
COMPUTATIONAL IMPROVEMENTS OF A MULTIBODY DYNAMIC
SIMULATION ALGORITHM APPLIED TO A LANDING EVENT SIMULATION

OF A FLEXIBLE LEGGED EUROPA LANDER

A Dissertation
Presented to

The Academic Faculty

By

Jacob T. Wachlin

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology

August 2018

Copyright c© Jacob T. Wachlin 2018

COMPUTATIONAL IMPROVEMENTS OF A MULTIBODY DYNAMIC
SIMULATION ALGORITHM APPLIED TO A LANDING EVENT SIMULATION

OF A FLEXIBLE LEGGED EUROPA LANDER

Approved by:

Dr. Costello, Advisor
School of Aerospace Engineering
and School of Mechanical Engi-
neering
Georgia Institute of Technology

Dr. Rogers
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Ferri
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: May 3, 2018

The legs feed the wolf

Herb Brooks

To my parents for their constant support, and to my brothers for always being willing to

discuss new ideas.

ACKNOWLEDGMENTS

I would like to thank my labmates at the Center for Advanced Machine Mobility for

always being ready to answer questions or discuss ideas I have had, and for creating a

fantastic lab environment.

I would like to thank my advisor, Dr. Costello, for his continual support throughout

graduate school, and for always pushing me to improve my work.

I would also like to thank my numerous mentors, teachers, and coaches from throughout

my life. Thank you to Raul, Roon, and the rest of my WildStang mentors. Thank you

Mr. Hardman for years of fun in your classes. Thank you to Coaches Dolan, Pietro,

and Marchisotto for teaching me the value of hard work and teamwork. Thank you Mike

and Matt for your advice and guidance. All of your tireless work in supporting the next

generation has not gone unnoticed.

Thank you to my friends in Chicago, Boston, and Atlanta for your support. You all

have made my times in those places so memorable.

Finally, I would like to thank my family for their love and support. I could not have

made it here without their countless hours guiding my education, supporting my interests,

and encouraging me to do my best.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

Chapter 2: Nonlinear Control Theory Constrained Coordinate Multibody Sim-
ulation . 4

2.1 Overview of Method . 4

2.2 Geometry and Reference Frames . 4

2.3 Single Rigid Body Dynamics . 6

2.4 Constraints . 8

2.5 Combined Equations . 10

2.6 Constraint Controller . 11

Chapter 3: Analysis of Feedback Linearization Constraint Controller 14

3.1 Limitations of Analysis . 15

3.2 Analysis of Methods . 15

Chapter 4: Computational Improvement Techniques 18

vi

4.1 Constraint Controller - Matrix Multiplication 18

4.1.1 Compressed Sparse Column Sparse Methods 18

4.1.2 Blockwise Sparse Methods . 20

4.2 Constraint Controller - Linear System Solve 25

4.2.1 Direct Methods . 25

4.2.2 Iterative Methods . 26

4.2.3 Banded Methods . 29

Chapter 5: Computational Improvements Methods Testing 37

5.1 Testing Setups . 37

5.1.1 Chain Simulation . 37

5.1.2 Lander Simulation . 38

5.1.3 Stubby Lander Simulation . 39

5.1.4 Chain Simulation Bandwidth Modification 41

5.2 Testing Results . 44

5.2.1 Chain Simulation . 44

5.2.2 Lander Simulation . 51

5.2.3 Stubby Lander Simulation . 57

5.2.4 Chain Simulation Bandwidth Modification 60

Chapter 6: Europa Lander Simulation . 67

6.1 Motivation . 67

6.2 Simulation Design . 69

6.2.1 Lander Design . 70

vii

6.2.2 Ground Contact Modeling . 74

6.3 Simulation Results . 78

6.3.1 Icy Surface . 81

6.3.2 Snowy Surface . 85

6.3.3 Sandy Surface . 88

6.4 Analysis of Results . 93

Chapter 7: Conclusion . 104

Appendix A: Constraint Error Derivatives . 107

References . 113

viii

LIST OF TABLES

3.1 Complexity of steps of feedback linearization constraint controller [4] . . . 16

5.1 Setup of each case presented in Figure 5.11 49

5.2 Setup of each case presented in Figure 5.16 56

5.3 Setup of each case presented in Figure 5.17 58

6.1 Nominal lander physical parameters used in all simulations 79

6.2 Nominal conforming leg joint parameters 80

6.3 Nominal shock-absorbing and impedance-controlled leg joint parameters . . 80

6.4 Nominal stiff leg joint parameters . 80

6.5 Icy surface ground contact parameters . 81

6.6 Icy surface lander body acceleration statistics 82

6.7 Snowy surface ground contact parameters 85

6.8 Snowy surface lander body acceleration statistics 86

6.9 Sandy surface ground contact parameters 89

6.10 Sandy surface lander body acceleration statistics 90

ix

LIST OF FIGURES

2.1 The reference frames for a joint connection 5

4.1 4-Legged Lander System Joint Numbering 30

4.2 4-Legged Lander System Generated Graph Representation 31

5.1 Token representation of a 10 body chain system 38

5.2 Token representation of a 4-legged lander system 39

5.3 Naive stubby leg system layout with 40 legs 40

5.4 Split stubby leg system layout with 40 legs 41

5.5 10 body chain simulation with optimal joint numbering 42

5.6 10 body chain simulation with worst joint numbering 43

5.7 Normalized total computation time for chain topology systems of size from
5 to 45 bodies . 45

5.8 Computation time reduction for improved methods for chain topology sys-
tems of size from 5 to 45 bodies . 46

5.9 Percentage of total computation time used within constraint controller ma-
trix multiplication and linear system solve steps using naive methods 47

5.10 Percentage of total computation time used within constraint controller ma-
trix multiplication and linear system solve steps using improved methods . . 48

5.11 Normalized computation time required for a variety of cases for a chain
topology system . 50

x

5.12 Normalized total computation time for lander type systems of size from 5
to 41 bodies . 52

5.13 Computation time reduction for improved methods for lander type systems
of size from 5 to 41 bodies . 53

5.14 Percentage of total computation time used within constraint controller ma-
trix multiplication and linear system solve steps using naive methods 54

5.15 Percentage of total computation time used within constraint controller ma-
trix multiplication and linear system solve steps using improved methods . . 55

5.16 Normalized computation time required for a variety of cases for a lander
topology system . 57

5.17 Normalized computation time required for a variety of cases for the stubby
lander topology . 59

5.18 Normalized total computation time for joint reordering test cases using
naive computational methods . 62

5.19 Normalized G̃ matrix multiplication computation time for joint reordering
test cases using naive computational methods 63

5.20 Normalized total computation time for joint reordering test cases using im-
proved computational methods . 64

5.21 Normalized total linear solve computation time for joint reordering test
cases using banded Gaussian elimination 65

6.1 Highest resolution image of the surface of Europa taken by Galileo. Scale
is 6 meters per pixel. The black bar in the image is due to missing data that
was not sent by Galileo [12] . 68

6.2 Top view of proposed lander from 2012 NASA/JPL-Caltech report [11] . . 70

6.3 Side view of proposed lander from 2012 NASA/JPL-Caltech report [11] . . 71

6.4 Basic design for simulated flexible legged lander 72

6.5 Impedance controller logic . 73

6.6 Artist’s rendering of proposed lander from 2016 NASA/JPL-Caltech report
[14] . 74

xi

6.7 Peak lander body acceleration distribution for the various systems landing
on an icy surface . 83

6.8 Peak lander joint forces distribution for the various systems landing on an
icy surface. Peak joint forces from all 12 joints in each body are shown,
normalized by the system’s weight on Europa 84

6.9 Peak lander body acceleration distribution for the various systems landing
on a snowy surface . 87

6.10 Peak lander joint forces distribution for the various systems landing on a
snowy surface. Peak joint forces from all 12 joints in each body are shown,
normalized by the system’s weight on Europa 88

6.11 Peak lander body acceleration distribution for the various systems landing
on a sandy surface . 91

6.12 Peak lander joint forces distribution for the various systems landing on a
sandy surface. Peak joint forces from all 12 joints in each body are shown,
normalized by the system’s weight on Europa 92

6.13 This landing event occurred with shock-absorbing legs on a sandy surface.
The lander has horizontal velocity of about 2.9 meters per second. The
front legs touched the surface first, and triggered a lander rollover 93

6.14 Rollover classification for a stiff legged lander on an icy surface based on
initial lander orientation . 95

6.15 Rollover classification for a stiff legged lander on an icy surface based on
horizontal velocity at impact . 96

6.16 Rollover classification for a stiff legged lander on an icy surface based on
horizontal and vertical velocities at impact 97

6.17 Simple representation of the projection of the impact velocity vector onto
the z-axis of the lander body . 98

6.18 Rollover classification for a stiff legged lander on an icy surface based on
the projection of the velocity vector onto the lander body Z-axis at impact . 99

6.19 Rollover classification for a stiff legged lander on an sandy surface based
on initial lander orientation . 100

6.20 Rollover classification for a stiff legged lander on an sandy surface based
on horizontal velocity at impact . 101

xii

6.21 Rollover classification for a stiff legged lander on an sandy surface based
on horizontal and vertical velocities at impact 102

6.22 Rollover classification for a stiff legged lander on an sandy surface based
on the projection of the velocity vector onto the lander body Z-axis at impact 103

xiii

SUMMARY

Multibody dynamic simulation is critical to the design and analysis of many mechanical

systems. Engineers use these simulations to understand the motion and loading conditions

of systems of bodies. The field of dynamic simulation has been studied for decades and

many methods exist for performing multibody dynamic simulations, each with its advan-

tages and disadvantages. For example, some methods are more computationally expensive

than others, and many methods naturally eliminate inter-body loads from calculations. This

thesis focuses on a constrained coordinate method for developing multibody dynamic sim-

ulations which uses nonlinear control theory techniques in the constraint stabilization task.

The constrained coordinate multibody dynamic simulation method considered in this

thesis has been used to examine the performance of many systems. It has been used to

model parafoil systems, articulated wing aircraft, and guided projectiles [1]. Within this

method, each rigid body is simulated using a standard 6 degree-of-freedom model, with

loads at connections between bodies calculated online to maintain properly constrained

motion between the bodies. The method avoids the need to analytically derive a set of

governing coupled differential equations for the system. In addition, it does not cancel out

inter-body loads, which can be useful for engineering analysis. However, because the inter-

body loads must be calculated and applied online, and constrained degrees-of-freedom are

not eliminated from the simulation, this method can be computationally expensive.

This thesis makes significant computational improvements to this constrained coordi-

nate multibody dynamic simulation algorithm. It first analyzes the algorithm to determine

which sections scale most poorly with system size. It then suggests, analyzes, and tests

methods to greatly reduce computation time within those problem sections. In particular,

it shows how some matrix multiplication operations consist of a large number of multi-

plications by zero. Computation time is reduced by avoiding these trivial operations. In

addition, it is shown how the joint numbering scheme determines the bandwidth of a ma-

xiv

trix corresponding to a set of linear equations that must be solved within the constraint

controller. When the bandwidth is reduced, banded linear system solvers can be used to

reduce computation time. The bandwidth reduction here is shown to be equivalent to the

standard NP-Complete bandwidth reduction problem. Approximate bandwidth reduction

methods are shown to be effective at reducing computation time. A few token systems are

developed to test the methods and it is noted that computation time in some cases is reduced

by more than two orders of magnitude, opening up this technique for use in trade studies

of the dynamics of large systems.

Finally, these methods are applied to simulate the landing event dynamics of a pro-

posed flexible legged lander for Europa. The reduced computation time enabled by the

methods presented in this thesis allows for large Monte-Carlo simulation studies to be run

in a reasonable amount of time. Systems with various levels of passive leg flexibility were

modeled, as well as a system with basic active impedance control, and it was seen that

flexible legs offer lower peak acceleration on impact, lower joint loads, and lower risk of

rollover over a wide range of ground surface conditions, impact angles, and impact veloc-

ities. Flexible legs lowered peak lander acceleration by about 42% and 40% on simulated

icy and snowy surfaces, respectively. Flexible legs were also able to virtually eliminate

rollover risk when landing on those surfaces. On a simulated sandy surface with signif-

icantly higher damping, flexible legs reduced peak lander acceleration by about 31%. In

addition, while landers with stiff legs rolled over in this sandy surface scenario about 35%

of the time, landers with very flexible legs rolled over only 15.5% of the time.

xv

CHAPTER 1

INTRODUCTION

Rigid body dynamic simulation is a critical step in developing many mechanical systems.

Before a system is fabricated, its dynamic response can be analyzed. This can be used to

develop controllers, analyze structures, test actuation methods, and generally ensure proper

functionality.

There are a variety of methods used to develop the equations of motion needed to per-

form simulations. These methods include the Newton-Euler equations, Lagrange’s equa-

tions, Kane’s equations, and others. This thesis focuses on one method for performing

multibody dynamic simulations, called the nonlinear control theory (NLCT) constrained

coordinate method, which offers a few significant benefits over other multibody dynamic

simulation methods. This method is derived in detail in Chapter 2.

The first benefit of this method is that it is based on the rigid body dynamics of a single

body. Analytic differential equations need not be derived for the coupled system to be

modeled. Rather, it is only necessary to generate a consistent set of initial conditions for

all of the bodies and define the connections between bodies.

Second, this method does not eliminate inter-body forces and moments. Instead, con-

straint loads are a visible feature of this method. These loads can be useful for analyzing

the structural strength of a system. Without these loads, the simulation may provide infor-

mation about how the system moves, but not about the internal loading conditions. Because

inter-body loads are visible when using the NLCT method, it combines nicely with FEM

structural analysis methods.

This method for performing multi-body dynamic simulation has been used to simulate

robotic landing gear for rotorcraft, guided parafoil systems, guided munitions, articulated-

wing aircraft, and more [1, 2].

1

While this simulation method is convenient and effective, it comes with computational

challenges. Specifically, computational complexity of sections within this algorithm scale

poorly as the number of bodies and inter-body connections increase. The first part of this

thesis analyzes the constrained coordinate multibody dynamic simulation method, proposes

methods for computational improvements, and tests these methods on some example multi-

body systems. In particular, the analysis shows how some matrix multiplication operations

consist of a large number of multiplications by zero. Computation time is reduced by

avoiding these trivial operations. In addition, it is shown how the joint numbering scheme

determines the bandwidth of a matrix corresponding to a set of linear equations that must

be solved within the constraint controller. When the bandwidth is reduced, banded linear

system solvers can be used to reduce computation time. The bandwidth reduction here is

shown to be equivalent to the standard NP-Complete bandwidth reduction problem. Ap-

proximate bandwidth reduction methods are shown to be effective at reducing computation

time. For some example systems, computation time was reduced by more than two orders

of magnitude, with no loss in accuracy.

Previous work by Gross, Rogers and Costello improved computation time of this dy-

namic simulation method by reducing the number of times the constraint controller was

called within a simulation, at the cost of some accuracy [3]. Their paper recognized that

the constraint controller consumes a significant portion of total computation time. This is

true even for systems which are fairly small, and in fact they only examined systems con-

sisting of five bodies or fewer. Critically, the methods in this thesis reduce computation

time within each step of the constraint controller without loss of accuracy. Therefore, total

computation time is vastly reduced without sacrificing accuracy. If accuracy is not critical,

the methods developed here could be combined with the methods developed by Gross et.

al. to reduce computation time even further.

The second part of this thesis focuses on the simulation of a proposed legged lander

design for a mission to Europa. Europa is scientifically intriguing, as its icy surface and

2

sub-surface thermal activity may provide the correct conditions for life. However, our best

images of Europa do not provide information about the surface at the scale of a lander.

Therefore, any lander must be able to safely land on a wide variety of surface conditions.

The unknown conditions also imply that a large range of Monte-Carlo landing event sim-

ulations should be performed. The proposed lander model consists of 13 bodies and 12

connections. The resulting differential algebraic equation has 169 states and 60 constraints

to satisfy. Using a naive implementation of the constrained coordinate method, this system

is extremely slow to simulate, with simulation times about 1400 times slower than real-

time. A 4800-case trade study of this lander system would take over two CPU-years to

complete on the author’s workstation with an Intel Xeon processor. However, this study

was feasible when the methods proposed in this thesis are used, and was run in about two

weeks. In fact, the methods proposed here result in a computation time reduction of about

24-fold for this lander system, with no loss in accuracy.

This thesis compares legged lander designs with various levels of passive leg flexibility,

ranging from stiff legs to conforming legs which cannot support the weight of the lander

system. In addition, one system with basic active impedance control was examined. Studies

of these systems over a range of ground surface parameters, impact velocities, and impact

angles showed that a lander with flexible legs experiences lower peak acceleration upon

impact, lower peak joint loads, and a lower risk of rollover compared to a lander with stiff

legs under the same conditions. Flexible legs lowered peak lander acceleration by about

42% and 40% on simulated icy and snowy surfaces, respectively. Flexible legs were also

able to virtually eliminate rollover risk when landing on those surfaces. On a simulated

sandy surface with significantly higher damping, flexible legs reduced peak lander accel-

eration by about 31%. In addition, while landers with stiff legs rolled over in this sandy

surface scenario about 35% of the time, landers with very flexible legs rolled over only

15.5% of the time.

3

CHAPTER 2

NONLINEAR CONTROL THEORY CONSTRAINED COORDINATE

MULTIBODY SIMULATION

2.1 Overview of Method

This thesis examines a constrained coordinate multibody dynamic simulation technique

and develops and analyzes methods for reducing its computation time. Within this method,

each individual body is treated as a rigid body allowed to undergo full three dimensional

motion. Each body is exposed to coupling forces and moments from other bodies and

external loads. A feedback linearization constraint controller calculates those coupling

forces and moments and enforces defined joint constraints. These forces and moments are

equal and opposite at a joint on the adjacent bodies.

Within this method of multibody dynamic simulation, interbody loads are readily visi-

ble, and therefore this method can determine not only how a multibody system moves, but

also the internal loads as well.

2.2 Geometry and Reference Frames

Each rigid body has a reference frame attached to it, bi. At each joint, a few reference

frames are defined. Each joint connects two bodies, one of which is called the parent body

and the other the child body. The parent and child body reference frames are the body

reference frames of the parent and child bodies, respectively. In addition, at the joint two

new reference frames are defined: the child joint and parent joint reference frames. It is

critical for the constraint controller developed later on in this chapter that these reference

frames are aligned when the joint has no rotational displacement. Figure 2.1 shows how

these reference frames are defined.

4

Figure 2.1: The reference frames for a joint connection

The transformation matrices associated with these coordinate systems are denoted dif-

ferently depending on if the coordinate system is defined on the child body or the parent

body for that joint. For transformation from the inertial reference frame into the child and

parent body frames, the Tc and Tp transformation matrices are developed such that


Īc

J̄c

K̄c

 = Tc


ĪI

J̄I

K̄I

 (2.1)


Īp

J̄p

K̄p

 = Tp


ĪI

J̄I

K̄I

 (2.2)

Similarly, the Tpj and Tcj transformation matrices are defined to transform from the

5

respective body coordinate system into the joint coordinate system.


Īcj

J̄cj

K̄cj

 = Tcj


Īc

J̄c

K̄c

 (2.3)


Īpj

J̄pj

K̄pj

 = Tpj


Īp

J̄p

K̄p

 (2.4)

A distance between a body center of mass and each joint connection on that body is also

defined. This is a vector in the body reference frame. For the child body, this is defined as

Cc(r̄⊗c→j) =


∆Xcj

∆Ycj

∆Zcj

 (2.5)

The Cc operator is used to extract the measure numbers of the vector in the child body

frame. For the parent body, the definition is similar, but denoted as r̄⊗
p→j .

2.3 Single Rigid Body Dynamics

Within this method of multibody dynamic simulation, each body is, at the base level, treated

as a rigid body which can experience motion in all 6 degrees of freedom.

Each rigid body i has 6 degrees of freedom with states Xi such that

Xi =

(
x y z q0 q1 q2 q3 u v w p q r

)T
(2.6)

These states include the body position (x, y, z) in the inertial reference frame, its orien-

tation (q0, q1, q2, q3) using quaternions, its translational velocity (u, v, w) in the body refer-

ence frame, and its rotational velocity (p, q, r) in the body reference frame.

6

For each body, the rotational velocity vector is defined as

Cbi(ω̄ bi
I

) =


pi

qi

ri

 (2.7)

The Cbi operator extracts the measure numbers of the rotational velocity in the body i

reference frame. The unconstrained dynamics fi of a rigid body with mass Mi and inertia

matrix Ii are defined as follows:

fi =



T Tbi


ui

vi

wi



Bbi


pi

qi

ri



−Sbi(ω̄ bi
I

)


ui

vi

wi

+ 1
Mi


Fxi

Fyi

Fzi



−I−1
i Sbi(ω̄ bi

I
)Ii


pi

qi

ri

+ I−1
i


Mxi

Myi

Mzi





(2.8)

Where Tbi and Bbi are defined as

Tbi =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.9)

7

Bbi =
1

2



−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


(2.10)

Sbi(ω̄ bi
I

) is the skew-symmetric cross product operator applied to the rotational velocity

of body i in the body i reference frame.

Sbi(ω̄ bi
I

) =


0 −ri qi

ri 0 −pi

−qi pi 0

 (2.11)

External forces and moments, such as those due to gravity, aerodynamic effects, ground

contact, or actuation, are applied to each applicable body within theFxi, Fyi, Fzi andMxi,Myi,Mzi

terms, respectively.

2.4 Constraints

Joints within this multibody dynamic simulation method can be considered to be a set of

constraint equations which much be satisfied throughout each simulation. For example, a

gimbal (or spherical) joint is a joint in which there are three translational and zero rotational

constraints. The joint points on the child and parent bodies are not permitted to move

translationally relative to each other, but any rotation is allowed. This type of joint is

similar to a human hip or shoulder joint.

The constraints within this method then are all derived as errors in position or orienta-

tion at joint connections which must be driven to and held at zero.

First, consider translational constraint errors. For a translational constraint, any joint

displacement is equivalent to displacement between the parent joint and child joint coordi-

nate system origins. Therefore, the translational constraint error at a joint is given in the

8

parent joint coordinate system by

Etj = TpjTj


xpj − xcj

ypj − ycj

zpj − zcj

+ TpjCp(r̄⊗p→j)− TpjTpT
T
c Cc(r̄⊗c→j) (2.12)

However, given some joint design, only some of the constraints need be considered.

This is defined by the Γtj matrix, such that

E?
tj = ΓTtjEtj (2.13)

A rotational constraint along some axis in the parent joint coordinate system can be

enforced by driving the dot product (and thus the angle) between the corresponding axes of

the child and parent joint coordinate systems to zero. Rotational error is therefore defined

as

Erj = TpjTpT
T
c T

T
cj (2.14)

Again, just as in the translational constraints, a joint constraint can in general have

between 0 and 3 rotational constraints. The constraints of interest are extracted as

E?
rj = ΦErjΨ

T (2.15)

In this definition, Φ and Ψ are used to extract the constraints of interest from Erj .

To aid development of the constraint controller, assemble all errors into a single vector

that consists of all translational and rotational errors for all M joints.

E(X) =

(
E?
tj1

T E?
rj1

T · · · E?
tjM

T E?
rjM

T

)T
(2.16)

9

2.5 Combined Equations

To develop the full equations of motion for a system, the unconstrained rigid body dynamics

of a system are combined with coupled constraint loads. For N bodies and M joints, the

coupled dynamics are



Ẋ1

Ẋ2

...

ẊN


=



f1

f2

...

fN


+



g11 g12 · · · g1M

g21 g22 · · · g2M

...
...

gN1 gN2 · · · gNM





u1

u2

...

uM


(2.17)

In this notation, each body state vector Ẋi, single body dynamics vector fi and con-

straint load vector ui is a column vector, and each coupling matrix gij is a sub-matrix of the

whole. As will be show later, these sub-matrices are defined according to the structure of

the simulated system and describe the constraint load coupling between bodies. The total

dynamics can therefore also be represented in complete matrix form as

Ẋ = F +GU (2.18)

The sub-matrices of G are only nonzero for the blocks that map some joint j to a parent

body and a child body for that joint. The sub-matrices for the parent and child bodies are

each defined differently. For the parent body, it is defined as the following.

gp =



0 0

0 0

1

Mp

T TpjΓtj 0

I−1
p Sp(r̄⊗p→j)T

T
pjΓtj I−1

p T TpjΓrj


(2.19)

10

For the child body, it is defined as follows.

gc =



0 0

0 0

− 1

Mc

TcT
T
p T

T
pjΓtj 0

−I−1
c Sc(r̄⊗c→j)TcT

T
p T

T
pjΓtj −I−1

c TcT
T
p T

T
pjΓrj


(2.20)

The Γtj and Γrj matrices are defined to ensure correct mapping of joint forces and

moments into the correct axes of the corresponding bodies. The width of the Γtj matrix

is equal to the number of translational constraints on that joint, while the width of the Γrj

matrix is equal to the number of rotational constraints on that joint. Each column of Γtj

and Γrj consists of only one non-zero element, which is a 1, and is located as to map to the

constrained axes.

2.6 Constraint Controller

As discussed previously, a constraint load vector U must be calculated, which when applied

to the bodies according to the coupling defined inG causes the constraint errorsE(X) to be

driven to and held at zero. To calculate this constraint load vector, a method from the field

of non-linear control is used: the feedback linearization controller. To begin the derivation,

take the time derivative of the error vector E(X).

Ė(X) =
∂E

∂X

∂X

∂t
=
∂E

∂X
(F +GU) =

∂E

∂X
F +

∂E

∂X
GU =

∂E

∂X
F (2.21)

Since the constraint loads vector U does not appear in Ė, a second derivative of E is

generated which provides access to U .

Ë(X) =
∂Ė

∂X

∂X

∂t
=
∂Ė

∂X
(F +GU) =

∂Ė

∂X
F +

∂Ė

∂X
GU (2.22)

11

Now, define F̃ and G̃ as

F̃ =
∂Ė

∂X
F (2.23)

G̃ =
∂Ė

∂X
G (2.24)

This provides the second order dynamics of the error equations as

Ë(X) = F̃ (X) + G̃(X)U(X) (2.25)

To develop the feedback linearization constraint controller, let the second order dynam-

ics of the error equations equal a pseudocontrol γ.

γ = Ë(X) = F̃ (X) + G̃(X)U(X) (2.26)

Now, this pseudocontrol is set such that the error dynamics are exponentially stable, so

that any initial errors in the constraint equations will be driven to zero by the controller.

γ = −2ζωnĖ − ω2
nE (2.27)

In the above equation, ζ is the dynamics damping ratio and ωn is the natural frequency.

Using this definition for the pseudocontrol, it can be seen algebraically that the constraint

force and moment vector U is

U = −G̃−1(2ζωnĖ + ω2
nE + F̃) (2.28)

With U developed in this way, it can be seen that the error dynamics are therefore an

uncoupled set of damped oscillators. If ζ and ωn are chosen properly, the error equations

12

will be driven exponentially to zero, and the joint constraints will be satisfied.

Ë + 2ζωnĖ + ω2
nE = 0 (2.29)

In this setup, the zero dynamics of the system are the dynamics of the actual simulated

system including the coupling effects of the joint connections.

So far, the error equations have been taken as known, but they are fully developed in

the appendix.

13

CHAPTER 3

ANALYSIS OF FEEDBACK LINEARIZATION CONSTRAINT CONTROLLER

This method of performing multibody dynamic simulations involves solving a set of differ-

ential algebraic equations which define the system dynamics. Let the system states be X .

The set of equations which need to be solved are as follows.

Ẋ = F +GU (3.1)

E = 0 (3.2)

The state time derivatives Ẋ are therefore determined by some unconstrained dynamics

F , which include external loads such as gravity, contact, or aerodynamic effects, and some

coupled dynamicsGU which are determined by the connections between bodies. The error

equations E consist of all errors in joint displacements at all inter-body connections. A key

step with this method is calculating the inter-body forces and moments U . This is done

with a constraint controller, as described in Chapter 2. The constraint controller calculates

inter-body forces and moments such that the defined joint constraints are maintained.

In this thesis, a feedback linearization constraint controller was used. This controller

was derived in Chapter 2. Here, steps within the constraint controller are analyzed and

their computational complexity is determined. Knowledge of which sections are the most

computationally intensive allows for a targeted approach at reducing computation time

overall.

14

3.1 Limitations of Analysis

This section focuses on the linear algebra operations needed to calculate the inter-body

loads. It ignores operations needed to assemble preliminary vectors and matrices used

within the constraint controller. As will be seen, certain operations dominate the computa-

tional requirements to such an extent as to make smaller computations insignificant.

3.2 Analysis of Methods

For comparison between methods, let N be the number of states in the simulation. For the

derivation in Chapter 2 using quaternions, N = 13×NB where NB is the number of rigid

bodies in the simulation. Likewise, let M be the number of constraints to satisfy. Also,

assume the following matrices and vectors (defined in Chapter 2) have been assembled.

F,G,E, Ė,
∂Ė

∂X
(3.3)

These are used to assemble the feedback linearization constraint controller. The first

step is to perform a matrix-vector multiplication to form part of the error dynamics.

F̃ =
∂Ė

∂X
F (3.4)

The matrix ∂Ė
∂X

is in RM×N while F is in RN . Naively, this step has complexity

O(MN).

The next step is another computation of part of the error dynamics. The following

matrix-matrix multiplication must be performed.

G̃ =
∂Ė

∂X
G (3.5)

The matrix G is in RN×M . Naively, this step has complexity O(M2N).

The next two steps are to first form the right-hand side of the following system of

15

equations, and then to solve for U .

G̃U = −(2ζωnĖ + ω2
nE + F̃) (3.6)

Assembling the right hand side consists of vector addition, and is of complexityO(M).

Solving the system of equations, however, is harder. Naively, this has complexity O(M3).

Finally, the coupling matrix G must be multiplied with the inter-body forces and mo-

ments vector U to form part of the system dynamics. These coupled dynamical effects are

added to the unconstrained dynamics.

Ẋ = F +GU (3.7)

The matrix-vector multiplication operation dominates here, and this step is of complex-

ity O(MN).

The complexities of all the steps are listed in Table 3.1.

Computation Complexity

F̃ = ∂Ė
∂X
F O(MN)

G̃ = ∂Ė
∂X
G O(M2N)

V = F̃ + 2ζωnĖ + ω2
nE O(M)

U = −G̃−1V O(M3)

Ẋ = F +GU O(MN)

Table 3.1: Complexity of steps of feedback linearization constraint controller [4]

For systems with many bodies and joint constraints, it is clear that two operations dom-

inate computation: the matrix multiplication needed to calculate G̃, and the linear system

solving step needed to calculate U . These two steps will be the focus of the methods in this

thesis that attempt to reduce computation time. It will be shown that some of the proposed

methods indeed significantly improve the computation time of this simulation method for

16

large systems.

17

CHAPTER 4

COMPUTATIONAL IMPROVEMENT TECHNIQUES

A wide range of techniques were applied in the attempt to reduce computation time. The

algorithmic changes mainly focus on two topics. First, methods to improve the matrix

multiplication performed to calculate G̃ are examined. Second, a variety of full-order-

direct, banded-direct, and iterative methods for solving linear systems are evaluated for use

within the constraint controller.

4.1 Constraint Controller - Matrix Multiplication

The calculation of G̃ is expensive for large systems. This complexity may seem like a

roadblock to using the constrained coordinate technique for large systems. However, the

matrix multiplication to form G̃ often involves sparse matrices, and computation time can

be reduced by eliminating trivial multiplications by zero.

4.1.1 Compressed Sparse Column Sparse Methods

A common method for handling sparse matrices is to store them in compressed sparse

column (CSC) form. In this form, the entire sparse matrix is not stored. Instead, three

vectors are formed to represent the matrix. The first consists of all of the non-zero values in

the matrix, stored column-wise first. The second consists of the row indices corresponding

with each non-zero value stored in the first vector. The third vector consists of a list of

indices of the first vector where each consecutive column begins. Once this form is created

for the ∂Ė
∂X

matrix, each non-zero element is multiplied by the corresponding elements in G

to form G̃ efficiently.

18

As an illustrative example, consider the CSC storage of the following matrix M .

M =



4 5 0 0 8

0 0 0 1 0

3 0 0 0 0

0 0 2 0 0

0 10 6 0 0


(4.1)

The matrix M can be stored using the CSC method as three vectors.

A =

(
4 3 5 10 2 6 1 8

)
(4.2)

B =

(
0 2 0 4 3 4 1 0

)
(4.3)

C =

(
0 2 4 6 7

)
(4.4)

The A vector holds all of the non-zero elements of M in column-major order (top-to-

bottom, left-to-right). The vector B holds the original row index for each element in A.

Finally, the vector C consists of the indices of the vector A at which a new column begins.

Stored as a dense matrix, M has 25 elements. The three vectors of the CSC version of

M have 21 elements total. While this is a minor reduction in storage needs, the overhead

of performing the compression outweigh the benefits in practice. However, for much larger

and more sparse matrices, the CSC storage method can greatly reduce storage needs. In

addition, once a matrix is stored in CSC format, it can be multiplied using an algorithm

that eliminates multiplications by zero. This is the most important benefit for reducing

computation time.

19

4.1.2 Blockwise Sparse Methods

Another method for reducing computation time by reducing trivial multiplications by zero

is to multiply ∂Ė
∂X

andG blockwise. Each of those matrices has blocks of non-zero elements.

The location of the blocks is determined by the structure of connections of the simulated

system, and a map of their locations can be extracted at the beginning of the simulation

for efficiency. When ∂Ė
∂X

and G are multiplied, the naive dense matrix multiplication is

identical to multiplying corresponding non-zero blocks, except that the block-wise method

avoids most trivial multiplications by zero.

Both ∂Ė
∂X

and G are formed blockwise according to the connection structure of a simu-

lated system. First, consider the G matrix. Blocks of this matrix are designated gi,j . These

block matrices have non-zero elements only where connection j is attached to body i.

G =



g1,1 g1,2 · · · g1,m

g2,1 g2,2 · · · g2,m

...
...

gn,1 gn,2 · · · gn,m


(4.5)

As an example, if connection 2 is not connected to body 1, g1,2 is a block zero matrix.

The structure of G is dependent on the physical structure of the simulated system, as well

as the body and connection numbering scheme used.

Where connection j is attached to body i, the sub-matrix gi,j has non-zero elements in

a specific structure. Let the number of rotational constraints on a joint be NMJ and the

number of translational constraints be NFJ . For this section’s analysis, the actual values

within non-zero elements will be ignored. Non-zero sections are marked as NZ. The sizes

20

of each block are indicated by the numbers above and to the left of the matrix.

gi,j =



NFJ NMJ

3 0 0

4 0 0

3 NZ 0

3 NZ NZ


(4.6)

∂Ė
∂X

is filled in a similar way. It also consists of block matrices, designated here as

zj,i. As with the gi,j submatrices, these have non-zero elements only where connection j is

attached to body i. Note that the i, j index values are switched.

∂Ė

∂X
=



z1,1 z1,2 · · · z1,n

z2,1 z2,2 · · · z2,n

...
...

zm,1 zm,2 · · · zm,n


(4.7)

zj,i also has block sections that are always zero and block sections that are non-zero.

These sections are in a specific structure.

zj,i =


3 4 3 3

NFJ 0 NZ NZ NZ

NMJ 0 NZ 0 NZ

 (4.8)

It is worth noting how the blockwise multiplication proceeds in order to form G̃. Both

G and ∂Ė
∂X

are filled with zeros except in the blocks where connection j is attached to i.

Since they have this psuedosymmetry, the blockwise multiplication is predictable. Non-

21

zero blocks of ∂Ė
∂X

multiply into the non-zero blocks of G.

G̃ =



z1,1 z1,2 · · · z1,n

z2,1 z2,2 · · · z2,n

...
...

zm,1 zm,2 · · · zm,n





g1,1 g1,2 · · · g1,m

g2,1 g2,2 · · · g2,m

...
...

gn,1 gn,2 · · · gn,m


(4.9)

To illustrate how this blockwise multiplication occurs, consider a four-body system,

connected in a chain. Connection 1 is between bodies 1 and 2, connection 3 is between

bodies 2 and 3, and connection 2 is between bodies 3 and 4. To determine the actual values

in the G and ∂Ė
∂X

matrices, more information is needed. However, with this structure and

numbering scheme information, the blockwise representation can be assembled.

G̃ =


z1,1 z1,2 0 0

0 0 z2,3 z2,4

0 z3,2 z3,3 0





g1,1 0 0

g2,1 0 g2,3

0 g3,2 g3,3

0 g4,2 0


(4.10)

The blocks can then be multiplied through.

G̃ =


z1,1g1,1 + z1,2g2,1 0 z1,2g2,3

0 z2,3g3,2 + z2,4g4,2 z2,3g3,3

z3,2g2,1 z3,3g3,2 z3,2g2,3 + z3,3g3,3

 (4.11)

It should be clear that by only considering the non-zero blocks, a significant number of

trivial multiplications by zero are avoided. Even so, within the blockwise multiplications,

about half of the multiplications are trivial. Fortunately, the trivial multiplications are in

22

known locations and can be easily removed. Consider the following block multiplication.

zj,igi,j =

0 NZ1 NZ2 NZ3

0 NZ4 0 NZ5




0 0

0 0

NZ6 0

NZ7 NZ8


=

NZ2NZ6 +NZ3NZ7 NZ3NZ8

NZ5NZ7 NZ5NZ8


(4.12)

Since the first 7 rows of any gi,j are zero, all corresponding multiplications are trivially

zero and can be ignored. In this way, trivial computations can be further reduced.

This method is summarized as Algorithm 1.

Algorithm 1 Sparse-block Matrix Multiplication

1: procedure SPARSE-BLOCK MATRIX MULTIPLICATION(G, ∂Ė
∂X

)

2: Let Pi be the parent body index of connection i

3: Let Ci be the child body index of connection i

4: for i← 1, NC do

5: for j ← 1, NC do

6: Si ← {Pi, Ci}

7: Sj ← {Pj, Cj}

8: if Si ∪ Sj 6= 0 then

9: Perform corresponding sub-multiplication into G̃

10: end if

11: end for

12: end for

13: end procedure

This block-wise method was tested within the the full simulation program and shown

to offer significant speed improvements. The results will be shown later.

23

4.1.2.1 Sparse Block Matrix Multiplication Computational Complexity

With knowledge of how the sparse-block matrix multiplication is formed, it is possible to

derive the asymptotic computational complexity of the method. Here we assume N is the

number of states in the simulation, and M is the number of constraints to satisfy. Using

a naive implementation of the matrix multiplication algorithm, the calculation of G̃ is of

complexity O(M2N).

The sparse-block matrix multiplication method here consists of a number of small ma-

trix multiplications, between sub-matrices of G and ∂Ė
∂X

. The sizes of the sub-matrices can

vary by the number of constraints on each joint, and so the computational complexity of

those sub-multiplications can also vary. However, the sizes of the sub-matrices are capped

since the number of constraints cannot exceed the available DOF, which is 6. The com-

plexity of each of these sub-multiplications is therefore limited, and does not change with

the system size. The overall complexity of the sparse-block matrix multiplication method

is therefore driven by the number of sub-multiplications needed to fully generate G̃.

A straight-forward way to determine when sub-multiplications are necessary is to ex-

amine Algorithm 1. The connections are all compared to each other, and a set of body

indices for each joint is generated. A sub-multiplication is performed whenever there is a

body that is in the body indices set for each joint being compared.

A clear consequence of this is that there are 2 sub-multiplications for each connection

in the system. Clearly, when a connection is compared to itself, the body indices set will

be identical for both the child and parent body.

Next, it helps to consider the system of bodies and connections as a graph. Each con-

nection is a vertex in the graph, and each body is a set of one or more edges on the graph.

An example of this representation is provided in Figure 4.2. Within Algorithm 1, a sub-

multiplication is performed if the connections are each connected to some body. This is

equivalent to there being an edge between the vertices that correspond to the connections.

Note that two sub-multiplications would be performed twice for each edge on the graph,

24

since if some node a is connected to some node b, then node b is connected to node a, and

a sub-multiplication will be performed for each of those two comparisons.

Let the number of connections in the system be nc, and the number of edges in the

graph representation of the system be ne. The number of sub-multiplications is 2nc + 2ne

and the computational complexity of this method is therefore O(nc + ne).

4.2 Constraint Controller - Linear System Solve

The linear system solving step within the constraint controller is computationally expensive

for large systems. This thesis evaluates a variety of methods to reduce computation time

within this step.

4.2.1 Direct Methods

4.2.1.1 LU-Decomposition With Pivoting

A well studied and numerically robust algorithm for solving systems of linear equations is

LU-decomposition with pivoting. This algorithm was implemented and used as a baseline

for the testing of various other methods. This is a well known method that can be found in

many linear algebra textbooks [5].

4.2.1.2 Gauss-Jordan Method

LU-decomposition is efficient for solving a system of linear equations Ax = b when the

matrix A is constant and only the vector b is changing. However, within the constraint

controller, both the matrix A and vector b change throughout the course of the simulation.

Therefore, it is in fact more efficient to use Gaussian Elimination without forming the

LU-decomposition to solve the system. This is a faster full-order direct solving algorithm

implemented in this thesis as another baseline comparison. This is a well known method

that can be found in many linear algebra textbooks [5].

25

4.2.2 Iterative Methods

The system of linear equations G̃U = −V must be solved for U every time the constraint

controller is called. However, each time the constraint controller is called, the system

changes only very slightly, such that the solution U from the previous iteration very nearly

solves the system for the current timestep. Therefore it is proposed that iterative methods

may be able to quickly converge on a solution for the current timestep based on the quality

”guess” of the previous solution.

4.2.2.1 Conditioning Requirements

Many iterative methods to solve the system of linear equations G̃U = −V for U require

conditioning on the matrix G̃ which are not necessarily met in the system of equations be-

ing solved in the constraint controller. G̃ is generally indefinite, not diagonally dominant,

and not symmetric, which disqualifies it from the direct use of iterative methods such as

the Jacobi method or the Gauss-Seidel method. Therefore, many methods would require

preconditioning on G̃, but that would generally require a costly matrix multiplication, elim-

inating any benefit of iterative methods in the first place.

However, there are a few methods that do not require special conditioning on G̃ and can

therefore be used directly. These include residual norm steepest descent (RNSD) and the

full orthogonalization method (FOM).

4.2.2.2 Residual Norm Steepest Descent

Residual norm steepest descent is a well known projection based iterative method to solve

the system of linear equations Ax = b that does not require specific conditioning on the

matrix A [6]. It can therefore, in theory, work for solving G̃U = −V within the constraint

controller. However, no convergence rate is guaranteed, and it can be poor. In practice, the

algorithm is given a maximum number of iterations, and if it does not converge in fewer

iterations than that, the algorithm is presumed to fail. A direct method would then be used

26

to solve the system of equations. This method is described in Algorithm 2.

Algorithm 2 Residual Norm Steepest Descent
1: procedure RNSD(A, b, xguess,maxiter, threshold)

2: r ← b− Axguess

3: x← xguess

4: converged← false

5: while converged 6= true and iteration < maxiter do

6: v ← AT r

7: α← ‖v‖2
‖Av‖2

8: x← x+ αv

9: r ← r − αAv

10: if change < threshold then

11: converged← true

12: end if

13: end while

14: if converged = true then

15: return x

16: else

17: return Error

18: end if

19: end procedure

4.2.2.3 Full Orthogonalization Method

The full orthogonalization method (FOM) is an iterative method based on projection onto

Krylov subspaces [6]. This method is described in Algorithm 3.

27

Algorithm 3 Full Orthogonalization Method
1: procedure FOM(A, b, xguess,m)

2: r0 ← b− Axguess

3: β ← ‖r0‖2

4: v1 ← r0
β

5: Hm ← 0

6: p← m

7: for j = 1 : m do

8: ωj ← Avj

9: for i = 1 : j do

10: Hm[i, j]← ωj · vi

11: ωj ← ωj −Hm[i, j]vi

12: end for

13: Hm[j + 1, j]← ‖ωj‖2

14: if Hm[j + 1, j] = 0 then

15: p← j

16: break

17: end if

18: vj+1 ← ωj
Hm[j+1,j]

19: end for

20: yp ← H−1
p V T

p r0

21: x← xguess + Vpyp

22: return x

23: end procedure

28

4.2.3 Banded Methods

While iterative methods may be able to provide a quick estimate of the solution to the

equations G̃U = −V , it is also possible in certain cases to speed up computation of direct

solvers. In particular, banded solvers can take advantage of the bandwidth of G̃, and can

solve the system inO(b2n) time for matrix bandwidth b and G̃ ∈ Rn×n, compared toO(n3)

time for a dense G̃. If the bandwidth of G̃ is small compared to its size, a banded solver

could provide significant speed improvements for this step of the constraint controller.

Therefore, it is important to investigate what determines the bandwidth of G̃. If its

bandwidth can be reduced, banded direct linear system solving methods can reduce com-

putation time without a loss of accuracy.

G̃ is a block matrix, and the non-zero blocks map loading effects between directly

interacting connections. In other words, blocks are non-zero when the corresponding con-

nections are attached to the same body. An implication of this is that the diagonal blocks

of G̃ are always non-zero, since any connection is clearly connected to the same body as

itself.

To provide some insight into how this block-wise mapping occurs, consider the example

system below. This is a “lander” system with a large main body and 4 legs with 2 bodies in

each leg. A representation of the physical layout of this system is shown in Figure 4.1.

29

Figure 4.1: 4-Legged Lander System Joint Numbering

From this representation, an undirected graph can be made where each joint is a node

and each body is a set of one or more edges. An edge connects two nodes in the graph if the

corresponding joints connect to the same body. Figure 4.2 shows how this can be formed

for the given example system here.

30

Figure 4.2: 4-Legged Lander System Generated Graph Representation

From this undirected graph, the adjacency matrix can be formed [7]. Note that the

adjacency matrix of an undirected graph is always symmetric. This adjacency matrix is a

nearly direct map representation of the non-zero blocks of G̃. The only difference is that

an adjacency matrix typically has zeros along the diagonal, whereas the diagonal blocks

are always non-zero for G̃. For the example system presented here, this matrix has the

31

following form.

G̃map =



X X X 0 X 0 X 0

X X 0 0 0 0 0 0

X 0 X X X 0 X 0

0 0 X X 0 0 0 0

X 0 X 0 X X X 0

0 0 0 0 X X 0 0

X 0 X 0 X 0 X X

0 0 0 0 0 0 X X



(4.13)

The fact that the adjacency matrix of the undirected graph representation of a system

has the same form as the block representation of G̃ is a critical development in this thesis.

To effectively use banded methods to solve the system of linear equations G̃U = −V

for the constraint loads U within the constraint controller, the bandwidth of G̃ should be

minimal. This bandwidth can be reduced by performing a blockwise permutation of G̃,

which is equivalent to renumbering the connections for the system.

The problem of renumbering the joints to reduce the bandwidth of G̃map is therefore

equivalent to renumbering the nodes of an undirected graph to minimize the bandwidth of

its adjacency matrix, which is well known to be NP-complete [8].

Minimizing the bandwidth of G̃map is not identical to minimizing the bandwidth of G̃.

Rather, it is equivalent to a blockwise bandwidth minimization of G̃. Therefore, bandwidth

minimization of G̃map implies only an approximate bandwidth minimization of G̃, but has

some other benefits that make it desirable. First, G̃ is significantly larger than G̃map. For

some systems, a brute force approach may be reasonable to perform on G̃map but would be

impossible on G̃. For the above example, G̃map is in R8×8 and G̃ could be in R48×48. A

brute force bandwidth minimization approach on G̃map may take minutes, but may never

be possible on G̃. Second, any permutation of G̃map is simply a joint number reordering.

32

Within the algorithm, the joint numbers are for bookkeeping, and no equations or methods

need change. However, a general permutation on G̃ could involve mixing up forces and

moments between different connections.

An important result here is that the number of non-zero elements in the adjacency ma-

trix of the graph representation of a system is equal to twice the number of edges. The

G̃map matrix is the adjacency matrix with non-zero elements on the diagonal. The number

of non-zero elements in this matrix can be tied back to the computational complexity of the

block-sparse matrix multiplication method discussed earlier. Let nnz be the number of non-

zero elements in G̃map, and let nc be the number of connections in the system. The compu-

tational complexity of the block-sparse matrix multiplication is therefore O(nc + nnz).

Because the computation needed to solve the system of equations in the constraint

controller can be a significant portion of the total computation for a simulation, and since

banded solvers offer significant computation reductions in certain cases, this implies some

interesting results that are important to discuss.

First, it would seem possible that computation time could in fact be reduced for certain

systems by adding connections and bodies. Naively, this seems like an odd result. After all,

this thesis discusses many times how computation time increases with system size. How-

ever, there is no inconsistency. Using naive techniques (full order matrix multiplication

and full order direct linear system solvers), adding connections and bodies would surely

increase computation time. But the methods presented in this thesis operate faster under

certain conditions. Surely, if the system layout is developed to take advantage of this, com-

putation time should be reduced. Later in this thesis, a system is tested which shows that

this can in fact occur.

Second, it should be noted that while finding a lower bandwidth ordering for a system

may take a significant amount of time, it only needs to be done once for any system. If a

trade study of hundreds or thousands of simulations is to be done, the better ordering can

be used for all of the cases, and a significant computational improvement may be achieved

33

for the entire project.

Finally, since the base problem with reducing system bandwidth is NP-complete it

might seem impossible for a simulation developer to improve a simulation in this way.

However, this is generally not the case. While there are no known polynomial time algo-

rithms to find the optimal joint numbering, there are polynomial time algorithms to find

approximations of the optimal solution. Further, the system developer may be able to

find better layouts by inspection. Finally, there are exhaustive search algorithms that re-

ject obviously non-optimal orderings early and can, in practice, often provide the minimal

bandwidth ordering of a system in a reasonable amount of time. Two of these algorithms

are described here. The algorithms examined here are not meant to be an exhaustive list

of bandwidth minimization algorithms. Since the bandwidth minimization problem is NP-

complete, it is an incredibly important problem, and huge amounts of effort have been put

into developing algorithms to solve it. The two algorithms shown here are merely examples

of approximate and exhaustive search methods, respectively.

4.2.3.1 Reverse Cuthill-McKee

The Cuthill-McKee algorithm is an approximate method for reducing the bandwidth of

symmetric sparse matrices [9]. The reverse Cuthill-McKee (RCM) method is a slight modi-

fication in which the resulting permutation is reversed, and often results in an ordering more

suitable for use with banded linear system solvers. While this method does not guarantee

the optimal bandwidth will be found, in practice it often produces a bandwidth reduction

and it runs in polynomial time.

Within this method, a matrix is considered as an adjacency matrix of a corresponding

graph. The method returns an ordered set Q of the original vertices that corresponds to the

new ordering. The full method is described in Algorithm 4.

34

Algorithm 4 Reverse Cuthill McKee
1: procedure RCM(A ∈ Rn×n)

2: v ← minimum degree vertex in A

3: Q← v

4: for i = 1, 2, ... while |Q| < n do

5: Ai = Adj(Qi) \Q

6: Sort Ai by vertex order

7: Append Ai to Q

8: end for

9: return Q

10: end procedure

4.2.3.2 Minimum Bandwidth by Iterative Deepening

Del Corso and Manzini developed an algorithm called, “Minimum Bandwidth by Iterative

Deepening” (MB-ID) and showed that it could find the minimum bandwidth for some ma-

trices in a small amount of time [10]. This algorithm uses a depth-first search technique,

and is designed to reject any permutation that cannot possibly satisfy a bandwidth require-

ment as early as possible, in order to shrink the search space. Del Corso and Manzini tested

this algorithm on matrices of sizes between 40 and 100, and were able to find the minimal

bandwidth ordering for many matrices in time ranging from a few seconds to two hours.

Further, they showed that for many of the matrices that the algorithm did solve within two

hours, the minimal bandwidth it found was around 10% smaller than the bandwidth found

by approximation techniques [10].

4.2.3.3 Banded Gauss-Jordan Method

The Gauss-Jordan method is readily applicable to banded systems, and can offer significant

computational advantages without loss in accuracy if the bandwidth is small relative to the

35

size of the matrix. This banded method simply avoids performing trivial computations.

36

CHAPTER 5

COMPUTATIONAL IMPROVEMENTS METHODS TESTING

In order to test the effects of the methods developed in the previous chapter, a variety of

example systems were simulated. Each system was simulated using various combinations

of system size and computational methods in order to determine how computation time was

affected. In addition, the differences in their final states were recorded to ensure simulation

accuracy was not being lost. Simulations were also developed to demonstrate how it is not

only the computational methods used that affect computation time, but also the design of

the system model developed by the engineer. It was shown that the internal mathematical

representation of a system can significantly affect computation time.

5.1 Testing Setups

5.1.1 Chain Simulation

The first simulation setup is a chain topology. In this case, N bodies are connected by N-1

joints. Each joint is a hinge joint consisting of 5 DOF that are held rigid by the simulation

constraint controller, and 1 DOF that is not. That remaining 1 DOF is set up with a rota-

tional spring-damper setup whose stiffness and damping are defined as a piecewise linear

function. An example representation of such a system is shown in Figure 5.1.

37

Figure 5.1: Token representation of a 10 body chain system

Such a setup could be useful in the simulation of snake-like robots, or for the simulation

of ropes and chains.

5.1.2 Lander Simulation

The second simulation setup is used to mimic a legged lander with N legs. Such a system

is made up of one main lander body, and N legs equally spaced around it. Each leg is made

up of two bodies, and has two joints - a hip joint and a knee joint. Each joint is a hinge

joint. There are N contact points on the tips of the lower leg bodies to simulate feet, and the

main lander body has five contact points on its belly. An example representation of such a

system is shown in Figure 5.2.

38

Figure 5.2: Token representation of a 4-legged lander system

Such a system is discussed further in Chapter 6 in the simulation of a flexible legged

lander system proposed for Europa exploration.

5.1.3 Stubby Lander Simulation

The next simulation setup that was tested is called the “stubby” legged lander. In this case,

a number of legs are connected to a central body. Each leg consists of a single rigid body.

This simulation is important in that it shows how computation time can be reduced by

adding bodies and connections to a simulation. In fact, two systems that are nominally the

same are tested here. The first, shown in Figure 5.3, is the naive setup. One central body

acts as a hub to which a number of bodies attach. The graph representation of this system

whose adjacency matrix can be used to form G̃map is complete, therefore the adjacency

matrix is fully dense. Because of this, banded linear system solvers offer no computation

reduction.

39

Figure 5.3: Naive stubby leg system layout with 40 legs

In contrast, the second version has a central section comprised of two bodies. These two

bodies are connected with a joint with six DOF of constraints, effectively rigidly connecting

them. Each of those two bodies has half the original number of legs attached to it. This

setup adds one body and one connection, but since the G̃map is not fully dense, banded

linear system solvers can help reduce computation time. This setup is shown in Figure 5.4.

40

Figure 5.4: Split stubby leg system layout with 40 legs

5.1.4 Chain Simulation Bandwidth Modification

As previously shown, a reduction of the bandwidth of G̃ combined with banded linear

system solvers should result in a reduction in computation time. To test this, the chain sim-

ulation model was run with identical initial conditions and two different joint numbering

schemes. These systems were physically identical, but the numbering of joints was set in

one case to be optimal, and in the other case to be the worst possible. Systems set up in this

manner were simulated over a range of number of bodies, from 15 to 50 bodies. To under-

stand how this numbering scheme changed the computation time, consider the following

chain system layout with 10 bodies. The model with optimal numbering is represented in

Figure 5.5. Any two consecutive connections have a maximum numbering difference of

one. This results in the optimally reduced bandwidth for G̃map.

41

Figure 5.5: 10 body chain simulation with optimal joint numbering

For this optimal ordering, G̃map has the following form. Clearly, this system has a

very tight bandwidth. In fact, for such a system, the bandwidth does not increase with the

number of bodies.

G̃map =



X X 0 0 0 0 0 0 0

X X X 0 0 0 0 0 0

0 X X X 0 0 0 0 0

0 0 X X X 0 0 0 0

0 0 0 X X X 0 0 0

0 0 0 0 X X X 0 0

0 0 0 0 0 X X X 0

0 0 0 0 0 0 X X X

0 0 0 0 0 0 0 X X



(5.1)

On the contrary, Figure 5.6 shows a numbering scheme that results in a maximal band-

42

width, which prevents the use of banded linear solvers. In this case, the lowest and highest

numbered connections (joint 1 and joint 9) are connected through a body. This results in

maximal bandwidth.

Figure 5.6: 10 body chain simulation with worst joint numbering

This worst numbering scheme results in G̃map with the following form. The blocks in

the top right and bottom left corners are generally non-zero, resulting in maximal band-

width. Of course, the rest of this map could change while keeping the bandwidth maximal.

Therefore, while this is a poor numbering scheme, there are others equivalently bad, at least

from a bandwidth perspective.

43

G̃map =



X 0 0 0 0 0 0 0 X

0 X 0 0 0 0 0 X 0

0 0 X X 0 0 0 0 X

0 0 X X X 0 0 0 0

0 0 0 X X X 0 0 0

0 0 0 0 X X X 0 0

0 0 0 0 0 X X X 0

0 X 0 0 0 0 X X 0

X 0 X 0 0 0 0 0 X



5.2 Testing Results

5.2.1 Chain Simulation

For a chain simulation in which consecutive joints are numbered consecutively, the G̃ ma-

trix has a small bandwidth and is sparse. For this example simulation, each joint is a hinge,

so that the bandwidth is always 9, regardless of the number of bodies or joints. Sparse

multiplication and banded solvers therefore can greatly speed up the simulation of such a

system.

To examine how the computational improvement methods affect simulation time as

the system size changes, simulations were run for a variety of system sizes with every

permutation of the matrix multiplication techniques and linear system solver techniques

discussed in this thesis. Both the Runge-Kutta 4th order (RK4) and Runge-Kutta-Fehlberg

(RKF45) numerical integration methods were used.

Figure 5.7 shows testing results from a sweep of system size from 5 bodies to 45 bodies.

Two methods were compared. The naive method used naive matrix multiplication and LU-

decomposition within the constraint controller. The improved method used sparse-block

matrix multiplication and banded Gaussian elimination within the constraint controller.

44

All times were normalized by the fastest case, which occurred using the improved method

for 5 bodies.

Figure 5.7: Normalized total computation time for chain topology systems of size from 5

to 45 bodies

Clearly, the improved methods offer significant computation time reduction. Figure 5.8

shows the computation time reduction achieved by the improved computational methods

for systems of various size.

45

Figure 5.8: Computation time reduction for improved methods for chain topology systems

of size from 5 to 45 bodies

As the system size increases, the computational cost of performing naive matrix mul-

tiplication and linear system solve steps within the constraint controller increases quickly.

Figure 5.9 shows the percentage of total computation time taken solely within the con-

straint controller matrix multiplication and linear system solving steps. As the system size

increases, those two sections dominate the total computation time.

46

Figure 5.9: Percentage of total computation time used within constraint controller matrix

multiplication and linear system solve steps using naive methods

When the improved methods are used, however, the percentage of total computation

time used within those two steps stays relatively constant as the system size changes, as

shown in Figure 5.10.

47

Figure 5.10: Percentage of total computation time used within constraint controller matrix

multiplication and linear system solve steps using improved methods

The cases presented in Figure 5.7 were all run using the same integration method,

RKF45, so that the methods used to improve the constraint controller are solely respon-

sible for computational time reductions. However, this is a case in which the system is

in free fall for the start of the simulation, and then bounces off the ground. The dynam-

ics therefore change significantly throughout the simulation, and the RKF45 integration

method should offer significantly faster simulations than a fixed timestep method such as

RK4. To test this, simulations were run of a 45-body chain topology system, using RK4

and RKF45, with a mix of computational improvement methods used within the constraint

controller. This chain topology system had its joints ordered for optimal bandwidth reduc-

48

tion. The system states at the end of the simulation were recorded and compared, to ensure

that the use of any of these methods was not producing a different simulation result.

All results are normalized by the fastest time, which came during Case 2. The setup

for the cases tested here is described in Table 5.1. The results from the tests are shown in

Figure 5.11.

Case # Integrator C.C. Matrix Multiplication Method C.C. Linear System Solve Method

1 RKF45 Fortran matmul PLU

2 RKF45 Sparse-block Banded Gauss-Jordan

3 RKF45 Sparse-block FOM

4 RKF45 Sparse-block RNSD

5 RK4 Fortran matmul PLU

6 RK4 Sparse-block Banded Gauss-Jordan

7 RK4 Sparse-block FOM

8 RK4 Sparse-block RNSD

Table 5.1: Setup of each case presented in Figure 5.11

49

Figure 5.11: Normalized computation time required for a variety of cases for a chain topol-

ogy system

With identical numerical integration techniques, the computational improvement meth-

ods within the constraint controller result in about a 19-fold reduction in computation time

for a 45-body chain topology system. When RK4 and RKF45 integration techniques are

also compared, the computation time reduction increases to 120-fold.

Clearly, the methods developed here are highly effective in practice in a chain topology

system. These methods focus on large matrix multiplication and linear system solving

steps. Naively, the computational complexity of each of these steps increases with the cube

of the number of bodies simulated. However, if the connections are optimally ordered to

minimize the bandwidth of G̃, the bandwidth does not change with the number of bodies

50

in the simulation. Since the banded linear solver has computational complexity O(b2n),

where n is the number of constraint equations, the computational complexity of the linear

system solve step for a chain topology system with optimal joint ordering grows linearly

with the number of bodies simulated.

Furthermore, the computational complexity of the sparse-block matrix multiplication

is O(nc + ne), where nc is the number of connections and ne is the number of edges in a

graph representation of a system. For a chain topology, the number of connections is the

number of bodies minus 1, and the number of edges in the graph is the number of bodies

minus 2. Therefore, the computational complexity of the matrix multiplication step also

grows linearly with the number of bodies simulated.

For the chain topology case then, the two steps with cubically growing computational

complexity with system size are reduced to having linear computational complexity with

the methods presented in this thesis. This is the reason for the vast reduction in computation

time seen during testing.

5.2.2 Lander Simulation

Just as for the chain topology systems, a variety of simulations were performed for the

lander topology systems. Simulations were run for a number of system sizes using various

numerical integration, matrix multiplication, and linear system solving methods.

Figure 5.12 shows testing results from a sweep of system size from 5 bodies to 41

bodies. Two methods were compared. The naive method uses naive matrix multiplica-

tion and LU-decomposition within the constraint controller. The improved method uses

sparse-block matrix multiplication and banded Gaussian elimination within the constraint

controller. All times were normalized by the fastest case, which occurred using the im-

proved method for 5 bodies.

51

Figure 5.12: Normalized total computation time for lander type systems of size from 5 to

41 bodies

Just as for the chain topology simulations, the improvement methods grow more effec-

tive as the system size increases. This is due to the improved methods reducing computation

time within steps that computationally scale poorly with system size. Figure 5.13 shows

the computation time reduction using improved methods for various system sizes. While

the gains are not as significant as for a chain topology system, they are still substantial.

52

Figure 5.13: Computation time reduction for improved methods for lander type systems of

size from 5 to 41 bodies

With naive methods, sections within the constraint controller quickly dominate total

computation time as the system size increases. Figure 5.14 displays the percentage of total

computation time used within the matrix multiplication and linear system solve steps in the

constraint controller.

53

Figure 5.14: Percentage of total computation time used within constraint controller matrix

multiplication and linear system solve steps using naive methods

With improved methods, the percentage of computation time spent within the constraint

controller is reduced, as seen in Figure 5.15.

54

Figure 5.15: Percentage of total computation time used within constraint controller matrix

multiplication and linear system solve steps using improved methods

While the improved methods used here clearly result in reduced computation time, the

system solve step still takes a significant portion of the total computation time, much larger

than for the equivalently sized chain topology system. For a lander system, the minimum

linear system bandwidth that can be achieved is much larger than for a chain system, and

so banded linear system solving methods are less effective.

Just as in the chain topology tests, the RKF45 integration method was used for all results

in Figure 5.12. To compare how the RK4 method would perform for these simulations,

other cases were run. These cases are described in Table 5.2.

55

Case # Integrator C.C. Matrix Multiplication Method C.C. Linear System Solve Method

1 RKF45 Fortran matmul PLU

2 RKF45 Sparse-block Banded Gauss-Jordan

3 RKF45 Sparse-block FOM

4 RKF45 Sparse-block RNSD

5 RK4 Fortran matmul PLU

6 RK4 Sparse-block Banded Gauss-Jordan

7 RK4 Sparse-block FOM

8 RK4 Sparse-block RNSD

Table 5.2: Setup of each case presented in Figure 5.16

56

Figure 5.16: Normalized computation time required for a variety of cases for a lander

topology system

5.2.3 Stubby Lander Simulation

Previously it was explained how splitting a body into two bodies and constraining them

together could result in computation time improvements when combined with some of

the methods developing in this thesis for improving the constraint controller. To examine

this concept of splitting the bodies, an example with 40 legs was run. The naive case is

one which is meant to directly represent the system, and is how an engineer would likely

naively design the simulation. The system is modeled as a single central body with all 40

legs connected directly to it. In the split case, the central body is split into two identical

bodies, connected to each other by a rigid 6 DOF joint. Each of the two central bodies then

57

has 20 legs connected to it, so that its G̃ bandwidth is lowered by about a factor of 2. The

cases run here are described in Table 5.3 and testing results are shown in Figure 5.17. All

cases were simulated using RKF45.

Case # C.C. Matrix Multiplication Method C.C. Linear System Solve Method Split

1 Fortran matmul PLU No

2 Fortran matmul PLU Yes

3 Sparse-block Banded Gauss-Jordan No

4 Sparse-block Banded Gauss-Jordan Yes

Table 5.3: Setup of each case presented in Figure 5.17

58

Figure 5.17: Normalized computation time required for a variety of cases for the stubby

lander topology

When using naive methods for matrix multiplication and linear system solving, the

split version is slower overall, which follows since this version has one extra body and

one extra connection. The matrices and vectors in the constraint controller have larger

dimensions, and computations involving them are slower. However, when sparse block

matrix multiplication and a banded linear system solver are used, the split solution is overall

faster than the original. Compared with the original using naive solvers, it is about seven

times faster. When both the naive and split body cases are simulated with the improved

computational methods, the split body case is about 25% faster than the naive setup.

The computation time reduction comes from both the matrix multiplication step and

59

the linear system solve step. Previously in this thesis, it was shown how the computational

complexity of the sparse-block matrix multiplication method is O(nc + ne), where nc is

the number of connections and ne is the number of edges in a graph representation of a

system. The naive setup has 40 connections and, since its graph representation is complete,

780 edges. The split model has 41 connections, and each side of the system has a sub-

graph that is complete. Since these sub-graphs are about half the size of the complete naive

graph, the number of total edges is reduced to 421. This implies that we should expect the

sparse-block matrix multiplication method to perform better on the split body setup than

the naive version. In addition, since the matrix bandwidth of G̃ is reduced by almost a

factor of 2, banded linear system solving methods improve computation time for that step

of the constraint controller as well. This theoretical result is confirmed in practice in Figure

5.17, where both of those sections within the constraint controller are faster for the split

body case than for the naive case.

This result is significant since it shows that the computational speed of a simulation

is not only dependent on the computational methods used, but also on how the engineer

models the system to be simulated. Further, a seemingly identical system can have different

computational challenges purely based on its mathematical representation. This concept is

expanded in the next section, in which it is shown that the joint numbering scheme for a

system can have a significant impact on computation time.

5.2.4 Chain Simulation Bandwidth Modification

Previous analysis in this thesis showed that the joint numbering scheme of a system can

affect computation time. This section provides experimental results to confirm that theo-

retical development.

Simulations examined in this section cover a wide parameter space. All simulations

consist of a chain topology system. Half of the simulations are for a system in which the

joints are numbered sequentially, which minimizes the matrix bandwidth of G̃. The other

60

half of the simulations are of a system which is numbered such that the matrix bandwidth of

G̃ is equal to its size, so banded linear system solving methods do not offer any benefit. For

each of those ordering schemes, systems of varying size were simulated, between 15 and

50 bodies. Finally, for each system size and for each joint ordering scheme, simulations

were run with naive and improved constraint controller computational methods. The naive

methods are traditional “textbook” matrix multiplication, and LU-decomposition with piv-

oting for solving the linear system. The improved methods used were sparse-block matrix

multiplication and banded Gaussian elimination for solving the linear system.

These simulations were all run using the RKF45 integration method. They have the

same initial conditions (they are, of course, physically identical). They also end the simu-

lations with the same final states, showing that the results are not affected by the methods

used to improve computation time.

First, examine the computation time for the cases that used naive computational meth-

ods. The two systems are physically identical, and only differ by their joint numbering,

which is purely mathematical bookkeeping. The computational methods used are not af-

fected by the joint ordering, and this results in no change in computation time under joint

reordering. Of course, computation time increases quickly with the increasing number of

bodies simulated. The normalized computation times for these simulations are shown in

Figure 5.18. All times were normalized by the overall best computation time, which oc-

curred when the simulation was run with 15 bodies and all computational improvement

methods enabled.

61

Figure 5.18: Normalized total computation time for joint reordering test cases using naive

computational methods

It is not entirely known why the computation time increases so much between 45 and

50 bodies. However, it is thought that this is due to limitations of the cache size of the CPU

used to perform this simulation. When examining only the matrix multiplication portions

of these cases, as in Figure 5.19, the same sharp increase in computation time between 45

and 50 bodies is seen. It is beyond the scope of this thesis to discuss optimization of a

simulation based on CPU cache size, but it is important to note that cache size limitations

can have a significant impact on simulation times. It is also worth noting that the sparse-

block matrix multiplication method could be performed using significantly less memory

than full multiplication, which could offer further computation time improvements. There

62

is evidence of this in these simulations. When sparse-block matrix multiplication was used,

the same sharp uptick in computation time between 45 and 50 bodies was not seen.

Figure 5.19: Normalized G̃matrix multiplication computation time for joint reordering test

cases using naive computational methods

These experimental results confirm what was expected. Namely, that joint reordering

has no affect on computation time if naive computational methods are used. Only when

improved methods are used is there a need to carefully number joints. This fact is shown

in Figure 5.20. The computation times shown there were normalized by the same case as

for the naive methods shown in Figure 5.18, and can be directly compared.

63

Figure 5.20: Normalized total computation time for joint reordering test cases using im-

proved computational methods

Clearly, for this system topology, joint ordering is important. The optimal ordering of-

fers significant computational time advantages over the worst ordering, due to the reduced

computational time in the linear system solve step. Overall, with 50 bodies, the optimal

ordering offers computational time reduction of about 4-fold compared with the worst or-

dering.

All together, a 50-body chain-topology system with optimal joint ordering can be sim-

ulated using the improved computational methods over 140-times faster than the same sys-

tem using naive computational methods, without any loss of accuracy.

Figure 5.21 shows the total time spent in the linear system solving section of the con-

64

straint controller for each case. The times shown are normalized by the overall best time,

which occurred for the optimal ordering with 15 bodies.

Figure 5.21: Normalized total linear solve computation time for joint reordering test cases

using banded Gaussian elimination

As the number of bodies increases from 15 to 50, the overall time spent in the linear

system solving section of the constraint controller increases by a factor of about 10 in the

optimal numbering case, and by a factor of about 410 in the worst numbering case. Clearly,

the joint numbering of a system can be critically important for reducing computation time.

Computation time improvements can be lumped here into two categories: those due to

algorithmic improvements, and those due to tuning the layout of a system to perform well

with those algorithmic improvements.

65

Therefore, the engineer developing a simulation using the NLCT multibody dynamic

simulation algorithm cannot rely solely on using intelligent computation techniques, but

must also take care to set up the simulated model so that the computational techniques can

perform at their best. Failure to do so can result in significant lost time.

To achieve the best performance, algorithms should be implemented to perform joint

reordering for bandwidth reduction at the beginning of a set of simulations. As shown ear-

lier, this problem is NP-complete. However, some intelligent brute force methods such as

MB-ID can sometimes find the optimal joint ordering reasonably quickly. For larger sys-

tems, polynomial time approximate methods such as RCM can be used. Since this is purely

a joint reordering step, it only needs to be performed once for any system topology, regard-

less of actual system initial conditions or physical properties. In other words, if a system

is part of a Monte-Carlo simulation with thousands of cases, the joint reordering algorithm

need only be run once, and the resulting joint ordering can then be used throughout.

66

CHAPTER 6

EUROPA LANDER SIMULATION

6.1 Motivation

Europa, a moon of Jupiter that is slightly smaller than Earth’s moon, is of interest to scien-

tists due to its water ice surface and suspected sub-surface salty ocean [11]. These features,

along with possible hydrothermal activity on the seafloor, may make it a suitable candidate

for harboring life. Because of this, NASA is in the evaluation process for a Europa lander

mission.

However, not much is known about the surface of Europa on the scale of such a lander.

The best images we have of the icy moon’s surface come from NASA’s Galileo mission.

Even the best images from that mission show a relatively low amount of detail. In fact, the

highest resolution image of Europa from Galileo was taken with a scale of 6 meters per

pixel, and is shown in Figure 6.1.

While even that image does not provide sufficient resolution at the lander scale, the

local terrain of the rest of the surface of Europa is even more unknown. NASA estimates

that only about 10% of the surface of Europa has been imaged at a scale better than 300

meters per pixel [13].

Because of the relatively poor resolution of images of Europa’s surface, any obstacles

or terrain on the scale of a lander are completely hidden. To help combat this issue, a

flyby mission has been proposed by NASA that would be able to collect data at a higher

resolution. This mission, called the “Europa Multiple Flyby Mission” (EMFM), would

provide images of certain locations of interest at a scale of about 50 cm per pixel [13]. Of

course, even at that scale, objects that would interfere with landing could still be hidden.

Furthermore, parts of the surface of Europa are thought to change on the timescale of these

67

Figure 6.1: Highest resolution image of the surface of Europa taken by Galileo. Scale is
6 meters per pixel. The black bar in the image is due to missing data that was not sent by
Galileo [12]

68

missions. An area that is suitable as a landing site during the flyby mission may not be the

same when the lander arrives years later. It is therefore important that the lander can adapt

to a variety of terrains.

There are many factors to consider when choosing the optimal landing location for a

mission to Europa. Not only must the landing location have suitable terrain to allow the

lander to touch down undamaged, but the location must also be scientifically compelling

and have sufficiently low radiation levels, among other requirements. Therefore, by ex-

panding the envelope of types of terrain that are suitable for the lander, it may be possible

to choose a landing location that is better for performing scientific measurements. Perform-

ing a successful landing on uncertain terrain requires a system that is insensitive to local

terrain features. A lander with flexible, passive legs could provide some of this insensitiv-

ity. Such a lander might be able to compensate for unknown variations and ensure a safe

landing. To evaluate if flexible legs would be beneficial for a Europa lander, a simulation

was developed.

6.2 Simulation Design

To evaluate the possible performance benefits of a flexible legged lander design versus a

more traditional fixed leg design, a multibody dynamic simulation was developed. The

NLCT constrained coordinate method described previously was used, along with the best

of the computational improvement techniques developed earlier in this thesis. The physical

design of the lander was based on the proposals from NASA reports on the topic.

Of particular importance to the simulation is the ground contact model. Very little is

known about the tribological properties of the surface of Europa, which makes accurate

simulation challenging. The uncertainty in ground contact interactions is handled by using

the LuGre friction model, which can model a wide variety of tribological effects, and by

performing a large number of simulations with a wide range of parameters.

69

6.2.1 Lander Design

The design of the simulated lander was inspired by the preliminary design proposed in the

Europa Study 2012 Report, created by NASA/JPL-Caltech. This report proposed a lander

with 6 stabilizer legs, with a foot-to-foot distance of 4 meters. The lander was hexagonal

with a width of 1.5 meters and a height of 0.9 meters. This design is seen in figures 6.2 and

6.3. It was predicted to have a wet mass of 900 kg [11]. These parameters were used as the

baseline design.

Figure 6.2: Top view of proposed lander from 2012 NASA/JPL-Caltech report [11]

70

Figure 6.3: Side view of proposed lander from 2012 NASA/JPL-Caltech report [11]

Four different systems were simulated. They were nominally of the same size and

mass of the lander proposed by NASA and each had 6 stabilizer legs. The legs on each

system were simulated as two rigid bodies per leg. Each leg had a hip and a knee joint -

both modeled as hinge joints. Namely, this means that the joints were rigid in all but one

degree-of-freedom (DOF). In that one DOF, a rotation, the joint was modeled as a rotational

linear spring-damper system. In the first system, these parameters were set such that the

legs were effectively rigid. In the second system, the legs were flexible, but still able to

support the lander body from touching the surface when stationary. This was called the

shock-absorbing model. The legs of the third system were even more flexible, and could

not support the weight of the lander, so the lander comes to rest with the bottom of the

lander body on the surface. This was called the conforming model. The conforming model

is shown in Figure 6.4. The fourth system was simulated with a basic active impedance

control method. Nominally, the stiffness of its legs was the same as for the shock-absorbing

71

model. However, upon landing, if not all of its legs were contacting the ground, the stiffness

parameters of the contacting legs were modified to attempt a softer landing. The logic for

the impedance control is shown in Figure 6.5.

Figure 6.4: Basic design for simulated flexible legged lander

72

Figure 6.5: Impedance controller logic

It should be noted that in the NASA/JPL-Caltech Europa Lander Study 2016 Report

the proposed design for the lander is somewhat different. It uses 4 stabilizer legs which

can conform to the terrain. The artist’s representation of this design is shown in Figure

6.6. While this concept is fairly similar to the use of 6 flexible legs on the simulated

lander, there are some differences. Specifically, the flexible and controlled legs in the

simulated lander are not intended to only stabilize the lander on a variety of terrain, but to

also ensure successful and undamaged landing over a wider variety of terminal velocities

and orientations.

73

Figure 6.6: Artist’s rendering of proposed lander from 2016 NASA/JPL-Caltech report [14]

6.2.2 Ground Contact Modeling

6.2.2.1 Normal Interaction - Standard Linear Solid

The contact interactions normal to the ground are simulated as a standard linear solid

model. This model consists of two stages. The first stage consists of a linear spring, while

the second stage consists of a linear spring in parallel with a linear damping element [15].

Fn = keεe = kvεv + cv ε̇v (6.1)

ε = εe + εv (6.2)

Ḟn = −ke + kv
cv

Fn +
kekv
cv

ε+ keε̇ (6.3)

74

6.2.2.2 Tangential Interaction - LuGre Model

A representative friction model is necessary for accurate simulation of ground impact sce-

narios. For the simulation of the Europa lander, the LuGre friction model was used. This is

a dynamic friction model that accounts for a wide variety of phenomena, such as stick-slip,

velocity dependence, and the Stribeck effect [16].

The LuGre friction model has an internal state z, which is dependent on the relative

velocity v of the two contact surfaces. It is described by

ż = v − σ0
|v|
g(v)

z (6.4)

The velocity dependent function g(v) is often given as

g(v) = µk + (µs − µk)e−|
v
vs
|α (6.5)

The parameter α varies in the literature, usually between 0.5 and 2 [16]. In this simula-

tion, a value of 1 was used.

From the internal friction state z, its time derivative ż, and the relative velocity v be-

tween the contact surfaces, and the normal force between the two surfaces, the tangential

frictional force is calculated as

Ft = |Fn|(σ0z + σ1ż + σ2v) (6.6)

For this model to provide accurate results of ground contact interactions, the parameters

σ0, σ1, σ2, µs, µk, and vs must be chosen carefully. Often, these values are chosen using

experimental data. For a theoretical lander on Europa, clearly this is not an option. These

values must then be chosen intelligently in another way.

The first step in choosing LuGre friction model parameters for this simulation is reduc-

ing the size of the parameter space. The parameter σ1 mainly represents damping under

75

micro-displacement. It is therefore most important for systems where accurate prediction

of movement on the micro and nano scale is important [16]. For a lander, this is not nec-

essary. This parameter can therefore be made dependent on other parameters to reduce the

size of the parameter space [16]. σ1 is made dependent on σ0, σ2, some effective mass me

and a damping parameter ζ .

σ1 = 2ζ
√
σ0me − σ2 (6.7)

For this lander simulation, me is taken as one-sixth of the nominal lander mass, since

there are six legs on the lander. ζ was set to 1 to critically damp the micro-movement

behavior.

Now consider steady-state velocity situation with velocity vss. In this case, the internal

state reaches an equilibrium as its time-derivative is zero.

0 = vss − σ0
|vss|
g(vss)

zss (6.8)

Rearranging, the steady-state internal state zss is

zss =
vssg(vss)

|vss|σ0

= sgn(vss)
g(vss)

σ0

(6.9)

The total frictional force is then determined by

Ft,ss = |Fn,ss|(sgn(vss)g(vss) + σ2vss) (6.10)

In this case, with the normal force held constant, the function g(v) provides an ap-

proximation of the Stribeck effect, with the friction coefficients µs and µk corresponding

to friction coefficients in the Coulomb friction model for a system at rest and in motion,

respectively. The parameter vs controls how fast the transition between those parameters

occurs. In addition, there is an extra purely velocity dependent frictional force determined

76

by σ2.

By this analysis, µk and µs can be chosen by considering the simpler and widely used

Coulomb friction model, and choosing approximate experimentally determined friction

coefficients for a variety of surface type pairs. The parameter vs is then chosen to determine

where the transition between those parameters should occur. Similarly, σ2 is chosen to

determine the purely velocity dependent frictional force desired.

The final parameter to determine is σ0. This parameter mainly determines micro-

displacement interactions. Consider the LuGre model under a zero-slip condition. An

external force Fext is applied to the system, and the velocity is low, so the viscous friction

determined by σ2 is ignored. The system is stationary on a surface, and so the normal force

is assumed equal to the gravity force.

mev̇ = Fext − Ft (6.11)

ż = v − σ0
|v|
g(v)

z (6.12)

Ft = meg(σ0z + σ1ż) (6.13)

When these equations are linearized at z = 0 and v = 0, (6.12) produces

ż = v (6.14)

In this situation, it is assumed that the system is at rest before the external force is

applied, and so

z = x (6.15)

Here, x is the micro-displacement of the system. Therefore, since v ≈ 0, σ0 therefore

77

corresponds to a spring force for this micro-displacement.

Ft ≈ megσ0x (6.16)

6.3 Simulation Results

Since very little is known about the surface of Europa, a wide variety of simulations were

completed in order to evaluate a lander’s performance under significant uncertainty. Over-

all, there were three types of ground evaluated. First, the ground contact parameters were

tuned to represent landing on an icy surface. The lander system was expected to slide sig-

nificantly, and the surface is relatively hard. The second case represents a snowy surface.

This surface is softer than ice, but still fairly slippery. Finally, the last case was intended

to represent landing in a sand-like substance. This surface is somewhat softer than ice or

snow, but very little sliding is expected. Within these three cases, nominal system param-

eters were chosen, and many of them were varied according to a normal distribution, to

cover a wide variety of landing scenarios.

All simulations had the same nominal lander physical configuration, shown in Table

6.1. Parameters that were not varied are indicated by “N/A” for their standard deviation.

All six legs on a given system had the same initial upper and lower leg angles for any

simulation, but those angles were varied between simulations.

78

Parameter Nominal Value Standard Deviation Unit

Total Mass, m 900 9 kg

Inertia, Ixx 151 7.5 kg ·m2

Inertia, Iyy 151 7.5 kg ·m2

Inertia, Izz 281 14 kg ·m2

Inertia, Ixy 0 N/A kg ·m2

Inertia, Ixz 0 N/A kg ·m2

Inertia, Iyz 0 N/A kg ·m2

Upper Leg Section Angle 65 3 deg

Upper Leg Section Length 0.63 N/A m

Lower Leg Section Angle 94 5 deg

Lower Leg Section Length 0.63 N/A m

Horizontal Impact Velocity, ẋ, 1.5 1.5 m/s

Horizontal Impact Velocity, ẏ, 1.5 1.5 m/s

Vertical Impact Velocity, ż, 3 1.5 m/s

Initial Orientation, φ 0 11.5 deg

Initial Orientation, θ 0 11.5 deg

Initial Orientation, ψ 0 5.7 deg

Table 6.1: Nominal lander physical parameters used in all simulations

For every ground contact setup, cases were run with legs of all three passive stiffness

levels as well as with the impedance controller. Rotational stiffness and damping param-

eters for the unconstrained rotational DOF on each joint were set to switch between these

cases. For the legs of the conforming model, the joint parameters are shown in Figure 6.2.

79

Parameter Nominal Value Standard Deviation Unit

Hip Stiffness 210 10.5 N ·m/rad

Hip Damping 50 2.5 N ·m · s/rad

Knee Stiffness 370 18.5 N ·m/rad

Knee Damping 50 2.5 N ·m · s/rad

Table 6.2: Nominal conforming leg joint parameters

The joint parameters for the shock-absorbing model are shown in Figure 6.3. These are

also the nominal values used for the model with impedance control.

Parameter Nominal Value Standard Deviation Unit

Hip Stiffness 2100 105 N ·m/rad

Hip Damping 390 19.5 N ·m · s/rad

Knee Stiffness 3700 185 N ·m/rad

Knee Damping 390 19.5 N ·m · s/rad

Table 6.3: Nominal shock-absorbing and impedance-controlled leg joint parameters

Finally, the joint parameters for the stiff legged model are shown in Figure 6.4.

Parameter Nominal Value Standard Deviation Unit

Hip Stiffness 8.4e4 4.2e3 N ·m/rad

Hip Damping 390 19.5 N ·m · s/rad

Knee Stiffness 8.4e4 4.2e3 N ·m/rad

Knee Damping 520 26 N ·m · s/rad

Table 6.4: Nominal stiff leg joint parameters

80

6.3.1 Icy Surface

To simulate an icy surface, ground contact parameters were chosen to allow the system to

slide significantly after contact. These parameters are shown in Table 6.5.

Parameter Value Unit

SLS Spring, ke 22000 N/m

SLS Spring, kv 920 N/m

SLS Damping, cv 5550 N · s/m

LuGre Parameter, µs 0.09 Unitless

LuGre Parameter, µk 0.05 Unitless

LuGre Parameter, σ0 0.0015 Unitless

LuGre Parameter, σ1 0.1 Unitless

LuGre Parameter, σ2 0.05 Unitless

LuGre Parameter, vs 0.2 m/s

LuGre Parameter, α 1 Unitless

Table 6.5: Icy surface ground contact parameters

400 cases were run for each leg stiffness setup for the landing on an icy surface. These

simulations determined that the shock-absorbing legs resulted in the lowest peak lander

body acceleration, followed by the impedance controlled legs, then the conforming legs,

and then the stiff legs. The shock-absorbing legs resulted in a mean peak acceleration

reduction of about 42% compared to the stiff legs. These results are shown in Table 6.6.

81

Leg Type
Peak Lander Acceleration,

Mean, [m/s]
Peak Lander Acceleration,
Standard Deviation, [m/s]

Stiff 23.8 12.0

Shock-absorbing 13.7 8.0

Conforming 17.7 7.1

Impedance Control 17.3 6.8

Table 6.6: Icy surface lander body acceleration statistics

Since the initial conditions of the lander were varied significantly to generate a range

of impact velocities and angles, the distribution of peak lander acceleration values is fairly

wide. Figure 6.7 shows that the systems with stiff legs nonetheless tended to experience

higher peak acceleration upon impact.

82

Figure 6.7: Peak lander body acceleration distribution for the various systems landing on

an icy surface

In order for the legs to be effective, the system must survive impact. Meanwhile, un-

necessary weight on a spacecraft is unacceptably expensive to launch, so the legs must be

as light as possible while maintaining sufficient strength to survive landing. It is therefore

beneficial to lower the peak loads that the legs must endure. Figure 6.8 shows the magni-

tude of the peak joint forces endured by each of the 12 joints on each system, normalized

by the total lander weight on Europa.

83

Figure 6.8: Peak lander joint forces distribution for the various systems landing on an icy

surface. Peak joint forces from all 12 joints in each body are shown, normalized by the

system’s weight on Europa

From this view, both flexible leg cases performed better than the stiff leg case, with

the conforming legs experiencing lower forces than the shock-absorbing legs. Since the

conforming legs move out of the way more easily, it is clear why they would experience

lower peak force. Meanwhile, the shock-absorbing legs endure higher force since they

require more force to deflect. The impedance controlled legs experience similar peak loads

to the conforming legs.

While a lander certainly must be able to survive the loads and acceleration of landing,

it must also land right-side-up. A lander rollover could damage instrumentation and cause

84

the lander to be useless. To check for rollover, the maximum absolute angle from level

throughout the simulation was recorded. A lander was considered to have rolled over if

this value was greater than 90 degrees at any point in the simulation. Only 0.75% of the

conforming leg cases (three cases out of 400) resulted in rollover, and none of the shock-

absorbing cases did. 2.5% of the impedance controlled cases rolled over. The stiff legged

system performed much worse, with 31% of cases resulting in rollover. Flexible and active

impedance controlled legs can substantially reduce rollover risk on an icy surface.

6.3.2 Snowy Surface

The ground contact parameters for a snowy surface were chosen so the surface would

be softer than ice, while still allowing for significant sliding. The parameters used are

enumerated in Table 6.7.

Parameter Value Unit

SLS Spring, ke 12000 N/m

SLS Spring, kv 420 N/m

SLS Damping, cv 3550 N · s/m

LuGre Parameter, µs 0.2 Unitless

LuGre Parameter, µk 0.1 Unitless

LuGre Parameter, σ0 0.0015 Unitless

LuGre Parameter, σ1 0.2 Unitless

LuGre Parameter, σ2 0.05 Unitless

LuGre Parameter, vs 0.2 m/s

LuGre Parameter, α 1 Unitless

Table 6.7: Snowy surface ground contact parameters

Just as for the icy surface, 400 simulations were run for each leg stiffness setup for

landing on a snowy surface. These simulations determined that the shock-absorbing legs

85

resulted in the lowest peak lander body acceleration, followed by the impedance controlled

legs, then the conforming legs, and then the stiff legs. The shock-absorbing legs resulted in

a mean peak acceleration reduction of about 40% compared to the stiff legs. These results

are shown in Table 6.8.

Leg Type
Peak Lander Acceleration,

Mean, [m/s]
Peak Lander Acceleration,
Standard Deviation, [m/s]

Stiff 19.8 10.2

Shock-absorbing 11.8 6.6

Conforming 13.9 5.7

Impedance Control 12.3 5.7

Table 6.8: Snowy surface lander body acceleration statistics

Figure 6.9 shows the distribution of peak lander acceleration for the various systems.

Just as for the icy surface simulations, there is a fairly broad spread due to the variety of

initial conditions provided.

86

Figure 6.9: Peak lander body acceleration distribution for the various systems landing on a

snowy surface

The normalized joint force distribution shown in Figure 6.10 mimics that for the icy

surface, in that the stiff legs result in the highest forces and the conforming legs result in

the lowest forces. The impedance controlled legs had peak joint forces similar to those of

the conforming legs.

87

Figure 6.10: Peak lander joint forces distribution for the various systems landing on a

snowy surface. Peak joint forces from all 12 joints in each body are shown, normalized by

the system’s weight on Europa

The rollover rate for landing on a snowy surface was also examined. Only one percent

of the conforming leg cases (four cases out of 400) resulted in rollover, and none of the

shock-absorbing cases did. The impedance controlled leg model also performed well, with

only 0.75% of cases resulting in rollover. However, 13.5% of the stiff leg cases rolled over.

6.3.3 Sandy Surface

A sandy surface was simulated as being softer than snow, but highly damped in sliding.

Table 6.9 displays the parameters used for the sandy surface simulations.

88

Parameter Value Unit

SLS Spring, ke 8000 N/m

SLS Spring, kv 420 N/m

SLS Damping, cv 2550 N · s/m

LuGre Parameter, µs 1.3 Unitless

LuGre Parameter, µk 1.1 Unitless

LuGre Parameter, σ0 0.0015 Unitless

LuGre Parameter, σ1 2.5 Unitless

LuGre Parameter, σ2 0.15 Unitless

LuGre Parameter, vs 0.2 m/s

LuGre Parameter, α 1 Unitless

Table 6.9: Sandy surface ground contact parameters

Just as for the previous simulation sets, 400 simulations were run for each leg stiffness

setup for landing on a sandy surface. These simulations determined that the conforming

legs resulted in the lowest peak lander body acceleration, followed by the impedance con-

trolled legs, then the shock-absorbing legs, and then the stiff legs. This deviates from the

previous results, since the shock-absorbing legs resulted in the lowest peak lander accel-

eration for landing on icy or snowy surfaces. For a sandy surface, the conforming legs

resulted in a mean peak acceleration reduction of about 31% compared to the stiff legs.

These results are shown in Table 6.10.

89

Leg Type
Peak Lander Acceleration,

Mean, [m/s]
Peak Lander Acceleration,
Standard Deviation, [m/s]

Stiff 19.0 8.2

Shock-absorbing 16.9 7.2

Conforming 13.1 6.8

Impedance Control 14.0 6.2

Table 6.10: Sandy surface lander body acceleration statistics

Figure 6.11 shows the distribution of peak lander acceleration for the various systems.

Just as for the previous simulations, there is a fairly broad spread due to the variety of initial

conditions provided.

90

Figure 6.11: Peak lander body acceleration distribution for the various systems landing on

a sandy surface

The normalized joint force distribution shown in Figure 6.12 shows much more overlap

in loads compared to the landing cases on icy or snowy surfaces. It is believed that since the

legs cannot slide as easily as in those cases, that they grip the surface better and experience

higher peak forces while slowing the system down.

91

Figure 6.12: Peak lander joint forces distribution for the various systems landing on a

sandy surface. Peak joint forces from all 12 joints in each body are shown, normalized by

the system’s weight on Europa

The rollover rate for landing on a sandy surface was examined, just as it was for the

icy and snowy surface cases. The sandy surface resulted in many more rollover events

than for the icy or snowy surfaces. The legs grip onto the surface more substantially,

which can result in rollover with sufficient horizontal impact velocity. Nonetheless, the

passive flexible leg cases and impedance controlled leg cases performed better than the

stiff leg cases. Systems with conforming legs rolled over 15.5% of the time, systems with

impedance controlled legs rolled over 15.75% of the time, systems with shock-absorbing

legs rolled over 24% of the time, and systems with stiff legs rolled over 35% of the time.

92

An example landing is shown in Figure 6.13. Here, shock-absorbing legs were used. The

lander had a horizontal velocity upon impact of about 2.9 meters per second, and a vertical

velocity of about 1.1 meters per second. The front legs contacted first, caught in the sandy

surface, and triggered a lander rollover.

Figure 6.13: This landing event occurred with shock-absorbing legs on a sandy surface.

The lander has horizontal velocity of about 2.9 meters per second. The front legs touched

the surface first, and triggered a lander rollover

6.4 Analysis of Results

Clearly, flexible legs can offer benefits to a Europa lander. Lower peak lander acceleration

can prevent instrument damage, and lower peak loads on legs may allow for lighter legs and

a higher portion of total mass for instrumentation use. A lower rollover risk also allows for a

higher probability of mission success. However, there are still some concerns. Specifically,

all cases for the sandy surface scenario resulted in relatively high rollover risk. While it

may be expected that such a surface grabs the lander feet harder and can more easily cause

93

rollover, it is worth examining this case further to analyze what cases resulted in rollover

and how the rollover risk may be lowered further.

Critically, all the landing event scenarios were performed with a variety of horizontal

velocities centered about a nonzero value. This was done intentionally to put the lander into

challenging lander scenarios more often, and to test the envelope of landing ability. Since

the simulated lander is axially symmetric, there is no concern in ignoring landing in the

opposite direction. Since these scenarios have some nominal nonzero horizontal velocity,

the true rollover risk is likely lower than seen here, assuming a vertical landing is more

likely in practice.

Obviously the landing dynamics of this lander are highly complex. Rollover risk is

affected by impact velocity, orientation at impact, ground contact dynamics, leg flexibility,

and more. To determine how these factors affect the rollover results, the stiff legged landing

scenarios on icy and sandy surfaces were examined further.

First, consider the stiff legged lander on an icy surface. Figure 6.14 examines the initial

lander roll and pitch for all 400 cases, and classifies them based on whether the lander

rolled over or not. The lander cases were not given any initial rotational velocity, so the

initial orientation is also the orientation at impact. Surprisingly, there is no obvious bias for

rollover cases when the lander hits at more extreme angles.

94

Figure 6.14: Rollover classification for a stiff legged lander on an icy surface based on

initial lander orientation

Figure 6.15 then classifies rollover for all 400 cases based on horizontal velocity at

impact. Here also, there is no obvious bias for rollover cases when the lander hits with a

larger horizontal velocity.

95

Figure 6.15: Rollover classification for a stiff legged lander on an icy surface based on

horizontal velocity at impact

Finally, some clear separation of rollover cases in seen in Figure 6.16. As the vertical

impact velocity increases above about 3.5 meters per second, the lander is much more likely

to roll over.

96

Figure 6.16: Rollover classification for a stiff legged lander on an icy surface based on

horizontal and vertical velocities at impact

For an icy surface, the feet do not experience significant frictional force on impact, but

with the hard surface they do bounce vertically. This explains these results. Horizontal

velocity and orientation have little effect on an icy surface, since very little horizontal

frictional force is applied to the feet to cause rollover. However, upon a hard landing, the

system can bounce and roll over.

A proposed composite factor to consider is the projection of the impact velocity vector

onto the Z-axis of the lander body frame. This factor combines the effects of impact veloc-

ity, orientation, and the coupling between their directions. If the two vectors are roughly

in the same direction, the projection will be positive. This corresponds to the lander tilted

97

back upon landing. If the projection is negative, the lander is tilted forward upon landing.

Figure 6.17 provides a simple representation of this projection.

Figure 6.17: Simple representation of the projection of the impact velocity vector onto the

z-axis of the lander body

Figure 6.18 shows the use of this composite factor for classification of rollover events of

a stiff legged lander on an icy surface. There is a fairly clear separation between successful

and rolled landing events.

98

Figure 6.18: Rollover classification for a stiff legged lander on an icy surface based on the

projection of the velocity vector onto the lander body Z-axis at impact

Second, consider the stiff legged lander on a sandy surface. On this surface, there were

substantially more rollover cases than for an icy surface. It was proposed that perhaps this

was because the feet gripped the surface better, and so horizontal velocity and tilted initial

orientation would result in rollover. Figure 6.19 examines rollover classification by initial

orientation. Surprisingly, there is no clear separation visible, even though the feet grip the

sandy surface much better.

99

Figure 6.19: Rollover classification for a stiff legged lander on an sandy surface based on

initial lander orientation

Likewise, Figure 6.20 classifies rollover by horizontal impact velocity. Again, there is

no obvious separation of rollover based on horizontal velocity alone. Clearly, the situation

is more complex.

100

Figure 6.20: Rollover classification for a stiff legged lander on an sandy surface based on

horizontal velocity at impact

Just as for the icy surface, separation is seen when examining cases by their horizontal

and vertical velocities, as seen in Figure 6.21. However, the classification is not as simple as

it was for the icy surface. Whereas for the icy surface the classification was mainly driven

by vertical velocity, for the sandy surface it is driven by some combination of vertical and

horizontal velocities.

101

Figure 6.21: Rollover classification for a stiff legged lander on an sandy surface based on

horizontal and vertical velocities at impact

The composite factor presented earlier consisting of the projection of the impact veloc-

ity vector onto the lander Z-axis at impact also allows for classification of rollover events

on a sandy surface. Figure 6.22 shows this separation. This result implies that some com-

bination of impact velocity and orientation is responsible for rollover cases here, and that

neither impact velocity nor orientation alone is responsible.

102

Figure 6.22: Rollover classification for a stiff legged lander on an sandy surface based on

the projection of the velocity vector onto the lander body Z-axis at impact

103

CHAPTER 7

CONCLUSION

The analysis and experimentation in this thesis show that a naive implementation of the

nonlinear control theory constrained coordinate multibody dynamic simulation technique

is computationally expensive for systems with large numbers of constraints and bodies. In

particular, sections of the feedback linearization constraint controller are determined to be

computationally expensive if performed naively, and to computationally scale poorly with

the number of bodies and joints simulated. Namely, these sections are a matrix multiplica-

tion and a linear system solve step. It is shown that these sections together can comprise the

vast majority of computation time for a simulation with many bodies. Methods were de-

veloped and shown to greatly reduce the computation time needed for those two important

sections of the constraint controller in a few token systems. Notably, the methods which

were most effective do not reduce simulation accuracy at all and are not approximation

techniques. For many systems, the computational time reductions are significant. One par-

ticular case which works especially well with these methods was shown experimentally to

have an overall computational time reduction of 140-fold.

The computational improvements developed in this thesis enable the practical use of

this nonlinear control theory constrained coordinate multibody dynamic simulation tech-

nique for larger systems than were previously possible. It is the hope of the author that this

tool will be useful to other researchers in their studies of multibody systems.

The computational improvements developed here were applied to a simulation of a

passive flexible legged lander system design for use on Europa. In tests, the computational

methods developed here reduce computation time for Europa lander simulations by about

24-fold.

Trade studies were run to examine the performance of flexible leg designs versus a

104

rigid leg lander design. Simulations were performed under a variety of surface condi-

tions, impact angles, and impact velocities. It was determined that a lander with flexible

legs experiences lower peak acceleration upon impact, lower joint loads, and a lower risk

of rollover. Flexible legs lowered peak lander acceleration by about 42% and 40% on

simulated icy and snowy surfaces, respectively. Flexible legs were also able to virtually

eliminate rollover risk when landing on those surfaces. On a simulated sandy surface with

significantly higher damping, flexible legs reduced peak lander acceleration by about 31%.

In addition, while landers with stiff legs rolled over in this sandy surface scenario about

35% of the time, landers with very flexible legs rolled over only 15.5% of the time.

105

Appendices

106

APPENDIX A

CONSTRAINT ERROR DERIVATIVES

Ė?
tj = ΓTtjTpj

(
up

vp

wp

− TpT Tc

uc

vc

wc

− Sp(ω̄ bp
I

)Tp


xp − xc

yp − yc

zp − zc

+

Sp(ω̄ bp
I

)TpT
T
c Cc(r̄⊗c→j)− TpT

T
c Sc(ω̄ bc

I
)Cc(r̄⊗c→j)

) (A.1)

χp =

(
xp yp zp

)T
(A.2)

Qp =

(
q0p q1p q2p q3p

)T
(A.3)

νp =

(
up vp wp

)T
(A.4)

Ωp =

(
pp qp rp

)T
(A.5)

Xp =

(
χTp QT

p νTp ΩT
p

)T
(A.6)

χc =

(
xc yc zc

)T
(A.7)

Qc =

(
q0c q1c q2c q3c

)T
(A.8)

107

νc =

(
uc vc wc

)T
(A.9)

Ωc =

(
pc qc rc

)T
(A.10)

Xc =

(
χTc QT

c νTc ΩT
c

)T
(A.11)

∂Ė?
tj

∂Xp

=

(
∂Ė?tj
∂χp

∂Ė?tj
∂Qp

∂Ė?tj
∂νp

∂Ė?tj
∂Ωp

)T
(A.12)

∂Ė?
tj

∂χp
= −ΓTtjTpjSp(ω̄ bp

I
)Tp (A.13)

∂Ė?
tj

∂qip
= ΓTtjTpjSp(ω̄ bi

I
)
∂Tp
∂qip

(
T Tc Cc(r̄⊗c→j)−


xp − xc

yp − yc

zp − zc


)
−

ΓTtjTpj
∂Tp
∂qip

T Tc

(
uc

vc

wc

− Sc(r̄⊗c→j)


pc

qc

rc


)
for i = 0, ..., 3 (A.14)

∂Tp
∂q0p

= 2


q0p q3p −q2p

−q3p q0p q1p

q2p −q1p q0p

 (A.15)

∂Tp
∂q1p

= 2


q1p q2p q3p

q2p −q1p q0p

q3p −q0p −q1p

 (A.16)

108

∂Tp
∂q2p

= 2


−q2p q1p −q0p

q1p q2p q3p

q0p q3p −q2p

 (A.17)

∂Tp
∂q3p

= 2


−q3p q0p q1p

−q0p −q3p q2p

q1p q2p q3p

 (A.18)

∂Ė?
tj

∂νp
= ΓTtjTpj (A.19)

∂Ė?
tj

∂Ωpi

= ΓTtjTpj
∂Sp(ω̄ bp

I
)

∂Ωpi

Tp

(
−


xp − xc

yp − yc

zp − zc

+ T Tc Cc(r̄⊗c→j)

)
for i = pp, qp, rp

(A.20)

∂Sp(ω̄ bp
I

)

∂pp
=


0 0 0

0 0 −1

0 1 0

 (A.21)

∂Sp(ω̄ bp
I

)

∂qp
=


0 0 1

0 0 0

−1 0 0

 (A.22)

∂Sp(ω̄ bp
I

)

∂rp
=


0 −1 0

1 0 0

0 0 0

 (A.23)

∂Ė?
tj

∂Xc

=

(
∂Ė?tj
∂χc

∂Ė?tj
∂Qc

∂Ė?tj
∂νc

∂Ė?tj
∂Ωc

)T
(A.24)

109

∂Ė?
tj

∂χc
= ΓTtjTpjSp(ω̄ bp

I
)Tp (A.25)

∂Ė?
tj

∂qic
= −ΓTtjTpjTp

∂T Tc
∂qic

(
uc

vc

wc

− Sc(r̄⊗c→j)


pc

qc

rc


)

+

ΓTtjTpjSp(ω̄ bp
I

)Tp
∂T Tc
∂qic

Cc(r̄⊗c→j) for i = 0, ..., 3 (A.26)

∂Tc
∂q0c

= 2


q0c q3c −q2c

−q3c q0c q1c

q2c −q1c q0c

 (A.27)

∂Tc
∂q1c

= 2


q1c q2c q3c

q2c −q1c q0c

q3c −q0c −q1c

 (A.28)

∂Tc
∂q2c

= 2


−q2c q1c −q0c

q1c q2c q3c

q0c q3c −q2c

 (A.29)

∂Tc
∂q3c

= 2


−q3c q0c q1c

−q0c −q3c q2c

q1c q2c q3c

 (A.30)

∂Ė?
tj

∂νc
= −ΓTtjTpjTpT

T
c (A.31)

110

∂Ė?
tj

∂Ωc

= ΓTtjTpjTpT
T
c Sc(r̄⊗c→j) (A.32)

Ė?
rj = −ΦTpj

(
Sp(ω̄ bp

I
)TpT

T
c − TpT Tc Sc(ω̄ bc

I
)

)
T TcjΨ

T (A.33)

∂Ė?
rj

∂χp
= 0 (A.34)

∂Ė?
rj

∂qip
= −ΦTpj

(
Sp(ω̄ bp

I
)
∂Tp
∂qip

T Tc −
∂Tp
∂qip

T Tc Sc(ω̄ bc
I

)

)
T TcjΨ

T for i = 0, ..., 3 (A.35)

∂Ė?
rj

∂νp
= 0 (A.36)

∂Ė?
rj

∂Ωp

= −ΦTpj
∂Sp(ω̄ bp

I
)

∂Ωpi

TpT
T
c T

T
cjΨ

T for i = pp, qp, rp (A.37)

∂Ė?
rj

∂χc
= 0 (A.38)

∂Ė?
rj

∂qic
= −ΦTpj

(
Sp(ω̄ bp

I
)Tp

∂Tc
∂qic
− Tp

∂Tc
∂qic

Sc(ω̄ bc
I

)

)
T TcjΨ

T for i = 0, ..., 3 (A.39)

∂Ė?
rj

∂νc
= 0 (A.40)

∂Ė?
rj

∂Ωc

= ΦTpjTpT
T
c

∂Sp(ω̄ bc
I

)

∂Ωci

T TcjΨ
T for i = pp, qp, rp (A.41)

111

REFERENCES

[1] E. Leylek, W. M., and M. Costello, “Flight dynamic simulation for multibody aircraft
configurations,” Journal of Guidance, Control, and Dynamics, vol. 35, 6 Nov. 2012.

[2] J. Kiefer, M. Ward, and M. Costello, “Rotorcraft hard landing mitigation using
robotic landing gear,” Journal of Dynamic Systems, Measurement, and Control,
vol. 138, Mar. 2016.

[3] Computational Improvements to Multibody Projectile Dynamics Simulation, AIAA
Aviation, Jun. 2014.

[4] G. Golub and C. Van Loan, Matrix Computations. The John Hopkins University
Press, 1996.

[5] G. Allaire and K. S. M., Numerical Linear Algebra. Springer-Verlag New York,
2008.

[6] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2003.

[7] J. Harris, J. Hirst, and M. Mossinghoff, Combinatorics and Graph Theory. Springer
Science+Business Media, LLC, 2008.

[8] C. H. Papadimitriou, “The np-completeness of the bandwidth minimization prob-
lem,” Computing, vol. 16, pp. 263–270, Jun. 1975.

[9] Reducing the bandwidth of sparse symmetric matrices, Aug. 1969.

[10] G. M. Del Corso and G. Manzini, “Finding exact solutions to the bandwidth mini-
mization problem,” Computing, vol. 62, pp. 189–203, Mar. 1999.

[11] Europa Study Team, “Europa study 2012 report,” Tech. Rep., 2012.

[12] NASA/JPL-Caltech, Pia21431: Highest-resolution europa image & mosaic from
galileo, Feb. 2017.

[13] K. P. Hand, A. E. Murray, J. B. Garvin, W. B. Brinckerhoff, B. C. Christner, K. S.
Edgett, B. L. Ehlmann, C. R. German, A. G. Hayes, T. M. Hoehler, S. M. Horst,
J. I. Lunine, K. H. Nealson, C. Paranicas, B. E. Schmidt, D. E. Smith, A. R. Rho-
den, M. J. Russell, A. S. Templeton, P. A. Willis, R. A. Yingst, C. B. Phillips,
M. L. Cable, K. L. Craft, A. E. Hofmann, T. A. Nordheim, R. P. Pappalardo, and

112

The Project Engineering Team, “Report of the europa lander science definition team,”
Tech. Rep., 2017.

[14] NASA/JPL-Caltech, Pia21048, Feb. 2017.

[15] S. Marques and G. Creus, Computational Viscoelasticity. Springer, 2012.

[16] K. J. Åström and C. Canudas de Wit, “Revisiting the lugre friction model,” IEEE
Control Systems, vol. 28, pp. 101–114, 6 Dec. 2008.

113

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Nonlinear Control Theory Constrained Coordinate Multibody Simulation
	Overview of Method
	Geometry and Reference Frames
	Single Rigid Body Dynamics
	Constraints
	Combined Equations
	Constraint Controller

	Analysis of Feedback Linearization Constraint Controller
	Limitations of Analysis
	Analysis of Methods

	Computational Improvement Techniques
	Constraint Controller - Matrix Multiplication
	Compressed Sparse Column Sparse Methods
	Blockwise Sparse Methods

	Constraint Controller - Linear System Solve
	Direct Methods
	Iterative Methods
	Banded Methods

	Computational Improvements Methods Testing
	Testing Setups
	Chain Simulation
	Lander Simulation
	Stubby Lander Simulation
	Chain Simulation Bandwidth Modification

	Testing Results
	Chain Simulation
	Lander Simulation
	Stubby Lander Simulation
	Chain Simulation Bandwidth Modification

	Europa Lander Simulation
	Motivation
	Simulation Design
	Lander Design
	Ground Contact Modeling

	Simulation Results
	Icy Surface
	Snowy Surface
	Sandy Surface

	Analysis of Results

	Conclusion
	Constraint Error Derivatives
	References

