consisted of experts across a broad range of disciplines, ranging from 

propulsion to structures to electronics, navigation and control.   

5.2 Identifying a Probabilistic Requirements Forecast  

 Before advanced propulsion concepts could be assessed, the requirement that the 

concepts will have to meet must be understood.  As prescribed in section 4.1, a 

morphological analysis was conducted to understand the requirements, and a cross impact 

analysis was conducted to calculate the potential distribution of those requirements.  The 

probabilistic forecast of the requirements that the CI analysis yielded enhanced the 

understanding of the requirements and later served as a distribution from which to 

evaluate the potential propulsion concepts.   

 One of the difficulties of conducting a forecasting method that requires expert 

opinion is actually obtaining the opinion from qualified experts.  Fortunately, the 

conceptual design team workshop that NASA held at Georgia Tech, with the aid of Dr. 

Mavris and Dr. Kirby presented a unique and fortunate opportunity to directly query 

experts from a diverse, but applicable set of disciplines.  Before the workshop, each 

NASA HALE Concept Design Team member investigated and researched the 

requirements that pertained to his or her area of expertise.  They also investigated 

possible alternatives for subsystems within their area of expertise.  At the workshop, they 

were able meet and together further investigate the requirements for such a vehicle, and 

investigate the feasibility of various vehicle concepts.   
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 Part of that workshop entailed the development of a morphological matrix that 

identified all of the possible mission parameters for the UAV.  The experts were also 

asked to give their input as to the likelihood of the various mission parameters.  

Similarly, the design team developed a morphological matrix that identified all of the 

possible vehicle characteristics.  For each possible vehicle characteristic, experts rated the 

alternatives according to appropriate metrics, and used that to come up with a normalized 

measure of goodness.   

 The requirements for a HALE propulsion system will be dictated by the mission 

parameters and vehicle characteristics.  Accordingly, the workshop provided a basis from 

which to formulate the requirements for advanced propulsion concept.  The possible 

requirements came directly from the morphological matrix, and the distribution of the 

requirements was found through a cross impact analysis.  Most of the expert opinion 

required for the CI analysis came directly from the workshop, as the design team did 

compare alternatives.  The design team also examined the vehicle characteristics and 

mission parameters that were interdependent.  The conditional probability estimates were 

derived from this examination.  Finally, a modified CI analysis was performed on a 

selected set of the mission parameters and vehicle characteristics to formulate a 

probabilistic set of relevant requirements for the aeropropulsion system.     

5.2.1 Identifying Potential Requirements 

 The HALE Concept Design Team’s first task was to create two morphological 

matrixes, one of the mission parameters, and one for the HALE concept alternatives.  

This matrix enabled the design team to better understand the system requirements and 

alternatives, but it also served as a basis for establishing the requirements for the 

propulsion systems evaluated in this study.  In the mission parameters matrix, the mission 

that the HALE aircraft would have to perform was broken down into the major mission 



116 

segments or parameters, and alternatives for each segment or parameter we listed.  The 

mission parameters morphological matrix is shown in Table 29.  The number of missions 

described in Table 29 (as found by all of the unique combination of alternatives) is 

almost 516 billion missions. 

Table 29: HALE Mission Parameters Morphological Matrix 

Altitude >13 km >18 km > 20 km
Time On station ~7 days ~30 days ~100 days Unlimited
Mission Radius ~3500 km ~5000 km ~7000 km ~10000 km

Location and Time of Year 
Tropical, Hurricane 

Season
Tropical, Year 

Round
Unlimited CONUS

Station Keeping Accuracy ~1 km ~5 km ~10 km
Critical Ground Speed 105 kph 150 kph 200 kph 250 kph

Wind Tol: Launch and Recovery 10 kph 25 kph 50 kph

Wind Tol: Sustained < 100 kph ~ 100 kph ~150 kph ~200 kph
Gust tolerance: Uniform <7.5 mps <15 mps <22.5 mps

Service Life ~3000 hrs >7500 hrs >10000 hrs >40000 hrs
Expendable Payload Dropsondes Mini-UAV Drop and UAV None

Fixed Payload Hurricane-Doppler
Disaster -

Monitoring
Hurricane Package

Broadband Cell Phone

Weather Standard Day Near All Weather All Weather

Completion Rate >90% >95% >99%
>99.9% >99.99%

Mission Operational Concepts 
Auxiliary-powered 

Deployment
Refueled in Flight Single Vehicle Formation Flight

Serial Flight
Tip-joined Multi-

Vehicle

Operating Environment Mil Std 210 Std Day
Mil Std 210 Cold 

Day
Mil Std 210 Hot Day

Mil Std 210 
Tropical Day

Runway length <150 m <1500 m <2000 m Circular

Recovery None
Wheeled Runway 

Landing
Parachute Parasail

Skid Gear In Air Recovery Water Landing
Stall and Drop from 

Low Alt.

Launch Towed
Wheeled Runway 

Launch
Dolly

Runway width < 45 m <60 m Circular  

 The vehicle characteristics morphological matrix is shown in Table 30.  Notice 

that the morphological matrix is broken down into subcategories of configuration, 

command, control, and data link and actuation.  Notice that a major discipline of the 

UAV is missing from Table 30.  The propulsion system characteristics are not 
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considered.  While the HALE Concepts Design Team did identify the potential 

propulsion system characteristics, they were left out of this analysis, as the ultimate point 

of the exercise is to establish the requirements for the propulsion system.  A 

morphological matrix was created that defined all of the possible propulsion concepts that 

were considered in the analysis.  Ignoring the propulsion systems, the number of vehicle 

systems identified in Table 30 numbered almost 2.8 trillion. 

Table 30: HALE Vehicle Characteristics Morphological Matrix 

None Span Sweep Dihedral
Chord Aux surfaces

Rotorcraft None Helicopter Autogyro Tiltrotor
None W-B-T/C Bi-plane All wing

Three surface + B Joined wing

None Dirigible Blimp

Hybrid Powered Balloons

Radar Chase EO IR

Laser Ultrasonic IFF/Transponder Tip lighting
Health Management None Federated Integrated

Flight Control Sensors Flight control level Precise Pointing GPS only GPS + compass

Configuration

Variable Geometry

Detect and Avoid

Airship (LTA)

Fixed Wing

 

None Controlled Return Controlled Ditch Parachute

Pyrotechnic Autonomous Safe 
Control Hard 

Over

None Single channel Dual channel Freq Hopping
Single  Down-Dual 

Up
Mil band Commercial Band

None Relay HF GEO
LEO VLF LF

Command

Command Link: Beyond Line 
of Sight

Command Link: Line of Sight

Command Mission 
Termination Systems

 

Controlled: LOS
Controlled: Non-

LOS
Controlled: Pitch 
Roll Rate Inputs

Semi-Auto: Pre-
programmed 
Static Mission

Semi-Auto: 
Heading, Alt., 
Speed inputs

Fully Auto: IVHM
Fully Auto: 

Mission 
Management

Controlled: LOS
Controlled: Non-

LOS
Controlled: Pitch 
Roll Rate Inputs

Semi-Auto: Pre-
programmed 
Static Mission

Semi-Auto: 
Heading, Alt., 
Speed inputs

Fully Auto: IVHM
Fully Auto: 

Mission 
Management

Controlled: LOS
Controlled: Non-

LOS
Controlled: Pitch 
Roll Rate Inputs

Semi-Auto: Pre-
programmed 
Static Mission

Semi-Auto: 
Heading, Alt., 
Speed inputs

Fully Auto: IVHM
Fully Auto: 

Mission 
Management

Control

Take-off and Landing

Cruise

Climb & Descent
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None Single channel Dual channel Freq Hopping
Single  Down-Dual 

Up
Mil band Commercial Band

None Relay HF
GEO LEO

Data Link
Data Link: Beyond Line of 

Sight

Data Link: Line of Sight

 

Differential 
Thrust

Electric Motor
Pneumatic/ 
Hydraulic

Piezoelectric SMA
Actuation Actuation Systems

 

 The morphological matrix created by the HALE Concepts Design Team was an 

excellent basis from which to formulate the requirements for the HALE propulsion 

system, but it needed to be modified slightly.  The matrix contained many system level 

parameters or characteristics were not considered in the early analysis of the propulsion 

system, either because the differences in the alternatives did not have significant impact 

on the propulsion system, or because the author simply did not have the capability to 

analyze the impact of the different alternatives.  Those parameters and characteristics 

were removed from the analysis.  Because they were not modeled, they could not impact 

the result, and they complicated the CI analysis.   

 The remaining portions of the morphological matrixes were combined to form 

one morphological matrix that defined and organized the potential requirements for the 

HALE UAV’s propulsion system, as shown in Table 31.  The morphological matrix took 

parts of the morphological matrixes in Table 29 and Table 30.  Not all of the elements 

that will not significantly impact the goodness of each of the potential propulsion 

systems, but they were included because the author believed that they could have an 

impact on the propulsion system.  It is better to have a variable and ignore it in the 

analysis than it is to ignore it initially and need it later.  Over 2 trillion systems were 

identified in Table 31. 
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Table 31: HALE Propulsion System Requirements Morphological Matrix 

Altitude >13 km >18 km > 20 km
Time On Station ~7 days ~30 days ~100 days Unlimited
Mission Radius ~3500 km ~5000 km ~7000 km ~10000 km

Location and Time of Year 
Tropical, Hurricane 

Season
Tropical, Year 

Round
Unlimited CONUS

Station Keeping Accuracy ~1 km ~5 km ~10 km

Critical Ground Speed 105 kph 150 kph 200 kph 250 kph
Service Life ~3000 hrs >7500 hrs >10000 hrs >40000 hrs

Expendable Payload Dropsondes Mini-UAV Drop and UAV None

Broadband Cell Phone Hurricane Package

Hurricane-Doppler Disaster Monitoring

Weather Standard Day Near All Weather All Weather

Auxiliary-powered 
Deployment

Refueled in Flight Formation Flight
Tip-joined Multi-

Vehicle

Serial Flight Single Vehicle

Operating Environment Mil Std 210 Std Day
Mil Std 210 Cold 

Day
Mil Std 210 Hot Day

Mil Std 210 Tropical 
Day

Runway Length <150 m <1500 m <2000 m Circular

None
Wheeled Runway 

Landing
Parachute

Stall and Drop from 
Low Alt

Skid gear In air Recovery Water Landing Parasail

Launch Towed
Wheeled Runway 

Launch
Dolly

Runway Width < 45 m <60 m Circular
None Span Sweep Dihedral
Chord Aux Surfaces

Rotorcraft None Helicopter Autogyro Tiltrotor
None W-B-T/C Bi-plane All Wing

Three surface + 
Body

Joined wing

None Dirigible Blimp

Hybrid Powered Balloons
Airship (LTA)

Fixed Wing

Variable Geometry

Recovery 

Fixed Payload

Mission Operational 
Concepts 

 

5.2.2 Initial Probabilities 

 Once the possible requirements were defined (Table 31), the probability of each 

possible requirement had to be forecasted.  The CI analysis uses expert opinion to 

identify the initial probability of each mission parameter or vehicle characteristic actually 

becoming part of the future system, and hence, a future requirement.  The cross impact 

analysis assumes that only one and only of the possible outcomes that is listed in each 
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element will occur.  This means that two potential alternatives in the same element 

cannot occur simultaneously, or the alternatives are mutually exclusive, and that one of 

the alternatives must occur.  For example, the HALE vehicle must cruise at an altitude of 

13 km, 18 km, or 21 km.  The probability of all of the alternatives that comprise one 

element or parameter, consequently, must sum up to one.  The expert estimated initial 

probability for two of the mission parameters, altitude and ground speed, are listed below 

in Table 32.   

Table 32: Selected Probabilities of Mission Characteristics 

Altitude >13 km >18 km > 20 km
Probability 0.1 0.5 0.4  

Critical Ground Speed 105 kph 150 kph 200 kph 250 kph
Probability 0.15 0.8 0.04 0.01  

 A full list of the initial probably estimates for the potential requirements settings 

can be found in APPENDIX B.   

5.2.3 Compatibility Matrix 

 The modified CI analysis also takes into account the dependencies of the different 

potential requirements on one another.  Certain alternatives will not be compatible with 

one another.  For example, it is unrealistic to forecast that the UAV will be a lighter than 

air vehicle that will travel 250 kph.  In addition to the incompatibilities, certain 

alternatives will be correlated with one another, meaning that if one alternative is part of 

the system, there is a greater chance that another alternative will also be part of the 

system.  An example of correlated mission parameters may be critical ground speed and 

altitude.  The chances of a lower ground speed are much higher at low altitudes, because 

the density of the altitude is greater and therefore the power required to propel the UAV 

would be much greater.  There are also negative correlations between alternatives of 

different elements.  Finally, some of the elements truly are independent of one another, 



121 

meaning that if one alternative is part of the larger system, the likelihood of alternatives 

from another element being part of the system is unchanged.   

 A large compatibility matrix was formed that related the conditional probabilities 

of alternatives in each of the elements to alternatives in another.  The entire matrix is 

cumbersome, as one row and one column are required for each of the alternative present 

in the matrix.  A few excerpts from the compatibility matrix are shown below.  The 

compatibility matrix relates the conditional probability of each alternative in the row, 

given that the alternative in the column heading is part of the system.  The probability 

listed on the far left is the initial probability for the alternative, as predicted by experts.  

Table 33 shows the conditional probability for two independent variables, Altitude and 

Service Life.  Because the variables are independent, the conditional probability for each 

alternative is equal to the initially estimated probability, as selecting one of the 

alternatives had no bearing on the selection of the other.  Also notice that the alternatives 

within each element, are mutually exclusive.  The likelihood of the altitude being under 

13 km, given that it is 18 km is zero.   

Table 33: Excerpt from Conditional Matrix (Independent Variables) 
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0.1 >13 km 1 0 0 0.1 0.1 0.1 0.1 

0.5 >18 km 0 1 0 0.5 0.5 0.5 0.5 Altitude 

0.4 > 20 km 0 0 1 0.4 0.4 0.4 0.4 

0.1 ~3000 hrs 0.1 0.1 0.1 1 0 0 0 

0.15 >7500 hrs 0.15 0.15 0.15 0 1 0 0 

0.5 >10000 hrs 0.5 0.5 0.5 0 0 1 0 

Service 
Life 

0.25 >40000 hrs 0.25 0.25 0.25 0 0 0 1 
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 Figure 15 shows the joint distribution for the two variables shown in Table 33. 

Notice in Figure 15, that the two variables really do appear to be independent.  This can 

be determined, because the ratio of the probability of the various altitudes appear to be 

the same, regardless of what the service life is.  At the same time, the ratios between the 

probabilities of the service life settings are the same, regardless of what altitude has been 

selected.   
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Figure 15: Joint Probability Distribution for Servi ce for Independent Variables 

Table 34 is another excerpt from the compatibility matrix.  Table 34 however, shows two 

variables that are dependent upon one another, Altitude and Critical Ground speed.  

Notice in Table 34 that there is a positive correlation between increasing altitude and 

increasing ground speed.  As the latitude that is selected increases, the probability that the 

speed will be higher increases as well.   
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Table 34: Excerpt from Conditional Matrix (Independent Variables) 

 The entire compatibility matrix is not shown in any appendices, simply because it 

is too large to readily show on paper.  Figure 16 shows the joint distribution of the two 

variables shown in Table 34.  The joint probability shows that the two variables are 

clearly correlated.  Notice that the likelihood of the speed being 250 kph at an altitude of 

13 km is zero.   
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0.8 150 kph 0.8 0.8 0.6 0 1 0 0 
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0.01 250 kph 0 0.01 0.1 0 0 0 1 
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Figure 16: Joint Probability Distribution for Dependent Variables 

5.3 Evaluating Advanced Propulsion Concepts 

 In order to evaluate the fitness of propulsion concepts a tool that can assess the 

range of potential concepts, under the variety of potential requirements, is required.  

Unfortunately, while several propulsion analysis programs exist, a tool that was flexible 

enough, robust enough, and simple enough to implement did not exist before this 

research initiative began.  Consequently, an analysis environment was created, based on 

the physical and thermodynamic processes that occur in a propulsion system.  The 

environment essentially evaluates the propulsion system and creates a simplistic, engine 

deck.  That deck is then used to size a parametrically specified aircraft or air-vehicle.  

The fitness of each concept is then calculated, using the propulsion analysis and vehicle-

sizing program.  The basic principles of the assessment environment, the Advanced 

Propulsion System Analysis (APSA), are described below.   
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5.3.1 Identifying Advanced Propulsion Concept Space 

 The first step to assessing the advanced propulsion concepts was identifying the 

concept space.  The In order to do this, the propulsion system was broken down into the 

fundamental processes that must be present in a propulsion system.  Table 35 shows the 

breakdown of the advanced propulsion concepts.  Table 35 broke propulsion concepts 

into a few main subfunctions.  First, the “combustion” subfunction examined how the 

engine extracted the energy from any sort of onboard fuel.  If a battery was the main 

energy source, combustion was not necessary.  Various fuel types were examined.  

Additionally, if combustion occurred, an oxidizer was required.  Either that oxidizer 

could be taken from ambient air, or it could be stored onboard.  Additionally, because of 

the long duration required for the vehicles, energy needed to be replenished.  The energy 

renewal subfunction lists alternatives for renewing the energy of the propulsion system.  

Finally, the vehicle must convert electrical or shaft energy to thrust.  Main methods 

behind this conversion are also listed.  

 The combustion processes discussed in Table 35 approximate combustion 

processes.  Pressure is not truly conserved in constant pressure combustion processes.  A 

small percentage of the total pressure is lost in the combustion process.  Similarly, 

constant volume combustion processes are combustion processes that can be 

approximated as occurring at a constant volume, such as the combustion in a four-stroke 

engine. 

 Notice in Table 35 that the propulsion concepts are limited.  Nuclear propulsion 

concepts were ignored both because of the complexity involved in such engines, and the 

low likelihood that the engines would be considered.  Also, while batteries were 

considered as the basis for thrust generations, the author assumed that batteries alone 

would not provide enough energy efficiently enough to power the HALE vehicles.   
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Table 35: APSA Morphological Matrix 

 There are 10800 propulsion concepts identified in Table 35. 

5.3.2 Creating a Surrogate Model to Relate Fitness to Requirements 

 The ERTA method strives to give decision-makers an understanding of how 

robust advanced propulsion concepts are to variations in requirements.  In order to do so, 

the ERTA method calculates the distribution of fitness as a function of the distribution of 

requirements.  Before that can be done, a surrogate model must be built to directly relate 

each concept’s fitness to variations in the requirements.  The following section discusses 

the development of this surrogate model.   

 In order to develop a surrogate model, first, decision-makers must have the ability 

to assess each concept.  Because most of the concepts under consideration are very 

immature, and because the author could not find a suitable modeling environment that 

enabled her to evaluate the entire range of concepts under consideration, she developed 

her own modeling environment.  This environment models the engine cycle by building 

an engine deck.  That deck is then used to size a vehicle to fly a mission.  If the engine 
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was capable of powering the vehicle and allowing it to complete the mission, the gross 

weight of the vehicle was used as a discriminator compare feasible engines.   

 Once this environment existed, a simulated annealing program was written to find 

an optimal set of propulsion alternatives for a particular set of requirements and setting of 

disciplinary metrics.  That optimized set of alternatives was used to calculate the fitness 

of each concept.  A meta-model was then created to relate the variation in the fitness of 

each concept to the variability of the requirements and disciplinary metrics.   

5.3.2.1 Assessing Alternatives’ Ability to Meet Requirements 

 Before one can measure how well a propulsion concept can meet a specific set of 

requirements, one has to have a modeling and simulation environment that can be used to 

assess the concepts.  As was discussed in section 4.2.1.2, a first principles analysis was 

used to evaluate the propulsion concepts.  The author could not find an existing modeling 

and simulation environment that was flexible and fast enough to model the entire range of 

propulsion concepts under consideration, so one was created.  Modeling the engine cycle 

alone, however, is not sufficient to assess the propulsion system.  The performance of the 

cycle throughout the mission, and the interactions between the vehicle and the propulsion 

system must be accounted for in order to assess the engine’s ability to satisfy the 

requirements.  Both the modeling of the propulsion system and the modeling of the 

vehicle integration are discussed in this section.   

5.3.2.1.1 Modeling the Propulsion Cycle 

 The ultimate function of a propulsion system is to convert energy that is either 

stored onboard, or continuously acquired, into some form of propulsion.  Propulsion 

systems have several basic components that help enable this task to be carried out.  

Rarely is the stored energy converted directly to thrust.  Usually, it is first converted to 

heat energy, and then in turn converted to mechanical energy.  In the case of a fuel cell or 
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battery system, the stored energy is first converted to electromagnetic current, and then 

converted to mechanical energy.  

 An assessment environment was created that was capable of evaluating the entire 

range of possible alternatives.  In order to do this, the propulsion system was broken 

down into the fundamental processes that must be present in a propulsion system.  Those 

processes were then modeled using the fundamental physical and thermodynamic 

relationships that govern them.  The processes were connected by modeling the transfer 

of energy between them, either in the form of shaft horsepower, electromagnetic energy, 

or fluid properties.  The basic format of the environment is similar to Numerical 

Propulsion System Simulation (NPSS), a NASA developed propulsion cycle analysis 

code, accepted across the industry and government.  The differences between APSA and 

NPSS are the level of fidelity of the analysis, the degree of the system that must be 

specified and the reliance upon empirical data.  APSA relies on lower fidelity, physics-

based analyses for all of its calculations.  Differentiations in maturity are modeled 

through simple disciplinary metrics, individually specified for each potential process.  

Increasing the fidelity of APSA requires that more information about the concept is 

specified at an earlier stage, which is difficult and usually unnecessary when assessing 

advanced propulsion concepts that little is known about.  Finally, APSA does not use any 

empirical relationships, simply because most of the concepts that are being evaluated are 

outside of the realm of experience. 

 The APSA is currently capable of assessing the entire range of propulsion 

concepts identified in Table 35.  Notice that far out concepts, such as ion-propulsion 

systems and nuclear jets or rockets, were left out of the APSA because those concepts 

were not expected to be legitimate contending concepts.  Traditional concepts, such as a 

turbofan are included.  Each alternative is the space is represented by a unique 

combination of morphological matrix alternatives.  A turbofan concept, for example, 
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would be modeled as a constant-pressure combustion process, using Jet A fuel, no 

battery, ambient air, and compression.  There would be no source of energy renewal, and 

thrust would be produced using a bypass jet.  Similarly, rockets, turboprops, and various 

fuel cell concepts can all be modeled.   

 The combustion processes discussed in Table 35 are approximations of 

combustion processes.  Pressure is not truly conserved in constant pressure combustion 

processes.  A small percentage of the total pressure is lost in the combustion process.  

Similarly, constant volume combustion processes are combustion processes that can be 

approximated as occurring at a constant volume, such as the combustion in a four-stroke 

engine. 

 In addition to the processes shown in Table 35, APSA also continuous variables 

that further define the system.  These variables specify the equivalence ratio of the 

engine, the compression ratio of the compressor if one exists, as well as other key cycle 

parameters.   

 The APSA was used to create an engine deck for each propulsion system.  The 

engine deck recorded how much power and thrust could be generated at several specified 

flows of energy, at different altitudes, and at different speeds.  The deck also recorded the 

ratio of the engine to power output.  The information in the deck was used to size 

parametrically defined vehicles. 

5.3.2.1.2 Vehicle Sizing Algorithm  

 Unfortunately, calculating the cycle of a propulsion system is not sufficient to 

evaluate a propulsion system.  The only way to evaluate these fundamentally different 

concepts fairly is to measure how well they allow the entire vehicle system to meet the 

system-level requirements.  This can only be measured by evaluating the integration of 

the propulsion system with the vehicle and the mission.  Instead of evaluating a 



130 

propulsion concept independently, propulsion concepts will be evaluated based on their 

ability to allow the entire vehicle system to meet the system-level requirements 

simultaneously.  The ability of a vehicle system to meet the system level requirements 

can be measured by a number of metrics.  Any system-level metric that is calculated can 

be used as a metric from which to evaluate propulsion systems, but for this analysis, total 

vehicle weight was used as a metric to assess how well the propulsion system met the 

requirements.  If the vehicle is was incapable of satisfying all of the mission requirements 

simultaneously, vehicle weight would be infinite. 

 The vehicle sizing portion of the ASPA environment uses the engine deck, found 

in the propulsion cycle analysis, and an energy-based sizing method to size a vehicle to 

satisfy a parametrically defined.  As mentioned above, total vehicle weight was used as a 

metric to compare different propulsion systems to one another.  While other figures could 

have been considered or simultaneously introduced, gross weight introduces a measure of 

life cycle cost and technological maturity, as the component weights of propulsion 

systems are reduced when the concept becomes more mature.  Emissions were initially 

considered in the study, but they eliminated as a metric.  Carbon based emissions are 

closely tied to fuel type and overall efficiency, so the metric was redundant.  Nitrogen 

based emissions were ignored because they are usually only considered at takeoff and 

landing and the author had trouble predicting the nitrogen emissions for immature 

propulsion technology.  While gross weight is the outputted system-level metric, is NOT 

the only metric used to assess the concept.  If the propulsion system is not capable of 

meeting all of the requirements or constraints (located in a wide variety of fields) 

simultaneously, the gross weight is not computed, and thus, the infeasibility of the 

alternative becomes apparent.  Vehicle weight was used to compare propulsion systems, 

but the values were only directly compared when the requirements and vehicle 

configuration was held constant.   
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 An energy based sizing method was used to size the various types of air vehicles.  

In order to keep the analysis running quickly enough to be of use, vehicles were specified 

parametrically.  Three different classes of vehicles were considered, fixed wing aircraft, 

lighter-than-air vehicles, and hybrids.  Helicopter-based systems were not included in the 

analysis because the experts involved in the NASA conceptual design study determined 

that they were not feasible alternatives to meet the HALE’s system-level requirements.   

 The theory behind the sizing algorithms for each vehicle class was universal, but 

the implementation of that theory differed based on the vehicle class.  An overview of the 

methodology is discussed in APPENDIX C.  The generation of lift and drag is different 

for fixed wing and lighter-than-air vehicles; consequently, the each sizing algorithm 

reflected those differences.  Also, each class of vehicles required a different set of 

parameters to define them.  Finally, the mission parameters that significantly impacted 

the vehicle sizing differed for the vehicle class.  The sizing algorithms used to size fixed 

and lighter-than-air vehicles are explained in further detail in APPENDIX D and 

APPENDIX E, respectively.  An overview of the sizing and synthesis environment is 

discussed below. 

 The basis for each sizing algorithm was to calculate the power required to propel 

the vehicle at each point in flight.  The engine deck was used to relate that power to a 

flow of “fuel”.  Fuel referred to any stored energy, from Jet-A to H2 to electrolyzer.  That 

flow was integrated across the entire mission to calculate the portion of the vehicle mass 

that needed to be fuel.  That ratio was then used to size the vehicle. 

 In order to calculate the power required at any point in the mission, the drag 

generated by the vehicle was calculated as a function of the mass.  For the fixed wing 

vehicle, drag was a function of the dynamic pressure, wing loading, and the drag polar, 

shown below in Equation 15.  In the equation, CD,O is the zero lift drag coefficient and K1 

is a constant. 
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Equation 15 can be used to calculate drag as a function of mass, by multiplying the drag 

coefficient by dynamic pressure, and dividing it by the wing loading.  The constants in 

the equation, CD,o and K1 are functions of the geometry of the vehicle.  According to the 

requirements that were developed by the NASA conceptual design team, several fixed 

wing vehicles were considered, from a flying wing, to a traditional fuselage-wing body.  

Defining the vehicle configuration defined the parameters in Equation 15.  A solar flying-

wing structure is shown below in Figure 17  
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Figure 17: Flying Wing Schematic 

 Once the drag polar constants were determined, the drag could be normalized by 

the vehicle mass, as shown in  Equation 16.  In the equation, mTO refers to takeoff gross 

weight.  The variable S refers to wing area.  The wing loading, then is the ratio between 

the mTO and S.   
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Equation 16 can be used to calculate the drag at any straight, level, constant speed flight.  

Additional terms need to be considered if the vehicle is climbing or accelerating 

(including turning).   

 Lighter-than-air vehicles do not rely upon lift generated by a wing to stay up in 

the air.  Instead, they rely upon the buoyant forces to sty in the air.  Because of this, 

lighter-than-air vehicles do not generate large amounts of drag due to the creation of lift.  
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Instead, they generate drag by pushing a large volume through the air.  An airship 

schematic is shown below in Figure 18.   

Photovoltaic Cells

 

Figure 18: Solar Airship Schematic 

The drag generated by lighter-than-air vehicles was calculated using a volumetric drag 

coefficient, CDV [48].  The volumetric drag coefficient is found by normalizing the drag 

both they dynamic pressure and the envelope volume, raised to the 2/3rd power, as is 

shown in Equation 17.   
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The flow of energy that was required to provide that power was obtained from the engine 

deck, and the ratio of stored energy to mass and engine weight to mass was calculated.  

By normalizing the flow of energy by the total vehicle mass and integrating that flow 

across the entire span of the mission that the engine last, the ratio of energy weight to 

vehicle weight could be found.  The ratio of stored energy to vehicle weight was recorded 

for each segment, as is shown in Equation 18. 
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 The total ratio of stored energy for the vehicle was found by determining the 

greatest possible stored energy ratio for the mission.  In most cases, that segment 
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occurred between energy renewals.  Energy renewal could come in the form of mid-air 

refueling or solar energy.   

 Additionally, the maximum power to weight ratio for the mission was found.  

This parameter was used in conjunction with the power to weight ratio of the engine (the 

specific power) that was tabulated in the engine deck.  The calculation of the engine mass 

ratio is shown in Equation 19. 
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 Other mass ratios, such as the empty mass ratio, were assumed parameters in the 

analysis.  If solar energy was to renew the energy, the required area of solar cells was 

found.  This area was also normalized the by mass of the vehicle.  The solar cells had to 

capture enough solar energy to replenish the stored energy consumed during the non-

solar hours and power the vehicle during the solar hours.  The density of the solar cells 

was parameterized to calculate the ratio of solar cell mass to vehicle mass, as shown 

below in Equation 20.  In Equation 20, Solar Energy refers to the intensity of solar 

energy.  Cell density refers to how heavy the cells are (per unit area).   

)/mDensity(kg Cell
1

)(W/mEnergy Solar 

1rgy neE 2
2

CellsPVVehicleFW

CellsPV

MM

M

η
=  (20) 

 The ratio of empty mass to vehicle mass was parameterized, and the payload was 

known.  For a fixed payload mass, the engine and vehicle were sized in a rubber fashion 

until the remaining mass fraction equaled the ratio of payload to gross vehicle weight.  

The equation for calculating vehicle weight is shown below in Equation 21. 
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 As was mentioned earlier, the total vehicle weight was used as a measure of how 

well the propulsion system met the requirements.  As was stated earlier, the sizing 
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algorithms used for both fixed and lighter-than-air vehicles are further explained 

APPENDIX D and APPENDIX E, respectively.  A discussion of the theory behind the 

algorithms is discussed in APPENDIX C. 

 If the propulsion system were unable to meet all of the requirements, vehicle 

weight could not be calculated, and the optimization would realize that no feasible 

alternatives were produced.  The best feasible propulsion system would produce the 

smallest vehicle, for each specific set of requirements.  Fitness, then, was calculated as a 

function of gross vehicle weight.  The inverse of total vehicle weight was used to 

calculate fitness, as is shown in Equation 22. 
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 It is important to realize that the mass of the vehicles could only be used as a 

figure of merit to compare propulsion systems under a consistent set of propulsion system 

requirements (or vehicle and mission parameters).  As the vehicle and mission parameters 

change, the expected weights of those vehicles will change.  It is important to compare 

the propulsion systems on an “apples to apples” basis. 

5.3.2.1.3 Validating the APSA Environment 

 Unfortunately, because the APSA environment models very advanced, immature 

technology, the environment itself is difficult to validate.  In most cases, similar systems 

have not been built yet, so the results cannot be compared to existing systems.  Even in 

the few cases where systems exist, either operational or prototype systems, it is difficult 

to generate enough information about the system to replicate the results.  Producing high 

fidelity solutions, while desirable, is not essential.  The vehicles are only being sized 

conceptually, and errors in the analysis will be consistent, thus not affecting the 

comparison.  The APSA environment was used to size three vehicle classes: a large, 

long-range commercial jet, comparable to the Airbus 340; a flying wing solar vehicle, 
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comparable to the Helios; and a solar airship comparable to a solar airship that was 

conceptually designed by NASA. 

 The fixed wing vehicle was designed to carry a payload of 46,000 a distance of kg 

14,000 km.  The vehicle has a wing loading of 760 kg/m2 [96].  The aircraft uses four 

high bypass ratio turbofan CFM56 series engines, made by CFM International.  The 

engines have a bypass ratio of 6.6 and an overall pressure ratio of 37.4  

[16].  The Airbus A340-200 weighs 275,015 kg, completely loaded, 129,000 kg empty, 

and can carry 100,100 kg of fuel [96].  The drag characteristics of the vehicle were 

unknown, but were estimated from similar configurations.  The cruise zero lift drag 

coefficient, CD,o, was estimated to be 0.014, and the K1 parameter was estimated to be 

0.028 [57], [83].  The mission parameters and vehicle configuration details were inputted 

into the sizing and synthesis code, to calculate the total gross weight required to perform 

the mission.  The sizing and synthesis found that the vehicle would have to weigh 

273,440 kg, with 93,705 kg of fuel.  The empty weight of the vehicle was 133,716 kg.  

The greatest error in the assessment was the fuel consumption, and that was still only a 

6.4% error with respect to the Airbus A-340. 

 The APSA environment was next used to size a vehicle comparable in size and 

performance to the Helios, a NASA prototype solar vehicle.  The Helios was intended to 

be the first regenerative fuel cell system powered vehicle, but it crashed before it could be 

fitted with a regenerative fuel cell.  Before it crashed, however, it served as a prototype 

for a solar vehicle.  The vehicle was a flying wing configuration 

 The Helios weighed 1322 lb, and carried a payload of up to 726 lb, making a 

gross weight of 2048 lb, or 929 kg.  The vehicle had a wingspan of 247 ft (75 m) and a 

wing area of 1976 ft2 (184 m2).  It was estimated that the vehicle flew at a lift coefficient 

CL of 0.8.  The APSA environment was used to size such a solar vehicle.  The designed 

vehicle weighed 884 kg, with an empty weight of 555 kg.  The vehicle had a required 
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wing area of 170 m2, and a wingspan of 72 m.  the greatest error in the estimation was the 

gross weigh, which was 8.1% off of NASA Helios.  

 Finally, the APSA environment was used to size a solar airship.  The airship was 

designed to be comparable to a NASA conceptually designed airship.  The airship in the 

study had a payload of 2000 kg and a solar array with an efficiency of 8% [21].  The Fuel 

cell efficiency was 50% [21].  The airship used helium as a lifting gas, and the envelope 

was 185 m long, and 46 m in diameter [21].  The volume was 2.8x105 m3 [21].  

Unfortunately, the operating altitude and the required velocity were not specified.  The 

APSA environment sized an airship enveloped to be 40 m in diameter, and 160 m in 

length.  The volume of the airship was 2.58x105.  The error of the APSA environment 

relative to the NASA conceptual study was at most 7.9%.   

 The validation of the APSA environment showed that it consistently sized a broad 

range of vehicles with only a 5% to 10% error relative to existing systems, or intensive 

conceptual designs.  The vehicles are sized at the conceptual level, so errors of up to 5% 

to 10% are acceptable.  Additionally, the propulsion systems will only be directly 

compared to one another under a constant set of assumptions.  The errors in the analysis 

will be consistent, and thus should not impact the comparison.   

5.3.2.2 Identifying Set of Optimal Alternatives 

 Once decision-makers can directly measure how well each alterative meets the 

sets of requirements, an optimized set of propulsion alternatives can be found.  For a 

particular set of requirements, a simulated annealing program was used to identify a set 

of propulsion alternatives that were optimized for a specific set of requirements.  As was 

described earlier, simulated annealing programs often get “stuck” at local minima.  In the 

entire concept space, each optimized alternative within each concept is represented by a 

local minimum.  It is important that the optimized set of alternatives found by the 
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simulated annealing program is truly reflective of the optimized propulsion concepts.  

Unfortunately, simulated annealing is a stochastic process, and consequently, that will not 

always be the case.  A small percentage of the time, the simulated annealing program will 

simply not produce a good set of optimized alternatives.    

 The amount of time that this occurs can be reduced by way that the simulated 

annealing program is conducted.  Remember from section 2.2.6.1 that simulated 

annealing programs randomly generate a population of alternatives and then improve 

each alternative individually each generation.  In each generation, evolution consists of 

slightly perturbing each alternative and then calculating whether the offspring is better 

than the original parent alternative.  If this is the case, the new alternative survives and 

becomes part of the next generation.  If this is not the case, the optimizer probabilistically 

determines whether to keep the original alternative, or allow the new alternative to be 

part of the next generation.  Traditionally, experts suggest that the probability with which 

“worse new alternatives” survive to the next generation be high in early generations, and 

drop to almost zero for late generations.  Doing so helps the optimizer to avoid getting 

stuck in local minima.  Because the point of this process is to find the local minima, the 

probability that “worse new alternatives” survive was kept relatively low throughout the 

entire optimization.  The number of alternatives in the population and the number of 

generations that are allowed to run also play large roles in how well the optimizer finds a 

set of alternatives that are reflective of the truly optimized population.  Unfortunately, 

increasing the number of alternatives considered and generations that are ran also 

increases the computational time required to perform the optimization.  For this reason, 

these numbers have to be balanced with the computational time available.  In this case, 

each optimized population consisted of 30 alternatives, and they were allowed to evolve 

through 300 generations.  An explanation of the simulated annealing program and the 

MATLAB code used to conduct the program can be found in APPENDIX F. 
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5.3.2.3 Calculating Fitness   

 Once the optimized population was found, the relative fitness for each concept 

was determined.  In order for this to occur, the alternatives present in the final pool had to 

be grouped into subsets, or concepts.  Several different types of concepts were defined, 

and many of those concepts overlap with one another.  First, concepts were broken down 

by the type of combustion process from which they derived most of their power.  A 

review of Table 35 shows that there were four main types of combustion processes, none, 

(implying a battery) a fuel cell reaction, a constant pressure combustion reaction, and a 

constant volume combustion reaction.  Another way in which propulsion alternatives 

were grouped into concepts was by the means of propulsion.  Three systems were 

considered, propeller based systems, pure jets—where only the exhaust was accelerated 

to produce thrust, and bypass jets—where ambient air was compressed in a duct, and 

accelerated with a nozzle to produce additional thrust.  The fitness of more 

conventionally defined concepts, such as turbojet engines, rocket engines could and 

piston/propeller engines could be identified by finding the fitness of the proper 

combination of components.   

 The relative fitness, as defined in section 4.2.2 was found for each alternative in 

the optimized pool through Equation 23, shown below.  F(Xi) refers to the function found 

in Equation 23.  The fitness of each concept is found by finding the ratio of the function 

value to the sum of the function values for all alternatives contained in the optimized 

pool. 
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= n
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 Once the fitness of each alternative is found, the fitness of each concept was 

found by adding up the fitness of each of the alternatives that were classified into the 

particular concept, or subset, as is shown in Equation 24. 

∑ =
=

1i iAConcept RFRF  (24) 

The fitness found in Equation 24 is function of the requirements that were used to assess 

the propulsion concepts.  Once the ability to calculate fitness was developed, a meta-

model was created that calculated fitness as a direct function of the requirements.   

5.3.2.4 Creating a Meta-model  

 Unfortunately, the process to calculate the relative fitness of each concept as a 

function of the requirements, or set of disciplinary metrics is time consuming.  It was not 

feasible to calculate the fitness for each concept for each set of requirements of interest.  

Instead, a meta-model was created that related the variability of the fitness to the 

variation in the requirements and disciplinary metrics.  That meta-model was then used to 

calculate fitness for each concept, across the distribution of requirements.  As was 

mentioned above in section 4.2.3.2, a quadratic curve fit, or RSE, was used as a meta-

model.  RSEs were discussed in section 2.2.5.1.   

 The meta-model had to capture not only the variability of the fitness of each 

concept as a function of the requirements, but it had to capture the variability of the 

fitness as a function of the technical maturity of each of the propulsion concepts.  

Because each of the advanced propulsion concepts are so immature, the uncertainty 

inherent to the maturation will greatly impact the fitness of each concept.  Thirteen 

variables that captured the technological maturity that were also found to significantly 

impact the fitness of the concepts.  Those variables are shown Table 36.   
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Table 36: Disciplinary Metrics 

  

 The requirements for the propulsion system were parameterized with 5 continuous 

variables and 4 discrete variables.  These variables do not necessarily directly translate to 

the requirements found in 5.2.1, but the varying requirements will change the settings of 

each of the variables.  The continuous variables are shown in Table 37 and the discrete 

variables are shown in Table 38.   

  Min Max Unit 

Fuel Cell Efficiency 0.6 0.9  

Fuel Reformation Efficiency 0.6 0.9  

Maximum Combustion Temperature 2000 4000 °K 

% of Gas Absorbed in Fuel Cell 0.4 0.8  

Fuel Regeneration Efficiency 0.7 0.9  

Solar Energy Absorption Efficiency 0.2 0.6  

Radiation of Beamed Energy 1000 3000  

Rate of Refueling ½ 3 Refuels/day 

Specific Weight of Photovoltaic Cells 0.2 0.8 kg/m2 

Specific Weight of Const. Pressure 

Combustion System 300 10000 W/kg 

Specific Weight of Const. Volume 

Combustion System 100 10000 W/kg 

Specific Weight of Fuel Cell System 100 1000 W/kg 

Fuel Storage Temperature 200 300 °K 
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Table 37: Continuous Variables Derived from Propulsion System Requirements 

Table 38: Discrete Variables Derived from Propulsion System Requirements 

 In order to generate enough data to accurately relate fitness to all of the 

requirement variables and the disciplinary metrics, a DoE identified the inputs for 557 

orthogonal cases.  DoEs were discussed in section 2.2.4.2.  Unfortunately, there are not 

feasible alternatives for all of the space.  Lighter-than-air vehicles, for example, cannot 

realistically be sized to fly at airspeeds of 200 km/hr or greater.  Because the DoE was 

orthogonal, but the feasible space was not, many of the experiments specified in the DoE 

produced no results.  Additionally, because the simulated annealing is stochastic in 

nature, a few of the experimental runs produced poor results.  For these reasons, 235 

additional, randomly generated, space filling experiments were conducted.   

 For each experiment, the optimized pool of alternatives was used to calculate the 

fitness of each of the concepts.  The fitness outputs were regressed against the input 

parameters, to produce one, simple model that calculated fitness as a function of the 

  Min Max Unit 

Speed 105 200 km/hr 

CL (If Fixed Wing) 0.8 1.2  

Cruse Altitude 13 21 km 

Solar Hours 6 14 hr 

Takeoff Field Length (If Fixed Wing) 150 2000 m 

 Settings 
  1 2 3 

Energy Renewal 

Available Refueling None 

"Beamed 

Energy" 

Vehicle Type Fixed Wing Hybrid Lighter than Air 

Takeoff Means Powered Takeoff Launch at Altitude  - 

Takeoff Weather All Weather Sunny Conditions  - 
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inputs, assuming that the inputs were within the predefined range.  Two meta-models 

were actually created.  One set captured the variability of the fitness metrics when the 

vehicles could refuel if necessary.  The second set capture the variability of the fitness 

metrics when only solar energy was available and electromagnetic energy could be 

“beamed” to the vehicle.  The other continuous variables were captured with “dummy” 

variables in the RSEs.    

 The fit of the quadratic models was not exceptional, but it was sufficient for the 

purposes of identifying fitness as a function of the requirements.  It is difficult to create a 

quadratic model of a stochastic analysis, primarily because stochastic processes are 

inherently uncertain.  There is a degree of error in the actual analysis, and that error will 

be propagated into the meta-model.   

 Figure 19 shows how well the model fits for one class of alternatives, the fuel cell 

propulsion systems.  Notice that while the fit is not superb, the error terms are within a 

few percentage points of the meta-model predicted results.  Figure 19 reflects the fitness 

of the fuel cell concepts when refueling is available.   
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Figure 19: Goodness of Fit for Fuel Cell Concepts’ Fitness 

 Figure 20 shows the goodness of fit for solar based concepts when refueling is 

available.  Even when refueling was an option, solar powered vehicles were still capable 

of meeting the requirements.  They are not preferable, however, as the solar cells offer 
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additional weight, and depending on the frequency of the refueling, they might not be 

competitive.  Notice that this trend is reflected in the lower average of solar powered 

vehicles.   
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Figure 20: Goodness of Fit for Solar Concepts’ Fitness when Refueling is Available 

 Figure 21 shows the Prediction Profiler of different combustion processes and 

energy renewal options as a function of a few requirement variables and a few 

disciplinary metrics.  The set requirement variables and disciplinary metrics shown in 

Figure 19 is not complete.  The entire set of prediction profilers is too large to examine 

thoughtfully.  The set of RSEs represented in Figure 21 are those from when refueling is 

an option.  A prediction profiler maps the curve fit along one dimension, to show the 

sensitivity of the response to the variables.  In Figure 21 , the row labeled fc models the 

fitness of all fuel cell processes.  The rows labeled P_comb and V_comb model the 

fitness of constant pressure and constant volume combustion processes, respectively.  

Constant volume combustion processes include pure jet engines, turbojet engines, and 

turboprop engines.  Constant volume combustion processes are those processes that are 

modeled using a constant volume model, ranging from internal combustion processes to 

pulsed detonation processes.  The row labeled solar refers to all concepts that use solar 

energy to renew their energy, and the row that is labeled refuel actually makes use of the 

refueling option.  
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 In Figure 21 the column labeled ηFC is the efficiency of the actual fuel cell.  The 

column labeled ηSolar is the efficiency of the photovoltaic cells.  Speed is the cruise speed, 

in m/s; Altitude is the cruise altitude in ft.  Solar Hours is the minimum amount of solar 

hours that to which the vehicle will be exposed.  This metric will change as the 

geographic operating location and operating season changes.  Finally, Log(RF/Day) is the 

log of the number of refuels available to the vehicle per day.   
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Figure 21: Prediction Profile When Refueling is Available 

 Notice that the trends in Figure 21 make sense.  As the efficiency of the fuel cell 

increases, the fitness of the fuel cell increases, while the fitness of the constant pressure 

combustion processes decrease.  Also, as the number of solar hours in a day increase, the 

fitness of solar concepts increase.  Another helpful observation is that as the speed 
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increases, the fitness of solar based concepts drops dramatically.  Solar based concepts do 

not appear to be feasible at the high speeds.   

 At first thought, it does not make sense to relate the fitness of one concept to the 

component disciplinary metric of another concepts.  The fitness of constant pressure 

combustion processes should not depend upon the efficiency of fuel cells.  As a fuel cell 

becomes more efficient, however, fuel cell processes become more attractive.  The two 

concepts are competing against one another.  As fuel cell processes become more 

attractive, combustion processes become less attractive.  The trends make sense.  One 

interesting note is that increasing the efficiency of the fuel cell only increases the fitness 

of fuel cell concepts to a point.  Pushing the efficiency beyond approximately 75% seems 

to have no additional impact on the attractiveness of fuel cell concepts over traditional 

combustion based processes.   

 After observing the two meta-model, a few questions arose.  Using solar energy 

as a source of energy renewal did not make constant pressure and constant volume 

combustion processes infeasible.  This trend puzzled the author; as regenerative processes 

are only really considered in conjunction with fuel cells.  The author to date has never 

found a proposal of an aeropropulsion engine that combusts the fuel, and then uses the 

products of combustion to regenerate fuel, using solar energy.   

 Figure 22 and Figure 23 show portions of the prediction profiler for the second set 

of RSEs.  In this set of RSEs, refueling is not an option.  The only options for energy 

renewal are solar power and auxiliary power “beamed” up to the aircraft.  The variable 

“Beamed?” refers to whether beamed electromagnetic energy is or is not available.  

When that variable is set to zero, no beamed energy is available.   

 Figure 22 shows the values for the combustion classes and the energy renewal 

classes when the “Beam?” variable is set to zero—implying that no beamed energy is 

available.  The only row that is different from Figure 21 above is the last row, labeled em.  
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This row represents the concepts that receive their energy renewal through beamed 

electromagnetic energy.  Notice that when the Beam? Variable is set to zero, the em 

response is zero and insensitive to all other variables.  The lone exception to this is em’s 

dependence on speed.  Unfortunately, this trend is due to an error in the mapping of the 

design space.  Solar power is simply not capable of providing enough energy to power 

flight at the highest range of the speed.  The infeasibility of this space ensured that no 

feasible design points were found in this range; therefore, the model is inaccurate in this 

area of the space.   
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Figure 22: Prediction Profile of when Only Solar Power is Available 

 Figure 23 is the same as Figure 22 except that the Beam? variable is set to one, 

implying that beamed energy is available.  Notice in Figure 23 that the value of the em 

response is significantly higher.  Also notice that both em and solar metrics are 
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insensitive to the solar efficiency.  Both sources of energy renewal require the use of 

photovoltaic cells, so the efficiency should of the cells should not impact the 

competitiveness of one concept with another.  
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Figure 23: Prediction Profile of when Beamed Power is Available 

5.3.3 Calculating the Distribution of Fitness 

 Once   a meta-model was created, the distribution of fitness for each concept was 

found by employing Monte Carlo techniques. An earlier section discussed how the 

probabilistic distribution of requirements was found using the CI analysis.  A triangular 

distribution was placed upon the disciplinary metrics.  The minimum value, maximum 

value and median vale of each of those metrics is shown below in Table 39.  The ranges 

depicted in Table 36 are not identical to the ranges that were used to create the meta-
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model.  This is because the author determined some of the ranges in the disciplinary 

metrics were too large to accurately portray reality.   

Table 39: Distribution of Disciplinary Metrics 

 

 The Monte Carlo trials sampled requirements from the distribution identified in 

the CI analysis and sampled disciplinary metrics from the triangular distribution 

described in Table 39.  The results are discussed and interpreted below.   

5.4 Interpreting the Results 

 The first propulsion concepts that investigated were conventional propulsion 

concepts.  If conventional propulsion concepts are likely to satisfy the requirements, 

decision-makers would most likely not be interested in investing the time and resources 

required to develop advanced propulsion concepts.  Unfortunately, conventional concepts 

  Min Median Max Unit 

Fuel Cell Efficiency 0.6 0.7 0.8  

Fuel Reformation Efficiency 0.7 0.71 0.8  

Maximum Combustion Temperature 2000 3000 3500 °K 

% of Gas Absorbed in Fuel Cell 0.4 0.6 0.8  

Fuel Regeneration Efficiency 0.7 0.8 0.9  

Solar Energy Absorption Efficiency 0.2 0.22 0.6  

Radiation of Beamed Energy 1000 1100 1400  

Rate of Refueling ½  3 Refuels/day 

Specific Weight of Photovoltaic Cells 0.3 0.7 0.8 kg/m2 

Specific Weight of Const. Pressure 

Combustion System 
300 1000 10000 W/kg 

Specific Weight of Const. Volume 

Combustion System 
100 500 10000 W/kg 

Specific Weight of Fuel Cell System 100 150 1000 W/kg 

Fuel Storage Temperature 200 299 300 °K 
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were proven to have a low likelihood of satisfying the requirements.  For this reason, the 

author then investigated the fitness of other advanced propulsion concepts.  

5.4.1 Defining Conventional Propulsion Concepts 

 The author defined conventional concepts to be those that are evolutionary 

derivatives of technology currently used in the industry.  Turboprop, turbofan, and 

turbojet engines have all been built and successfully used to power aircraft.  The core of 

these engine concepts is that ambient fluid is compressed, used to oxidize the fuel, and 

the resulting fluid drives a turbine.  The means of thrust generation, however, is different 

for each concept.  Reciprocating engines and propeller combinations have also been 

widely use to power aircraft.  These concepts rely upon an approximately constant 

volume combustion process to extract the chemical energy out of fuel, but use the 

pressure spike of the fluid to drive a shaft.  Combinations of the two classes described 

above, however, are distinctly unconventional.  Constant volume combustion processes 

cannot easily be combined with compressor/turbine systems because constant volume 

combustion is not a steady-state process, and researchers have not been able to efficiently 

and safely combine the non-steady state combustion with the steady state 

compressor/turbine.  Fuel cell based propulsion systems and battery based propulsion 

systems are all considered to be advanced propulsion concepts, simply because the 

concepts have either not been used to power full sized aircraft, and are far from power 

system.   

 For the purpose of this study, any sort of regenerative system will be considered 

revolutionary.  Additionally, any alternative that uses a fuel cell or a battery as its 

primary form of energy conversion will also be considered revolutionary.  Non-

regenerative alternatives that rely upon, constant pressure propulsion systems will be 

considered evolutionary, as they are similar to existing systems today.  Additionally, for 
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simplicity’s sake, non-regenerative alternatives that rely upon constant volume 

combustion processes will also be considered conventional.   

5.4.2 Assessing Conventional Concepts 

 Conventional propulsion concepts can classified as concepts that rely upon non-

regenerative combustion processes to generate thrust.  The distribution of fitness for two 

subclasses of these concepts is shown in Figure 24.  The fitness of constant pressure 

combustion based alternatives is slightly worse than that of constant volume combustion 

based alternatives.  Constant volume combustion is a more efficient process.  The vehicle 

would consume less fuel throughout the mission, implying that constant combustion 

process-based concepts should be more attractive.  The only caveat to this notion is that 

the specific power density, or the ratio of energy output to engine mass, for constant 

volume combustion processes was given a slightly higher distribution.  Much of the 

increased fuel efficiency could be offset by the increased weight of the engine.   
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Figure 24: Fitness for Conventional Propulsion Concepts 

 Neither of the non-regenerative concepts will be sufficient to meet approximately 

70% of the potential sets of requirements.  This outcome is primarily a function of one 

requirement, the operation parameter.  This parameter dictated how the mission operation 

would take place.  The Mission Operational Parameter alternatives and their associated 

probabilities are shown below in Table 40.  The “Auxiliary-Powered Deployment” 

alternative implied that power could be “beamed” to the aircraft.  The “Refueled in 

Flight” option meant that refueling would be available to the vehicle.  “Single Vehicle”, 

“Formation Flight” and “Tip-joined Multi-Vehicles” had no means or energy renewal 

except for the available solar power.  The “Serial Flight” option implied that multiple 

vehicles would be responsible for covering the terrain; one vehicle would not have spend 

the entire mission duration above the hurricane. 
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Table 40: Mission Operation Requirements and Probabilities 

 The only time cases enabled non-regenerative alternatives to be feasible 

propulsion systems were the ones that allowed for refueling, either by mid-air refueling, 

or by making multiple trips and refueling back at base.   

 Figure 25 shows the fitness of conventional alternatives (non-regenerative 

combustion-based alternatives) under two conditions: when mid-air refueling is available 

and when mid-air refueling is not available.  Figure 25 shows that in some cases where 

mid-air refueling is not available conventional concepts will be capable of meeting the 

requirements.  In each of those cases, however, serial flights were employed as a mission 

concept.   

 Selection Probability 

Auxiliary-Powered Deployment 0.08 

Refueled in Fight 0.2 

Single Vehicle 0.6 

Formation Flight 0.01 

Serial Flight 0.1 

Mission Operational 
Concepts 

Tip-joined Multi-Vehicle 0.01 
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Figure 25: Fitness of Non-Regenerative Combustion Concepts 

 The overall distribution of fitness for any conventional alternative is shown in 

Figure 26.  Notice that conventional concepts are incapable of meeting 70% of the 

potential requirement sets.   
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Figure 26: Fitness of Non-Regenerative Combustion Alternatives 

 Evolutionary derivatives of conventional concepts, then, would be capable of 

meeting only 30% of the potential requirement sets.  In the 30% of the requirement sets 

that conventional concepts are feasible, they are still not necessarily the best alternatives.  

Regenerative systems and fuel cell based systems may be more fit to propel the HALE 

vehicles.  If decision-makers want a greater chance at meeting the likely future 

requirements for the hurricane tracking HALE vehicle they will have to invest in 

advanced propulsion concepts.   

 Even if the decision-makers were content with the 30% of meeting the 

requirements with conventional technology, he or she needs to consider how much 
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improvement revolutionary technologies could offer over conventional technologies.  

Figure 27 compares the fitness of conventional combustion processes with regenerative 

combustion processes and fuel cell concepts.  Notice that given the entire likely 

distribution of requirements and technological maturity, fuel cell concepts still offer a 

greater fitness. 
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Figure 27: Distribution of Fitness for Conventional and Advanced Propulsion 

Concepts 

 The author considered Figure 26 and Figure 27 to be sufficient reason to consider 

advanced propulsion alternatives to power the HALE vehicle.  In the next section, the 

fitness of each of the possible revolutionary alternatives is investigated. 
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5.4.3 Identifying Fitness of Advanced propulsion concepts 

 Once decision-makers have established that advanced propulsion concepts will 

need to be developed, they have to determine which concept they would like to invest in, 

and justify that decision.   

 As was mentioned earlier, the feasibility of regenerative combustion-based 

alternatives was not determined.  Two meta-models were created, the first assumed that 

such processes were feasible and the second assumed that such processes were infeasible.   

5.4.3.1 Analysis I (Assumes that Combustion/Regeneration is Feasible) 

 In the first analysis, alternatives that used combustion as their main means of 

energy conversion could store the products of combustion and perform electrolysis on 

them to produce hydrogen and oxygen—or a source of stored chemical energy.  This 

analysis generated several feasible alternatives.  Before investigating the feasible 

alternatives, however, the potential fuels were examined.  Figure 28 compares the fitness 

of four types of fuel, CH4, Jet A, H2, and C3H8.  Figure 28 might be difficult to read 

because of the amount of distributions that are shown, but H2 emerges as the only fuel 

that was feasible for all sets of requirements.  The propulsion analysis assumed that only 

H2 could be regenerated; consequently, it was the only fuel option that was feasible when 

neither refueling nor serial flights were a requirement option.  Fortunately, Figure 28 also 

shows that H2 fuel was also the most fit, even when those requirement options were part 

of the requirement set.  The analysis did not consider the volume of the fuel in the vehicle 

sizing, however, which may account for this outcome. 
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Figure 28: Fitness of Fuel Types 

 Because H2 is the only fuel option that is feasible given the entire range of 

concepts, it is an obvious choice to be part of the concepts selected for future 

development.  Identifying the need for H2 has many implications for the entire future 

vehicle system.  Safely and efficiently designing the storage tanks for H2 will require 

further development in many disciplines. 

 In section 5.4.2, it was determined that not-regenerative concepts were not 

feasible over enough of the potential requirement sets to be seriously considered.  Figure 

29 shows the probability distribution of three main classifications of feasible alternatives, 

regenerative fuel cells, regenerative constant pressure combustion processes, and 

regenerative constant volume combustion processes.  The “double M” shape of the chart 

is a function of whether refueling was allowed or not.  When the systems are capable of 

refueling, the fitness of each of the regenerative concepts is going to be reduced.  Non-
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regenerative concepts are then allowed to compete with them.  From the chart, 

regenerative constant fuel cell processes are the most fit.  The primary reason that fuel 

cells are more fit than conventional combustion processes is most likely a function of the 

fact that fuel cell’s direct conversion of chemical energy to electromagnetic energy is an 

inherently more efficient process than converting chemical energy to heat, and then to 

mechanical energy.   
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Figure 29: Fitness of Fuel Cell and Combustion Concepts 

 Another interesting result of this analysis is that when examining regenerative 

concepts, constant pressure combustion processes appear to be much more fit than 

constant pressure combustion processes.  This is most likely a function of the specific 

weight parameters given to both constant pressure combustion and constant volume 

combustion processes.  Looking back at Table 39 shows that distribution of specific 
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weight for constant pressure combustion processes was higher than the distribution of 

weight for constant volume combustion processes. 

 The distribution of fitness for regenerative fuel cell concepts is shown in Figure 

30.  Two distributions are shown: one for when refueling is available, and one for when 

refueling is not available.  The fitness distribution is much lower when refueling is 

available, simply because the concept competes with non-regenerative concepts.  The 

left-side tail of the non-refueling distribution can be explained by the percentage of the 

requirement sets that allow multiple vehicles to cover the aerial observation.   
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Figure 30: Fitness of Regenerative Fuel Cells 

 Figure 31 compares the distribution of fitness for regenerative constant pressure 

combustion, for both the case of refueling and no refueling.  The median distribution for 

constant pressure combustion is significantly higher than that of fuel cell based concepts.  
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As was discussed above, this is a function of the distribution placed upon the disciplinary 

metrics that define the concepts’ maturity. 
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Figure 31: Fitness of Regenerative Constant Pressure Combustion Processes 

 Finally, Figure 32 shows the distribution of regenerative constant volume 

combustion processes, both for when refueling is available and when it is not.  The 

median fitness for the requirements distribution is slightly lower than that of the 

regenerative fuel cells, and distinctly lower than that of the regenerative constant pressure 

combustion processes.    
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Figure 32: Fitness of Regenerative Constant Volume Combustion Processes 

 In the first analysis, which assumed that the products of combustion could be 

stored and converted back into H2 and O2, constant pressure combustion emerged as the 

most promising main form of energy conversion.  This determination was a function of 

the maturity of fuel cells, however, and as more information is determined about future 

capability of fuel cells, this result should be reexamined. 

 At this point, the author has determined that H2 is the only real fuel alternative, 

and that fuel cells are the fittest main form of energy conversion.  Other aspects of the 

concepts, however, should also be investigated, such auxiliary processes that make the 

energy conversion more efficient, and the means of producing thrust.  First, let us 

examine the possible means of thrust production.  Three means of producing thrust were 

considered: driving a propeller, pressurizing and accelerating ambient air through a 

bypass duct, and accelerating the combustion products through a nozzle.  The third means 
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proved to be infeasible in all of the cases, considering the slow cruise speed and need to 

contain combustion products to regenerate fuel.  Figure 33 shows the fitness of the three 

concepts.   
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Figure 33: Fitness of Thrust Production Methods 

 Propellers are really the only feasible thrust production alternative.  Accelerating 

the thrust through a bypass duct, as in a turbofan engine is simply not an efficient form of 

thrust generation at the low range of speeds that the hurricane-tracking vehicle would 

travel. 

 Figure 34 investigates the fitness of using heat exchangers to heat the oxidizer and 

fuel.  Using heat exchangers alone to prepare the combustion reactants is not a feasible 

alternative.  While combining them with fuel cells is viable, combining them with 

combustion is not truly an option, as the fitness of these combinations is essentially zero 

for all requirement alternatives.   
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Figure 34: Fitness of Concepts Using Heat Exchangers 

 Using a heat exchanger as a means of making the fuel cell process more efficient 

is a viable concept.  Using a compressor to energize the ambient stream is also a viable 

concept for a fuel cell propulsion system.  The two concepts are essentially competing, 

and from this point on will be considered competing alternatives.  Figure 35 compares the 

two competing concepts.  Notice on average that the compressor seems to be a slightly 

better concept both because there is less uncertainty associated with it and on average, it 

is a more fit alternative.  The heat exchanger/fuel cell combination has the potential to be 

a very competitive alternative. 
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Figure 35: Fuel Cell with Heat Exchanger or Compressor 

 The distribution of fitness for the fuel cell/compressor/propeller distribution is 

shown alone in Figure 36.   
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Figure 36: Distribution of Compressed Fuel Cells that Drive a Propeller 

 The distribution of fitness for constant pressure combustion systems that use 

compressors and turbines to increase the pressure of the gas in the combustion chamber 

and propel the vehicle with a propeller are shown in Figure 37.  How does the fitness of 

the compressed fuel cell concept that drives a propeller compare to other alternatives? 

 Figure 37 shows the distribution of fitness for a constant pressure combustion 

process, combined with a compressor/turbine that creates shaft power to drive a propeller.  

This concept essentially defines a turboprop engine.  The only difference between the 

concepts listed in Figure 37 and conventional turboprops is that the concepts in Figure 37 

include regenerative turboprop concepts.  In the regenerative concepts, the exhaust would 

somehow have to be stored, and a reformation process would have to be conducted to 

convert the exhaust H2O back into H2 and O2.  The feasibility of this concept is unknown.   
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Figure 37: Distribution of Fitness for a Constant Pressure/Compression/Propeller 

Concept 

 A rotary piston/propeller combination would be classed as a constant volume 

combustion process, combined with a compression process, to drive a shaft.  The 

distribution of fitness for such a concept is shown below in Figure 38.  As was the case in 

Figure 37, Figure 38 combines the distribution of both regenerative concepts with non-

regenerative concepts in the figure.   
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Figure 38: Distribution of Fitness for a Constant Volume/Compression/Propeller 

Concept 

 Finally, Figure 39 compares the distribution of all of the mentioned concepts to 

one another, given the distribution of requirements and technological maturation.  Notice 

when the two types of fuel cells are considered separately, the fitness for each concept is 

considerably less than that of the fuel cell concept in general.  This is because the two 

concepts are now considered to be competing concepts, and the fitness of one takes away 

from the fitness of the other.   
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Figure 39: Comparison of Commonly Considered Propulsion Concepts 

 Given this analysis, each of the concepts seems to be reasonable alternatives.  The 

least uncertainty surrounds the fuel cell/compression concept, but constant pressure 

combustion/compression/propeller concept has a good chance of better meeting the 

requirements.  Remember, that this should not be considered as a conventional concept, 

because the cycle may have to be regenerative in nature.  The tradeoffs between the four 

concepts must ultimately be taken into account by the decision-maker.   

 Notice that the turboprop concept appears to be the best overall concept.  This 

outcome seems to contradict the outcome observed in Figure 24 where it showed that 

constant volume combustion processes were more fit than constant volume combustion 

processes.  It is important to remember, however, that Figure 39 shows the distribution of 

all turboprop and piston/prop engines—conventional and regenerative.  Wile 

conventional piston props are more fit than conventional turboprops, Figure 31 and 
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Figure 32 showed that the regenerative turboprops are more fit than conventional 

turboprops.   

 This analysis shows that all four proposed concepts are legitimate concepts, and 

does not truly discern between the four concepts.  This analysis, however, was conducted 

assuming that regenerative combustion-based propulsion concepts are feasible.  The 

following analysis investigates the very same concepts, but assumes that regenerative 

combustion –based concepts are infeasible.   

5.4.3.2 Analysis II (Assumes that Combustion/Regeneration is Infeasible) 

 The second analysis was similar to that of the initial assumption, however, the 

analysis assumed that the products of combustion could not be stored and converted back 

to fuel to propel the aircraft during non-solar hours.  That assumption ensures that only 

fuel cell based alternatives will be feasible across the entire range of requirement sets.  

Figure 40 displays the distribution of fitness for each of the three concepts, given the 

distribution of requirements and disciplinary metrics.   



171 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of Fitness

P
ro

ba
bi

lit
y 

Fitness

FC

Const. P Comb.
Const. V Comb.

 

Figure 40: Fitness of Combustion Processes 

 Figure 40 shows not only that fuel cell processes are the only processes that are 

feasible across the entire range of requirements, but they are usually better alternatives.  

Figure 41 examines the distribution of the three concepts, and compares the distribution 

of fitness when refueling is available to the distribution of fitness when refueling is not 

available. 
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Figure 41: Comparison of Combustion Processes 

 Figure 41 shows the distribution of fitness for the three concepts in greater detail.  

Even when refueling is not an option for the vehicle, the two combustion-based concepts 
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had some degree of fitness.  This is because approximately 10% of those sets of 

requirements used multiple vehicles in serial flights to loiter over the area.  Figure 41 

clearly shows the improvement that constant volume combustion offers over constant 

pressure combustion, as well as the improvement that fuel cells offered over combustion.  

The main form of energy conversion for the propulsion system should be a fuel cell 

concept, because they are feasible over the entire range of requirements, and they are 

more fit, even with combustion is an option.   

 While fuel cells have been chosen as the main power generation for the 

propulsion concept and that decision has been justified in Figure 41, other aspects of the 

cycle still need to be investigated.  The differences in the two analyses did not impact the 

fitness of thrust generation methods, or the fitness of different fuel alternatives.  The 

distribution of fuel types shown in Figure 28 is representative of the distribution of fuel 

alternatives.  Figure 28 showed that H2 is the only fuel alternative that is feasible across 

the entire range of requirements.  Figure 33 showed the fitness for two types of thrust 

generation methods, and similarly showed that using a propeller to generate thrust is the 

only means of producing thrust that is feasible across the entire range of potential 

requirement sets. 

 First, let us investigate the fitness of using only heat exchangers to prepare the gas 

that enters the fuel cell.  Figure 42 shows the fitness of such propulsion systems with 

propellers.   
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Figure 42: Fitness of Fuel Cell with Heat Exchanger and Propeller 

 Figure 42 shows that using a simple fuel cell cycle—only using a heat exchanger 

to heat the reactants in the fuel cell and generating electric current to power the fuel cell 

is an attractive alternative.  The distribution of fitness is an odd shape, however, so the 

author broke down the distribution into different parts.  Figure 43 shows the distribution 

of fitness for this same concept in the two main requirement circumstances—when 

refueling was an option, and when refueling was not an option. 
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Figure 43: Fitness of Fuel Cell Concept with and without Refueling 

 It is easy to see how the two distributions in Figure 43  could sum up to the 

distribution in Figure 42.  Notice that the fuel cell/propeller combination is slightly less 

attractive when refueling is available.  This is because combustion based concepts are 

feasible given these requirements, and combustion based processes have to compete with 

them.   

 The study also investigated using a compressor in addition to heat exchangers to 

prepare the reactants that entered the fuel cell.  Figure 44 shows the fitness of these 

concepts that were fitted with a propeller to generate thrust.  Figure 44 has a very distinct 

“double M” shape to its distribution.   
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Figure 44: Fitness of Fuel Cell with Compression and a Propeller 

 Multi-modal distributions are often worrisome, as they can often indicate an error 

in the analysis.  The author further investigated the cause of the “double M” shape in 

Figure 44.  Figure 45 below breaks the fitness distribution down into two fitness 

distributions: one when refueling is an option, and one when refueling is not an option for 

the vehicle.   
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Figure 45: Fitness of Fuel Cell Concept with Compression as a Function of 

Refueling 

Figure 45 clearly shows that the multimodal behavior observed in Figure 44 is a function 

of whether or not refueling was an option for the vehicle.  As was the case with the fuel 

cell concepts that did not use compression to energize the fluids entering the fuel cell, the 

concepts are much more fit when refueling is not an option.  Again, this trend occurs 

because when refueling is an option, combustion is a feasible alternative, and fuel cell 

concepts have to compete with combustion-based concepts.   

 A regenerative fuel cell concept that uses heat exchange and a compressor to 

energize the gas that enters the fuel cell and generates an electric current to drive the 

propeller with electricity generated in the fuel cell is an attractive concept.  It does not, 

however, appear to be significantly more fit than a fuel cell/propeller concepts that only 

use heat exchangers to excite the fluid.  Both concepts are robust enough to meet almost 
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all of the potential set of requirements.  The fuel cell/heat exchanger/propeller concept 

has a high degree of uncertainty associated with it, as it is an immature, revolutionary 

concept.  The concept actually appears to have a slightly lower uncertainty associated 

with it than the fuel cell/compressor/propeller combination does.  This assessment, 

however, assumes that a regenerative combustion process is not feasible.  Figure 46 

directly compares the fitness of the fuel cell/heat exchanging concepts with the fuel 

cell/compression concepts.  
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Figure 46: Comparison of Heat Exchanger to Compressor with Fuel Cell 

 Each concept is only considered in conjunction with a propeller to produce thrust.  

Notice in Figure 46 that the fuel cell/heat exchanger system appears to advantageous over 

the concepts that use heat exchangers.  Finally, the distribution of fitness for the fuel 

cell/compression/heat exchanger is compared to conventional concepts in Figure 47.   
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Figure 47: Comparison of Fuel Cell to Competing Concepts 

 Unlike Figure 39, the conventionally named concepts in Figure 47 truly are 

conventional.  Because this analysis assumed that the only feasible regenerative concepts 

are fuel cell based concepts, the turboprop and piston/propeller engines analyzed in 

Figure 47 truly are conventional. 

 The information generated in this analysis shows that the most fit propulsion 

concept for the HALE vehicle is a fuel cell concept that drives a propeller with the 

electrical energy generated in the fuel cell.  This analysis gives the decision-maker a 

quantitative understanding of how the goodness of each propulsion concept varies with 

the requirements and with the technological maturity of each concept.  The assumptions 

made in the analysis to arrive at this conclusion have been transparent.  Ultimately, it is 

up to the decision-maker to select which propulsion concept or concept to bring forward 

to the next phase of development.  
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6 CONCLUSIONS 

 

 The Evolving Requirements Technology Assessment method was developed to 

give decision-makers the ability to compare advanced propulsion concepts to one another 

on another, given the uncertain nature of the requirements that the advanced propulsion 

concepts must meet.  In using the ERTA method to evaluate and compare the various 

propulsion concepts for use on the HALE hurricane tracker, the four hypotheses 

statements were successfully tested.  The overarching Research Question was 

demonstrated, substantiating research questions were addressed, and the four hypothesis 

posed were found to hold true. 

 In the introduction, several goals for the successful development of the ERTA 

method were laid out.  Ultimately, the method had to give decision-makers an 

understanding of how robust the goodness of each propulsion concept was to potential 

variations in the requirements.  In order to do this, the method had to do three things.  

First, it had to generate a probabilistic forecast of the requirements.  The ERTA method 

does so by combining requirements analyses with forecasting methods.  The resulting 

modified cross impact analysis provides a probabilistic set of requirements that 

incorporated the interdependencies of individual requirements into the forecast. 

 Second, the method had to assess the relative goodness of each concept across the 

distribution of requirements.  The ERTA method achieved this by calculating the fitness 

of each concept, as a function of the requirements.  The distribution of each concept’s 

fitness was then calculated as a function of the distribution of the requirements.   
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 Finally, the method had to incorporate the uncertainty inherent the development 

of technological concepts into the assessment.  The propulsion concepts for the HALE 

propulsion system range dramatically in maturity.  The ERTA method met this 

requirement by placing a distribution on the disciplinary metrics used in the concept 

assessment.  The uncertainty was incorporated into the overall distribution of fitness for 

each concept.  More mature concepts had tighter distributions. 

 Overall, the ERTA method gave decision-makers the ability to measure the 

robustness of each concept to the potential variation in requirements.  The assessment 

will enhance the information that decision-makers have when selecting which concepts to 

allocate funds.  Such evaluations will allow decision-makers to more efficiently allocate 

funds to potential advanced propulsion concepts, and allow them to justify their decisions 

with a logical, transparent methodology.   

6.1 Assessing the Hypotheses Statements 

 Four hypotheses statements were inferred throughout the manuscript.  The first, 

statement was the most general.  It is restated below. 

Any method designed to evaluate advanced propulsion concepts must 

incorporate the possible variations of the requirements into the assessment. 

This first statement provided the need for the ERTA methodology.  While the statement 

is difficult to prove, evidence for the statement exists in historically unsuccessful 

developments.  Consider again the numerous technological concepts that became 

obsolete before they could be fully developed because the requirements for such systems 

changed.  The (UDF), a revolutionary aeropropulsion system that promised to reduce fuel 

consumption by 20% to 30% was dropped when the fuel crisis ended and the demand for 

quiet, aesthetic engines superseded the drive for efficiency [72].  The nuclear jet, another 

relatively promising concept was dropped after the demand for ultra-large aircraft was 
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reduced and anxiety of nuclear power set in [97].  Similarly, there are historic examples 

of technological concepts being only adequate because the actual requirements for the 

concept differ from what the concept was intentionally designed to meet.  The US Navy 

originally intended the F-18 to be primarily a payload-delivering vehicle, not a air-

superiority vehicle.  It was intended to work in conjunction with the F-14.  As the F-14 

was phased out, however, the F-18 has to perform both missions [9]. 

 The analysis conducted on the HALE propulsion concepts also supported the 

hypothesis.  The fitness of each of the propulsion concepts were very sensitive to 

particular requirements.  How useful a fuel cell concept will be to the future HALE 

vehicle depends highly upon the speed that the vehicle must travel and whether or not the 

vehicle will be capable or refueling in the air.  Additionally, the future usefulness of a 

solar vehicle will also depend strongly on those requirements.   

 The second hypothesis statement was much more tangible, but still difficult to 

prove.  The statement is restated below: 

Shape functions depicting distributions of future requirements for the HALE 

propulsion system can be defined using traditional, forecasting techniques. 

The ERTA method was used to generate a probabilistic distribution of the requirements 

for the HALE propulsion system.  Unfortunately, it is difficult to prove that this 

distribution is truly reflective of the actual distribution, because the actual probability of 

each requirement occurring is unknown.  The interdependencies of the individual 

requirements were seen in the distribution, and unlikely requirements did have a low 

probability of occurring.  One important feature of a forecasting methodology is that the 

assumptions that it uses to generate the forecast be transparent.  The assumptions that the 

modified cross impact analysis used are all  

 The third hypothesis introduced the notion of using fitness to compare HALE 

propulsion concepts to one another.  The hypothesis is restated below: 
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“Fitness”, a concept’s ability to meet a set of requirements relative to other 

potential concepts, can be used to forecast a propulsion concept’s likelihood of 

successful development. 

Again, this statement is difficult to prove, but the use of the ERTA method to evaluate the 

propulsion systems serves as evidence that fitness can measure the ability of a concept to 

meet the specific set of requirements, relative to competing concepts.  The fitness 

parameter also incorporated a measure of how “easy” it is to produce a feasible 

alternative for each concept.  Concepts which are easier to develop will have a greater 

fitness because more of the alternatives in the optimized pool will be classified as those 

concepts.  Fitness quantifies both a concept’s ability to meet the requirements and how 

easy it is to produce a feasible alternative—two metrics that in a perfect world, would 

predict the success of a concept.  In an imperfect world, were decisions are made based 

on political motivations, the fitness can serve as a methodical and analytical justification 

for allocating resources to particular technological concepts.  

 The final hypothesis statement outlines the foundation of the ERTA method.  The 

hypothesis is stated below: 

Stochastic optimizations can be used to calculate fitness as a function of 

requirements, enhancing decision-makers’ understanding of future technological 

concepts. 

Stochastic optimizations provided the means by which the propulsion concepts were 

optimized to meet specific sets of requirements.  A simulated annealing program was 

used to identify an optimized set of alternatives.  Simulated annealing is a stochastic 

optimization routine that begins with several random alternatives, and allows those 

alternatives to evolve individually throughout the routine.  The final “optimized” set of 

alternatives was the used to calculate the fitness for each concept, given a particular set of 

requirements.  While it is difficult to compare the optimized concepts that the simulated 
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annealing program identified, the results made sense, and the optimization was accepted.  

Overall, the process successfully identified the optimized alternatives for each concept.  

Stochastic processes were again used to identify the distribution of fitness as a function of 

the distribution of requirements.   

6.2 Results of Demonstration 

 The ERTA method was developed to allow the author to compare potential 

advanced propulsion concepts as a means of propelling a HALE hurricane tracker.  

Requirements for the propulsion system were defined by the mission of the vehicle, and 

the vehicle characteristics.  NASA assembled an interdisciplinary team of experts to 

investigate the feasibility of such a vehicle.  As part of that mission, the NASA experts 

conducted a workshop to better specify system level requirements and possible vehicle 

characteristics.  Results of that workshop were used as the basis to establish possible 

propulsion system requirements.  A cross impact analysis was conducted to identify a 

probabilistic set of requirements, and those requirements were eventually used to forecast 

the fitness of each of the proposed propulsion concepts.  

 The long duration of the mission dictated that several of the potential propulsion 

concepts were incapable of meeting most of the requirement sets.  Assuming that 

conventional concepts are limited to non-regenerative combustion based engines, 

conventional concepts would only be capable of meeting approximately 30 % of the 

requirement sets.  Due to the long mission durations, only regenerative propulsion 

systems (those that “recharged” the fuel) were serious contending concepts.  Fuel cell 

concepts that compress O2 and H2 before they enter a fuel cell and produce electricity to 

drive a propeller are by far the most fit concepts, given the potential set of requirements.  

They are feasible alternatives across the entire range of requirements, and are best able to 

meet the requirements in several of the requirement sets. 
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6.3 Recommendations 

 The ERTA method has proven as a methodical means of comparing advanced 

propulsion concepts, given an uncertain set of requirements.  The author has identified a 

few research directions that could possibly improve decision-makers ability to compare 

advanced propulsion concepts. 

 First, the requirements were forecasted using a modified version of a cross-impact 

analysis.  Other probabilistic forecasting techniques could potentially be used to identify 

the requirement sets.  Most notably, the technology impact analysis (TIA) could be used 

in conjunction with cross impact analysis to model some of the individual requirements.  

TIA uses time-series forecasting to predict future distributions of continuous variables.  

The value of discrete requirement variables could be inputs to the TIA analysis to 

forecast specific, continuous variable requirements.  Such a method would allow the 

dependency of the requirements to be modeled, but it would also allow the requirement 

value to be continuous.  The applicability of other forecasting techniques could also be 

investigated. 

 A second research direction is in the means of forecasting the ability of the 

conventional technology to meet the future sets of requirements.  Because more is known 

about the conventional technology, a more thorough investigation of the space 

surrounding the evolutionary concept can take place.  The investigation could then 

consider a combination of empirical data and physics-based methods to better assess the 

ability of the conventional concept to meet the future requirements. 

 Finally, different ways of calculating fitness for each concept and set of 

requirements can be explored.  The ERTA method currently uses a simulated annealing 

optimization routine to identify a nearly optimized pool of alternatives.  The fitness of the 

concepts was calculated from the optimized pool.  A meta-model was created to relate the 

variability of the fitness to the variation in the requirements.  Unfortunately, this 



186 

introduces two sources of error.  Error is inherent to the simulated annealing program, as 

it is a stochastic process.  That error regressed into the meta-model, and the meta-model 

adds an additional source of error.  As computational power grows and storage capacity 

increases, other methods might replace the simulated annealing optimization.  A grid 

search could be used conducted on each space exploration for each set of requirements.  

Depending on the fineness of the grid search, it could add thousands of cases to each 

optimization, and require much more storage space, but if possible, it would reduce some 

of the stochastic nature of the problem, and increase the accuracy of the meta-model.   

 There is also much research to be done in the line of developing means of 

comparing advanced propulsion concepts.  Fitness has been proposed as a figure of merit, 

simply because of its broad applicability to all requirement sets and concepts.  Much 

work remains to give decision-makers a more intuitive understanding the relative 

differences between potential concepts, and an understanding of the uncertainty inherent 

to the problem.   
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APPENDIX A: NASA HALE UAV WORKSHOP 

 NASA conducted a conceptual design workshop on November 2-4, 2005 at the 

Aerospace Systems Design Laboratory’s (ASDL), Georgia Institute of Technology to 

enhance their understanding of the requirements and feasibility of a high altitude, long 

endurance (HALE) aerial vehicle.  Thirteen NASA experts from a wide variety of 

disciplines attended.  Ultimately, the output of the workshop was to assist in the 

technology prioritization and planning to the Unmanned Aerial Vehicles (UAV) sector of 

NASA’s Vehicle Systems Program.   

 The UAV Sector encompasses a broad range of vehicle and mission types, from 

terrestrial HALE vehicles to planetary exploration vehicles.  The information gained in 

the workshop was used to assess the technologies being developed so that the various 

technologies could be prioritized based on their ability to further the state of the art.  

Unfortunately, current modeling and simulation tools cannot adequately address the full 

range of vehicle types in the UAV Sector.  This workshop was intended to serve in the 

place of modeling and simulation as the as the assessment of each technology, which was 

necessary to evaluate the technologies.   

 Each of the attendees came from NASA or company working closely with NASA 

on the HALE UAVE development.  Table 41 lists the NASA employees who attended 

the workshop.   
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Table 41: List of NASA Workshop Attendees 

 

 On the first day of the workshop, the attendees reviewed the requirements for a 

HALE hurricane-tracking UAV and a communications relay HALE UAV.  Once they 

understood the requirements and the ASDL methodology, they created an Interactive 

Reconfigurable Matrix of Alternatives (IRMA).  An IRMA is actually an interactive, 

reconfigurable morphological assessment.  In order to do this, the attendees first 

performed a functional decomposition of the mission.  This breakdown is shown below in 

Figure 48  

Attendee Organization 
Tom Ozoroski   NASA Langley Research Center 
Mike Logan  NASA Langley Research Center 
Salvatore Buccellato   NASA Langley Research Center 
Mark Motter   NASA Langley Research Center 
Bob Clarke   NASA Langley Research Center 
Joel Campbell   NASA Langley Research Center 
Steve Smith  NASA Ames Research Center 
Ray Morgan  Morgan Aircraft Consulting 
Dave Paddock   NASA Langley Research Center 
Ron Busan   NASA Langley Research Center 
Mark Guynn  NASA Langley Research Center 
Lisa Kohout NASA Glenn Research Center 
Craig Nickol   NASA Langley Research Center 
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Figure 48: Mission Breakdown 

The attendees also broke the vehicle systems down into the required systems, including:  

1) Propulsion and Power 

2) Configuration 

3) Sensors 

4) Avionics and Instrumentation 

5) Command 

6) Control 

7) Data Link  

8) Actuation 

 Once the vehicle was decomposed into systems, the attendees broke into groups 

to break the systems down further into subsystems and they identified alternatives for 

each subsystem.  The resulting system and subsystems are shown below in Figure 49. 
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Figure 49: Vehicle System Breakdown 

 Once the vehicle and mission were broken down, the attendees ranked the 

importance of each mission parameter and assessed the alternatives for each vehicle 

subsystem alternative.  This was done both individually during a break in the workshop, 

and collectively after the attendees considered the problem individually.   

 On the final day of the workshop, the dependent relationships between the 

mission parameters and vehicle subsystem alternatives were investigated.  The attendees 

identified each of the dependent sets of alternatives, and fist noted all of the incompatible 

combinations.  Then, they investigated which of the alternatives were correlated.    

 The outputs of the workshop served as an assessment of each of the technologies 

currently being developed for the terrestrial HALE UAV vehicle.  Throughout the 

process the NASA attendees enhanced their understanding of the requirements, vehicle 

system alternatives, and the interaction between the two.  The IRMA that was developed 
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can be used in the future when evaluating UAV technologies.  It is interactive, so that 

decision-makers can use it to play “what if” games with various alternatives.  

Additionally, it can be updated in the future to reflect additional information and 

technologies.  Finally, the workshop also served as the basis for the requirements 

development for the hurricane tracking HALE propulsion system.   
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APPENDIX B: PROBABILITY ESTIMATES FOR REQUIREMENTS 

 The following tables list the initial probability estimates that were used to 

determine the requirements for the HALE propulsion system.  The parameters were 

identified in the NASA HALE Conceptual Design Team Workshop.  The probability 

estimates were determined in part at the workshop, and in part with the help of Craig 

Nickol and Ray Morgan after the conclusion of the workshop.   

Element Alternative P
ro

b
a

bi
lit

y

>13 km 0.1

>18 km 0.5

> 20 km 0.4

~7 days 0.2

~30 days 0.3

~100 days 0.49

Unlimited 0.01

~3500 km 0.2

~5000 km 0.4

~7000 km 0.2

~10000 km 0.1

Tropical, Hurr Season 0.7

Tropical, Year Round 0.19

Unlimited CONUS 0.11

~1 km 0.5

~5 km 0.3

~10 km 0.2

105 kph 0.15

150 kph 0.8

200 kph 0.04

250 kph 0.01

~3000 hrs 0.1

>7500 hrs 0.15

>10000 hrs 0.5

>40000 hrs 0.25

Dropsondes 0.7

Mini-UAV 0.1

Drop and UAV 0.19

None 0.01

Broadband 0.2

Cell Phone 0.2

Hurricane Package 0.2

Hurricane-Doppler 0.2

Disaster Monitoring 0.2

Standard Day 0.59

Near All Weather 0.4

All Weather 0.01

Auxiliary-Powered 0.08

Refueled in Flight 0.2

Single Vehicle 0.6

Formation Flight 0.01

Serial Flight 0.1

Tip-Joined Multi-Vehicle 0.01

Location and 
Time of Year 

Mission Radius

Time On Station 

Expendable 
Payload

Service Life

Critical Ground 
Speed

Station Keeping 
Accuracy

Mission 
Operational 
Concepts

Weather

Fixed Payload

Altitude

       

Element Alternative P
ro

ba
bi

lit
y

Mil Std 210 Std Day 0.25

Mil Std 210 Cold Day 0.25

Mil Std 210 Hot Day 0.25

Mil Std 210 Tropical Day 0.25

<150 m 0.01

<1500 m 0.3

<2000 m 0.68

circular 0.01

None 0.01

Wheeled Runway Landing 0.7

Parachute 0.1

Parasail 0.01

Skid gear 0.11

In Air Recovery 0.01

Water Landing 0.1

Stall and Drop (Low Alt.) 0.01

Towed 0.1

Wheeled Runway Launch 0.6

Dolly 0.3

< 45 m 0.19

<60 m 0.8

Circular 0.01

None 0.1859911

Span 0.1446011

Sweep 0.1386138

Dihedral 0.28

Chord 0.06

Aux. Surfaces 0.1940518

None 1

Helicopter 0

Autogyro 0

Tiltrotor 0

None 0.02

W-B-T/C 0.2

Bi-plane 0.3

All wing 0.4

Three surface + B 0.05

Joined wing 0.03

None 0.2

Dirigible 0.2

Blimp 0.49

Hybrid 0.1

Powered Balloons 0.01

Airship (LTA)

Runway Width

Variable 
Geometry

Rotorcraft

Fixed Wing

Operating 
Environment

Runway Length

Recovery 

Launch
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APPENDIX C: SIZING ALGORITHM OVERVIEW  

 High Altitude, Long Endurance (HALE) vehicles were sized using an energy-

based sizing algorithm.  The drag that was generated at each point in the mission was 

calculated as a function of the vehicle mass.  The power necessary to overcome that drag 

at he specified velocity was used to calculate the normalized power output of the engine 

at different points in the mission.  For fixed wing vehicles, drag was purely a function of 

weight and the appropriate drag polar.  For the lighter-than-air vehicles, drag was a 

function of the d/l ratio, and the envelope volume.  For hybrid vehicles, the ratio of the 

weight that was carried by “lift” was calculated, and the rest of the weight was supported 

by an envelope filled with helium.  The drag from the lift generation and envelope were 

added together to calculate a total drag.  Once the drag was calculated at different parts of 

the mission, the vehicles were essentially sized in the same manner.   

 For each vehicle class, at each point in the mission, the thrust or power required to 

perform the mission parameter was calculated.  The instantaneous amount of fuel, or 

stored energy, required to provide that thrust or power was then taken from the engine 

deck, and tracked in terms of percentage of the vehicle weight.  The instantaneous 

amount of stored energy was found for each mission segment and integrated across an 

entire part of the mission.  The duration of the mission was long enough that each 

propulsion system required some sort of energy renewal, (with the exception of the serial 

flight option), whether that energy was obtained through the sun, through refueling, or by 

receiving electromagnetic energy that is “beamed” to the vehicle.  Because each vehicle 

received some sort of energy renewal, the vehicles only had to store enough energy to 

provide the vehicle with power between renewal encounters.  One of the mission 

operation alternatives was to observe the hurricane area using multiple vehicles in serial 

flight.  When this was the case, no renewal was needed.  In these cases, the vehicle was 

sized to perform a subset of the mission, and allowed to refuel an allotted period of time. 
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 If the source of energy renewal was solar, the vehicle needed to have enough 

surface area to provide enough energy to convert all of the “spent fuel” back into usable 

fuel, while also powering the vehicle during the solar hours.  The percentage of the total 

vehicle weight that was fuel was calculated by determining the amount of fuel required to 

propel the vehicle through the “non-solar” hours.  The number of solar hours in a day was 

a function of the geographic operating location and operating time of year.  Also, if the 

vehicle had to take off in poor conditions, a check was performed to ensure that the 

vehicle had enough fuel to get to cruise altitude without the help of solar energy. 

 If the vehicle renewal source was mid-air refueling, the vehicle simply 

replenished the fuel that it used since the last refueling session.  The percentage of the 

vehicle weight that was reserved for fuel was measured by ensuring that the vehicle could 

perform all of the mission requirements between refueling sessions.  The frequency of 

refueling was left as metric, and varied between refueling every 3 days to every 1/3rd of a 

day.  A triangular distribution was placed on the log of the frequency. 

 Vehicles that received their energy renewal through “beamed” energy were sized 

in a manner similar to those of solar powered vehicles, since the premise was the same.  

The amount of power required also had an impact on sizing the engines.  Each basic 

engine concept was given a power density figure.  The maximum power required in the 

mission was calculated as a function of total vehicle weight.  The power density was then 

used to identify the engine weight as a percentage of total vehicle weight.  If photovoltaic 

cells were required, as in the case of solar and beamed renewals, the weight of the 

photovoltaic cells was also included.   

 For each of the three cases, the weight of the engine was calculated as a function 

of the total vehicle weight by using energy density parameters for the engine type and the 

maximum required power to weight ratios of the vehicle.  The sizing of each specific 

vehicle is discussed in APPENDIX D and APPENDIX E. 
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APPENDIX D: SIZING ALGORITHM FOR FIXED WING 

AIRCRAFT 

The sizing algorithm for fixed winged aircraft was generated using fundamental physical 

principles.  The sizing algorithm was similar to that developed by Choi [17], but it was 

tailored specifically to work with an alternative energy “engine deck”.  Ensuring that lift 

generated by the aircraft equals the weight of the aircraft and that the thrust provided by 

the propulsion system equals the drag produced by the lift generation and mission 

requirements.  First, the thrust to weight ratio is calculated.  In order to do this, the 

algorithm compares the maximum thrust at different sizing conditions to the thrust to 

weight ratios required.  These ratios can be calculated using derivatives of Mattingly’s 

Master Equation [57].  This equation calculates the minimum thrust to weight ratio as a 

function of the current mass fraction, storage rate of energy, drag polar and velocity.  

Mattingly’s equation can be derived from the conservation of energy equation; the 

storage rate of kinetic and potential energy equals the excess power. 

( ) ( ) ( )    mV DTor 
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mV
mV DT
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oZ
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Where:  T = thrust 

  D = drag 

  V = velocity 

  m = aircraft mass 

  g = gravitational constant 

  h = height (altitude) 

  Zo= total energy per weight, or  




 + gh 2

V 2
 

Assuming that K’’ from the drag polar is negligible, the Master Equation below (shown 

in metric form) can be derived from the above equation.   
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Where:  mTO = takeoff mass 

  TSL = sea level static thrust 

β = mass fraction, or  
TOm

m  

α = thrust ratio, or 
SLT

T  

  S = wing area 

  CDo = zero lift drag coefficient 

  K1 = drag polar constant 

For various key points throughout the mission, the algorithm works by ultimately 

determining the amount of fuel flow required to provide enough thrust.  In order to do, 

the algorithm must determine the amount of thrust required, and match from the engine 

deck the amount of fuel flow required to produce that much thrust.  The thrust data in the 

engine deck is not scaled yet, but that is irrelevant, as fuel flow is calculated per takeoff 

gross mass.  The unscaled thrust value required from the deck can be calculated using the 

Master Equation shown in Equation 26 and the fact that TRQD = α TSL.  Equation 27 

shows Equation 26 manipulated to calculate α.   
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 Equation 28 identifies the thrust required as a function of the sea level static 

thrust.   
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Where:  TRQD = thrust required 
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The engine is assumed to be rubberized, meaning that it can be scaled.  The factor used to 

size up the engine detailed in the deck can be scaled up to the true engine by multiplying 

it by a constant factor.  That factor can be divided by both sides to give the same 

equation, but scaled for the engine deck, as seen in Equation 29. 
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Where:  TD,RQD = thrust required from engine deck 

  TD,SL = sea level static thrust from engine deck 

 At this point in the algorithm, a new parameter, KEng is introduced.  KEng is the 

factor by which the engine is scaled, or the ratio between the actual sea level static thrust, 

TSL and the deck reported, unscaled seal level static thrust, TD,SL.  If both KEng and that 

ratio are divided by the takeoff gross mass of the aircraft, Equation 30 can be derived.   
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D,SL
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=  (30) 

 The fuel flow per takeoff gross aircraft mass can be found using that same ratio, 

KEng.  Once the engine deck thrust required, TD,RQD, is found, the fuel flow from the deck, 

ffD can be found as a linear interpolation from the engine deck.  Since the aircraft has yet 

to be sized, the measure of fuel flow should be on a per takeoff gross mass basis.  In 

order to find this value, ffD needs to be multiplied first by the KEng, and then divided by 

the takeoff gross mass, mTO.  Equation 31 shows this relationship.  The ratio of KEng to 

mTO can be found in Equation 30, where the thrust to mass ratio was calculated by the 

mission parameters, and and the seal level static engine deck thrust was calculated by the 

propulsion analysis algorithm. 
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ff =  (31) 
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 The total fuel consumed over the segment per takeoff gross mass equals the 

quantity found in Equation 31 multiplied by the time of that segment.  It should be noted 

here that the greater number of segments the flight is broken into, the more accurate the 

sizing algorithm is, as conditions continuously change throughout flight.  Even if the 

altitude and Mach number remain constant, the lift, and consequently the drag, will vary 

as the weight is reduced because fuel is consumed.  There is a tradeoff, however, as the 

more segments that the flight is broken into, the longer the algorithm takes to run for each 

sizing analysis.  Considering the low fidelity of the analysis being used, it does not make 

sense to break the mission into too many segments.  Also, because the flight conditions 

are measured at the beginning of each segment, the fewer segments that the flight is 

broken into, the more conservative the assessment is, as the weight of the aircraft will 

continue to decrease as fuel is consumed.   

 Assuming that no payload is dropped throughout the mission, the only reduction 

of mass is the consumption of fuel.  If the aircraft stored oxidizer onboard, or if the 

byproducts of the process are retained onboard, this would not be the case, and the 

algorithm would need to be varied.  Assuming that the only reduction of mass is through 

the consumption of fuel, the weight fraction β for each segment can be easily calculated 

from the β for the previous segment and the ratio of fuel consumed for the segment over 

the takeoff gross mass, as is shown in Equation 32. 

TO
1 m

ff−=+ ii ββ  (32) 

 The algorithm iterates through the mission beginning with takeoff, and calculates 

the β fraction for the next flight segment.  Once the final β fraction is calculated, the 

empty weight fractions and payload can be used to identify the takeoff gross mass of the 

aircraft.  The empty weight fractions reflect the current state of the art for the structural 

subsystem of the aircraft.   
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 Once the fuel weight percentage, engine weight ratio, and photovoltaic cell 

weight ratio were calculated known, the vehicles were sized using slightly different 

algorithms.  The empty weight fraction for fixed winged vehicles was given 

parametrically.  Equation 33 shows the totaling of aircraft weigh t for fixed wing 

vehicles. 

CellsPVSystemPowerFuelVehicleEmptyPLFW MMMMMM ++++= ""  (33) 

 Equation 34 is a manipulated version of Equation 33 that allows the total vehicle 

weight, MFW, as a function of payload and the weight ratios discussed above.  
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 While the expected empty weight fractions may vary with the propulsion system 

as complexity increases or decreases, at this point, the algorithm assumes that the empty 

weight fractions are the same for each type of propulsion system.  The total fuel 

consumed throughout the mission, the takeoff gross mass of the aircraft, and the total 

emissions emitted into the atmosphere throughout the flight are all calculated in the 

algorithm and could ultimately be used as figures of merit when selecting the “fittest” 

propulsion systems.   

 Figure 50 summarizes the sizing and synthesis routine used to conceptually size 

the fixed wing vehicles.    
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Figure 50: Flow Chart of Sizing and Synthesis Routine for Fixed Wing 
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APPENDIX E: SIZING ALGORITHM FOR LIGHTER-THAN-AIR 

VEHICLES 

An energy based sizing algorithm was used to size lighter-than-air vehicles.  Because 

little was known about the vehicles, and the author desired the sizing algorithm to be fast 

enough for a thorough design space investigation, the sizing algorithm had to be 

simplified.  The assumptions used to size the vehicles, however, were consistent, and thus 

the assumptions and simplicity of the analysis should not impact the evaluation of the 

propulsion system.   

Photovoltaic Cells

 

Figure 51: Solar Airship Schematic 

 Each of the airships were shaped to minimize the drag.  Khoury noted that the 

National Physical Laboratory in England found that the drag of an airship can be 

minimized by shaping it as shown below in Figure 52 [48].  The ratio of D/L was 

parametric, but ranged between 0.15 and 0.30.   
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Figure 52: Optimal Shape for Airship 

 The shape shown in Figure 52 served as the predominant shape for the lighter-

than-air envelopes. 

 The ratio of envelope volume to vehicle mass was calculated by as a function of 

the difference in density between the ambient air and the helium at the maximum altitude.  

The derivation of the relationship is shown below in Equations 35, 36 and 37.   

gmL VehicleEnvelope =  (35) 

( ) gmgVol VehicleHeAmbientEnvelope =− ρρ  (36) 

( )HeAmbientVehicleM

Vol

ρρ −
= 1

 (37) 

 Drag was calculated as a function of the envelope volume, Vol, the velocity, the 

ambient density, and the volumetric drag coefficient, as determined by Hoerner [48]. 

( ) DVCVolVD 3
22

2

1 ρ=  (38) 

 The drag of the vehicle was required to calculate the amount of power that the 

vehicle must overcome at each point in the mission, by multiplying the drag by the 

velocity.  The power was then normalized by the vehicle mass.  Unfortunately, this was 

not simple.  The drag coefficient is normalized by the volume raised to the 2/3rd power, as 

is shown in Equation 39. 
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( )
( ) 3

2

3
2

3

2

1

Vol

C

M

Vol
V

M

P DV

VehicleVehicle

ρ=  (39) 

 In order to normalize the required power by mass, the ratio between the volume 

raised to the 2/3rd power and mass had to be determined.  To identify such a relationship, 

the author investigated the shape of the enveloped.  The volume of the airship can be 

found by rotating the shapes shown in Figure 52 and Figure 53 around the axis 180º.  The 

volume, then, must be proportional to b2 and L.  Equation 40 shows the volume 

calculation for the shaded region in Figure 53.   

ab 
3

4 2π=ShadedVol  (40) 
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Figure 53: Generic Airship Shape 

The volume of the unshaded region in Figure 53 is calculated in the exact same manner 

as the volume of the shaded region.  The two volumes can be added together to find the 

total volume of the envelope, as shown below in Equation 41.  

cb 
3

4
ab 

3

4 22 ππ +=Vol  (41) 

Because the length a and length c sum to the total length of the airship, L can replace the 

“a” and “c” terms in Equation 41 to create Equation 42.   
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( ) Lb 
3

4
cab 

3

4 22 ππ =⇒+= VolVol  (42) 

If the ratio of D to L is known and fixed, it can be used to remove L from Equation 42 

and make Volume only a function of b3.  This function is shown below Equation 43.   

3

L
D

b
 

3

8 π=Vol  (43) 

Notice in Equation 43 that the volume is only a cubic function of b.  Volume raised to the 

2/3rd power can now easily be found.  The author introduced the relationship between the 

square of the b and the mass, b2/M, so that the calculation of volume to the 2/3 power 

divided by mass could be calculated for Equation 39.  This relationship is shown below in 

Equation 44.   

( )
M

b 

3

8 23
2

L
D

3
2











= π

M

Vol
 (44) 

By guessing a ratio of b2/M, the ratio of volume to the 2/3rd to mass could be calculated.  

The author could then use that value, found in Equation 44, to calculate the power 

required for the airship at each point in the mission, using Equation 39.  The b2/M term 

was initially guessed, but later would be iterated upon. 

 Once the ratio of volume to the 2/3rd power and Mass were known, the author was 

able to calculate the power required at key points in the mission.  The required power was 

then used to identify the flow of energy that was required at each point in the mission.  

That flow energy was multiplied by the duration of the mission segment to identify the 

required stored energy to vehicle mass ratio.   

 The envelope to vehicle mass ratio was calculated by first calculating the surface 

area, of the envelope, normalizing it by the mass, and multiplying it by the parametric 

fabric density, measured in mass to surface area.  Because surface area is directly 

proportional to b2/M, this calculation was also made easier with the introduction of the 



205 

new variable.  The calculation can be found by rotating the surface area Figure 52 360 

degrees.  Equation 45 shows the derived relationship.   

( )
Fabric

VehicleVehicle

Rnvelope
den

el
d

e

M

b

M

M





























 += arcsin1
2

2

π  (45) 

 The quantity e Equation 45 is the eccentricity, and it is a function of the ratio of 

d/l.  Equation 46 shows how the eccentricity calculation. 

l
de −= 1  (46) 

 Another important factor in the sizing of airships is the projected area.  If the 

vehicle relies upon solar energy, a check must occur to ensure that the vehicle has enough 

projected area to capture enough solar energy to power the vehicle.   

VehicleVehicle M

b

M

A 2
Projected

4

1 π=  (47) 

 The ratio of the solar cells to the vehicle mass could also be calculated once the 

area of solar cells that is required is calculated.  This was done using a parametric density 

of the solar cells, just as was done in for the fabric density.  Finally, the engine to vehicle 

mass ratio was calculated by knowing using the maximum power output and the 

parametric specific density of the vehicle.   

 For lighter-than-air vehicles, the fabric density was given parametrically, and the 

empty gondola weight fraction was known.  Equation 48 shows the total vehicle weight, 

MLTA, as a sum of the component weights.   

FabricEnvelopeCellsPVSystemPowerFuelGondolaPLLTA MMMMMMM +++++= ""  (48) 

 This analysis assumed that the gondola weight is a function of the items held in 

the gondola.  The ratio of empty gondola weight to the filled gondola (compromised of 

the gondola, fuel, power source, and payload) was constant.  Gondola weight, then, can 

be removed from Equation 48 and replaced with the known ratios.  Equation 49 shows a 
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manipulation of Equation 48 that allows takeoff vehicle weight to be calculated as a 

function of payload, fuel ratio, power system ratio, fabric density, and the empty gondola 

weight ratio. 
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CellsPV
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(49) 

The airships were sized parametrically using Equation 48.  The calculation of the mass 

ratios in Equation 48 required the use of a b2/M value, which was guessed.  After the 

vehicle was sized, the actual b2/M value could be found.  A fixed point iteration process 

was used to ensure that the guessed b2/M value equaled the found b2/M value.  Once the 

difference was limited to a specified tolerance, the sizing was complete. 

 The entire sizing methodology for lighter-than-air vehicles is shown in Figure 54.  

Notice, that the process is iterative.  The variable b2/M is initially guessed, and iterated 

upon until the guessed value matches the estimated value. 
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Figure 54: Flow Chart of Sizing and Synthesis Routine for LTA 
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APPENDIX F: SIMULATED ANNEALING DISCUSSION 

The following simulated annealing program was used to find the optimal set of 

propulsion systems for each fixed set of requirements.  The program is a MATLAB 

function, and it does use a couple of functions that were created by the user, but are not 

shown here.  In general, the optimizer initially generates a random set of solutions, or 

engines.  Throughout each generation, the optimizer slightly perturbs each solution to 

produce an offspring.  If the offspring is better than the parent is, it survives to the next 

generation.  If the offspring is worse, there is a small chance that the new solution will be 

kept.  That probability is dictated by the “Temperature”.  At the beginning of the 

optimization (early generations) the “Temperature” is high, and there is a good chance 

that the inferior offspring will survive.  Throughout each generation, however, the 

“Temperature” cools, and the likelihood that an inferior offspring survives decreases.  

 The simulated annealing function requires input as to the number of generations, 

the pool size, and requirement variables that are taken into account by the optimization 

function.  The function then defines the boundaries for the randomly generated initial 

pool, and generates the pool.  The, the optimizer calculates the function values for each 

pool member.    

 For each generation, the optimizer slightly perturbs the pool members to produce 

offspring, or a “trial_pool”.  The function values for each solution in the “trial_pool” are 

calculated, and the optimizer determines which members of the trial pool replace their 

parents in the “new_pool”.  This process is repeated in the next generation.  The results 

determined in the thesis used a pool size of 30 alternatives, and ran through 300 

generations. 
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function data = sa_doe(generations,pool_size,... 
 mission_parameters,tech_limitations,iiii) 
  
%% Set Boundaries 
%% Boundaries identify whether variables are discrete or continuous 
%% Boundaries also set mins and maxes for continuous variables 
bounds=[1,1,1,1,0,1,0,1;   4,4,2,2,1,2,1,3]; 
[a,dimensions]=size(bounds); 
  
%% Generate iiitial pool of engines, defined by indpendent variables. 
pool=make_pool(bounds,pool_size); 
  
  
%% Define Likelihood Poorer solution will be kept 
typical_delta=2000; %% Typical difference in F(x) for two solutions 
%% Probability inferior solution kept at end of optimization 
p_min=.01;       
%% Probability inferior solution kept at begining of optimization 
p_max=.05;       
b=(log(p_max)/log(p_min))^(1/(generations-1)); 
b=(log(p_max)/log(p_min))^(1/(generations-2)); 
A=-log(p_max)*typical_delta/b; 
A=-typical_delta/b^2/log(p_max); 
  
%% Define the min & max step size for solution pertubations 
t_step_max=.3; 
t_step_min=.02; 
  
%% Find the function values for each pool member 
%% Author created function to do so, shown below 
z(:,1)=find_function_values(pool,pool_size,... 
    mission_parameters,tech_limitations)'; 
  
%% Find best solution of entire pool 
[z_min(1),index]=min(z(:,1)); 
%% Find best engine of total optimization 
best_engine(:,1)=pool(index,:)'; 
best_engine(dimensions+1,1)=z(index,1); 
best_overall(:,1)=best_engine; 
  
%% Find average F(x) for current pool 
z_avg(1)=mean(z(:,1)); 
  
for i=2:generations 
 t1=cputime; 
 %% Probability of accepting inveferior solution is dictated by 
 %% Temperature (T) 
 T=A*b^(i); 
 step_size=t_step_max-(t_step_max-t_step_min)/(generations-2)*(i-2); 
 P_bar=exp(-typical_delta/T); 
  
 %% Create a pool of offspring solutions (user defined function) 
 trial_pool=vary_pool(pool,bounds,step_size,... 
  pool_size,dimensions,z(:,i-1)); 
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 %% Find function values for each new solution 
 trial_z=find_function_values(trial_pool,pool_size,... 
  mission_parameters,tech_limitations)'; 
  
  
 %% For each pool member, identify whether new solution is better or 
 %% worse.  If worse, determine whether accepted or rejected (using 
 %% Temperature calculated above. 
 for j=1:pool_size 
  if trial_z(j) <=z(j,i-1) 
   new_pool(j,:)=trial_pool(j,:); 
   new_z(j)=trial_z(j); 
  else 
   delta=trial_z(j)-z(j,i-1); 
   P_accept=exp(-delta/T); 
   if rand<=P_accept 
    new_pool(j,:)=trial_pool(j,:); 
    new_z(j)=trial_z(j); 
   else 
    new_pool(j,:)=pool(j,:); 
    new_z(j)=z(j,i-1); 
   end 
  end 
 end 
  
 %% Define next generation pool, find generation minimum  & average. 
 %% Also, see if total optimization minimum was improved upon. 
 pool=new_pool; 
 z(:,i)=new_z'; 
 [z_min(i),index]=min(z(:,i)); 
 best_engine(1:dimensions,i)=pool(index,:)'; 
 best_engine(dimensions+1,i)=z(index,i); 
 %% See if total optimization minimum was improved upon. 
 if z_min(i)<=best_overall(dimensions+1,i-1) 
  best_overall(:,i)=best_engine(:,i); 
 else 
  best_overall(:,i)=best_overall(:,i-1); 
 end 
 z_avg(i)=mean(z(:,i)); 
 %% Move on to next generation 
end 
  
data=pool; 
data(:,dimensions+1)=z(:,i); 
data(pool_size+1,:)=best_overall(:,i)'; 
  
  
  
%------------------------------ FUNCTIONS --------------------------------% 
function pool=make_pool(bounds,pool_size) 
[a,b]=size(bounds); 
for i=1:pool_size 
 for j=1:b 
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  if bounds(1,j)==0 pool(i,j)=rand; 
  else pool(i,j)= randint(1,1,[bounds(1,j),bounds(2,j)]); 
  end 
 end 
end 
return 
  
function z=find_function_values(pool,pool_size,... 
 mission_parameters,tech_limitations); 
good_ct=0; 
for i=1:pool_size 
 %% fly_mission is the function to calculate total vehicle mass. 
 zz(i,:)=fly_mission(pool(i,:),mission_parameters,tech_limitations) ;    
 if zz(i,1)==0 
  zz(i,1)=1e10; 
 else good_ct=good_ct+1; 
 end  
 z(i)=zz(i,1); 
end 
return 
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APPENDIX G: DISCIPLINARY METRIC VALUES 

 

Disciplinary Metric Explanation Value Unit 

ηInlet  Inlet Efficiency 
0.99  

ηCompressor  Compressor Efficiency 
0.9  

% QLoss, Heat Exchange 
Percent Heat Lost in Heat Exchange 0.045  

ηCombustion  Combustor Efficiency 
0.995  

ηMotor  Motor Efficiency 
0.8  

ηGenerator  Generator Efficiency 
0.9  

ηTurbine  Turbine Efficiency 
0.93  

ηShaft  Shaft Efficiency 
0.99  

ηNozzle  Nozzle Efficiency 
0.99  

ηPropeller  Propeller Efficiency 
0.85  

ηFan  Fan Efficiency 
0.9  

∆PO, Fuel Cell  Pressure Drop in Fuel Cell  
0.6  

TMax,FC 
Maximum Temperature in Fuel Cell 1200 ºK 

% ∆PO, Heat Addition  
Pressure Drop in Heat Addition 

0.8  

% ∆PO, Combustion  
Pressure Drop in Combustion  

0.96  

CDo  
Zero Drag Lift Coefficient 

0.02  

AR 
Aspect Ratio 

20  

eAR  
Factor used in drag polar  

0.9  

MEmpty/MGross  
Ratio of empty mass to total mass 0.25 K 

MPayload  
Payload Mass 1500 Kg 

Fabric Density (for LTA) 
Mass of LTA fabric per unit area 

0.3 Kg/m2 

MGondola/MGross  
Ratio of gondola mass to total mass 0.25  

d/l (for LTA) Diameter to length ratio for LTA 0.25  
CL,max (for some FW) Maximum lift Coefficient 2  
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