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SUMMARY

The double-Kelvin transmission line 1s formed when two layers of
dielectric and two layers of resistive material of uniform width and
thickness are placed on top of a conductive layer. Such a transmission
line finds realization in a variety of physical forms, one of which is
the thin-film electrical circuit. Four electrical terminals gre attached
to the device, one at each end of the top and bottom layers, to form a
twoport.

In this study, the equilibrium equations for the double-Kelvin
line are derived and solved for the steady-state case to obtain expres-
sions for the voltages and currents associated with the double line.
These expressions are then used to obhtain the open-circuit impedance func-
tions for the twoport formed by tkhe double line, Then, the impedance
functions are employed to derive the cpen-circuit voltage transfer
function for the twoport. The resulting transfer function is examined
in terms of the amplitude and phase shift of its real-frequency response.

The existence of real-frequency transmission zeros for the double~
Kelvin twoport is situdied in detail. An important result of the study is
the derivation of a parameter locus for the family of double lines having
real-frequency zeros. The effect of parameler variations on the trans-
mission zeros of the twoport is also discussed, and real-frequency res-
ponse data for typical double-line twoporis are calculated and displayed.

The versatility of the double-line twoport is extended by the

addition of an impedance element in series with the double-line twoport.



This leads to the derivation of the transfer function for the combinazion
double-line with series impedance and the examinstion of three special
cases.

The first special case ig that of the resistance which has a
transfer function which can be made to have a real-frequency zero for
a suitable value of series resistance. Approximate equations for whe
location of the real-frequency zero and the magnitude of the resistance
to produce the zero are derived. Families of transfer functions are cal-
culated and displayed showing the type of frequency response produced by
this combination twoport and resistance. The notch filter and band-elim-
inatior filter are the types produced by the double line with series
resistance,

The second case is that of a double-line twoport with a series
capacitance which is also analyzed to obtain the ftransfer function of
the combination twoport. Approximate design formulas and typical fre-
quency response data for this configuration are given. The typical
frequency response of this circuit arrangement is of the low-pass tUype
or low-pass type with a notch.

For the third case, the twoport with series inductance ig analyzed.
This configuration produces an interesting band-elimination filier.
Examples of this filter characteristic are calculated and displayed.

The transfer function for the double-Kelvin line and double-
Kelvin twoport witch series element are verified by comparison with exper-
imental data. The verification was performed with three experimental
circuit types, the double line being realized by a lumped approximate

circuit, a thin-film circuit, and a parallel plate circuit. Good agree-



xi

ment between calculated and experimental results 1s demonstrated for all
three realizations. Results obtained with the approximate design formu-
las are also compared with the measured results and the limitatione of
the lumped approximate double line are examined and discussed.

Suitable applications of the double-Kelvin twoport are discussed,
The double line produces filters of the low-pass, band-elimination, ncick,
and low-pass with notch characteristic. Suggestions for additional appli=-
cations are made.

The double-Kelvin boundary value problem is solved in detail in

an Appendix. A numerical method for calculating the roots of transcen-

dental equations 18 derived in another Appendix.



CHAPTER I

INTRODUCTION

Definition and Purpose of the Problem

The double-Kelvin transmission line, as it will be called, 1s
formed when two layers of dielectric and two layers of resistive wmatera-
ial of uniform width and thickness are placed on top of a conductive
layer. ©Such a transmission line finds realization in a variety of
physical forms, one of which is the thin-film electrical circuit. The

double-Kelvin line is modeled in Figure 1.

Dielectric layers

esistive Layers

Input Terminal _ Output Terminals

LIS E L T T Jdeal Zomducicr
T T T T T T 777 777, PR

Figure 1, The Double-Kelvin Transmission Line.

The resistive and dielectric layers of the double line are con-
sidered to pe uniform ard isotropic so that the problem is cme dimen-
gional. Four electrical terminals are attached to the device, one a%
each end of the top and bottom layers, to form a twoport. The research

is centered about the electrical properties of this twoport with emphasis



on the open-circuit voltage transfer function.

The versatility of the double-Kelvin twoport is extended by the
addition of a single impedance element in series with the double line.
The circuit diagram for the double line and the circuit diagram for the

double line with series element are shown in Figure 2.

r
o—— NAN—0
P
AN g =
¢ p AVAVAYAS
AN £
c
Z
O O O O
Double Line Double ILine with Series Impedance

Figure 2. Circuit Symbols and Diagrams for
the Double-Kelvin Line.

History Leading to the Problem

Transmission lines have been of interest as electrical wave fil-
ters since their conception. The distributed filter was at first notx
intentionally inserted, but it was a result of the large physical dimen-
sions of a device. This was the case with Lord Kelvin and the underses
cable. In many other cases, however, a transmission lire is deliberately
introduced for its particular characteristics of wave shaping or delay.

In 1854 Sir William Thompson, later tc become the Lord Kelvin,
began an investigation of the practicality of a proposed franscceanic
telegraph system.l The submarine cables of that period were essentially
leakage~free, high-resistance coaxial cables. The conductors were copper,

and the dielectric material was gutta-percha which is a sap frem a



variety of Malaysian tree.

Lord Kelvin developed formulas for the electrical parameters of
the cable and formulated a mathematical model of the telegraph system.
His solution of the transmission problem was instrumental in the success
of early long distance transmission lines. -The results of his analysis
are well known and the RC transmission line is often called the Kelvin
line.

The Kelvin line has found wide application as a twoport. The

circuit for the Kelvin filter is shown in Figure 3.

Figure 3. The Kelvin-Line Twoport.

The open-circuit voltage transfer functicn for the Kelvin line is given

by
1
T(s) = cosh(y (1-1)
where
v =  J/8Te (1-2)
and

ot Jjw (1-3)

4]
il



and A 1s the length of the line. The line constants r and c are the per
unit length resistance and capacitance of the line.

It is convenient to express Equation (1-1) in the form

T(u) = c'o?im (1-k)

P

where u is given by

u =V red’s | (1-5)

which, for real freguencies, is

n

J
0 =vred® w eE (1-6)

Tables of cosh(u) for both complex and real frequencies were published
as early as 191302

The Kelvin line with series resistance has been analyzed and
design formulas are given for i%s application as a twopor‘ta3 The behav-
ior of this network is similar to that of the bridged-T filter. Figure

4 shows the circuit diagram of the Kelvin line with a series resistance.

Figure 4. The Kelvin Line with a Series Resistance.



The transfer function of the network in Figure 4 is

u sinh(u) + D

T(u) = u sinh(u) + D cosh(u) (1-7)

where
rA g
D= " (1-8)

Much effort has been expended in the past few years toward the
reduction of the sizes and weights of electrical egquipment. The art of
miniturization has advanced to the point where circuit components with
dimensions in the order of atomic dimensions are employed. Circuits of
this dimensional order are called microcircuits and the description of
such circuits requires distributed parameter electrical models.

Two of the structures used 1n passive microcircuits are the thin-
film structure and the monolithic structure. The thin-film structure
consists of layers or strate of various materials deposited onto a suit-
able supporting medium or substrate. The Kelvin line of Figure % is
realizable as a three-strata thin-film circuit.J+

The monolithic structure for the realization of distributed elec-
trical networks consists of layers of semiconductor materials formed in
a small block. The Kelvin line twoport of Figure 5 is an example of a
monolithic circuit structure. Distributed resistance is obtained from
a lightly doped semiconductor. Distributed capacitance is obtained from
a p-n junction with reverse bias potential applied.

Microcircuits are limited to distributed resistance and capaci-
tance for, up to this date, no practical method of producing inductance

values has been developed.



D type

n type

—— Bias

Figure 5. Monolithic Distributed Parameter Circuit.

The Kelvin-line twoport hgs found wide application both as three-
strata film and monolithic circuits. One group of investigators has
reported on the morphology of three-layer RC thin-film circuits and cat-
alogued the behavior of the various twoports which can be obtained from
this four-terminal network.5 The two forms of the network discussed in
their investigation are shown in Figure 6, The twoports of Figure 6 are

only slightly more general than the Kelvin line and add little to its

versatility.
; I
o— NN N—>0 c
r
c o—/"\NNNN————0
o— "\ N\N\NN——0 c
: )

Figure 6. Three-layer Thin-Film Circuits.



Throughout the past forty years the nonuniform transmission line
has been examined as a twoport with possibilities of useful characteris-
tics. J. R. Carson in 19216 and A. T. StarrT in 19%2 contributed much
to the general understanding of the nonuniform or tapered transmission
line. Recent interest in microcircuits has focused attention on the
class of tapered RC lines. Tapered two-wire RC lines are used in elec-
tronic oscillators with advantages over lumped circuit elements,

A class of RC transmission line whose parameters vary trigono-
metrically has been analyzed by K. L. Suo9 The trigonometric line can
be used to obtain an improved notch filter as compared with a uniform
line.

Unfortunately, most attempts to improve the versatility of the
distributed RC twoport by tapering result in a model without solution in
closed form.

An alternative to tapering the line constants has been selected
for this research. The logical evolution of the Kelvin line or three
strata thin-film circuit is the double-Kelvin line or five-strats thin-
film circuit. The complexity and the design freedom of the RC line is
consequently extended by the addition of the two strata and the model
remains linear with constant coefficients. A sclution in closed form is

assured and a new configuration is analyzed.



CHAPTER II

THE DOUBLE-KELVIN LINE BOUNDARY VALUE PROBLEM

The Partial Differential Equations for the Double Line

The double-Kelvin transmission line has been described in Chapter

I. A section of such a line is shown in Figure 7.

ielectric layers

Resistive Lgyers
Input Terminels Qutput Terminals

—*——*7/////// T T T T T 77, /,,‘Iid eal Conductor
7T T T T T T T T 777777, =

Figure 7. BSection of a Deuble-Kelvin Line.

An elementary length of such g line is shown in Figure 8 and will be used

il(x,t) X r A il(x+Ax,'t) (x+4x)
H—T Mév\ -~ 3
el(x,t) o cqx Bl el(x-i-&x,t) - ¢ &

JE(X,t) 2 12(X+Ax:t) {
} r 15 VAVAVAVASS * > }
eg(x,t) T epfx @ ee(x-l-ﬂr,t) T e
, | r
f

Figure 8. An Elementary Length of a Double Line.



to obtain the electrical equilibrium equations for the line. By apply-
ing Kirchoff's law around meshes 1 and 2 and at nodes a and b in the

circuit of Figure 8, the following equilibrium equations are written:

10% + &68)r 8x + e (x + &x,8) - i5(x + &x)rdx-e) (x,t)=0 (2-1)

1 2 1
12(;-: + Ax,t)rezﬁx + ee(x + &x,t) - e2(x,t) =0 (2-2)
Bel(x,t)
il(x,t) - il(x + Ax,t) - CYAX ———— = 0 (2-3)
Bel(x,t) Beg(x,t) i

ie(x,t) + Cl&x'___EﬁT__ - '2(x + &x,t) - e Ox i 0 (2<4)

In the limit as Ax approaches zero these equations become Partial Differ-

ential Equations (2-5), (2-6), (2-7), and (2-8).

ael(x,t)
— = = rgig(x,t) - rlil(x,t) (2-5)
Bee(x,t)
S = ryis(x,t) (2-6)
Bil(x,t) Bel(x,t)
_—5_}( — -Cl Tt (2-7)
Big(x,t) 8el(x,t) aeg(x,t)
= - 2_8)
—x %9 "% T (

Ordinary Differential Equations for the Steady State Case

The system of partial differential equations can be reduced to

ordinary differential equations with respect to the distance variable x
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by assuming sinusoidal forcing functions.

dE_(x)

; = rIy(x) - v I (x) (2-9)

X
dE, (x)
_di(x = - L (x) (2-10)
-dIl(‘X)

T = Jwe By (x) (2-11)
dlg(x)

Tx = JueqBy(x) - Jue B, (x) (2-12)

The characteristic determinant for the system of Equations, (2-9) through

(2-12), is evaluated as follows.

D r, O -7, (2-13)
0 0 D r
2 L 2 2
=D - Jw(rlcl+1202+rgcl)D -WTr cqrsc,
Jwey D 0 0
-jmcl 0 JNCE D

Since this determinant is not zero, the system is independent and the

general solution has four arbitrary constants.lo

Solution of the Ordinary Differential Equations for the Line

Equations (2-9), (2-10), (2-11), and (2-12) can be solved by first
menipulating them into diagonal form. The results of this process are

shown below.



1L

dhll ngl 5
o Ju(rpey + 1ye, + 100 Py - Wiry8itstply = 0 (204)
a1
7= t JweE = 0 (2-15)
4E,
Byl == = Tl & 0 (2-16)
a1,
~jwe By + == + Jm¢2b2 = 0 (2-17)

The solutions for the currents and voltages follow directly from
the preceding diagonal system. The details of the solution are contained

in Appendix I,

_ Q% -Bx
Il(x) = Aje + A e

jwcl 1 jmcl 2 jwcl jmcl
b5 r 2
Iy(x) = |5 - 3‘5?27 M | - | A Re20)
2 21 e 25
I O I O s SO - Bx
S T, Jurgep |TH
iy r . | 2
2 1 G? =0x 2 & p -Bx
E (x)= = |— = e + — - € (2-21)
2 a |T, ~ Juryey 1 B r,  Jur,c; A
R 5 ax T2 |fi g2 |, px




where

Q
fl

w
€

b

(r.c, + r,c, + r,c,) ir.e.r e
1'1 22 271 14+ /1 - 1”122 . (2-22)

(ryeptrycytrye, )

and

-

2 5 - 2 o
(rlcl+r2c2+recl)

™
!

In order to simplify the evaluation of the arbitrary constants,

the preceding equations are written in matrix form.

rIl(x)_] -_fl(x) fé(x) f5(x) fh(x)_‘ F A, (2-2k)
El(x) i f5(x) f6(x) fT(x) f8(x) A,
I,(x) fg(x) flO(x) £, (x) le(X) A5

#-Eg(x%_ i flﬁ(x) flh(x) fl5(x) fis(x?— -AAﬁ

In Equation (2-24), each function in the square matrix represents the
corresponding function in Equations (2-18) through (2-21). For the
exact definitions of these functions, see Table 1 of Appendix I. For
convenience, the following notation will be used to indicate the value
of a function at the sending or input end of the double lineq

fe0|  Eor, (2-25)
X=0

Boundary Conditions

The boundary conditions for the evaluation of the four arbitrary

constants in the solution to the homogeneocus system are listed below.
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L) = 0 (2-26)
L(0) = 0 (2-27)
Ie(h) = (2-28)
E,(0) + E,(0) = B (2-29)

The locations of these boundary points are indicated in the diagram of

the double line shown in Figure 9.

X
T
| n I, (\)
S e
El(O) El(x) cy
(0) | T2 1)
Ele;-\ —~AWW—==
in ? Eo
| B, (0) By (x) <5
|

Figure 9. Locations of Boundary Points on the Double Line.

Applying the specified boundary conditions to Equations (2-18) through

(2-21) produces the matrix equation shown below.

£ et o PB A 0 (2-30)
f9 flo f9 in A2 ) 0
QA -BA (07 BA
f9e floe fée floe Aj 0
r # s r
T 1 1 1
-CT. -B- = e - _B— AJ"' [ EJ.II
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The evaluation of the constants Al’ AE’ A5, and Ah and the simplification
of the resulting terms yield the expressions for the steady-state cur-

rents and voltages of interest on the double-Kelvin transmission line.

f sinh(@)) sinh(A-x)B - flosinh(B?\) sinh(A=-x)a
L(x) = By 7 7T (2-31)
179 1710 .
g sinh(adA) cosh(BA) - = sinh(BA) cosh(aQ))
£ £, sinh(QA)sinh(A-x)B-f. . sinh(BA)sinh{A-x)a
I(x) = B, g0 2 A0 (2-32)
in rlf9 rlfio
—-= sinh(a\)cosh(BA) - 5 sinh(PA)cosh(QN)
féfgsinh(a}\)sinh(?\-x)—-f5flosinh([37\)cosh(?\—x)a
BiGr) = By, mets — (2-33)
g 1710
5 sinh(0\)cosh(BA) - = sinh(BA)cosh(Q))
f_f., sinh(0A)cosh(A-x)-£, .. _sinh(fA)cosh(A-x)
Ey(x) = B, 22 SR (2-34)
in rlf;_ rlflO
~5 sinh(0A)cosh(BA) - = sinh(PA)cosh(QA)

Addition of Equations (2-3%) and (2-34) produces as expression for the

voltage between the top and bottom wires of the line.

afgsinh(ak)cosh(l—x)B-Bflosinh(ﬁk)cosh(h—x)a

in afgsinh(dk)cosh(BK)—BflOsinh(Bk)cosh(dk) (2-35)

E(x) = E

The detailed solution of the problem which is outlined in this

Chapter is given in Appendix T.
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CHAPTER TIII
THE DOUBLE-KELVIN LINE AS A TWOPORT

Open=-Circuit Characteristics

The solution of the boundary value problem described in Chapter
II produced the expressions for the voltages and currents in the model
of the double line. The expressions required to derive the open-circuit
impedance functions for the double line are:

£ sinh(CI?\)sinh(?\-x)-flosinh(ﬁ?\)sinh(?\-x)a

_ 9
Il(x) B Ein r .t T flO (3-1)

%.Esm(ax)cosh(sm).. 220 sinn(BA)cosh(oh)

fgsinh(dh)cosh(h-x)B-ﬁflosinh(Ek)cosh(%-x)a

BE(x) = Ein afgsiﬁﬁ(dk)cosh(Bl)-ﬁflosinh(ﬁl)cosh(dk) (3-2)

The open-circuit impedance functions are defined by the following

expressions which use the notation shown in Figure 10.

I. I
in o
? Z13 —%
|
Z
Ein 12 E0

Figure 10. Two-~-Port Notation for the Double Line.



16

E, B,
i1 in
S o I o (3-3)
in _ L
Iduo

For the double line, Equation (3-3) becomes

klsinh(ak)cosh(ﬁh) + kzsinh(Bh) cosh(ah)
Bl S e (3-4)
Lo sinh(0A) sinh(BA)

where k. and k2 are defined as

i 8

¢ i
19

ko = (3-5)

1 fé - flO

and

% i
1710

LT )

E
o E(A)
z 'S = et = (5-?)
12 Iin - _p Ilioi
&)

which becomes

ky sinh(QA) + k, sinh(BA)

12 = ~—5inh(on) SInh(BN) (3-8)

4

for the double-Kelvin line. The double-line is a symmetrical twoport and,
therefore, requires only two open-circuit impedance functions for iis

description.
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The open-circuit voltage transfer function can be calculated using

the relationship

Substitution of Equations (3%-4) and (3-8) into (3-9) yields

kg sinh(Q\) + k2 sinh(BA)

K SInh(aR) CosK(PA) ¥ K, SIAR(PN) cosh(aN) (3-10)

T(s) =

The u-Plane
If a new independent variable u is defined which is related to

the complex frequency variable s by Equation (3-11), Equation (3-9) can

be put into the form shown in Equation (3-12).

u = / srlc_.L?\2 (3-11)

K, sinh(Au) + K, sinh(Bu)
T(u) = K * r (5']—2)
1 sinh(Au) cosh(Bu) + Ké sinh(Bu) cosh(Au)

The following new parameters and variables have been defined in the pro-

cess of reducing Equation (3-~10) to the form of Equation (3-12).

i o b 2 272

T _§(l+?I+ 1‘1‘31) (3-13)
= r.c

A ﬁ//T‘ +J/;‘2 - r262 (3-14)
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r. C
2 To%
B s fotayfet = (3-15)
i
2
el _
Ky = =t e (3-16)
1 B - )
2
1 -8B
By o e Do (3-17)
P A2 - )

The behavior of the open-circuit voltage transfer function can now be
more conveniently examined in the u-plane which is normalized, square

root, and complex frequency domain.

The u=-Plane Behavior of the Double~Kelvin Line

The newly introduced parameters, Kl’ KE’ A and B, of Equation
(3=12) are related to the resistance and capacitance constants of the
double line by nonlinear algebraic formulas which are developed in Appen-
dix I. The relationships between these parameters and the line constants
are shown graphically in Figure 1ll. Families of curves for constant Kl,
KE’ A and B are drawn on logarithmic axes with ra/%l for the abscissa and
CQ/El for the ordinate.

Information relative to the behavior of the double-line transfer
function can be deduced from Figure 1l. A study of the comparative mag-
nitudes of the parameters Kl’ KQ, A and B over wide ranges of re/?l and
Ca/tl allows approximations to be made in the transfer function expres-
sion for certain ranges of line constants. The salient features of this
study are discussed in the following paragraphs and also shown in the map

of Figure 12,
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Parameter Families for the Double-Kelvin Line,

Figure 11l.
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Figure 12.

Map of Transfer Function Behavior for the
Double-Kelvin Line.
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When the resistance ratio rg/&l is large, that is greater than
unity, the double line behaves as a single line with a modified frequency
scale. This includes the regions (a) and (b) in Figure 12. Since the
current in the r2 stratum is always constrained to zerc at the sending
and receiving ends of the line, it is not surprising that the r ry
ratio must be small before the effects of the additional strata are
noticeable.

The double line is identical in behavior to a single line when
both ra/%l and CE/EI are large. The region where these conditions are
satisfied occupies the upper right portion of Figure 12 and is marked
as region (a).

The region defined by a very small r2/%l ratio, (not shown on the
map) that is 0.001 or less, contains parameters for lines which behave
similar to single lines having a series capacitance of magnitude cgk
farads. The behavior of a single-line twoport with series capacitance
is discussed elsewhere.l1

The range of ré/@l and CE/él parameters producing novel behavior

ig indicated in Figure 12 as region (c). It is to this region of unique

behavior that the most attention is focused.

Real-Frequency Zero

The open-circuit transfer function of the single-Kelvin or RC two-

wire transmission line is described in the u-domain by

T(u) = Eag%*n:y (3-18)

The function in Equation (%-18) has an infinite number of simple poles on
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the imaginary axis in the u-plane. These singularities are located on
the negative real axis in the s-plane.

The lumped-circuit element counterpart of the single-Kelvin line,
the RC ladder network of Figure 13, has no transfer function poles at
the origin or infinity and a finite number of simple poles on the nega-
tive real axis in the s-plane. The transfer function zeros of the RC
ladder are restricted to the negative real axis also, but may be of any

order,

o %% | AN AT

|
m € /”-\C AR

)|
Y
/|

Figure 13. RC Ladder Network.

In the case of the double=Kelvin transmission line the poles and
zeros of the voltage transfer function are the roots of transcendental
equations formed by the numerator and denominator of Equation (3-12).

The numerator of this equation can be written as
N(u) = sinh(Au) + K sinh(Bu) (3-19)

where

K
K = =— > 0 (3-20)
%

The roots of Equation (3-19) are infinite in number but can never be
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real because of the physical limitations on the line parameters. No
explicit method exists for obtaining the roots of Equation (3-19), but

it is possible to find some of its roots by numerical techniques. Of
particular interest is the possibility of roots in the u-plane which
transform to real-frequency roots in the s-plane. The locus of real
frequency roots in the s-plane is the 45 degree line in the first quad-
rant in the u-plane. This can be seen from a consideration of the trans=-
formation between u and s given by Equation (3-11).

Setting Equation (3-19) equal to zero and using the relationship
u o= x4+ Jy (3-21)
produce the following pair of real equations
cos (Ay) sinh(Ax) + K cos(By) sinh(Bx) = 0 (3-22)
sin(Ay) cosh(Ax) + K sin(By) cosh(Bx) = 0 (3-23)

Since the complex frequency s is proportional to u?, the existence of
real frequency roots for Equation (3-19) is evidenced by the existence
of real roots in the simultaneous solution of Equations (3-22) and (3-23)

when x is set equal to y. Setting x equal to y in these equations yields

1

cos(Ay) sinh(Ay) + K cos(By) sinh(By) = 0 (3-2L)

It

sin(Ay) cosh(Ay) + K sin(By) cosh(By) = 0 (3-25)

At this point in the analysis it is useful to introduce the approxima-

tions

Ay (3-26)

I
M =
m

cosh(Ay) = sinh(Ay)
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= (3-27)

ol

cosh(By) = sinh(By) =

which are reasonable for large arguments. The resulting approximate

equations are

fl

cos(Ay)e(A-B)y -K cos(By) (3-28)

(A-B)y = -K sin(By) (3-29)

sin(Ay)e
Equations (3-28) and (3-29) have a solution under the following conditions:
(A-B)y = n= B = TLER XS v ¢ (3-30)

K=c¢ T W TR (3-31)

The value of u given by this solution Uon? and the corresponding real fre-

quency root, won’ are

7

J2 nx R

Yon T A-B € (3-32)
gyl

B, B rad/sec (3-33)
rlclk

The case which proves to be of practical interest is that for n=1. This
value of n reguires

b1

K=¢e = 23.12 (3=-3L)

and produces a real-frequency zero at
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2
Bey B gg 5 rad/sec (3-35)
(A-B) rlcl%

Real~Frequency Zero Parameter Locus

The condition necessary for a real-frequency root to exist in the
numerator of the transfer function of the double-Kelvin transmission line,
specified by Equation (3-34), is satisfied only for certain values of
the line constants. The locus of all values of cg/él and rg/}l which
produce a K = 23.12 has been calculated and is shown in Figure 14,

Since this value of K applies only to the approximate equation,
the roots corresponding to the lines with parameters on this locus were
calculated to check the approximation. The check shows the approximation

. P
to be accurate when CE/él is greater than 5. When the cz/é ratio is

i
less than 5 the exact locus for real-frequency roots has been calculated.
Both loci are shown in Figure 14. The numerical method used to compute
the roots of the transcendental equations in this study is described in
Appendix II. The actual and approximate loci are seen to merge as the
magnitude of the real-frequency root increasges.

The effect of parameter variations on the location of the trans-
mission zero was investigated and the results are shown in Figures 15,
16, and 17. Figure 15 shows the root locus in the u-plane for a parti-
cular double-Kelvin line as the C2/El ratic of the line is varied around
the value required for a real-frequency zero. The re/él ratio for the
line is held constant. The locus crosses the 45 degree line twice. These

two crossings occur for values of line parameters which satisfy the K

equal to 23.12 condition.
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Figure 14. RC Loci for the Double-Kelvin Line.
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Figure 15. u-Plane Root Locus for Variable Ca/%l'
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Figure 17 shows the root locus in the u-plane for a similar line as
the re/}l ratio is varied about the value required for a real-frequency
transmission zero. In this case the Cg/él ratio is held constant and
the locus crosses the 45 degree line only once,

Figure 17 is a plot of the root locus for a family of double
lines each of which satisfies the K= 23.12 criterion. It can be seen
that this root locus approaches the true real-frequency root locus, the

45 degree line, as the magnitude of the root increases.

Poles of the Open-Circuit Transfer Function

Poles in the open~circuit voltage transfer function will be pro-
duced by the poles of the numerator and zeros of the denominator func-
tions of Equation (3-12). Since the numerator function can be seen to
have no intermal poles it remains to examine the denominator function
for zeros. When the denominator function of the transfer function is set

to zero, there is obtained

sinh(A + B)u + K' sinh(A - B)Ju= 0 (3-3%6)
where
K, - K
B = s (3-37)
1+ By

Since both K, and K, are greater than zero,

1 2

1B RV S (3-38)

Because of the above restriction on the value of K' and the previous

restrictions on A and B, the roots of Equation (3-36) lie only on the
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imaginary axis in the u-plane. This can be demonstrated as follows.
Let u be replaced by x + jy. Equation (3-36) can be written as two real

variable equations.

cos(A+B)y sinh(A+B)x 4+ K' cos(A-B)y sinh(A-B)x = 0 (3-29)
sin(A+B)y cosh(A+B)x + K' sin(A-B)y cosh(A-B)x = 0 (3=b40)
Rearrange Equations (3-39) and (3-40) to yield
cos(A+B)y _ & s?nh(A-B)x (541)
cos(A-B)y sinh(A+B)x
sin(A+B)y cosh(A-B)x (342)

- uu!
sin(A-B)y & cosh(ATB)x

The magnitudes of the right hand members of Equations (3-41) and (3-42)
are always less than unity. Therefore, in order to satisfy Equations
(3-41) and (3-42) the following inequatities must be satisfied.

l <1 (3-43)

cos (A+B)y
cos(A-B)y

I sin(A+B)y

SRR | <o (3-k)

The complementary nature of the sine and cosine functions precludes the
simultaneous satisfaction of the Equations (3-43) and (3-4L). If, however

x=0, Equations (3-36) becomes
sin(A+B)y + K' sin(A-B)y = O (3-45)

Equation (3-45) can have a real solution in y. Such a real solution lies



on the negative real or imaginary-frequency axis in the g-plane. Thus
it has been demonstrated that the transfer function of the double-Kelvin

line has no real-frequency poles.

The Frequency Response of the Double-Kelvin Transmission Line

The open-circuit voltage transfer function for the double line,
expressed by BEquation (3-12), can be written as

sinh(Au) + K sinh(Bu)

T(u) = sinh(Au) cosh(Bu) + K sinh(Bu) cosh{Au) (3-46)

It has been convenient to examine the behavior of the double line in the
u-domain rather than the s-domain. The relationships between the inde-

pendent variables u, s, and w, are

2 =
u= /srlclh (3=47)

LJ0

J
u = /wrlcl)\g € O (3-48)

12
W = —igliz ra%/sec (3-49)
L

The real-frequency behavior of the double line has been shown to be related
to the behavior of T(u) along the 45 degree axis in the u-plane., There-
fore, the frequency response data has been calculated for values of u
lying on the 45 degree axis and are plotted with the magnitude as the
abscissa. Equation (3-49) can be used to change the abscissa scale to

the real-frequency scale if desired.



The general shape of the amplitude characteristic of the double
line transfer function differs significantly from the lowpass charac-
teristic of a single line only when there is a transfer-function zero
near the regl-frequency axis in the s-plane. The existence of such a
zero has been shown to occur for lines with values of K near 23.12.
Figure 18 shows the attenuation characteristic of a single-Kelvin line
and two double-Kelvin lines for comparison. The parameters for the lines
are tabulated on the Figure.

The data shown on Figure 19 are from a family of double lines
having parameters lying on the K = 23,12 locus of Figure 4. It is
noticeable that the depth of the nulls in the transfer functions
decreases with the frequency at which the null occurs. As the magni-
tude of the root of the transfer function decreases, it moves away from
the axis of real roots, and the shallow nulls are those caused by roots
well off the real-freguency axis.

Double lines having real-frequency zeros but whose values of K
differ from 23%.12 behave very much like single lines with external capaci-
tance in series. Such lines have parameters given by the section of the
locus shown in Figure 14 which is not part of the K = 23.12 locus. Kauf-
man's method of analysis and results can be modified to give a good
approximate treatment of a line of this type.l5 The frequency response
for a family of such lines is shown in Figure 20.

The phase shift characteristics of the open=-circuit voltage trans-
fer function of typical double-Kelvin transmission lines are shown in
Figure 21. The phase shift characteristic for a single-Kelvin line

(curve (a)) is also shown for comparison. The phase shift of a double-
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Kelvin line which has no zero near the real-frequency axis is similar
to that of the single line. Curve (b) shows the phase shift of this
type line,

A true real-frequency zero in the transfer function causes a
discontinuity in the phase shift curve. A near real-frequency zero
causes a rapid but continuous change in the phase of the transfer func-
tion. The phase shift curve (c) in Figure 21 is for a line with a near
real-frequency zero. The amplitude and phase shift for this line are
shown in a polar diagram in Figure 22. Notice that the origin of the
polar diagram is not encircled by the locus in this case.

Curve (d) in Figure 21 shows phase shift data for a line having
a near real zero. 1In this case the polar plot would encircle the origin

and there is a corresponding rapid increase in phase shift.
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Figure 22. Polar Diagram of the Transfer Function for a Double
Line Having a Near Real-Frequency Zero.
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CHAPTER IV

THE DOUBLE-KELVIN LINE TWOPORT WITH A SERIES ELEMENT

The General Case of Series Impedance

The behavior of the double-Kelvin line twoport when comnnected in
series with a linear and passive circuit element will be investigated.

Figure 23 shows the configuration of the circuilt to be analyzed.

.
—— A P
s )
—— A
E, ¢, E,
] Z(s)
o 5

Figure 23. .The Double-Line Twoport with Series Element

If the double line is designated as twoport "a" and the impedance

L

Z(s) is considered as twoport "b," then the open-circuit impedance param-

eters in the s-domain of the series twoports are given by the following

1k

relationships.

11 ° %11 7 %11 T
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which become, after substitution and simplification

£ r.f

Z(s)(fg-flo)sinh(a?\)sinh( B?\)+(—%—l)s:’nha7\ coshBA - ( lalo)sirﬂlﬂBNcosh(Ct?\)
22 (8= (£.-f, ) sinh(0\) sinh(pA)
o 10
(4-3)
and
: . g ™
212(5)= Z(s)(f9-flo)51nh(ah)51nh(Bﬁ)+(f91§)s1nh(dk)-(flo¥?)51nh(ﬁk) (i)

(f9-flo)sinh A sinh BA

The open=-circuit voltage transfer function of the network of Figure 23

is given by

f.r I .»r
—_— z(s)(fg-flo)smh(a}\)sinh(m +(—%-—l-)sinh(a?\)-( 12 l) sinh(BA)
S for .. r
70 (f9-fm)sinh(cx?\)sinh(ﬁ%}(—ga—l)sm(a?\)cosh(ﬁ?\)u( 20 2 )sinh(B\ )Jcosh(oh)

(4-5)

It has been found convenient to investigate the behavior of Equation
(4-5) in the u-plane rather than the s-plane. The transformations be-
tween u and s introduced in Chapter III allow Equation (4-5) to be

written in the u-domain as

Z,u sinh(Au) sinh(Bu) + Klsinh(Au) + Kgsinh(Bu)

T(u) = Zou sinh(ﬂu)sinh{Bu)+Klsinh(Au)cosh(Bu)+Késinh(Bu)cosh(A&7 (4-6)
where
_ Z(u)
B, 8 == (4-7)
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Notice that Equation (4-6) reduces to Equation (3-12) when Z, is zero.
BExamination of the open-circuit transfer impedance for the double

line, given by

o rlh{Kl sinh(Au) + K, 51nh(BuJ] N K

12(u) T T Usinh(Au) sinh(Bu) = Usinh(Bu) (4-8)

-
=

indicates the possible choices for Z to produce a transmission zero. A
polar plot for a typical z?e(u) for values of u on the real-frequency axis

is sketched in Figure 24.

o
uR/ﬁ
Re z

FSQ?

Figure 24. Sketch of Typical zig(u) for the
Double-Kelvin Twoport.

The first opportunity to create a transmission zero with a single-
element impedance cccurs at the point on the sketch of zig(u) marked Upe
At this frequency a suitable resistance value for Z will produce a trans-
mission zero.

The second opportunity for a transmission zero with a single ele-

ment impedance occurs at the frequency marked U At this fregquency a
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suitable capacitance will produce a transmission zero.

There is also a third and much higher frequency at which an induc-
tance will produce a zero. However, the amplitude of the transfer func-
tion is out of the dynamic range of practical interest before this point

is regched.,

The (Case for a Series Resistance

The first element to be considered for Z is a resistance. Let
7 (s) & B = = (4=9)
(9] (8] I‘l

For this case, Equation (4-6) becomes

R u sinh(Au) sinh(Bu) + K
R u sinh(Au) sinh(Bu)+ K

I_MLMAu)+I% sinh(Bu)

T(u) = sInh(Au)cosh(Bu) + K,s1nh(Bu)cosh(Au)

1
(4-10)

The series resistance introduces two new terms in the open-circuit volt-
age transfer function. The new term in the numerator makes it possible
to tune the twoport for a real-frequency zero by adjusting the magnitude
of R. This is in contrast to the case of the double line of Chapter III
which has a real-frequency zero only for selected line parameters.

The approximate conditions for producing a real-frequency zero in
the transfer function of Equation (4-10) have been derived. They are
valid approximations for lines having Kl larger than Kg' An examinag-
tion of the data shown in Figure 11 of the preceding chapter will show

this condition to be satisfied over a large range of line parameters.

Starting with this assumption, Kl > K., the numerator of Equation



Lk

(4-10) when set to zero becomes, after the K, term is cast out,
R u sinh(Bu) + K, =0 (4-11)

The real and imaginary parts of Equation (4-11) are given by Equations
(4-13) and (4-1k) for values of u on the real-frequency axis; that is,

for

" u(l+jl) (li--lE)

2K
cos El&l sinh u] - sin %ﬁ%} cosh Bn =\/__ - (4-13)
5 -

cos EIEL sinh B + sin 'l}"l'll—' cosh M = 0 (h"'l}"l')
JZ

Equation (4-14) requires, for an approximate real root,
Ty /2
[u] ¢ (ax - I:) e - i O . G, (L-15)

Under the conditions expressed in Equation (4-15), Equation (4-13) can be

satisfied for n = 1 if

R, ¥ 0.0569(K,)(B) (4-16)

The approximate frequency of the null in the frequency response due to

this real-fregquency root can be calculated from

g 98 rad/ sec (&-17)

)
null 2 P2
8rlclh B
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When K2 is not neglected, the numerator of the transfer function
can not be solved for a real-freguency zero by any satisfactory approxi-
mation. The only method found for locating a zero under this condition
is to calculate values of the transfer function in the vacinity of a zero
over a range of serieg resistance values to locate the exact position of
the zero and the value of resistance producing the zerc. This technigue
is useful only when a high speed computer is available.

The general pattern of behavior for the double line with series
resistance element is shown by the family of characteristics of Figure
25. The curves are for selected values of RO starting with zero and
including the value causing a real-freguency zero.

Figure 26 is a similar family of transfer functions but for a
double line having parameters such that a zero exists in the transfer
function near the real-frequency axis when RO = 0, In this example, as
RO is increased the null is improved. Further increases in Ro broaden
the null and produce a band-elimination characteristic in the transfer
function.

The high frequency behavior of the double-line transfer function

for the case with an external resistance can be approximated by

o u
+ RO

However, this expression 1is not of much practical use because it is valid
only when u is so large as to be of no interest in many examples. The
transfer function rises towards unity very slowly because the terms pro-

portional to u in the numerator and denominator of the transfer function
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of Equation (4-10) do not dominate wntil very large values of u are

reached.

The Case for a Series Capacitance

The next case to be analyzed is that for an ideal capacitance
connected in series with the double-line twoport. In this case, Z(s) of

Figure 23 is
Z(s) = —— (4-19)
Cs
The open=-circuit transfer function in the u-plane becomes

sinh(Au)sinh(Bu)+Kf%;1Sinh(Au}+K2q;;sinhtBu)

Plu) = sinh(Au)sinh(Bu)+KiCOu¢ﬁnh(Au)cosh(ﬁﬁj??écc1lsﬁﬂiBu)cosh(EﬁT
(4=20)
where CO is the normalized capacitance given by
B e (4-21)

The series capacitor modifies the real-frequency response of the twoport
in two major ways. UFirst, as was the case with the series resistance ele-
ment, there 1s a value of series element for every double line that will
produce a real-frequency zero. Second, the external series capacitance
causes the high frequency amplitude response to be asymptotic to a -20 db
per decade asymptote in the u-plane. The high frequency phase shift is
asymptotic to =45 degrees.

The high frequency behavior of the double line with series capaci-

tor was obtained from Equation (4-20) and is given by



kg

1

T(u) &
T (K + Ku

(L-22)

The numerator function of Equation (4-20) can be approximated for
a wide range of line parameters while neglecting the K2 term with respect
to the other terms in the numerator. Under the conditions of such an

approximation the value of CO causing a real=frequency zero and the loca-

tion of the zero were calculated and are given by

ar B
B = el - (k-23)
|uy| @ 2222 (4-2k)

Equation (4~24) may be transformed to the real-frequency domain yielding

a formula for the null frequency

25n2

2
rlclk

rad /sec (4-~25)

h!null - 2

8B
Typical families of transfer functions have been calculated and
are shown in Figures 27, 28, and 29. The values of CO have been selected
to display the effect of this variable on the transfer function of three
double lines. The approximate formulas of Equations (4-23) and (4-24)
give satisfactory results for the lines of Figures 27 and 29, but they

do not apply to the case shown in Figure 28.

The Case for a Series Inductance

The third case to be analyzed is that of an ideal inductance
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Figure 27. Frequency Response of Double Line with Series
Capacitance, Case for r2/rl=l'0 and c,/c =1.0.
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Figure 28. Frequency Response of Double Line with Series
Capacitance, Case for r2/r1=0001 and cg/cl=8.0.
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Figure 29. Frequency Response of Double Line with Series
Capacitance, Case for re/rfl.o and c2/01=5.0.
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connected in series with the double-line twoport. In this case, Z(s)

of Figure 23 is
7Z(s) = Ls (4~26)
Equation (4-6) for the transfer function becomes

Lou5 sinh(Au)sinh(Bu)+Klsinh(Au)+Kgsinh(Bu)

T(u) = > (b=27)
L sﬂﬂﬂAu}sinh(Bu)+KlsﬂﬁﬂAu)cosh(Bu)+K28inh(Bu)cosh(Au)
where
L = 5 (4-28)
o 2 3 -
ry clh

The numerator of Equation (4-27) has been examined for values of
u on the real-frequency axis at which transmission zeros occur. These
zeros usually occur at frequencies so high that the attenuation of the
twoport is already beyond the dynamic range of practical interest and
the addition of the zero makes little difference.

The log-megnitude plots of the transfer function for typical double
lines with serieé inductances are shown in Figures %0, 31, and 32. The
essential behavior of these examples is divided into two regions along
the abscissa. The low=frequency region is almost unchanged from that of
the particular double line without a series element. At some value of u
greater than unity and depending on the series Lo’ the second region
begins. 1In the second region the amplitude characteristic rises sharply
to unity at a rate of 60 db per decade with about 3 db overshoot.

The double lines selected for the data shown in Figures 31 and 32
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have parameters which produced a transmission zero on or near the real-
frequency axis without series elements. The addition of a series induct-
ance at first sharpens the null for the line of Figure 30 and further
increases in inductance move the null frequency away from the real-
frequency axis. A small value of inductance seems to introduce a second
zero near the real-frequency axis as can be seen in the examples of
Figures 30 and 31. In all cases the dominant effect of the series
inductance is to return the high frequency gain of the twoport to O db

at a rate of 60 db per decade in the u-plane.

Applications of the Double-Line Twoport

Some of the applications of the double-line twoport are discussed
in the following paragraphs. It is assumed that the twoport can be real-
ized in a satisfactory manner and factors such as parameter stability
and accuracy, size, weight, and cost are not considered. It is reason-
able to expect production technigues for thin-film circuitry to advance
to a point in the near future where such circuits will find general appli=-
cation.

Low-Pass Filter

The transfer function of the double-line twoport is generally of
the low-pass characteristic and similar to that of a single line or a
lumped element RC low-pass filter. However, when the parameters of the
double line are specified at or near the values required for a real-
frequency transmission zero, the attenuation characteristic has a notch
along the band edge. The notch makes the double-line filter superior

to the other low-pass filters mentioned for some applications. The line

constants can be selected to position the null frequency at a point along
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the band edge and thereby the filter will offer maximum attenuation at
an undesirable signal frequency. Figure 19 illustrates this capability
of the double-Kelvin twoport. Formulas suitable for the utilization of
this type twoport are developed in Chapter III.

The double-Kelvin twoport with series capacitance also produces
a freguency response of the low-pass variety with a null somewhere along
the frequency response. A family of such filter characteristics is
shown in Figure 27. The approximate location of the null frequency and
the value of series capacitance required for the null condition are
given in Equations (4-2%) and (4-25). This low-pass filter with a notch
has the advantage of being somewhat tuneable by varying the magnitude of
the lumped series capacitance. However, the high frequency attenuation
is asymptotic to a -20 db per decade line as compared to the ever increas-
ing attenuation of the double line by itself.

Notch Filter

The double~line twoport with series resistance element produces
a transfer function having a sharp null at one frequency very much like
a resonant bridged-~T twoport. The approximate location of the null fre-
quency and the value of the resistance required for the null are given
in Equations (4-15) and (4-16). The character of the null is variable
with the series resistance from a very sharp and deep notch to a band-
stop shape. This is illustrated by the family of attenuation curves
shown in Figure 25. It was possible to obtain -60 db nulls with the
experimental filters of this type which were tested during the research.

The double-Kelvin twoport as a frequency selective network has

an advantage over the bridged-T network in that it is tuned for the best
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null by a single circuit element. The frequency of the null is estab=
lished by the distributed parameters of the line and is not shifted by
the tuning of the series resistance element.

Band-Elimination Filter

The double~line twoport with series resistance has a frequency
response of the band-elimination shape for some parameter values. For
example, by selecting the re/rl and c2/cl rgtios of 0.0l and tuning the
series resistance a family of band-elimination characteristics can be
generated. They are shown in Figure 33%. The high-freguency band edge
is not sharp as it approaches a 20 db per decade asymptote in the u-~
domain.

The more interesting and novel band-elimination characteristic
is obtained when a series inductance is used with the double-Kelvin
twoport. In this case, the high frequency asymptote is a 60 db per
decade line in the u-domain. Three sets of frequency response data
for such band-elimination filters are shown in Figures %0, 31, and 32.
The double-ripple characteristic at the bottom of the stop band, observed
for one case in Figure 31, is of special interest. This behavior is
obtained when a double-line twoport having a real-frequency zero of its

own is used with a small external inductance element.
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Figure 33. Frequency Response of a Double Line with Series
Resistance Giving a Band-Elimination Characteristic.
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CHAPTER V

EXPERIMENTAL WORK

The double-Kelvin transmission line for utilization as a twoport
has been realized in three forms. The first form consists of sections of
lumped resistance and capacitance elements connected in tandem to approx-
imate the distributed circuit. The second form utilizes thin-film dis=-
tributed circuit elements. The third form utilizes parallel plates of
resistance and dielectric sheets to form a large model of the thin-film
circuit.

The practical advantages of working with lumped circuit elements
are well known and therefore the lumped approximate lines were used during
the experimental portion of the research whenever they produced a satis-
factory approximation of the distributed model. The variance exists
between the mathematical model of Chapter II and the lumped circuit
model because the boundary conditions are not identical in the two cases.

Thin-film circuit models of the double-Kelvin line were con-
structed by the Physical Sciences Division of the Engineering Experiment
Station at Georgia Institute of Technology. Since the mathematical model
of the problem was formulated for the distributed circuit, the thin-
film realization produced data more favorable in comparison with the
other circuit realizations.

The large parallel-plate model was used to allow versatility in
selecting the circuit parameters as it was difficult to obtain specified

resistance and capacitance values for thin-film circuits.
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Lumped Constant Realization

It is possible to approximaste a double=Kelvin transmission line

by connecting lowpass RC-filter sections in a manner as shown in Figure

3k,

;]:CE AT~ ce o
{

Figure 34. Lumped Approximation of a Double-Kelvin Line.

As the number of elements in the approximate line is increased the
lumped approximation approaches the distributed case. The number of
sections most commonly used and found to be satisfactory was 10.

The most significant errors in using a lumped line with a finite
number of sections to approximate a distributed twoport occur in the
phase shift characteristic and the input-output impedances. The phase
shift of the lumped line approaches a constant value at high frequencies
instead of continuing to increase indefinitely. The input and output
conditions of the lumped line do not match those of the distributed line
because the lumped line must always begin with a series R or a shunt C.

If the number of lumped sections in the approximation is made

large, the phase shift error can be reduced to a negligible value over
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the dynamic range of usual interest. However, the error due to the mis-
metch at the terminals of the line will always exist. This error is
most noticeable when a series element is used with the double-Kelvin
twoport.

The agreement between transfer function data calculated from
Equation (3-12) and measured on a ten section approximate line is shown
in Figure 35. The transfer function of this particular line is of the
low-pass type and the line parameters were selected to keep the required
frequency range of the instrumentation below 4 Me, Circuit elements having
tolerances of 20 per cent or better were used for the construction of
the approximate line. In order to determine the effect of the mismatch
at the sending end of the line, one set of data were measured on a line
beginning with a mid-series or T section, and a second set of data were
measured on a line beginning with a mid-shunt or = section. It can be
seen in Figure %5 that the calculated data fall somewhere between these
two sets of experimental data. The n approximation is better at the low
frequency end of the response and the T approximation is better at the
high end.

Figure 36 was prepared from calculated and experimental data for
a double-Kelvin twoport which has a transmission zero near the real-
frequency axis. Reference to the parameter study of Chapter III will
show that the parameters of this line, which has a CE/El of 4.7 and an
rg/él of 0.01, to lie very near the RC locus for real-frequency trans-
mission zeros. This locus is shown in Figure 14. The complex frequency

of the transmisgssion zerc for this example is calculated to be

u. = 3.838 + jk.20L (5-1)

@)
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This complex u-domain frequency transforms to the s-domain as

5, = (-2.916 + J32.25) x 10lF (5-2)

Neglecting the real part of g9 the freguency of the transmission zero

becomes
£ & 51.32 Ke (5-3)

The null frequency of the approximate line shown in Figure 36 for
which the above calculations were made was measured to be 50.0 Kc.

The analysis of the double-line twoport in series with a resistance

was performed in Chapter 1V. Figure 38 compares data calculated with the
results of this analysis, Equation (4-10), and other data obtained exper-
imentally using lumped-element approximations of the double line. Data
for two tests are shown; one test used a double line beginning with a
mid-series section and the other used a line beginning with the mid-shunt
section. Again, as in the previous tests with the approximate line, the
calculated distributed case falls between the two experimental cases,
The agreement is very close except at high frequencies where the mid-
series case approaches a -10.9 db asymptote and the mid-series case
approaches a zero db asymptote. An examination of the high freguency
equivalent circuits for the two cases shown in Figure 37 will indicate
these results to be obvious. The results shown in Figure %8 are in good
agreement with the predicted null frequency and series resistance for
best null which can be calculated from Equations (4%-15) and (4-16).

When used with a series inductance or capacitance the lumped

approximate double-line twoport performed well at low values of u but
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Figure 37. High Frequency Equivalent Circuits for the Approximate
Double~Kelvin Line when Used with Series R.
the approximation became very poor as u was increased above 10. The
poor high frequency approximation was caused by the improper boundary
conditions which have been previously mentioned. The effect of the
improper boundary conditions is specially noticeable when the twoport
is connected in series with a reactive circuit element.

Figure 40 shows data from the mid-series and mid-shunt approxi-
mate lines compared with the calculated data for the case where the two-
port is connected in series with a capacitor of such value so as to pro-
duce a real-frequency transmission zero. The value of the capacitance
and the frequency at which the null occurs agree with the values pre-
dicted by Equations (4-23) and (4-24).

Figure 41 shows experimental and calculated data for an approxi-
mate twoport in series with an inductance. The approximate line yilelds
results in good agreement with the calculated results only for low fre-
gquencies. The input capacitance of the mid-shunt approximate line reso-
nates with the series inductance to produce a large output voltage. This

behavior can be discerned by examining the high-frequency approximate
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equivalent circuit of Figure 3%9.

Figure 39. High Frequency Approximate Equivalent Circuit.

Thin-Film Realization

Several thin-film double-Kelvin lines were fabricated and trans-
fer function data measured for these twoports. A photograph and model
drawing of the thin-film circuit are shown in Figure 42.

Referring to the model of Figure 42, strata 1 and 3 are the
resistive films of nichrome. Strata 2 and 4 are the dielectric films of
silicon monoxide, Stratum 5 is a near ideal conducting thick-film of
aluminum. The substrate is a glass microscope slide. Wire terminals
are attached to the ends of strata 1 and 5 with indium solder.

The problems associated with the production and control of thin-
film circuits and the measurement of the electrical properties of thin-
films are not considered in this research. However, the instability of
the electrical characteristics and the lack of accurate data on the
electrical parameters of thin-films must be considered when comparing
ﬁhe calculated and experimental data for such circuits. With the avail-
able facilities it was extremely diff'icult to obtain thin-film circuits
with the electrical parameters specified in advance. Accurate measure-
ment techniques for the circuit parameters of the thin-film circuits

succesefully fabricated were lacking., The total resistance from one end
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of a stratum to the other end of the same straum was measured on an
audio frequency impedance bridge with good results. A nominal capaci-
tance value between strata was obtained using the impedance bridge.

Thin-film resistances are subject to large changes in resistance
with tim.e.l5 As the strata age, the resistance increases and this in=-
crease 1s especially severe if the ilm is very thin as is the case when
a high resistance is required. The increase in resistance can be as
large as several hundred per cent over a period of a few days. This
phenomenon caused difficulty during the experiments by making it diffi-
cult to duplicate a given experiment.

Data have been obtained from several thin-film twoports. Figure
4% shows the transfer function for a twoport having an re/%l ratio of
1.54 and a ce/ﬁl ratio of about 1.15. The calculated transfer function
based on these approximate R and C ratios is also shown for comparison.
The measured response does not fall off as fast as the calculated res-
ponse. This discrepancy is due to inaccurate parameter data, particu=
larly for the value of clk which is used to normalize the real-frequency
scale toc the u magnitude scale.

Data for another thin-film circuit are shown in Figure 44%. This
particular twoport has an rgh greater than 500 Kfi. This large stratum
resistance made it impossible to measure clk and cgk separately. How=-
ever, the capacitance between strata 1 and 5 was measured and found to
be 0.0l u fd. This capacitance was assumed to be formed by equal capaci-
tances in series and transfer function data were calculated under this
assumption. The calculated data are shown in Figure 44 for comparison

with the measured results. This double line behaves as a single line
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because of the large PQ/QI ratio.

Parallel Plate Circuit Model

The previously mentioned problems associated with the construc-
tion and testing of thin-film circuits made it desirable to obtain a more
rugged and versatile twoport realization of the double-Kelvin line for
experimentation. Iarge parallel plate models using Teledeltos paper,
Mylar film, and aluminum foil were constructed and found to be satis-
factory.

The resistance strata were formed with General Electric Type L
Teledeltos paper which has a resistance of approximately 2,000 ohms per
square. The resistive matter is deposited on a paper base and the entire
thickness is 0.004 inches.

The dielectric strata were formed by sheets of DuPont Mylar which
is a polyester film. The Mylar used was 0.,0006 inches thick and has a
relative dielectric constant of 3.12 at 1 Kc and 20° 0.16

The resiétance and dielectric sheets were placed in proper order
on a sheet of aluminum foil 0,00l inches thick. The size of the sheets
was on the order of 15 cm by 30 cm. FElectrodes were painted on the
resistive strata with Hanovia No. 13 flexible silver paint. The capaci-
tance between strata achieved was about 12 per cent of that predicted by
the parallel-plate capacitance formula. This is not surprising as the
pressure plates used were not expected to achieve the 0.0006 inch sepa-
ration between capacitance plates which is the thickness of the Mylar
dielectric.

The results of the tests performed with two of the parallel plate

circuits are shown in Figures 45 and 46. The data shown in Figure 45
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were obtained from a line having an rz/&i_ratio of 1.00 and a CE/El
ratio of 1.18. Data were calculated using these ratios and are also
shown for comparison. Also shown in Figure 45 are the measured and
calculated responses of this twoport with a series resistance which

has been sized to produce the best null in the frequency response. The
general agreement between the calculated and measured data is excellent.
The transfer functions were calculated using the relationship expressed
in Equation (4-10). The frequency of the null and the value of resist-
ance to produce the best null were calculated using Equations (4-16)
and (4-17). The agreement between the calculated and measured results
for these two quantities is within 2 per cent for the null and 6 per
cent for the resistance.

Figure 46 contains data for a parallel plate twoport having a
transmission zero near the real-frequency axis. The line was constructed
with an ry stratum made of resistance paper coated with conductive paint
to reduce the resistance so that the rg/%l ratio between this stratum
and a similar one without the paint was 0.0l17. The thickness of one
dielectric stratum was increased to obtain a 02/61 ratio of 5.65. Exam-
ination of Figure 14 shows that a double line with these parameters lies
near the RC locus of lines having real-frequency transmission zeros.

The measured and calculated transfer functions for this line shown in

Figure 46 exhibit the expected dip with good agreement.



80

CHAPTER VI

CONCLUDING REMARKS

Results of the Research

The double-Kelvin transmission line has been analyzed to obtain
the open-circuit impedance functions and the open-circult voltage trans-
fer function for the twoport formed by the line. The transfer function
is novel; that is, it differs from the single-Kelvin line, for line param-
eters lying within the ranges disclosed in the analysis. The existence
of lines having a real-frequency transmission zero was derived and the
locus of parameters for this family of lines was calculated. Design
formulas for the approximate location of the real-frequency zero and the
approximate parameters to produce the real-frequency zero have been
derived. The double line has been shown to have no internal poles.

The general case for the transfer function of the double-line two-
port when connected in series with a linear and passive impedance has
been derived. Three special cases of series element were analyzed.

A suitable series resistance was shown to produce a real-frequency
transmission zero for any double line. Design formulas for the approxi-
mate location of the zero and the approximate value of the series resist-
ance to produce the zero were derived. The high frequency asymptote of
the double line with series resistance is O db and the general behavior
of such a twoport is similar to that of the resonant bridged T.

The double-Kelvin twoport with series capacitance was analyzed.



81

This configuration produces a low-pass filter with a notch along the
band edge. Approximate design formulas for this filter have been derived.

The case of the double line with series inductance has been ana=-
lyzed. An interesting family of quasi-symmetrical band-elimination fil-
ters was demonstrated to have a frequency response with 30 db per decade
attenuation along the band edges.

Experimental verification of the analytical results has been per-
formed. Transfer function data were calculated from the formulas derived
for the mathematical model of the double line and compared to three phy-
sical realizations of the circuit., The three realizations used were the
lumped approximate circuit, the thin-film circuit, and the parallel-plate
circuit. The best experimental verification was obtained with the paral-

lel-plate circuit.

Applications of the Double-Kelvin Line

The double-Kelvin trensmission line as a twoport is essentially a
low-pass filter. It can, however, be designed to have a real frequency
transmission zero along the band edge.

The addition of a single element impedance increases the versatil=-
ity of the twoport. A series resistance, capacitance, or inductance
can be used with the line to obtain a low-pass, band-elimination, or notch
filter characteristic. It is also possible to obtain a low-pass charac-
teristic with a notch.

The double-line twoport can be used with suitable active networks
to obtain various band-pass characteristics. It also has possible appli-

cations as the feedback network in electronic oscillators.



Recommendations for Future Research

The versatility of the double line was extended by the addition of
a series impedance element allowing the production of a real-freguency
transmission zero. The zero was possible at a frequency where the trans-
fer impedance of the line was negative-resistive or reactive. However,
the attenuation of the line increased so rapidly that only the first two
or three axis crossings of the transfer impedance locus were of practical
interest. If the series impedance were made more general it would be
possible to produce multiple transmission zeros for the twoport. It
would also be possible to introduce zeros at points other than those
where the locus crosses a major axis. Future investigation is recommended
toward this goal.

If the frequency range, over which the dynamic range of the trans-
fer function for the double line remains within practical bounds, could
be broadened, additional singularities could be added to the transfer
function by the use of higher-order series impedances. The use of
tapered lines or cascaded sections of lines toward this goal is sug-

gested.
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APPENDIX I

DETAILED SOLUTION OF THE DOUBLE-LINE BOUNDARY VALUE PROBLEM

The steady state equilibrium equations for the double line which

were derived in Chapter I are
dEl
W e~ th (1I-1)
dE
2
o~ gl (1-2)
dIl
__d}( = —JU}C‘lEl (1“5)
d12
5 = _ch2E2 + chlhl (I-4)
Manipulating these equations into triangular form yields
dhl d2Il
— = Jw(rye; ¥ Te, ¥ recl) 5 - Wrier,e,I = 0 (I-5)
dx dx
dIl
S + JwClEl =0 (1—6)
dEl
r I g -l = 0 (I-7)
d12
-Jue By + o=+ Juc,E, = 0 (1-8)
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The characteristic determinant for the system of Equations (I-1) through
(I-4) reduces to

b ; 2 2
A=D - Jm(rlcl+r2c2+r2cl)D -W T ¢ T,Cp (I-9)

The system of equations is therefore independent and there are four
arbitrary constants in the general solution.

Solving Equation (I-5) for I, gives

-Qax -Bx Bx

+A56aX+Ah€ (1-10)

where Al, Ag, A_ and A.4 are arbitrary constants and & and B are the roots

3

of the characteristic equation obtained by setting expression (I-9) equal

to zero.
jw(r.c.+r c+tr.c.) Bee. T 6
D2 _ a1 e 22 27271 1 i\//l - 171272 (I-11)
(8. 8 B ¥ &
L L2 2 2.4
(r.c.,+tr.c +r.c. ) Ly c.r. ¢

o i\/jw g g grad [ Ly 1"17272 A (1-12)

(rje troc trye,

Introducing the new parameters T and Br, the four roots of the character-

istic equation are written

DL,2,5,M =+ [fjwr (L £ Br (1-13)

The & and B of Equation (I-10) are

a4 = N/,jw'r (I + Br) (I-14)



B= Jiur (1 -PB.) (1-15)
where

1

T=3 (rlcl + r,c, 4 rzcl) (I-16)
g 6. Pt
12 2 1
.= /1- 8 . (1-17)
(r c,+r c tr,Cq)

171 eraa2rl

and Br is always real because

(rlcl+zéc2+r2c2+r2cl)2 > l&rlclrgc2 (1-18)

Solving Equation (I-6) for E, using Equation (1-10) gives

a _ax . B Bx __Q ax _ B Bx
By & g g€ b gpe AET o B sy (3919)
1 1 1 1
Equations (I-7), (I-10), and (I-19) yield a solution for Iyo
r b 2
I, = e .mcfc Ale'ax + r—l - .wi = Age"BX + (1-20)
e 4T a I¥EE
+3_ o A e g i-—-———-—-ﬁz A, P*
Ly WIS |3 T, | Juryl| T

Equations (I-10), (I-19), and (I-20) substituted into Equation (1-8)

gives
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BT g | TmpTy R Bx
= g | o = e 1€ + = A2e (I-21)
2 271 2 21
2o o |, 210§ ePx
a r, ~ Jure; 3 B L r,  JWr,c; 4

Introducing a functional notation and writing Equations (I-10), (I-19),
(I-20), and (I-21) in matrix form simplify the evaluation of the arbi-

trary constants Al’ A2, A5’ and Ah'

.60 500 500 1,0) 1] a 1, () | (1-22)
fs(x) fé(x) fT(X) fa(x) A, - El(x)
fg{x) flo(x) fll(x) flg(x) A3 Ig(x)
fl3(x) flu(x) fl5(x) fl6(x) A, Eg(x)

The functions in the square matrix represent the corresponding functions
in Equatione (I-10), (I-19), (I-20), and (I-21). They are listed in
Table I-1 for reference.

Applying the boundary conditions

Il(k) = 0 (I-23)
I,(0) =0 (T-24)
I, (A) = 0 (1-25)
El(O) - Eg(o) = Ein (I-26)

to the matrix equation and simplifying to eliminate some of the fumctions
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produce
i fl(x) fe(h) fﬁ(k) fu(h) ] —Al_ | 0_ (1-27)
f9(0) rlo(o) f9(0) flO(O} A, ) 0
fg(O)fl(h) flO(O)fQ(k) f9(0)f3(h) flo(o)fh(h) A5 0
i é é} - 2% - ;; | _AMJ _Eig

For convenience, the following notation will be used to indicate the

value of a function at the sending end of the line,

£ lx) = B (1-28)
k il k
Utilizing this notation, BEquation (I-27) becomes
2 g S ey e By 0 (1-29)
G f T i A 0
9 10 9 10 P
O\ -BA O BA -
fge floe f9e floe A§ 0
r r r r
L 1 1 1 -
o m: % " F A Bin

The determinant of the coefficients for Equation (I-29) after evalua-

tion and simplification is
2 i

r
A= h(fg‘flo)(T% fgsinh(ah)cosh(ﬁh) - f% flosinh(ﬁh)cosh(ak) (1-30)

Solving for the arbitrary constants produces
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A
2B, £ (£ - £ )e'sinn(Br)
_ in"10'7g 10 ;
Al = = (I-31)
BA
2E, f (f. = £..)e " sinh(cA)
_ in"9%°¢ 10
2, %) o(%, - flo)e'w\ sinh(BA)
-BA .
2E, £ (£, - £ . )e sinh(a\)
Ah - in 9'79 L\lO (I-ﬁh)

After substituting these values for the constants, Equations (I-10),

(I-19), (1-20) and (I-21) can be written after simplification

f_sinh(0A)sinh(A-x)B - f

I (x) = B, -2 2
in T _ Ty
5 f981nh(cx?\)cosh([3?\)- =

sinh(BA)sinh(A-x)a

(1-35)

losinh(ﬁ?\ Jcosh(a\)

f.f. _sinh(0A)sinh(A=-x)p-f . sinh(BA)sinh(A-x)a

L(x) = By 22 220 (1-26)
1 1
e fgsinh(a?\)cosh(ﬁv}\) - = flosinh(Bh)cosh(al)

f6f9'sinh(a}\)cosh(7\-x)ﬁ-f5flosinh(j?’?\)cosh(h—x)a
in rl ry
= fgsinh(a?\)cosh(ﬁ?\) = L

(I-37)

El(x) =B

losinh( BA)cosh(a)

f9fli+sinh(a?\)cosh(?\-x)ﬁ-flofwsinh(ﬁ?_\_)_msh(?\-—x)Ct
in rl rl
5 fgsinh((]'.?\)cosh(ﬁ}f\) ~—= f

(1-38)

Eg(x) = B

1oSinh( BA)cosh(Q)

Also an expression for the voltage between the top and bottom strata is

given by



anSinh(achosh(h-x)B-bflosinh(Bh)cosh(%-x)a

B(x) = B, afgsinh(dk)cosh(ﬁk)-Bflosinh(SKTcosh(dl}

since
r
L
(f5 + £),) = =
and
I
2H
(f5 . fli) = =

When Equation (I-39) is evaluated for

the open-circuit voltage transfer function is

afgsinh(&h) & Bflosinh(ﬁk)
af9sinh(ah)cosh(BA)-ﬁflOsinh(Bh)cosh(ah)

T(s) =

r

Multiplying this equation by a% yields

r T ol
—%rg sinh(ah) - %alo sinh(BA)

B Thitg o5y
——E—-sinh(ak)cosh(ﬁh) - sinh(BA)cosh(QA)
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(1-39)

(I-40)

(I-h1)

(1-42)

(I-k43)

(T-bd)

Since u =/s rlclh , the following changes in parameters and variables

can be made.

an = Au

BA = Bu

(I-45)

(1-46)



r, T
_‘Jé_c)_ = K (1-47)
r.f

- =k, (1-48)

The transfer function can be written in terms of the new variable u

sinh(Au) + K_sinh(Bu)
2 £ (1-49)

Klsinh(Au) cosh(Bu) + Késinh(BuJ cosh(Au)

Tlu) =

A summary of the notation introduced follows in Table 1.

Table 1. Summary of Notation Introduced in Appendix I

A The Characteristic Determinant
Al’AE’AB’Ah Arbitrary Constants
Dl’DQ’Dﬁ’Dk The Roots of the Characteristic Equation

A
T= 3 (rlcl+r202+r2cl)

5 =V//l ) Mrlclrec2
v ( tr,.c )2

TGy FTpCatr,Cq

X = waTIl+5r]
p = /ijfl-Erj

fl(x) = E“O"X
£,(x) = €%
fi{x) i; G

(Continued )
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Table 1. (Continued)
Bx
f(x) =€
)
o =-Qx
f5(X) = 7 €
1
_ B -Px
fé(x) = 3351 €
a ax
f,.{,(x) = e J-_UEJ-:
_ p Px
fS(X) - Jue | €
r
fQ(X) = ?E - Jwgec e
2 271
1 2
1 B -Bx
f (X)) = [== = g
10 Lr2 Jumécl}
" =
£);(x) = ("E - -"w"cf o -
g =igafy
[ 2 ]
_ 1 B Bx
flE(x) - r, = Jur,cy &
T (x) = _I.;g- E = -.,....a_2._ ~Qx
13 a » Jwr,Cq
r r 2
. .2 |1 __ B ~Bx
flh(x) - B { o jwrgcl}
r.[r
fg(x) = - ‘ag = - "uggc -
s PEE
iR 2
- 2 = Bx
f16(x) - T B {?5 - jmrzcl]
r Poic
T'=%(L+}E+rgcg )
1 171

(Continued)
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(Continued)
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APPENDIX IT

COMPUTATIONAL METHOD FOR THE ROOTS OF

TRANSCENDENTAL EQUATIONS

The method used for computing the roots of the transcendental
equations discussed in the research is the Newton-Raphson iteragtion genw
eralized for two variables. | The independent variables in this case
are the real and imaginary parts of the complex-frequency variable,

The Newton-Raphson method for one variable uses an approximate
root and improves this root to produce in most cases an improved approx-

imate root. The well known recurrence formula for this process is

rbl T kT ™Mz (1I-1)

The error in the approximgtion tends to be proportional to the square
of the error in the previous approximate root when the process is con=-
verging satisfactory.

The Newton=-Raphson process as applied to a function of a complex
variable is outlined in the following paragraphs.

Starting with the function of a complex variable, F(u), it is

written as the sum of two real functions of two real variables
F(U.) = f(xyy} T J g (X:y) (II"“?)

Now the zeros of the function F(u) are the simultaneous zeros of the two

functions
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(11-3)

!
(@)

f(X:Y) =

(I1-4)

!
(®)

g'x,y) =

Expanding Equations (II-3) and (II-4) in Taylor series about the point

(x,y) and neglecting all terms above the linear terms yields

|
e}
I

£(x,y) = 0 = £(a,b) + (x-a)f (a,p) + (y-b) £ (a,D) (FT-5)

I
o
I

g(x,y) = 0 = g(a,b) + (x-a)g (a,b) + (y-b) gy(a,b) (11-6)

Now replacing (a,b) with (xk,yk) and (x,y) with (Xk+l’yk+l) produces the

desired recurrence formulas.
(a1 )T () + (-3 )F (gow ) = -£(xw ) (11-7)

(3~ % V8 (Ko y, ) + (yk+l-yk+l)sy(xk,yk) = =g(x 4%, ) (11-8)

The following notation is introduced.

(g1 ™%) = X0y (11-9)

I Ele - (11-10)
f(xk,yk) = Fl (11-11)
fx(xk,yk) = F2 (1I-12)
fy(xk,yk) = F3 (1I-13)

g(xk,ykJ = @l iy
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g (x,y) = G2 (11-15)
g (x,y,) = G3 (11-16)

Y

Fquations (II-7) and (II-8) are written in matrix form and solved for the

corrections which can then be applied to (xk,yk) to obtain (Xk&l’yk+l)°
2 F3 X0y -F1 (11-17)
G2 63 Y -Gl
cor
_ GL*F3 - F1*G3
Xeor = B0 T (11-18)
G2-FL - F2-Gl
Ycor T F2°G3 - F3°G2 (I7-19)

Equations (II-18) and (II-19) have been programmed for the Bur-
roughs 220 digital computer for the transcendental functions discussed
in Chapters III and IV. In the case of the numerator of Equation (3-12),

given by

F(u) = sinh(Au) + K sinh(Bu)

an extensive study of the root locus was made using the described method.

The results of this study appear in Chapter II1I.
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