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SUMMARY

The following dissertation investigates the develept of a methodology suitable for the
evaluation of advanced propulsion concepts. Alyestages of development, both the
future performance of these concepts and theirireapents are highly uncertain, making
it difficult to forecast their future value. Dewpling advanced propulsion concepts
requires a huge investment of resources. The rdetbgy was developed to enhance the
decision-makers understanding of the concepts,hab they could mitigate the risks
associated with developing such concepts.

A systematic methodology to identify potential adeed propulsion concepts and
assess their robustness is necessary to reducskha developing advanced propulsion
concepts. Existing advanced design methodologee® levaluated the robustness of
technologies or concepts to variations in requirgisiebut they are not suitable to
evaluate a large number of dissimilar concepts.rigtlans in requirements have been
shown to impact the development of advanced prapulsoncepts, and any method
designed to evaluate these concepts must incogdhat possible variations of the
requirements into the assessment. In order tada methodology was formulated to be
capable of accounting for two aspects of the prableFirst, it had to systemically
identify a probabilistic distribution for the fuirequirements. Such a distribution would
allow decision-makers to quantify the uncertaintytroduced by variations in
requirements. Second, the methodology must be tabbssess the robustness of the

propulsion concepts as a function of that distrdout

XVii



This dissertation describes in depth these ergldiements and proceeds to
synthesize them into a new method, the EvolvinguRements Technology Assessment
(ERTA). As a proof of concept, the ERTA method wased to evaluate and compare
advanced propulsion systems that will be capabj@wfering a hurricane tracking, High
Altitude, Long Endurance (HALE) unmanned aerial ickh (UAV). The use of the
ERTA methodology to assess HALE UAV propulsion apts demonstrated that
potential variations in requirements do signifidammnpact the assessment and selection
of propulsion concepts. The proof of concept atBmonstrated that traditional
forecasting techniques, such as the cross impadysas, could be used to forecast the
requirements for advanced propulsion concepts fpibbigcally. “Fitness”, a measure of
relative goodness, was used to evaluate the cacdfhally, stochastic optimizations
were used to evaluate the propulsion concepts si¢chesrange of requirement sets that

were considered.

Xviii



1 INTRODUCTION

Scientists and meteorologists are searching for nesans of obtaining data from
hurricanes, in hopes of improving the accuracy ofribanes’ forecasts. “Hurricane
Hunters” currently fly directly into the storm taitper data, but they are expensive and
do not have the endurance required to monitor tihenscontinuously. Satellites are not
capable of accurately measuring important indicatsuch as barometric pressure and
wind speed. High-Altitude, Long-Endurance (HALE)nwanned aerial vehicles (UAV)
could potentially fill this void, but the concepteds further development before could do
so. One technological obstacle hindering the dagraent of such vehicles is that
existing propulsion systems consume too much faekriable the vehicles’ required
endurance. Numerous propulsion concepts have pemposed, but the uncertainty
surrounding the future concepts’ performance armdsgecific vehicle requirements and
characteristics make it difficult for decision-magéo identify which propulsion concepts
will best serve the vehicle.

The following manuscript outlines the creation afmethod that will allow
decision-makers to compare advanced propulsione@iato one anoth@uantitatively
given uncertainty in both the requirements and t&ehnological capability of the
concept. The Evolving Requirements Technology sssent (ERTA) method was
developed to incorporate these uncertainties ineoassessment of the concepiie
high development costs and uncertainty inherendeteeloping such complex systems
limit the number of propulsion concepts that theustry can develop. Decision-makers

need to have the ability to compare advanced psopulconcepts to one another, and



identify which concepts are the most robust. Hdrsinformation could be provided, then
they would be able to allocate resources more tffdyg, thus mitigating the risks
associated with developing advanced propulsion ejgisc

The requirements for advanced propulsion systwilisbe mostly dictated by
vehicle characteristics and mission parameters—tgiemnthat can be projected, but will
evolve throughout the development of the propulssystem. The selection of the
propulsion concept, then, had to incorporate thosertainties into its assessment. The
propulsion concept that was ultimately selected ibadbe robust with respect to
uncertainties inherent to the development prodagsit must also be robust with respect
to perturbations in requirements.

Developing a method to tackle an engineering gmobis an unconventional
technical dissertation. Every effort was made nsuee that the development of the
method followed the scientific method. The needsiach a method is discussed in the
introduction, and observations as to how this moblis currently addressed and
shortfalls of such approaches are raised througtheuntroduction, literature review and
hypotheses discussion. Ten specific researchiquesgtmerged from those observations,
and the answers to those questions formulated fypotheses statements. Those
hypotheses were tested when the ERTA method was tosevaluate potential HALE
propulsion concepts. In the manuscript's conclgdsection, the success of those

hypotheses is discussed.

1.1 Motivation

The ERTA method was developed to give decisionarakihe ability to
incorporate the uncertainty of requirements int@ tassessment of technological
concepts. While product design and selection nistiave advanced rapidly over recent

years, the methods that decision-makers currersty to select technological concepts



rarely incorporate the uncertainty of the requirateento the selection of concepts. If
decision-makers had an understanding of how seesitie goodness of technological
concepts is to particular requirements, they cauitigate risks of development by
selecting the technological concepts that are mustist to the potential variations in

requirements.

1.1.1 Uncertainty Inherent to Requirements

As technology develops and systems become morelaated and intricate, the
time and resources required to develop technolbgigstems increase. This trend is
especially visible in the aerospace industry. 984, Augustine noted that “...the cost of
an individual airplane has unwaveringly grown bfaator of four every 10 years,” [3]
[29] while Eskew correlated the development perfod a tactical aircraft with the
aircraft’'s eventual procurement cost [29]. Throogihthat period, the requirements that
the technological concepts must meet do not restationary—they evolve. The greater
the development time, the more uncertain the requents are. Additionally, consumers
such as the government often choose to extencethees life of existing systems, rather
than pay to upgrade to next generation systems [BAfoughout that extended lifespan,
systems are used in different ways, adding anaberce of uncertainty inherent to the
intended requirements.

Many of the requirements for the HALE UAV’s propudn system are quite
uncertain. At what altitude should the vehicle?flywhat speed should the vehicle be
capable of cruising? The altitude and cruise spedt dramatically affect the
performance of propulsion concepts, and need tak®n into account. Additionally, the
vehicle configuration has yet to be specified. Tehicle configuration will determine

the amount of drag that the vehicle produces, whtermines the amount of thrust that



the propulsion system must provide. The propulsigstem that is developed to power
the HALE vehicle should be robust to these uncetits.

There are several examples in the aerospace mgdalshe of the requirements for
a technological concept changing throughout itsettgament period. Sometimes, those
changes have been great enough to eliminate tliefoethe technological development.
In other cases, the changes have been just enaugjudstion the original concept
selection. Consider the unducted fan (UDF). Ti#E-Wvas conceived during the fuel
crisis of the 1970’s as an ultra efficient jet erggicapable of reducing fuel consumption
by approximately 20% to 30% [72]. Unfortunately tbe UDF, fuel prices returned to
normalcy, and the requirement for fuel-efficiengeres no longer superseded the need
for quiet, traditional engines. Development wasdtdah before the engine was fully
developed because the requirements that made thieeea worthwhile investment
changed.

Another example of technological concepts becomeoigsolete throughout
development is the nuclear turbojet concept. Gartelectric and the US government
began actively developing a nuclear turbojet enginpower a large supersonic vehicle,
capable of cruising subsonicly for long a periodiofe in 1951. By 1961, however, the
military’s objectives of such large system changat the program was cancelled as it
“suffered considerably from lack of prompt decisoand from frequent changes in
emphasis and goals” [97].

The industry faces similar questions in the futufdne environmental constraints
that governments will place on aircraft and the mmasn cruise Mach number that the
aircraft is allowed to fly over land will significdly impact the potential value of
aeropropulsion concepts in the future. Eliminati@@, emissions will require the
infusion of alternative fuel concepts, while the dlanumber significantly affects the

efficiency range of aeropropulsion concepts.



Should decision-makers consider the potentialatians in requirements when
they are selecting which technological conceptsdéwelop? In conceptual design,
decision-makers select the best alterative(s),ngthat the final product must ultimately
meet one or two particular sets of requirements. thhe requirements diverge from the
expectations, the chance that the selected alteeniatactually the best choice, or even
feasible, is reduced. Decision-makers need to takeertainty of requirements into
account, when selecting technological conceptghabthey can select the concepts that
are the most robust, with respect to potentialatanms in requirements.

This notion becomes even more important when ogetimakers begin to
consider advanced propulsion concepts. Advancedutsion concepts require greater
expenditures of resources and take longer peribdene to development. The longer
development cycle ensures that there is more wogrtinherent to the requirements,
and the large expenditure of resources increasestikes of the investment. In the

words of Norman Augustine, “It costs a lot to builad products,” [3].

1.1.2 Methods Currently Used to Select Technological Compts

Traditionally, commercial entities use a broadgewof methodologies to select
the technological concepts to which they will devBtesearch and Development (R&D)
resources. Commercial entities make a distincbhetween developing technological
concepts for one particular use or end productdyed development) and developing
technological concepts for a more general, potendipplications (technological
development) [8]. Selecting a propulsion systenmeet the requirements of a HALE
vehicle falls somewhere between the two categon@hkile a product is being developed
for a specific purpose, commercial entities usulityt product development to proven
technological capability [8]. Unfortunately, theopen technological concepts will most

likely not be capable of meeting the requiremeatglie HALE vehicle. For this reason,



the author examined the methods used to seleceptstor both product development,
and technological development.

The methodologies used to select technologicatemis for product development
vary significantly, but almost all successful meatblmgies have a few common steps or
phases included in them [25]. First, the methogiel® contain a “problem definition”
phase, in which teams develop a thorough understgnof the problem, and gather
necessary information. The requirements for tloelpet are defined here. Second, the
methodologies contain a “generation of alternatiy@sase, where possible alternatives,
or technological concepts, are identified. Thirstthodologies contain an “evaluation of
alternatives” phase, where decision-makers seldgthwof the alternatives to bring
forward to the next phase of development or a numtailed design. A multitude of
means by which developers carry out these threangakphases of product development
exist, and those means are discussed in the litera¢view, in sections 2.2.1, and 2.2.3.
The shortfall of these methods is that they dogie¢ the decision-maker the ability to
compare technological concepts to one another,ewbdncurrently accounting for
requirements variations.

Too often, in the aerospace community, the metliogiscompanies rely upon to
select technological concepts to develop are “ad drolack rigor” [49]. According to
Cetron, traditional approaches to allocating R&Dndung are rarely scientific or
objective [15] [49]. Often funds are allocated di®n which programs make the most
noise, or which programs have achieved the greatesess in the past [15] [49]. While
the state of the art of R&D selection methods hgzroved drastically over the past thirty
or forty years, few industrial entities use the atved methods [67] [49]. Some of the
advancements in R&D selection methods are discussegction 2.1. A few of the
technology development methodologies discusselainsection do provide the decision-

maker with the ability to compare incorporate theartainty of requirements into the



evaluation of the technologies, but those meth@isat be used to evaluate advanced

propulsion concepts.

1.1.3 Expectations for ERTA Methodology

The ERTA method is not intended to replace thehodlogies currently used by
industrial entities to select technological consefar resource allocation. The ERTA
method, instead, is intended to enhance the anufunformation that decision-makers
have when they are evaluating those concepts.méteod was developed in the context
of evaluating propulsion concepts that are besedub powering a HALE vehicle. The
author expects that the method could be used ir digflds to enhance decision-makers’
information, but demonstrating this suppositiobéyond the scope of this investigation.

The ERTA method was created to assess how well gaatinological concept
will satisfy the requirements of the future, refatto competing concepts. In order to do
so, the methodology must have three componentsst, ine method must generate a
probabilistic forecast of the requirements thatifattechnological concepts will have to
meet. The requirements for the HALE propulsiontesysare not fixed, and potential
variations in the requirements could substantiaipact the goodness each propulsion
concept. It is important that the probabilistic & requirements captures the likely
variation in requirements. The robustness of eacitept should be measured relative to
a likely distribution of requirements instead oirlgemeasured against any distribution.
Second, the method must assess the relative gaodsfegach concept across the
distribution of requirements. Such an assessmamildvgive decision-makers an
understanding of which HALE propulsion concept(sd hest, and how sensitive that
goodness is to particular requirements. Finalg methodology must incorporate the
uncertainty inherent the development of technolalgioncepts into the assessment. The

maturity of the potential propulsion concepts rangkamatically. There is more



uncertainty inherent to the less mature concepfBhat uncertainty needs to be
incorporated into the evaluation of technologiaah@epts.

The ERTA method was developed specifically to lackhe problem of
comparing advanced propulsion concepts to one anoffiven uncertain requirements.
Next generation propulsion concepts are usuallysicemed revolutionary in nature, as
are fundamentally different from conventional prigimn systems. The fact that the
ERTA method was developed to tackle the evaluatiod comparison of advanced
propulsion is significant because such technolopm# to be evaluated in a different
manner than evolutionary technologies or concepigde can be evaluated. There are
many more variables to consider when evaluatingaaded propulsion concepts, and
accordingly, the design space is much larger. Altte is known about the application
or integration of such concepts, so modeling thegolmes more difficult.

The author sees no reason why the methodologydcool be applied to the
comparison of evolutionary technological conceptg, methodologies already exist that
enable decision-makers to compare such technolégiese another, and many of those
methods allow decision-makers to incorporate thecerainty inherent to the
requirements into the evaluation. The author'sinitédns of evolutionary and

revolutionary technologies are explained in sectighl.

1.2 Technical Barriers

If incorporating the variation of requirementsarthe analysis of technological
concepts is important, why has it not been dona methodical fashion before? There
are several technical challenges preventing sucbingarison. First, the problem is so
large that it is difficult to grasp. Comparingewftechnological concepts to one another,
given a fixed set of requirements, is difficult eigb in its own rite. Another challenge is

the ability to forecast the requirements for futdeehnological systems. Industrial



entities are good at predicting the capability ofufe technological systems because
those predictions are based on physical analySdse evolution of the requirements,
however, will be dictated by less tangible forcesch as government restrictions and
market fluctuations. Including that uncertainty time evaluation only increases the
magnitude of the problem. Finally, traditional irgs of merit will probably not be
useful benchmarks, as they are often not validsacthe entire range of concepts and

requirements.

1.2.1 ldentifying Requirements for Future Technological Gncepts

In the aeropropulsion industry, advanced propualsmncepts have to be
developed for years before they are ready for tagket. In those fields, decision-makers
must select the technological concepts to invesDR&sources into years before the
concepts can be produced. The potential conceptsvaluated and compared based on
the decision-maker’s perception of how well eachcept can meet a particular set of
requirements. Unfortunately, as mentioned eartierjng the development time, those
specific requirements are likely to change, or e®olPredicting the requirements that the
revolutionary technological concept will have to ehence it is developed, then, is
challenging. The requirements for future technmlalgconcepts will be functions of a
range of factors, from unpredictable market foree®l government policies to the
technological maturity of the interacting and sunding systems. As mentioned above,
the requirements for the HALE propulsion systeml voié dictated by the vehicle
characteristics mission profile, as well as othestemer requirements, such as costs and
emissions constraints. It is difficult for devedsp to predict how those requirements will
evolve with time—especially if the requirements digtated by forces that are outside of

the developer’s area of expertise.



Another problem hampering the prediction of reguients for future concepts is
that many of the requirements for advanced propnulsioncepts are going to be highly
dependent upon one another. Any forecasting vaMehto incorporate the dependencies
of multiple requirements into its forecast—a diffic endeavor.  Consider the
configuration for the HALE and the cruise speedode two parameters are likely to be
highly dependent upon one another. As cruise spe@e@ases, the chances that the
configuration will be lighter than air vehicle deeases significantly. Any forecast of
requirements would have to incorporate dependemdiesquirements upon one another,

because the concept must be able to meet all getherementsimultaneoudly.

1.2.2 Justly Comparing Technological Concepts to one Anber

Technological concepts, such as advanced propulsioncepts, are often
fundamentally different from one another. Thod&dences make it difficult to compare
them to one another in a just, quantitative, anthodical fashion. First and foremost, it
is difficult to predict the mature capability of\vehced propulsion concepts, before they
have been developed. Advanced propulsion concamscomplex, highly coupled
systems, completely outside of the realm of indistexperience. Unfortunately,
empirical data and relationships cannot be usedeuvaluate advanced propulsion
concepts. Analyses cannot use trends or relatipmspreviously identified by the
industry to project the performance of future adeh propulsion concepts. The
evaluation of advanced propulsion concepts, therstmely solely upon the fundamental,
physical relationships upon which the concept iaceoved. One problem with this
analysis is that it can be highly inaccurate. Whibmponent efficiencies, material
constraints, and integration losses can all bdyetsitored into the analysis, the values
of those parameters are highly uncertain. Perfoomastimates can be highly sensitive

to those parameters.
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Another factor hindering decision-makers abilitp taccurately compare
technological concepts to one another is that airajyadvanced propulsion concepts is
simply too computationally exhaustive to allow #ofull exploration of the design space
of advanced propulsion concepts. Before theseamiacan be truly evaluated, however,
the optimal designs for each technological conoepd to be identified, which presents a
challenge of its own.

The magnitude of this problem cannot be overesdcha Comparisons of
technological concepts can only be conducted iheaitthe concepts is specifically
designed to meet the particular set of requiremtras the concepts must meet. Each
concept has a different, but lengthy, set of designables; all of which must be
optimized. In the context of a traditional turbofangine, the pressure ratio of the
compressors and bypass ratio of the engine musipbimized to the specific mission
profile of the aircraft. Because system parametezsnot simple functions of the design
variables, this is an exhaustive task. This chgkkehas been overcome in order to
optimize conventional, well-understood concepts Uging sophisticated modeling
techniques. Even when these techniques are enthlmgmimizing the local design
variables is time consuming and the process iscpdat to the individual concepts that
are being optimized. It is not feasible to autantiie process to optimize and evaluate
an unspecified number of advanced propulsion cdecep

Another technical challenge preventing the congumariof advanced propulsion
concepts to one another is the unknown mature pedoce of each of the advanced
propulsion concepts. Advanced propulsion concamsimmature by definition. There
is a high degree of uncertainty associated withebigping each of the components and
integrating them into one, cohesive, concept. dffieiency, the volume, and the weight
of the aeropropulsion concepts, for example, afficdit to predict at early stages of

development. Those parameters will significanttpact the evaluation of the concepts.
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Finally, comparing multiple advanced propulsiom@epts to one another requires
some figure of merit that is applicable over thérerrange of concepts being considered.
Often times, the traditional metrics used to evi@ugoodness have no meaning when
applied to advanced propulsion concepts. Considefigure of merit traditionally used
to evaluate propulsion systems, fuel consumptidthen evaluating advance propulsion
systems that rely upon solar energy or hydrogeal é@nsumption has no meaning.
Before the HALE propulsion alternatives can be carad to one another, a figure of

merit applicable across the entire range of alterea must be generated.

1.2.3 Incorporating the Variation of Requirements

As discussed above, the analysis required to cmamigeghnological concepts is
exhaustive; each concept must be specifically desigo meet each particular set of
requirements, and the uncertainty associated with doncept’s development must
somehow be considered in the comparison. Unfortlypiaan infinite number of
potential requirement sets that the advanced psaputoncepts may have to meet exist.
It is infeasible to conduct an exhaustive comparigball technological concepts, given
each potential set of requirements. How then,tbanmpact of the potential variation of

requirements be considered when evaluating advasrogailsion concepts?

1.3 High-Altitude, Long-Endurance Vehicle

As discussed above, the ERTA method was develapedable the comparison
of various propulsion concepts proposed to progeR&E vehicle. The vehicle itself is
being developed to track hurricanes and cyclonet) the intention of studying and
learning more about their formation. Selectingrapplsion system for the HALE is a
difficult problem worthy of investigation becausenwentional aeropropulsion concepts
will most likely not be capable of propelling suahvehicle. Conventional propulsion

systems are simply not efficient enough to givewhkicle the endurance it would need
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to track the hurricanes. If such a vehicle is ® developed, advanced propulsion
concepts will also need to be developed in ordeprtipel the vehicle, and decision-

makers are not sure as to which of the numerougogex concepts offers the greatest
chance of success.

Existing conventional propulsion concepts areentty driven by the combustion
of hydrocarbon fuels. Such processes, while mat@ieable and cheap, are not fuel
efficient enough to give the vehicle the enduratie is required. Even if the concepts
are dramatically improved, they would probably hetcapable of monitoring the tropical
storm area for more than a few days, without réfigel Alternative energy sources, such
as regenerative fuel cells, will most likely be uggd. The likely requirements for the
hurricane-tracker will be investigated and foreedstand used to assess the value of

advanced propulsion concepts.

1.4 Background

The following section provides background inforioatthat may be helpful for
reading later sections of this paper. First, #vens evolutionary and revolutionary are
defined as they apply to technology in this manpscrSecond, the evolution of the term
“robustness” is discussed. While most of the temsed in this investigation are common
and widely used, there may be some ambiguity aststiwith them. Also, they may
take on a new meaning in the context of this diafen. The following section attempts

to eliminate any potential confusion by clearlyidefg some of those terms.

1.4.1 Evolutionary and Revolutionary Technology

Most people have an intuitive understanding of tiéferences between
evolutionary technology and revolutionary technglogut it is not always easy to

classify a technological development as evolutipnavolutionary. The difference

13



between the two is partially subjective. Merrianeb¥ter defines the terms evolution

and revolutionary appropriately below:

Evolution: a process of continuous change fromveetp simpler, or
worse to a higher, more complex, or better state
Revolutionary: constituting or bringing about a orapr fundamental
change
These definitions lay the foundation for definireyolutionary and evolutionary
technology, but alone, they are not sufficient.vétetionary technology can be described
as a system that replaces or fundamentally chahgesxisting system, but revolutionary
technologies will require evolutional developmerdfdse they can produce feasible
alternatives.  Should the technological developmietitat incrementally advance
revolutionary systems be considered revolutionarewlutionary? It is the author’'s
supposition that the incremental technological tmweents that improve the
performance of one component of a new or revolatiprsystem are evolutionary in
nature. Revolutionary technologies, then, canifnédd to the theoretical concepts that
will replace existing systems, developments thdiate fundamental changes to the
existing system, and advancements that integrateetiire revolutionary system. The

author’s classification of evolutionary and revauatry technology is detailed below.

Evolutionary Technology: a technological developmehat will
incrementally advance the state of the art by imipigp upon
one element of a system

Revolutionary Technology: a technological developtra theoretical
concept that initiates a fundamental change inatag that the

existing system operates or makes such a changé|es
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Unfortunately, these definitions alone are notugtoto clarify the differences
between revolutionary and evolutionary technologspletely. A perspective of system
definition is required before the discrepancy qailytbe made. For example, consider a
technology that would replace the way that the fadfgnited in a traditional turbofan
engine, while allowing the entire rest of the sgste® operate as usual. If the entire
engine were considered “the system”, the technolegyld be considered evolutionary,
because it would allow for the incremental improeatof the entire system through the
improvement of one its parts. If, on the otherdygost the combustor were considered
“the system”, the technology would be revolutionags it would necessitate a
fundamental change in the way that the system tgxera

A similar and appropriate example of how revolnéioy technology can be
confused with evolutionary technology given difiergoints of references is the switch
from examining the entire aircraft to consideringtjthe aircraft engine as the system.
When the box is drawn around the entire vehicle, &ifashion similar to a control
volume) novel propulsion concepts are simply evohary advancements. When the
box is drawn around only the propulsion system, éx@v, those novel concepts become
revolutionary technologies. Clearly defining “thgystem” paves the way for
unmistakable distinction between evolutionary agblutionary technologies.

Because the definitions of evolutionary and retiohary technologies are
dependent upon the system reference, it makes denclrify the term system. A
system can be defined for this purpose as a gréworaponents or processes that are
interconnected to serve one purpose. Throughap#per, the term system refers to the
integrated engine that is necessary to fulfill tequirements. From hereon, the term
alternative, or solution, will be used to refemwtte specific configuration for a system. A
concept, on the hand, will refer to the set of raltéives that all fit into a specific

classification. For example, a turbofan enginehvatbypass ratio of 5 and an overall
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pressure ratio of 40 is one alternative. A turbogagine with a bypass ratio of 1 and a
overall pressure ratio of 15 is another alternatiBeth alternatives are different types of
the same concept, a dual-spool turbofan engineoluignary technologies allow for

alternatives that are derivatives of the convemti@oncept to be created. Revolutionary
technologies allow entirely new concepts to be teca The advanced propulsion

concepts investigated in this paper are revolutipnancepts.

1.4.2 Evolution of “Robustness” in Engineering

The ERTA method was developed so that decisionensakould measure the
robustness of advanced propulsion concepts, given uncertaiimty requirements.
Robustness first emerged in the engineering warld germ to reflect products’ ability to
withstand uncontrollable variations in productiomdausage. The term has taken on
many applications since is original usage, and rgithee current state of the aerospace
engineering industry, a new meaning of robustnasselvolved. Robustness can now be
used to refer to the ability of a concept to widmgt changes in requirements that evolve
though time.

Since robustness was first introduced to engingemntire fields of study have
emerged that focus on increasing value through eenmgelligent early development
process. Designing for Six Sigma has become thehgahrase that refers to ensuring
that the acceptable lower and upper boundarieproduct characteristics are each at
least six standard deviations from the nominaldaregensuring fewer than 3.4 defects
per million products. Six Sigma incorporates mamthods developed over the past few
decades to ensure robustness. The Taguchi MetHedtified which product
characteristics were least sensitive to uncontstdlavariations, and associated a loss

function with that deviation. Quality Function Depment (QFD) sought to fully grasp
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customer requirements and then translate thoseareegents into product and process
design.

Today, development of aerospace engineering ptedwan span across
decades—not just years. Most aerospace vehiaesxpected to have lifetimes of thirty
years or longer. Frequently, those same vehielegin in service even longer than they
were originally intended. For this reason, whesigl@ng vehicles, decision-makers now
need to incorporate the robustness of systemsrtatioams in requirements. The ability
of an aerospace vehicle to adapt and be capablenadting a different sets of
requirements from which it was originally intendiedan attribute that should be sought
after and designed for. Similarly, when selectivigch advanced propulsion concepts to
develop the potential for derivatives of the orairconcept to meet the evolving

demands—the robustness of a concept to evolvingnegents—needs to be considered.
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2 LITERATURE REVIEW

Before potential advanced propulsion concepts cdddinvestigated, a systematic
methodology to identify potential advanced propaisiconcepts and assess their
robustness was needed. The author first investigaxisting advanced design
methodologies to determine whether current methomldd be used to evaluate the
robustness of advanced propulsion concepts. Thmwviog chapter overviews advanced
design methodologies that have been used to igestiévaluate technological systems in
the past. Unfortunately, none of the methods watalse for the evaluation of the

immature advanced propulsion concepts either becawsould be difficult to employ to

evaluate a large number of concepts, or becausastnot well suited to assessing the
robustness of a concept with respect to requiresnemhis chapter is broken down into
two main sections: a review of methodologies thelp ldecision-makers identify and

evaluate future concepts and technology, and aloetn of tools that may be used to
understand and forecast requirements and tools d¢hat be used to enhance the

understand of complex design spaces.

2.1 Current State of the Art in Technology Forecasting

The following section investigates advanced desgthodologies that have been
developed to identify and or evaluate advanced ni@olgical concepts. The first
methodology, the Theory of Inventive Problem SaljM{ifiRI1Z) was developed to identify
new solutions or concepts capable of satisfyingtao$ posed requirements. TRIZ is

noteworthy because it is an attempt at systembtigintifying the best concepts. The
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other methodologies discussed use qualitative sisesds to evaluate the technology or
concept. These methodologies measure the robsstfieach technology or concept to

potential variations in requirements or technolabmaturity.

2.1.1 Theory of Inventive Problem Solving (TRIZ)

The Theory of Inventive Problem Solving (TRIZ) psimarily a technique for
concept generation. Altshuller developed the TR& a systematic approach toward
creative problem solving [91]. TRIZ encompassesyrtheories and methodologies, but
the basis of it is applying “inventive principlesd tackle current, complex engineering
problems [63].

Altshuller, a patent expert, analyzed thousandgabénts and identified physical
contradictions that occurred across industriesteauked their solutions [63]. He labeled
the innovative solutions that occurred over andrdweventive principles”. He then
came up with is a systematic problem solving predhat breaks the problem down an
existing system. Problems within the system arenpared to similar problems
encountered previously in other industries. TRIZntifies the physical contradictions in
those systems, and uses inventive principles tatifgea solution [91].

TRIZ is noteworthy because it is a novel appraactientifying new solutions or
new concepts. Unfortunately, TRIZ does not proadg insight into determining which
of the proposed alternative solutions would be bstimplement. Within the
aeropropulsion industry, many concepts have beayposed as next generation
alternatives, but a significant amount of resouraes required to develop any of those
alternatives. TRIZ does not give developers guidam making a sophisticated
distinction between the proposed concepts. Adullly, TRIZ is best suited toward

improving existing systems, not identifying revadumary systems. Finally, TRIZ is not
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easy to conduct; it requires breaking a system dmama “cause and effect” diagram

which is cumbersome and difficult to automate.

2.1.2 Quantitative Technology Forecasting Methods

While the main intention of TRIZ was to identifgw solutions or concepts, other
noteworthy methodologies have been developed tatijatively evaluate technological
concepts. These methods employ rigorous modelimdy ssmulation to forecast the
impact of future technological concepts. Thoseadaotp are then used to evaluate the
technological concepts. A few of these methodslaseribed below.

All of the methods described use “k-factors” ocheology dials to model the
level of technological maturity of a subsystem oomponent. K-factors are
dimensionless numbers that are used to perturbplsry metrics slightly within
complex designs [58]. The setting for disciplinangtrics reflect the state of the art
being modeled; they are often referred to as “teldgy dials” because they can be
changed to reflect the level of technology infusstd the system [62]. An example of
the use of a k factor can be easily seen withirurbojet propulsion system. The
efficiency of one of the main components, the highssure compressor (HPC), can be
considered a disciplinary metric. Throughout tinie efficiency of that component will
most likely increase. Raising that efficiency imadel through use of a k-factor shows
advancement in the state of the art, or an infusibtechnology into the design. The
overall impact of a technology that allows the H®Mperate more efficiently can thus
be quantified by using appropriate k-factors totymbr the suitable disciplinary metrics.
It is important to note that technology k-facto@ncbe used to model degradations
associated with new technologies as well. For gtenctonsider the same hypothetical
technology that improved the performance of the HH@at technology may negatively

affect other disciplinary metrics, such as the Wweigf the HPC. To model that
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degradation, another k-factor is used which affelts forecasted weight of the HPC
directly. The system level analysis will allow @béypers to quantify the overall system
level impact of advancing and degrading variougigisary metrics will have on the
overall system.

K-factors can be used to model the impact of $jgetgchnologies, as is done in
exploratory forecasting, or they can be used todoonhgap analyses [51]. Decision-
makers can use k-factors normatively to play “wiffagames—meaning that they can
guantitatively answer the question what would happen to system level metrids

various metrics were improved or degraded.

2.1.2.1 Unified Tradeoff Environment

Baker developed a technique referred to as thdiddnirradeoff Environment
(UTE) to quantify the impact of changes in requieens, vehicle attributes and
technologies to system-level metrics [4]. Essdgtidie created a surrogate model that
captured the variation of the responses with resjpethe variability of the independent
requirement (mission parameters), concept paragyetsrwell as technology variables.
The surrogate model served as the basis for amagtige environment that allowed
decision-makers to see the impact of small changes the design in real time. A

generic example of the real time environment issshim Figure 1.
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Figure 1: Unified Tradeoff Environment Example

UTE is a noteworthy methodology because it givession-makers the capability
to identify the sensitivity of system-level metritts variations in requirements, vehicle
attributes and technology. Unfortunately, becau3& relies on surrogate models, in
requires that the system-level metrics are wellabed with respect to the variables and
the variable ranges. Additionally, UTE requires thevelopment of a surrogate model
for each concept under consideration. Finally, Uld&s not incorporate a systematic

strategy to account for the variability in requiemts in its analysis.

2.1.2.2 Joint Probability Decision Making

Bandte developed Joint Probability Decision Maki@d®’DM) as a decision-
making methodology that uses the Probability ofcegs (POS) as a means of designing
and evaluating a concept [5]. Instead of lumpifigcateria together into one overall

measure of goodness, JPDM allows decision-makersvaduate the potential of a
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concept to meet multiple requirements simultango(is]. For each specific set of
requirements, JPDM measures whether a specifignlegil be feasible (can satisfy all
of the requirements simultaneously). A noise thsation is then placed upon the
requirement variables, and Monte Carlo trials aeduto calculate the likelihood that an
alternative will be feasible. This likelihood igfthed as the POS. POS, once calculated,
can be used as a single, all-inclusive figure ofritm® evaluate different designs.
Because JPDM requires the use of thousands of Moatie trials to accurately measure
the POS, the analysis that calculates feasibiliystmnot be too computationally
exhaustive. Surrogate models can be used to rblateariation in system-level metrics
to the variability of requirements and vehicleiatites.

JPDM is an effective methodology for evaluatinghteological systems, given an
uncertain set of requirements, but it would beiditt to employ when evaluating
advanced propulsion concepts for a HALE vehicleastFa new model has to be created
for each concept under consideration, which wouddtime-consuming. Additionally,
JPDM does not incorporate a likely distribution refjuirements into the assessment.
Finally, JPDM’s figure of merit, POS, does not aaptthe relative goodness of feasible
alternatives. When two alternatives can satisfixed set of requirements, one of those
alternatives may still be superior to the othe©@SRdoes not capture the relative goodness
of each alternative, only whether it is feasibEeven though two alternatives could have
an approximately equivalent likelihood of being dibde, one alternative could be

superior.

2.1.2.3 Technology ldentification, Evaluation and Selection

The Technology Identification, Evaluation and $&tn (TIES) methodology
was created to give developers a systematic methedploring complex design space,

determining whether new technologies need to beesldped, and identifying which
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technologies would be best suited to the desigtESThas been well documented by
Kirby and Figure 2 shows an overview of the methogyp [49]. In the first few steps of

TIES, the problem solver strives to understand grablem fully [49]. This involves

identifying the system-level requirements and tleéinihg the concept parameters, or
independent variables, that make up the designespex determined. Some of those
variables are continuous, while others are discreldext, the developer sets up the
system level analysis that will be use to prorogate changes of design variables to

system level metrics (response) [49].

[teration?

<=~ Inputs? Techniques? Information flow?

Define D ﬂne Mﬂm Invest Select Best
e o oncegs —»> m - s,sm -»> T«hmlogf —}dem —} Family of
Spnce: Shuhmn Srnqe Feasibility Alternatives Alternathy Alterngtives

Problem ‘
S e Outputs? Information obtained? =

[teration?

Figure 2: Overview of TIES Methodology“’!

In complex systems, the analysis will be exhausteasequently, statistical models that
accurately capture the variation of the responsefuactions of the variability of the
independent variables are used to explore the megigce thoroughly. Armed with the
statistical model, the developer can determinegldyiand accurately, whether there is
feasible design space with current, off the shetfhnology [50]. If that is the case, the
problem is solved, as the developer can optimieestiiution within the feasible design
space using the optimization method of his choice.

In most complex problems, however, there is @msifde space, and technologies

need to be considered to “open up” the design spadeensure that it contains feasible
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solutions [49]. If that is the case, potentialhtealogies need to be identified, and their
expected impacts on appropriate disciplinary metrior k-factors—need to be
determined. Each technology essentially becomagacterized by a particular set of k-
factors. At this point, a new statistical modetieated to relate the system level metrics,
or responses, to the k-factors [49]. The impacindfising each technology can be
determined in real time by generating a secondsttatl model that relates the variability
of the system level metrics to the variation of kkactors [62].

In order to model the infusion of multiple techogies to a design, the set of k-
factors required to model each technology are atlofgether. For example, consider two
technologies, A and B. Technology A is expectethtwease the efficiency and weight
of the HPC by 2% and 5%, respectively, while Tedbgyp B is expected to increase the
efficiency and weight of the HPC by 3% and 4%, eespely. If Technologies A and B
are compatible, together they would increase theieficy and weight of the HPC by 5%
and 9% respectively. In TIES, multiple technolegée characterized by the sum of the
k-factors that represent each technology containede set. The developer can quickly
guantify the impact of infusing any set of techryds to the design space using the
statistical model that relates the variation inteys metrics to the variability of the k-
factors. Armed with that information, the problesolvers can make informed and
objective decisions as to which technologies toettgy further.

Unfortunately, it would be difficult to use TIE® evaluate advanced propulsion
concepts. First, it assumes an existing baselimeept. While the baseline concept is
optimized, if the decision-maker originally congigeé an inferior concept, he or she
would be stuck with the concept later on. Secdi#S best suited for evaluating the
impact of evolutionary technologies, or technolsgibat are applied to an existing

baseline. TIES can only model technologies thadrawe or degrade small parts of the
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existing system. It cannot model technologies tieplace the system, or require the

infusion of an entirely new system.

2.1.2.4 Summary of Quantitative Technology Forecasting Mdgh

None of the existing qualitative forecasting mekhahat were investigated was
well suited for the evaluation of HALE propulsioonzepts. The propulsion concepts
under consideration are very immature. Little m®Wkn about the future performance of
the advanced propulsion concepts, and consequethidy,modeling and simulation
environments that can be used to assess themnaitedi Additionally, none of the
methodologies systematically generates a distobubf requirements. JPDM and TIES
guantify uncertainty with respect to noise disttibos in the requirement and technology
variables.

Additionally, none of the methodologies is suitabdr comparing fundamentally
different concepts to one another, given an uncedat of requirements. UTE can be
used to compare a small number of concepts to apéher, but the need to create a
surrogate model for each concept prohibits decisi@akers from considering a large
number of concepts. It would be difficult to udeDM to evaluate a large number of
concepts, as a surrogate model will have to beldped for each concept. Additionally,
decision-makers could not use JPDM to compare biEaaiternatives or concepts to one
another. POS only measures whether an alterniatifieasible—not how good a feasible
alternative is. Finally, TIES is only suitablegwaluating technologies that incrementally

improve existing systems—not technologies thatagplexisting systems.

2.2 Literature Search of Tools

The previous section overviewed methods that Heeen used to increase the
amount of information decision-makers have to eat@uechnological systems. Most of

the methods discussed above enhance the informétamnis provided to decision-
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makers, but are not alone sufficient to differetetibetween dissimilar concepts in the
presence of uncertain requirements. The follovgiegtion explores some tools that could
be used to enhance the information that decisiokensehave when comparing advanced
propulsion concepts to one another.

The author first turned to an emerging field o$aarch, entitled Technology
Futures Analysis (TFA) [77]. TFA was an initiatit@ unite various forecasting methods
aimed at predicting the impact of technology. T methods discussed in this secton
are broken into three categories. The first gnogmf methods discussed below can be
best described as brainstorming organization methasl they organize and synthesize
information from disciplinary experts. The secaridssification of methods discussed
below can be used to forecast future states oritons. These methods use information
currently available, such as trends or expert opinand project that information to
create a forecast of the future. The third classiion of methods discussed in this paper
are those which aid in decision-making, given ao$eibjectives.

Unfortunately, most TFA methods have not addressedoroblem of analyzing
and modeling the increasingly complex technologisgétems—an essential step to
forecasting technology of the future. Consequeritlys section also explores some
mathematical and statistical techniques that camdeel for this purpose. Exploration
methodologies specifically examine methods aimethtabducing as much knowledge
about the multi-dimensional space as efficientlypassible. Meta-modeling techniques
look at surrogate models that can be used to retheceomputational time required to
model technological concepts. Finally a few comnsiachastic optimizations are

examined. These methods can be used to optimitémodal spaces.
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2.2.1 Gathering, Organizing & Synthesizing Information

The first group of TFA methods that are discusaetin the synthesizing and
organization of expert information or problem défon. These methods have been
particularly valuable in the arena of systems eegimg, where alternatives and
requirements are too complex to be intuitively ustieod. They can be used directly to
forecast the future, as sometimes is the case Dalphi, but they are usually used to
identify alternatives, or understand requirememtsetationships between requirements,

alternatives, and potential scenarios.

2.2.1.1 Delphi Technique

The Delphi technique is a surveying method dewdoin the 1940s for military
applications by the Rand Corporation [87]. Sincbds been declassified, it has been
widely used for technology forecasting [78]. Iretbame way that it has been used to
forecast technology, it can be used to forecast rbguirements that complex
technological systems will eventually face. Theldbe technique surveys experts,
usually through mail. The answers to the surveys eollected and analyzed.
Participants are given feedback that includes #mge of responses and rationales for
various answers and then asked to answer the guoes#igain, in light of the new
information, but feedback allows the experts’ opiio remain anonymous [78]. The
process repeats itself until the experts’ opinistabilize. Two aspects to the Delphi
techniqgue make it so successful. First, particgmatis usually anonymous, which
prevents participants’ egos from forcing them tmtcae to promote shaky arguments
[78], [87]. Second, both statistical evaluatioristtee responses and rationales are fed
back to the participants, allowing them to underdthoth the degree of difference in the

group, and the arguments for various positions.[87]
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The Delphi technique is certainly not perfect. rél@ssness in the preparation of
the survey or feedback can make the techniquedessrate. The iterative process is
time consuming, and requires a fair number of p@dints [78]. Finally, the only way
that the correlation between interdependent evearisbe accounted for is if the experts
can account for it in their assessment [78]. TdllWwing technique attempts to capture

experts’ opinions, but also account for the joirglqability of dependent events.

2.2.1.2 Morphological Analysis

Morphological analyses break a system down in® riequired parts, or
subsystems. A morphological matrix is a chart tantifies all of the possible concepts
or systems. It can be easily adapted to idengifplutionary alternative technologies. A
morphological matrix is created by listing all dktrequired parts or subfunctions in one
column [25]. For each part or subfunction, themlatives are listed across that row [25].
A concept is made up of one unique set of altesnafBable 1 shows a morphological
matrix for a shoe. The shoe is broken down intedtparts, the sole, the upper material,
and the fastener that keeps the shoe on the foot.

Table 1: Generic Morphological Chart

Alternative 1 | Alternative 2| Alternative 3
Sole Material Rubber Leather Wood
Upper Material Canvas Leather Nylon
Fastener String Velcro Buckle

The morphological matrix is a technique that spuresative thinking, but it also
gives problem-solvers an understanding of how cempthe problem actually is. The
total number of concepts is equal to the produdliodf the solutions to each part. For
the shoe example shown in Table 1, there would be 3x 3 or 27, alternatives.
Obviously, as a system is examined in greater [detabecomes more complex, the

number of concepts grows exponentially.
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The functional breakdown employed by morphologidaarts ensures that they
are well suited to identifying advanced propulsiooncepts. Advanced propulsion
concepts usually consist of well-understood comptsiejust assembled in a different
manner. Table 2 is a simplified morphological ¢tlhat can be used to break down a
propulsion system. This chart is by no means cetaplbut it serves as a simplified
example of how morphological charts can be usadentify revolutionary technologies
or concepts. Many advanced propulsion conceptdigtesl within the morphological
chart, but not by name. In Table 2, most of thefsuctions are self-explanatory; thrust
can be produced via either expanded exhaust, alggpacceleration of bypass air, or
some combination of the previous three. Some @fother subfunctions, such as power
source for thrust production, are less intuitivEhis subfunction refers to the form of
energy that is converted into thrust. For examiple propeller is used to generate thrust,
that propeller can be driven either by a motor,clvhises electrical energy, or directly by
shaft work potential. Even though the morphologichart displayed in Table 2 is
simple, it contains 21,600 combinations of alterres.

Table 2: Simplified Morphological Chart of Propulsion System

(1) (2 (3 4 (5)
. Expand Bypass Air & Propeller &
Thrust Production Propeller Exhaust Exhaust Exhaust
Thrust Type Distributed Concentrated
Energy Source Hydrocarbon Hydrogen Nuclear Fuel Solar Storeéjnlélrz;trlcal
Energy Extraction Combustion Fuel Cell Rxn | Nuclear Rxn Photgzﬁltalc Motor
. Steady Unsteady Unsteady
Combustion Type (Constant Pressure) Detonation Deflagration None
Oxidizer Supply On-board Ambient None
Work Pe.rf(.)rmed on Compression Heat Exchange None
Oxidizer
Power Source for - Mechanical
Thrust Production Electricity Shaft Work Nonequilibrium

It is important to note that not all of the comdtions of alternatives shown in the
morphological chart would produce feasible solwior-or example, if energy is stored
in the form of nuclear fuel, it cannot be extractea combustion, and an oxidizer would

not be required. In that case, the only feasilikrraative for those subfunctions would
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be “None”. Each alternative consists of one comtiom of alternative for each

subfunction. The selection of alternatives thakenap the conventional turbofan engine

are shown below in Table 3.

Table 3: Morphological Selection of Turbofan Engine

(1) (2 (3 4 (5)
. Expand Bypass Air & Propeller &
Thrust Production Propeller Exhaust Exhaust Exhaust
Thrust Type Distributed Concentrated
Energy Source Hydrocarbon Hydrogen Nuclear Fuel Solar Storeéjnlélrz;trlcal
Energy Extraction Combustion Fuel Cell Rxn | Nuclear Rxn Photgzﬁltalc Motor
. Steady Unsteady Unsteady
Combustion Type (Constant Pressure) Detonation Deflagration None
Oxidizer Supply On-board Ambient None
Wwork Pe.rf(.)rmed on Compression Heat Exchange None
Oxidizer
Power Source for - Mechanical
Thrust Production Electricity SIS Nonequilibrium

Another advanced propulsion concept that hasrgegge much attention over the
years is a Pulse Detonation Engine (PDE). The RD&relatively simple concept that
uses detonation waves of combustion to add hetltet@ir and increase the pressure of
the working fluid. Instead of producing a steathgam of thrust, the PDE produces a

high frequency pulse of thrust. Table 4 showssthigfunction alternatives that make up

the PDE.

Table 4: Morphological Selection of Pulse DetonationEngine

(1) (2) (3 4 (5)
. Expand Bypass Air & Propeller &
Thrust Production Propeller Exhaust Exhaust Exhaust
Thrust Type Distributed Concentrated
Energy Source Hydrocarbon Hydrogen Nuclear Fuel Solar StoreEan:Irz():/trlcal
Energy Extraction Combustion Fuel Cell Rxn Nuclear Rxn Photgzﬁltalc Motor
. Steady Unsteady Unsteady
Combustion Type (Constant Pressure) Detonation Deflagration None
Oxidizer Supply On-board Ambient None
Wwork Pe'rfc'ered on Compression Heat Exchange None
Oxidizer
Power Source for . Mechanical
Thrust Production Electricity Shaft Work Nonequilibrium

Morphological charts give developers a means ebking the problem down

functionally, so that the entire spectrum of saos can be examined. The
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morphological chart does not give the developercdq@ability to identify new solutions

to problems.

2.2.1.3 Future Wheels

A Future Wheel is another organized brainstorni@afpnique. A trend, objective,
or event is placed in the middle of a workable spadhe primary consequences or
impacts of that central objective or event aretisn a circle around the central objective
or event, and are connected with “spokes”. Thersdary consequences or impacts,
caused by the primary consequences, are then listedsecondary circle around the
primary circle. This growth continues, until alhipacts are understood. Figure 3 shows a
generic decision tree with two levels of impactilotice how the impacts circle the

central event.
Impact
Primary
Impact

Secondary
Impact
Secondary
Impact
Secondary
Impact

Secondary
Impact

Primary
Impact
Secondary
Impact i
Primary
Impact
Secondary Secondary
Impact Impact
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Figure 3: Generic Decision Tree
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Future wheels have can be used for many différengs. First, they can be used
to identify possible consequences of trends or ®sviera logical fashion. For example, if
a corporation is considering raising prices for aretheir products, they could first
identify all of the potential consequences of tpaice increase, such as alienating

customers, and increased revenue per product. n8agoconsequences would then also
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be identified. The corporation would be left wahlogical understanding of all of the
potential impacts of raising their prices.

Future wheels can also be used to forecast patestenarios such as future
markets. Future wheels can also be used to igeertifd understand complex
relationships between systems or objectives. BHgjcit is a method to organize
brainstorming activity, so that potential impactsaocentral theme, objective, or event

can be better understood.

2.2.1.4 Relevance Trees

Relevance trees are a means for hierarchical degsitrons of topics or states or
objectives. They can be used simply to decompasstam or a topic into simpler topics
or subsystems, or in conjunction with scenariosdemtify possible paths to achieving
scenarios or objectives. Relevance trees begim wiaigining a state or objective, and
then working backward to imagine all of the circtamees that could lead up to that the
objective or state.

Relevance trees can be used to identify the sgbéns in a morphological
matrix. They can also be used to identify possgaéhs that corporations may take to
reach a certain end goal or objectives. They a@her relatively simple tool that

increases the decision-makers’ understanding dflenas at hand.

2.2.1.5 Scenario Approaches

The scenario approach consists of carefully canstrg a set of potential future
states, or scenarios. The potential scenariostlaid ranges give decision-makers an
understanding of what the future may have in stou¢ they also give an idea as to how
uncertain the future actually is. Each scenaricrésted from a carefully crafted, logical

set of events. Scenarios are an extremely popaddifor government planners, military
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analysts, and corporate decision-makers [65]s ilnportant to note that scenarios do not
predict the future, but instead highlight potentidglres for strategists [65].

There are different definitions of scenarios, adlwas differing views of what
scenario approaches are. Some experts have defteedrios as descriptions of future
situations, which aid in moving forward to the fteu Other experts define scenarios as
narrative descriptions of potential states or dewelents. Scenarios are considered by
some to be a tool that helps to clarify alternajverhile others consider it to offer
foresight into the future.

Scenario approaches were first used by militargtagiists immediately after
World War II. U.S. military imagined what opponenmight do, and used those
scenarios to plan possible alternative tactics.en@do approaches also gained more
notoriety in the early 1970s when Pierre Wack,anpér in the London offices of Royal
Dutch/Shell, began to identify possible scenari@g tvould significantly drive oil prices
up, such as the emerging power of OPEC. His grdeptified two possible scenarios:
first, that oil prices remain stable and second thigprices are driven up significantly by
OPEC. His group also figured that in order for thiemer scenario to occur, something
unexpected must happen, such as the discoverywobitdields outside of Arab control
[65]. The identification of the scenarios ultimigtgave Shell a significant advantage
over its competitors in the following oil crisis.

Numerous experts have proposed methodical appeeaich building and using
scenario techniques. A list of such methods waspied by Mietzner and Reger, and it
can be found in source [65]. First, the methodscgp that information is gathered and
clarified and that key issues are identified. ®ecothe driving foces and critical
uncertainties are identified. Next, potential pltitat lead to plausible alternative futures
are fabricated. Finally, the key decisions or @sghat would guide the future in the

direction of one scenario or another are identified
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Regardless of the various details of scenario aggbres, they increase the
information that decision-makers have. Decisiorkens have an understanding of what
the future might possibly look like, as well asaigntial set of events that could have led
up to those circumstances. The range of potestiaharios gives an idea of how
uncertain the future is. Finally, the scenario®vpte decision-makers with an
environment that would allow them to identify déars that might need to be made in

the future and to test the effectiveness of th@ssibns under certain circumstances.

2.2.2 Forecasting Methods

Another set of TFA best fall into the categoryfofecasting techniques. These
methods use the information available from histadritends and or expert opinion in
conjunction with modeling and simulation to idewntifuture scenarios and their
likelihoods. Three forecasting methods are disadigglow: time series estimation, cross
impact analysis (Cl), and Trend Impact AnalysisAJll Plenty of other forecasting
methods have been developed, to better understapiedict the future, such as Agent-
Based Modeling (ABM). More information can be ab&d on ABM methods in Gordon
and Glenn from sources [38] and [34]. Time sedsBmation regresses the historical
trends observed in metrics against one or moreabi@s. Those trends are then
extrapolated to predict future changes to the metThe cross impact analysis (Cl)
method incorporates simulation and expert opinmmotecast the overall likelihood of
events happening, given that the events are depeng®n one another. TIA is a
modified trend extrapolation that takes expectedaats of future events into account.
ABM is a modeling and simulation technique thatldge a probabilistic forecast.
Forecasting methods can be combined to obtain #wt prediction of the future

requirements for complex systems.

35



2.2.2.1 Time Series Estimation

Time series estimation is a sophisticated trenmaprlation. Variations exist
within any observed trend. Time series forecadtiisinguishes the systematic variation
from the random variation. The systematic variaii® then used to forecast the future
value of the metric being forecasted. The systemadriations can be explained by
seasonal effects, periodic cycles, random effemtsnany other causes [66]. Simple
historical trends and seasonal effects can be raddesing simple coefficients and
seasonal dummy variables. Seasonal dummy variabdesimple variables, set either to
0 or 1, to indicate which season it is. For exanid the model is broken into four
seasons, four dummy variables would be requirespézify which season it currently is.
The values of the example dummy variables are b&kjw

D;=(,00,0,10,0,0,1,0,0,0,1,0,0/, 0, O,...
D,=(,1000100010,0,0,1,00,O0,DO0,...
D;=(0,0,1,0,0,0,1,0,0,0,1,0,0,0, 10, 1, 0,...
D4=(0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,...

At time t=1 the setting for each of the dummy &hles would be as follows: 1P

SN N N N

=1, while DB, D33, D41, = 0. Statistical tools can be used in conjumctieth historical
data to determine the coefficients for the mainepwhdent variable, time, and the
seasonal variables; the model can then be usemidolate metrig. A linear example of
this model is shown in Equation 1 below for anyeim but the regression equation does
not need to be linear; it could be quadratic, ldbaric, exponential, etc. The
coefficients in Equation 1 are represented wihand y, where the former is the
coefficient for the main independent variable ane later is the set of coefficients that
correspond to the set of dummy variableg. is the metric that is being forecasted.
Notice in Equation 1 that there is no intercepimter An intercept term would be

redundant because a dummy variable exists for ssason.
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Y, = B TIME, +ZyiDit *t& (1) &4

i=1

In Equation 1, the terrey shows the variation in the data that cannot béa@xgd
either through the main trend or through the sealggn Time series forecasting attempts
to identify the portion of that variation that igssematic and models it. Several statistical
techniques have been used to model systematictivariancluding moving averages,
autoregressive functions, and multivariate analys®tatistical software packages, such
as JMP, a product of the SAS Institute, can aithéregressions.

Regression analysis is a particular form of tinegies forecasting, where the
metric is regressed against one or more exploratargables instead of time. In a similar
manner as above, historical data that relates thigiorto the independent variables is
collected and regressed against the historicalabkes. The curve fit that best
approximates the trend is used to model the met8tatistical software packages can
again be used to aid in the regression. Regressmatyses can be highly accurate
because they include a degree of causality. Tbblgm with using them to forecast
future values of metrics is that they can only Wieative if the user is capable of

forecasting the values of the explanatory variabliéis a degree of accuracy.

2.2.2.2 Cross Impact Analysis

Cross Impact (Cl) analysis integrates expert @pinvith Monte Carlo simulation
to identify a probabilistic forecast. First devednl in 1966, it has been widely used in
various fields to forecast probabilities associatétth future events happening [43], [78].
The key to the CI analysis is that it allows anty® capture the dependencies of
possible future events upon one another, withaigaous, physics-based analysis.

Cl accounts for the dependencies by recordingtimelitional probability of each

event occurring, given that each other event dididmot occur. The probability that an
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event occurs is the likelihood that the event wadcur; the probability of event A
occurring is written as P(A). The conditional pabbity is the probability that one event,
will occur, given that another event did occur. isTeonditional probability of event A
occurring given that event B did occur is writtenR{ A | B ). Cl analyses ask experts to
estimate both the probability of events occurring &he conditional probability of each
set of events occurring. Estimating the overatibability that an event will occur is
difficult for experts because they must take itpatelency upon all other events into
account. Estimating the conditional probabilitygwever, is a simpler problem for
experts. The CI analysis, then, is advantageocause the importance of the estimated
probability is reduced.

The CI formulates a forecast by both the expertreded probability and expert-
estimated conditional probability. In order to do, the probabilities and conditional
probabilities must be estimated for each eventnsicler an example with three events,
labeled A, B and C. The initial probability estites are shown in Table 5 below.

Table 5: Marginal Probabilities for Events A-C

Event PEvent)
A P(A)
B P(B)
C P(C)

The conditional probability for each event is sinaw Table 6. The probability in
each cell is the probability that the event rowm wdcur, given that the event column did
occur. For example, the cell that intersects colulnwith row B is the conditional
probability that event B occurs, given that evendil occur. Notice that the values
along the diagonals are all equal to one. Thibeasause the probability of an event
occurring, given that the event did occur, is 100%.

Table 6: Conditional Probabilities for Events A-C
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A B C
A 1 P(AIB) | P(A|C)
B P(BI|A) 1 P(@BI|C)
C P(C|A) | P(C|B) 1

Cl also requires that experts forecast the negatonditional probability. These
values are the likelihood that an event will ocogiven that another event did NOT
occur. Table 7 records the negative conditionababilities.

Table 7: Negative Conditional Probabilities for Evats A-C

A B C
A 0 P(A|B) | P(AIC)
B P(BIA) 0 P(BIC)
C P(CIA) | P(CIB) 0

Notice in Table 7 that the negative conditionallyabilities are all zero along the
diagonals. This simply shows that th¢ # | A ) must be 0, meaning that A must not

occur, given that A did not occur.

After the required information in Table 5, Tabled&hd Table 7 is obtained, a
Monte Carlo simulation is used to estimate the abiliy of different scenarios
occurring. In each simulation, one event is chogemandom, and whether or not it
“occurred” is determined probabilistically, based the initially guessed marginal
probability. If that event is chosen to occur, fr®bability of the remaining events
occurring then becomes the conditional probabiliiyen that the first event did occur.
If the first event was choserot to occur, the probability of each of the remainewgnts
happening is replaced with the negative conditiopaibability, or the conditional
probability of the event happening, given that fingt event didnot occur. Each of the

remaining events is considered in a similar manimea, random order. Each simulation
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trial will produce one scenario. For a further lexy@ation of the Monte Carlo trials, see
source 3. Thousands of trials will yield a distitibn of scenarios that reflect the
integration of expert opinion of both individual gpabilities and conditional
probabilities.

Cl breaks the future down into a series of evémi$ may happen one-at-a-time.
Each event can happen only once. In order to kaedknts that might occur multiple
times, the subsequent occurrences of an event riedoks considered multiple events.
For example, if finding a new source of oil resarigeone possible event and the decision
maker wants to consider the possibility of findimgiltiple new sources of oil reserves,
event A could be finding a first new reserve sour@esecond event, B, could be finding
the second set of reserves. Obviously, in thig,cagent B could only happen once event
A has already happened. In that case, the conditirobability of event A given event
B would be 1, and the conditional probability ofeev B given that event A had not
happened would be zero.

As stated above, CI integrates the expert-estunatarginal and conditional
probabilities, as it is unlikely that those valugsuld initially match up for any set of
events. The values for conditional probabilitiee dound by the laws that govern
conditional probabilities, i.e., there are maximamd minimal acceptable values for
conditional probabilities given the marginal prolhéibs of both events. If the expert-
predicted conditional probability falls into the captable range, given the expert-
predicted marginal probabilities, they are acceptédot, a decision needs to be made to
accept or not accept the conditional probabilitif. there is strong evidence for the
conditional probability value being outside of teceptable range, it is accepted, and the
marginal probabilities will be changed later tdeef the difference. Bayes’ rule can also

be used to ensure that the probability of eventiverg event B, P(A | B), and the
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probability of event B, given event A, P(B | A),eacorrectly related. Bayes’ rule is

shown below in Equation 2.

wia1e)= A5 lta) @
Where: P( A) = probability of A

P( B) = probability of B
P( A | B) = probability of A given B
After the conditional probabilities are computetihe negative conditional
probabilities need to be determined. These cancdleulated directly from the

conditional probabilities, as shown below in Eqoats.

P(A @{MJP(A) 3)

1-P(B)
As was mentioned earlier, if the conditional probaes do not all fall into the
acceptable ranges some sort of iteration schergeiig to be needed to ensure that the
marginal probabilities and the conditional probitieis are consistent.

Traditionally, ClI uses a Monte Carlo simulation é&stimate the marginal
probabilities. The process for using a Monte C&ilmulation to determine the marginal
probabilities is outlined below. Porter furthertalked this process ifrorecasting and
Management of Technolo§§8].

1) Select one of the events at random (Event i)

2) Determine whether that event occurs or does nouro¢asing a

random number generator—i will occur P(i) percefithe time).

3) Select a second event (Event j) from the remaingéwgnts, and

determine whether that event occurs or not.
If i occurred, P(j) =P (j|i); otherwise, P(= P(j|i)

4) Steps 1-3 are repeated until all events have belented
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5) Record whether event i and event j occurred, apdatesteps 1-4, as a

Monte Carlo simulation typically does.

The CI calculated marginal probability of each mveccurring is the ratio of the
number of times the event occurred in each trigideéd by the total number of trials.
Once completed, CI yields a probabilistic estimafethe probability of each event

occurring.

2.2.2.3 Trend Impact Analysis

Trend Impact Analysis (TIA) uses past trends tedpt the future, as do time-
series forecasting methods. Unlike time-serieedasting methods, however, TIA
accounts for the impacts of potential future evamen the future trends. Potential
future events are considered interruptions, anceeshelp analysts forecast the impact
of the interruptions on the trends, thus forecgstite impacts of the interruptions on the
outputs.

The first step to TIA is creating an uninterruptidecast of the variable of
interest, using time series forecasting. A cusvBtied to historical data and that curve is
used to predict the future value of the variabléme-series forecasting is discussed in
section 2.2.2.1. That prediction represents thmtemupted forecast, meaning the
expected future value of the variable, given nareitevents impact that trend. The
second step of TIA is to identify a set of everitattwould impact those trends, and
predict the impact that those events would havararieters that dictate the time and
degree to which a future event will impact the estpd trends must be identified or
predicted. Specifically, the expected time tha évent will initially impact the trend,
the time that the maximum impact will occur, ané time that the steady-state impact

will begin all need to be calculated. In additimnthose times, the maximum impact to
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the trend and the steady-state impact must besestesigure 4 shows a generic impact
to a trend, in percentage of the trend. In thigife, the maximum impact is positive,
meaning that event increases the value or amounhefvariable, but the long-term

impact actually is negative to value of amounthaf variable.
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Figure 4: Typical Event Impact Parameters®®
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The impact shown in Figure 4 could follow the priof a product, in the event
that something disrupted the supply of that produotthe short term, the prices would
increase, as supply is reduced, but ultimately,dbmand is decreased, and prices are
reduced in the long-term.

After the uninterrupted, time-series forecastrsated and the impacts of future
events are forecasted, computer programs combines tto identify an adjusted
extrapolation. The effect of different potentialeats can be calculated alone,
independently, or the events can be coupled. ™peated value of the forecasted
variable is tracked by summing up the potentialfeitvalues and their probabilities. The

combined variance is also tracked, and certaintscgreiles can be placed on the

variables.
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TIA allows decision-makers to use historical trendtelligently to predict the
future value of variables. Like any forecastsidependent upon the assumptions that go

into calculating it. TIA can only predict the inggaof events that can lfereseen.

2.2.3 Decision Making Methods

Decision-makers have developed many methodoldgievaluate and select the
best alternatives, given a set of objectives dexd. These methods are often referred to
as Multi-Attribute Decision Making (MADM) technigge MADM techniques were
investigated as a means of evaluating the advamecegulsion concepts given the
multiple criteria.

The first MADM technique reviewed is commonly netxl to as the Overall
Evaluation Criterion (OEC) equation. An OEC givdexision-makers a single measure
by which to compare the overall goodness of varialtiernatives. Each alternative’s
ability to meat each criterion is measured relatvesome baseline. Each criterion is
weighted appropriately relative to the other créterFinally, the values for each criterion
are summed to form one, single measure of goodieessach alternative. Equation 4
shows a hypothetical OEC for Alternativerelative to a baseline. Thgterm represents
the weighting on each term. In Equation 4, alih&f objectives should be maximized.

OEC,, . = Objective 4 ; N Objective, 4 ; N Objective, 4 ;

! ObJeCtIVQ,Baseline ? ObJeCtIV%,Baseline ObJeCtIVew,Baseline ( )

If an objective is to be minimized, the terms fbat objective would be the
inverse of what is shown in Equation 4. If instéad desirable to exactly meet a target,
the absolute value of the relative difference @& #ternative’s value to the target could
be used in place of the terms shown. OEC equatimmsimple, but effect measures from

which to compare various alternatives.
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Another MADM tool for ranking alternatives is thEechnique for Ordered
Preference by Similarity to the Ideal Solution (T®8). TOPSIS normalizes all of the
metrics that measure the alternatives ability tetheach objective [44]. A positive ideal
solution that has the best attributes from eadh@#flternatives is created, and a negative
ideal solution that has the worst attributes framheof the alternatives is created. Each
of those normalized metrics is then weighted bamedhe relative importance of the
objective. The Euclidean distance of each alteredtom to the positive and negative
ideals is calculated, and the alternatives areearidased on those distances. The closer
an alternative is to the positive ideal and fartheay it is from the negative ideal, the
better its ranking.

TOPSIS and the OEC techniques are both heavilgrdigmt upon the weightings
that are given to the objectives. Those weightergssubjective. While decision-makers
can choose the weightings, another MADM tool, Atialidierarchy Process (AHP), can
calculate those weightings [86]. In AHP, the intpace of each objective is ranked
relative to all of the other objectives, on a sadlé to 9. A matrix is created that
contains all of the relative rankings. The maisixhen normalized, and the average

value of the row in the normalized matrix is usedtee ranking for that objective.

2.2.4 Exploration Techniques

Complex design spaces can be explored by simphplkag portions of the space.
Before those techniques are discussed, it makese denexplain a few terms. Design
space can be defined as the entire set of posslitgatives. In a more mathematical
sense, it is the entire multidimensional rangendependent variables. The variables can
be either continuous or discrete. A response asotltput of the analysis for a unique
design variable setting, or alternative. The respgs’ values are ultimately what the

decision-maker is interested in finding out abtet design space.
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The sampling techniques will produce a set of Iteswalong with the input
variables that produced those results. The sagman be done at regular intervals,
deterministically, or it can be random and prokatd. Intelligent, predefined design
space explorations, or Designs of Experiments,bsansed to obtain all of the required
information about the design space, while runnimg fewest cases, or samples possible
[68]. Design space sampling can be used simplynterstand the design space, perform

ad hoc optimizations, or forecast distribution®ofput responses.

2.2.4.1 Grid and Random Searches

Grid searches are the most basic and thoroughometigins of design space
through sampling. Each dimension of the spaceviset up into regular intervals and
the outputs are calculated for every possible coatlmn of those variable settings. Grid
searches got their name because if used in a tmerdiional space, the points that must
be tested form a grid. Simple grid searches pmwédcision-makers with a quick, but
thorough understanding of the space. The probléim gvid searches is that thorough
explorations require fine grids, and the numbercates to be analyzed increase
exponentially as the dimensions of the problemeaase.

Grid searches can serve as the basis for ad houoipgtion methods. Initially,
the space is divided into a coarse grid, and tlesgibed points are tested. From the
initial grid search, the decision maker identif@®as of the design space where the
optimal solution is likely to exist. Finer gridseadrawn in those areas, and the process
repeats itself. The optimization continues urig ecision-maker is content with the
resolution of the optimization.

Instead of searching the design space rigidly witrid, random searches can be
used. In random searches, the values for the emtkgmt variables that are sampled are

determined randomly. Random searches produce @ ggmopling of the design space,
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and require little overhead to set up. The undadihg of the design space that is
explored is purely tied to how many points are exaohin the random search. Searches

can easily be tailored to the number of designsgoekamined.

2.2.4.2 Design of Experiments

A DoE is a prescribed set of experiments that ywld enough information about
the design space to data to ensure that the MVityadii the responses can be properly
correlated to the variation of the input parame{@&®. The inputs to the DoE are
orthogonal to ensure that the effects of each tlemexperimenter is regressing against
are not correlated with one another. In the casanalyzing complex systems, a
computer simulation is run in the place of conchgtan experiment. Using a DoE to
identify the “experiments” to be conducted via slatiwn allows decision-makers to
create meta-models more efficiently.

There are several different classes of DoEs; geioliides varying amounts of
information about different parts of the designcgaAs the number of experiments that
the DoE requires increases, the fidelity of thesggjiently generated RSE will increase
as well. It should be noted, however, that thearmebdel could still have a poor fit if the
analysis does not behave as the meta-model prddictd full factorial DoE, an
experiment in which every combination of discreteiables is tested, would be the most
complete experiment possible, and would producditjeest fidelity meta-model. A full
factorial DoE would capture all possible interansdetween all of the variables. Such a
DoE, however, usually requires too many test casdse practical. For an experiment
that investigates the impact n variables, eachabtgihas i discrete settings, requirts i
test cases. If there were 12 variables, each 3vahttings, 531,441 cases would need to

be run.
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As the number of experiments in a DoE is reduteglfidelity of the meta-model
produced will decrease. Box-Behnken Designs, a@adtr@l Composite Designs (CCD)
are just two DoEs developed to reduce the numbsmafilations that are required to be
run [49]. These DoE methods reduce the numbemaidlations for 12 variables, each
consisting of 3 settings, from 531,441 in a fultttaial to 2,187 and 4,121, respectively.
Additional information about these DoEs can be tbumEmpirical Model-Building and
Response Surfaces [49], [10]. It should be noted the fidelity of the meta-model
varies throughout the design space. DoEs that imeafewer cases at the interior of the
design space yield RSEs with lower accuracy througlhe interior, while DoEs that
concentrate more of the cases in the interior efdbsign space may produce RSEs that
are less accurate throughout the space, but deelyoipon extrapolation as much for the

extreme boundaries of the space.

2.2.4.3 Monte Carlo Techniques

Monte Carlo techniques are random samplings dedigm simulate reality. They
use computational simulations to determine theridigion of computer outputs, or
responses, experimentally. For each simulatios, ittdependent variable inputs are
generated randomly from a predetermined distrilytidesigned to reflect the actual
distribution of the inputs. For a large numbersahulations, the distribution of the
output responses can be found with a high degraeafracy.

Monte Carlo techniques are not traditionally uded optimization, but for
exploration. The simplest version of a Monte Caglchnique is a random sampling. In
order to produce a random sampling, a uniform iistion is used to generate each
independent variable for each case that is simiilat&he final set of cases should

uniformly reflect the entire design space. Randsamplings are similar to grid
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samplings, but the points are randomly chosen anddiscretely dispersed throughout
the design space.

Monte Carlo simulations allow decision-makers #tdcalate the distribution of
probabilistic outputs based on assumed distribstiofi probabilistic inputs. This
simulation is ideal for quantifying the uncertainifjherent to any analysis. Cumulative
Distribution Functions (CDFs) of the outputs, otegrals of the probability density
function, quantify the probability of meeting chetexistic requirement constraints.
Monte Carlo simulations can also be used to idgmé&fions of multidimensional space.
For example, if uniform distributions are placedalhof the independent variables, the
percentage of the designs that meet multiple caimésr or requirements simultaneously
can easily be determined.

Because Monte Carlo techniques require a large beunof test cases, or
simulations, to portray the distribution of respesmsaccurately, they are difficult to
employ with complex analyses. For this reasony tre frequently used in conjunction
with RSEs or other meta-modeling techniques. Taods of cases can be run when the
analysis consists only of simple equations, yigldangood estimate of the probability

distribution of the response.

2.2.5 Meta-models

As technological systems become more and more lesiipe analyses needed to
evaluate these systems likewise become more and coonplex. Design spaces cannot
be fully explored, because analyzing each alteraatiithin the design space is simply
too time consuming. Fortunately, several methal&lbeen developed over the years to
tackle the problem of evaluating large sets of demgystems. The simplest means of
handling these problems is to first develop a nmetalel of the complex analysis, and

thoroughly explore the entire design space using shmplified meta-model. The
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development of the meta-model is discussed beldwo meta-modeling techniques are

described below.

2.2.5.1 Response Surface Equations

The most commonly employed meta-model is a Regp@gface Equations
(RSE), or a quadratic regression of a complex modSEs are essentially simplified
models of more complex analyses, or meta-modelsey Tapture the dependencies of
responses, or output metrics, to the independenabtas, or input parameters [49].
RSEs are created by regressing the responses taglasndependent variables of
interest. Once an RSE is created, it can be usgilace of time consuming, complex
analyses. While a quadratic RSE is most often ,udexl RSE can be linear, include

higher order terms, or not be quadratic at allqguadratic RSE is shown below:

R:bo"'il:buxi +gbnxi2+ni Zn:bjixixi te

i=1 j=i+1

Where: R = Response
b, = intercept term
b = 1™ order coefficient
bi = 2" order coefficient
b = interaction coefficient
X; = independent variable
The creation of RSEs has been greatly aided bye¢kelopment of DoEs. There

are a few limitations to RSE meta-models to represbe design space. First, the
number of independent variables that can be coresids limited. Although DoEs can
be and have been designed for large sets of vasdhDO variables), they become more
difficult to come by, and often have to be geneatateecifically for the intended purpose.
Second, and perhaps even more limiting, is theondtiat the design space represented

by RSEs must be smooth, continuous, and well behavis the range of variables
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considered in the design space increases, ancespenses behave less linearly, meta-
models usually lose their ability to capture theafaility of the response as a function of
the variation of the independent variables acclyatéinally, RSEs simply cannot model
discontinuous space.

Once RSEs have been generated, they offer theioleamaker the ability to
conduct a plethora of analyses. First, they candssl to quantify the sensitivity of the
responses to the independent variables in theenGiithighly coupled, complex analyses,
that sensitivity is a function of the other varmldettings and cannot be determined
intuitively. Second, the RSEs can be used in ptEcéne complicated analysis for the
purpose of optimization. Because the RSEs prodidect and simple equations to
represent each response, straightforward matheshatptimizations can used to find
optimized design settings. Finally, RSEs can hkedue conjunction with Monte Carlo
techniques (discussed below) to generate distabstiof outputs based on assumed

distributions of inputs.

2.2.5.2 Artificial Neural Networks

Another type of meta-model that is quickly gainipgpularity for its ability to
model non-linear spaces is the artificial neuralmoek [47]. Artificial neural networks
are mathematical models that were inspired theogioal neural network that connects
neurons in the nervous system.

Artificial neural networks are actually simple tamatical models. They define
a functionf : X - Y. The function f actually represents a compositad functions
gi(x), which can also be further decomposed into @vosk structure, as is shown in
Figure 5 [99]. In this form, the output F is ulately a function only of X, because

F=f(G), G=g(H), andH =h(X).
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Figure 5: Generic Atrtificial Neural Network Dependency
There are multiple types of Neural Networks, aneytvary in their complexity
and ability to model various nonlinear functiong][4 They can provide a basis for the

creation of meta-models, and they can even beteseptimize functions.

2.2.6 Stochastic Optimizations

Stochastic optimizations consist of probabilisgolutions that successively
improve from generation to generation. They uguatiempt to mimic real development
or improvement processes, such as evolution. Tachastic optimization methods are

discussed below: simulated annealing and genejaridims.

2.2.6.1 Simulated Annealing

Simulated annealing is a sophisticated stochastimization aimed at finding an
optimal solution within a multimodal design spadenealing is the processes of heating
metal and then cooling it slowly. When the megtahot, it is very pliable, and can be
shaped easily. As the metal cools, however, ibives more rigid, and less pliable.
Simulated annealing has been developed espeamhandle multimodal spaces, as the
design points can move from good points to worgatpavhen the temperature is hot, or
the process is just beginning, to escape potentathl, but inferior minima.

Simulated annealing was proposed by Kirpatrickrasptimization routine meant
to mimic the real process of annealing in 1983 [5R2bints within the space are selected

at random to be the design points, and the obgdtiuction is calculated for the design
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point. A small step is taken in a random directaavay from the design point, and the
objective function is tested at the new pointth# objective function of the new point, or
offspring, is better than the objective functiom fbe design point, or parent, the design
point moves to the new point. Essentially, thesprfilng survives, and Kkills off the parent.
If the objective function for the offspring is wershan that of the parent, usually the
parent will survive over the offspring, but theeestill a chance that the offspring will
survive. In that case, the probability that théspfing survives decreases as the gap
between the parent’ function value and the offgpriunction value widens.

Figure 6 depicts a hypothetical multimodal funetio one-dimensional space that

is to be minimized. Two initial points were sekttat random.

Figure 6: Hypothetical Multimodal Objective Function

Notice that the objective function in Figure 6 hieee local minima. Figure 7
shows the movement from the originally selected peomnts to the two new points.
Notice that one of the points is actually worsentlize original, while the other point is
better. Because it is early in the process—th& fteration—and the offspring is not
significantly worse than the parent, it is likelyat the offspring will survive and the
design point will shift from the original point tihe new point. For the second set of
points, the offspring is lower, or better, than thrginal point, so the offspring will

definitely survive, and the design point will shift
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Figure 7: Initial Iteration of Simulated Annealing on Hypothetical Multimodal
Objective Function

The process described above continues for seiterations. Eventually, after
several iterations, each of the design points lk#ly settle into local minima. This

process is shown in Figure 8.

\
\

Figure 8: Progression of Simulated Annealing on Hypthetical Multimodal

Objective Function

Complex optimization schemes, such as simulateeéalimg, are only used when
the actual objective function cannot be quanti&yiwisualized. If the decision maker
truly understood the shape of the objective fumgtigptimization techniques would not
be required. Unfortunately, decision—-makers carus® a convergence tolerance to
identify whether stochastic optimizers are approaghthe global minimum. The global
minimum is unknown, and the optimal solution foundstochastic optimization will not
improve continuously throughout successive iteraio Tens or hundreds of iterations
can take place with no improvement over the besigdeof the set, and then suddenly, a
new, “optimal” design point can emerge. For tl@ason, decision-makers usually run as
many simulated annealing trials as the decisionemadin afford to run.
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2.2.6.2 Genetic Algorithms

Optimization schemes that simulate the processvolution by natural selection
have generated much attention lately and have esdeag promising new techniques for
handling multimodal spaces. As simulated annealmgnics the real process of
annealing, genetic algorithms attempt to mimicghexess of biological evolution.

The theory behind genetic algorithms is that tfitee’5t” solutions in a gene pool
will survive each generation. “Fitness” in thisseais directly related to the object
function and is greater for solutions closer to fiebal maximum (or minimum for
functions that are minimized). Initially the pamnsists of randomly selected solutions,
or alternatives, but it “evolves” into a better pdbrough time. Throughout each
successive generation, the pool members are mutatedsed with themselves, and
reproduced selectively. These processes allowvbeall fithess of the pool to improve.

The concept driving genetic algorithms is simfiet the actual implementation
of genetic algorithms can vary substantially. Eaatlependent variable required to
define a solution is discretized into settings. cliEgetting is represented by a binary
number. The binary numbers that reflect the sgttor each independent variable are
combined into one long, binary string. The pobkn, is the set of binary strings that
each define one solution or alternative. In motatpart of the binary string, or genetic
makeup of some of the pool members is altered. e aswitches to a one, or a one
becomes a zero. As the process advances, pooleezahtoward homogeneousness.
Mutations ensure that there will be some diveraityong the pool. When pool members
are crossed with one another, portions of the gtiiom one pool member is switched
with the same portion of binary string from a setpool member. As the pool advances
and becomes more homogenous, the impacts of crassall become less and less
evident. Selective reproduction can be complatea number of ways. A “tournament

selection” pairs pool members up randomly, andddke best of the alternatives as the
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next generation pool member. Proportional replasens a deterministic reproduction
method that uses a formula to determine the peagendf the next generation pool that
will be made up each pool member. The proportioeplacement formula is shown

below.

F, =F(X,)if Fistobemaximized
N, =N "LiF where F, = }{: if F istobeminimized
! = PooIS|ze

N = Numberof " i" solutiongn nextgeneratiorpool
N; needs to be rounded, as it will not usually endaspa whole number.
Additionally, the sum of all of the /¢ does not necessarily add up te. Nf this is the
case, either some of the designs that should thedied in the next generation will not be,
or additional pool members will have to be addetht pool, to ensure that the number
in the pool is held constant. While there is nmk best optimization algorithm, genetic

algorithms have been shown to be effective for@ewange of problems [64].
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3 HYPOTHESES & RESEARCH QUESTIONS

The following chapter discusses ten research dquesthat emerged while attempting to
evaluate and compare advanced propulsion concepte discussion that follows the
guestions investigate the answers to those qusstidbhe answers to each question lead
or partially lead up to one of four hypothesedetlisbelow. Hypothesis | is the main
hypothesis that sets up the requirements for thelvifig Requirement Technology
Assessment (ERTA) methodology. The remaining hygets laid the foundation for the
ERTA methodology.

Hypothesis |: Any method designed to evaluate advanced
propulsion concepts must incorporate the possildeations of the

requirements into the assessment.

Hypothesis II: Shape functions depicting distributions of future

requirements can be defined using traditional,daséng techniques.

Hypothesis llI: “Fitness”, a technological concept’s ability to
meet a set of requirements relative to other p@tecdncepts, can be used
to forecast an advanced propulsion concept’s hioeld of successful

development.
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Hypothesis IV: Stochastic optimizations can be used to calculate
fitness as a function of requirements, enhancingisde-makers’

understanding of future technological concepts.

3.1 Hypothesis|

In order to identify the propulsion concept begitesl to propelling the HALE
vehicle, the vehicle system and mission requirementist be known. Given those
parameters, analyses can be conducted to evalaake a®ncept, and decision-making
tools can be used to select the concept that isdvesall. Unfortunately, the values of
those parameters that are used to evaluate eackptaare uncertain. How sensitive is
the comparison of each concept to the potentiahtians in those requirements? Would
the decision-makers come to a different conclugidime requirements were only slightly
perturbed? These observations and questions aralived by the research question

below.

3.1.1 Research Questions

1) Does the uncertainty inherent to the requirementstéchnological concepts
significantly impact the goodness of advanced pisapn concepts?

* The impact that uncertainty in the requirements dxaghe goodness of
propulsion concepts is a function of how greatlg lequirements will
vary. If the propulsion concepts require only arshievelopment period,
changes in requirements will be minor, and the wat&n of the concept
will not be impacted. |If, on the other hand, trevelopment will span
across years, the requirements for the conceptla@uly significantly, and

the concept’s ability to meet the requirements @alitninish.
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2) Should the uncertainty in the requirements for aded propulsion concepts be
incorporated into the evaluation of technologicai@epts?

* The uncertainty inherent to the requirements shauly be taken into
account if there is a good chance that the req@nsnwill deviate
significantly from their original expectations. @twise, the impact of
requirements’ variation will be negligible. Advasttpropulsion concepts
will require years to develop, and the requiremeotssuch concepts

could vary dramatically.

3.1.2 Hypothesis Statement

Any method designed to evaluate advanced propulsmtepts must

incorporate the possible variations of the requeets into the assessment.

The goodness of advanced propulsion concepts mignbe measured relative to
the concepts’ abilities to meet the requirements tie system. Because advanced
propulsion concepts require a significant amounttiofe and resources to be fully
developed, the requirements that they are develtpadeet can significantly change
during the development phase. As the requiremgmasge, so too might the potential
worth of any advanced propulsion concept.

Requirements can change, new requirements canrdsed, or the relative
importance of individual requirements can fluctua@onsider the design of a propulsion
system designed for a civilian aircraft. If jet® allowed to travel supersonically over
land, or if the aerodynamics discipline developsaaoraft shape that produces a low
enough overhead pressure to allow for supersoigbtfbver land, the goodness of any
engine is going to be significantly impacted. Siynghanging the relative importance of

individual requirements can impact the goodnessdefinced propulsion concepts.
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While resources may be devoted to developing madyanced propulsion
concepts, the concepts that ultimately “survive’bezome viable operating systems are
the concepts that are most robustly capable ofintgéte evolving set of requirements.
Whether the changes in requirements stem from gavemt policy changes, market
forces, or enabling technology capability, theylwilgnificantly impact the worth, or
potential goodness, of future systems. Througdeuelopment, changes in requirements
could make advanced propulsion concepts obsolébeebtihey are even fully developed.

There are numerous examples of technologies becpatisolete before they ever
had a chance to make it to the market within aeqmsion systems alone. Consider the
example of the nuclear jet engine or the unducted (UDF). While the testing and
development of the nuclear jet went fairly wellrgeption of nuclear power and the
requirements for such a large system changed thoaighe development cycle. The
program was dropped entirely. Unfortunately foe tbDF, fuel prices returned to
normalcy, and the requirement for fuel-efficiengeres no longer superseded the need
for quiet engines.

In order to capture the variation of requiremente the assessment of advanced
propulsion concepts, two things need to be donest, & probabilistic distribution of the
requirements needs to be identified. The impaairafertainty of requirements cannot
truly be accounted for unless the uncertainty i@ tbquirements itself is understood.
Second, decision-makers must develop the abilityassess the robustness of the
propulsion concepts as a function of that distidout The remaining research questions
were developed while attempting to find a meangooécasting a distribution of the

requirements, and evaluating the concepts, givandistribution of the requirements.
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3.2 Hypothesisl|

Once the impact of the evolution of requirememgsruthe selection of advanced
propulsion concepts is established, a probabiligtiderstanding of the likely future
requirements must be developed. Identifying a abdistic distribution for those
requirements is a sufficient means for means omtiiyeng uncertainty at the early
phases of technology forecasting. Identifying sadtistribution, however, is not trivial.
The following questions arose when attempting teettgp a probabilistic distribution of

the requirements.

3.2.1 Research Questions

3) How can the evolution of requirements for complgstems be predicted?

» Forecasting techniques have been developed and fosegears in a
variety of fields. Technology Futures Analysis A)Fis an initiative
aimed at organizing the research to advance suc¢hoa® There are
several types of these methods, ranging from exqmnion based
methodologies to complex, sophisticated modeling simulation based
methodologies. A few of these methods are disclissw.

* Requirements can be directly forecasted using éxq@nion. The
Delphi Technique is one example of methodology tbatild use
expert opinion to forecast requirements directlyis tailored toward
sampling expert opinion from a wide range of expertlt was
discussed in section 2.2.1.1.

 Trend extrapolation can be use to project histbricends into the
future to predict the value of particular requirense Time-series
estimation is a good example of a trend extrapmiati It was

discussed in section 2.2.2.1.
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» Scenario approaches can also be used to identédw &ey scenarios.
The divergence of the performances of the conagpder each of the
key scenarios can eventually be used to understamdincertainty
associated with the various concepts. Scenarioroappes are

discussed in section 2.2.1.5.

4) How can the interdependent nature of the individeglirements be captured?

Requirements for complex systems, such as the Hgdopulsion system
are partially dictated by the larger-level, intégchsuper-system. In the
case of the HALE, the larger integrated super-systethe entire vehicle
and mission. The individual parameters in the sggstem are highly
interdependent upon one another, as they are higbbpled. Any
forecasting method used to place a distributiothase parameters should
capture those dependencies. Because identifymgeiuirements is only
one part of evaluating advanced propulsion cocnejbis forecasting
method should be relatively simple, and easy tc&ee

The Trend-Impact Analysis (TIA) can be used to ¢at the value of
continuous variables that are dependent upon ew@ntgher variables.
TIA was discussed in section 2.2.2.3. UnfortunatélA cannot be used
to forecast the distribution of discrete variables.

The cross impact (Cl) analysis is a forecastingnagthat can be used to
identify a probabilistic forecast of multiple, deykent events. CIl was
discussed in section 2.2.2.2. With a few modiiawad, the Cl analysis can

capture the dependencies of requirements alortg foriecast.
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3.2.2 Hypothesis Statement

Shape functions depicting distributions of futuexjuirements for the
HALE propulsion system can be defined using traddl, forecasting

techniques.

Forecasting methods have been widely used in nmatustries for years. Entire
fields of research have been devoted to developirop methods, and the research has
produced numerous viable methods. The types afinagents for complex systems and
their roots are going to vary dramatically. Soneguirements will be caused by
government policies, and some will be functionstloé¢ free economy. Still other
requirements are functions of the technologicalettggment (or lack of development) in
tangential technological systems. Because theirsgants come from such different
sources, forecasting all of them simultaneously baghallenging.

Forecasting the requirements is only one part sdessing the advanced
propulsion concepts as a whole. As decision-makerge more time and energy to
devote to the forecasting of requirements, the ouslcan become more elaborate and
exhaustive. For the purposes of the ERTA methddrexasting method must be simple
to implement, but still methodical, and the foreras method should integrate past
trends with future expert expectations. Finallye tforecasting method needs to be
transparent and traceable, so that all assumptebmée clearly stated and understood.

While it is difficult to validate any forecastingnethod, the author believes a
useful forecast of requirements can be derived ftbhen plethora of methods that the
forecasting research has developed. Table 9 ca®mpatew forecasting techniques. The

symbols used to evaluate each forecasting techmigpexplained in Table 8.
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Table 8: Legend Methodology Alternative Ratings

[] Completely Incapable of Meeting Requirement

Poorly Meets Requirement

Sufficiently Meets Requirement

Meets Requirement Well

® O O

Meets Requirement Exceptionally

Table 9: Types of Forecasting Methods

Ease of . Probabilistic Transparency A.VOid Capture .

Implementation Biases Dependencies
Expert
Opinion ® O L L U
Time-Series (o]
Forecasting O o O O
Trend Impact
Analysis - o o o o
Cross Impact
Analysis - ® ° o ®
Scenario
Forecast - O O O O
None o O [ ® [

The cross impact analysis integrates simulatiaih wkpert opinion to identify a
probabilistic forecast. Cl is attractive because éxperts forecast the likelihood of each
event occurring, as well as the conditional proligbof each set of events occurring.
The dependencies of individual requirements carcd@gured and integrated into the

overall forecast.

3.3 Hypothesisl|l|

Once a probabilistic set of requirements is esthbtl, the ability of the
technological concepts to meet those requiremenist ime assessed. That assessment

can then be used to compare the concepts to orieeaindBefore those concepts can be
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compared on a just, “apples to apples” basis, @di@f merit that is applicable for each

propulsion concept, across every set of requiresneist be found.

3.3.1 Research Questions

5) What figures of merit are universal enough to beduto evaluate advanced

propulsion concepts against one another?

Any metric used to compare advanced propulsion eiscto one another
must be applicable and directly comparable acrassyeconcept, and
every set of requirements. Metrics that are smedd conventional
concepts, such as thrust specific fuel consumpttien have no meaning
when evaluating alternative concepts, such as selacles.

System level metrics, such as vehicle weight, ofisgions could be
applicable across all requirements and concepts,mght still not be
appropriate because the values cannot be direaiympared across
different sets of requirements. For example, kdoot make sense to
compare gross vehicle weight, when the vehicle toadly different
missions. The assumptions that go into the caiomaf that parameter
are different, and thus, can only be used to coengancepts to one
another if the requirements are fixed.

Probability of Success (POS) was identified by Barab a figure of merit
from which to assess various concepts. It meastimedikelihood that a
concept would be feasible, given a noise distrdyutin the requirements.
The problem with POS is that it does not give a suea of how much
better or worse a concept is given that both aasilfite.

“Fitness” is a relative figure of merit that speedf how well each concept

meets the specific set of requirements relativether potential advanced
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propulsion concepts being considered. Fitnesseamsed in conjunction
with any quantifiable measure, or even a congloteem@easure, such as

an overall evaluation criterion (OEC) function.

3.3.2 Hypothesis Statement

“Fitness”, a concept’s ability to meet a set ofuiegments relative to other
potential concepts, can be used to forecast a [®iopu concept’s

likelihood of successful development.

Traditionally, the goodness of technological cqusels measured in terms of
physical characteristics that reflect the capabitf the concept. For example, fuel
consumption is often used to evaluate aircraft eegyi Cruise lift to drag ratio is often
used to evaluate aircraft. These metrics are Lsdfean comparing different alternatives
that are part of the same basic concept, but capmaised to evaluate fundamentally
different concepts. Propulsion systems that cdnselar energy to thrust cannot be
evaluated based on their fuel consumption, jusligider-than-air vehicles cannot be
evaluated based on their lift to drag charactessti

Instead of comparing physical parameters, decisiakers need to have a
universal figure of merit that allows them to comgp@undamentally different concepts to
one another. Table 10 compares various figureseasit. The figures of merit were first
evaluated based on how easy they were to deternmilie second category measures
whether the figure of merit was suitable for evéihgaa number of criteria. The third
category measured whether the Figure of merit watigable across the entire range of
concepts, and the final category measured whetteeffigure of merit was suitable to

measure across a range of requirements. Fitnes®@®s are the only figures of merit
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that are always applicable, but only fitness gidesision-makers an understanding of
how multiple feasible concepts compare againstama¢her.

Table 10: Figures of Merit

Ability to L Applicability
Ease of Measure Applicability Across
S ) Across Range of
Determination Multiple Range of
. Concepts .
Criteria Requirements

Physical

Characteristic O © - -
OEC O o —_— —_—
POS —_ o o [
Fitness _— o o o

Fitness measures how well a concept meets théreegents relative to the other,
competing concepts. There are different ways fitaess can be measured, but the
ERTA method will use a proportional measure ofd#s to evaluate how well each
concept can meet the requirements relative to athrecepts.

Fitness is a good indicator of how likely a cortdsgo be successfully developed
because it first measures whether or not a conisepapable of meeting the specific
requirements. If a concept cannot meet the reopgnds, its fitness is zero. Second,
measuring fitness gives decision-makers an idéwwf much better (or worse) a concept
is than the other options. Fitness can be usddéaotly compare fundamentally different
concepts in an “apples to apples” fashion, becanbesystem level metrics that pertain
specifically to requirements are examined. Finalligile fitness does measure the ability
of a concept to meet a particular set of requirdsahis applicable across any set of
requirements, as long as at least one metric shmugptimized, and not just constrained.

The calculation of fitness is described in sectidris?2.
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3.4 HypothesislV

Now that we have found a means of identifying guneements distribution and
found a figure of merit that is suitable to evatuabncepts (fitness), given the varying
requirements, the remaining questions deal witliadigt measuring the fitness of each
concept, given the uncertainty inherent to the ireguents, and the development of the
propulsion concepts. Before any of this can beectiowever, the propulsion concepts
that are being considered need to be identifiedceQhose concepts are identified, their
performance needs to be assessed, and they héeedesigned to meet the specific set
of requirements. Comparing concepts that are eeigded specifically to each set of
requirements will result in an unfair comparisoncohcepts. Next, the fitness of each
concept needs to be calculated. That calculatiowever, must incorporate the possible
fluctuation of requirements and the uncertaintyenaimt to the development of each
concept. More accurate performance capabilities bz assessed for concepts that are

more mature. The varying level of uncertainty reetedbe taken into account.

3.4.1 Research Questions

6) How does one identify and define potential propuistoncepts?

» Identifying advanced propulsion concepts is notagisvnecessary; the
specific concepts being considered could be obvioddamiting the
concepts, however, may prevent decision-makers nogerstanding an
important piece of the puzzle. Advanced propulsioncepts other than
those specified could eventually become the madasir technology,
making all of the specified advanced propulsioncegts obsolete.

* Methods for identifying propulsion concepts mustdasy to implement
and objective. Biases can prevent decision-malens identifying

quality solution. Also, the methodology should well tailored to the
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physical assessment, or modeling of the concepableT11 compares
various alternatives for identifying potential cepts.

Table 11: Methods for Identifying Concepts

Ease qf Objective Range of

Implantation Concepts
Provided by
Customer * - 1
Brainstorming (o] O O
Morphological
Matrixes ° ° °
TRIZ — o O

TRIZ is one possible method for identifying advahcpropulsion
concepts, but is difficult to automate. Morphotmadimatrices (explained
in section 2.2.1.2) may be more helpful. By braegka system down into
the required subfunctions or subsystems, decisiakens can
systematically organize all of the possible sohsido a problem. One
concept can be defined as one unique set of alieesafrom the
morphological matrix. Categorizing alternativesthis way will prevent

decision-makers’ bias from wrongly eliminating cepts.

7) How can the mature performance of advanced prapultsincepts be assessed?

The modeling tools used to assess advanced propuisncepts must be
flexible enough to assess the entire range of ashdhpropulsion concepts
under consideration. Because many of the con@eptsevolutionary in

nature, empirical relationships or data cannot beduto assess these

concepts. A few assessment methods are compaied ineTable 12.
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Table 12: Methods for Assessing Revolutionary Conpés

Ability to
Ease of Evaluate Entire M0del Future,
. Accuracy Mature
Implementation Range of
Performance
Concepts
Qualitative
Assessment o O
Empirical
Model o O —
Empirical
and Physics-
Based o — (o]
Modeling
Physics-
Based O o PY
Modeling
Qualitative
and Physics-
Based O o o
Modeling

The only real way to analyze and predict perfornearnd advanced
propulsion concepts is through first principles lgs@s. Such analyses
can be validated using controlled experiments alaitg initial tests of
immature technology. Predicting the mature peréoroe of the concepts
after they have been developed, however, affordssundh validation.
Research has been done to assess mature perforofaaespropulsion
systems at early stages of development, based en thkoretical
limitations of the concepts [60]. That researcloveh that mature
performance will be dominated by the physical latidns inherent to the
concept. The concepts can be modeled using thplesiphysical and
thermodynamic relationships that define them, imjwoction with key
disciplinary metrics that measure how mature thecgss is, such as

efficiencies, and material limitations
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» Using the simple physical and thermodynamic retesiops is also likely
to increase the computational speed, allowing fomare thorough
examination of the revolutionary design space. ofnbination of first
principles analyses and qualitative assessment$itnatso be useful.
Depending on how much information and experienceisden-makers

have, qualitative assessments can enhance thepibased assessment.

8) How can one systematically find optimized proputstmncepts to ensure that the
comparison is on an “apples to apples” basis?

» Advanced propulsion concepts can only be compasednt another if
they are both optimized to meet the specific setreduirements.
Otherwise, the comparison would be biased. Fromedme the specific
alternative within a particular concept that isigeed to best meet the
specific set of requirements is referred to as dpéimized concept.
Optimized concepts can be considered as local nainimthe entire
concept space.

» Identifying the optimized concept, however, is axtave. Optimization
methods can be used to identify the optimal conceptaditionally,
optimization methods are judged for their abilioy @void local minima.
In this case, they will be required to identify tleeal minima so that the
optimized concepts can be compared. An optiminatieethod should
first and foremost be capable of identify the lazéhima. Additionally, it
should be robust, and not require too much time ctamplete.

Optimization routines are compared below in Talde 1
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Table 13: Optimization Methods

SetUp Computational Identify Local

Time Time Minima? Robustness
Gradient-
Based — O 0 —_—
Methods
Random
Search o O O ©
Genetic
Algorithm O - - ©
Slmulated O _ o o
Annealing
None o o 0 [l

» Gradient-based methods are notorious for gettitgeks in local minima,
but they are deterministic in nature, so the denisnaker would have to
run one optimization for each concept under comatd® to find all local
minima.

» Stochastic optimizing methods can help decisionerakidentify the
optimal design variable settings for advanced pigipa concepts, so that
that the concepts are compared in an “apples tdespdashion.
Simulated annealing, in particular, can identifgdb minima within a
design space, or optimized concepts from the emsiy@ce. Once the
optimized concepts are identified, the goodnessash concept can then

be assessed relative to one another.

9) How can the robustness of HALE propulsion concefis variations in
requirements be incorporated into the overall gesdnof advanced propulsion
concepts?

* Fitness measures how well a concept meets thecuplarti set of

requirements relative to the other concepts that ansidered. The
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distribution of fitness as a function of the proitiabc distribution of
requirements can give decision-makers a quantatinderstanding of
how robust each concept is to variations in reguoets.

The easiest, most accurate way to identify an duliribution is to use
Monte Carlo (MC) trials. Monte Carlo techniques discussed in section
2.2.4.3. Unfortunately, they require thousandsriafs to predict output
distributions. Conducting Monte Carlo trials intlvthe actual assessment
is infeasible, as the assessment will likely be potationally exhaustive.
Fast Probability Integration (FPI) is a method thpproximates a Monte
Carlo simulation to identify a distribution of antput as a function of the
distribution of the input. FPI works by identifgrthe most probable FPI,
and approximating the cumulative distribution fuoet (CDF). More
information about FPI can be found in source [49].

Instead of approximating the Monte Carlo trialg #ttual assessment can
be approximated using a meta-model. Two populatammedels were
considered: Response Surface Equations (RSE) amdaNBletworks,
described in section 2.2.5.1 and 2.2.5.2, respalgtiv

Different means for identifying the distribution fifness as a function of
the distribution of requirements are compared inl@d 4.

Table 14: Calculating the Distribution of Fitness

Thorouahness Ability to Accuracy
Time gnn Assess Multiple  (In Linear
of Exploration oo
Criteria Space)

MC +
Assessment U ® o ®
FPI +
Assessment o O U o
MC + RSE (o) (o) o (o)
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MC + Neural O o Py O
Network

 Monte Carlo trials were conducted using a meta-mbeeause meta-

models can be highly accurate, but require onlyraction of the

computational time of the actual assessment. R&& selected as the
meta-model because the fithess of each conceptpected to behave
relatively linearly with respect to the range ofjugements. The fitness is
a relative normalization of system-level metriasd ahus should be much

more linearly.

10)How can the uncertainty associated with the devetoyg of advanced propulsion
concepts be incorporated into the comparison ottimeepts?

* Once the uncertainty can be measured at systerhdeale and quantified
that uncertainty can be reflected in the fitnesamfadvanced propulsion
concept. The sensitivity of fitness to the majuaf disciplinary metrics
can also be measured. Ultimately, however, uncgytaan be taken into
account by aggregating the fitness of a conceptr dlie potential
distribution of key disciplinary metrics.

* The distribution of fithess with respect to distoipky metrics can be
calculated using the same methods that were usedalmulate the

distribution of fitness as a function of requirerntgen

3.4.2 Hypothesis Statement

Stochastic optimizations can be used to calcuittess as a function of
requirements, enhancing decision-makers’ undersigndof future

technological concepts.
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The final hypothesis statement encompasses theeando that were found to
guestions 6-10. In the third hypothesis, fithess wroposed as a figure of merit that can
be used to evaluate advanced propulsion concepke fourth hypothesis proposes a
means of calculating the distribution of fitness adunction of the distribution of
requirements.

Table 15 summarizes all of the means of assessingnced propulsion concepts.
The ERTA methodology uses all of the highlighteshetnts to assess each concept.

Table 15: Morphological Matrix of Alternatives for Assessing Concepts

Define Provided by Brainstormin Functional
Concepts Customer 9 Decomposition
Model Qualitative Empirical Empirical and
Technological b Physics-BasedMEIES 8 Combination
Assessment Model .
Concepts Modeling
Identify Design Space Lo
Optimal E)gpert. Exploration for Optlmlz_at|on Other
Identification Routine
Concept each Concept
oluilnlrelie il Gradient-Based Random Genetic Simulated None

Routine Methods Search
Physical

Algorithm Annealing

Figure of Merit Characteristic OEC PoS Fitness
Capture Deterministic Probabilistic
Maturity/ Disciplinary Disciplinary
Capability Metrics Metrics
Assess Merit
Across MC + FPI + MC + Meta-

Distribution of Assessment Assessment Model

Requirements

Meta-Model None

A functional decomposition was chosen to identifg concepts because it is an
effective method for identifying a wide range ofteahatives. A first principles
assessment was used to model each of the concegrsde it is applicable across the
entire range of concepts under consideration, bottventional and revolutionary. The
optimal concept for each set of requirements wastified using a simulated annealing
optimization routine, and the fithess of each cpnaeill be calculated from the set of

optimized alternatives. Finally, the distributiaof fitness as a function of the
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requirements and the disciplinary metrics will Is®di to evaluate each of the concepts.
The distribution of fitness will give decision-makean understanding of how likely a

concept is to be feasible in the future, and hoat ttoncept compares to competing
concepts.

It was already determined in section 3.1.2 thay ameaningful forecast of
advanced propulsion concepts must consider theahiity of the requirements.
Advanced propulsion concepts that are feasible wadble to a wider range of
requirements will have a greater chance of sucoge@dnd making it to market.
Decision-makers need a quantitative understandifgpw well the advanced propulsion
concepts would perform given varying requirementkat, combined with a probabilistic
understanding of how the requirements are likelyvéoy would yield an unbiased
predictor of how likely to succeed various advangedpulsion concepts are. Such
knowledge would serve as a basis for comparisomwdset fundamentally different
advanced propulsion concepts, thus serving ascaioradecision-makers when allocating

funds for research.

3.5 Summary of Hypotheses

The first hypothesis stated, “any method designed evaluate advanced
propulsion concepts must incorporate the possiat@atrons of the requirements into the
assessment”. This hypothesis established the toegelvelop a methodology to evaluate
advanced propulsion concepts that took into accdtet uncertain nature of the
requirements. In order to do so, such a methoddvbave to identify a probabilistic
distribution for the requirements and assess tlogligess of each concept as a function of
that distribution. The second, third and forth biygeses were proposed as means of

completing those two tasks.
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The second hypothesis proposed the means of aafalthe distribution of the
requirements. The hypothesis stated “shape fumetiepicting the distributions of future
requirements for propulsion systems can be definsohg traditional, forecasting
techniques.” The cross impact analysis was spetlyi proposed as a means of
forecasting the requirements because it is a velgtisimple forecasting technique that
takes the dependent nature of the requirementaodount.

The third hypothesis proposed a figure of meritb® used to compare the
advanced propulsion concepts to one another. Vpethesis stated “Fitness’ can be
used to forecast a propulsion concept’s likelihebdduccessful development.” Fitness
was proposed as a figure of merit because it dyraoeasures how well a concept
satisfies a specific set of requirements. It ipliagpble and comparable across all
potential requirements

The final hypothesis identified a means of evahgaeach of the concepts, given
the distribution of the requirements. The hypoihetated “stochastic optimizations can
be used to calculate distribution of fithess fowatted concepts, enhancing decision-
makers’ understanding of future technological cpte& A simulated annealing
program was proposed as a means of identifyingéh@ptimized concepts as a function
of the requirements and disciplinary metrics. & could then be calculated from the
set of optimized concepts. Monte Carlo methodsewproposed as a means of
calculating the distribution of fitness as a fuantof the distribution of requirements and
disciplinary metrics. The distribution of fitnegsuld then be used to evaluate the
concepts. Decision-makers would have an understgraf how likely a concept is to
satisfy the future requirements, as well as an staeding of how competing concepts

compare against one another.
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4 METHODOLOGY

In Chapter 2, a review of advanced design methaiesorevealed that no existing
methodology is suitable for evaluating advancedplsion concepts given an uncertain
set of requirements. The previous chapter hypatedshe need for such a methodology,
and set up the basis for a process. The followdhgpter discusses the Evolving
Requirements Technology Assessment (ERTA) methggatself.

Any method designed to assess advanced proputsiocepts, given uncertain
requirements has to have two main elements. Fih&, requirements for future
propulsion systems must be determined. Secondptbpulsion concepts must be
assessed with respect to that likely distributibneguirements. As discussed in Chapter
3, that assessment will use fitness as a figumaait to evaluate the concepts. Fitness
will allow decision-makers to directly measure hawll a concept meets the specific set
of requirements. Comparing the fitness of compgetioncepts will give decision-makers
an understanding of how good each concept is velati competing concepts. Finally,
the distribution of fitness, as a function of thstdbution of requirements, will give the
decision-makers an understanding of how likely eadmcept is to satisfy the

requirements and how sensitive each concept iariations in the requirements.

4.1 Defining the Requirements

The first step to solving any problem is identiyiand fully understanding the
requirements. The requirements for complex systeansbe formulated in several ways.

The ERTA methodology forecasts the requirementsbaiistically, so that the
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uncertainty inherent to the requirements can béucap. Probabilistic requirements can
be obtained in several different ways. They cob&l obtained directly from the

customer, forecasted, or found through an exhauséguirements analysis. The ERTA
methodology uses a requirements analysis in cohgmevith a forecasting method to

identify the probabilistic requirements. Whileadcasting method would be capable of
identifying the probabilistic distribution for threquirements, a requirements analysis is
required to identify the possible requirementsbl&a6 shows a breakdown of methods
that can be used to formulate requirements. Tleeifsp means that were selected for

each category are highlighted.

Table 16: Morphological Matrix of Formulating Requirements

Tvoe of Deterministic Multiple
R yp (Single Missions or Probabilistic
equirements o X
Mission) Scenarios
RELIIEINENRIS Provided by | Requirements Requwements
) Forecast Analysis/
Formulation Customer Analyses
Forecast
Forecasting Expert Time-Series | Trend Impact | Cross Impact| Scenario None
Methods Opinion Forecasting Analysis Analysis Forecast
Requirements Integrated Morphological Systems
d Product QFD P 9 Engineering None
Analyses Study .
Teams Studies

The selections made in Table 16 that togetherifgpde method of formulating
the requirements were identified logically. Eaelestion made in Table 16 is defended
below. For each of the categories, the differeethod alternatives were compared.

Table 17 explains what each of the marks useddrtéimparisons mean.
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Table 17: Legend Methodology Alternative Ratings

[] Completely Incapable of Meeting Requirement
— Poorly Meets Requirement

O Sufficiently Meets Requirement

(o] Meets Requirement Well

() Meets Requirement Exceptionally

The ERTA method needs requirements to be definedapilistically. Table 18
compares different ways that requirements can Weete Determining requirements
deterministically refers to developing only onef sé requirements from which the
alternatives will be compared. While deterministits of requirements are simple to
formulate, they are entirely incapable of allowiftg the incorporation of uncertainty.
Multiple missions or scenarios are often used tmgare concepts that must be capable
of meeting multiple sets of requirements. Multipiéssions or sets of requirements are
easier to identify, and have some ability to incogpe uncertainty, but probabilistically
defined missions provide a much better basis faonporating uncertainty into the
analysis.

Table 18: Types of Requirements Forecasts

Develop Incorporation
: Ease of

Understanding Identification of

of Problem Uncertainty

Deterministic (Single
Mission) L © L
Multiple Missions or
Scenarios © O O
Probabilistic o — o

Probabilistically defined requirements not onlyoyde multiple sets of
requirements, but they also specify a likely dmition for the different requirement sets.
The requirements for complex systems are uncentaimature and thus must be

considered probabilistically. As systems becomeentomplex, the time and resources
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required to develop them fully increase. As timsetincreases, the requirements placed
upon that system are given more time to evolvelmwbme less certain. Additionally, it
is likely that the systems will ultimately be recpd to serve more than one purpose.
Because the requirements for advanced propulsinoegis are so uncertain, evaluations
of these systems must consider an array of reqem&nnot just one determinant set of
requirements or even a few dominant sets of requargs.

Table 19 compares the different methods used tmuiate the requirements.
Each method was first compared based on how muehdasy it was to conduct. The
methods were then compared based on how availablenformation was, and how
suited each was to incorporate uncertainty. THaneo “Availability” refers to how
often such methods can be used to formulate regeimes. Notice that the customer
directly providing the requirements is by far thenglest method, but the method is
inadequate in every other category, as it develitges understanding of the problem, is
unsuitable for incorporating uncertainty, and saahethod is not always available.

Table 19: Requirements Formulation Methods

Ease of I Incorporation of
. Availability .
Implementation Uncertainty
Provided by
Customer ® — [
Requirements
Analyses - ® O
Forecast O o o
Forecast/
Requirements O o o
Analysis

Performing a requirements analysis develops angtronderstanding of the
requirements, and they can always be performea pfbblem with such an approach is
that they are difficult to perform, and are notvadl suited to incorporate uncertainty as

forecast based methods are. The problem with &stdzased methods is that they do not
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develop as good of an understanding of the problémo experts are available to give
their input, or if no historical trends exist toopct into the future, forecasting is difficult.
A combination of forecasting and requirements asialys the best of both worlds,
however. Simplified requirements analysis can leefopmed to identify possible
requirements, and forecasting methods can be wsedentify the likelihood of each
possible requirement.

As mentioned above, a requirements analysis iessacy to identify potential
requirements. Performing a requirements analysigldps a strong understanding of the
requirements, and they can always be performea pfbblem with such an approach is
that they can be difficult to perform and time caméng. A few requirement analyses
are listed and compared in Table 20. These methadse performed in conjunction
with one another—they are not mutually exclusive.

Table 20: Types of Requirements Analyses

Ease of Avoid Incorporation Integration with

_ _ of Forecasting
Implantation Biases Uncertainty Method

Integrated

Product Teams © - - 0

QFD O - © ©

Morphological

Study ° ¢ ° °

None ® [] U U

Systems

Engineering N o o ©

Studies

Experts in a variety of fields are brought togethe discuss and agree upon
requirements in Integrated Product Teams (IPT). il&\they are usually beneficial, the
most outspoken people usually dominate the growgkimg them very biased. Quality

Functional Deployment (QFD) is an encompassing otktigeared toward relating
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requirements to product characteristics. Certaitspof QFD, however, are specifically
geared toward identifying requirements. These oughare relatively simple to
implement, but they cannot be incorporated with fivecasting methods as well, and
they are not well suited to incorporating unceitairSystems engineering studies refer to
the rigorous quantitative analyses of requiremenile problem with these methods is
that they are difficult and time consuming to impent. Also, often, the requirements
may lie outside of the decision-makers area of digge Morphological studies are
perfect requirement analyses because they ideadtifyf the possible sets of requirements
in an organized fashion, and they can be integnattdthe forecasting methods easily.
While the requirements analysis identified pot@ntequirements, a forecasting
method is necessary to identify the likelihood aetle of the potential requirements.
Forecasting the future is a difficult task. Fomdogg the evolution of requirements is a
complicated endeavor on its own. Entire fieldsresearch have been devoted to
developing methods to predict the future, and #search has produced numerous viable
methods [66]. Some of these methods were discuassettion 2.2.2. The method that
is most suitable depends upon the type of requinésrigeing assessed as well as the time
and energy that the decision maker has to devotieetéorecast. It is important to note
that many of the requirement changes may be cdusede of a few factors: changes in
expected horizontal technological capability, maidtganges, or societal policy changes.
Horizontal technological capability refers to caitiab of systems or disciplines that
work alongside of the system in a larger, integtagaper-system. For example, the
aerodynamic and structural systems are two homatsciplines where technological
progress could significantly impact the requirerseplaced upon a propulsion system.
Societal policy refers to requirements driven byisty or government, such as
elimination of emissions or other environmentalulagons with which the technology

must be compliant.
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Table 21 compares a few forecasting methods. nié¢thods are compared based
on how easy they are to implement, and how goodaifeeast is. It should be noted that
quality is a difficult figure to measure, as theeaacy of forecasting methods cannot
really be determined. The ability of the methods&come probabilistic is also noted.
Transparency is important in a forecasting methecabse any method is going to rely
upon many assumptions. Additionally, the abilitfy tbe method to avoid biases is
reflected below. Finally, the ability of the methto capture decencies between various
requirements is also tracked. This trait is imgotrtbecause many of the requirements for
complex systems will be highly dependent upon aratter. The methods are explained
in greater depth in the literature search secti@r22

Table 21: Types of Forecasting Methods

Ease of I Avoid Capture
. Probabilistic Transparency . .
Implementation Biases Dependencies

Expert
Opinion ®

[] [] [

Time-Series O
Forecasting

Trend Impact
Analysis

|
o

Cross Impact
Analysis

Scenario
Forecast

Ol0|0|0
Ol0|0|0
Ol @ O

|
@

Cl Based on
Requirements — o o o o
Analysis

None [ [] ] [] []

Notice that only the methods that capture deperidsnand are somewhat
probabilistic are feasible forecasting methods flee ERTA method. Time-series
forecasting and TIA were not selected because thgyire that the requirement be a

continuous numeric value. This may be the caseséone requirements, but will not
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always be the case. Scenario forecasts do ndy gpaé a good idea of the likelihood of
each of the scenarios, sot they are not as geaward the ERTA method. The CI
analysis gives a probabilistic set of requirements] captures dependencies, but as
discussed in earlier in section 2.2.2.2, Cl requitat the forecast be broken down into a
series of discrete events. Expert opinion and gitimn is then used to determine
whether each event occurs or does not occur. timfately, this assumption may be too
simplistic to be of much use. For this reason, dhéhor proposes modifying the ClI
analysis and basing it specifically on the requeata analysis to make it more
applicable to forecasting the requirements for dempevolutionary systems. The
modification of the Cl method is discussed in smc#.1.1. The modified Cl approach
was selected because it allowed the decision-matkeisapture the dependencies of
various requirements, while also being transparand, capable of forecasting discrete

parameters.

4.1.1 Modifying the Cross Impact Analysis

Unfortunately, traditional Cl is probably too sihgtic to be of much use when
evaluating complex system requirements. Individegluirements could be continuous,
or have more than two likely settings. Creativethnds could be employed to convert
these requirements to sets of simple events, itlarehappen or do not happen, but
doing so would probably be cumbersome. Insteaa Ghanalysis could be adapted to
include a capability to forecast the probabilityesfents when more than two outcomes
are possible. Look at each event as a variable b settings: occurring or non-
occurring. The settings are mutually exclusive,their probabilities must add up to one.
That idea can be extended. Instead of having timbymutually exclusive settings for
each variable, more settings can be consideredhbuinust still be mutually exclusive,

with a total probability adding up to one. Considegeneric event, or variable, A. that
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has three possible settings,a, AA;, and A. The probability of each occurring

individually must sum up to one, as shown in Equas.

P(A)=1 5)

3
i1
In traditional CI, only the probability and condital probability need to be
estimated. The probability of the event not odogris one minus the former, as the
event must either occur or not occur. When a bégidhas more than one setting,
however, the experts must estimate the proballitgach setting. The probability of
each setting, or value, occurring reflects a prdivgidistribution. The sum of the
distribution then must add up to one. Table 22xshsuch probabilities for three generic
variables, A, B, and C. Variables A and C havedfsettings, while Variable B only has
two.
Table 22: Estimated Probabilities

1 2 3
P(A1) P(A2) P(A3)

B| P(B1) P(B2) %/////%

C| P(C) P(C) P(Cs)

One positive and one negative conditional proltgbiinatrix would not be
sufficient to record all of the conditional problii®s when each variable has more than
one setting; a more comprehensive matrix is needeable 23 shows the conditional
probability for the same three generic variablesashin Table 22. In Table 23, the row
indicates the variable setting that is given, dreldolumn marks the variable setting that
is being considered. The value that is in the atethe intersection of row Al and column
B1 is the conditional probability that B will equahe, given that A equals one. All of
the information contained in the positive and negatonditional probability matrixes is

also contained in Table 23, but it is expandedatser third possibilities for variables
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A and B. In Table 23, notice that the conditiopabbabilities along the diagonals are

one and the conditional probabilities of two valéghin one setting is zero.

Table 23: Conditional Probability Matrix

A B Cc
Al A2 A3 Bl B2 C1l C2 C3
A 1 0 0 P(AIB) P(AB) | PAIC) PAIG PAIG
A A2 0 1 0 P(A|B) P(A|B) | P(AIC) P(A|G) PAIG)
A3 0 0 1 P(AsIB) P(As|By) | P(AIC) P(AIG) PAI G
B B1 P(B1A) P(BiIA) P(B|A) il 0 PBIC) PEBIG PBEIG)
B2 PB:lA) P[B:[A) P(B|AY) 0 i PBIC) P[B|CG) P(BIG)
C1 P(GIA) P(GIA) PCIAY) | P(CGIB) P(GIBY) il 0 0
C c2 P(GIA) P(GIA) PGIAY | P(GIB)  P(GIBY) 0 1 0
c3 PGIA) PGIAY) P(AsIAY | P(GIB) P(GIB) 0 0 1

The cells in Table 23 that connect variable sg#tifor the same variables are
shaded and are trivial to determine, as they meisithher ones or zeros. The values for
cells that connect different variables, howeverstrbe determined. These values would
most likely be obtained from expert opinion. ltilgportant to note, however, that the
sum of all of the conditional probabilities for omariable must add up to one. Equation
6 and Equation 7 show this principle for Variable Equivalent conditions would hold

for Variable B and Variable C.

ép(si IA)=1 forj=123 (6)

ép(ci A )=1 forj=123 @)

Each Monte Carlo trial would be conducted in a nansimilar to that of a
traditional Cl. One variable would be selectedratdom, and its value would be
determined, based on the probabilities estimatddble 22. The probability distribution
of the remaining variables would be replaced whih appropriate conditional probability
distribution, and a second variable would be sebttend from the remaining variables.
Estimating the probability distribution of the firand second variables is trivial; the

former is given in Table 23, and the later can denfl in Table 23. Determining the
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value of the remaining variables becomes more el The true probability
distribution for the third variable is the condited upon both the first variable assessed
and the value of the second variable assessedortunétely, Table 23 does not provide
that information; instead, it has to be estimat@he means of estimating that probability
would be to consider only the conditional probaypitlistribution as determined froone
of the variables that have already been determitmaghlistically, this would be either the
first or the last variable that was assessed. biggest problem with this simplification is
that infeasible, or impossible, combinations cduédcreated. Assume that two different
variable values are incompatible with one anotbethat the conditional probability for
the combination is zero. If the probability dibtrtion is found as a function of only one
of the previously determined variable values, the®mpatibility could be overlooked.
Another approach to calculating the conditionablgability distribution of one
variable upon multiple other variables would beat@rage the conditional probabilities
of all of the previous variables. The calculata@ra simple average is shown in Equation
8. In this equation, the probability distributios determined for the "h randomly
selected variable; % 3..n.1 represent all of the variables that have previpoumsen

determined.

X, [X)+P(X, [X,)+.. P(X, | X,.)

P(an[xlﬂxzﬂxnl]): P( n-1

(8)

Simple averages would ensure that the dependdradiyaf the previous variables
would be accounted for, but would not eliminate asgible or infeasible combinations.
In order to do so, the calculated conditional pholity would have to equal zero if any of
the specific condition probabilities equal zerosaswn in Equation 9.

if P(X, |X;)=0foranyi,where12i>n P(X, |[X;NX,N..X,4])=0 9)

Logic can be introduced to the averaging of cood#l probabilities, in order to

ensure that incompatible combinations are not geedr If the conditional probability of
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any variable value upon the previously determinediables equals zero, the new
probability of that variable value equals zero. hétise, the probability would be a
simple average. This logic, however, could potdiyticause problems for the Monte
Carlo trials. It would introduce conditions undehich the constraint that all possible
conditional probabilities sum up to 1, as showiEquation 6 and Equation 7 is violated.
A simple normalization of the non-zero conditiomabbabilities would eliminate this

problem. Equation 10 shows this normalizationtfo i" selected variable that has m
potential variable settings.

Pxnle N X ﬂ..,Xn_
B, [0 ) = O P 0X2 0 X,

§:|:>(>(ni |[lex2 m"'xn—l])

i=1

(10)

Once this logic is in place, Monte Carlo trialsnceommence. As mentioned
above, an initial variable is selected at randomgd ats value is determined
probabilistically from the variable’s probabilityistribution. A second variable is
selected from those remaining, and its value iserdehed from the appropriate
conditional probability distribution. Values a@uhd for each of the remaining variables
probabilistically, in a random order. For eachitase variables, however, the intelligent,
normalized conditional probability distributionused.

It should be noted that Cl alone may not be sffic to forecast the future
requirements. Particular requirements may be bé&itecasted using other techniques,
such as a trend regression. For example, if dcpt requirement is thought to be
independent and can be represented by a continaoiable, it might make sense to use

a time series forecast to model the evolution af garticular requirement.

4.2 Assessing Advanced Propulsion Concepts

Once the requirements for advanced propulsion euschave been identified,

decision-makers can begin to assess each propusiacept. Hypothesis Il proposed
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that fithess be used as a figure of merit to evaltlae advanced propulsion concepts.
Hypothesis IV proposed that the distribution ofidiss, as a function of the requirements,
be used to understand how robust each conceptvariations in requirements. It also
outlined a process by which to identify that distition.

In order to calculate the distribution of fithdss each concept, decision-makers
must develop a means of calculating fitness asetifon of the requirements. Once that
is done, a Monte Carlo simulation can be used &mtity the distribution of fitness.
Directly relating fithess of each concept to regmients is not simple, however. For each
specific set of requirements, the optimal conceptsthe concepts’ designs that are
optimized to the specific requirements, must benébu This requires the ability to
measure each advanced propulsion concept's penfmenaas well as the ability to
identify each optimal concept. Once each optintadcept is identified, the fithess of
each concept can be found.

Calculating fitness as a function of the requirateeis computationally
exhaustive. For this reason, a surrogate modelldhme created to relate fitness directly
to the variability of requirements in a less congpioihally exhaustive fashion. Because
the maturities of advanced propulsion concepts gaggificantly, decision-makers will
also have to incorporate the uncertainty inherentethnological development. The
surrogate model can also capture the variatiortneds as a function of the variability of
key technological metrics. The following sectiorsadisses the identification of the
optimal concepts, the calculation of fitness, amel incorporation of uncertainty into the

calculation of fitness for advanced propulsion @apts.

4.2.1 Identifying Optimal Concepts

Identifying the optimal concepts is not a simpledeavor. Each advanced

propulsion concept must be optimized to meet thecifip set of requirements.
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Optimizations are difficult tasks. Identify con¢gpunder consideration. Assess the

concepts. Use a simulated annealing program tdifgeéhe optimal concepts.

4.2.1.1 Identifying the Advanced Propulsion Concepts

Before the advanced propulsion concepts can lBsseag, they must be identified
or defined. Sometimes, decision-makers are origréisted in comparing a few concepts
to one another. If that is the case, definingdtwecepts is trivial. If problem is broader,
defining the concepts becomes more difficult.

Brainstorming is an easy way to generate concépitsthe brainstormers’ biases
will most likely prevent them from considering albssible alternatives. TRIZ, which
was explained in section 2.1.1, is a method intdridestimulate creativity and identify
novel solutions to problems developers incur. Pphablem with TRIZ is that it difficult
to implement. Also, while several solutions araally identified, the range of solutions
is not as encompassing as the author would liketHer ERTA method. Functional
decomposition is the best way to identify concepitss easy to implement and biases are
reduced because the decision-maker functionallysstierough the system and identifies
all necessary parts or subfunctions. When allhaf means of accomplishing those
subfunctions are identified, the set of possiblaniomations makes up a large

combinatorial space that defines the possible fssbrcepts.

4.2.1.2 Modeling Advanced Propulsion Concepts

Once the concepts have been identified or defittexl ability of each to satisfy
the requirements must be assessed. In order snddecision-makers must have the
ability to model each concept and forecast how wellould perform, given specific sets
of requirements. Such a modeling method must hicable to the entire range of

concepts under consideration, and should be asaecas possible. They should also be
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able to model the mature performance estimatesobiblogy, even when the technology
is immature.

The ERTA methodology proposes modeling the babigsigs behind advanced
propulsion concepts in order to forecast how watlheconcept will be able to satisfy the
requirements. Qualitative assessments are easyptement and can be used to evaluate
all of the concepts, but they lack the physics-tamealysis that allows for an accurate
comparison. Empirical models cannot be used ttuat@advanced propulsion concepts,
as many of the concepts are outside of the histiodatabase. Models that rely upon a
combination of empirical modeling and physics-baseodeling might be capable of
assessing most concepts, and would be more acainatedeling conventional concepts,
because they would be based on empirical data.h $ethods, however, would be
biased toward today’s performance, and it wouldliffecult to assess the future, mature
capability of certain concepts. Physics-basedyseal are best suited toward predicting
the mature performance of advanced propulsion quecg0]. The performance of
concepts will improve throughout time, but will iatiately be limited by the physical
principles that govern the concept. Combinatiorthmés that combine physics-based
analyses with qualitative assessments might alsevdr¢hy, because decision-makers
could include assessments that cannot easily beelewdby using physics-based

principles, such as cost and ease of developmentegration.

4.2.1.3 Optimizing Advanced Propulsion Concepts

Once all of the concepts have been identified,ethod by which to model each
alternative and assess its ability to satisfy tbguirements has been developed, each
concept can be optimized to best satisfy the sipe@fijuirements. As was proposed in
Hypothesis IV, a simulated annealing program canubed to ease the process of

identifying optimal concepts. As was discussediezara concept is a classification, or
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grouping, of alternatives. An alternative is aqud setting of design variables, or unique
engine. In order to compare concepts to one anathan “apples to apples” fashion,
decision-makers must be able to identify the optiommcept. Finding those optimal
concepts accurately, however, is not simple. Tdtezally, if the concepts were well
enough understood, expert opinion could be useéuastead of an optimization to find the
optimal concept. Unfortunately, expert opiniondrorates biases into the evaluation of
the concepts, and is not very accurate. Sever#ghade can be used to identify the
alternative that is used to compare each concdpiey are shown in Table 24. The
methods are evaluated based on how easy they ampliement, whether or not they can
easily be automated, how accurately they identiy dptimal concept, and how quick
they are. They are also evaluated based on hatlady are at finding all of the optimal
concepts simultaneously. Gradient-based optinunatiethods are robust optimizations
to find the optimal design of one concept, howetleey cannot easily find all of the
optimal concepts.

Table 24: Methods to Identify Optimal Alternativeswithin Concept

Ability to Find
Ease Of. Automation A_v0|d Speed Optimal
Implementation Biases Concepts
Simultaneously
Expert
Identification ® J 1 ® ®
Design
Space ] O o ] O
Exploration
Gradient-
Based O o o O —
Optimization
Stochastic
Optimization O © ° © °
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The optimal concept identified by experts, butegithe complex nature of the
concepts that are being identified, it is unlikéiat experts would be able to accurately
identify the optimal alternatives within the contejDesign space exploration is a robust
method for finding optimal or near optimal desigarigble settings, but it is a laborious
process, and could not easily be automated. Deagigoe exploration requires evaluating
the entire potential space, usually through theaisesurrogate model, and identifying if
a feasible solution exists. If multiple feasibleematives exist, design space exploration
finds the optimal alternative. If no feasible afi#ives exist, design space exploration
identifies the best alternatives. It is not preadtito perform design space exploration on
all possible concepts, when more than a few coscagt being considered. Optimization
routines, on the other hand, can identify the oglisettings robustly and automatically.
The optimization routines are discussed below.

The ERTA method uses optimization routines to iifehe optimal alternatives
within each concept. Instead of performing anvidiial optimization on every possible
concept, the ERTA method seeks to perform one apdtion method on the entire
revolutionary design space. An optimization roatithen, would have to be capable of
the local minima in the space, as each local mimmeaflects one optimized concept.
The optimization routines also have to be robusiugh to handle discontinuous spaces,
as the revolutionary design space is most likeglyi discontinuous. Table 25 compares

a few optimization routines.

94



Table 25: Optimization Methods

SetUp Computational Identify Local

Time Time Minima? Robustness
Gradient-Based
Methods - O 0 -
Random Search (o] O O (o]
Genetic
Algorithm O - - ©
SlmUIa!:ed O —_— o o
Annealing
None o o 0 M

Gradient-based optimization methods are provenerghénistic optimization
methods, but they are not appropriate for idemntdyihe optimal alternatives within each
concept. First, gradient-based methods use theatiee objective function to identify a
direction to move. The revolutionary design spagd# be discontinuous, and
consequently, the derivative will not always exiSecond, gradient-based methods get
stuck in local minima, but because they are detastic, it is difficult to identify
multiple local minima. If multiple gradient-basegtimizations were run, each starting at
a different point, the local minima could theoratig be found, but this would be a
cumbersome approach.

Random searches would give the decision-makerod giea of what the design
space looks like, but other optimization routinge anore efficient. Both genetic
algorithms and simulated annealing would allow tlexision maker to replicate the
evolution of individual technological concepts pabbistically, but in very different
ways. As was discussed in section 2.2.6.2, geadgimrithms optimize by simulating a
“pool” of solutions that evolve together, and thugprove throughout time. In each

subsequent generation, the pool members are crasgedach other and then reproduce,
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ensuring that the pool will become a more homogemuixture of the best of the pool
members. While simulated annealing also consikta t{pool” of solutions that will
hopefully evolve through time, those solutions &eoindependently. There is no
crossing of solutions; whether or not an “off-sgfirthat is reproduced survives into the
next generation is ONLY a function of the “goodriegkthe offspring relative to the
“goodness” of the parent. In that way, the diffexe between genetic algorithms and
simulated annealing can be related to the diffeeenbetween sexual and asexual
reproduction. Each offspring would be essentialmutation of the parent.

Advanced concepts will evolve as resources arested in advancing them, but
they will most likely evolve as isolated entitiesBecause of the intricacies of
interconnecting different parts of technologicalncepts, it is unlikely that parts of
concept A will be able to be merged with parts ohaept B to produce an evolved
concept C. Simulated annealing replicates evatutiathout crossing solutions in the
pool; therefore, the author proposes using it tolicate the evolution of individual
technological concepts, as it more accurately t@staeality. Because the simulated
annealing routine is stochastic, it will allow dgon-makers to identify alternatives very
near each of the optimum concepts, but it will midstly not identify each optimal
concept.

The simulated annealing algorithm begins with @lpaf completely random
solutions. In each consecutive iteration, one alde in each solution is perturbed
slightly, or mutated, to produce an offspring.thé offspring is more fit than the parent,
the offspring survives to the next generation, tredparent is killed off. If the offspring
is less fit, the probability that the offspring gwes is a function of how much less fit it
is, and how far into the evolutionary process tlyorithm is. As the algorithm moves
forward, just like in simulated annealing, the likeod of an inferior offspring surviving

over a superior parent is less and less.
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Throughout the process, the solutions that thé pmasists of will slide into local
minima, or valley, assuming that the objective fiorc is to be minimized. The
percentage of the solutions that fall into eaclallaainima will be directly related to the
percentage of the design space that is take updylobal minima (breadth), and the
steepness of the walls on either side of the miniffiae fitness of the points trapped in
each valley will be directly related to the fithedghe optimal point in the valley (depth).
Consider a generic, one-dimensional objective foncthat has three local minima as

shown in Figure 9.

«— A, —e— A, e A, >
®
®
©

Figure 9: Generic One-dimensional Objective Functio

Given the function shown in Figure 9, the pointsai simulated annealing pool
would theoretically get “stuck” in the valleys ldbé “A”, “B”, and “C”. Because the
points in the pool are generated randomly from oum distribution of the space, the
percentage of the pool members stuck in Valley Aildde equal to the ratio of Area A
to the total space of A Ag, and A.. Because the simulated annealing program is
stochastic in nature, the percentage of pointsalley A would mostly likely not exactly
equal the ratio, but it would approach it. The dmed annealing program would
ultimately identify the optimal concepts, which cater be used to fairly compare

concepts to one another.

4.2.2 Calculation of Fitness

Once the set of optimal concepts is known, theefis of each concept can be

calculated for a specific set of requirements. pbel of optimized concepts is actually a
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pool of optimized alternatives. The fithess ofteatternative in the pool is a function of
how well that alternative satisfies the requirerseas well as a function of how well the
other competing alternatives satisfy the requirdsienThe relative fithess of each
alternative, RF is a measure of the proportional goodness of eanhept. The formula

for the relative fitness is the same formula thaswised in genetic algorithms for

proportional replacement, and can be seen beldwgimation 11.

z i (11)
Where: RF= relative fitness of alternative i
£(X,) = objective function
i(x,) if £(X,)istobemaximized
T % ) T £ (X, )is to beminimized

As was stated earlier, an advanced propulsionegairis really a set of propulsion
alternatives. In the generic objective functiomwh in Figure 9, the “valleys” could
each be considered subsets of the design spacthuntkchnological concepts.

After the simulated annealing algorithm progresbesugh a sufficient number of
iterations, the decision maker can use the makétpedinal pool to forecast the fitness
of each of the concepts for the specified requirgse The alternatives present in the
pool can each be classified into a concept, depgnuh the classification scheme that the
decision maker chooses. The overall relative $isnef a technological concept equals the
sum of the relative fitness of the entire set ¢éralatives present in the final pool, as is

shown in Equation 12.

RF = RE
ConceptA z I (12)

All Alternatives
Containedn A

The relative fithess of each concepts containgasore how good the concept is,

as the fitness of each concepts is a relative measugoodness. The fitness of each
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concept also incorporates a measure of how “easygnaept is to implement. As was
described above using Figure 9, the percentageeddliternatives in the optimal pool that
are part of each concept is a function of how moicthe feasible space is made up by
that concept. As the percentage of the optimall ploat is made up of a concept
increases, the fitness of that concept will alsarease because there are more
alternatives’ fitness to sum. If two or more teslugical concepts are mutually exclusive
and make up the entire concept space, the refitiness of those concepts will sum up to
one. This can be shown through the commutativpeoty of addition, as the relative
fitness of all of the alternatives present in timalf pool will sum up to one by definition
of the relative fitness in Equation 11. The redatfitness of each technological concept
reflects how likely it is to survive if it were allved to mature, given the requirements

that the analysis was based upon.

4.2.3 Incorporating Uncertainty into Assessment of Concets

The previous section detailed a method creategivdecision-makers the ability
to compare fundamentally disparate technologicaicepts, and determine the fittest
concept for a set of requirements. As was discussalier, however, the future
requirements that a technological concept is requito meet are highly uncertain,
especially given the long gestation period requited develop complex systems.
Selecting the fittest advanced propulsion concegsted on one set of requirements is
naive, as the decision maker would have no ideademsitive the fitness of each concept
is to the specific set of requirements. In orderunhderstand the fitness of various
advanced propulsion concepts fully, the problenvesomust consider the variability of
the requirements when assessing the fitness ofidémical concepts.

While the requirements for future technologicalnoepts are uncertain, the

maturity of the concepts is also uncertain. Théunity of advanced propulsion concepts
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can be modeled by inputting disciplinary metricsoirthe analysis of the concept.
Disciplinary metrics are variables and constraihiat can be included in the physics-
based analysis. Component efficiencies are goamples of disciplinary metrics.

Maximum temperatures or elasticity of materials @s® good examples of disciplinary
metrics. They allow the decision-maker to propagalementary improvements in
technology up to system level metrics. The unadsgtan maturity of concepts can be
measured by placing distributions on disciplinamtmes.

Decision-makers must also consider the uncertamtgrent to both the future
requirements for the concept and the developmetiteofoncepts, to fully understand the
goodness of any concept. Both sources of uncéyt@ian be incorporated into the
analysis by calculating the distribution of fithessa function of both the distribution of
requirements and the distribution of disciplinargtrits. Performing such a calculation,
however, is not simple. The method to assessities$ of technological concepts as a
function of requirements is not a trivial analysig—+s a computationally exhaustive
effort. Methods discussed in Section 2.2.6 caruded to give the decision maker a
guantitative understanding the fitness of theseamded propulsion concepts as a

function of adistribution of sets of requirements.

4.2.3.1 Calculating the Distribution of Fitness

The possible methods for identifying the distribatof an output as a function of
the distribution of an input are listed and compdreTable 26. Monte Carlo simulations
are the simplest, most accurate means of forecastim distribution of an output as a
function of the distribution of inputs. In orddret forecast to be accurate, however, a
large number of simulations need to be run. Runhilonte Carlo simulations with the
actual assessment is incredibly time consumingst Peobability Integration (FPI) is a

method that approximates a Monte Carlo simulatmoiaéntify a distribution of an output
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as a function of the distribution of the input. |FR®rks by identifying the most probable
FPI, and approximating the cumulative distributfonction (CDF). More information

about FPI can be found in source [49]. FPI is ecuste method of approximating
Monte Carlo simulations, and it reduces the nundferuns necessary to identify a
distribution by thousands. Unfortunately, howeVd?) is specific to individual metrics.
Because decision-makers need to find the fitnessnahy concepts, FPI must be
conducted for each concept. Table 26 compareshtiee ways that the distribution of
outputs can be calculated as a function of theilligton of the inputs.

Table 26: Calculating Distribution of Fitness

. Thoroughness Ability to Accuracy
Set Up Computational Assess .
i : of : (In Linear
Time Time Exploration Multiple Space)
P Criteria P
MC +
Assessment © . - ° o
FPI +
Assessment O - O . ©
MC +
Meta- — @) o o o
Model

Notice in Table 26 that a Monte Carlo in conjuantwith the actual assessment is
the most accurate means of calculating the didtdbuof the fitness. This method
however, is simply too computationally exhaustiseuse. The Monte Carlo trials take
thousands of trials to calculate a distributiond @ach assessment takes approximately
30 minutes to calculate. At that rate, it woullet200 days to run 10,000 Monte Carlo
trials. FPI in conjunction with the assessment dae much quicker, but the fithess of
each concept must be determined. FPI analysesivinawve to be conducted individually
for each concept’s fitness, which is also infeasibMonte Carlo trials in conjunction

with a meta-model, or surrogate model, however, ldvdoe a good way to model the
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distribution of the fitness. It was infeasible tepresent the variability of the
revolutionary design space as a function of théatian in the design variables using a
meta-model because the revolutionary design spachkighly discontinuous. The
variability of the fitness of the technological cepts as a function of the variability of
the requirements and disciplinary metrics, howeigeg more behaved space that would

most likely be able to be captured with a meta-rhode

4.2.3.2 Creating a Meta-Model

There are a few types of meta-models that candeel in place of the actual
model to calculate fitness. Table 27 compares $weh methods: Response Surface
Equations and Neural Networks.

Table 27: Meta-Model Alternatives

Setup Computational Accuracy Degrees of

Time Time (In Linear Space) Freedom
None o O o o
RSE O o o O
Neural . o o O

Network

The row labeled “None Meta-model refers to using &actual analysis. Notice
that using no meta-model is time consuming butrdfanany degrees of freedom, and is
highly accurate. Unfortunately, it is too compigaally exhaustive to use in conjunction
with a Monte Carlo Simulation. Neural Networks ay@od for describing non-linear
spaces, but the fitness of the concepts withinrdéinge of requirements and disciplinary
metrics should be linear. RSEs were chosen to sgragate model because they are
easier to formulate, and should be accurate. Neuetworks could replace RSEs,

however, without a disruption to the method.
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In order to develop a meta-model that relatesabdity of the fitness of each
concept to the variation of in the requirements, decision maker needs to follow the
steps of Response Surface Methodology (RSM). ,Fih& decision maker needs to
identify the independent variables and their rangethis case, the independent variables
will be the requirements used to design systemxt,Nke data that relates the response,
in this case concept fitness, to the variatiorhmrequirements needs to be generated. A
DoE is used to select the design settings for rements (independent variables) that
must be run. Then, the decision maker needs teessgthe responses against the
requirements, and check the validity of the metaleho

Once the meta-model has been created, the deaisadk@r can quantitatively
observe the sensitivity of each concept’s fithesshie requirements and disciplinary
metrics. This will serve as a sanity check for tiverall system, as erroneous physical
correlations will become obvious, and it will inase the decision-maker’s understanding
of the problem. More importantly, the meta-moddl serve as the analysis used in the
Monte Carlo simulation that allows the decision merako calculate the overall
distribution of each concept’s fitness as a functid the forecasted distribution of the
requirements.

The nature of the fithess parameter requires ithae treated carefully with a
meta-model. As was stated earlier, the fithessach concept will vary between 0 and 1,
and the sum of the fithess parameters from mutwatilusive concepts that total the
entire space must be 1. The relative fitness paten®m of these concepts are NOT
independent. For this reason, the author suggestsprocessing the fithess parameters
generated by the meta-model to ensure that thesBtparameters are bounded correctly.
The proposed post-processing routine is simples fétowing is conducted for the set of
mutually exclusive concepts that sum up to thererdpace. If the minimum of the

relative fithess parameters is less than zero,pghameter value is subtracted from all of
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the fitness parameters. Equation 12 shows theulaticn of the minimum fitness
parameter, Z.

Z = min|min(RF, ),0] (13)

Where: RF, = set of RFas calculated from meta-model

The minimum fithess parameter, Z, is subtractemnfrall of the meta-model
calculated fitness parameters, to ensure that fath® relative fithess parameters are
positive or zero. Then, the parameters are nopedlby the sum of all of the new
relative fitness parameters. Equation 14 showsctleulation of the relative fithess
parameters from the meta-model predicted relatineds parameters.

RE = RE, -Z 14
"SRR, -2)
Where: RF= relative fitness of alternative i
RFni = meta-model predicted RF of alternative i
Z = minimum of RF parameters per Equation 13

Once the decision maker has the ability to rethte relative fithess of each
concept to the set of requirements that the conbaptto meet quickly, the decision
maker can run the Monte Carlo simulation on thesgnibed distribution for the
requirements. The distribution of relative fitndsseach concept can be examined, or it
can be used to determine an integrated overativeltness given the distribution of the

requirements.

4.2.3.3 Evaluating the Distribution of Fitness

As discussed above, the fitness of each concelptnv@asures how well the
concept meets a specific set of requirements. r€ifj0 shows the fitness of three generic
concepts, given a fixed set of requirements andni@ogical maturity metrics. Figure 10

is actually a probability density function, whetetfithess value for each concept is
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shown in the x-axis, and the likelihood of thatuelis shown in the y-axis. Because
Figure 10 depicts the fitness of three conceptsafdixed set of requirements and
technology, there is no uncertainty in the fithessasures. Concept A is infeasible,
because its fithess is zero—it is not capable téfying the requirements. Concept B
and Concept C are both capable of satisfying tlggiirements, but Concept C is a

slightly better alternative.

I Concept A
[ JConceptC
1r o7 [ lConceptB |]
0.8r b
2
a9
_fg 0.6 b
<)
a
0.4r b
0.21 b
0 L L L L L
0.2 0.4 0.6 0.8 1

Fitness
Figure 10: Fitness of Three Generic Concepts for ked Requirements

In Figure 10, only three concepts were evaluated all three concepts are
mutually exclusive. The fitness of each concepsitiilen sum up to one. Notice from
the figure, that this constraint was enforced.

Figure 10 shows that Concept C is more attractiwe the specific set of
requirements and technology, but the figure doet giee the decision-maker an
understanding of how sensitive each concept is doatrons in the requirements.
Decision-makers must know how the uncertainty ie tiequirements impacts the
distribution of fitness for each concept. Figurke shows a generic distribution of the

fitness for the same three concepts.
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Figure 11: Fitness of Three Generic Concepts for Biribution of Requirements

Notice in Figure 11 that Concept C still appeassbe more attractive than
Concept B. The figure also shows, however, thatgbodness of Concept B is much
more certain that the goodness of Concept C. iBHiecause the distribution of fithess
for concept B is much tighter. Decision-makers Idouse this information when
evaluating advanced propulsion concepts at eaatyestof development. The uncertainty
in fitness can be directly related to the risksoasged with developing advanced
propulsion concepts. Decision-makers can useiitetalition of fithess for each concept

as another figure of merit when evaluating theseepts.

4.3 Method Overview and Summary

The ERTA method was developed as a means of camgpémndamentally
different technological concepts, given an uncersat of requirements. The method can
be broken down into two main parts, formulating treguirements and assessing
advanced propulsion concepts, based on each ctméigpss. Figure 12 shows a flow

chart of the ERTA methodology.
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Figure 12: Flow Chart of ERTA Methodology

Notice how in Figure 12, the ERTA methodology isken into two main parts,
identifying the requirements probabilistically, amdsessing the propulsion concepts,
given the distribution of requirements. A morplgital matrix was used to identify
potential requirements, and a cross impact analy&is conducted to identify the
probabilistic distribution of those requirementéfter the concepts were identified, a
surrogate model was created that calculated fitassa function of requirements and
disciplinary metrics. That surrogate was used amjunction with Monte Carlo
techniques to identify the distribution of fitnefss each concept. The distribution of
fitness could then be used to evaluate how good eancept will be, and how robust
that goodness is to likely variations in the regoients.

Advanced propulsion concepts could be evaluatédgus number of different
methodologies, but the ERTA methodology is a n@amroach to assessing advanced
propulsion concepts, because it sought to assessbustness of each concept to the

likely distribution of the requirements. Table 28ows a morphological matrix of
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alternatives for evaluating advanced concepts.leT2B is a relatively simple account of

such methodologies, but it shows that there aré721000 different methodologies that

could be used to evaluate the concepts. The attees chosen in the ERTA
methodology are highlighted.
Table 28: Complete Methodology Morphological Matrix
RELIEINERICI Provided by | Requirements For_ecast/
. Forecast Requirements
Formulation Customer Analyses ;
Analysis
Type of Deterministic M.ult|.ple Probabilistic
Requirements Missions
Expert Time-Series | Trend Impact | Cross Impact| Scenario
Forecasting Opinion Forecasting Analysis Analysis Forecast
Methods
None
: Integrated . Systems
Riqr:gegneints Product QFD Morgf:g(ljoglcal None Engineering
y Teams y Studies
Need Advanced Expert Likelihood of Use
propulsion e JPDM Meeting Technological
Opinion :
concepts? Requirements| Assessment
. . Physical .
Figure of Merit . OEC POS Fitness
Characteristic
Define Concepts Provided by Brainstorming Funct|on<_31! TRIZ
Customer Decomposition
Model o o Empirical and .
Technological Qualitative Empirical Physics-Based I Combination
Assessment Model ; Principles
Concepts Modeling
Identify "Best" Expert Design Space| Optimization Other
Alternatives Identification | Exploration Routine
Optimization Gradient- Random Genetic Simulated
Routine Based Search Algorithm annealin None
Methods 9 9
Deterministic | Probabilistic
WEESICRVEWNEW] Disciplinary | Disciplinary
Metrics Metrics
Find Distribution MC + FPI + MC + Meta-
of Metrics Assessment| Assessment Model
Meta-Model None RSE Neural
Network
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The ERTA method combined simple requirements aeslyand stochastic
forecasting techniques to identify a probabilistarecast of the requirements. A
morphological matrix was selected to identify tresgible sets of requirements, because
it is a simple, but organized, method of identifyiall possibilities. A cross impact
analysis was used to forecast the likelihood ohezfcthe requirements, because it uses
expert opinion and it is a simple, but effectivetinoel for accounting for dependencies
between requirements.

The ERTA method assesses advanced propulsion misnbg evaluating the
distribution of fitness across the distributionrefiuirements. Fitness gives a measure of
the likelihood that the concept will produce fedsikalternatives, as well as an
understanding of how “good” it is, relative to comtiipg concepts. If the fitness of a
concept is zero for a significant portion of theuigement space, the concept is most
likely not a feasible alternative. The outputstioit analysis give decision-makers an
understanding of how sensitive the fithess of amncept is to any particular
requirements. Concepts that have a relatively giitnéss across a wide variety of
requirements are robust to variation in requiremenRobustness is a key indicator of

how successful an advanced propulsion concept dmddme, if developed.
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5 PROOF OF CONCEPT

The ERTA method was used to assess various advamopdIsion concepts’ ability to
supply a HALE Hurricane tracking UAV with power apdopulsion. The requirements
for such a propulsion system will be dictated by tehicle, mission and NOAA
requirements, all of which are uncertain. Suchamalysis served as an excellent
demonstration example of the ERTA method becauwsesitirements for the propulsion
system are uncertain, yet complex and correla#&ido, the results of such an analysis

will be of interest to the aerospace industry.

5.1 Hurricane Tracking HALE Vehicle

Hurricanes have become an increasingly destrudtinee in recent years. The
strong winds and storm surge that accompany thenstare dangerous and can cause
millions of dollars of damage to infrastructureragathe coast. Unfortunately, hurricane
forecasters are still not capable of predictingctyawhen and where hurricanes will
make landfall. To ensure that the people are waia of each hurricane’s path, miles of
extra coastline are evacuated, to account for tleertainty in the storms trajectory. A
hurricane-tracking vehicle could vastly increaseerste’s knowledge of the formation
and path of hurricanes. This information couldused to increase the accuracy of the
storm’s predictions and eventually reduce the aesbciated with evacuation.

According to NOAA, an average year will produce thdmed storms, Ssix
hurricanes—two of which can be categorized as mgjdt. Recently, however, the

warm waters and the wind patterns have been resgerfsr producing more tropical
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storms with greater intensity. “In 2005, the Atlarhurricane season contained a record
28 storms, including 15 hurricanes,” [74]. Figut8 shows the tracks that 2005

hurricanes took.
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Figure 13: 2005 Hurricane Tracks ™

Before the 2005 hurricane season, NOAA predictet the season would be
more active than usual, but even then, only expetB15 tropical storms [73]. NOAA
is predicting an active hurricane season for 2086wall, and expects 13-15 named
storms [74].

Scientists today are able to track the developroérturricanes through many
sources, including ships and buoys in the watessiggionary satellites, and “Hurricane
Hunters” that fly into the actual hurricane. Untorately, none of these sources are able

to continuously track and monitor the hurricaneate8ites cannot detect important
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information accurately, such as barometric presame wind speed. Ships are limited
because they are slow and vulnerable to large steawes. The Hurricane Hunters are
effective, but their missions are expensive, argy tbannot continuously monitor the
hurricane. If a vehicle could be developed thatl¢doiter over the development of a
hurricane, and track it though its entire cycleteneologists could generate much more
knowledge about hurricanes. That information cdaddnputted into forecasting models
and eventually reduce the uncertainty in the mogbeedictions. The industry currently
estimates that evacuating one mile of coastlindscoa average one million dollars.
Increasing the accuracy of hurricanes’ forecashelightly could reduce the amount of

coastline that has to evacuate, saving milliongatifars for each hurricane.

5.1.1 Vehicle Mission and Overview

The hurricane tracking HALE vehicle is intendedptovide continuous coverage of the
development and lifecycle of hurricanes. It woultimately be responsible for loitering
over the “hot zone” where hurricanes are formed, fatiowing a hurricane once it has
be developed. Active Doppler Radar, infrared imggsensors, and Electro-optical
imaging sensors can all be used to observe theomgcfrom above. Expendable
observation devices, such as non-maneuvering dnoescand small autonomous UAVS,
can be dropped into the storm to gather informatidhe small UAVs could maneuver in
and around the cyclone eye-wall to provide a 3-disi@nal map of the wind speed,
direction, pressure, etc. Ultimately, the vehidesystem of vehicles, must be capable of
taking off from the US mainland and monitoring areaver which most hurricanes
develop.
The actual required speed, range, and endurante ofehicle are currently still

being investigated. They could vary, dependingh@nrequired monitoring activities of

the HALE and the capabilities of the technologydusedevelop the HALE aircraft. The
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vehicle would have fly at an altitude high enouglbé safely above the hurricane, and it
would have to travel quickly enough to keep up witl hurricane, despite any potential
winds aloft. The target velocity for the HALE amft is between 105 and 215 km/hr.
The vehicle would also have to have an enduranaeishgreat enough last through a
decent portion of the hurricane season. NASAuisently looking at mission lengths

between 7 and 100 days. Once the HALE identifiegcdone, it will have to follow the

cyclone at an unspecified speed, dropping the algid#a payload as it goes. NOAA has
not specified what type of vehicle they are intezdsn pursing, meaning that the vehicle
could ultimately appear to be anything from a hagier to a traditional airplane to a

blimp. Figure 14 shows a schematic overview ofHidd.E UAV’S mission.
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Figure 14: Mission Overview for HALE UAV

5.1.2 NASA Conceptual Design Team

Fortunately, the demand for a high altitude, lemglurance vehicle is not unique
to NOAA. National security would benefit from hagi such a vehicle to provide
surveillance for borders and other sensitive aréssciety in general would benefit from
having a HALE vehicle provide communications relaflALE vehicles could provide

more powerful coverage than satellites, but be nfleseble and easier to upgrade than
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towers. Additionally, they could serve as the camipations infrastructure in a
catastrophic situation, such as Hurricane Katrilmamergency relief was hindered there
by the failure of the cellular telephone infrasture.

Because of the interest in a HALE vehicle, NASAemsbled a conceptual design
team to investigate the requirements and assestea#ility of such a vehicle. The
design team consisted of experts across a broage rah disciplines, ranging from

propulsion to structures to electronics, navigaaod control.

5.2 ldentifying a Probabilistic Requirements Forecast

Before advanced propulsion concepts could be sasdethe requirement that the
concepts will have to meet must be understood. phescribed in section 4.1, a
morphological analysis was conducted to understia@dequirements, and a cross impact
analysis was conducted to calculate the potenisadiloution of those requirements. The
probabilistic forecast of the requirements that @leanalysis yielded enhanced the
understanding of the requirements and later seased distribution from which to
evaluate the potential propulsion concepts.

One of the difficulties of conducting a forecagtimethod that requires expert
opinion is actually obtaining the opinion from qtiad experts. Fortunately, the
conceptual design team workshop that NASA held edrGia Tech, with the aid of Dr.
Mavris and Dr. Kirby presented a unique and fortenapportunity to directly query
experts from a diverse, but applicable set of gisws. Before the workshop, each
NASA HALE Concept Design Team member investigatead aresearched the
requirements that pertained to his or her areaxperise. They also investigated
possible alternatives for subsystems within thesaaf expertise. At the workshop, they
were able meet and together further investigategfjairements for such a vehicle, and

investigate the feasibility of various vehicle cepts.
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Part of that workshop entailed the developmen& ehorphological matrix that
identified all of the possible mission parametess the UAV. The experts were also
asked to give their input as to the likelihood ofe tvarious mission parameters.
Similarly, the design team developed a morpholdgnatrix that identified all of the
possible vehicle characteristics. For each passibhicle characteristic, experts rated the
alternatives according to appropriate metrics, @setl that to come up with a normalized
measure of goodness.

The requirements for a HALE propulsion system Wwél dictated by the mission
parameters and vehicle characteristics. Accorgjiibe workshop provided a basis from
which to formulate the requirements for advancedpplsion concept. The possible
requirements came directly from the morphologicatm, and the distribution of the
requirements was found through a cross impact aisalyMost of the expert opinion
required for the CI analysis came directly from therkshop, as the design team did
compare alternatives. The design team also exahtime vehicle characteristics and
mission parameters that were interdependent. ®hdittonal probability estimates were
derived from this examination. Finally, a modifi€l analysis was performed on a
selected set of the mission parameters and veluckracteristics to formulate a

probabilistic set of relevant requirements for dleeopropulsion system.

5.2.1 Identifying Potential Requirements

The HALE Concept Design Team’s first task was teate two morphological
matrixes, one of the mission parameters, and onght® HALE concept alternatives.
This matrix enabled the design team to better wstded the system requirements and
alternatives, but it also served as a basis foabéishing the requirements for the
propulsion systems evaluated in this study. Innti&sion parameters matrix, the mission

that the HALE aircraft would have to perform washken down into the major mission

115



segments or parameters, and alternatives for esginent or parameter we listed. The
mission parameters morphological matrix is showmable 29. The number of missions
described in Table 29 (as found by all of the uaiquombination of alternatives) is

almost 516 billion missions.

Table 29: HALE Mission Parameters Morphological Matix

Altitude >13 km >18 km > 20 km
Time On station ~7 days ~30 days ~100 days Unlimited
Mission Radius ~3500 km ~5000 km ~7000 km ~10000 km

Tropical, Hurricane Tropical, Year

Location and Time of Year Unlimited CONUS

Season Round
Station Keeping Accuracy ~1 km ~5 km ~10 km
Critical Ground Speed 105 kph 150 kph 200 kph 250 kph
Wind Tol: Launch and Recoveryj 10 kph 25 kph 50 kph
Wind Tol: Sustained < 100 kph ~ 100 kph ~150 kph ~200pk
Gust tolerance: Uniform <7.5 mps <15 mps <22.5 mps
Service Life ~3000 hrs >7500 hrs >10000 hrs >40000 hrs
Expendable Payload Dropsondes Mini-UAV Drop and UAV Noe
. . Disaster - .
Fixed Payload Hurricane-Doppler Monitoring Hurricane Package
Broadband Cell Phone
Weather Standard Day Near All Weather All Weather
Completion Rate >90% >95% >99%
>99.9% >99.99%

Auxiliary-powered

Mission Operational Concepts Refueled in Flight Single Vehicle Formation Flight

Deployment
. . Tip-joined Multi-
Serial Flight Vehicle
Operating Environment Mil Std 210 Std Day Mil Std 210 Cold Mil Std 210 Hot Day Mil .Std 210
Day Tropical Day
Runway length <150 m <1500 m <2000 m Circular
Recovery None Wheeled R unway Parachute Parasail
Landing
Skid Gear In Air Recovery Water Landing Stall and Drop from
Low Alt.
Launch Towed Wheeled Runway Dolly
Launch
Runway width <45m <60 m Circular

The vehicle characteristics morphological matexshown in Table 30. Notice
that the morphological matrix is broken down intobsategories of configuration,
command, control, and data link and actuation. idéothat a major discipline of the

UAV is missing from Table 30. The propulsion systecharacteristics are not
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considered. While the HALE Concepts Design Teard dientify the potential
propulsion system characteristics, they were leftad this analysis, as the ultimate point
of the exercise is to establish the requirements the propulsion system. A
morphological matrix was created that defined athe possible propulsion concepts that

were considered in the analysis. Ignoring the pisipn systems, the number of vehicle

systems identified in Table 30 numbered almostrdiin.

Table 30: HALE Vehicle Characteristics Morphologicd Matrix

Variable Geometry None Span Sweep Dihedral
Chord Aux surfaces
Rotorcraft None Helicopter Autogyro Tiltrotor
None W-B-T/C Bi-plane All wing
Fixed Wing . .
Three surface + B Joined wing
None Dirigible Blimp
Configuration Airship (LTA
9 PLTA) Hybrid Powered Balloons
Detect and Avoid Radar Chase EO IR
Laser Ultrasonic IFF/Transponder Tip lighting
Health Management None Federated Integrated
Flight Control Sensors Flight control leve| Precise Binting GPS only GPS + compas]

Command Mission
Termination Systems

None

Controlled Return

Controlled Ditch

Parachute

Pyrotechnic

Autonomous Safd

Control Hard

Over
Command None Single channel Dual channel Freq Hopping
Command Link: Line of Sight |Single BSW”'Dua Mil band Commercial Band
Command Link: Beyond Line None Relay HF GEO
of Sight LEO VLF LF
Controlled: Non- | Controlled: Pitch | SEMi-Auto: Pre-
Controlled: LOS programmed
LOS Roll Rate Inputs P
. Static Mission
Climb & Descent -
Semi-Auto: Fully Auto:
Heading, Alt., [Fully Auto: IVHM Mission
Speed inputs Management
. Semi-Auto: Pre-
. Controlled: Non- | Controlled: Pitch
Controlled: LOS programmed
LOS Roll Rate Inputs D
Control Cruise Static Mission
Semi-Auto: Fully Auto:
Heading, Alt., |Fully Auto: IVHM Mission
Speed inputs Management

_ LOS Roll Rate Inputs Static Mission
Take-off and Landing Semi-Auto: Fully Auto:
Heading, Alt., [Fully Auto: IVHM Mission
Speed inputs Management

Controlled: LOS

Controlled: Non-

Controlled: Pitch

Semi-Auto: Pre-
programmed
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None Single channel Dual channel Freq Hopping
Data Link: Li f Sight i .
. ata Link: Line ot Sig Single Down-Dua Mil band Commercial Band
Data Link Up
Data Link: Beyond Line of None Relay HF
Sight GEO LEO
Differential Electric Motor Pneumatic/
Actuation Actuation Systems Thrust Hydraulic
Piezoelectric SMA

The morphological matrix created by the HALE CqgriseDesign Team was an
excellent basis from which to formulate the requieats for the HALE propulsion
system, but it needed to be modified slightly. Thatrix contained many system level
parameters or characteristics were not considerede early analysis of the propulsion
system, either because the differences in thenaltiees did not have significant impact
on the propulsion system, or because the authoplgidid not have the capability to
analyze the impact of the different alternativeBhose parameters and characteristics
were removed from the analysis. Because they wetrenodeled, they could not impact
the result, and they complicated the CI analysis.

The remaining portions of the morphological masxwere combined to form
one morphological matrix that defined and organittesl potential requirements for the
HALE UAV'’s propulsion system, as shown in Table 3llhe morphological matrix took
parts of the morphological matrixes in Table 29 dadble 30. Not all of the elements
that will not significantly impact the goodness ®&ch of the potential propulsion
systems, but they were included because the almla@ved that they could have an
impact on the propulsion system. It is better &wvéha variable and ignore it in the
analysis than it is to ignore it initially and negdater. Over 2 trillion systems were

identified in Table 31.
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Table 31: HALE Propulsion System Requirements Morplological Matrix

Altitude >13 km >18 km > 20 km
Time On Station ~7 days ~30 days ~100 days Unlimited
Mission Radius ~3500 km ~5000 km ~7000 km ~10000 km
Location and Time of Year Tropical, Hurricane Tropical, Year Unlimited CONUS
Season Round
Station Keeping Accuracy ~1 km ~5 km ~10 km
Critical Ground Speed 105 kph 150 kph 200 kph 250 kph
Service Life ~3000 hrs >7500 hrs >10000 hrs >40000 hrs
Expendable Payload Dropsondes Mini-UAV Drop and UAV Noe
Broadband Cell Phone Hurricane Packagd
Fixed Payload
Hurricane-Doppler |Disaster Monitoring
Weather Standard Day Near All Weather All Weather
Mission Operational Auxiliary-powered | oo oled in Flight | Formation Flight Tip-joined Multi-
Deployment Vehicle
Concepts
Serial Flic_]ht Single Vehicle
Operating Environment | Mil Std 210 Std Dayj Mil SthilO Cold Mil Std 210 Hot Day] Mil Std 2Dl;)yTrop|caI
Runway Length <150 m <1500 m <2000 m Circular
None Wheeled 'Runway Parachute Stall and Drop from
Recovery Landing Low Alt
Skid gear In air Recovery Water Landing Parasalil
Launch Towed Wheeled Runway Dolly
Launch
Runway Width <45 m <60 m Circular
. None Span Sweep Dihedral
Variable Geometry Chord Aux Surfaces
Rotorcraft None Helicopter Autogyro Tiltrotor
None W-B-T/C Bi-plane All Wing
Fixed Wing Three surface + . .
Joined wing
Body
None Dirigible Blimp
Airship (LTA .
Irship (LTA) Hybrid Powered Balloons

5.2.2 Initial Probabilities

Once the possible requirements were defined (TabJethe probability of each
possible requirement had to be forecasted. Thear@lysis uses expert opinion to
identify the initial probability of each mission @aneter or vehicle characteristic actually
becoming part of the future system, and hencefuaduequirement. The cross impact

analysis assumes that only one and only of theilglessutcomes that is listed in each
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element will occur. This means that two potentaliernatives in the same element
cannot occur simultaneously, or the alternativesmauntually exclusive, and that one of
the alternatives must occur. For example, the HAkRicle must cruise at an altitude of
13 km, 18 km, or 21 km. The probability of all thfe alternatives that comprise one
element or parameter, consequently, must sum uneéo The expert estimated initial
probability for two of the mission parameters,tatfie and ground speed, are listed below
in Table 32.

Table 32: Selected Probabilities of Mission Charaetistics

Altitude >13 kir >18 kir > 20 knr
Probability 0.1 0.t 04
Critical Ground Spee 105 kpt 150 kpt 200 kpt 250 kpt
Probability 0.1t 0.8 0.04 0.01

A full list of the initial probably estimates fdne potential requirements settings

can be found in APPENDIX B.

5.2.3 Compatibility Matrix

The modified CI analysis also takes into accobatdependencies of the different
potential requirements on one another. Certagrratives will not be compatible with
one another. For example, it is unrealistic tebast that the UAV will be a lighter than
air vehicle that will travel 250 kph. In additioto the incompatibilities, certain
alternatives will be correlated with one anotheeamng that if one alternative is part of
the system, there is a greater chance that anatteznative will also be part of the
system. An example of correlated mission parammeatery be critical ground speed and
altitude. The chances of a lower ground speedrareh higher at low altitudes, because
the density of the altitude is greater and theestbe power required to propel the UAV
would be much greater. There are also negativeeledions between alternatives of

different elements. Finally, some of the elemeénilyy are independent of one another,

120



meaning that if one alternative is part of the ¢argystem, the likelihood of alternatives
from another element being part of the system changed.

A large compatibility matrix was formed that reldtthe conditional probabilities
of alternatives in each of the elements to altéreatin another. The entire matrix is
cumbersome, as one row and one column are regfairezhch of the alternative present
in the matrix. A few excerpts from the compattyilmatrix are shown below. The
compatibility matrix relates the conditional probayp of each alternative in the row,
given that the alternative in the column headingast of the system. The probability
listed on the far left is the initial probabilitpif the alternative, as predicted by experts.
Table 33 shows the conditional probability for twamlependent variables, Altitude and
Service Life. Because the variables are independes conditional probability for each
alternative is equal to the initially estimated lpability, as selecting one of the
alternatives had no bearing on the selection obther. Also notice that the alternatives
within each element, are mutually exclusive. Tikelihood of the altitude being under
13 km, given that it is 18 km is zero.

Table 33: Excerpt from Conditional Matrix (Independent Variables)

Altitude Service Life
> ) %) 2 2
= = £ £ £ = < <
Qo ~ ~ B4 o o o o
S — - N = 0 o o
= A A A C}’J '; — <
Element Alternative A A
0.1 >13 km 1 0 0 0.1 0.1 0.1 0.1
Altitude 0.5 >18 km 0 1 0 0.5 0.5 0.5 0.5
0.4 > 20 km 0 0 1 0.4 0.4 0.4 0.4
0.1 ~3000 hrs 0.1 0.1 0.1 1 0 0 0
Service | 015 >7500hrs | 015 015 o01p o 1 0 0
Life 05 >10000hrs | 05| 05| 05 0 0 1 0
0.25 >40000 hrs 0.25 0.25 0.2b 0 0 (0 lI
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Figure 15 shows the joint distribution for the twariables shown in Table 33.
Notice in Figure 15, that the two variables realty appear to be independent. This can
be determined, because the ratio of the probalohtthe various altitudes appear to be
the same, regardless of what the service lifeAsthe same time, the ratios between the
probabilities of the service life settings are slaene, regardless of what altitude has been

selected.
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Figure 15: Joint Probability Distribution for Servi ce for Independent Variables
Table 34 is another excerpt from the compatibititgtrix. Table 34 however, shows two
variables that are dependent upon one anothertuddtiand Critical Ground speed.
Notice in Table 34 that there is a positive cotiefa between increasing altitude and
increasing ground speed. As the latitude thatlscsed increases, the probability that the

speed will be higher increases as well.
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Table 34: Excerpt from Conditional Matrix (Independent Variables)

Altitude Critical Ground Speed
)
= < < < <
= i E|Els| g8 g
o
S 213 |« 8| 31| 8 B
E N N N — — N N
Element Alternative
0.1 >13 km 1 0 of 01 031 01 O
Altitude 0.5 >18 km 0 1 0 0.5 0.5 0.5 0.5
0.4 > 20 km 0 0 1 0.4/ 04 0.4 0.4
0.15 105 kph 019 01% op 1 0 0 0
Critical s
Ground 0.8 150 kph 0.8 08/ Op O 1 0 0
Speed 0.04 200 kph 0.0 0.04 ok o 0 1 0
0.01 250 kph 0 001 01] O 0 0 1

The entire compatibility matrix is not shown inyaappendices, simply because it
is too large to readily show on paper. Figure 6w the joint distribution of the two
variables shown in Table 34. The joint probabiktiyows that the two variables are
clearly correlated. Notice that the likelihoodtbé speed being 250 kph at an altitude of

13 km is zero.
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Figure 16: Joint Probability Distribution for Dependent Variables

5.3 Evaluating Advanced Propulsion Concepts

In order to evaluate the fitness of propulsionaggis a tool that can assess the
range of potential concepts, under the variety ateptial requirements, is required.
Unfortunately, while several propulsion analysisgrams exist, a tool that was flexible
enough, robust enough, and simple enough to impierdal not exist before this
research initiative began. Consequently, an aisagrsvironment was created, based on
the physical and thermodynamic processes that oecw propulsion system. The
environment essentially evaluates the propulsiatesy and creates a simplistic, engine
deck. That deck is then used to size a paramiyrispecified aircraft or air-vehicle.
The fitness of each concept is then calculatedhgusie propulsion analysis and vehicle-
sizing program. The basic principles of the aswses$ environment, the Advanced

Propulsion System Analysis (APSA), are describddvioe
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5.3.1 Identifying Advanced Propulsion Concept Space

The first step to assessing the advanced proputsiacepts was identifying the
concept space. The In order to do this, the psipulsystem was broken down into the
fundamental processes that must be present inpaulgion system. Table 35 shows the
breakdown of the advanced propulsion concepts. leT@b broke propulsion concepts
into a few main subfunctions. First, the “combaisti subfunction examined how the
engine extracted the energy from any sort of onbdael. If a battery was the main
energy source, combustion was not necessary. W&arioel types were examined.
Additionally, if combustion occurred, an oxidizerasv required. Either that oxidizer
could be taken from ambient air, or it could beetioonboard. Additionally, because of
the long duration required for the vehicles, enarggded to be replenished. The energy
renewal subfunction lists alternatives for renewihg energy of the propulsion system.
Finally, the vehicle must convert electrical or Shenergy to thrust. Main methods
behind this conversion are also listed.

The combustion processes discussed in Table 3%oxppate combustion
processes. Pressure is not truly conserved inaoingressure combustion processes. A
small percentage of the total pressure is losthim ¢combustion process. Similarly,
constant volume combustion processes are combugbiatesses that can be
approximated as occurring at a constant volumd) ascdhe combustion in a four-stroke
engine.

Notice in Table 35 that the propulsion conceptslamited. Nuclear propulsion
concepts were ignored both because of the complaxiblved in such engines, and the
low likelihood that the engines would be consideredlso, while batteries were
considered as the basis for thrust generationsatiieor assumed that batteries alone

would not provide enough energy efficiently enotglpower the HALE vehicles.
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Table 35: APSA Morphological Matrix

Constant Constant
Combustion Volume
Tube None Fuel Cell Pressure Combustio
yp Combustion N
Q SICIRRY M None H Jet-A CH CsHsg
o Battery None Nickel- Nickel-Metal | Lithium Zinc-
n Type Cadmium Hydride Polymer Bromide
C .
2 Oxidizer None | Ambient | o ed Q
=i Air
2 Oxidizer Heat .
N
Preparation None Addition Compression
Energy None Solar Refueling Beamed
Renewal Energy
Thrust
Production Propeller| Bypass Jet Pure Jet

There are 10800 propulsion concepts identifie@iahle 35.

5.3.2 Creating a Surrogate Model to Relate Fitness to Regrements

The ERTA method strives to give decision-makersuaderstanding of how
robust advanced propulsion concepts are to vansitio requirements. In order to do so,
the ERTA method calculates the distribution ofd#a as a function of the distribution of
requirements. Before that can be done, a surraogatiel must be built to directly relate
each concept’s fitness to variations in the requésts. The following section discusses
the development of this surrogate model.

In order to develop a surrogate model, first, siec-makers must have the ability
to assess each concept. Because most of the ¢enweger consideration are very
immature, and because the author could not finditatde modeling environment that
enabled her to evaluate the entire range of cosaamder consideration, she developed
her own modeling environment. This environment eiedhe engine cycle by building

an engine deck. That deck is then used to sizeh&le to fly a mission. If the engine
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was capable of powering the vehicle and allowingpitomplete the mission, the gross
weight of the vehicle was used as a discriminatongare feasible engines.

Once this environment existed, a simulated annggrogram was written to find
an optimal set of propulsion alternatives for aipafar set of requirements and setting of
disciplinary metrics. That optimized set of aliimes was used to calculate the fitness
of each concept. A meta-model was then createdlabe the variation in the fitness of

each concept to the variability of the requirememtd disciplinary metrics.

5.3.2.1 Assessing Alternatives’ Ability to Meet Requirement

Before one can measure how well a propulsion quncan meet a specific set of
requirements, one has to have a modeling and siimml@nvironment that can be used to
assess the concepts. As was discussed in secBdn24 a first principles analysis was
used to evaluate the propulsion concepts. Theoagthuld not find an existing modeling
and simulation environment that was flexible argt &nough to model the entire range of
propulsion concepts under consideration, so onecnested. Modeling the engine cycle
alone, however, is not sufficient to assess theydsion system. The performance of the
cycle throughout the mission, and the interactioetsveen the vehicle and the propulsion
system must be accounted for in order to assesznigme’s ability to satisfy the
requirements. Both the modeling of the propulsgystem and the modeling of the

vehicle integration are discussed in this section.

5.3.2.1.1 Modeling the Propulsion Cycle

The ultimate function of a propulsion system isctmvert energy that is either
stored onboard, or continuously acquired, into sdoren of propulsion. Propulsion
systems have several basic components that helpleettais task to be carried out.
Rarely is the stored energy converted directlyntmgt. Usually, it is first converted to

heat energy, and then in turn converted to mechbarergy. In the case of a fuel cell or
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battery system, the stored energy is first condetteelectromagnetic current, and then
converted to mechanical energy.

An assessment environment was created that wableapf evaluating the entire
range of possible alternatives. In order to da,thiie propulsion system was broken
down into the fundamental processes that must ésept in a propulsion system. Those
processes were then modeled using the fundameihtgdigal and thermodynamic
relationships that govern them. The processes w@maected by modeling the transfer
of energy between them, either in the form of shafsepower, electromagnetic energy,
or fluid properties. The basic format of the eomment is similar to Numerical
Propulsion System Simulation (NPSS), a NASA dewvetbpropulsion cycle analysis
code, accepted across the industry and governnidmd.differences between APSA and
NPSS are the level of fidelity of the analysis, ttegree of the system that must be
specified and the reliance upon empirical data.SAPRelies on lower fidelity, physics-
based analyses for all of its calculations. Défgrations in maturity are modeled
through simple disciplinary metrics, individuallpexified for each potential process.
Increasing the fidelity of APSA requires that mondormation about the concept is
specified at an earlier stage, which is difficulidausually unnecessary when assessing
advanced propulsion concepts that little is knowoud. Finally, APSA does not use any
empirical relationships, simply because most ofdtwecepts that are being evaluated are
outside of the realm of experience.

The APSA is currently capable of assessing theéreemtinge of propulsion
concepts identified in Table 35. Notice that fat concepts, such as ion-propulsion
systems and nuclear jets or rockets, were leftobuhe APSA because those concepts
were not expected to be legitimate contending qaisceTraditional concepts, such as a
turbofan are included. Each alternative is thecep& represented by a unique

combination of morphological matrix alternative®\ turbofan concept, for example,
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would be modeled as a constant-pressure combuptiocess, using Jet A fuel, no

battery, ambient air, and compression. There wbeldo source of energy renewal, and
thrust would be produced using a bypass jet. &ihgilrockets, turboprops, and various
fuel cell concepts can all be modeled.

The combustion processes discussed in Table 35 approximations of
combustion processes. Pressure is not truly ceeden constant pressure combustion
processes. A small percentage of the total presisulost in the combustion process.
Similarly, constant volume combustion processescarabustion processes that can be
approximated as occurring at a constant volumd) ascdhe combustion in a four-stroke
engine.

In addition to the processes shown in Table 355ARIso continuous variables
that further define the system. These variablexcifp the equivalence ratio of the
engine, the compression ratio of the compressonéf exists, as well as other key cycle
parameters.

The APSA was used to create an engine deck fdr paxpulsion system. The
engine deck recorded how much power and thrustdoellgenerated at several specified
flows of energy, at different altitudes, and atetiént speeds. The deck also recorded the
ratio of the engine to power output. The informatiin the deck was used to size

parametrically defined vehicles.

5.3.2.1.2 Vehicle Sizing Algorithm

Unfortunately, calculating the cycle of a propatsisystem is not sufficient to
evaluate a propulsion system. The only way to atal these fundamentally different
concepts fairly is to measure how well they alldwe entire vehicle system to meet the
system-level requirements. This can only be meakby evaluating the integration of

the propulsion system with the vehicle and the immss Instead of evaluating a
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propulsion concept independently, propulsion cotsepll be evaluated based on their
ability to allow the entire vehicle system to meabe system-level requirements
simultaneously. The ability of a vehicle systemmeet the system level requirements
can be measured by a number of metrics. Any syleal metric that is calculated can
be used as a metric from which to evaluate propnlsystems, but for this analysis, total
vehicle weight was used as a metric to assess heiwthre propulsion system met the
requirements. If the vehicle is was incapableatis§ying all of the mission requirements
simultaneously, vehicle weight would be infinite.

The vehicle sizing portion of the ASPA environmeases the engine deck, found
in the propulsion cycle analysis, and an energgthaizing method to size a vehicle to
satisfy a parametrically defined. As mentionedvahadotal vehicle weight was used as a
metric to compare different propulsion systemsrte another. While other figures could
have been considered or simultaneously introdugess weight introduces a measure of
life cycle cost and technological maturity, as @@mponent weights of propulsion
systems are reduced when the concept becomes naboeem Emissions were initially
considered in the study, but they eliminated ase#rim Carbon based emissions are
closely tied to fuel type and overall efficiency e metric was redundant. Nitrogen
based emissions were ignored because they arelyusu@y considered at takeoff and
landing and the author had trouble predicting tlteogen emissions for immature
propulsion technology. While gross weight is thipaitted system-level metric, is NOT
the only metric used to assess the concept. lptbpulsion system is not capable of
meeting all of the requirements or constraints gled in a wide variety of fields)
simultaneously, the gross weight is not computed, and thus, tHeasibility of the
alternative becomes apparent. Vehicle weight vezsi io compare propulsion systems,
but the values were only directly compared when thquirements and vehicle

configuration was held constant.
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An energy based sizing method was used to sizeaheus types of air vehicles.
In order to keep the analysis running quickly erfot@be of use, vehicles were specified
parametrically. Three different classes of velsicdere considered, fixed wing aircraft,
lighter-than-air vehicles, and hybrids. Helicopbased systems were not included in the
analysis because the experts involved in the NA8#ceptual design study determined
that they were not feasible alternatives to meetHALE’s system-level requirements.

The theory behind the sizing algorithms for eaehiele class was universal, but
the implementation of that theory differed basedtavehicle class. An overview of the
methodology is discussed in APPENDIX C. The gemamneof lift and drag is different
for fixed wing and lighter-than-air vehicles; cogaently, the each sizing algorithm
reflected those differences. Also, each class afficles required a different set of
parameters to define them. Finally, the missiorapeters that significantly impacted
the vehicle sizing differed for the vehicle clasghe sizing algorithms used to size fixed
and lighter-than-air vehicles are explained in Hart detail in APPENDIX D and
APPENDIX E, respectively. An overview of the sigiand synthesis environment is
discussed below.

The basis for each sizing algorithm was to cateutae power required to propel
the vehicle at each point in flight. The engineldaas used to relate that power to a
flow of “fuel”. Fuel referred to any stored enerdgom Jet-A to H to electrolyzer. That
flow was integrated across the entire mission toutate the portion of the vehicle mass
that needed to be fuel. That ratio was then usaize the vehicle.

In order to calculate the power required at anintpm the mission, the drag
generated by the vehicle was calculated as a fumcif the mass. For the fixed wing
vehicle, drag was a function of the dynamic presswing loading, and the drag polar,
shown below in Equation 15. In the equatiop,o@s the zero lift drag coefficient and K

is a constant.
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C, =Cp, +K,C,° 15
Equation 15 can be used to calculate drag as didnnaf mass, by multiplying the drag
coefficient by dynamic pressure, and dividing itthe wing loading. The constants in
the equation, g, and K are functions of the geometry of the vehicle. @dxding to the
requirements that were developed by the NASA canegpmlesign team, several fixed
wing vehicles were considered, from a flying witg,a traditional fuselage-wing body.
Defining the vehicle configuration defined the paeters in Equation 15. A solar flying-

wing structure is shown below in Figure 17

Photovoltaic Cells

Figure 17: Flying Wing Schematic

Once the drag polar constants were determinedjrdmg could be normalized by
the vehicle mass, as shown in Equation 16. Iretheation, nio refers to takeoff gross
weight. The variable S refers to wing area. Thegwoading, then is the ratio between

the mo and S.

Drag q CDo Kl 92 (m )
= + TO
My Mo q é (16)

Equation 16 can be used to calculate the dragyastaaight, level, constant speed flight.
Additional terms need to be considered if the Vehis climbing or accelerating
(including turning).

Lighter-than-air vehicles do not rely upon liftrggrated by a wing to stay up in
the air. Instead, they rely upon the buoyant fertme sty in the air. Because of this,

lighter-than-air vehicles do not generate large am® of drag due to the creation of lift.
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Instead, they generate drag by pushing a largemwlthrough the air. An airship

schematic is shown below in Figure 18.

Photovoltaic Cells

Figure 18: Solar Airship Schematic

The drag generated by lighter-than-air vehicles walsulated using a volumetric drag
coefficient, Gy [48]. The volumetric drag coefficient is found bgrmalizing the drag
both they dynamic pressure and the envelope voluaised to the 2/3 power, as is
shown in Equation 17.

Drag
CDV =

;p V2 (Volume)? a7

The flow of energy that was required to providet {h@awer was obtained from the engine
deck, and the ratio of stored energy to mass agterweight to mass was calculated.
By normalizing the flow of energy by the total velei mass and integrating that flow
across the entire span of the mission that thenenigist, the ratio of energy weight to
vehicle weight could be found. The ratio of stoesergy to vehicle weight was recorded
for each segment, as is shown in Equation 18.

M m

Energy __ Energy t

segment (18)

M Vehicle M Vehicle
The total ratio of stored energy for the vehiclaswiound by determining the

greatest possible stored energy ratio for the wmssi In most cases, that segment
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occurred between energy renewals. Energy reneswdtl come in the form of mid-air
refueling or solar energy.

Additionally, the maximum power to weight ratior fthe mission was found.
This parameter was used in conjunction with the graw weight ratio of the engine (the
specific power) that was tabulated in the engirekdd he calculation of the engine mass
ratio is shown in Equation 19.

M )
erove = Pua_gpecificP owe, . (Wikg) (19)

M Vehicle M Vehicle

Other mass ratios, such as the empty mass ragie assumed parameters in the
analysis. If solar energy was to renew the eneltyy,required area of solar cells was
found. This area was also normalized the by més#iseovehicle. The solar cells had to
capture enough solar energy to replenish the steredlgy consumed during the non-
solar hours and power the vehicle during the sotarrs. The density of the solar cells
was parameterized to calculate the ratio of soddlr mass to vehicle mass, as shown
below in Equation 20. In Equation 20, Solar Energfers to the intensity of solar

energy. Cell density refers to how heavy the aas(per unit area).

My ces _ Enagy 1 1
M FW M Vehicle SO|arEnergy(W/m2) ,7PV Cells

Cell Density(kgm?) (20)

The ratio of empty mass to vehicle mass was paeained, and the payload was
known. For a fixed payload mass, the engine amicleewere sized in a rubber fashion
until the remaining mass fraction equaled the rafigpayload to gross vehicle weight.

The equation for calculating vehicle weight is shdvelow in Equation 21.

M - M PL
Vehicle
1- M EmptyVehicle M"Fuel" _ M Engine _ M PV Cells (21)
M Vehicle M Vehicle M Vehicle M Vehicle

As was mentioned earlier, the total vehicle weighs used as a measure of how

well the propulsion system met the requirementss was stated earlier, the sizing
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algorithms used for both fixed and lighter-than-aehicles are further explained
APPENDIX D and APPENDIX E, respectively. A disciassof the theory behind the
algorithms is discussed in APPENDIX C.

If the propulsion system were unable to meet &lthe requirements, vehicle
weight could not be calculated, and the optimizatwould realize that no feasible
alternatives were produced. The best feasible ytsam system would produce the
smallest vehicle, for each specific set of requeats. Fitness, then, was calculated as a
function of gross vehicle weight. The inverse ofat vehicle weight was used to
calculate fitness, as is shown in Equation 22.

FO4) =0 22)

It is important to realize that the mass of théiekes could only be used as a
figure of merit to compare propulsion systems uraleonsistent set of propulsion system
requirements (or vehicle and mission parameteks)the vehicle and mission parameters
change, the expected weights of those vehiclescdhge. It is important to compare

the propulsion systems on an “apples to applessbas

5.3.2.1.3 Validating the APSA Environment

Unfortunately, because the APSA environment modety advanced, immature
technology, the environment itself is difficult validate. In most cases, similar systems
have not been built yet, so the results cannotdoepared to existing systems. Even in
the few cases where systems exist, either opeedtamnprototype systems, it is difficult
to generate enough information about the systereplicate the results. Producing high
fidelity solutions, while desirable, is not essahti The vehicles are only being sized
conceptually, and errors in the analysis will bensistent, thus not affecting the
comparison. The APSA environment was used to @izee vehicle classes: a large,

long-range commercial jet, comparable to the AirB48€; a flying wing solar vehicle,
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comparable to the Helios; and a solar airship coaipa to a solar airship that was
conceptually designed by NASA.

The fixed wing vehicle was designed to carry a@ay of 46,000 a distance of kg
14,000 km. The vehicle has a wing loading of 76k [96]. The aircraft uses four
high bypass ratio turbofan CFM56 series enginesjemtay CFM International. The
engines have a bypass ratio of 6.6 and an ovaeskpre ratio of 37.4
[16]. The Airbus A340-200 weighs 275,015 kg, coetply loaded, 129,000 kg empty,
and can carry 100,100 kg of fuel [96]. The dragrebteristics of the vehicle were
unknown, but were estimated from similar configimas. The cruise zero lift drag
coefficient, G, was estimated to be 0.014, and thepdrameter was estimated to be
0.028 [57], [83]. The mission parameters and Jvehsonfiguration details were inputted
into the sizing and synthesis code, to calculagetdiial gross weight required to perform
the mission. The sizing and synthesis found that tehicle would have to weigh
273,440 kg, with 93,705 kg of fuel. The empty weigf the vehicle was 133,716 kg.
The greatest error in the assessment was the dnsumption, and that was still only a
6.4% error with respect to the Airbus A-340.

The APSA environment was next used to size a \elwomparable in size and
performance to the Helios, a NASA prototype solkenigle. The Helios was intended to
be the first regenerative fuel cell system powersicle, but it crashed before it could be
fitted with a regenerative fuel cell. Before iashed, however, it served as a prototype
for a solar vehicle. The vehicle was a flying woanfiguration

The Helios weighed 1322 Ib, and carried a payloadp to 726 Ib, making a
gross weight of 2048 Ib, or 929 kg. The vehicld hawingspan of 247 ft (75 m) and a
wing area of 1976 (184 nf). It was estimated that the vehicle flew at adiefficient
C_L of 0.8. The APSA environment was used to sizé susolar vehicle. The designed

vehicle weighed 884 kg, with an empty weight of 3&p The vehicle had a required

136



wing area of 170 fpand a wingspan of 72 m. the greatest erroréregtimation was the
gross weigh, which was 8.1% off of NASA Helios.

Finally, the APSA environment was used to sizelarsairship. The airship was
designed to be comparable to a NASA conceptuaklygaed airship. The airship in the
study had a payload of 2000 kg and a solar arrfly an efficiency of 8% [21]. The Fuel
cell efficiency was 50% [21]. The airship usedilmal as a lifting gas, and the envelope
was 185 m long, and 46 m in diameter [21]. Theur@ was 2.8x10m°® [21].
Unfortunately, the operating altitude and the regplivelocity were not specified. The
APSA environment sized an airship enveloped to @endin diameter, and 160 m in
length. The volume of the airship was 2.58k10he error of the APSA environment
relative to the NASA conceptual study was at mo8%/

The validation of the APSA environment showed thabnsistently sized a broad
range of vehicles with only a 5% to 10% error ngkato existing systems, or intensive
conceptual designs. The vehicles are sized atdheeptual level, so errors of up to 5%
to 10% are acceptable. Additionally, the propuisgystems will only be directly
compared to one another under a constant set ofing$®ns. The errors in the analysis

will be consistent, and thus should not impactabmparison.

5.3.2.2 Identifying Set of Optimal Alternatives

Once decision-makers can directly measure how eath alterative meets the
sets of requirements, an optimized set of propnlsitternatives can be found. For a
particular set of requirements, a simulated annggirogram was used to identify a set
of propulsion alternatives that were optimized daspecific set of requirements. As was
described earlier, simulated annealing programenajet “stuck” at local minima. In the
entire concept space, each optimized alternatigiinveach concept is represented by a

local minimum. It is important that the optimizesgt of alternatives found by the
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simulated annealing program is truly reflectivetbé optimized propulsion concepts.
Unfortunately, simulated annealing is a stochgsticess, and consequently, that will not
always be the case. A small percentage of the timeesimulated annealing program will
simply not produce a good set of optimized alteveat

The amount of time that this occurs can be redumedvay that the simulated
annealing program is conducted. Remember fromiose@.2.6.1 that simulated
annealing programs randomly generate a populatfoalternatives and then improve
each alternative individually each generation. e&ith generation, evolution consists of
slightly perturbing each alternative and then dalitng whether the offspring is better
than the original parent alternative. If this e tcase, the new alternative survives and
becomes part of the next generation. If this isthe case, the optimizer probabilistically
determines whether to keep the original alternatoreallow the new alternative to be
part of the next generation. Traditionally, expestiggest that the probability with which
“worse new alternatives” survive to the next getierabe high in early generations, and
drop to almost zero for late generations. Doindhslps the optimizer to avoid getting
stuck in local minima. Because the point of thiggess is to find the local minima, the
probability that “worse new alternatives” survivasvkept relatively low throughout the
entire optimization. The number of alternativesttie population and the number of
generations that are allowed to run also play laotgs in how well the optimizer finds a
set of alternatives that are reflective of theytraptimized population. Unfortunately,
increasing the number of alternatives considered generations that are ran also
increases the computational time required to perftire optimization. For this reason,
these numbers have to be balanced with the congmahtime available. In this case,
each optimized population consisted of 30 altewestiand they were allowed to evolve
through 300 generations. An explanation of theutaed annealing program and the

MATLAB code used to conduct the program can be ommAPPENDIX F.
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5.3.2.3 Calculating Fitness

Once the optimized population was found, the nedafitness for each concept
was determined. In order for this to occur, thierahtives present in the final pool had to
be grouped into subsets, or concepts. Severardiff types of concepts were defined,
and many of those concepts overlap with one anotRest, concepts were broken down
by the type of combustion process from which theyiveed most of their power. A
review of Table 35 shows that there were four nigies of combustion processes, none,
(implying a battery) a fuel cell reaction, a com$tpressure combustion reaction, and a
constant volume combustion reaction. Another waywhich propulsion alternatives
were grouped into concepts was by the means ofufsion. Three systems were
considered, propeller based systems, pure jets—enbr@y the exhaust was accelerated
to produce thrust, and bypass jets—where ambientvas compressed in a duct, and
accelerated with a nozzle to produce additionalughr The fithess of more
conventionally defined concepts, such as turbojegires, rocket engines could and
piston/propeller engines could be identified bydiimg the fithess of the proper

combination of components.

The relative fitness, as defined in section 4¥&3 found for each alternative in
the optimized pool through Equation 23, shown bel®X) refers to the function found
in Equation 23. The fitness of each concept isifbhby finding the ratio of the function
value to the sum of the function values for aleaititives contained in the optimized
pool.

F(X;)

RFy T o v
ijlF(xj)

(23)
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Once the fitness of each alternative is found, fitreess of each concept was
found by adding up the fitness of each of the altdves that were classified into the

particular concept, or subset, as is shown in Egu24.

RFConceptA = Zi=l RFI (24)
The fitness found in Equation 24 is function of tequirements that were used to assess

the propulsion concepts. Once the ability to dateufitness was developed, a meta-

model was created that calculated fitness as atdiraction of the requirements.

5.3.2.4 Creating a Meta-model

Unfortunately, the process to calculate the redafitness of each concept as a
function of the requirements, or set of disciplynaretrics is time consuming. It was not
feasible to calculate the fithess for each conéapeach set of requirements of interest.
Instead, a meta-model was created that relatedvénibility of the fitness to the
variation in the requirements and disciplinary nestr That meta-model was then used to
calculate fitness for each concept, across theildision of requirements. As was
mentioned above in section 4.2.3.2, a quadratigeciit, or RSE, was used as a meta-
model. RSEs were discussed in section 2.2.5.1.

The meta-model had to capture not only the vdiigbof the fitness of each
concept as a function of the requirements, butad to capture the variability of the
fitness as a function of the technical maturity ezfch of the propulsion concepts.
Because each of the advanced propulsion conceptsaimmature, the uncertainty
inherent to the maturation will greatly impact tfitmess of each concept. Thirteen
variables that captured the technological matuhigt were also found to significantly

impact the fitness of the concepts. Those vargabate shown Table 36.
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Table 36: Disciplinary Metrics

Min Max Unit
Fuel Cell Efficiency 0.6 0.9
Fuel Reformation Efficiency 0.6 0.9
Maximum Combustion Temperature 2000 4000 °K
% of Gas Absorbed in Fuel Cell 0.4 0.8
Fuel Regeneration Efficiency 0.7 0.9
Solar Energy Absorption Efficiency 0.2 0.6
Radiation of Beamed Energy 1000 3000
Rate of Refueling Y 3 Refuels/day
Specific Weight of Photovoltaic Cells 0.2 0.8 kg/m
Specific Weight of Const. Pressure
Combustion System 300 10000 Wi/kg
Specific Weight of Const. Volume
Combustion System 100 10000 Wi/kg
Specific Weight of Fuel Cell System 100 1000 W/kg
Fuel Storage Temperature 200 300 °K

The requirements for the propulsion system werarpaterized with 5 continuous
variables and 4 discrete variables. These vasaldenot necessarily directly translate to
the requirements found in 5.2.1, but the varyinguneements will change the settings of
each of the variables. The continuous variablessaown in Table 37 and the discrete

variables are shown in Table 38.
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Table 37: Continuous Variables Derived from Propulgon System Requirements

Min Max Unit
Speed 105 200 km/hr
C. (If Fixed Wing) 0.8 1.2
Cruse Altitude 13 21 km
Solar Hours 6 14 hr
Takeoff Field Length (If Fixed Wing) 150 2000 m

Table 38: Discrete Variables Derived from Propulsia System Requirements

Settings
1 2 3
Energy Renewal "Beamed
Available Refueling None Energy"
Vehicle Type Fixed Wing Hybrid Lighter than Air
Takeoff Means Powered Takeoff Launch at Altityde -
Takeoff Weather All Weather Sunny Conditions -

In order to generate enough data to accuratelgterefitness to all of the
requirement variables and the disciplinary metrec€)oE identified the inputs for 557
orthogonal cases. DoEs were discussed in sectibd.2. Unfortunately, there are not
feasible alternatives for all of the space. Lightan-air vehicles, for example, cannot
realistically be sized to fly at airspeeds of 200/kr or greater. Because the DoE was
orthogonal, but the feasible space was not, martlgeo€xperiments specified in the DoE
produced no results. Additionally, because theukated annealing is stochastic in
nature, a few of the experimental runs produced pesults. For these reasons, 235
additional, randomly generated, space filling expents were conducted.

For each experiment, the optimized pool of altewea was used to calculate the
fitness of each of the concepts. The fithess dstpiere regressed against the input

parameters, to produce one, simple model that ledbzl fithess as a function of the
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inputs, assuming that the inputs were within thedpfined range. Two meta-models
were actually created. One set captured the Jhtyabf the fithess metrics when the
vehicles could refuel if necessary. The secondcapture the variability of the fithess
metrics when only solar energy was available aretteimagnetic energy could be
“beamed” to the vehicle. The other continuousalgas were captured with “dummy”
variables in the RSEs.

The fit of the quadratic models was not exceptiobat it was sufficient for the
purposes of identifying fithess as a function @& tBquirements. It is difficult to create a
guadratic model of a stochastic analysis, primabBcause stochastic processes are
inherently uncertain. There is a degree of emahe actual analysis, and that error will
be propagated into the meta-model.

Figure 19 shows how well the model fits for onassl of alternatives, the fuel cell
propulsion systems. Notice that while the fit & superb, the error terms are within a
few percentage points of the meta-model predictsdlts. Figure 19 reflects the fitness

of the fuel cell concepts when refueling is avd#ab
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Figure 19: Goodness of Fit for Fuel Cell Conceptd=itness

Figure 20 shows the goodness of fit for solar dasencepts when refueling is
available. Even when refueling was an option, rsptavered vehicles were still capable

of meeting the requirements. They are not preferdibwever, as the solar cells offer
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additional weight, and depending on the frequernicthe refueling, they might not be
competitive. Notice that this trend is reflectedthe lower average of solar powered

vehicles.
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Figure 20: Goodness of Fit for Solar Concepts’ Fitess when Refueling is Available

Figure 21 shows the Prediction Profiler of differe&eombustion processes and
energy renewal options as a function of a few nmemoent variables and a few
disciplinary metrics. The set requirement variabdad disciplinary metrics shown in
Figure 19 is not complete. The entire set of mtaah profilers is too large to examine
thoughtfully. The set of RSEs represented in egf are those from when refueling is
an option. A prediction profiler maps the curvediong one dimension, to show the
sensitivity of the response to the variables. ijufe 21 , the row labeled fc models the
fitness of all fuel cell processes. The rows laedeP_comb and V_comb model the
fitness of constant pressure and constant volunmebuastion processes, respectively.
Constant volume combustion processes include mirerjgines, turbojet engines, and
turboprop engines. Constant volume combustionga®es are those processes that are
modeled using a constant volume model, ranging firdernal combustion processes to
pulsed detonation processes. The row labeled selars to all concepts that use solar
energy to renew their energy, and the row thaaleled refuel actually makes use of the

refueling option.
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In Figure 21 the column labelegtc is the efficiency of the actual fuel cell. The
column labeledysqiaris the efficiency of the photovoltaic cells. Spégthe cruise speed,
in m/s; Altitude is the cruise altitude in ft. &olHours is the minimum amount of solar
hours that to which the vehicle will be exposed.hisTmetric will change as the
geographic operating location and operating seabanges. Finally, Loﬁf/Day) is the

log of the number of refuels available to the visher day.
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Figure 21: Prediction Profile When Refueling is Avdable
Notice that the trends in Figure 21 make sensg.tha efficiency of the fuel cell
increases, the fitness of the fuel cell increasdsle the fitness of the constant pressure
combustion processes decrease. Also, as the nwhbelar hours in a day increase, the

fitness of solar concepts increase. Another helphservation is that as the speed
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increases, the fitness of solar based concepts dir@matically. Solar based concepts do
not appear to be feasible at the high speeds.

At first thought, it does not make sense to rethgefitness of one concept to the
component disciplinary metric of another concepfBhe fithess of constant pressure
combustion processes should not depend upon tiogeatfy of fuel cells. As a fuel cell
becomes more efficient, however, fuel cell procedsscome more attractive. The two
concepts are competing against one another. Ak cele processes become more
attractive, combustion processes become less tatgacThe trends make sense. One
interesting note is that increasing the efficien€yhe fuel cell only increases the fitness
of fuel cell concepts to a point. Pushing thecsdficy beyond approximately 75% seems
to have no additional impact on the attractiveresiel cell concepts over traditional
combustion based processes.

After observing the two meta-model, a few questiarose. Using solar energy
as a source of energy renewal did not make congi@®sure and constant volume
combustion processes infeasible. This trend pdzkle author; as regenerative processes
are only really considered in conjunction with fuells. The author to date has never
found a proposal of an aeropropulsion engine tbatbusts the fuel, and then uses the
products of combustion to regenerate fuel, usirar smergy.

Figure 22 and Figure 23 show portions of the mtezh profiler for the second set
of RSEs. In this set of RSEs, refueling is notogtion. The only options for energy
renewal are solar power and auxiliary power “bedmgxto the aircraft. The variable
“Beamed?” refers to whether beamed electromagrezigrgy is or is not available.
When that variable is set to zero, no beamed ensrgyailable.

Figure 22 shows the values for the combustionselmsand the energy renewal
classes when the “Beam?” variable is set to zerophiimg that no beamed energy is

available. The only row that is different from &ig 21 above is the last row, labeled em.
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This row represents the concepts that receive the@rgy renewal through beamed
electromagnetic energy. Notice that when the Be&marfable is set to zero, the em
response is zero and insensitive to all other bdgga The lone exception to this is em’s
dependence on speed. Unfortunately, this tremliégsto an error in the mapping of the
design space. Solar power is simply not capablpra¥iding enough energy to power
flight at the highest range of the speed. Theaisitality of this space ensured that no
feasible design points were found in this rangerdfore, the model is inaccurate in this

area of the space.
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Figure 22: Prediction Profile of when Only Solar Paver is Available
Figure 23 is the same as Figure 22 except thaB#dzan? variable is set to one,
implying that beamed energy is available. Notiwd-igure 23 that the value of the em

response is significantly higher. Also notice thmith em and solar metrics are
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insensitive to the solar efficiency. Both sourcésnergy renewal require the use of
photovoltaic cells, so the efficiency should of tlells should not impact the

competitiveness of one concept with another.
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Figure 23: Prediction Profile of when Beamed Poweis Available

5.3.3 Calculating the Distribution of Fitness

Once a meta-model was created, the distribwfditness for each concept was
found by employing Monte Carlo techniques. An earlsection discussed how the
probabilistic distribution of requirements was fduamsing the CI analysis. A triangular
distribution was placed upon the disciplinary mestri The minimum value, maximum
value and median vale of each of those metrichasva below in Table 39. The ranges

depicted in Table 36 are not identical to the rantat were used to create the meta-
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model. This is because the author determined swointBe ranges in the disciplinary
metrics were too large to accurately portray regalit

Table 39: Distribution of Disciplinary Metrics

Min  Median Max Unit
Fuel Cell Efficiency 0.6 0.7 0.8
Fuel Reformation Efficiency 0.7 0.71 0.8
Maximum Combustion Temperature 2000 3000 3500 °K
% of Gas Absorbed in Fuel Cell 0.4 0.6 0.8
Fuel Regeneration Efficiency 0.7 0.8 0.9
Solar Energy Absorption Efficiency 0.2 0.22 0.6
Radiation of Beamed Energy 1000 1100 1400
Rate of Refueling Y% 3 Refuels/day
Specific Weight of Photovoltaic Cells 0.3 0.7 0.8 g/rid?

Specific Weight of Const. Pressure
. 300 1000 10000 W/kg
Combustion System

Specific Weight of Const. Volume
_ 100 500 10000 W/kg
Combustion System

Specific Weight of Fuel Cell System 100 150 1000 kyv/
Fuel Storage Temperature 200 299 300 °K

The Monte Carlo trials sampled requirements frawa distribution identified in
the CI analysis and sampled disciplinary metriceamifr the triangular distribution

described in Table 39. The results are discussedraerpreted below.

5.4 Interpreting the Results

The first propulsion concepts that investigatedreveonventional propulsion
concepts. If conventional propulsion concepts ldely to satisfy the requirements,
decision-makers would most likely not be interestethvesting the time and resources

required to develop advanced propulsion concetsortunately, conventional concepts
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were proven to have a low likelihood of satisfyihg requirements. For this reason, the

author then investigated the fitness of other adedrpropulsion concepts.

5.4.1 Defining Conventional Propulsion Concepts

The author defined conventional concepts to besehthat are evolutionary
derivatives of technology currently used in theustdy. Turboprop, turbofan, and
turbojet engines have all been built and succdgsfisked to power aircraft. The core of
these engine concepts is that ambient fluid is cesged, used to oxidize the fuel, and
the resulting fluid drives a turbine. The meanshofist generation, however, is different
for each concept. Reciprocating engines and pl@pebmbinations have also been
widely use to power aircraft. These concepts nghpn an approximately constant
volume combustion process to extract the chemiocalrgy out of fuel, but use the
pressure spike of the fluid to drive a shaft. Corations of the two classes described
above, however, are distinctly unconventional. €ant volume combustion processes
cannot easily be combined with compressor/turbiystesns because constant volume
combustion is not a steady-state process, androbsza have not been able to efficiently
and safely combine the non-steady state combustoth the steady state
compressor/turbine. Fuel cell based propulsioriesys and battery based propulsion
systems are all considered to be advanced propulsimcepts, simply because the
concepts have either not been used to power fzdldsaircraft, and are far from power
system.

For the purpose of this study, any sort of regatne system will be considered
revolutionary. Additionally, any alternative thates a fuel cell or a battery as its
primary form of energy conversion will also be doesed revolutionary. Non-
regenerative alternatives that rely upon, conspaassure propulsion systems will be

considered evolutionary, as they are similar tstaxy systems today. Additionally, for
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simplicity’s sake, non-regenerative alternativesattirely upon constant volume

combustion processes will also be considered cdiored.

5.4.2 Assessing Conventional Concepts

Conventional propulsion concepts can classifiedasepts that rely upon non-
regenerative combustion processes to generatd.thfbe distribution of fithess for two
subclasses of these concepts is shown in Figure T fitness of constant pressure
combustion based alternatives is slightly worse ttiat of constant volume combustion
based alternatives. Constant volume combustiami®re efficient process. The vehicle
would consume less fuel throughout the mission,lymg that constant combustion
process-based concepts should be more attraclilie.only caveat to this notion is that
the specific power density, or the ratio of eneaggput to engine mass, for constant
volume combustion processes was given a slightihdr distribution. Much of the

increased fuel efficiency could be offset by theréased weight of the engine.
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Figure 24: Fitness for Conventional Propulsion Conepts

Neither of the non-regenerative concepts will bigent to meet approximately
70% of the potential sets of requirements. Thik@me is primarily a function of one
requirement, the operation parameter. This pamnugttated how the mission operation
would take place. The Mission Operational Parama&lternatives and their associated
probabilities are shown below in Table 40. The xAary-Powered Deployment”
alternative implied that power could be “beamed’the aircraft. The “Refueled in
Flight” option meant that refueling would be avhlato the vehicle. “Single Vehicle”,
“Formation Flight” and “Tip-joined Multi-Vehicleshad no means or energy renewal
except for the available solar power. The “SeFRBdjht” option implied that multiple
vehicles would be responsible for covering theaierrone vehicle would not have spend

the entire mission duration above the hurricane.
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Table 40: Mission Operation Requirements and Probaitities

Selection Probability
Auxiliary-Powered Deployment 0.08
Refueled in Fight 0.2
Mission Operational Single Vehicle 0.6
Concepts Formation Flight 0.01
Serial Flight 0.1
Tip-joined Multi-Vehicle 0.01

The only time cases enabled non-regenerative naliges to be feasible
propulsion systems were the ones that alloweddfweting, either by mid-air refueling,
or by making multiple trips and refueling back asé.

Figure 25 shows the fithness of conventional alitwes (non-regenerative
combustion-based alternatives) under two conditiamen mid-air refueling is available
and when mid-air refueling is not available. Fg@5 shows that in some cases where
mid-air refueling is not available conventional cepts will be capable of meeting the
requirements. In each of those cases, howeveéa) flieghts were employed as a mission

concept.

153



Non-Regen. Combustion Probability as a Function of Refueling
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Figure 25: Fitness of Non-Regenerative Combustiondcepts

The overall distribution of fithess for any contienal alternative is shown in
Figure 26. Notice that conventional concepts aapable of meeting 70% of the

potential requirement sets.
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Figure 26: Fitness of Non-Regenerative Combustionl#&rnatives

Evolutionary derivatives of conventional conceptsgn, would be capable of
meeting only 30% of the potential requirement sditsthe 30% of the requirement sets
that conventional concepts are feasible, they tiienst necessarily the best alternatives.
Regenerative systems and fuel cell based systemsmanore fit to propel the HALE
vehicles. If decision-makers want a greater chaatemeeting the likely future
requirements for the hurricane tracking HALE vehlichey will have to invest in
advanced propulsion concepts.

Even if the decision-makers were content with @B@% of meeting the

requirements with conventional technology, he oe steeds to consider how much
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improvement revolutionary technologies could offarer conventional technologies.
Figure 27 compares the fithess of conventional agstibn processes with regenerative
combustion processes and fuel cell concepts. Blotiat given the entire likely
distribution of requirements and technological miagu fuel cell concepts still offer a

greater fitness.
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Figure 27: Distribution of Fitness for Conventionaland Advanced Propulsion
Concepts

The author considered Figure 26 and Figure 2&teufficient reason to consider
advanced propulsion alternatives to power the HAdRicle. In the next section, the

fitness of each of the possible revolutionary ali¢ives is investigated.
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5.4.3 Identifying Fitness of Advanced propulsion concepts

Once decision-makers have established that adsdapagpulsion concepts will
need to be developed, they have to determine wdookept they would like to invest in,
and justify that decision.

As was mentioned earlier, the feasibility of regeive combustion-based
alternatives was not determined. Two meta-modelewreated, the first assumed that

such processes were feasible and the second assiuabhedch processes were infeasible.

5.4.3.1 Analysis | (Assumes that Combustion/Regeneratidressible)

In the first analysis, alternatives that used costibn as their main means of
energy conversion could store the products of catidmu and perform electrolysis on
them to produce hydrogen and oxygen—or a sourcgayed chemical energy. This
analysis generated several feasible alternativddefore investigating the feasible
alternatives, however, the potential fuels werem@rad. Figure 28 compares the fitness
of four types of fuel, Chl Jet A, B, and GHg. Figure 28 might be difficult to read
because of the amount of distributions that arevehdut H emerges as the only fuel
that was feasible for all sets of requirementse Pplopulsion analysis assumed that only
H, could be regenerated; consequently, it was the fael option that was feasible when
neither refueling nor serial flights were a reqment option. Fortunately, Figure 28 also
shows that K fuel was also the most fit, even when those requént options were part
of the requirement set. The analysis did not amrghe volume of the fuel in the vehicle

sizing, however, which may account for this outcome
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Figure 28: Fitness of Fuel Types

Because Kl is the only fuel option that is feasible given teetire range of
concepts, it is an obvious choice to be part of tomcepts selected for future
development. Identifying the need for Has many implications for the entire future
vehicle system. Safely and efficiently designihg storage tanks forHwill require
further development in many disciplines.

In section 5.4.2, it was determined that not-regative concepts were not
feasible over enough of the potential requiremeid 8 be seriously considered. Figure
29 shows the probability distribution of three malassifications of feasible alternatives,
regenerative fuel cells, regenerative constant spres combustion processes, and
regenerative constant volume combustion processhs.“double M” shape of the chart
is a function of whether refueling was allowed ot.nWhen the systems are capable of

refueling, the fitness of each of the regeneratiwecepts is going to be reduced. Non-
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regenerative concepts are then allowed to competk them. From the chart,
regenerative constant fuel cell processes are tha fit. The primary reason that fuel
cells are more fit than conventional combustiorcpeses is most likely a function of the
fact that fuel cell's direct conversion of chemiealergy to electromagnetic energy is an
inherently more efficient process than convertihgmical energy to heat, and then to

mechanical energy.
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Figure 29: Fitness of Fuel Cell and Combustion Corepts

Another interesting result of this analysis istthhden examining regenerative
concepts, constant pressure combustion procesgesarapo be much more fit than
constant pressure combustion processes. This $ likely a function of the specific
weight parameters given to both constant pressarebastion and constant volume

combustion processes. Looking back at Table 3%shibat distribution of specific
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weight for constant pressure combustion processes higher than the distribution of
weight for constant volume combustion processes.

The distribution of fitness for regenerative fwell concepts is shown in Figure
30. Two distributions are shown: one for when eéifig is available, and one for when
refueling is not available. The fitness distribatiis much lower when refueling is
available, simply because the concept competes matiiregenerative concepts. The
left-side tail of the non-refueling distributionrcde explained by the percentage of the

requirement sets that allow multiple vehicles teesahe aerial observation.
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Figure 30: Fitness of Regenerative Fuel Cells

Figure 31 compares the distribution of fithess egenerative constant pressure
combustion, for both the case of refueling andefaeling. The median distribution for

constant pressure combustion is significantly highan that of fuel cell based concepts.
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As was discussed above, this is a function of thtildution placed upon the disciplinary

metrics that define the concepts’ maturity.
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Figure 31: Fitness of Regenerative Constant PresseiCombustion Processes

Finally, Figure 32 shows the distribution of regetive constant volume
combustion processes, both for when refueling @ilalvle and when it is not. The
median fithess for the requirements distributionslgghtly lower than that of the
regenerative fuel cells, and distinctly lower that of the regenerative constant pressure

combustion processes.
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Regenerative Const. V Comb. Probability as a Function of Refueling
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Figure 32: Fitness of Regenerative Constant Volum@ombustion Processes

In the first analysis, which assumed that the pot&l of combustion could be
stored and converted back intg &hd Q, constant pressure combustion emerged as the
most promising main form of energy conversion. sTtetermination was a function of
the maturity of fuel cells, however, and as mofermation is determined about future
capability of fuel cells, this result should bexamined.

At this point, the author has determined thati$ithe only real fuel alternative,
and that fuel cells are the fittest main form oémgyy conversion. Other aspects of the
concepts, however, should also be investigated) augiliary processes that make the
energy conversion more efficient, and the meangprofiucing thrust. First, let us
examine the possible means of thrust productionted means of producing thrust were
considered: driving a propeller, pressurizing amdeterating ambient air through a

bypass duct, and accelerating the combustion ptedimough a nozzle. The third means
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proved to be infeasible in all of the cases, carang the slow cruise speed and need to

contain combustion products to regenerate fuefjuréi 33 shows the fitness of the three

concepts.
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Figure 33: Fitness of Thrust Production Methods

Propellers are really the only feasible thrustdpiction alternative. Accelerating
the thrust through a bypass duct, as in a turbefeyine is simply not an efficient form of
thrust generation at the low range of speeds tmathurricane-tracking vehicle would
travel.

Figure 34 investigates the fitness of using hgahangers to heat the oxidizer and
fuel. Using heat exchangers alone to prepare dhg&bastion reactants is not a feasible
alternative. While combining them with fuel ceils viable, combining them with
combustion is not truly an option, as the fitnebthese combinations is essentially zero

for all requirement alternatives.
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Figure 34: Fitness of Concepts Using Heat Exchanger

Using a heat exchanger as a means of making gtedll process more efficient
is a viable concept. Using a compressor to enertliz ambient stream is also a viable
concept for a fuel cell propulsion system. The tomcepts are essentially competing,
and from this point on will be considered competattgrnatives. Figure 35 compares the
two competing concepts. Notice on average thattmepressor seems to be a slightly
better concept both because there is less undgrassociated with it and on average, it
is a more fit alternative. The heat exchanger/éa#ll combination has the potential to be

a very competitive alternative.
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Figure 35: Fuel Cell with Heat Exchanger or Compresor

The distribution of fithess for the fuel cell/corepsor/propeller distribution is

shown alone in Figure 36.
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Figure 36: Distribution of Compressed Fuel Cells tht Drive a Propeller

The distribution of fitness for constant pressomnbustion systems that use
compressors and turbines to increase the press$iine gas in the combustion chamber
and propel the vehicle with a propeller are showfigure 37. How does the fitness of

the compressed fuel cell concept that drives agll@pcompare to other alternatives?

Figure 37 shows the distribution of fithess foc@nstant pressure combustion
process, combined with a compressor/turbine thesttes shaft power to drive a propeller.
This concept essentially defines a turboprop engiiibe only difference between the
concepts listed in Figure 37 and conventional tprbps is that the concepts in Figure 37
include regenerative turboprop concepts. In tigemerative concepts, the exhaust would
somehow have to be stored, and a reformation psosesild have to be conducted to

convert the exhaustJ® back into H and Q. The feasibility of this concept is unknown.
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Figure 37: Distribution of Fitness for a Constant Pessure/Compression/Propeller
Concept
A rotary piston/propeller combination would be sdad as a constant volume
combustion process, combined with a compressiortessy to drive a shaft. The
distribution of fithess for such a concept is shdvefow in Figure 38. As was the case in
Figure 37, Figure 38 combines the distribution othbregenerative concepts with non-

regenerative concepts in the figure.
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Figure 38: Distribution of Fitness for a Constant \blume/Compression/Propeller
Concept
Finally, Figure 39 compares the distribution df @l the mentioned concepts to
one another, given the distribution of requirememd technological maturation. Notice
when the two types of fuel cells are considereasaply, the fitness for each concept is
considerably less than that of the fuel cell coneepyeneral. This is because the two
concepts are now considered to be competing cosicapd the fitness of one takes away

from the fitness of the other.
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Figure 39: Comparison of Commonly Considered Propugion Concepts

Given this analysis, each of the concepts seerhe teasonable alternatives. The
least uncertainty surrounds the fuel cell/compoesstoncept, but constant pressure
combustion/compression/propeller concept has a gdwhce of better meeting the
requirements. Remember, that this should not Insidered as a conventional concept,
because the cycle may have to be regenerativetimenaThe tradeoffs between the four
concepts must ultimately be taken into accountieydecision-maker.

Notice that the turboprop concept appears to kebtést overall concept. This
outcome seems to contradict the outcome observédgure 24 where it showed that
constant volume combustion processes were mothdit constant volume combustion
processes. It is important to remember, howebeat, Eigure 39 shows the distribution of
all turboprop and piston/prop engines—conventioraid regenerative. Wile

conventional piston props are more fit than conesal turboprops, Figure 31 and
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Figure 32 showed that the regenerative turbopraps naore fit than conventional
turboprops.

This analysis shows that all four proposed coreepe legitimate concepts, and
does not truly discern between the four conceptss analysis, however, was conducted
assuming that regenerative combustion-based pliopulsoncepts are feasible. The
following analysis investigates the very same cpigebut assumes that regenerative

combustion —based concepts are infeasible.

5.4.3.2 Analysis Il (Assumes that Combustion/Regeneratsamieasible)

The second analysis was similar to that of th&aihassumption, however, the
analysis assumed that the products of combustiold cwt be stored and converted back
to fuel to propel the aircraft during non-solar reu That assumption ensures that only
fuel cell based alternatives will be feasible asrt®e entire range of requirement sets.
Figure 40 displays the distribution of fitness &ach of the three concepts, given the

distribution of requirements and disciplinary mesri
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Figure 40: Fitness of Combustion Processes

Figure 40 shows not only that fuel cell procesm@sthe only processes that are
feasible across the entire range of requirementstHey are usually better alternatives.
Figure 41 examines the distribution of the threecepts, and compares the distribution
of fitness when refueling is available to the dmttion of fithess when refueling is not

available.
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Figure 41: Comparison of Combustion Processes

Figure 41 shows the distribution of fitness foe three concepts in greater detail.

Even when refueling is not an option for the vehithe two combustion-based concepts
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had some degree of fitness. This is because ajppatdy 10% of those sets of

requirements used multiple vehicles in serial igto loiter over the area. Figure 41
clearly shows the improvement that constant volwombustion offers over constant

pressure combustion, as well as the improvemenftleacells offered over combustion.

The main form of energy conversion for the propmssystem should be a fuel cell

concept, because they are feasible over the emtivge of requirements, and they are
more fit, even with combustion is an option.

While fuel cells have been chosen as the main pogeneration for the
propulsion concept and that decision has beerfigetin Figure 41, other aspects of the
cycle still need to be investigated. The diffeemm the two analyses did not impact the
fitness of thrust generation methods, or the fgnef different fuel alternatives. The
distribution of fuel types shown in Figure 28 ipmesentative of the distribution of fuel
alternatives. Figure 28 showed thatibl the only fuel alternative that is feasible &sro
the entire range of requirements. Figure 33 shothedfitness for two types of thrust
generation methods, and similarly showed that uaipgopeller to generate thrust is the
only means of producing thrust that is feasibleossrthe entire range of potential
requirement sets.

First, let us investigate the fitness of usingydmat exchangers to prepare the gas
that enters the fuel cell. Figure 42 shows theefis of such propulsion systems with

propellers.
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Figure 42: Fitness of Fuel Cell with Heat Exchangeand Propeller

Figure 42 shows that using a simple fuel cell eyebnly using a heat exchanger
to heat the reactants in the fuel cell and genegatlectric current to power the fuel cell
is an attractive alternative. The distributionfibfiess is an odd shape, however, so the
author broke down the distribution into differeratr{s. Figure 43 shows the distribution
of fitness for this same concept in the two maigqureement circumstances—when

refueling was an option, and when refueling wasamooption.

174



0.1

0.09

0.08

0.07

0.06

0.05

0.04

Overall Probability

0.03

0.02

0.01

Figure 43: Fitness of Fuel Cell Concept with and whout Refueling

It is easy to see how the two distributions inufgg43 could sum up to the
distribution in Figure 42. Notice that the fuellf@opeller combination is slightly less
attractive when refueling is available. This icd@se combustion based concepts are

feasible given these requirements, and combustisedprocesses have to compete with

them.

The study also investigated using a compressaddition to heat exchangers to
prepare the reactants that entered the fuel déljure 44 shows the fitness of these

concepts that were fitted with a propeller to gateethrust. Figure 44 has a very distinct

Fuel Cell/Heat Ex./Prop Probability as a Function of Refueling
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“double M” shape to its distribution.
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Figure 44: Fitness of Fuel Cell with Compression aha Propeller
Multi-modal distributions are often worrisome,thgy can often indicate an error
in the analysis. The author further investigated tause of the “double M” shape in
Figure 44. Figure 45 below breaks the fitnessribistion down into two fitness
distributions: one when refueling is an option, ané when refueling is not an option for

the vehicle.
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Figure 45: Fitness of Fuel Cell Concept with Comprssion as a Function of
Refueling

Figure 45 clearly shows that the multimodal behawotoserved in Figure 44 is a function
of whether or not refueling was an option for tlehicle. As was the case with the fuel
cell concepts that did not use compression to éetbe fluids entering the fuel cell, the
concepts are much more fit when refueling is nooption. Again, this trend occurs
because when refueling is an option, combustioa feasible alternative, and fuel cell
concepts have to compete with combustion-basedeptsic

A regenerative fuel cell concept that uses heaha&axge and a compressor to
energize the gas that enters the fuel cell andrg®an electric current to drive the
propeller with electricity generated in the fuell ge an attractive concept. It does not,
however, appear to be significantly more fit thafu@ cell/propeller concepts that only

use heat exchangers to excite the fluid. Both eptscare robust enough to meet almost
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all of the potential set of requirements. The foell/lheat exchanger/propeller concept
has a high degree of uncertainty associated wijthsitit is an immature, revolutionary
concept. The concept actually appears to haveghtlgl lower uncertainty associated
with it than the fuel cell/compressor/propeller donation does. This assessment,
however, assumes that a regenerative combustiortegsois not feasible. Figure 46
directly compares the fitness of the fuel cell/heathanging concepts with the fuel

cell/compression concepts.
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Figure 46: Comparison of Heat Exchanger to Compress with Fuel Cell

Each concept is only considered in conjunctiorhwitpropeller to produce thrust.
Notice in Figure 46 that the fuel cell/heat exchemgystem appears to advantageous over
the concepts that use heat exchangers. Finakydistribution of fithess for the fuel

cell/compression/heat exchanger is compared toesdional concepts in Figure 47.
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Figure 47: Comparison of Fuel Cell to Competing Cocepts

Unlike Figure 39, the conventionally named conseipt Figure 47 truly are
conventional. Because this analysis assumedhbatrily feasible regenerative concepts
are fuel cell based concepts, the turboprop antbrpgiopeller engines analyzed in
Figure 47 truly are conventional.

The information generated in this analysis sholat the most fit propulsion
concept for the HALE vehicle is a fuel cell concépat drives a propeller with the
electrical energy generated in the fuel cell. Tamlysis gives the decision-maker a
guantitative understanding of how the goodnessach eropulsion concept varies with
the requirements and with the technological matwifteach concept. The assumptions
made in the analysis to arrive at this conclusiamehbeen transparent. Ultimately, it is
up to the decision-maker to select which propulsioncept or concept to bring forward

to the next phase of development.
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6 CONCLUSIONS

The Evolving Requirements Technology Assessmerthadewas developed to
give decision-makers the ability to compare advdmrepulsion concepts to one another
on another, given the uncertain nature of the requents that the advanced propulsion
concepts must meet. In using the ERTA method duate and compare the various
propulsion concepts for use on the HALE hurricangcker, the four hypotheses
statements were successfully tested. The overgyclResearch Question was
demonstrated, substantiating research questions adeiressed, and the four hypothesis
posed were found to hold true.

In the introduction, several goals for the sucitésgevelopment of the ERTA
method were laid out. Ultimately, the method had dgive decision-makers an
understanding of how robust the goodness of easputsion concept was to potential
variations in the requirements. In order to da,tlthe method had to do three things.
First, it had to generate a probabilistic foreazsthe requirements. The ERTA method
does so by combining requirements analyses witbctsting methods. The resulting
modified cross impact analysis provides a probstili set of requirements that
incorporated the interdependencies of individuguneements into the forecast.

Second, the method had to assess the relativengesaf each concept across the
distribution of requirements. The ERTA method agkd this by calculating the fithess
of each concept, as a function of the requiremefise distribution of each concept’s

fitness was then calculated as a function of te&itution of the requirements.
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Finally, the method had to incorporate the unaetyanherent the development
of technological concepts into the assessment. propulsion concepts for the HALE
propulsion system range dramatically in maturityThe ERTA method met this
requirement by placing a distribution on the diBogry metrics used in the concept
assessment. The uncertainty was incorporatediiet@verall distribution of fithess for
each concept. More mature concepts had tightarhiitons.

Overall, the ERTA method gave decision-makers dbdity to measure the
robustness of each concept to the potential vanat requirements. The assessment
will enhance the information that decision-makeageéhwhen selecting which concepts to
allocate funds. Such evaluations will allow demimsmakers to more efficiently allocate
funds to potential advanced propulsion concepts,adliow them to justify their decisions

with a logical, transparent methodology.

6.1 Assessing the Hypotheses Statements

Four hypotheses statements were inferred througiheumanuscript. The first,
statement was the most general. It is restatemhbel

Any method designed to evaluate advanced propulsmtepts must

incorporate the possible variations of the requeets into the assessment.
This first statement provided the need for the ERMéthodology. While the statement
is difficult to prove, evidence for the statementises in historically unsuccessful
developments. Consider again the numerous tecticalo concepts that became
obsolete before they could be fully developed bsedbe requirements for such systems
changed. The (UDF), a revolutionary aeropropulsiystem that promised to reduce fuel
consumption by 20% to 30% was dropped when thediugk ended and the demand for
guiet, aesthetic engines superseded the driveffioreacy [72]. The nuclear jet, another

relatively promising concept was dropped after deenand for ultra-large aircraft was
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reduced and anxiety of nuclear power set in [Bimilarly, there are historic examples
of technological concepts being only adequate lmxdle actual requirements for the
concept differ from what the concept was intentilyndesigned to meet. The US Navy
originally intended the F-18 to be primarily a pegdl-delivering vehicle, not a air-

superiority vehicle. It was intended to work imganction with the F-14. As the F-14

was phased out, however, the F-18 has to perfotmr@sions [9].

The analysis conducted on the HALE propulsion epite also supported the
hypothesis. The fitness of each of the propulsioncepts were very sensitive to
particular requirements. How useful a fuel celhoept will be to the future HALE
vehicle depends highly upon the speed that thecleemust travel and whether or not the
vehicle will be capable or refueling in the air.dditionally, the future usefulness of a
solar vehicle will also depend strongly on thosgureements.

The second hypothesis statement was much morékangut still difficult to
prove. The statement is restated below:

Shape functions depicting distributions of futuexjuirements for the HALE

propulsion system can be defined using traditidioagcasting techniques.

The ERTA method was used to generate a probabilisstribution of the requirements
for the HALE propulsion system. Unfortunately, ig difficult to prove that this
distribution is truly reflective of the actual disiution, because the actual probability of
each requirement occurring is unknown. The inteedelencies of the individual
requirements were seen in the distribution, andkelyl requirements did have a low
probability of occurring. One important featureaoforecasting methodology is that the
assumptions that it uses to generate the foreeasabsparent. The assumptions that the
modified cross impact analysis used are all

The third hypothesis introduced the notion of gsfithess to compare HALE

propulsion concepts to one another. The hypothesestated below:
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“Fitness”, a concept’s ability to meet a set of uiegments relative to other

potential concepts, can be used to forecast a fmiopuconcept’s likelihood of

successful development.
Again, this statement is difficult to prove, buethse of the ERTA method to evaluate the
propulsion systems serves as evidence that ficessneasure the ability of a concept to
meet the specific set of requirements, relativecoonpeting concepts. The fithess
parameter also incorporated a measure of how “e#sys to produce a feasible
alternative for each concept. Concepts which ameee to develop will have a greater
fithess because more of the alternatives in thamigp#d pool will be classified as those
concepts. Fitness quantifies both a concept’stabd meet the requirements and how
easy it is to produce a feasible alternative—twadrite that in a perfect world, would
predict the success of a concept. In an impexfectd, were decisions are made based
on political motivations, the fitness can serveaasethodical and analytical justification
for allocating resources to particular technologazancepts.

The final hypothesis statement outlines the fotindaof the ERTA method. The
hypothesis is stated below:

Stochastic optimizations can be used to calculdéteeds as a function of

requirements, enhancing decision-makers’ understgnaf future technological

concepts.
Stochastic optimizations provided the means by White propulsion concepts were
optimized to meet specific sets of requirements.siiulated annealing program was
used to identify an optimized set of alternativeSimulated annealing is a stochastic
optimization routine that begins with several ramdalternatives, and allows those
alternatives to evolve individually throughout ttwitine. The final “optimized” set of
alternatives was the used to calculate the fitf@ssach concept, given a particular set of

requirements. While it is difficult to compare tbptimized concepts that the simulated
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annealing program identified, the results madeesessd the optimization was accepted.
Overall, the process successfully identified thémized alternatives for each concept.
Stochastic processes were again used to idenafgigitribution of fithess as a function of

the distribution of requirements.

6.2 Results of Demonstration

The ERTA method was developed to allow the autitolcompare potential
advanced propulsion concepts as a means of pnogedli HALE hurricane tracker.
Requirements for the propulsion system were defmethe mission of the vehicle, and
the vehicle characteristics. NASA assembled aardmciplinary team of experts to
investigate the feasibility of such a vehicle. geat of that mission, the NASA experts
conducted a workshop to better specify system lesglirements and possible vehicle
characteristics. Results of that workshop wered use the basis to establish possible
propulsion system requirements. A cross impactyarsawas conducted to identify a
probabilistic set of requirements, and those rexpéants were eventually used to forecast
the fitness of each of the proposed propulsion eptsc

The long duration of the mission dictated thatesalof the potential propulsion
concepts were incapable of meeting most of the ireopent sets. Assuming that
conventional concepts are limited to non-regeneattombustion based engines,
conventional concepts would only be capable of mgeapproximately 30 % of the
requirement sets. Due to the long mission durafiamly regenerative propulsion
systems (those that “recharged” the fuel) wereossricontending concepts. Fuel cell
concepts that compress @nd H before they enter a fuel cell and produce eldatgrio
drive a propeller are by far the most fit concegtsen the potential set of requirements.
They are feasible alternatives across the entirgeraf requirements, and are best able to

meet the requirements in several of the requirersetst
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6.3 Recommendations

The ERTA method has proven as a methodical meam®roparing advanced
propulsion concepts, given an uncertain set ofireqments. The author has identified a
few research directions that could possibly imprdeeision-makers ability to compare
advanced propulsion concepts.

First, the requirements were forecasted using @diffred version of a cross-impact
analysis. Other probabilistic forecasting techeggould potentially be used to identify
the requirement sets. Most notably, the technologpact analysis (TIA) could be used
in conjunction with cross impact analysis to moskeie of the individual requirements.
TIA uses time-series forecasting to predict futdigtributions of continuous variables.
The value of discrete requirement variables couddirputs to the TIA analysis to
forecast specific, continuous variable requiremeng&uch a method would allow the
dependency of the requirements to be modeled,tbuwbuld also allow the requirement
value to be continuous. The applicability of otf@mecasting techniques could also be
investigated.

A second research direction is in the means oécfsting the ability of the
conventional technology to meet the future seteqliirements. Because more is known
about the conventional technology, a more thorougbestigation of the space
surrounding the evolutionary concept can take pladéhe investigation could then
consider a combination of empirical data and plsybi@sed methods to better assess the
ability of the conventional concept to meet theufatrequirements.

Finally, different ways of calculating fithess farach concept and set of
requirements can be explored. The ERTA methodeatlyr uses a simulated annealing
optimization routine to identify a nearly optimizpdol of alternatives. The fitness of the
concepts was calculated from the optimized poome&ta-model was created to relate the

variability of the fitness to the variation in threquirements. Unfortunately, this
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introduces two sources of error. Error is inheterthe simulated annealing program, as
it is a stochastic process. That error regressedthe meta-model, and the meta-model
adds an additional source of error. As computatipower grows and storage capacity
increases, other methods might replace the sintulateealing optimization. A grid
search could be used conducted on each space a&xphofor each set of requirements.
Depending on the fineness of the grid search, ulccadd thousands of cases to each
optimization, and require much more storage spateif possible, it would reduce some
of the stochastic nature of the problem, and irsgd¢he accuracy of the meta-model.
There is also much research to be done in the dindeveloping means of
comparing advanced propulsion concepts. Fitnesddan proposed as a figure of merit,
simply because of its broad applicability to aljueéement sets and concepts. Much
work remains to give decision-makers a more intaitunderstanding the relative
differences between potential concepts, and anrstatwling of the uncertainty inherent

to the problem.
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APPENDIX A: NASA HALE UAV WORKSHOP

NASA conducted a conceptual design workshop onelter 2-4, 2005 at the
Aerospace Systems Design Laboratory’s (ASDL), Gieotgstitute of Technology to
enhance their understanding of the requirementsfeaslbility of a high altitude, long
endurance (HALE) aerial vehicle. Thirteen NASA exp from a wide variety of
disciplines attended. Ultimately, the output ot tlworkshop was to assist in the
technology prioritization and planning to the Unmed Aerial Vehicles (UAV) sector of
NASA'’s Vehicle Systems Program.

The UAV Sector encompasses a broad range of eehiudl mission types, from
terrestrial HALE vehicles to planetary exploratieehicles. The information gained in
the workshop was used to assess the technologieg developed so that the various
technologies could be prioritized based on theilitalto further the state of the art.
Unfortunately, current modeling and simulation toohnnot adequately address the full
range of vehicle types in the UAV Sector. This katrop was intended to serve in the
place of modeling and simulation as the as thesassent of each technology, which was
necessary to evaluate the technologies.

Each of the attendees came from NASA or compankiwg closely with NASA
on the HALE UAVE development. Table 41 lists thA®A employees who attended

the workshop.
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Table 41: List of NASA Workshop Attendees

Attendee Organization

Tom Ozoroski NASA Langley Research Center
Mike Logan NASA Langley Research Center
Salvatore Buccellato NASA Langley Research Center
Mark Motter NASA Langley Research Center
Bob Clarke NASA Langley Research Center
Joel Campbell NASA Langley Research Center
Steve Smith NASA Ames Research Center
Ray Morgan Morgan Aircraft Consulting
Dave Paddock NASA Langley Research Center
Ron Busan NASA Langley Research Center
Mark Guynn NASA Langley Research Center
Lisa Kohout NASA Glenn Research Center
Craig Nickol NASA Langley Research Center

On the first day of the workshop, the attendee®veed the requirements for a
HALE hurricane-tracking UAV and a communicationiyeHALE UAV. Once they
understood the requirements and the ASDL methogolbgy created an Interactive
Reconfigurable Matrix of Alternatives (IRMA). ARMA is actually an interactive,
reconfigurable morphological assessment. In ai@eo this, the attendees first
performed a functional decomposition of the missidihis breakdown is shown below in

Figure 48
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Figure 48: Mission Breakdown

The attendees also broke the vehicle systems dawiihie required systems, including:

1) Propulsion and Power

2) Configuration

3) Sensors

4) Avionics and Instrumentation

5) Command

6) Control

7) Data Link

8) Actuation

Once the vehicle was decomposed into systemsittiiedees broke into groups

to break the systems down further into subsystardgteey identified alternatives for

each subsystem. The resulting system and subsystenshown below in Figure 49.
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Figure 49: Vehicle System Breakdown

Once the vehicle and mission were broken down, dtiendees ranked the
importance of each mission parameter and assebsedlternatives for each vehicle
subsystem alternative. This was done both indallghduring a break in the workshop,
and collectively after the attendees consideregtbblem individually.

On the final day of the workshop, the dependetatimships between the
mission parameters and vehicle subsystem altepsatixere investigated. The attendees
identified each of the dependent sets of altereatiand fist noted all of the incompatible
combinations. Then, they investigated which ofdhernatives were correlated.

The outputs of the workshop served as an assessiheach of the technologies
currently being developed for the terrestrial HALEAV vehicle. Throughout the
process the NASA attendees enhanced their unddistaof the requirements, vehicle

system alternatives, and the interaction betweeriviio. The IRMA that was developed
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can be used in the future when evaluating UAV tebtufies. It is interactive, so that
decision-makers can use it to play “what if” gamesth various alternatives.
Additionally, it can be updated in the future tdfleet additional information and
technologies. Finally, the workshop also servedttes basis for the requirements

development for the hurricane tracking HALE proputssystem.
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APPENDIX B: PROBABILITY ESTIMATES FOR REQUIREMENTS

The following tables list the initial probabilitgstimates that were used to
determine the requirements for the HALE propulsgystem. The parameters were
identified in the NASA HALE Conceptual Design TeaMorkshop. The probability
estimates were determined in part at the workshaop, in part with the help of Craig

Nickol and Ray Morgan after the conclusion of therkehop.

= >
2 2
g g
Element Alternative I Element Alternative &
>13 km 0.1 Mil Std 210 Std Day 0.25
Altitude >18 km 0.5 Operating Mil Std 210 Cold Day 0.25
> 20 km 0.4 Environment Mil Std 210 Hot Day 0.25
~7 days 0.2 Mil Std 210 Tropical Day 0.25
~30 days 0.3 <150 m 0.01
Time On Statiorr 1500 03
~100 d 0.49 m .
il Runway Lengtkr
Unlimited 0.01 <2000 m 0.68
~3500 km 0.2 circular 0.01
Mission Radi ~5000 km 0.4 None 0.01
ssion Radlu ~7000 km 0.2 Wheeled Runway Landing 0.7
~10000 km 0.1 Parachute 0.1
Parasail 0.01
Location and Tropical, Hurr Season 0.7 Recovery -
N Tropical, Year Round 0.19 Skid gear 0.11
Time of Year -
Unlimited CONUS 0.11 In Air Recovery 001
~1km 0.5 Water Landing 0.1
Station Keeping 5 km 03 Stall and Drop (Low Alt.) 0.01
Accuracy " o1
~10 km 0.2 Towe :
105 kph 0.15 Launch Wheeled Runway Launch 0.6
Doll 0.3
Critical Ground 150 kph 0.8 Y
Speed 200 kph 0.04 <45m 0.19
250 kph 0.01 Runway Width <60 m 0.8
3000 hrs 0.1 Circular 0.01
Sonvice Lt ~7500 hrs 0.15 None 0.185991fL
ervice Life
510000 hrs 05 Span 0.1446011
S 0.1386138
>40000 hrs 0.25 g:éﬁi'tery wesp
Dihedral 0.28
Dropsondes 0.7 hedral
— Chord 0.06
Expendable Mini-UAV 01
Payload Aux. Surfaces 0.1940518
y! Drop and UAV 0.19
None 1
None 0.01
Helicopter 0
Broadband 0.2 Rotorcraft P
Autogyro 0
Cell Phone 0.2 Tiltrotor 0
Fixed Payload Hurricane Package 0.2 None 0.02
Hurricane-Doppler 0.2 W-B-T/C 0.2
Disaster Monitoring 0.2 ) ) Bi-plane 0.3
Fixed Wing
Standard Day 0.59 All wing 0.4
Weather Near All Weather 0.4 Three surface + B 0.05
All Weather 0.01 Joined wing 0.03
Auxiliary-Powered 0.08 None 0.2
Refueled in Flight 0.2 Dirigible 0.2
Mission Single Vehicle 0.6 Airship (LTA) Blimp 0.49
Operational - -
Concepts Formation Flight 0.01 Hybrid 0.1
Serial Flight 0.1 Powered Balloons 0.01
Tip-Joined Multi-Vehicle 0.01
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APPENDIX C: SIZING ALGORITHM OVERVIEW

High Altitude, Long Endurance (HALE) vehicles wesized using an energy-
based sizing algorithm. The drag that was gengrateesach point in the mission was
calculated as a function of the vehicle mass. gdwer necessary to overcome that drag
at he specified velocity was used to calculatentvenalized power output of the engine
at different points in the mission. For fixed winghicles, drag was purely a function of
weight and the appropriate drag polar. For thétégthan-air vehicles, drag was a
function of the d/| ratio, and the envelope voluntéor hybrid vehicles, the ratio of the
weight that was carried by “lift” was calculateahdathe rest of the weight was supported
by an envelope filled with helium. The drag frone tlift generation and envelope were
added together to calculate a total drag. Oncelthg was calculated at different parts of
the mission, the vehicles were essentially sizeiersame manner.

For each vehicle class, at each point in the omsghe thrust or power required to
perform the mission parameter was calculated. ifk&antaneous amount of fuel, or
stored energy, required to provide that thrust @vgr was then taken from the engine
deck, and tracked in terms of percentage of thdclelweight. The instantaneous
amount of stored energy was found for each missegment and integrated across an
entire part of the mission. The duration of thessiin was long enough that each
propulsion system required some sort of energywahdwith the exception of the serial
flight option), whether that energy was obtainedtigh the sun, through refueling, or by
receiving electromagnetic energy that is “beamedthe vehicle. Because each vehicle
received some sort of energy renewal, the vehioidg had to store enough energy to
provide the vehicle with power between renewal enters. One of the mission
operation alternatives was to observe the hurrieaaa using multiple vehicles in serial
flight. When this was the case, no renewal waslege In these cases, the vehicle was

sized to perform a subset of the mission, and &tbte refuel an allotted period of time.
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If the source of energy renewal was solar, theiclemeeded to have enough
surface area to provide enough energy to conviedf &he “spent fuel” back into usable
fuel, while also powering the vehicle during théasdwours. The percentage of the total
vehicle weight that was fuel was calculated by aeiieing the amount of fuel required to
propel the vehicle through the “non-solar” houf$ie number of solar hours in a day was
a function of the geographic operating location apdrating time of year. Also, if the
vehicle had to take off in poor conditions, a chegks performed to ensure that the
vehicle had enough fuel to get to cruise altitudbout the help of solar energy.

If the vehicle renewal source was mid-air refuglinthe vehicle simply
replenished the fuel that it used since the lafsteimg session. The percentage of the
vehicle weight that was reserved for fuel was mesasby ensuring that the vehicle could
perform all of the mission requirements betweenelfig sessions. The frequency of
refueling was left as metric, and varied betweduealing every 3 days to every 143f a
day. A triangular distribution was placed on tbg bf the frequency.

Vehicles that received their energy renewal throtlgeamed” energy were sized
in a manner similar to those of solar powered Jehkjcsince the premise was the same.
The amount of power required also had an impacsinimg the engines. Each basic
engine concept was given a power density figurbe maximum power required in the
mission was calculated as a function of total ehieeight. The power density was then
used to identify the engine weight as a percentdgetal vehicle weight. If photovoltaic
cells were required, as in the case of solar arainkd renewals, the weight of the
photovoltaic cells was also included.

For each of the three cases, the weight of theéengas calculated as a function
of the total vehicle weight by using energy denpityameters for the engine type and the
maximum required power to weight ratios of the e&hi The sizing of each specific

vehicle is discussed in APPENDIX D and APPENDIX E.
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APPENDIX D: SIZING ALGORITHM FOR FIXED WING
AIRCRAFT

The sizing algorithm for fixed winged aircraft wgsnerated using fundamental physical
principles. The sizing algorithm was similar t@atlleveloped by Choi [17], but it was
tailored specifically to work with an alternativaexgy “engine deck”. Ensuring that lift
generated by the aircraft equals the weight ofdineraft and that the thrust provided by
the propulsion system equals the drag producedhbylift generation and mission
requirements. First, the thrust to weight ratiocédculated. In order to do this, the
algorithm compares the maximum thrust at differeimtng conditions to the thrust to
weight ratios required. These ratios can be catedl using derivatives of Mattingly’s
Master Equation [57]. This equation calculatesrtheimum thrust to weight ratio as a
function of the current mass fraction, storage wtenergy, drag polar and velocity.
Mattingly’s equation can be derived from the cowmagon of energy equation; the

storage rate of kinetic and potential energy eqtlidexcess power.

d mV? d
T-D)V=—| mgh+ or (T-D)V=mg—|\Z
(r-o)v =g man+ ] o (T-D)v=ma(z,) @)
Where: T = thrust
D =drag
V = velocity

m = aircraft mass
g = gravitational constant
h = height (altitude)

Z,= total energy per weight, OEh M V%g)

Assuming that K” from the drag polar is negligibkhe Master Equation below (shown

in metric form) can be derived from the above eigmat
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T qCp, K, B9%(m d
T 8] 9 K A0 (m/), 835 26y
TO ’5 TOS q

Where: Mo = takeoff mass

TsL = sea level static thrust

L= mass fraction, or’fy
Mo

a = thrust ratio, orl, ¢
SL

S =wing area
Cbo = zero lift drag coefficient
K1 = drag polar constant

For various key points throughout the mission, #igorithm works by ultimately
determining the amount of fuel flow required to yad® enough thrust. In order to do,
the algorithm must determine the amount of threquired, and match from the engine
deck the amount of fuel flow required to producat timuch thrust. The thrust data in the
engine deck is not scaled yet, but that is irredevas fuel flow is calculated per takeoff
gross mass. The unscaled thrust value required tine deck can be calculated using the

Master Equation shown in Equation 26 and the faat Trop = a Ts.. Equation 27

shows Equation 26 manipulated to calculate

o= qCops Klﬂgz(mT%j g d(z) 27)

T/ mTo q V dt
TO

Equation 28 identifies the thrust required as acfion of the sea level static

thrust.
ﬂTSL qCp Kllggz (mTO j 9 d
Trop = T/ mTO q é Vv dt (Z ) (28)
TO
Where: Top = thrust required
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The engine is assumed to be rubberized, meaning tten be scaled. The factor used to
size up the engine detailed in the deck can bedag to the true engine by multiplying
it by a constant factor. That factor can be dididey both sides to give the same

equation, but scaled for the engine deck, as seEquation 29.

BTos | GC KiB9®(m gd
T - ) Do + 1 ( TO j_'___ Z
DRQD =T IBmTo q é v dt( o) (29)
Mio S
Where: B.rop = thrust required from engine deck

Tp s. = sea level static thrust from engine deck
At this point in the algorithm, a new parameteg,dds introduced. Kngis the
factor by which the engine is scaled, or the ragtween the actual sea level static thrust,
Ts. and the deck reported, unscaled seal level dtatisst, Tos.. If both Keng and that

ratio are divided by the takeoff gross mass ofdineraft, Equation 30 can be derived.

T&/
Mio - Kew (30)
TD,SL mTO

The fuel flow per takeoff gross aircraft mass tanfound using that same ratio,
Keng Once the engine deck thrust requireglrdp, is found, the fuel flow from the deck,
ffp can be found as a linear interpolation from thgime deck. Since the aircraft has yet
to be sized, the measure of fuel flow should beaqgrer takeoff gross mass basis. In
order to find this value, #f needs to be multiplied first by the:=k and then divided by
the takeoff gross mass,te Equation 31 shows this relationship. The rafidgng to
Mo can be found in Equation 30, where the thrust &ssratio was calculated by the
mission parameters, and and the seal level stagine deck thrust was calculated by the

propulsion analysis algorithm.

(31)



The total fuel consumed over the segment per tlggoss mass equals the
guantity found in Equation 31 multiplied by the &rof that segment. It should be noted
here that the greater number of segments the figghtoken into, the more accurate the
sizing algorithm is, as conditions continuously @ throughout flight. Even if the
altitude and Mach number remain constant, thedifj consequently the drag, will vary
as the weight is reduced because fuel is consuriiédre is a tradeoff, however, as the
more segments that the flight is broken into, treger the algorithm takes to run for each
sizing analysis. Considering the low fidelity bktanalysis being used, it does not make
sense to break the mission into too many segmehiso, because the flight conditions
are measured at the beginning of each segmentetier segments that the flight is
broken into, the more conservative the assessrseatsithe weight of the aircraft will
continue to decrease as fuel is consumed.

Assuming that no payload is dropped throughoutntingsion, the only reduction
of mass is the consumption of fuel. If the aircrstbred oxidizer onboard, or if the
byproducts of the process are retained onboard, whuld not be the case, and the
algorithm would need to be varied. Assuming that dnly reduction of mass is through
the consumption of fuel, the weight fractifrfor each segment can be easily calculated
from thef3 for the previous segment and the ratio of fuelscomed for the segment over
the takeoff gross mass, as is shown in Equation 32.

ff

mTO

Bn=B~ (32)

The algorithm iterates through the mission begignwith takeoff, and calculates
the 3 fraction for the next flight segment. Once theafif fraction is calculated, the
empty weight fractions and payload can be useddatify the takeoff gross mass of the
aircraft. The empty weight fractions reflect tharent state of the art for the structural

subsystem of the aircraft.
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Once the fuel weight percentage, engine weighb,ratnd photovoltaic cell
weight ratio were calculated known, the vehiclesensized using slightly different
algorithms.  The empty weight fraction for fixed nged vehicles was given
parametrically. Equation 33 shows the totalingaifcraft weigh t for fixed wing
vehicles.

Mey =M +M + Meruer + Mpguersysten™ Moy cats (33)

EmptyVehicle
Equation 34 is a manipulated version of Equati8ritat allows the total vehicle

weight, Mgy, as a function of payload and the weight raticsussed above.

M W - M PL
1- M EmptyVehicle _ M"Fuel" _ M Power System _ M PV Cells (34)
M FW M FwW M FW M FW

While the expected empty weight fractions may waith the propulsion system
as complexity increases or decreases, at this,pgbmtalgorithm assumes that the empty
weight fractions are the same for each type of gisdpn system. The total fuel
consumed throughout the mission, the takeoff groass of the aircraft, and the total
emissions emitted into the atmosphere throughoatflight are all calculated in the
algorithm and could ultimately be used as figurésnerit when selecting the “fittest”
propulsion systems.

Figure 50 summarizes the sizing and synthesisn@uwtsed to conceptually size

the fixed wing vehicles.

199



Propulsion Mission Parameters: Vehicle M Empty
System Velocity, Altitude... Parameter M ' AR’ CD,O’ Kl
Definition l l
Calculate Thrust & Power
Calculate . csin T P M
. .| requirements for each missio Eng
Engine Deck > _—,—,
segments M M M
\ 4
Calculate Fuel Ratios ]
.| for each mission Meer  Meger
segment M M
v
Calculate required solar
.| cells & mass of solar Aovcets Mpy cels
cells M ' M

Calculate Vehicle

Mass

Figure 50: Flow Chart of Sizing and Synthesis Routie for Fixed Wing
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APPENDIX E: SIZING ALGORITHM FOR LIGHTER-THAN-AIR
VEHICLES

An energy based sizing algorithm was used to sgtgdr-than-air vehicles. Because
little was known about the vehicles, and the auttesired the sizing algorithm to be fast
enough for a thorough design space investigatibe, gizing algorithm had to be

simplified. The assumptions used to size the Yebjtowever, were consistent, and thus

the assumptions and simplicity of the analysis &howt impact the evaluation of the

propulsion system.

Photovoltaic Cells

Figure 51: Solar Airship Schematic
Each of the airships were shaped to minimize ttag.d Khoury noted that the
National Physical Laboratory in England found thia¢ drag of an airship can be
minimized by shaping it as shown below in Figure [88]. The ratio of D/L was

parametric, but ranged between 0.15 and 0.30.
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Figure 52: Optimal Shape for Airship
The shape shown in Figure 52 served as the predminshape for the lighter-
than-air envelopes.
The ratio of envelope volume to vehicle mass wasutated by as a function of
the difference in density between the ambient it the helium at the maximum altitude.

The derivation of the relationship is shown belovEguations 35, 36 and 37.

I-Envelope = rT‘\/ehicleg (35)
gVOIEnveIope(pAmbient - IOHe) = rn\/ehicleg (36)
Vol 1

- 37
M Vehicle (pAmbient - pHe ) ( )

Drag was calculated as a function of the envelageme, Vol, the velocity, the
ambient density, and the volumetric drag coeffitias determined by Hoerner [48].

D :%p\/z (VOI)% Cov (38)

The drag of the vehicle was required to calcuthte amount of power that the
vehicle must overcome at each point in the missiynmultiplying the drag by the
velocity. The power was then normalized by theislehmass. Unfortunately, this was
not simple. The drag coefficient is normalizedthg volume raised to the ¥®ower, as

is shown in Equation 39.
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P :lpvs(vo')% o

(39)
M Vehicle 2 M Vehicle (VOl)%

In order to normalize the required power by mass,ratio between the volume
raised to the 2/3power and mass had to be determined. To idestith a relationship,
the author investigated the shape of the envelopEte volume of the airship can be
found by rotating the shapes shown in Figure 52Fagdre 53 around the axis 180°. The
volume, then, must be proportional t6 And L. Equation 40 shows the volume

calculation for the shaded region in Figure 53.

VOlg ooy = g mh?a (40)

)
o
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U‘\<
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1l
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™
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L

Figure 53: Generic Airship Shape

The volume of the unshaded region in Figure 53&lsuated in the exact same manner
as the volume of the shaded region. The two votuoa be added together to find the

total volume of the envelope, as shown below indign 41.
Vol =gﬂb2a+gﬂbzc (41)

Because the length a and length ¢ sum to theltatgth of the airship, L can replace the

“a” and “c” terms in Equation 41 to create Equatitth
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Vol =gﬂb2(a+ ¢ = Vol :gﬂsz (42)

If the ratio of D to L is known and fixed, it car lused to remove L from Equation 42
and make Volume only a function of. bThis function is shown below Equation 43.

8
Vol = E,DL/L b® (43)

Notice in Equation 43 that the volume is only aicdbnction of b. Volume raised to the
2/3% power can now easily be found. The author intceduthe relationship between the
square of the b and the mas¥M so that the calculation of volume to the 2/3veo

divided by mass could be calculated for Equation BBis relationship is shown below in

Equation 44.

(vol)*s _ (§lJ% b* (44)
M 3% ) M

By guessing a ratio of’BM, the ratio of volume to the 2f3o0 mass could be calculated.
The author could then use that value, found in Egqnad4, to calculate the power
required for the airship at each point in the noissusing Equation 39. Thé/M term
was initially guessed, but later would be iteratpdn.

Once the ratio of volume to the ¥/gower and Mass were known, the author was
able to calculate the power required at key pamtee mission. The required power was
then used to identify the flow of energy that waquired at each point in the mission.
That flow energy was multiplied by the durationtbé mission segment to identify the
required stored energy to vehicle mass ratio.

The envelope to vehicle mass ratio was calculbtefirst calculating the surface
area, of the envelope, normalizing it by the massl multiplying it by the parametric
fabric density, measured in mass to surface arBacause surface area is directly

proportional to B/M, this calculation was also made easier withititeoduction of the
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new variable. The calculation can be found bytnogathe surface area Figure 52 360

degrees. Equation 45 shows the derived relatipnshi

M Rnvelope _ b? 2 1+ arCSir(e) den‘:
- abric
M Vehicle M Vehicle % e

(45)

The quantity e Equation 45 is the eccentricityd &ns a function of the ratio of

d/l. Equation 46 shows how the eccentricity caltioh.

e=,[1-9/ (46)

Another important factor in the sizing of airshijgsthe projected area. If the
vehicle relies upon solar energy, a check mustmoccansure that the vehicle has enough

projected area to capture enough solar energyweipthe vehicle.

2
AProjected _ 1 b

M Vehicle 4 M Vehicle

(47)

The ratio of the solar cells to the vehicle massla also be calculated once the
area of solar cells that is required is calculat€tis was done using a parametric density
of the solar cells, just as was done in for theitattensity. Finally, the engine to vehicle
mass ratio was calculated by knowing using the maria power output and the
parametric specific density of the vehicle.

For lighter-than-air vehicles, the fabric densitgs given parametrically, and the
empty gondola weight fraction was known. Equatd@shows the total vehicle weight,
M.ta as a sum of the component weights.

M LTA = M ot M +M. +M +M pv cells T M EnvelopeFabric (48)

Gondola ‘Fuel" Power System
This analysis assumed that the gondola weightfismetion of the items held in

the gondola. The ratio of empty gondola weighthte filled gondola (compromised of

the gondola, fuel, power source, and payload) veastant. Gondola weight, then, can

be removed from Equation 48 and replaced with th@nh ratios. Equation 49 shows a
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manipulation of Equation 48 that allows takeoff it weight to be calculated as a

function of payload, fuel ratio, power system rafabric density, and the empty gondola

weight ratio.
M PL
(1 _ M Gondola ]
M — i M Gondola +M "F‘uel" +M PowerSystm +M PL
o (M "Fuel" +M PowerSysterr)/ (49)
1- M LTA _ M Fabric M PV Cells
1 _ M Gondola M LTA M LTA

M

Gondola T M T M PowerSyste +M PL
The airships were sized parametrically using Equai8. The calculation of the mass
ratios in Equation 48 required the use of’dvbvalue, which was guessed. After the
vehicle was sized, the actud@/M value could be found. A fixed point iterationopess
was used to ensure that the guesséd balue equaled the found/M value. Once the
difference was limited to a specified tolerance, sizing was complete.

The entire sizing methodology for lighter-than-aghicles is shown in Figure 54.
Notice, that the process is iterative. The vagafIM is initially guessed, and iterated

upon until the guessed value matches the estinvaled.
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Figure 54: Flow Chart of Sizing and Synthesis Routie for LTA

207



APPENDIX F: SIMULATED ANNEALING DISCUSSION

The following simulated annealing program was usedfind the optimal set of
propulsion systems for each fixed set of requirdsienThe program is a MATLAB
function, and it does use a couple of functions tirere created by the user, but are not
shown here. In general, the optimizer initiallyngeates a random set of solutions, or
engines. Throughout each generation, the optinslightly perturbs each solution to
produce an offspring. If the offspring is bettean the parent is, it survives to the next
generation. If the offspring is worse, there snaall chance that the new solution will be
kept. That probability is dictated by the “Tempara’. At the beginning of the
optimization (early generations) the “Temperaturehigh, and there is a good chance
that the inferior offspring will survive. Throughb each generation, however, the
“Temperature” cools, and the likelihood that arendr offspring survives decreases.

The simulated annealing function requires inputoathe number of generations,
the pool size, and requirement variables that @kert into account by the optimization
function. The function then defines the boundafmsthe randomly generated initial
pool, and generates the pool. The, the optimiatutates the function values for each
pool member.

For each generation, the optimizer slightly pdrsuthe pool members to produce
offspring, or a “trial_pool”. The function valuégr each solution in the “trial_pool” are
calculated, and the optimizer determines which nmexslof the trial pool replace their
parents in the “new_pool”. This process is repeatethe next generation. The results
determined in the thesis used a pool size of 3@rradtives, and ran through 300

generations.
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function data = sa_doe(generations,pool_size,...
mission_parameters,tech_limitations,iiii)

%% Set Boundaries

%% Boundaries identify whether variables are discrete or continuous
%% Boundaries also set mins and maxes for continuous variables
bounds=[1,1,1,1,0,1,0,1; 4,4,2,2,1,2,1,3];
[a,dimensions]=size(bounds);

%% Generate iiitial pool of engines, defined by indpendent variables.
pool=make_pool(bounds,pool_size);

%% Define Likelihood Poorer solution will be kept
typical_delta=2000; %% Typical difference in F(x) for two solutions
%% Probability inferior solution kept at end of optimization
p_min=.01;

%% Probability inferior solution kept at begining of optimization
p_max=.05;

b=(log(p_max)/log(p_min))*(1/(generations-1));
b=(log(p_max)/log(p_min))*(1/(generations-2));
A=-log(p_max)*typical_delta/b;

A=-typical_delta/b"2/log(p_max);

%% Define the min & max step size for solution pertubations
t_step_max=.3;
t step_min=.02;

%% Find the function values for each pool member

%% Author created function to do so, shown below

z(:,1)=find_function_values(pool,pool_size,...
mission_parameters,tech_limitations)’;

%% Find best solution of entire pool
[z_min(1),index]=min(z(;,1));

%% Find best engine of total optimization
best_engine(;,1)=pool(index,:)’;
best_engine(dimensions+1,1)=z(index,1);
best_overall(;,1)=best_engine;

%% Find average F(x) for current pool
z_avg(l)=mean(z(;,1));

for i=2:generations
tl=cputime;
%% Probability of accepting inveferior solution is dictated by
%% Temperature (T)
T=A*bA(i);
step_size=t_step_max-(t_step_max-t_step_min)/(generations-2)*(i-2);
P_bar=exp(-typical_delta/T);

%% Create a pool of offspring solutions (user defined function)
trial_pool=vary_pool(pool,bounds,step_size,...
pool_size,dimensions,z(;,i-1));

209



end

%% Find function values for each new solution
trial_z=find_function_values(trial_pool,pool_size,...
mission_parameters,tech_limitations)'’;

%% For each pool member, identify whether new solution is better or
%% worse. If worse, determine whether accepted or rejected (using
%% Temperature calculated above.
for j=1:pool_size
if trial_z(j) <=z(j,i-1)
new_pool(j,:)=trial_pool(j,:);
new_z(j)=trial_z(j);

else
delta=trial_z(j)-z(j,i-1);
P_accept=exp(-delta/T);
if rand<=P_accept
new_pool(j,:)=trial_pool(j,:);
new_z(j)=trial_z(j);
else
new_pool(j,:)=pool(j,:);
new_z(j)=z(j,i-1);
end
end

end

%% Define next generation pool, find generation minimum & average.
%% Also, see if total optimization minimum was improved upon.
pool=new_pool;
z(:,)=new_z';
[z_min(i),index]=min(z(:,));
best_engine(1:dimensions,i)=pool(index,:)";
best_engine(dimensions+1,i)=z(index,i);
%% See if total optimization minimum was improved upon.
if z_min(i)<=best_overall(dimensions+1,i-1)
best_overall(:,i)=best_engine(:,i);
else
best_overall(:,i)=best_overall(;,i-1);
end
z_avg(i)=mean(z(:,i));
%% Move on to next generation

data=pool;
data(;,dimensions+1)=z(;,i);
data(pool_size+1,:)=best_overall(;,i);

%

FUNCTIONS %

function pool=make_pool(bounds,pool_size)
[a,b]=size(bounds);
for i=1:pool_size

for j=1:b
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if bounds(1,j)==0 pool(i,j)=rand;
else pool(i,j)= randint(1,1,[bounds(1,j),bounds(2,))]);
end
end
end
return

function z=find_function_values(pool,pool_size,...
mission_parameters,tech_limitations);

good_ct=0;

for i=1:pool_size
%% fly _mission is the function to calculate total vehicle mass.
zz(i,:)=fly_mission(pool(i,:),mission_parameters,tech_limitations) ;

if zz(i,1)==0
zz(i,1)=1e10;
else good_ct=good_ct+1;
end
z(i)=zz(i,1);
end
return
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APPENDIX G: DISCIPLINARY METRIC VALUES

Disciplinary Metric
M intet

1 compressor

% QLoss, Heat Exchange

r] Combustion

1 motor

N cenerator

r] Turbine

r] Shaft
r] Nozzle

r] Propeller

r] Fan
AI:)O, Fuel Cell

TwaxFc

% AF)O, Heat Addition
% AF)O, Combustion
CDo

AR

€ar
MEmpty/MGross
M Payload

Fabric Density (for LTA)

MGondoIa/MGross
d/l (for LTA)

CL max (for some FW)

Explanation
Inlet Efficiency

Compressor Efficiency

Percent Heat Lost in Heat Exchange
Combustor Efficiency

Motor Efficiency

Generator Efficiency

Turbine Efficiency

Shaft Efficiency

Nozzle Efficiency

Propeller Efficiency

Fan Efficiency

Pressure Drop in Fuel Cell
Maximum Temperature in Fuel Cell
Pressure Drop in Heat Addition
Pressure Drop in Combustion

Zero Drag Lift Coefficient

Aspect Ratio

Factor used in drag polar

Ratio of empty mass to total mass
Payload Mass

Mass of LTA fabric per unit area
Ratio of gondola mass to total mass

Diameter to length ratio for LTA
Maximum lift Coefficient
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Value

0.99
0.9
0.045
0.995
0.8
0.9
0.93
0.99
0.99
0.85
0.9
0.6
1200
0.8
0.96
0.02
20
0.9
0.25
1500
0.3

0.25
0.25

Unit

°K

Kg
Kg/m?
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