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SUMMARY

In this work, we develop a novel method for dense surface reconstruction of scenes

using radar. For a given scene and a set of antennas looking towards to this scene, our

method estimates the shape of the scene using the radar return signal. For this purpose, we

use a deformable shape evolution approach which seeks to match the received signal to a

computed forward model based on the evolving shape. Using such an approach comes with

important advantages such as the ability to model the issues related to the object geometry

which cannot be easily incorporated into the problem by the current radar based imaging

techniques. As an example, we know that most scene surfaces have some level of smooth-

ness. Exploiting such prior information can yield a more accurate estimation of the shape.

It can also decrease the number of measurements required for an accurate estimation since

the prior information limits the solution space to a subspace that favors surface smoothness.

Another important geometric consideration is the self-occlusions present in the scene. We

know that certain parts of the object surface are not visible for some antenna positions

which can be very important to model, especially for close range applications in which the

self-occlusions strongly change with the viewpoint. Iterations start with an initial shape

which is gradually deformed until its image under the forward model gets sufficiently close

to the actual measured signal. However, using an iterative inversion scheme for radar can

be tricky as radar signals are highly oscillatory with respect to the surface shape which can

introduce itself in the cost functional if cost function is not carefully designed. For this pur-

pose, we employ the technique of stretch processing to extract geometric properties of the

shape from radar return signal. This yields a smooth and purely geometric cost functional

by which shape inversion can be robustly performed via gradient-based minimization al-

gorithms. Employing such a cost functional, we test our approach on synthetic simulations

where we use two different parametrizations. First, we use a polygonal shape model for

our evolving shape where the set of parameters are chosen to be the vertices of the polyg-

xiii



onal model that are of finite dimension. Second, we use a level-set based approach where

we have a continuous parametrization of the shape model. In this scenario, the shape is

parameterized implicitly as a constant level-set of a function defined on the Cartesian grid.

We obtain promising results using both cases where results show the promise of this type

of an approach on some challenging scenarios.
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CHAPTER 1

INTRODUCTION

Vision systems are becoming more and more essential in robotic systems because of the

rich information they can provide about their environment. Especially for robots that are to

navigate in cluttered environments, awareness of the scene structure is of great importance

as it is usually the main limiting factor on robot motion. Inferring such structure using

visual cues from camera images is a natural approach which mimics the way we sense the

world with our eyes.

Shape sensing from is an established area of research in computer vision that is known

as 3D reconstruction. This problem is studies under two main categories that are the

bottom-up approaches and the top-down approaches. In bottom-up approaches, multiple

images are used that are captured from different view points. Distinctive features are ex-

tracted from these images and feature matches are obtained after a cross-matching proce-

dure. These feature matches are then used to jointly estimate the camera locations and a set

of 3D point coordinates of the feature locations. Procedures can efficiently be done using

the projective geometry tools where closed form expressions are available that yield one-

shot solutions for the camera poses and the 3D feature coordinates. However, since these

methods are usually sensitive to noises and calibration parameters, usually a nonlinear re-

finement procedure is performed over these initial results that yield more accurate results.

Also, to obtain the scene geometry, a meshing can be performed over these sparse features.

These methods also have some disadvantages. For the scenes where distinctive features

are not abundant, it is not easy to obtain feature matches between images which makes

the estimation process trickier. Another important consideration is that we cannot use the

prior shape information we have about the scene with these methods which can be greatly

benefited. These issues can be successfully addressed via using top-down approaches. In
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these approaches, we start assuming a shape model, a reflectivity function attached to the

shape and a camera model. Using all this information, we can generate the images for

our assumed shape model which now can be compared to the actual images of the scene.

Using the mismatch between the actual and the computed image, we can update our shape

model aiming to decrease the discrepancy between two images. Running this procedure

iteratively, we expect our shape model to converge to the actual scene. The main advantage

of these approaches is that we obtain the scene geometry in a natural way (for bottom up

approaches, usually a point cloud is obtained on which a meshing is needed to get geom-

etry). Running the estimation using the shape model also comes with an opportunity of

being able to introduce shape priors directly into the optimization problem. As a result, we

can embed any prior geometric information available to us such as smoothness, continuity

or the topology [1] [2].

Although camera based sensing methods are proven to be effective for robotics systems,

these systems can be fragile to certain factors such as the presence of low ambient light or

the obstructing factors for the visible light spectrum (rainy, foggy weather or smoke). As a

result, alternative sensing modalities can often be required for the applications where these

conditions are present. A good option to replace or complement the camera systems can be

the radars. Radar systems are immune to many factors which challenge visual sensors as

they have good penetration capabilities through certain mediums, air, water etc. [3] These

systems are essential especially for airborne and spaceborne imaging applications where

light rays can easily be blocked by the clouds or the thick layer of air between the antenna

and ground scene. High resolution imaging can also be done with radar using an apparatus

known as Synthetic aperture radar (SAR)[4][5][6][7]. A SAR system is usually composed

of a small antenna or antennas attached to a moving platform which takes measurements

of the scene from different viewpoints. These measurements are then used to synthesize a

high resolution image of the scene. Using such an approach (taking measurements of the

scene from different view points) is necessary since otherwise it would be impractical to
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be able to get a high resolution in the along-track (azimuth) direction. For instance, for an

X-band radar (λ ≈ 0.03m) with an aperture length of L = 1m, beamwidth becomes:

θ =
λ

L
=

0.03

1
= 0.03rad. (1.1)

For an antenna scene distance of r = 10000m, resolution in the azimuth direction is ob-

tained as:

δ = θr = 300m (1.2)

which means to be able to separate two scatters in a scene, distance between them should be

greater or equal than δ. As a result, getting a reasonably high azimuth resolution for a usual

scenario, either the wavelength should be impractically small or the antenna size should

be very large. To overcome this limitation, Carl Wiley invented a new technique [8] that

uses a coherent radar and the Doppler beam sharpening technique by which the achievable

azimuth resolution was increased. In the following years, further developments were made

and what we call the Synthetic aperture principle was invented [9]. Using this technique

and certain algorithm classes, the achievable resolution for a side looking antenna is found

as:

δ =
L

2
(1.3)

which is independent from the scene-antenna distance. Also, this equation yields a better

resolution for a smaller antenna which may seem strange at first since the whole purpose

of the synthetic aperture radar is to realize a very large antenna with a small one that is

taking measurements at different viewpoints and synthesizing them. The reason why a

small antenna gives a better resolution is because it has a larger beamwidth that covers a

given scatterer for a larger angular dwell and as a result of this, the scatterer contributes to
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a larger number of measurements which yields a better localization for the scatterer.

In the 50s and 60s, SAR systems were mostly considered for military applications

where the purpose was to create images of man-made terrains and targets. In the 70s

and 80s, civilian applications of SAR also started where SAR systems were developed to

retrieve geological and bio-physical parameters of the earh surface. Use of the polarimetry

for improved parameter retrieval [10], interferometry [11] to measure surface topography

and differential interferometry to be able to detect surface displacements [12] were devel-

oped in 80s and 90s.

SAR has also been considered for 3D imaging. In this case, scene is modelled as a

reflectivity function in 3D which is to be computed from measurements [13]. In [14], a true

3D tomographic formulation formulation of spotlight mode SAR was developed which also

led to a better interpretation of the layover phenomena that is caused by the out of plane

scatterers in case of a 2D imaging. Besides the tomographic techniques, some near-field

techniques was also developed for 3D SAR [15].

SAR has been proven to be a strong and informative tool for 2D and 3D imaging prob-

lems. Exploiting the use of frequency domain based techniques and low computational

complexity of fast Fourier transform [16], SAR images can be synthesized in a surprisingly

efficient manner. However, these methods lack in modelling certain kind of nonlinearities

that can be present in imaging. For example, the well-known occlusion problem in com-

puter vision is highly nonlinear and proven to be hard to deal with. When we look at a

scene, our eyes capture the light rays reflected from the scene. Some of these rays may not

be visible since they are blocked by other opaque objects or surfaces, or the object itself.

When the point of view changes, set of scatterers in the scene also change and some of the

previous parts of the scene we observe become invisible and some invisible parts become

visible. Since characteristics of occlusion is a highly nonlinear function of the scene and

the scene itself is to be estimated from the measurements, there is no easy way to incor-

porate this into SAR imaging. Although occlusion modelling may not be that critical in
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the long range (spaceborne), the effect can be critical for close range applications where

the visible parts of the object can drastically change with respect to the view-point. An-

other important consideration which is not available to the current SAR techniques is the

notion of shape geometry since the raw output of these algorithms is a spatial reflectivity

function defined on a scatterer grid. The imaging problem is to assign reflectivity values to

each scatterer by using the radar measurements that are sampled from a moving antenna.

Therefore, reflectivity value of each scatterer is estimated independently from others. De-

pending on the size of the cell, this approach comes with the phenomena called speckles

which is caused by multiple scatterers in the same resolution cell that can constructively

and destructively interfere with each other. Speckle manifests in the synthesized image as

dark or bright spots.

We know that in a lot of real life applications, scenes have a certain level of surface reg-

ularity (continuity and smoothness) and these properties has been successfully exploited for

computer vision problems with the use of the generative model based approaches that uti-

lize a top-down approach for shape estimation. Considering the remarkable achievements

of SAR in the last decades and the dramatic increase in the computational power available

in today’s world, one can naturally ask if these generative model based approaches can also

be benefited in radar based shape sensing the way they have been in computer vision. To

this end, the main goal of this thesis is to develop a novel radar based shape sensing

framework that adopts a generative model based shape estimation scheme. Since such

approaches have been successfully used in computer vision, our main strategy will be

based on transferring the available tools from computer vision to radar world which

we think can be greatly benefited for a niche set of shape sensing problems in this

domain.

Our approach is based on utilizing a generative model through which radar measure-

ments can be computed given an initial shape model, a reflectivity function of this model

and antenna configuration (rotation, translation and a directional gain pattern). By using
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such an approach, we will be able to naturally incorporate all kinds of geometric consid-

erations such as occlusions, continuity, smoothness etc. into the estimation problem. The

main structure of our estimation scheme will be adapted from stereo vision based shape

estimation schemes where we will choose to modify or fully replace certain parts of these

techniques when it becomes necessary. Although radar and camera systems are very dif-

ferent from one another in terms of how they work and the type of resolution they provide,

there also exists a lot of similarities between them. To lay the bridge between computer

vision and radar and understand which tools need to stay the same and which are to be

adapted or replaced, it is important to understand both similarities and differences. A sum-

mary of the similarities can be listed as:

• Both can be used to detect and track objects or creating maps.

• Both acquire information through EM waves

• There is an inherent loss of information in both modalities.

• Recovering the information that is lost in the measurement process has to be recov-

ered through multiple measurements acquired from different view points for both

cameras and radar.

Differences can be listed as:

• Camera images are rich in directional (spatial) information. Radars signals are rich

in temporal (or equivalently range) information.

• Raw measurement of the camera is the intensity of the light incident on the indi-

vidual pixels (power). Considering a small exposure time, our measured quantity

becomes time-invariant. Raw measurement of the radar is a complex sinusoid with

time dependency.
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• The governing equation that connects the scene shape to the image data for a pinhole

camera is a simple division combined with an affine transformation (calibration ma-

trix). For radar, the raw complex sinusoid measured from the receiver at any given

instant is a function of all surface points (within the beam pattern) that needs to be

computed from a 2D surface integral.

• In cameras, depth information of the 3D scene is lost due to the projection from

3D to 2D while information along the other spatial dimensions are preserved (direc-

tional information). Radar signals on the other hand, in its raw form, predicated on

measuring the time delay information that can capture the range information. As a

result, they cannot resolve two scatterers with same range value which lie at differ-

ent directions unless combined with other measurements or a very small beamwidth

antenna.

Considering the differences between two imaging modalities (cameras and radar), our first

step is to replace the pinhole camera model with a simulation in which we implement the

governing physical equations that compute the signal to be measured from receiver given

a surface, its reflectivity function and the transmitted signal. As a result of this, we obtain

the connection between the scene and the raw measurement induced by it which will be our

source of geometric information. We derive the governing physical equations in Chapter 2.

A second modification to camera based shape reconstruction will be in the inversion

domain. In the inversion part, we have a cost functional that measures the mismatch be-

tween the computed images and the actual ones. Computed images are the ones generated

using the pinhole camera model (or a more complex camera model if necessary) that takes

our evolving shape model and its reflectivity function as input. Actual images are on the

other hand are the real measurements of the scene captured from different viewpoints. By

defining the mismatch between these two sets of images using our cost functional and up-

dating our shape model in the direction of decreasing mismatch at each step, we eventually

expect our shape model to converge to the actual scene. Since this problem requires the
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solution to a highly nonlinear optimization problem, we need to take certain considera-

tions into account. For example, we previously mentioned that pixel intensity value is a

measure of the average power incident on the particular camera array element. Assuming

a smoothly changing reflectivity function on the surface with respect to the surface nor-

mal (a nonspecular reflectivity function such as Lambertian), we know that the intensity

value of corresponding pixel smoothly changes with respect to the perturbations in the sur-

face normal. The situation is similar for the perturbations in the location of the reflector.

As a result, we can comfortably define our cost functional as a function of the the pixel

intensities since it is reasonable assume that our cost functional will be reasonable well-

behaving. By a well-behaving cost function, me mean that the cost functional is as local

minima free as possible in the space of possible shape geometries. This is vital since we

cannot have a closed form solution for shape estimation due to the cost functional being a

highly nonlinear function of the shape geometry. As a result, we need an iterative scheme

to update our shape model at each step where we are heavily dependent on the gradient

of the cost functional. This factor should particularly be taken into consideration when

designing a cost functional for a radar based shape estimation as raw radar measurements

are by nature high frequency complex sinusoid signals where the high frequency oscilla-

tions can manifest themselves as local minima of the optimization problem. We will have

a detailed discussion about how to develop a well behaving cost functional for radar based

shape estimation through a proper choice of preprocessing in Chapter 3. In Chapter 4, we

demonstrate the use of our framework for a 2D discrete parameter case. We also assume

to have a 2D star-shaped objects which can be approximated by a polygonal shape. Finally

in Chapter 5, we employ a level-set parametrization for our shape model which provides

us the chance to address a much richer family of shapes when compared to the polygonal

shape model.It should be noted that we demonstrate our approach for a 2D case merely

because of its easiness of implementation where our framework is independent from the

number of dimensions. General structure of the framework we will be using is depicted in

8



Figure 1.1: General structure of our shape estimation scheme. Φ denotes the parameter
vector for a particular representation of the shape geometry. Signal attributes fed to the cost
functional are any choice of information that can be extracted through a preprocessing.

Fig. 1.1.
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CHAPTER 2

PHYSICAL MODELLING

Modelling of physical phenomena is required for understanding the relation between the

scene shape and the received signal. To this end, we will develop a physical model by

which we can generate measurements given a shape and antenna configuration. This will

be important as our strategy for the inversion will be formulated on the mismatch between

the actual measurement and the computed measurement that requires the simulation of the

physical phenomena. We will call such simulation as our forward model.

We will derive our forward model at three steps which, when combined, yields the

governing equations of the whole physical phenomenon. These steps are:

• Computation of the measurements of the wave field generated by the transmitter at

a specified point on the object surface given its relative position with respect to the

transmitter (TX) aperture .

• Modelling the interaction between the transmitted waveform and the object surface.

This includes both how the transmitted signal interacting with the object surface and

how the surface radiates back. We will use first Born approximation which means

we won’t be modelling multi path interactions.

• Computation of the signal induced by surface radiation on the receiver (TX) aperture.

This process can be modelled as a transfer of energy from the transmitter to the receiver

which we will derive using radiometric principles. For simplicity, we will use the ray optics

to model the wave propagation. Our model will be based on the following assumptions:

• Transmitter antenna consists of a rectangular surface where each point on the surface

behaves as an infinitesimal ideal diffuse radiator. This means that the radiance (per-
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ceived intensity) is constant along all directions in the upper hemisphere defined by

the radiator surface.

• The scene behaves as an ideal diffuse reflector where the surface radiance is constant

along all directions (Lambertian).

Our strategy is to derive the resultant electric field incident on the receiver aperture for a

given transmitted signal.

Assuming each point on the transmitter aperture emits a power density of 1Watt
m2 , we

can compute the radiance from conservation of energy. The relation between the power

density and the radiance L(Watt
m2sr

) (radiant flux emitted per solid angle per unit projected

area) is given as:

1
Watt

m2
=

∫
Ω0

LTX(θ) cos (θ) dΩ (2.1)

where θ is the angle between the ray and the antenna normal and we integrate over the rays

transmitted along all directions (dΩ is a solid angle measure and Ω0 is the upper hemisphere

defined by antenna normal). Expressing the integral over two angle parameters θ and φ),

we have:

1
Watt

m2
=

∫ π/2

0

∫ 2π

0

LTX cos (θ) sin (θ)dφdθ (2.2)

=

∫ π/2

0

∫ 2π

0

LTX
sin 2θ

2
dφdθ (2.3)

=

∫ π/2

0

LTX
sin 2θ

2

∫ 2π

0

dφdθ (2.4)

=

∫ π/2

0

LTX
sin 2θ

2
(2π) dθ (2.5)

= πLTX
(
− cos (π)

2
+

cos (0)

2

)
(2.6)

= πLTX (2.7)

LTX =
1

π
. (2.8)
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Using this, we can compute how much power an infinitesimal radiator emits in a certain

direction. For a point in the space (this will be a point on the object surface) where the ray

vector connecting the radiator to the surface is q′, density of the average transmitted power

is given as:

ITXdd (q′) = LTX
q′bz
‖qb

′‖
1

‖q′‖2
(2.9)

q′bz
π‖qb

′‖
1

‖q′‖2
(2.10)

where the term q′bz
‖qb
′‖ is the projected area of radiator in q′ direction where q′b is q′ with

respect to the antenna frame and 1
‖q′‖2 is the dilution of power with distance. As the unit

of radiance LTX is Watt
m2·sr and the unit of 1

‖q′‖2 is sr
m2 , unit of Idd becomes Watt

m2·m2 which is a

double power density that is over both the scene surface and the antenna aperture. Electric

field induced by a single ray can be computed through the relation between the electric field

strength and the average power:

P =
cε0E

2
0

2
(2.11)

where ε0 is the permittivity of the free space and c is the speed of the light. In this case,

electric field created by infinitesimal radiator is given as:

E = E0 exp

[
i2πf

(
t− ‖q

′‖
c

)]
(2.12)

where f is the frequency of our complex sinusoid. In our case, we have an infinitesimal

radiator which creates an electric field density (Ed) for which the relation is given as:

ITXdd (q′) =
cε0
(
ETX
d0

)2

2
(2.13)
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Using this relation, the electric field density is given as:

ETX
d (q′) =

√
2ITXdd (q′)

cε0
exp

[
i2πf

(
t− ‖q

′‖
c

)]
(2.14)

=

(√
2q′z

cε0π‖q′‖

)
1

‖q′‖
exp

[
i2πf

(
t− ‖q

′‖
c

)]
. (2.15)

To compute the resultant electric field, we sum over all rays incident on our surface point

(emanated from the antenna aperture) which is given as:

E =

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2
ETX
d (q′) dxdy (2.16)

=

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2

(√
2q′z

cε0π‖q′‖

)
1

‖q′‖
exp

[
i2πf

(
t− ‖q

′‖
c

)]
dx′dy′. (2.17)

Since antenna aperture is small when compared to the antenna point distance, we will make

‖q′‖ ≈ ‖r′‖ = R′ assumption for the terms outside the complex sinusoid where r′ is the

ray emanates from the center of the aperture. For the phase term, to be able to get an

analytical expression, we use Fraunhofer diffraction where a first-order approximation of

‖q′‖ is used. Our expression then becomes:

E =

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2

(√
2q′z

cε0π‖q′‖

)
1

‖q′‖
exp

[
i2πf

(
t− ‖q

′‖
c

)]
dx′dy′ (2.18)

=

√2 cos (θ′)

cε0π

1

R′

∫∫ exp

[
i2πf

(
t−

R′ − x′u′bx − y′u′by
c

)]
dx′dy′ (2.19)

=

√2 cos (θ′)

cε0π

1

R′

 exp

[
i2πf

(
t− R′

c

)]
︸ ︷︷ ︸

K′

∫∫
exp

[
i2πf

(
x′u′bx + y′u′by

c

)]
dx′dy′

(2.20)

we have u′ = r′/‖r′‖, cos (θ′) = ubz and u′b =
[
u′bx, u

′
by, u

′
bz

]
where u′b is the unit ray

direction of r′ with respect to the antenna frame. Expressing u′b in terms of angular coor-
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dinates:

= K ′
∫∫

exp

[
i2πf

(
x′ sin θ′ cosφ′ + y′ sin θ′ sinφ′

c

)]
dx′dy′ (2.21)

= K ′
∫∫

exp

(
i2πf

(
sin θ′ (x′ cosφ′ + y′ sinφ′)

c

))
dx′dy′ (2.22)

= K ′
∫∫

exp

(
i2πfx′ sin θ′ cosφ′

c

)
exp

(
i2πfy′ sin θ′ sinφ′

c

)
dx′dy′ (2.23)

= K ′
∫

exp

(
i2πfx′ sin θ′ cosφ′

c

)
dx′
∫

exp

(
i2πfy′ sin θ′ sinφ′

c

)
dy′ (2.24)

= K ′

exp
(
i2πfx′ sin θ′ cosφ′

c

)
i2πf sin θ′ cosφ′

c

∣∣∣∣
Ax′
2

−Ax′
2

exp
(
i2πfy′ sin θ′ sinφ′

c

)
i2π sin θ′ sinφ′

c

∣∣∣∣
Ay′
2

−Ay′
2

(2.25)

= K ′Ax′Ay′ sinc

fAx′ sin θ′ cosφ′

c︸ ︷︷ ︸
Q′x

 sinc

fAy′ sin θ′ sinφ′c︸ ︷︷ ︸
Q′y

 (2.26)

=

√2 cos (θ′)

cε0π

1

R′

 exp

(
t− R′

c

)
Ax′Ay′ sinc (Q′x) sinc

(
Q′y
)

(2.27)

= Ax′Ay′

√2 cos (θ′)

cε0π

 sinc (Q′x) sinc
(
Q′y
) 1

R′︸ ︷︷ ︸
E0

exp

(
t− R′

c

)
. (2.28)

We use the resultant electric field to obtain the incident power on an infinitesimal surface

patch (with a unit normal of n) in u′ direction. Transmitter and surface patch configuration

is depicted in Fig. 2.1. Using the relation between the electric field and average power,
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Figure 2.1: Placement of the transmitter antenna with respect to the surface patch where
Ax′ and Ay′ are size of aperture in the x′ and y′ dimensions, r′ is the vector connecting the
aperture center to the surface patch, n is surface unit normal and θ′ is the angle between r′

and the aperture normal.

irradiance incident on our point (infinitesimal surface patch) becomes:

Pdn(u′) =

cε0

[
Ax′Ay′

(√
2 cos (θ′)
cε0π

)
sinc (Q′x) sinc

(
Q′y
)

1
R′

]2

2
(−u′ · n) (2.29)

=
cε0A

′2
xA
′2
y 2 cos (θ′) sinc2 (Q′x) sinc2

(
Q′y
)

2cε0πR′2
(−u′ · n) (2.30)

=
1

πR′2

A′xA′y√cos (θ′) sinc (Q′x) sinc
(
Q′y
)︸ ︷︷ ︸

G′

2

(−u′ · n) (2.31)

=
1

π

G′2

R′2
(−u′ · n) . (2.32)

where we have a scale of (−u′ · n) from the fact that u′ is not perpendicular to our surface

patch (point). Therefore unit solid angle (with respect to antenna aperture that is now
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modelled as a point) covers a larger area on the surface that dilutes the power by the cosine

between the ray and the surface normal. Assuming no power loss on our surface patch,

we can assume the incident power will be fully radiated back. In our case, we assume our

scene surface to be an ideal diffuse reflector in which case the radiance is constant along all

directions. From the conservation of energy (as in Eq.2.2) we compute the surface radiance

as:

Ls =
1

π
(Pdn (u′)) (2.33)

=
1

π2

G′2

R′2
(−u′ · n) . (2.34)

Using the surface radiance, we compute how much irradiance is incident on our receiver

aperture created by our infinitesimal surface patch. The surface patch-receiver configu-

ration is depicted in Fig. 2.2. Note that unit of irradiance is Watt/m2 where contribu-

Figure 2.2: Placement of the receiver antenna with respect to the surface patch where Ax
andAy are size of aperture in the x and y dimensions, r is the vector connecting the aperture
center to the surface patch, n is surface unit normal and θ is the angle between r and the
aperture normal.
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tion provided by an infinitesimal surface needs to be a density quantity that has a unit of

Watt/m2 · m2 since total irradiance is the integration of this density over the scene sur-

face. Receiver antenna has a rectangular aperture where the antenna-surface distance is a

function of the aperture coordinates that creates a constructive/destructive interference on

the aperture. For a ray (q) connecting a point on the receiver aperture to the surface patch ,

radiated power (from the surface) is given as:

ISdd (q) = Ls
(−q · n)

‖q‖
1

‖q‖2

qbz
‖q‖

(2.35)

=
G′2 (−u′ · n)

π2R′2
(−q · n)

‖q‖
1

‖q‖2

qbz
‖qb‖

(2.36)

where we multiply the radiance by a cosine term (−q·n)
‖q‖ that comes from cosine power

law (so that perceived power is invariant with respect to the direction of measurement), a

power decay factor 1
‖q‖2

[
sr
m2

]
(radiance is defined as power emitted per unit solid angle

per unit projected area) and another cosine factor qbz
‖qb‖

diluting the power as the ray is not

perpendicular to antenna aperture so power is distributed to a larger area of dxdy
qbz/‖qb‖

where

qb = [qbx, qby, qbz] is the ray q with respect to the receiver frame. Amplitude of the electric

field density (a double density since it is a density over both the scene surface and the

receiver aperture) induced by a ray is given as (from Eq. 2.11):

ERX
dd0 (q) =

√
2ISdd (q)

cε0
(2.37)

=

√
2

cε0
Ls

(−q · n)

‖q‖
1

‖q‖2

qbz
‖qb‖

=

√
2

cε0

G′2 (−u′ · n)

π2R′2
(−q · n)

‖q‖
1

‖q‖2

qbz
‖qb‖

.

(2.38)
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Electric field then becomes:

ERX
dd (t,q) = ERX

dd0 (q) exp

[
i2πf

(
t− R′ + ‖q‖

c

)]
(2.39)

=

√
2

cε0

G′2 (−u′ · n)

π2R′2
(−q · n)

‖q‖
1

‖q‖2

qbz
‖qb‖

exp

[
i2πf

(
t− R′ + ‖q‖

c

)]
(2.40)

=

√
2G′2 (−u′ · n)

cε0π2R′2
exp

[
i2πf

(
t− R′

c

)]
︸ ︷︷ ︸

C

√
(−q · n)

‖q‖
qbz
‖qb‖

1

‖q‖
exp

[
i2πf

(
−‖q‖

c

)]

(2.41)

= C

√
(−q · n)

‖q‖
qbz
‖qb‖

1

‖q‖
exp

[
i2πf

(
−‖q‖

c

)]
. (2.42)

To compute the resultant electric field density (single density) on the receiver aperture

induced by our infinitesimal surface patch, we sum the electric field density contributions

of all rays emanate from the surface patch that are incident on the receiver aperture. As a

result, resultant electric field density is given as:

ERX
d (t) =

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2
C

√
(−q · n)

‖q‖
qbz
‖qb‖

1

‖q‖
exp

[
i2πf

(
−‖q‖

c

)]
dxdy. (2.43)

Assuming aperture size is small compared to surface-receiver distance, we again use Fraun-

hofer diffraction to compute a closed form expression where the receiver can be modelled

as a point antenna with directional gain value. We use the approximations ‖q‖ ≈ ‖r‖ = R,

u = r/R, cos (θ) = ubz for non phase terms where ub = [ubx, uby, ubz] and ub is the unit

ray direction with respect to the receiver frame. For the phase terms, we again use a first

order approximation of ‖q‖ = R− xbx − yuby that yields:

ERX
d (t) =

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2
C
√

(−u · n) cos (θ)
1

R
exp

[
i2πf

(
−R− xubx − yuby

c

)]
dxdy.

(2.44)
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Grouping the constant terms as:

K = C
√

(−u · n) cos (θ)
1

R
exp

[
i2πf

(
−R
c

)]
(2.45)

and expressing ub in terms of angular coordinates we have:

ERX
d (t) = K

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2
exp

[
i2πf

xubx + yuby
c

]
dxdy (2.46)

=K

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2
exp

[
i2πf

(
x sin θ cosφ+ y sin θ sinφ

c

)]
dxdy (2.47)

=K

∫ Ay/2

−Ay/2

∫ Ax/2

−Ax/2
exp

(
i2πf

(
sin θ (x cosφ+ y sinφ)

c

))
dxdy (2.48)

=K

∫∫
exp

(
i2πfx sin θ cosφ

c

)
exp

(
i2πfy sin θ sinφ

c

)
dxdy (2.49)

=K

∫
exp

(
i2πfx sin θ cosφ

c

)
dx

∫
exp

(
i2πfy sin θ sinφ

c

)
dy (2.50)

=K

(
exp

(
i2πfx sin θ cosφ

c

)
i2πf sin θ cosφ

c

)∣∣∣∣Ax2
−Ax

2

(
exp

(
i2πfy sin θ sinφ

c

)
i2π sin θ sinφ

c

)∣∣∣∣
Ay
2

−Ay
2

(2.51)

=KAxAy sinc

fAx sin θ cosφ

c︸ ︷︷ ︸
Qx

 sinc

fAy sin θ sinφ

c︸ ︷︷ ︸
Qy

 (2.52)

=C
√

(−u · n) cos (θ)
1

R
exp

[
i2πf

(
−R
c

)]
AxAy sinc (Qx) sinc (Qy) (2.53)

=C AxAy sinc (Qx) sinc (Qy)
√

cos (θ)︸ ︷︷ ︸
G

√
(−u · n)

1

R
exp

[
i2πf

(
−R
c

)]
(2.54)

=CG
√

(−u · n)
1

R
exp

[
i2πf

(
−R
c

)]
(2.55)

=

√
2G′2 (−u′ · n)

cε0π2R′2
exp

[
i2πf

(
t− R′

c

)]
G
√

(−u · n)
1

R
exp

[
i2πf

(
−R
c

)]
(2.56)

=

√
2G′2G2 (−u′ · n) (−u · n)

cε0π2R′2R2
exp

[
i2πf

(
t− R′ +R

c

)]
(2.57)

=

√
2

cε0π2

[
G′G

√
(−u′ · n)

√
(−u · n)

R′R

]
exp

[
i2πf

(
t− R′ +R

c

)][
W

m2

]
(2.58)
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where this result is the electric field density induced on receiver aperture by an infinitesimal

surface patch where transmitter, surface patch and the receiver is depicted in Fig. 2.3.

Figure 2.3: Placement of the transmitter/receiver and the surface patch together.

Computing the resultant electric field requires integration of this expression over visible

scene surface which is given as:

ERX (t) =

∫
S0

ERX
d dS (2.59)

=

∫
S0

√
2

cε0π2

[
G′G

√
(−u′ · n)

√
(−u · n)

R′R

]
exp

[
i2πf

(
t− R′ +R

c

)]
dS

(2.60)

=

√
2

cε0π2

∫
S0

[
G′G

√
(−u′ · n)

√
(−u · n)

R′R

]
exp

[
i2πf

(
t− R′ +R

c

)]
dS.

(2.61)

Since for the scope of this thesis, we will only present simulation results where our mea-
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surements will also be computed from our forward model, we can safely ignore the constant

term that multiplies the integral as such a factor does not have any effect in the shape evo-

lution due to the homogeneity. As a result, the final expression for our forward model is

given as:

ERX (t) =

∫
S0

[
G′G

√
(−u′ · n)

√
(−u · n)

R′R

]
exp

[
i2πf

(
t− R′ +R

c

)]
dS. (2.62)

It should be noted that this equations are derived assuming a constant frequency sinusoid

whereas our framework assumes an LFM (linear frequency modulated) signal in which case

the gain terms (G and G′ becomes time dependent). As our simulations will be conducted

for a very high carrier frequency of (79GHz) and a relatively small bandwidth (4GHz)

compared to the it, we will assume these terms as constant.
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CHAPTER 3

INVERSION

Our forward model (physical modelling) is an integral over the scene surface. It yields a

highly oscillatory time dependent signal. Since our formulation uses a deformable model

that is to be evolved with iterations, we substitute our current estimate of the shape into

the forward model at each iteration and compute what would be the received signal for this

estimate. This shape is then evolved in such a way that its image under the forward model

gets closer to the actual measured signal in the next iteration. For this purpose, we need to

define a cost functional by which we can score the mismatch between the actual received

signal and the signal we compute from the forward model. To this end, we will have two

main design steps for our inversion that are:

• First is the choice/design of a waveform that can provide the maximum amount of

geometric information. It should be noted that the hardware capabilities need to

be considered at this point as it might not be possible to generate every possible

waveform.

• Second is the design of a cost functional that measures the mismatch between two

given signal. As we will see, this will play the key role to a successful estimation.

3.1 Choice of a waveform

It is well known that waveform of the transmitted signal is a key factor for radar detec-

tion/tracking/estimation problems since resolution of radar system heavily depends on it.

The simplest possible choice for a radar application could be a constant frequency sinusoid.

Using the forward model we derived in the previous chapter, we can have a sense of how

much information we can gather from using a constant frequency sinusoid. For a constant

22



frequency sinusoid, received signal is given as:

ERX (t) =

∫
S0

G′G
√

(−u′ · n)
√

(−u · n)

R′R
exp

[
i2πf

(
t− R′ +R

c

)]
dS. (3.1)

All of terms in the integral is a function of the integration variable S, except the time

parameter t. Taking it outside the integral, we have:

ERX (t) = exp (i2πft)

Shape information is embedded in a single complex factor︷ ︸︸ ︷∫
S0

G′G
√

(−u′ · n)
√

(−u · n)

R′R
exp

(
−i2πf R

′ +R

c

)
dS . (3.2)

As a result, our received signal becomes another constant frequency sinusoid that is our

transmitted signal multiplied with a complex number. This implies that all of the geomet-

ric information is encoded in a complex number which obviously makes it impossible to

be able to recover the scene geometry from such measurement. This is analogous to the

LTI (Linear, time invariant) systems where the transmitted signal can be thought as the

input, the scene geometry is the system model and the output is the received signal. One

way to understand the dynamic characteristic of an LTI system is to feed the system with

different frequency sinusoids and measure the steady-state response at the output where

the output/input amplitude ratio (modulus) and the amount of the phase delay values (ar-

gument) are recorded. Bode plots are then created by using this recorded data by which

the locations of the poles and zeros of the system can be identified (except for some edge

cases such as pole/zero cancellation). The key take away is that to identify the underlying

system, frequency response to multiple frequencies is a necessity.

Using multiple frequencies can also be adopted for radar where we transmit multiple

constant frequency sinusoids and listening to the responses to each frequency. The more

the number of frequencies are, the more our information about the scene geometry becomes

for which stepped frequency radars [17] can be employed. However, FMCW (Frequency-

modulated continuous wave) radars can also be considered for this purpose since the fre-
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quency spectrum of such radar signals consists of multiple frequencies in a certain band-

width. As a result, we can collect the frequency response to multiple frequencies by using a

single pulse. It should be noted that in such case, we implicitly use the fact that for each fre-

quency, frequency response to that individual frequency has also the same frequency. This

theoretically makes it possible to decompose the the received signal into the frequency re-

sponses of individual frequencies. We should also note that, in practice, we are bound to

use the pulsed signals which limits our ability to resolve the frequency responses of close

frequency values (the longer the pulse is, the better the resolving power gets between two

close frequencies). Among the FMCW radars, linear frequency-modulated (LFM) radars

are very popular and off-the-shelf solutions (mm-wave radars) are also available for such

systems. They also yield received signals that are rich in information as we previously

mentioned (frequency response to multiple frequencies). Therefore, LFM signals will be

our choice for the waveform design. A pulsed LFM signal is mathematically given as:

f0(t) = AΠ

(
t− t0
τ0

)
exp

i2π instantaneous frequency︷ ︸︸ ︷
(fc + α (t− t0)) (t− t0)

 (3.3)

where t0 is time center of pulse, τ0 is the pulse length, α is the slope of the time-frequency

curve, A is the amplitude of the pulse, fc is the carrier frequency and Π (·) is the standard

rectangular window function.

3.2 Choice of the Cost Functional

The second design step of our inversion process is the design of the cost functional that

measures the mismatch between two signal that are the actual and the computed return sig-

nal. By measuring the distance between these two signals, we decide how our shape model

should be updated so that the mismatch becomes smaller in the next iteration. As a re-

sult, the design of the cost functional becomes the most crucial component of our inversion

scheme since our decision on how to update our shape model is based on how the cost func-
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tional value is changing with respect to the shape model. In the stereo vision case, forward

model (camera model) generates images using shape model (shape and the reflectivity) of

the scene. Generated images are then compared to the actual images of the scene using the

cost functional and shape model is updated accordingly (in the direction of decreasing cost

functional value). For camera systems, this is relatively straightforward. We can formulate

our cost functional directly in terms of the raw image data that are the pixel brightness

values. With the help of shape priors and/or other regularizers, initial shape model can be

successfully evolved into the actual shape of the scene through iterations. Since such an

approach is effective in stereo vision systems, one can think such approach should also be

applicable to a radar based shape estimation. In the next two sections, we will discuss our

two failed attempts and in the third section, we will discuss our last attempt that has be-

come successful. We think it is important to understand the failed attempts as the method

we will follow in the third section is significantly motivated by the lessons we learn from

these failures and how to avoid the causal agents contributing to them.

3.2.1 First trial: Cost functional design using the time-domain representation

In its rawest form, received signal of a radar system is a sampled version of the received

signal. To make sure we have the perfect representation of the received signal and there

is no data loss, our sampling rate needs to be large enough. Depending on how big the

bandwidth of the transmitted signal is, number of the samples can be very large. As an

example, for a mm-wave radar with a bandwidth of 4GHz that operates between 77GHz-

81GHz, we can move the center frequency to the origin by performing a demodulation

procedure. To be able to have a fully represent the signal as a discrete set of values, we still

need to sample the it with a minimum sampling frequency of 4GHz 1 Assuming a signal

1Author is aware of the fact that such a high sampling rate is not typical if not impossible and a possible
solution would require expensive hardware. For the sake of our argument here, we assume this is not an issue.
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duration of 100µm, number of samples we have become:

Ns = (4× 109Hz)(1× 10−4sec) (3.4)

= 4× 105. (3.5)

We have 4 × 105 samples recorded from the receiver. We will also need this many sam-

ples where we need to compute our that are computed from our forward model using our

evolving shape model. This requires computing the value of Eq. 2.62 for 4 × 105 that is

2D surface integral. As a result, it is not a computationally feasible operation for our case

(although it might be feasible for small bandwidth applications). Although, using all time

samples are impractical, this problem can be overcome by formulating the cost functional

in terms the subsamples of the received signal. To this end, we propose to design our cost

functional in terms of equally spaced slices of time intervals sampled from the received

signal. Our subsampling is depicted in Fig 3.1. Our motivation for such sampling has two

Figure 3.1: Our subsampling of the received signal along the time instants

reasons:

• We take equally spaced intervals of time slices that corresponds to different frequency

values since we use an LFM pulse as the transmitted signal. Assuming the size of a

time interval is small when compared to slice-to-slice distance, this can be interpreted

as having a constant frequency within each interval where each time interval itself is

responsible of capturing the frequency response of the shape geometry to a different

frequency.

• Within each interval, we still sample the signal above the Nyquist rate as to prevent

aliasing.

26



Our cost functional is given as:

E (Φ) =
n−1∑
i=0

k−1∑
j=0

(
|ERX (ti + j∆t,Φ)− ERXm (ti + j∆t)|

)2
(3.6)

where Φ is the parameter set we estimate, ERX is the output of our forward model and

ERXm is the actual measured signal. It should be noted that for all of our simulations

that use this cost functional, we generate both computed return signal ERX and the actual

measurement ERXm from our forward model since we do not have any real radar measure-

ments.

Unfortunately, simulations we run with this cost functional is not successful even for

the the simplest possible cases. We try with very simple objects with small number of pa-

rameters and start our initial shape model very close to the actual shape but the evolution

always gets stuck at a local minima between the initial and the actual shape. Such situa-

tion implies that our cost functional is not well behaving with respect to shape parameters

which means when our cost functional is computed on a path connecting two shapes in the

parameter space, cost functional value makes ups and downs in between. Such behaviour

makes the minimization impractical as our shape estimation scheme would stop at the clos-

est local minima. To test if this really is the case, we choose two different parameter set that

are our initial shape Φi and the actual one Φa. We then create a linear path in the parameter

space connecting Φi to Φa and compute our cost functional in between. We compute the

in between points from the convex combination of Φi) and (Φi) that is given as:

Φ(λ) = Φi + λ (Φa −Φi) (3.7)

. We start start from λ = 0 and move to λ = 1 and compute the cost functional at 1000

different Φ values. A snippet from some of the results we get is shown in Fig. 3.2. Results

confirm our diagnosis about the presence of the local minima between two shape configu-

rations. This clearly shows that our cost functional design in the time-domain is impractical
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Figure 3.2: The trend of the cost functional value on a linear trajectory in the parameter
space from initial shape model to the actual shape model. Horizontal axis denotes the point
index at which the cost functional is computed. Image on the left is for a case where the
wavelength is increase from 4mm to 25mm and for image on the right, it is increased from
3mm to 30mm.

to be used with an iterative shape estimation scheme due to the existence of local minima

between two shape configurations.

Since we now know that using raw radar measurements to formulate our cost functional

is impractical for our purposes, it is beneficial to take another look to the stereo vision case.

Pixel intensity value is a measure of the power incident on the the corresponding element

of the CCD array and we use the pixel intensity values of these array of elements in our

cost functional for vision problems. Note that both for cameras and radar, we acquire our

measurements through EM waves. The difference is that, with cameras, our raw measure-

ment is the intensity of the EM wave whereas with radar, we measure the waveform itself.

A natural question at this point is if it can be possible to express our cost functional in terms

of the magnitude of EM wave for radar as well which is the basis of our second trial.

3.2.2 Second trial: Cost functional design using frequency-domain representation

We now develop a frequency-domain based cost functional that could possibly help with

the local minima issue we have in a time-domain based solution. Our main motivation for
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such an attempt is what we know from Eq. 3.2. For a constant frequency transmitted signal,

all of the information we can get from the received signal is embedded in the complex factor

between transmitted and received signal. This factor naturally lives in the frequency domain

as it corresponds to the ratio between the Fourier transforms of transmitted received signals

computed at that the frequency we use. Having multiple frequencies, we can formulate our

cost functional in terms of the mismatch between the sets of complex factors, one from the

computed return signal and the other from the actual measurement. Such representation

comes with two advantages:

• The first advantage is that we our geometric information is packaged in a compact

manner when compared to a time-domain based one. As a result, we do not have to

use subsampling that we used before.

• We also do not explicitly introduce oscillations to our cost functional that could man-

ifest as local minima whereas in the in the time-domain approach, we explicitly feed

the cost functional with the signal itself which is oscillatory.

As a result, we could expect this design of the cost functional should help. Such an esti-

mation scheme requires a stepped frequency radar where for each frequency, we take the

complex factor relating the transmitted signal to the received signal. It should be noted that

this does not have to contradict with our choice of the waveform (LFM). A linear chirp

can also be approximated as a sequence of intervals where frequency is constant within

each interval so that we can collect multiple frequency data using a single chirp. such an

approximation is depicted in Fig. 3.3. Our cost functional in terms of frequency domain

representation is given as:

E (Φ) =
n−1∑
i=0

(|J (fi,Φ)− Jm (fi)|)2 (3.8)

where J (fi,Φ) and Jm (fi) are the complex factors relating the transmitted signal to the

received signal (at frequency fi) for computed and the measured signals, respectively. J is

29



Figure 3.3: Approximation of a linear chirp with a staircase frequency profile
.

(from Eq. 3.2) given as:

J (fi,Φ) =

∫
S0

G′G
√

(−u′ · n)
√

(−u · n)

R′R
exp

(
−i2πfi

R′ +R

c

)
dS. (3.9)

When we ran simulations by trying to minimize using this cost functional, we come across

the similar problems as we have with the time-domain representation of the signal. We

do not get convergence even when we start with a close initialization and choose a simple

object. Taking a look at the cost functional value with respect to a linear trajectory in the

parameter space, it becomes apparent that we still have issues related to the local minima.

A snippet showing the cost functional value with respect to the path from the initial object

to the actual object is depicted in Fig. 3.4. We can see why this cost functional cannot be

effectively used for our framework which is due to the presence of local minima between

the initial and the actual objects even when these objects are chosen to be very close to

each other. We can also observe a correlation between the number of ups and downs and

the initial-actual object distance which tells us that the frequency of the local minima is

inversely proportional with the wavelength being used. As a result, we conclude that using
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Figure 3.4: Cost functional value as function of intermediate shapes (in the parameter
space, on a linear trajectory) between the initial and the actual shape. Along the same row,
distance between the initial and the actual shape increases. Distances are chosen to be the
multiples (1,2,4) of the average wavelength (λ). Along the same column, number of the
intermediate frequencies used in the cost function increases (n = 40, 80, 160)

.

this cost function cannot be feasible for iterative shape estimation framework unless the

wavelength that is being used is large. We can also make another observation which is:

Our local minima problem is caused by the waveform structure being introduced in

our cost functional.

At this point, we realize that trying to make use of the raw radar signal is impractical

for our purposes and some kind of preprocessing is required. We expect our preprocessing

to yield some signal attributes such that when we formulate our cost functional in terms of

these attributes, local minima that are created by the manifestation of waveform structure

in the cost functional can be avoided. Ideally, such attributes should provide three main

traits:

• It should preserve as much geometric information as possible that is available in the

31



return signal.

• It should be as free as possible from the high frequency waveform structure of return

signals.

• It should be smoothly changing with respect to the shape geometry, as we will rely

on the gradient of the cost functional that will be formulated in terms of extracted

information.

In the next section, we will develop a method by which these criteria are achieved.

3.2.3 Extraction of Electric Field Density Profile (over range)

We know that radar measurement consists of the returns reflected from the individual scat-

terers in the scene that constructively and destructively interfere each other and yields our

measurement at each time instant. As a result, the shape information of the scene is embed-

ded in the radar return signal in a very convoluted way in its raw form which makes it hard

to use. There are also hardware limitations that need to be overcome since most of the time,

radars operate at frequencies much higher than the sampling limits of available state-of-the

art analog to digital converters(ADC)[18]. Sampling requirements can partially be relaxed

using demodulation but problem still remains when the signal is of a high bandwidth. We

know that the main information radars use is the time delay between the transmitted and

the received signal. We also know that a geometric object in front of the radar occupies a

continuum of range values and as a result of this, radar return signal will be the composition

of return signals with different time delay values. To this end, our preprocessing will aim

to decompose the radar return signal into its components with different time delay values

(ranges) where we can utilize the strength of these components in our energy functional.

Since we have a continuum of range values, we express the strength of each component as

a density quantity over the range. We propose a two step approach to this problem that will

show the feasibility of extracting such information from the return signal. Our algorithm
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consist of two main steps:

• In the first step, we employ the stretch processing algorithm on the return signal

by which we will obtain an intermediate signal. We will show mathematically that

the strength of every frequency component in this intermediate signal reveals us the

information of how much of the resultant electric field comes from a unique range

value. Since scenes usually cover a continuum of range values, for each range, we

get an electric field density value.

• In the second part, we will develop a way to extract the electric field density profile

as a function of range by using the time samples of the intermediate signal we obtain

from stretch processed (deramped) signal.

Stretch Processing

First, we use a well known technique called stretch processing [19] which both makes

sampling at lower ADC frequencies possible and also makes the range decomposition of

a signal possible. Stretch processing is done by mixing the radar return signal with a

heterodyne signal that is a time-delayed replica of the transmitted signal. Result of this

process (deramped signal) is a new signal with a much lower frequency components which

significantly relaxes the sampling requirements. However, the key property of this new

signal that is useful for our purposes is that it gives a direct mapping from frequencies to

ranges when the transmitted signal is an LFM waveform. Stretch processing is depicted in

Fig. 3.5. Assuming a unit amplitude LFM pulse centered at the origin for our transmitted

signal (f (t)) which is given as:

f(t) = Π

(
t

τp

)
exp (i2π (fc + αt) t) (3.10)

and a point object in the space that has a round-trip distance value of D with respect to

a given transmitter and receiver pair, received signal(fr (t)) becomes a time-shifted and
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Figure 3.5: Frequency spectrum of deramped signal for three scatterers lying at different
range values. See how difference between the range of a scatterer and the predicted range
value is mapped into frequency component. This allows us to obtain the decomposition
of the total electric field strength along the range by looking at the frequency spectrum of
deramped (stretch processed) signal.

scaled version of the transmitted pulse. It is given as:

fr(t) = CΠr(t) exp [i2π (fc + α (t− tr)) (t− tr)] (3.11)

Πr(t) = Π

(
t− tr
τr

)
(3.12)

τr = τp (3.13)

tr =
D

c
=
R′ +R

c
(3.14)
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We also keep a replica of the transmitted signal within the stretch processor with a pre-

designed amount of delay (th) and possibly with a different pulse length (τh > τr). It is

given as:

fh(t) = Πh (t) exp [i2π (fc + α (t− th)) (t− th)] (3.15)

Πh(t) = Π

(
t− th
τh

)
(3.16)

When the received signal (fr(t)) is fed to the stretch processor where its conjugate is mixed

with the heterodyne signal (fh(t)), at the mixer output we obtain:

fr∗h(t) = f ∗r (t)fh(t) (3.17)

= CΠr (t) Πh (t) e−i2π[fc+α(t−tr)](t−tr)ei2π[fc+α(t−th)](t−th) (3.18)

= CΠr (t) Πh (t) ei2π{−[fc+α(t−tr)](t−tr)+[fc+α(t−th)](t−th)} (3.19)

= CΠr (t) Πh (t) ei2πfc(tr−th)e−i2πα(t
2
r−t2h)ei4πα(tr−th)t. (3.20)

We have two window functions in the equation. Multiplication of these give another win-

dow function that takes the value of one where both functions are one. In a more concise

form we obtain:

Πrh(t) = Πr (t) Πh (t) (3.21)

fr∗h(t) = CΠrh (t) ei2πfc(tr−th)e−i2πα(t
2
r−t2h)ei4πα(tr−th)t (3.22)

As a result, we can see that for a point object in the scene, the signal at the mixer output

becomes a constant frequency sinusoid with a frequency value of 2α (tr − th). It should be

noted that the first two exponential terms are phase terms and do not have any t dependency.

Since th is a fixed parameter, we obtain a linear relation between the frequency of the signal

at the mixer output and the range of the point object. Therefore, if we assume an infinitely
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long pulse, a point object manifests itself in the frequency domain as a weighted delta

function. Under rectangular windowing, this delta function is mapped to a sinc function.

Therefore, we obtain a sinc shaped frequency spectrum when we use an LFM pulse. In

this case, object range can be estimated from the peak frequency component of the discrete

Fourier transform (DFT) of the signal. We will shortly see that this is not practical in our

case since, for our problem, we have scatterers lying on a continuous range interval which

creates a continuous spectrum of frequencies.

A critical consideration at this point is to design th. We know that if the discrepancy

between th and tr is large, so will be the frequency of the signal at the mixer output. It also

comes into the picture at the intersection of two window functions where a sloppy choice of

th can result in a zero intersection of tr and th. Because of these reasons, we need a rough

estimate of the object range by which we can design th. A smart choice of th should both

minimize the upper bound of the set of possible frequencies and at the same time should

yield a maximum possible amount of intersection between Πr(t) and Πh(t). When we have

a continuous surface instead of point scatters, the process becomes tricky. A continuous

surface is a composition of infinitely many scatterers that occupy a continuous range in

space with respect to a chosen transmitter and receiver pair. In the case of an LFM pulse,

the mixer output is mathematically given as (in terms of a given range value D):

tr =
D

c
(3.23)

Mo(t) =

∫ Dmax

Dmin

PD(D)Πrh (t) ei2πfc(tr−th)e−i2πα(t
2
r−t2h)ei4πα(tr−th)tdD (3.24)

=

∫ Dmax

Dmin

PD(D)Πrh (t) ei2πfc(
D
c
−th)e

−i2πα
(
(Dc )

2
−t2h

)︸ ︷︷ ︸
Time independent terms

ei4πα(
D
c
−th)tdD (3.25)

where Mo denotes the signal at the mixer output, PD(D) denotes the resultant electric field

density coming from the range value (round-trip distance) of D. As we can see from the

second exponential, we have a continuum of frequencies in the integral. We will estimate

a discrete version of PD(·) for our method which is to be used as our feature set. Since
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we will have a finite number of discrete samples of M0(·) at the mixer output, we need to

extract PD(·) from this discrete signal. This estimation will then be used as our feature set.

From Time Samples to Average Electric Field Densities

Extracting PD(·) from M0(·) is not straightforward as it is composed of a continuum of

frequencies and we only have a finite number of discrete samples of M0(·). We know

that assuming a certain level of shape regularity for the scene surface, PD(·) will have a

smooth profile. However, extracting the frequency components of M0(·) does not give us

PD(·) directly. Instead what we obtain is PD(·) multiplied by the first two exponential

phase terms in the integral that are independent of time. From Eq. 3.25, we can see that

depending on how high the carrier frequency is, these phase terms can be very oscillatory

with respect to the range value. As a result, estimation of PD(·) using a discrete Fourier

transform may not yield a good estimation of the electric field density density profile as

such an operation does not compensate for the phase terms which we do not want. It should

also be noted that although the frequency spectrum is oscillatory, we know the structure of

this oscillation which can help us when correctly incorporated into the problem. That is

why we propose a different technique that considers the prior information we have about

the structure of the frequency spectrum. The oscillatory nature of the frequency spectrum

of a stretch processed signal is depicted in Fig. 3.6 and 3.7.

We start by simplifying our integral expression in Eq. 3.25. Since the window function

Πrh(.) depends on tr and tr depends on the range(round-trip distance), we have a different

Πrh(.) profile for each range value. We will limit ourselves to the time range where all

possible window functions take the value of one. It should be noted that this is barely a

restriction unless we have a scene that occupies a very large range interval. For instance,

let’s assume the difference between the largest and the smallest range value of the scene is

100m and the pulse length is 100µsec. Multiplying the pulse duration with the speed of the
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Figure 3.6: Frequency (range) spectrum of deramped signal. It is given as a function of
range value.

light, we compute the length of the transmitted pulse in space as:

= 299792458m/sec ∗ 100× 10−6sec = 29979.2458m (3.26)

Obviously for the points with minimum and maximum range values on the surface, the

shift between the associated window functions will be equal to the 100m. As a result, we

crop the first and the last 100m sections of the received signal (%0.667 of the total pulse

duration) and for the remaining part we know window functions of all range values will

return the value of one. This allows us to remove the window function from the equation
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Figure 3.7: Frequency spectrum of deramped signal in 2D with its envelope PD(D).

after which our equation becomes:

Mo(t) =

∫ Dmax

Dmin

PD(D)ei2πfc(
D
c
−th)e

−i2πα
(
(Dc )

2
−t2h

)
ei4πα(

D
c
−th)tdD (3.27)

Since we want to estimate the frequency spectrum of the signal, we will find it more con-

venient to express the integral in terms of frequency. From the time dependent exponential

term in Eq. 3.27, we have frequency in terms of the range (D) as:

f = 2α

(
D

c
− th

)
(3.28)
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range then becomes:

D =

(
f

2α
+ th

)
c (3.29)

dD =
c

2α
df (3.30)

Substituting this expression in Eq. 3.27, we obtain:

Pf (f) = PD (D (f)) (3.31)

Mo(t) =

∫ fmax

fmin

Pf (f)
c

2α
e
i2π

(
fcf
2α
− f

2

4α
+(t−th)f

)
df (3.32)

where D (f) denotes the range value corresponding to a given frequency f . Let’s assume

the number of the time samples we have is Nt. In a similar manner, we will also divide the

integral expression into pieces by which we can assume Pf (f) is approximately constant

within each interval. At a given time instant ti, our expression is given by:

M i
o =

Nf∑
j=1

∫ fj

fj−1

Pf (f)
c

2α
e
i2π

(
fcf
2α
− f

2

4α
+(ti−th)f

)
df (3.33)

For a fine enough partition of the integral, it can be assumed that Pf (f) is approximately

constant for each interval since we assume a certain amount of regularity of the surface

shape with respect to the range value that yields a smooth Pf (f). Thus we can take Pf (f)

outside of the integral which gives us:

M i
o =

Nf∑
j=1

P j
f

∫ fj

fj−1

c

2α
e
i2π

(
fcf
2α
− f

2

4α
+(ti−th)f

)
df (3.34)

Using this decomposition for each time instant, we obtain a linear systems of equations that
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can be expressed compactly as:



M1
o

M2
o

M3
o

...

MNt
o


=



A11 A12 A13 · · · A1Nf

A21 A22 A23 · · · A2Nf

A31 A32 A33 · · · A3Nf

...
...

... . . . ...

ANt1 ANt2 ANt3 · · · ANtNf





P 1
f

P 2
f

P 3
f

...

P
Nf
f


(3.35)

M0 = APf (3.36)

where Aij is given as:

Aij =

∫ fj

fj−1

c

2α
e
i2π

(
fcf
2α
− f

2

4α
+(ti−th)f

)
df (3.37)

The integrand is an exponential of a quadratic polynomial with respect to the integral vari-

able f . This can be expressed in terms of special functions. Completing the square

Aij =

∫ fj

fj−1

c

2α
e
i2π

(
fcf
2α
− f

2

4α
+(ti−th)f

)
df (3.38)

=

∫ fj

fj−1

c

2α
e−i2π(

1
4α
f2−( fc2α+ti−th)f)df (3.39)

=

∫ fj

fj−1

c

2α
e
−i2π

[
f

2
√
α
−
√
α( fc2α+ti−th)

]2
ei2πα(

fc
2α

+ti−th)
2

df (3.40)

=
c

2α
ei2πα(

fc
2α

+ti−th)
2
∫ fj

fj−1

e
−i2π

[
f

2
√
α
−
√
α( fc2α+ti−th)

]2
df (3.41)

A change of variables yields:

x = −
√

π

2α
f +
√

2πα

(
fc
2α

+ ti − th
)

(3.42)

dx = −
√

π

2α
df (3.43)
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Using the new integration variable, Aij is expressed as:

Aij = − c√
2απ

ei2πα(
fc
2α

+ti−th)
2
∫ xj

xj−1

eix
2

dx (3.44)

= −c (1− i1) ei2πα(
fc
2α

+ti−th)
2

4
√
α

(
erfi

[(
1 + i√

2

)
xj

]
− erfi

[(
1 + i√

2

)
xj−1

])
(3.45)

Computing all Aij , we can form the matrix in Eq. 3.35. Since we also know the time

samples (M0), the vector of the signal strength values (Pf ) can be obtained by solving the

linear system of equations.

Physically, the value of P j
f corresponds to an average electric field density value coming

from the subset of the object surface within the range interval of [Dj−1, Dj]. However, in

this form its an average over the frequency. We will find it useful to express it with respect

as an average over range value which becomes (from Eq. 3.28):

P j
D = P j

f

2α

c
. (3.46)

As a result, the vector of P j
D gives us a discrete electric field density profile over the range

value. It should be noted that P j
D is completely defined by the object geometry and is not

effected by the highly oscillatory nature of the radar signals. Since we use gradient-based

minimization algorithms, defining our cost functional in terms of these average electric

field density values gives us the chance to avoid the local minima that could be introduced

by oscillations of the radar return signal. To keep the notation simpler, for the following

discussion, we will use Hj to denote the average electric field density where the subscript

denotes the frequency bin index.

We can also relate these average electric field density values to shape geometry in a

direct fashion. Since each of these is related to a specific range interval, for a given shape,

we can express its value as an integration over the set of scatterers within that range bin.
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We have Hj (from our forward model) as:

Hj =
1

∆D

∫ Dj

Dj−1

G′G
√

(−u′ · n)
√

(−u · n)

R′R
dS (3.47)

where we integrate over the part of the object that lies within the range value of Dj−1 and

Dj . We can see that Hj is a purely geometric quantity as its integrand only depends on the

distance of the infinitesimal radiator and its surface normal. Another observation we can

make is that integrand does not include any sinusoidal that can manifest as local minima

in our cost functional which is, as we previously discuss, one of the main motivations

of performing this preprocessing. We should note that, we do not actually perform

this preprocessing in any of the results presented in this thesis. Instead we choose to

generate these average electric field density values directly from Eq. 3.47 as all of our

results are based on simulation where we have the knowledge of both our evolving and

the actual shape. This section is to show that the information (electric field density

profile over range) we build our inversion algorithm on is possible to extract from

actual radar measurements.
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CHAPTER 4

A 2D DISCRETE SHAPE MODEL

In this chapter, we will consider a tailored version of our inversion algorithm and will

present simulation results. We describe the specific case we consider as:

• We work in 2D instead of 3D. We will still be using the forward model we use for 3D

where we will discard the changes in the third dimension. A physical interpretation

of this can be thought as having the shape as thin plate where the changes in G′, G,

u′, u, n and the range are negligible in the direction of thickness and can be thought

as constant. We will also assume that antenna normal and and the plate lies in the

same plane.

• Our shape model is restricted to be closed curve which is also a star-shaped object

(all of the points on the curve is visible from a point inside the curve).

• We use a discrete shape model where we approximate our shape model as a polygonal

shape which is parameterized with the vertex coordinates of the polygonal model.

We use an iterative inversion scheme where we start with an initial shape and evolve it along

the iterations trying to minimize a cost functional. We assume that given a radar return

signal, we can extract the electric field density profile as a function of a range continuum

on which our inversion will be based (as discussed in Chapter 3). In explanation, we assume

to have the knowledge of how strong the total reflection is at a given range in space which

is obtained from the radar return signal through a proper preprocessing. Our inversion

scheme is depicted in the Fig. 4.1.
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Figure 4.1: Flow chart of our inversion algorithm.

4.0.1 Forward Model

The input to our forward model are a shape and an antenna pair (TX/RX) for which we

compute a set of average electric field values through preprocessing we discuss in Chapter

3. We compute these values by chopping off the range continuum into finite number of bins

and computing the average reflection over the part of our shape that lies within each range

bin. Our forward mode is built on two assumptions that can be listed as:

• Transmitter and receiver are directional antennas where the transmitted and received

power is a function of the ray direction.

• The governing reflection model on the surface is Lambertian where we assume that

the shape behaves as an ideal diffuse reflector.

Under these assumptions, an infinitely small reflector within the ith range bin, contributes

to the average electric field density by:

dHi =
1

∆D
Q (x,n) ds. (4.1)
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whereQ (x,n) is the amplitude of the electric field density created by infinitesimal reflector

with a unit normal vector of n that is located at x and ∆D is the range width. Using the

assumptions we have of antennas and the surface reflectivity, Q (x,n) is given as:

Q (x,n) =
G′ (x)G (x)

√
−u′ (x) · n

√
−u (x) · n

R′ (x)R (x)
(4.2)

where G′ and G are the antenna gains of the transmitter and receiver antennas, u′ and R′

are the unit ray direction and ray length for the incident power on the point reflector, u and

R are the unit ray direction and the ray length for radiated power measured by the receiver

and n is the surface normal vector of the point reflector located at x. It should be noted for

a fixed antenna pose (rotation and translation) in space, that G′, G, u′, u are fully defined

given x which we will use as the only independent variable for these functions. To compute

the average electric field, we integrate the electric field density over the shape boundaries

that lies within a range bin and divide it by the thickness of the corresponding range bin.

However, we also need to consider the fact we may not get any reflection from some parts

of the object within the same bin due to the self occlusions as some parts of the shape may

block other parts from getting the transmitted signal. As a result, we need to exclude the

occluded parts of the object from the integration to be able to correctly model the physical

phenomena. Luckily, our inversion scheme can naturally handle this matter as we have

an evolving shape on which we can perform a visibility analysis. We then compute the

average electric field density within the ith range bin with respect to jth antenna as:

Hj
i =

1

∆D

∫
Sji∩Vj∩e

Q (x,n) ds (4.3)

where Sji set shape of all points that lie within the ith range bin with respect to jth antenna

pair, e is the set of the visible points that defines the shape boundaries from which the

transmitted signal is reflected, Vj is the set of points visible to the jth antenna and (∆D)
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is the size of the range bin which we define as the difference between the maximum and

minimum round trip distances within the bin. For a general placement of the antenna pair

where the transmitter(TX) and receiver(RX) are not collocated, the borders of the range

bins are defined by a set of ellipses where foci of these ellipses are being the transmitter

and receiver locations. Our forward model is depicted in the Fig. 4.2.

Figure 4.2: Depiction of our forward model. Transmitter(TX) and Receiver(RX) are direc-
tional antennas. u′ and u are unit ray directions and n is the unit normal vector of a point on
our shape. Domain of integration for ith range is Si∩e that consists of two curve segments
assuming both segments are fully visible to the antenna pair. ∆D is the difference of round
trip distance values between the beginning and end of a range bin.

4.0.2 Inversion

The input to our inversion are the average electric field density values computed from for-

ward model and those computed from the discretization of electric field density profile

obtained through preprocessing of the radar return signal. Our inversion process aim to

evolve our initial shape through iterations such that these two sets of information get close

to each other. To this end, we design a energy functional that measures the discrepancy

between two sets. Since there can be multiple shapes that yields the same radar measure-

ment, we will also find useful to add a regularizer term to our energy functional. Assuming

the general case where we have multiple antennas or a single moving antenna, data fidelity
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term of out cost functional is expressed as:

ED =
1

2

N∑
j=1

[
DT
j

(
Hj −Hm

j

)]2
(4.4)

where Hj is the vector of average electric field density values of evolving object and Hm
j is

that of radar measurement and Dj is the vector of average range values for the correspond-

ing ranges all with respect to jth antenna. We weight each electric field density value with

the average range value of the corresponding bin to balance the decay in the electric field

strength over range so that our cost function can treat uniformly to all parts of the object as

otherwise parts that are close to the antennas could be favored due to the strong reflection.

For the regularization term, we have the flexibility to incorporate any kind shape priors.

For the scope of this work, we will choose to define it as the curvature of the shape, which

in result, will favor smooth shapes. At this point, our choice for the parametrization of

the shape becomes important as we need to tailor our curvature regularizer for our specific

parametrization. For the easiness of the implementation, we will consider star-shaped ob-

jects that can be expressed in polar coordinates where every point on the object has a unique

angular position. We will additionally choose a discrete representation for the curve where

it will be represent as a polygonal object. We will then evolve the curve by updating the

vertex coordinates. Our curvature regularizer is given as:

ER =
1

2

Nv∑
k=1

∥∥∥∥ vk+1 − vk
‖vk+1 − vk‖

− vk − vk−1

‖vk − vk−1‖

∥∥∥∥2

(4.5)

where Nv is the number of the vertices and we have v−1 = vNv and vNv+1 = v1 due to our

shape being a closed curve.

Adding two terms together, we have our energy functional as:

E = ED + λER (4.6)
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Figure 4.3: Curvature regularization for a polygonal object. We take the directions of
consecutive edges of the polygon and penalize the norm of the difference between the di-
rections of these two edges which is expected to canalize evolution towards smooth shapes.

where ED favoring decreasing the discrepancy between the evolving shapes and the actual

shape and ER favoring smoothness of the shape model. λ is the regularization coefficient.

4.0.3 Optimization

Given an initial shape, our method requires computation of the gradient of the energy func-

tional with respect to the parameter set we will use for shape evolution. Since we consider

star-shaped polygonal objects where the vertices are the control points, we will find it use-

ful to derive the derivatives of the energy functional with respect to the control points of the

polygonal shape which will then be used to compute the gradient. As the inputs of energy

functional are integral expressions, derivatives are functions of both the integrand and the

domain of integration which requires us to perform the visibility analysis.

Since we use a polygonal shape model in the simulations we will present, we use a

visibility analysis method for such shapes. For the polygonal representation, we use a

simple algorithm that takes the evolving shape and the antenna pair as an input and returns

the visible edges of the shape with respect to the antenna pair. Steps of our algorithm is

given in Alg.1. It should be noted that the algorithm we use has O(n2) complexity with

respect to the number of vertices which will suffice for our purposes. It can as well be

replaced with more efficient visibility analysis tools available in computational geometry
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Algorithm 1 Computation of the visible edges of the polygonal.
Sc ← {}
for ei+1

i ∈ {e2
1, e

3
2..., e

1
Nv
} do

pci ← Center point of ei+1
i

pai ← Location of the RX/TX antenna pair
li ← Line segment that connects pci to pai
for ej+1

j ∈ {e2
1, e

3
2..., e

1
Nv
} \ ei+1

i do
if li intersects ej+1

j then
Sc ← Sc + ei+1

i

break
end if

end for
end for
return {e2

1, e
3
2..., e

1
Nv
} \ Sc

literature [20] [21] [22].

To compute the derivatives of the energy functional with respect to the vertex coordi-

nates, we find it useful to use the chain rule since the dependency of the energy functional

to the vertex coordinates can be concisely expressed using function composition. A pertur-

bation in the vertex coordinate changes the placement of two edges that is connected to it

and a chance in the placement of the edges changes the average electric field density values

of the range bins that have an intersection with this edges. Dependency graph of the data

fidelity term of energy functional (ED) to a vertex coordinates vk is shown in the Fig. 4.4.

It should be noted that computation of the partial derivative of ED with respect to Hj and

Figure 4.4: Dependency graph showing how vertex coordinates are related to ED. Sub-
script and superscripts of an edge (e) denote the vertices it connects to. Subscript and su-
perscript of the electric field density values denote the range bin index and antenna index,
respectively.
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that of Hj with respect to its ith frequency bin (Hj
i ) is straightforward from the definition

of the energy functional in Eq. 4.4. However, partial derivative of Hj
i with respect to vk

can be tricky depending on how the edges of the polygon are placed with respect to the

range bins. This is due to the fact that some of the edges will lie on multiple range bins that

causes the integration borders to be a function of the polygon vertices since a perturbation

in the vertex coordinate will change where the connected edge will intersect the range bor-

der. Some of the possible scenarios are shown in Fig. 4.5. Partial derivative of Hj
i with

respect to vk is given as:

∂Hj
i

∂vk
=

1

∆D

∂

∂vk

 ∫
Sji∩ekk−1

Q (x,n) ds +

∫
Sji∩e

k+1
k

Q (x,n) ds

 (4.7)

where Sji is the set of points contained in ith range bin with respect to the jth antenna pair.

Domain of integration then becomes the part of the edge contained in the range bin. Taking

the derivative, we get:

∂Hj
i

∂vk
=

1

∆D

 ∫
Sji∩ekk−1

∂

∂vk
Q (x,n) ds +

∫
Sji∩e

k+1
k

∂

∂vk
Q (x,n) ds +Bup +Blo

 (4.8)

where Bup and Blo are the boundary terms that are given as:

Bup = Q(pk+1
k ,n)

∂‖pk+1
k − vk‖
∂pk+1

k

∂pk+1
k

∂vk
, for pk+1

k 6= vk+1 (4.9)

Blo = Q(pkk−1,n)
∂‖pk+1

k − vk‖
∂pkk−1

∂pkk−1

∂vk
, for pkk−1 6= vk−1 (4.10)

where we have the Bup = 0 when vk+1 and vk is in the same range bin or Blo = 0 when

vk+1 and vk are in the same range bin as the dependency of the domain of integration with

respect to vk drops in these cases. Similarly, in Eq. 4.8, one or both of integral terms drop

if the edge corresponding to the expression is not visible.
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Figure 4.5: Possible placements of vertices with respect to a range bin when the vertex vk
is included in the ith range bin.

For the curve evolution, we consider star shaped objects where we have a unique an-

gular position for every point on the shape. This allows us to parameterize the shape with

a polar representation where we will constraint the evolution of the vertices to stay on the

same angular position they lie on. Thus, we will use the radii of the vertices as our the

parameter set for the shape evolution. To this end, our gradient vector consists of the com-

ponent of the the derivative of energy functional with respect to the vertex coordinates in

the direction of angular position of the vector. For kth vertex, our gradient component

becomes:

∂E

∂φk
= 〈 ∂E

∂vk
,

vk
‖vk‖

〉. (4.11)

We can then update the shape by perturbing it in the negative gradient direction and expect

the energy functional take smaller values at each iteration. However, we will instead use a

momentum based gradient descend scheme that is shown to provide robustness for shallow

local minima in the energy surface and also faster convergence rates. Our update equations

of the shape is then given as:

Vi+1 = αVi − β
∂E

∂Φ
(4.12)

Φi+1 = Φi + Vi+1 (4.13)

where V is the velocity, Φ is the radii of the vertices we update, α is the momentum

52



coefficient and β is the step size of the algorithm.

4.1 Results

We conduct simulations for three different scenarios that showcase how our method handles

different cases. For each case, we use multiple antenna pairs to collect data. Since we

consider a 2D case, we assume the antenna aperture for both the transmitter (TX) and

receiver (RX) antennas are of shape of a line segment that are located side by side and have

the same surface normal. The common parameter set we use for all simulations are given

in the Table 4.1. We have the antenna gain terms as:

Table 4.1: Shape, Signal and RX/TX parameters

Number of Antennas 20
Aperture Length 2mm
Offset between TX and RX 6mm
Center Frequency of the Carrier Signal 79 GHz
Bandwidth 4 GHz
Chirp Rate 4× 1013 Hz/sec
Number of Range bins 50 sec
Minimum/Maximum Range 2 meter / 21 meter
Number of Control Points of Evolving Shape 120

G′ = Ax′
√

cos (θ′) sinc

(
fAx′ sin (θ′)

c

)
(4.14)

G = Ax
√

cos (θ) sinc

(
fAx sin (θ)

c

)
(4.15)

where Ax and Ax′ are the aperture lengths for transmitter and receiver antennas which are

the same in our case. θ and θ′ are the angle of the transmitted and received rays from the

antenna surface normal and the c is the speed of the light. Using the parameters in Table

4.1, we compute the antenna gain pattern and the gain value as a function of the angle that

is illustrated in Figure 4.6. For our simulations, we use three different shapes configuration

(initial object and the actual object). For each configuration, we use two different antenna

placements. First, we use a circular pattern of antennas where each antenna pair looks to-
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Figure 4.6: Antenna gain pattern illustrated on the left and as a polar plot on the left and
the gain value as a function of angle shown on the right.

.ward the center of the pattern so that each subsection of the shape profile is visible to at

least one antenna pair. In our second case, we use an antenna configuration where the an-

tennas are placed on a linear path which is a more common case for real world applications.

For each case, we start with a large regularization coefficient which is manually decreased

during the evolution by which we are able to capture the fine details of the geometry which

would not be possible with a strong regularizer. Our shape configurations are given in the

Table 4.2. For each case, small subplots at the top of the plot show the evolution of the

Table 4.2: Three shape configurations we consider

Name Actual Shape Initial Shape
Case-1 Triangle Hexagon
Case-2 Quadrilateral Hexagon
Case-3 Free form Circle

shape model from left to right. Under these subplots, on the left, we have the actual shape

and the evolving shape shown together the first iteration with the transmitter and receiver

antennas around them. On the right, we again have the actual and evolving shapes at the

last iteration. We also provide the optimization parameters as a function of the iteration

index for each case.
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4.1.1 Circular antenna placement.

Figure 4.7: Shape evolution of Case-1 and Case-2 for a circular antenna pattern.
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Figure 4.8: Shape evolution of Case-3 for a circular antenna pattern

Figure 4.9: Evolution plots of Case-1, Case-2, Case-3 for a circular antenna pattern
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4.1.2 Linear antenna placement.

Figure 4.10: Shape evolution of Case-1 and Case-2 for a linear antenna pattern.
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Figure 4.11: Shape evolution of Case-3 for a linear antenna pattern

Figure 4.12: Evolution plots of Case-1, Case-2, Case-3 for a linear antenna pattern
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4.1.3 Discussions

In Section 4.1.1, we consider a shape surrounded by antennas where each part of the shape

profile is visible to at least one antenna pair. As a result, we expect our initial object to fully

evolve to the actual shape which is successfully obtained in all three cases, except around

the corners of Case-1 and Case-2 where we have a triangle and a quadrilateral (see Fig.

4.7). This is due to the curvature regularizer favoring the smoothness and thus causing the

corners of the shape model to be rounded. In the Case-3, we do not observe such behaviour

as our shape does not have any corners that are heavily penalized by the regularizer.

In the Section 4.1.2, instead of enclosing the shape with antennas, we use a linear

antenna pattern. This causes certain parts of the shape to become invisible where we expect

the notion of visibility to come into the picture. Results confirms our prediction since in all

cases, our initial shape successfully evolved to the actual shape for the subsections of the

object that are visible that is shown in Fig. 4.10 and Fig. 4.11. For the invisible parts, data

term of our error functional becomes zero as we do not get any measurements from these

parts and the shape evolution is dominated by the regularizer which favors the smoothest

possible shape profile. This also causes the increase in the parameter error in all cases that

is shown in the third column of Fig. 4.12.
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CHAPTER 5

2D LEVEL SET BASED PARAMETRIZATION

In this chapter, we will again consider a tailored version of our algorithm to a 2D case

as we did in the previous chapter. However, we will choose to relax two of our previous

assumptions related to our shape model which are:

• We have a free form objects instead of star-shaped ones. This will allow us to greatly

generalize the set of possible shapes that can be captured in our framework.

• We also will not be limiting ourselves to single shape topology. In the previous

chapter, we use an explicit parametrization for our shape (a closed curve) model

where it is not possible to capture objects with different topology. In this chapter,

we will relax this constraint and will be able to capture shapes that have a different

topology from our initial shape model.

• We now use a continuous parametrization (infinite dimensional) for the shape model

as opposed to the previous chapter where we model a given shape with a polygonal

shape model.

As a result, these relaxations will allow us to be able to handle a much more general set of

shapes. This will be possible through the use of an implicit parametrization of the shape

where we will employ a level-set parametrization to represent our scene shape.

5.1 Level Set Methods

Level-set method is developed by Osher and Sethian[23]. This method is based on repre-

senting the the shape of an object (a curve or a surface) through a function in which the

function returns a constant value for the points defining a certain shape. Mathematically
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this is expressed as:

φ (x (t) , t) = c (5.1)

where we can extract our shapes by finding the points that gives the value of c under the

level-set function φ for a time instant t. Level sets are depicted in Fig. 5.1. There is

Figure 5.1: Level set curves of a surface at different level values. Image is found online.
https://team.inria.fr/memphis/research/hierarchical-cartesian-schemes-for-pdes/level-set/

also parameter t in the function by which the evolution of the level set function is possible.

Such an embedding of the shape allows us to implicitly parameterize any kind of shape on a

fixed Cartesian grid where the shape is evolved through updating the value φ on the grid. It

should be noted that this is fundamentally different than the method we use in the previous

chapter where we adopt a particle based approach where our main interest is to evolve the

shape through updating the coordinates of a discrete number of particles (control points).

These two approaches are analogous to the different ways of solving computational fluid

dynamics problems. In one approach, we set a set of initial particles (parcels) and express
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the equations in such a way that we follow how these individual particles move in time. This

is known as the Lagrangian specification of fluid motion. Other way is to define a fixed

Cartesian grid where instead of following individual particles, we are interested in what

goes inside and what goes out from grid points. This is known as the Eulerian specification

of the flow. As a result, the approach we use in the previous chapter corresponds to a

Lagrangian approach and the one we will use in this chapter corresponds to an Eulerian

approach.

Since level-set methods are often used to model some phenomena propagating in the

space with time, it is insightful to look at its gradient. Taking derivative of both sides of the

equation in Eq. 5.1 with respect to time, we have:

dφ

dt
=
∂φ

∂x

∂x

∂t
+
∂φ

∂t
= 0. (5.2)

We know that the first partial derivative term (derivative with respect to the point coordi-

nate) is the gradient of level-set function. As a result, we can write:

φt = −∇φdx
dt
. (5.3)

An important insight to realize is that that by the very definition of the level-set function,

perturbation of x along the tangent of the curve does not change the level-set function value

as such perturbations keep the the point on the same level-set where φ is invariant. Gradient

being the direction in which the function value increases most dramatically, we can con-

clude that the gradient of level-set function is in the normal direction as any other direction

corresponds to a lesser change in the function value (given the size of the perturbation is
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constant for all directions). From this observation, we have

φt = −‖∇φ‖NT dx

dt
(5.4)

= −F‖∇φ‖ (5.5)

for F = NTxt which is the speed of the point in the normal direction (also called the

force). F needs to be designed according to the phenomena that is being modelled. We

will derive our expressions for F from our cost functional such that the mismatch between

the computed radar measurement (computed for our evolving shape) and the actual one

decreases with time. Another contribution to F will be provided by the regularizer we use

so that we can keep the shape smooth during the evolution. After designing F , our final

expression is a partial differential equation to be solved. Depending on the structure of F ,

our equations, most of the time, yield a highly nonlinear PDE that requires a numerical

solution. Thus, we need to discretize this PDE so that we have algebraic expressions by

which the level-set function is updated at each time step. Advantages of using a level-set

representation are numerous. First, as a result of the implicit parametrization we use in the

evolution equation (Eq. 5.5) is given in terms of fully geometric quantities that are inde-

pendent from any specific parametrization. Working on a fixed Cartesian grid and evolving

the interface through updating the the level-set function values on the grid, we naturally

avoid a lot of implications that can be present with particle tracking based approaches (our

approach in the previous chapter). These can be listed as:

• In particle tracking based approaches, we can have the spacing between the particles

become very tight or wide along iterations that causes certain part of the shape model

to be over sampled (tight) or under sampled (wide). Because of this considerations,

in the last chapter, we limit the motion of each particle to stay on the same angu-

lar direction so that we make sure all of the vertex coordinates have equal angular

spacing.
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• Particle tracking based approaches can also suffer from self intersection problem.

Since we update the locations of our shape model at each step, it is possible some part

of the shape to entangle with other parts of itself. Preventing such behaviour has been

studied and possible for 2D though it requires a careful effort to handle all possible

exceptions and edge cases. The reason we only consider the star-shaped objects in

the last chapter is to avoid these implication. With a level-set based method, we also

bypass this issue as we formulate our evolution as updating the values of the level-set

function on a fixed Cartesian grid.

• The most important consideration to avoid a particle tracking based approach is to

be able to naturally handle the topological changes which was one of the biggest

motivations during the development of level-set based methods. For example, in the

last chapter, we choose our shape model to be a closed curve. For a case where

the actual scene consists of two distinct objects, it is not possible to capture the

geometry of the actual scene as our evolving shape model and the actual scene shape

have different topology. For such a case, a level-set based representation of our shape

(interface) can greatly helps as these methods allow the topological changes in the

shape interface. A depiction of a topological change is depicted in Fig. 5.2.

Figure 5.2: With level-set methods, it is possible to start with an object on the left and reach
to the one on the right.

As a result, a level-set based representation of our shape allows us to handle many more

different shapes without having much prior information about the number of the objects
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in the scene or their topology. Another important aspect of such representation is that it

requires relatively less effort to extend it to 3D applications.

5.1.1 Narrow Band Methods

It should be noted that in the direct implementation of the level-set method, we track not

only the level-set we are interested in, but all of them. This requires a significantly more

computational power when compared to our case in the previous chapter where we only

update a set of particles in space. As a result, in 2D, update process requires O(kl) for

level-set implementation where k and l are the size of our fixed Cartesian grids in vertical

and horizontal axes (since at this point, PDE is discretized) whereas the algorithm we use in

the previous chapter requires update that has a complexity of O(n) where n is the number

of particles we use (vertices of the polygonal shape model). However, a computationally

more efficient algorithms are available [24] by which this complexity can be reduced to

the same level as the particle based methods. This method relies on the not computing the

level set function values unless they are nor necessary. To this end, we take level-set that

corresponds to our evolving interface (shape model) and choose a narrow band around the

interface with a fixed thickness on which the level-set function is computed. Remaining

grid elements are only computed when they are within the chosen threshold so that we can

decrease the number of computations significantly. A level set curve and the narrow band

around it is depicted in Fig. 5.3. For a 3D case where we have a 3D grid and a 2D level

surface, complexity reduces from O(n3) to O(n2) using narrow band methods.

5.2 Our Approach

We will use the same forward model to what we use in the last chapter. To summarize the

steps of our forward model:

• For each antenna pair, we measure we transmit an LFM waveform
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Figure 5.3: A level set curve and the narrow band around the set. The level set function is
updated only within the band boundaries.

• The echo measured by the receiver antenna is deramped to yield a signal where the

strength of each frequency components corresponds to the resultant reflection of a

unique range value.

• Through a preprocessing similar to what we use in the previous chapter, we can

extract the average electric field density values of a set of discrete range bins (range

decomposition).

• These average electric field density values will form the basis of our inversion algo-

rithm as they will be used to define the cost functional we will use.

5.3 Inversion

As we do with our forward model, we can also use the same energy functional for this

section. We will shortly see that this is not a good idea due to the complications that can

arise because of the continuous representation of our shape model. However, to motivate

the final form of the cost functional, it is necessary to understand what we have to go

through if we use some other cost functional. Let our cost functional given be (without the

term we add in the last chapter to compensate for the decay in the electric field with the

66



range):

E =
1

2NANB

NA∑
i=1

NB∑
j=1

[(
1

∆D

∫
Sji∩Vj∩e

Q (x,n) ds

)
−H i,m

j

]2

(5.6)

=
1

2NANB

NA∑
i=1

NB∑
j=1

[
H i
j −H

i,m
j

]2
(5.7)

where NA and NB are the number of antennas and number of range bins for each range

bin. We normalize the cost functional value with NA and NB so that increasing the number

of antennas do not require changing how strong the regularization is with respect to the

number of antennas or range bins. H i
j denotes the average electric field density computed

from the forward model using the evolving shape at the jth frequency bin of ith antenna.

Similarly, H i,m
j is the average electric field density density value that is obtained from the

radar measurements.

We parameterize our shape as a level set function where all of the points on our shape

model is evolved iteratively so that eventually we expect our shape to converge to the

actual shape. Since we use a continuous parametrization for our shape model, minimizing

the cost functional requires to solve a variational optimization problem where gradient is

infinite dimensional. In the next section, we derive the gradient flow equations for our cost

functional.

5.3.1 Gradient Derivation

First, it should be observed that in Eq. 5.7, our cost function is sum of geometric integrals

(since we use a geometric measure) over our shape model which is analogous to the family

of methods popular in image processing that are called geometric active contours [25][26].

These methods are often used to segment features from images by evolving a given curve.

Depending on a weight value designed on the image (in terms of intensities, gradient of

the intensities, etc.) that can be computed at any point in the image, the problem is to

evolve a curve (or a surface in 3D) such that the integration of this weight over the curve is
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minimized. A classic application for the use of geodesic active contours is to segment the

edge boundaries of an object in an image. In such case (ignoring regularization), we need

to minimize the following expression:

Eimage =

∫
g(x)ds (5.8)

where g(x) is typically (for edge segmentation) given as:

g (x) =
1

1 + ‖∇I(x)‖
(5.9)

where the ∇I(x) is the image gradient at the point x. Such a weight function g (x) takes

small value at the edge points since gradient will be large so when we minimize Eimage, we

expect our shape model to converge to the edge boundaries of the object we are looking for.

Our problem is not an imaging problem but this idea is also applicable to our problem as

our cost functional E is also defined as a geometric integral over the shape boundaries. It

should be noted that in its current version, for any point in the space, our integrand Q(x,n)

is a function of both point coordinates x and n. Since we use a continuous representation

for our shape model where there are infinitely many number of parameters, we need to

formulate our problem as a variational optimization problem in which case gradient also

becomes infinite dimensional. To compute the gradient, we will find it useful to compute

the derivative of our cost functional with respect an evolution parameter (τ ) that can be

thought as time. Taking the derivative we have:

∂E

∂τ
=

1

NANB

NA∑
i=1

NB∑
j=1

[
H i
j −H

i,m
j

] ∂H i
j

∂τ
. (5.10)
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where we obtain a residual term of
[
H i
j −H

i,m
j

]
and the partial derivative of H i

j which is

given as:

∂H i
j

∂τ
=

∂

∂τ

 1

∆D

∫
Sji∩Vj∩e

Q (x,n) ds

 . (5.11)

Looking carefully to the integral, we see that it is defined over some part of our shape that

lies in a specific range bin. Since our integral is over the arc length parameter ds and (as

a result of this) borders of integration is not fixed, a perturbation to the curve also effects

the borders of integration. Thus, we need to take the boundary terms into account when

we compute the derivative as the integrand does not necessarily take zero values at the

boundaries. Ideally, for simplicity of the final expression and to have a numerically more

stable algorithm, we want these boundary terms to vanish at the boundary points. In what

follows, we develop a new cost functional in which this is accomplished.

Our strategy will be based on a weighting scheme where, within a range bin, we will

compute the average electric field density value of that bin by a continuous weight func-

tion. In explanation, for jth range bin of a given antenna that covers the range interval of[
Dj
l , D

j
k

]
with a mid range value of Dj

mid, we weight the electric field density values in

between with the following weight function:

Wj(D) =


D−Djl

Djmid−D
j
l

D <= Dmid

1− D−Djmid
Djk−D

j
mid

D > Dmid

. (5.12)

This is a triangle shape weight function that takes zero value at the range boundaries and

takes the value of 1 in the middle. By using such weighting, we ensure that our integrand

value vanishes at the range boundaries (due to zero weighting) by which boundary terms

we previously mention can be eliminated. However, employing such weighting also causes

our shape evolution to be insensitive to the regions of our shape that lies close to the range
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boundaries. To solve this issue, we propose to create a new range decomposition of scene

by shifting each range bin by half the range size. Using the same weighting scheme on the

shifted range bins, this time we have maximum weight value of 1 at the regions that are

weighted as zero in our original range decomposition. Formulating the cost functional in

terms the weighted averages of these two range decomposition, we give the same weight

value to the contributions coming from each range value. Our weighting scheme for two

different range decomposition and how they add up to an equal weighting at the end is

depicted in the Fig. 5.4 As a result, we see that by employing the same weighting scheme

Figure 5.4: Our weighting scheme as a function of range. Top shows the weighting used
for the first range decomposition. The bottom shows the same for the second frequency
spectrum. At the bottom, combined weight is shown.

for two range decomposition where one is shifted by half a bin size, we can (in some sense)

give equal weighting to each range value in our cost functional as our cost functional will

be sum of these two weighted averages. Using these two terms, our new cost functional
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now becomes:

E =
1

2NANB

NA∑
i=1

NB∑
j=1

[
H i,w,1
j −H i,w,1,m

j

]2
+
[
H i,w,2
j −H i,w,2,m

j

]2
(5.13)

where H i,w,1
j denotes the weighted average electric field density density value of jth fre-

quency bin of the ith antenna for the first range decomposition and H i,w,2
j is the same for

the second (shifted) range decomposition. The superscript m added to these term express

the fact that these are the weighted average electric field densities that are obtained from

the radar measurements (from the actual shape we are trying to estimate). Using weighting,

H i,w,1
j and H i,w,2

j are given as:

H i,w,1
j =

1

∆D

∫
Sji∩Vj∩e

w1 (x)Q (x,n) ds (5.14)

H i,w,2
j =

1

∆D

∫
Sji∩Vj∩e

w2 (x)Q (x,n) ds (5.15)

where w1 and w2 are the weight functions for first and second range decompositions. For a

given x value, we have the equality:

w1(x) + w2(x) = 1. (5.16)

Using the cost functional in Eq.5.13, we get rid of the boundary terms when taking deriva-

tive of the cost functional and also give equal weights to each range values at the same

time by using the shifted range decomposition. However, an important question also arises

with this new cost function. We know that we can do any kind of weighting over the range

values in our forward model since we have our continuous shape model (evolving shape

model) on which we can compute weighted average of electric field density for each range.

However, we know that the average electric field densities obtained from the preprocessing

of the radar signal (see the discussion in Chapter 3) naturally assumes equal weighting as
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the our weighting does not corresponds to anything physical. As a result, our question is

if it is possible to estimate H i,w,1,a
j and H i,w,2,a

j from a radar measurement. Luckily, there

is a way to do such estimation. In chapter 3, we develop a method to extract range decom-

position of our deramped signal through a preprocessing. Assuming a 50µsec pulse and

a modest sampling frequency of 10MHz, the number of time samples we have becomes

50000. The number of range bins we use in the previous chapter on the other hand is chosen

as 50. This means our system of equations is highly over determined where we estimate

50 unknowns from 50000 measurements. This implies that there should be room to choose

the number of range bins much larger that they currently are. This fact can be exploited to

estimate H i,w,1,a
j and H i,w,2,a

j .

During the preprocessing, we can always choose the number of range bins much more

than what we will actually use and then can use this densely sampled range decomposition

to estimate the weighted average of electric field densities over a coarsely sampled range

decomposition that is used in our cost functional. This is depicted in Fig. 5.5. H i,w,1,a
j is

than given as:

H i,w,1,a
j =

1

Nfb

Nfb∑
i=1

Wj(Di)H
i,w,1,,f,a
j (Di) (5.17)

Nfb is the number of fine range bins in a coarse range bin, Wj is defined in Eq. 5.12, Di

is the mid range value of fine range bin and H i,w,1,,f,a
j is the average electric field density

of the corresponding fine range bin that is obtained through preprocessing. As a result,

we now can estimate the weighted average electric field densities from the radar measure-

ments. Note that we again skip such procedure in our implementation (as we did in

preprocessing) and compute the weighted spectrum directly using the geometry as our

results are all in simulation where we have the geometry information of both evolving

and actual shape. Therefore, we directly compute the weighted integral expression

given in 5.14 and 5.15 in our implementation to obtain the weighted spectrums.
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Figure 5.5: The depiction of how we can obtain our weighted average electric field density
values from the radar signal. Our strategy is to obtain a dense range decomposition (bottom)
from the preprocessing and then obtain the weighted range decomposition of our coarse
weighted spectrum (top).

Going back to the gradient, for simplicity, we will only compute the gradient for only

one term (first range decomposition) of our cost functional as the expression will also be

the same for the other. Taking the derivative, we obtain:

∂E1

∂τ
=

∂

∂τ

(
1

2NANB

NA∑
i=1

NB∑
j=1

[
H i,w,1
j −H i,w,1,m

j

]2)
(5.18)

=
∂

∂τ

(
1

NANB

NA∑
i=1

NB∑
j=1

[
H i,w,1
j −H i,w,1,m

j

])
︸ ︷︷ ︸

residual term

∂H i,w,1
j

∂τ
. (5.19)

Note that the only term that changes with the evolving shape is H i,w,1
j . Expanding this
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term, we obtain:

∂H i,w,1
j

∂τ
=

∂

∂τ

(
1

∆D

∫
w1(x)Q(x,n)

)
. (5.20)

We will assume collocated antennas for simplicity in which case our expression then be-

comes:

∂H i,w,1
j

∂τ
=

∂

∂τ

(
1

∆D

∫
w1(x)

G2 (−u · n)

R2
ds

)
. (5.21)

At this point, to compute the gradient of our expression, we will derive a more general

formula that computes the gradient for a general integrand (f (x,n)) that has an arbitrary

dependence to x(point) and n (normal). After algebraic manipulations (see the Appendix

B for derivation), we obtain:

∂

∂τ

(∫
f(x,n)ds

)
=

∫ (
∂f

∂x
n− κ∂f

∂n
n + t>

∂2f

∂n∂x
t + κt>

∂2f

∂n2
t + κf

)
nTxτds

(5.22)

for t is the unit tangent of the curve at point x and κ is the curvature of the curve at the

same point. When we look at the expression carefully, we see that this is an inner product

in the geometric L2 function space where geometric part comes from the fact that this is

an integration over the arc length parameter. The derivative expression with respect to τ

gives us how much the total integral changes at a given instant on our curve evolution.

Interpreting xτ as our perturbation direction along the curve, our gradient becomes the rest

of the terms in the integrand as this is the definition of gradient. Gradient is a vector that

is, when dotted (inner product) with a direction, yields the directional derivative in that
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direction. Writing more clearly,

∂

∂τ

(∫
f(x,n)ds

)
= 〈∇xf,xτ 〉 (5.23)

=

∫
(∇xf) xτds. (5.24)

We then find our gradient as:

∇xf =

∫ (
∂f

∂x
n− κ∂f

∂n
n + t>

∂2f

∂n∂x
t + κt>

∂2f

∂n2
t + κf

)
n. (5.25)

Plugging our integrand in f , we can compute the gradient of the expression in Eq. 5.21.

However, note that there are curvature dependent terms in the gradient expression. For

the partial differential equation we will be solving to obtain our shape evolution, curvature

dependent terms should be given special attention as a negative factor multiplying these

terms can cause the corresponding PDE to be unstable due to an effect known as backward

heat flux. We know that both curvature dependent terms in our expression κt> ∂
2f
∂n2 t and

κfn are positive (first being a quadratic term and the second one due to the f being positive

by nature in our cost functional). However, it should be noted that this gradient is also

multiplied with the residual term in Eq. 5.19 which can be both positive or negative and

as a result of this, so does the sign of the curvature dependent terms. Luckily, there is a

special case in which these curvature terms vanish and we do not suffer from this issue. It

is a well known fact that if can write our expression as in the form of:

f(x,n) = F(x) · n (5.26)

where F (x) is a vector field over x, curvature terms cancel each other. Trying to write our
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integrand in this form results in:

w1(x)Q (x,n) =

[
w1G

2 (−u)

R2

]
︸ ︷︷ ︸

F

·n. (5.27)

We can see that our integrand satisfies this condition as our F does not have extra n depen-

dency and is only a function of x. Plugging our integrand w1 (x)Q (x,n) in Eq. 5.25, our

final expression becomes (see the Appendix B for derivation):

∇x (w1 (x)Q (x,n)) =

[
∂w1 (x)

∂x

(
−G

2

R2
u

)
+ w1 (x)

(
∇x

[
−G

2

R2
u

])]
n (5.28)

=

[
∂w1 (x)

∂x

(
−G

2

R2
u

)
+ w1 (x)

(
G

R2

[
G

R
− 2 (u ·Gx)

])]
n

(5.29)

where we have:

∂w1 (x)

∂x
=
∂w1

∂D

∂D

∂R

∂R

∂x
(5.30)

=
∂w1

∂D
2u (5.31)

and ∂w1

∂D
is given as:

∂w1

∂D
=


2

∆D
D <= Dmid

− 2
∆D

D > Dmid

. (5.32)

It should be noted that the gradient we derive is in the normal direction (Eq. 5.29) which is

compatible with our previous observation where we conclude that gradient must be in the
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normal direction. Our gradient for two different range decomposition is given as:

∇E1 =
1

NANB∆D

NA∑
i=1

NB∑
j=1

[
H i,w,1
j −H i,w,1,m

j

]
∇x (w1 (x)Q (x,n)) (5.33)

∇E2 =
1

NANB∆D

NA∑
i=1

NB∑
j=1

[
H i,w,2
j −H i,w,2,m

j

]
∇x (w2 (x)Q (x,n)) (5.34)

where both gradients are in the normal direction. The resultant force value (see Eq. 5.5)

that applies to a point on our level set is given as the sum of these gradients:

F = ‖∇E1 +∇E2‖. (5.35)

5.4 Results

In this section, we present our simulation results using the equations derived in the pre-

vious chapter. This requires a discretization of the PDE we obtain. It should be noted

that we skipped the visibility considerations in the previous section. The reason is that we

wanted to consider visibility considerations after discretization as otherwise, derivation of

the gradient would be unnecessarily complex. It is much easier to apply visibility after the

discretization as this way, we can use the algorithm we develop in the previous chapter.

Visibility analysis is applied to our shape estimation as follows:

• Our gradients E1 and E2 includes a sum over both range bins and the antennas.

Considering the fact that spatial discretization yields a set of line segments, we find

which line segments are visible for each antenna.

• As a result, we also have the knowledge of antennas from which a given line seg-

ment is visible. Since our force calculation is implemented over a discrete sum over

antennas (Eq. 5.33 and Eq. 5.34), we add the force contribution of an antenna to a

line segment only if that line segment is visible from the antenna.

Since we previously mentioned there are several advantages of using a level-set based
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framework when compared to the approach we use in the previous chapter, we test our

algorithm on cases that would be very challenging to handle with our previous approach.

To this end, we first want to try our algorithm on an object that is not star-shaped for which

our previous method does not work. This is because our approach in the previous chapter

uses a polar representation of the shape where we parameterize our shape as a set of radii

each of which lies on a different angular location.

We will use the same antenna configurations as we use in the previous chapter where

the only difference is that this time, we assume our antennas to be collocated (in the pre-

vious chapter, the distance between the transmitter and the receiver was 6mm). In the

previous chapter, we also have a regularizer that penalizes the discrete curvature. In this

chapter, instead of using a curvature based regularizer, we choose to use a simpler arc-

length penalizer. We also use an accelerated gradient flow which is the continuous analog

of the momentum based approach we use in the previous chapter [27]. We choose our initial

shape as an ellipse and run simulations which eventually converged to the actual shape. The

evolution results are shown in Fig. 5.6. Antennas are placed on a circular trajectory around

the object. Another shape configuration we try which would not be possible to handle with

the method we develop in previous chapter. This case requires a topological change as we

will choose our actual shape as two distinct object whereas our initialization will still be a

single ellipse. Since we use the level-set based parametrization, we expect such a topolog-

ical change is automatically captured. We use the same antenna configuration we use for

the crescent-shaped object. Our results are shown in Fig. 5.7.
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Figure 5.6: Our evolution results for a crescent shaped object. We initialize our shape
model as an ellipse which eventually converges to our actual model. At the top, we see
the snapshots of our evolving shape from initial shape to its final form. We obtained the
convergence in 1500 iterations.

5.4.1 Discussions

We develop a variational technique for shape estimation where we employ a level-set

parametrization of the object. After developing the mathematical framework and express-

ing the optimization problem as a PDE, we are able to capture some complex shapes that

would not be possible with our previous method. This has been possible by the use of an

implicit parametrization that is called the level-set parametrization where we could relax

our previous constraints that are needed to be used with an explicit parametrization.
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Figure 5.7: Our evolution results for a case where our initialization and the actual shape
have different topology. Antennas are placed around the object on a circular pattern. We
initialize our shape model as an ellipse which eventually splits up and converges to our
actual model that consists of two different curves. At the top, we see the snapshots of our
evolving shape from initial shape to its final form. We obtained the convergence in 2500
iterations.
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CHAPTER 6

CONCLUSIONS

In this thesis, we propose a geometric method for radar based shape inversion. Our ap-

proach differs from the classical radar imaging techniques since it uses an evolving geo-

metric model that tries to capture the scene shape by minimizing an error functional along

iterations. By using such model, we are able to introduce any type of shape priors directly

into the estimation process. In our case, we do this by adding a regularizer term to our cost

functional by which we decrease the degrees of freedom for our parameter set that helps us

to make the problem well-posed. However, it should be noted that any prior information

about the structure or the silhouette of the shape can be incorporated as convenient as our

curvature regularizer. Another advantage of using a geometric model would be its ability

to address the occlusions. In our simulations, we add a visibility analysis step that takes the

antenna pair location and the evolving shape and compute which parts of the object does

contribute to the signal measured by that antenna pair. We observe the effects the visibility

analysis where the parts of the shapes visible to the antennas successfully evolve to the

actual object where the invisible parts fail to do so due to the lack of measurements from

those parts. To accomplish this, we first develop a method for scenes that can be modelled

as a star shape objects that can be uniquely parameterized with a polar representation and

can be approximated by a polygonal shape. We use such a model due to the simplicity of

implementation by which we show a geometric model based shape inversion from radar

signals is is possible. Finally, we extend our work to an active contour based framework

where represent our shapes using level-sets. This allowed us to handle scenes with arbitrary

shapes and topologies which greatly generalizes our initial approach.
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APPENDIX A

DERIVATION OF GRADIENT FLOW

We will derive the gradient flow equations for a general integrand fs that is a function of

both the point coordinates x and outward normal vector of the curve n at that point. It is

given as:

∂e

∂τ
=

∂

∂τ

[∫ s1

s0

fs (x,n) ds

]
. (A.1)

We reparameterize the integral so that the borders are fixed. Reparameterized integral is

given as:

=

∫ 1

0

∂

∂τ
(fs‖xp‖) dp (A.2)

=

∫ 1

0

(
∂fs
∂τ
‖xp‖+ fs

∂

∂τ
‖xp‖

)
dp (A.3)

=

∫ 1

0

[(
∂fs
∂x

xτ +
∂fs
∂n

nτ

)
‖xp‖+ fs

xp · xpτ
‖xp‖

]
dp (A.4)

=

∫ 1

0

[(
∂fs
∂x

xτ +
∂fs
∂n

(−xsτ · n) t

)
‖xp‖+ fs

xp · xpτ
‖xp‖

]
dp (A.5)

=

∫ 1

0

[
∂fs
∂x

xτ‖xp‖ −
(

xpτ

‖xp‖
· n
)
‖xp‖

∂fs
∂n

t + fs
xp · xpτ
‖xp‖

]
dp (A.6)

=

∫ 1

0

[
∂fs
∂x

xτ‖xp‖ − (xτp · n)
∂fs
∂n

t + fs
xp · xτp
‖xp‖

]
dp (A.7)

=

∫ 1

0

[
∂fs
∂x

xτ −
xτp · n
‖xp‖

∂fs
∂n

t + fs
xp · xτp
‖xp‖2

]
‖xp‖dp (A.8)

=

∫ s1

s0

[
∂fs
∂x

xτ − (xτs · n)
∂fs
∂n

t + fs (xs · xτs)
]
ds (A.9)
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Applying integration by parts, we have:

=

∫ s1

s0

∂fs
∂x

xτds−
∫ s1

s0

[
(xτs · n)

∂fs
∂n

t− (xτs · xs) fs
]
ds (A.10)

=

∫ s1

s0

∂fs
∂x

xτds−
∫ s1

s0

(
xτs ·

[
n
∂fs
∂n

t− xsfs

])
ds (A.11)

=

∫ s1

s0

∂fs
∂x

xτds−
∫ s1

s0

[
n
∂fs
∂n

t− xsfs

]
· xτsds (A.12)

=

∫ s1

s0

∂fs
∂x

xτds +

∫ s1

s0

∂

∂s

[
n
∂fs
∂n

t− xsfs

]
· xτds (A.13)

=

∫ s1

s0

∂fs
∂x

xτds +

∫ s1

s0

[
ns
∂fs
∂n

t + nt>
∂2fs
∂n∂s

+ n
∂fs
∂n

ts − xssfs − xs
∂fs
∂s

]
· xτds

(A.14)

=

∫ s1

s0

∂fs
∂x

xτds +

∫ s1

s0

[
ns
∂fs
∂n

t + nt>
(
∂2fs
∂n∂x

xs +
∂2fs
∂n2

ns

)
+ n

∂fs
∂n

ts (A.15)

− xssfs − xs

(
∂fs
∂x

xs +
∂fs
∂n

ns

)]
· xτds (A.16)

=

∫ s1

s0

∂fs
∂x

xτds +

∫ s1

s0

[
ns
∂fs
∂n

t + nt>
∂2fs
∂n∂x

xs + nt>
∂2fs
∂n2

ns + n
∂fs
∂n

ts (A.17)

− xssfs − xs
∂fs
∂x

xs − xs
∂fs
∂n

ns

]
· xτds (A.18)

=

∫ s1

s0

[
∂fs
∂x

+ κt
∂fs
∂n

t + nt>
∂2fs
∂n∂x

t + κnt>
∂2fs
∂n2

t− κn
∂fs
∂n

n + κnfs (A.19)

− t
∂fs
∂x

t− κt
∂fs
∂n

t

]
· xτds (A.20)

=

∫ s1

s0

[
∂fs
∂x
− t

∂fs
∂x

t︸ ︷︷ ︸
n ∂fs
∂x

n

+κt
∂fs
∂n

t− κt
∂fs
∂n

t︸ ︷︷ ︸
0

−κn
∂fs
∂n

n + nt>
∂2fs
∂n∂x

t (A.21)

+ κnt>
∂2fs
∂n2

t + κnfs

]
· xτds (A.22)

=

∫ s1

s0

[
n
∂fs
∂x

n− κn
∂fs
∂n

n + nt>
∂2fs
∂n∂x

t + κnt>
∂2fs
∂n2

t + κnfs

]
· xτds (A.23)

=

∫ s1

s0

[
n

(
∂fs
∂x

n− κ∂fs
∂n

n + t>
∂2fs
∂n∂x

t + κt>
∂2fs
∂n2

t + κfs

)]
· xτds. (A.24)
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APPENDIX B

DERIVATION OF GRADIENT FLOW FOR RADAR

Our integrand for radar without the weighting is given as:

fs (x,n) =

(
G

R

)2

(−u · n) (B.1)

We will find it useful to derive a couple of expressions for later use.

∂fs
∂x

= 2
G

R

[
GxR−GRx

R2

]
(−u · n) +

(
G

R

)2
∂ (−u · n)

∂u

∂u

∂x
(B.2)

=
2G (−u · n)

R2
Gx −

2G2 (−u · n)

R3
u> −

(
G

R

)2

n>
(
I− uu>

) 1

R
(B.3)

= −
(

2G (u · n)

R2
Gx −

3G2 (u · n)

R3
u> +

G2

R3
n>
)

(B.4)

∂fs
∂n

= −
(
G

R

)2

u> (B.5)

∂2fs
∂n2

= 0 (B.6)

∇n ·
∂fs
∂n

= 0 (B.7)
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∂2fs
∂n∂x

=
∂

∂x

(
−G

2

R2
u

)
(B.8)

= −
[
G2

R2

∂u

∂x
+ u

(
2GGx

R2
− 2G2Rx

R3

)]
(B.9)

= −
[
G2

R2

(
I− uu>

) 1

R
+

2G

R2
uGx −

2G2

R3
uRx

]
(B.10)

= −
[
G2

R3
I− 3G2

R3
uu> +

2G

R2
uGx

]
(B.11)

∇x ·
∂fs
∂n

= Tr
(
∂2fs
∂n∂x

)
= −

[
2G2

R3
− 3G2

R3
+

2G

R2
(u ·Gx)

]
(B.12)

=
G2

R3
− 2G

R2
(u ·Gx) (B.13)
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Using the previously derived gradient expression, without the weighting, we get:

∇CE =

(
∂fs
∂x

n− κ∂fs
∂n

n + t>
∂2fs
∂n∂x

t + κt>
∂2fs
∂n2

t + κfs

)
n (B.14)

=

(
∂fs
∂x

n + t>
∂2fs
∂n∂x

t− κ∂fs
∂n

n + κt>
∂2fs
∂n2

t + κfs

)
n (B.15)

=

[
∂fs
∂x

n + t>
∂2fs
∂n∂x

t− κ
(
∂fs
∂n

n− t>
∂2fs
∂n2

t− fs
)]

n (B.16)

=

[
∂fs
∂x

n +∇x ·
∂fs
∂n
− n>

∂2fs
∂n∂x

n− κ
(
∂fs
∂n

n−∇n ·
∂fs
∂n

+ n>
∂2fs
∂n2

n (B.17)

− fs
)]

n (B.18)

=−
[(

2G (u · n)

R2
Gx −

3G2 (u · n)

R3
u> +

G2

R3
n>
)
· n

+

(
G2

R3
− 2G

R2
(u ·Gx)

)
+

(
G2

R3
− 3G2 (u · n)2

R3
+

2G (u · n) (Gx · n)

R2

)

−κ
(
G2

R2
(−u · n)− fs

)
︸ ︷︷ ︸

0

]
· n

(B.19)

=

[
�����������

−2G (u · n) (Gx · n)

R2
+

���
����

3G2 (u · n)2

R3
−

�
�
�G2

R3
− 2G

R2
(u ·Gx) +

G2

R3
(B.20)

+
�
�
�G2

R3
−

�
���

���
3G2 (u · n)2

R3
+

����������2G (u · n) (Gx · n)

R2

]
· n (B.21)

=
G

R2

[
G

R
− 2 (u ·Gx)

]
(B.22)
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