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SUMMARY 

 
Growing attention is being paid to the problem of efficiently designing and operating 

reverse supply chain systems to handle the return flows of production wastes, packaging, 

and end-of-life products. Because uncertainty plays a significant role in all fields of 

decision-making, solution methodologies for determining the strategic infrastructure of 

reverse production systems under uncertainty are required. This dissertation presents 

innovative optimization algorithms for designing a robust network infrastructure when 

uncertainty affects the outcomes of the decisions.  In our context, robustness is defined as 

minimizing the maximum regret under all realizations of the uncertain parameters. 

These new algorithms can be effectively used in designing supply chain network 

infrastructure when the joint probability distributions of key parameters are unknown. 

These algorithms only require information on potential ranges and possible discrete 

values of uncertain parameters, which often are available in practice.  These algorithms 

extend the state of the art in robust optimization, both in the structure of the problems 

they address and the size of the formulations.  An algorithm for dealing with the problem 

with correlated uncertain parameters is also presented. 

Case studies in reverse production system infrastructure design are presented.  The 

approach is generalizable to the robust design of network supply chain systems with 

reverse production systems as one of their subsystems. The resultant system will tend to 

be more financially and operationally viable if properly planned, since even with the least 

favorable realization of the parameters, the system may still perform close to optimal 

levels.   
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CHAPTER    I 

 

INTRODUCTION 

 

1.1 Introduction 

Growing attention is being given to the problem of efficiently designing and 

operating reverse supply chain systems to handle the return flows of production wastes, 

packaging, and end-of-life products.  Figure 1.1 is an abstraction of forward and reverse 

production systems (RPS).  The overall cycle shows that in the forward direction the 

manufactured value increases, but in the reverse direction the manufactured value is 

reduced, as the value-added operations are undone.  The driving forces of recycling are 

the recovery of manufactured value, in a form in which reuse is possible, and the 

avoidance of waste disposal costs.  These benefits must be balanced against several costs 

associated with transporting, sorting, inspecting, de-manufacturing, refurbishing, and 

material recycling.   

The motivation for recycling is growing; however the information that exists for these 

new reverse supply chains is limited.  How many units of obsolete computers are in 

Atlanta and other cities?  What will be the quality (broken, reusable, etc) of the resources 

collected?  What is the current selling price of the specific material in the market?  Where 

is the demand point for the specific material? How many units are in demand?  Thus 

uncertainty should definitely be taken into account, but there is no known underlying 

probability distribution for each uncertain parameter, much less joint probability 
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distributions for the entire set of uncertain parameters.  For these reasons, development of 

an approach to design the strategic infrastructure of reverse production systems under 

uncertainty, when the information on the uncertainty is limited, is critical to support 

effective business and government decision making.  

 

Raw Material
Refining

Material
Manufacturing

Component
Manufacturing Final

Assembly
Point

of Sale

Increase in Manufactured Value

Collection
&

Sorting
Demanufacturing

Decrease in Manufactured Value

Chemical
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Figure 1.1  Material Flows in Forward and Reverse Production Systems 
                              (from Ammons and Realff, 1999) 

 

 

The research develops several analytical approaches and algorithms for determining 

the robust strategic infrastructure of the supply chain network including the RPS network.  

Initially, the approach was developed for finding an optimal robust solution that 

minimizes the maximum regret from optimal objective function value over all considered 

scenarios (scenario based deviation robustness) by Ammons, Realff, and Newton (2000).  

Extensions are developed in this dissertation with the purpose of solving the scenario 

based robust optimization problem when the numbers of scenarios considered are large 

but finite.  These extensions are 1) the development of the scenario-relaxation algorithm 
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and 2) the use of the accelerated Benders’ decomposition algorithm introduced by Ahmed 

(2003).   

The approach is further extended to the development of a semi-continuous robust 

algorithm which solves the robust optimization problem when each parameter takes its 

value from real compact intervals or some specific discrete values.  The assumption of 

independence among uncertain parameters is required for the initial version of the semi-

continuous robust algorithm.  The next contribution of this dissertation is the 

development of parameter-space transformation algorithm.  By applying this algorithm 

together with the semi-continuous robust algorithm, the semi-continuous robust 

optimization problem can be solved without the parameter independency assumption.  

The semi-continuous robust algorithm can be effectively used in designing network 

infrastructure when the joint probability distributions of key parameters are unknown. 

The algorithm only requires the information on potential ranges and possible discrete 

values of uncertain parameters, which often are available in practice.  The solution from 

this algorithm may not be optimal for any given set of potential future conditions, but 

instead will provide a solution with a predicted objective function value close to the 

optimal predicted objective function value no matter what values the uncertain 

parameters take from among their potential values. 

 

1.2 Problem Statement 

The infrastructure planning is one of the critical strategic decisions for designing 

effective supply chain systems.  Many questions need to be answered when designing the 
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strategic infrastructure of the reverse supply chain systems.  Some of these questions 

include: 

• Where are the locations to open the collection centers and processing centers? 

• What types of processes to be installed at each specific location? 

• How much money should be invested in equipment at each specific location? 

• How much money should be invested in labor at each specific location? 

• What type of materials should be collected at each specific location? 

• What type of transportation modes should be used between each pair of locations? 

 

Given the answers to these strategic questions, many tactical questions need to be 

answered. Some of these questions include: 

• How many units of the specific material should be collected at each collection center 

in the specific time period? 

• What should be done with the collected materials? 

• How many units of the specific material should be transported between each pair of 

locations using which transportation mode? 

• How many units of the specific material should be sold to each specific customer? 

 

In designing the reverse production systems infrastructure, the decision makers must 

deal with additional complications arising from uncertainty such as: 

• Uncertainty in the supply of each material type at each source. 

• Uncertainty in the demand of each material type for each customer. 

• Uncertainty in prices of each material type. 
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• Uncertainty in the process reliability of each process. 

• Uncertainty in the maximum process capacity of each machine type. 

• Uncertainty in the buying cost for each specific machine type. 

• Uncertainty in the transportation cost rate. 

 

If long-term perfect forecasts of all model parameters are provided, both strategic and 

tactical decisions can be made together by solving a mixed integer liner programming 

problem.  The mixed integer linear programming model assuming perfect information 

will be referred as the RPS model in this dissertation.   

Unfortunately, most of the uncertain parameters are not known precisely and cannot 

be accurately predicted.  As a result, the decision makers are unable to make a perfect 

decision that would be best in all circumstances.  They would, therefore, want to assess 

the benefits and losses associated with each potential decision in each situation.  The 

strategic decisions are then made without perfect information for model parameters’ 

uncertain values.  The tactical decisions are made later once the strategic decisions have 

been made and the values of uncertain parameters are realized.  There are many ways to 

make these decisions, and one such approach is to find a robust approach for planning the 

strategic infrastructure.   

Robustness in solution can be measured in several ways (Kouvelis and Yu, 1997). 

One approach is to determine a solution that corresponds to the objective function value 

which is close by percentage or absolute measure to the best objective function value 

over a wide range of possible uncertain parameter values.  This dissertation proposes 

several ways to make strategic decisions for the reverse production systems under 
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uncertainty in parameters’ values.  As explained in more detail in Chapter III, the 

planning is done in the robust manner so as to minimize the maximum regret between the 

optimal objective function value and the robust objective function value over all 

possibilities of parameters’ values.  This definition of robustness will be referred as 

deviation robustness in this dissertation.  The next section overviews solution 

methodologies for finding the robust optimal solution for strategic decisions of reverse 

production systems that are developed in this dissertation. 

      

1.3 Dissertation Overview 

This dissertation develops robust approaches for determining an optimal deviation 

robust solution of a mixed integer linear programming model for supply chain problems 

where uncertainty exists in parameters’ values.  The approaches are validated using 

several case studies and examples.  With these methods, decision makers are able to 

make robust strategic infrastructure decisions for supply chain systems under uncertainty 

in model parameters’ values when the joint probability distributions of key parameters 

are unknown.  The approach is developed throughout this dissertation and presented in 

the following chapters. 

Chapter II is a review of the relevant literature to this dissertation. This literature can 

be classified into three main areas:  recycling literature, robust optimization literature, 

and the bi-level linear programming literature. 

Chapter III covers a basic mixed integer linear programming model for reverse 

production systems (RPS model) and an optimization approach for finding an optimal 

deviation robust solution using the scenario based robust optimization method. 
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Chapter IV covers the development of a scenario relaxation algorithm and the use of 

an accelerated Benders’ decomposition algorithm (Ahmed, 2003) for solving the scenario 

based robust optimization problem when the number of considered scenarios are large but 

finite. 

Chapter V presents a case study on planning the e-scrap reverse production system 

under uncertainty in the state of Georgia using the methodologies developed in Chapter 

IV.  This chapter shows the significant reduction of computational solution time using the 

proposed methods compared to the runtime required by the direct method. 

Chapter VI covers the development of the semi-continuous robust algorithm for 

solving the robust optimization problem when each model parameter can take its value 

from real compact intervals or some specific discrete values.  This algorithm requires an 

assumption of independence among all model parameters.  This chapter also outlines 

theoretical results and methodologies required to solve the problem effectively.  It proves 

that the optimal solution may not depend only on the endpoints of the range of 

parameters.  Several example problems are presented. 

Chapter VII provides several problems demonstrating the design of a robust strategic 

reverse production system infrastructure using the semi-continuous robust algorithm 

developed in Chapter VI. 

Chapter VIII covers the development of a parameter space transformation algorithm, 

which can be used together with the semi-continuous robust algorithm for solving the 

semi-continuous robust RPS problem when correlations exist among model parameters.  

This approach does significantly rely on available information on parametric variations.  
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In Chapter IX, a summary and the contributions of the results in this dissertation are 

documented.  Additionally, potential future extensions of the methodologies of this 

dissertation are discussed.  
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CHAPTER    II 

 

REVIEW OF RELEVANT LITERATURE 

 

2.1 Introduction 

This chapter reviews the literature relevant to the development of the work in this 

dissertation.  While the work in this dissertation is built upon many sources of 

knowledge, the fundamentals of this work are constructed by the following three main 

areas:  Reverse Production System, Robust Optimization and Bi-level Programming.  The 

literature in all these three areas is reviewed in the following section in this chapter.  

Section 2.2 reviews the literature in the area of reverse logistics network design.  Section 

2.3 reviews the literature in the area of robust optimization in supply chain planning and 

Section 2.4 reviews the literature on bi-level optimization. 

 
 
2.2  Literature Review of Reverse Logistics Network Design Models 

The design and analysis of reuse and recycling systems has been a topic of interest for 

some period of time.  Their brief history reflects the growth of interest in environmentally 

conscious manufacturing and the advent of interest in industrial ecology (Graedel and 

Allenby, 1995).  Logistics network design is one of the areas within the field of reverse 

logistics for which evidence is available from a relatively wide collection of case studies.  

In several of these studies dedicated optimization models have been developed that rely 

on extensions and modifications of traditional facility location models.  Flapper (1995 
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and 1996) and Fleishmann (1997, 2000, 2001) provide overviews of reverse production 

system models and their application to recycling system analysis.  Gungor and Gupta 

(1999) give a state-of-the-art survey of the academic literature on environmentally 

conscious manufacturing and product recovery. 

Specific product and material recycling systems that have been analyzed include 

carpet (Newton, 2000; Ammons and Realff, 1999), copying machines (Thierry, 

Salomom, Nunen and Wassenhove, 1995; Thierry, 1997; and Krikke, 1998), monitors 

(Krikke, Harten and Schuur, 1999), cameras (Nagel, 1997), paper (Huttunen, 1996), iron 

(Russell and William, 1974), steel (Spengler et al., 1997), electronics (Fleischmann et al., 

2001), cell phone (Jayaraman et al., 1999), reusable packaging (Kroon and Vrijens, 1995) 

and sand (Barros and Scholten, 1998). 

Kroon and Vrijens (1995) address the design of a closed-loop deposit based system 

for collapsible plastic containers that can be rented as secondary packaging material.  The 

system involves multiple actors, including a central agency who owns a pool of reusable 

containers and a logistics service provider who is responsible for storing, delivering, and 

collecting the empty containers.  For the latter operations a set of depots needs to be 

located.  The authors document how this issue may be addressed by means of a standard 

warehouse location model.  In addition, they emphasize that the overall network design 

problem is characterized by the interaction between the various parties involved and their 

respective roles.  Depot location, pool size, and payment structures all have an important 

impact on the system’s performance as a whole and its competitiveness with respect to 

traditional “one-way” packaging. 
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Spengler et al. (1997) have examined recycling networks for industrial by-products in 

the German steel industry.  Steel production gives rise to a substantial volume of 

residuals that have to be recycled in order to comply with environmental regulation and 

to reduce disposal costs.  For this purpose, different processing technologies are 

available.  The authors analyze which recycling processes or process chains to install at 

which locations at which capacity level in order to minimize overall costs.  They propose 

a modified mixed integer linear program warehouse location model.  The model 

formulation allows for an arbitrary number of network levels, corresponding to individual 

processing steps, and an arbitrary number of end products, linked to alternative 

processing options.  Analyzing multiple scenarios the authors emphasize the need for 

industry-wide co-operation to achieve sufficient capacity utilizations.  Moreover, they 

conclude that recycling targets and disposal bans may entail severe investment burdens 

for the industry and should therefore be handled with care. 

Barros et al. (1998) provide an example of a material recycling network, namely sand 

recycling from construction waste.  In view of a substantial annual volume of sand 

landfilled on the one hand and the need for sand in large infrastructure projects, such as 

road construction on the other hand a consortium of waste processing companies in The 

Netherlands is investigating opportunities for a nation-wide sand-recycling network.  

Pollution is a major issue in this context.  This means that sand needs to be analyzed and 

possibly cleaned before being reused.  Cleaning of polluted sand requires the installation 

of fairly expensive treatment facilities.  In addition, regional depots need to be set up for 

inspection and storage.  The authors develop a tailored multi-level capacitated facility 

location model for this network design problem.  In their analysis, they emphasize the 
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need for a robust network structure since both supply and demand involve significant 

uncertainties.  Therefore, multiple scenarios are evaluated, of which the solution with the 

best worst-case behavior is selected. 

Jayaraman et al. (1999) have analyzed the logistics network of an electronic 

equipment remanufacturing company in the USA.  The activities considered include core 

collection, remanufacturing, and distribution of remanufactured products, where delivery 

and demand customers do not necessarily coincide.  In this setting, the optimal number 

and locations of remanufacturing facilities and the number of cores collected are sought, 

considering investment, transportation, processing, and storage costs.  The authors show 

that this network design problem can be modeled as a standard multi-product capacitated 

warehouse location mixed integer linear program.  In this formulation, limited core 

supply acts as a capacity restriction to the overall level of operation.  The authors 

highlight that managing this “capacity” which is crucial for the system’s performance, 

requires different approaches than in a traditional production distribution network.  

Rather than considering technical capacity extension options, appropriate marketing 

instruments are needed to assure a sufficient core supply. 

Fleischmann et al. (2000 and 2001) focus on the consequences for OEMs of adding 

product recovery operations to an existing production-distribution network.  A fairly 

general mixed integer linear program facility location model is presented that 

encompasses both “forward” and “reverse” product flows. 

One aspect that is worth considering concerns the issue of uncertainty in the reverse 

chain.  Ammons and Realff (1999) illustrate the discrete robust strategic multi-period 

network design model for the reverse production system for carpet recycling.  They are 
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the first group to provide the step in this direction.  They handle uncertainty in the reverse 

chain by using scenario-based robust optimization to find the solution that minimizes the 

maximum regret from optimality for each scenario. 

Newton (2000) extends the methodology of Ammons and Realff (1999) in strategic 

infrastructure planning for carpet recycling to generate the solution that minimizes the 

maximum regret from optimality for each scenario when each random parameter takes 

value from a real compact interval.  There are some limitations for this approach, which 

are described in the next section.  

Listes and Dekker (2001) explicitly take the uncertainty issue into account in their 

model approach.  They propose a multi-stage stochastic programming model where 

location decisions need to be taken on the basis of imperfect information on supply and 

demand while subsequent processing and transportation decisions are based on the actual 

volumes.  The model maximizes the expected performance for a set of scenarios with 

given probabilities.  The authors emphasize that the solution needs not to be optimal for 

any individual scenario and hence that this approach is more powerful than simple 

scenario analyes.  

Similar to the approach presented in Newton (2000), Ammons and Realff (1999), and 

Spengler (1997), this dissertation defines a location/allocation model to determine the 

number, size, and location of facilities and demanufacturing plants.  Materials to be 

recycled are generated and can be transformed to different states by processes.  These 

materials may then be further processed or sold.  The objective of the model is to 

maximize profit of recycled and reused materials.  The RPS model in Chapter III presents 

a general framework similar to that of Newton (2000), Ammons and Realff (1999), and 



 14

Spengler (1997) and extends the model to suit electronic recycling system and to include 

planning over multiple periods.  Table 2.1 contains a summary of reverse production 

system literature. 
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2.3 Literature Review of Robust Optimization in Supply Chain Planning 

Uncertainty in parameter values is a basic structural feature that decision makers in 

all fields of study must confront. The way to handle uncertainty, and to make decisions 

under uncertainty, is to accept uncertainty, make a strong effort to understand it, and 

finally, make it part of the decision making process.  

Deterministic optimization approaches feed one instance of the input data to a 

decision model and with the use of one or multiple objectives generate the 

mathematically optimal decisions. This approach either completely ignores uncertainty or 

uses historical data to forecast the future. The selected instance of the input data 

represents the most likely estimator of the realization of the data in the future. A major 

weakness of deterministic optimization can be its inability to account for plausible data 

instances other than the most likely one used to generate the optimal decision. Even 

though that decision is optimal for the most likely future scenario, it may lead to poor 

performance of the design when a future realization is different than the forecasted most 

likely one. 

One of the ways to handle uncertainty is stochastic optimization. The stochastic 

optimization approach recognizes the presence of multiple data instances that may be 

potentially realized in the future. However, before feeding the data instances to the 

decision model, it requires explicit information for the probability values, which may not 

be available or may be difficult to obtain. Even if all probability data are available, the 

typical decision model will attempt to generate a decision that maximizes (or minimizes) 

an expected performance measure, where the expectation is taken over the assumed 

probability distribution, which may not reflect the decision maker’s true utility function 
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that may be risk averse. The requirement for a specified probability distribution makes 

the use of stochastic optimization a challenge to implement when the knowledge of 

parameters is not available.  

Another way to handle uncertainty is robust optimization. The aim of this approach is 

to produce decisions that will have a reasonable objective function value under any likely 

input data scenario to the decision model over a pre-specified planning horizon.  

Different criteria can be used to select among robust decisions. One possible criterion is 

the mini-max regret criterion. The first step is to compute the “regret” associated with 

each combination of decision and input data scenario. “Regret” can be defined as the 

difference between the optimal objective value and robust objective value for each input 

data scenario. The mini-max criterion is then applied to the regret values, so as to choose 

the decision with the least maximum regret. A solution to a mathematical program is 

robust with respect to optimality if it remains close to optimality for any input data 

scenario to the model. 

We divide the robust optimization for the application of the supply chain models into 

two basic categories:  regret models and variability models.  The “regret” of a scenario is 

measured as the closeness between the optimal objective function value for that scenario 

and the objective function value of the chosen solution for that scenario.  Kouvelis and 

Yu (1997) define “close” to the optimal solution in several different ways.  They define 

two regret criteria for robustness. The robust deviation decision is the decision that 

exhibits the best worst-case deviation from optimality.  In other words, the robust 

deviation solution is one that minimizes the maximum regret over all possible realizations 

of the parameters in the model.  This is the robustness definition used in this dissertation.  
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The robust relative decision is the decision that exhibits the best worst-case percentage 

deviation from optimality.   

There is also a definition of absolute robustness presented by Kouvelis and Yu 

(1997).  Absolute robustness evaluates the objective function value in each scenario 

without reference to the best possible decision that could have been made in that 

scenario.  Absolute robustness defines a solution that minimizes the maximum total costs.  

This would be appropriate for risk adverse or highly competitive environments where 

even the worst case must guarantee a certain level of performance.   

The robust deviation measure was chosen in this dissertation for two reasons.  First, it 

incorporates more information in the solution than absolute robustness and so is believed 

to provide a better answer.  Second, robust deviation places more of an emphasis on 

scenarios that tend to produce large objective values than the other two measures.  The 

use of the relative robustness measure will result in more opportunity lost than the robust 

deviation measure. This is because scenarios that would tend to have very small positive 

or negative objective functions tend to totally dominate solutions using a relative 

robustness measure. 

The work of Kouvelis and Yu made use of scenarios for determining robustness.  The 

approach of using scenarios to capture uncertainty can also be found in the stochastic 

optimization literature. Scenarios are decided upon and weights are placed on the 

realization of the scenarios.  The final solution must satisfy each scenario and minimize 

some objective based on the difference between the proposed solution and optimal 

solution.  In this respect the concept is close to robustness approach used in this 

dissertation. 



 18

Ammons and Realff (1999) apply the definition of deviation robustness to the 

application of carpet recycling.  They introduced a mixed integer linear programming 

model and solved for the robust infrastructure design for carpet recycling problems.  

Newton (2000) introduces a continuous robust approach using the deviation 

robustness definition.  Instead of using discrete scenarios to capture uncertainty, he 

introduces the innovative idea of using the information from parameter possible ranges 

for making robust infrastructure decision of the reverse logistic problems.  This approach 

has some limitations when it is applied on some types of uncertain parameters.  This 

approach cannot handle the uncertainty when any coefficient of a continuous variable in 

the model is random and cannot handle the uncertainty corresponding to the combination 

of discrete scenarios and continuous range scenarios.  This approach also requires the 

assumption of independent model parameters. This approach also requires the assumption 

that there always exists a feasible robust infrastructure solution for the problem, which is 

not always true in general.   

Gutierrez, Kouvelis, and Kurawarwala (1996) apply a different robustness approach.  

Instead of addressing the worst case, they require a robust network design to be within 

p% of the optimal solution for any realizable scenarios.  Therefore, they in effect add a 

constraint to their model to ensure robustness.  They solve the model by modifying 

Benders’ decomposition algorithm to use cuts from one master problem on all scenarios. 

An alternative definition of robustness is to find a near-optimal solution that is not 

overly sensitive to any specific realization of the uncertainty (Bai, Carpenter and Mulvey, 

1997).  The goal is to minimize expected cost (maximize expected profit) and to reduce 

the variability over all possible scenarios.  Thus, these robust optimization models 
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include a measure of variability rather than regret.  Variability can be measured by 

variance (Hodder and Dincer, 1986; Mulvey, Vanderbei and Zenios, 1995; Bok, Lee, and 

Park, 1998) or by standard deviation (Goetschalckx, et al., 2001), both of which make the 

objective function a nonlinear function.  Both methods also assume symmetric risk, so 

that it is equally bad for costs to be below or above average.  Several other measures of 

variability have been used, including the von Neumann-Morganstern expected utility 

function (Bai, Carpenter and Mulvey, 1997) and the upper partial mean (Ahmed and 

Sahinidis, 1998), to allow asymmetry, but these functions are often hard to compute.  

Additionally, when coefficients in a model are uncertain, the functional constraints may 

not necessarily be satisfied for all scenarios.  In such a situation, it is convenient to 

introduce additional variables that represent the slack or surplus in the functional 

constraints.  These variables, called recourse variables, are included in the objective 

function as an infeasibility penalty (Mulvey, Vanderbei and Zenios, 1995; Yu and Li, 

2000).  We also discuss the variability models in more detail below. 

Hodder and Dincer (1986) present a model for international plant location and 

financing decisions under uncertainty.  They model risk aversion via a mean-variance 

objective function of firm profit and consider fixed cost and net revenue uncertainty.  The 

resulting model is a quadratic mixed integer program.  They show that a multifactor 

approach can transform the problem into one that can be easier to solve. 

Mulvey, Vanderbei, and Zenios (1995) were the first to present robust optimization as 

the integration of goal programming formulations with a scenario-based description of 

the problem data.  They define solution robustness as the case when the optimal overall 

solution is near optimal for every possible demand scenarios.  They define model 
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robustness as the case when the optimal overall solution is almost feasible for all 

scenarios.  They add norms, such as variance or utility functions, to the objective function 

to encourage solution robustness.  They also add a feasibility penalty function to the 

objective function to encourage model robustness.  The feasibility penalty term is a 

function of the demand slack.  A penalty is assessed when the slack holds the positive or 

negative value, so the penalty applies when the model is infeasible, and when there is 

excess capacity.  Malcolm and Zenios (1994) apply the robust model of Mulvey, 

Vanderbei, and Zenios (1995) to a power system capacity expansion problem with 

demand uncertainty. 

Bok, Lee, and Park (1998) define a quadratic objective function to maximize the 

expected net profit with penalties for the expected deviation of profit and excess capacity.  

The net present value of profit is calculated from sales revenues, material costs, 

processing costs, and capacity expansion costs.  The scenarios consist of different 

demand levels, each with an associated probability.  They use Benders’ decomposition to 

solve their two-stage stochastic programs. 

Yu and Li (2000) reformulate the robust optimization model of Mulvey, Vanderbei, 

and Zenios (1995) into a linear program that requires only half as many variables.  They 

demonstrate their model with four economic scenarios with different demand and 

production cost.  The main limitation to this formulation is that it can only applied to 

linear models. 

Bai, Carpenter, and Mulvey (1997) advocate using the von Neumann-Morganstern 

expected utility model (Keeney and Raffia, 1976) over mean-variance robust models as it 

presents a more general approach for handling risk aversion.  Additionally, the model 
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captures asymmetries in the random variable distributions and is easier to expand to 

multi-period planning.  The disadvantage of the expected utility model is that the decision 

makers must decide upon an appropriate level of risk tolerance. 

Ahmed and Sahinidis (1998) use the definition of robustness of Mulvey, Vanderbei, 

and Zenios (1995), but propose alternative formulations to the mean plus variance 

objective function.  They argue against using variance because it penalizes cost below the 

mean and it also introduces nonlinearities to the formulation.  They propose the upper 

partial mean (UPM) of the recourse costs as the measure of variability.  The upper partial 

mean is the positive deviation of a scenario’s cost from the expected cost.  The key 

advantage of UPM is that it does not require the a priori specification of a target level for 

variance and is therefore more flexible.  The formulation limits the number of expansions 

allowed and the total capital investment. 

Goetschalckx, et al. (2001) defines a flexible configuration as a “configuration whose 

profit or total cost does not change much when parameters such as capacities and demand 

change.”  Their definition of a robust configuration is “a configuration whose objective 

function value deviates little from the optimal objective function value when the cost 

parameters change.”  They use a stochastic decomposition algorithm based on the 

simulation-based sample average approximation method described in Shapiro and 

Homm-de-Mello (1998).  The algorithm is specialized for designing stochastic supply 

chain systems.  First, a limited number of feasible facility configurations are selected.  

Then, for each configuration, the parameters are sampled from their respective 

distributions.  The resulting linear network flow problem (with fixed facility variables) is 

solved for the production and transportation quantities.  The expected value and variance 
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is computed over many replications and the “best” configuration is selected based on 

weighted objective of the mean and standard deviation.  The research found that this 

solution dominates the solution generated using the average values for the parameters. 

In addition to regret and variability models, there are several other approached to 

robust and/or flexible supply chain design.  Kouvelis and Yu (1997) minimize the 

maximum costs of the supply chain, Voudouris (1996) and Sabri and Beamon (2000) 

address uncertainty by building excess capacity in the supply chain, Applequist, Penky, 

and Rekalaitis (2000) propose a new metric called risk premium for evaluating supply 

chains, and Vidal and Goetschalckx (2000) use extensive sensitivity analysis. 

Voudouris (1996) and Sabri and Beamon (2000) define supply chain flexibility as the 

ability to respond to unexpected demand.  They achieve flexibility by building excess 

capacity into the system.  Both papers use volume flexibility as the capacity slack, similar 

to what is commonly used in the real industry.  Sabri and Beamon also propose that 

delivery flexibility, the ability to change planned delivery dates, measured by the lead 

time slack, is important even though it is not normally used in industry. 

A different approach to handling uncertainty is measure the risk associated with 

different supply chain configurations in an uncertain environment.  Applequist, Penky, 

and Rekalaitis (2000) propose a metric called risk premium for evaluating supply chains.  

The risk premium is the increase in expected return in exchange for a given amount of 

variance.  This metric is borrowed from the securities investment domain and provides 

the basis for a rational balance between expected values and variances of revenue in 

projects where there is a significant element of uncertainty. 
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Vidal and Goetschalckx (2000) develop a mixed integer program for international 

supply chain design.  They address uncertainty in exchange rates, demand, supplier 

reliability, and lead times.  The mixed integer programming model can be solved 

effectively providing fast sensitivity analysis on re-optimization under different 

conditions.     

Ben-Tal and Nemirovski (1998, 1999, 2000) address the over-conservatism of robust 

solutions (min-max/max-min objective) by allowing the uncertainty sets for the data to be 

ellipsoids, and propose efficient algorithms to solve convex optimization problems under 

data uncertainty.  However, as the resulting robust formulations involve conic quadratic 

problems, such methods cannot be directly applied to discrete optimization. 

Averbakh (2001) shows that polynomial solvability is preserved for a specific 

discrete optimization problem (selecting p elements of minimum total weight out of a set 

of m elements with uncertainty in weights of the elements) when each weight can vary 

within an interval under the minimax-regret robustness.  However, the approach does not 

seem to generalize to other discrete optimization problems.  

Bertsimas and Sim (2003) propose an approach to address data uncertainty for 

discrete optimization and network flow problems that allows controlling the degree of 

conservatism of the solution (min-max/max-min objective).  When both the cost 

coefficients and the data in the constraints of an integer programming problem are 

subjected to uncertainty with the assumption that the random parameter in the functional 

constraints take values from bounded symmetric distribution, they propose a robust 

integer programming problem of moderately larger size that allows controlling the degree 

of conservatism of the solution in terms of probabilistic bounds on constraint violation.  
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When only the cost coefficients are subject to uncertainty and the problem is a 0-1 

discrete optimization problem on n variables, they propose the solution methodology to 

solve the robust counterpart by solving at most n+1 instances of the original problem.  

They also show that the robust counterpart of an NP-hard α -approximable 0-1 discrete 

optimization problem remains α -approximable.  They also propose an algorithm for 

robust network flows that solve the robust counterpart by solving a polynomial number of 

nominal minimum cost flow problems in a modified network.   

Butler (2003) proposes a new definition of a robust solution by combining the 

expected value and the relative robustness definition for an application of supply chain 

design for new product distribution.  Table 2.2 contains a summary of literature in the 

area of robust optimization in supply chain system design and operations. 
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2.4 Literature Review of Bi-level Optimization 

The bi-level programming problem (BLPP) can be viewed as static version of the 

noncooperative two-person game with a leader-follower structure. In the basic model, 

control of decision variables is partitioned among the players who seek to optimize their 

individual objective function. Perfect information is assumed so that both players know 

the objective and feasible choices available to the other.  

The fact that the game is said to be ‘static’ implies that each player has only one 

move. The leader goes first and attempts to optimize his objective function. In so doing, 

he must anticipate all possible responses of his opponent, termed the follower. The 

follower observes the leader’s decision and reacts in a way that is personally optimal 

without regard to extramural effects. Because the set of feasible choices available to 

either player is interdependent, the leader’s decision affects both the follower’s objective 

value and allowable actions, and vice versa.  

The vast majority of research on bi-level programming has centered on the linear 

version of the problem, alternatively known as the linear Stackelberg game (Bard, 1998).  

For , x : , , 1RYXFRYyRXx mn →⊂∈⊂∈ and 1 x : RYXf → , the BLPP can be 

written as follows: 
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The set X and Y place additional restrictions on the variables, such as upper and lower 

bounds or integrality requirements. Note that once the leader selects the x value, the first 

term in the follower’s objective function becomes a constant and can be removed from 

the problem. In this case we replace f(x,y) with f(y). 

The sequential nature of the decisions implies that y can be viewed as function of x; 

i.e., y = y(x). The following definitions are used for solution methodology of BLPP 

model. 

(a) Constraint region of the BLPP: 

      } , , , | ),{( 222111 byBxAbyBxAYyXxyxS ≤+≤+∈∈=
∆

. 

(b) Feasible set for the follower for each fixed :ˆ Xx∈  

      }ˆ| { )ˆ( 222 byBxAYyxS ≤+∈=
∆

 

(c) Projection of S onto the leader’s decision space: 

      } , ,| { )( 222111 byBxAbyBxAYyXxXS ≤+≤+∈∃∈=
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(d) Follower’s rational reaction set for :)(ˆ XSx∈  

      )]}ˆ(ˆ|)ˆ,ˆ(min[arg|{)ˆ( xSyyxfyYyxP ∈∈∈=
∆

 

(e) Inducible region: 

      )}(,),(|),{( xPySyxyxIR ∈∈=
∆

 

To ensure that the BLPP model is well posed, it is common to assume that S is 

nonempty and compact;  i.e., φ≠)(xP . The rational reaction set P(x) defines the 

response while the inducible region (IR) represents the set over which the leader may 
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optimize. Thus in term of this notation, the BLPP model can be written as 

}),(|),(min{ IRyxyxF ∈ . 

In searching for a way to solve the linear BLPP (F(x,y) and f(x,y) are both linear 

functions), it would be helpful to have an explicit representation of IR. This can be 

achieved by replacing the follower’s problem with Karash-Kuhn-Tucker (KKT) 

conditions and appending the resultant system to the leader’s problem. In another word, 

the BLPP model can be rewritten as follows: 

0 ,0 ,0 ,0                   
0  and  0)(                   

                   
  and      subject to

),( min

222

22

222111

11

≥≥≥≥
==−−

−=−
≤+≤+

+=

vuyx
vyyBxAbu

dvuB
byBxAbyBxA

ydxcyxF

 

where mq RvRu ∈∈  and . 

In theory, nonlinear constraints (complementary slackness conditions) in this model 

can be handled trivially by using the big M technique (Bard, 1998) with binary variables. 

However, drawbacks of this method came up in real application and will be presented in 

Chapter VI of this dissertation.  This dissertation applies bi-level programming in the 

second stage and the third stage of the semi-continuous robust algorithm.   

Bi-level linear optimization was first proposed since the mid-1960's.  The initial work 

was by Baumol and Fabian (1964).  The linear bi-level programming problem was first 

shown to be NP-hard by Jeroslow (1985) using satisfiability arguments common in 

computer science.  Bard (1991) provided an alternative proof by constructively reducing 

the problem of maximizing a strictly convex quadratic function over a polyhedron to a 

linear max-min problem.  
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In general, there are three different approaches for solving a linear bi-level 

programming problem that can be considered workable.  The first approach makes use of 

the theorem that the solution of the linear bi-level programming problem occurs at a 

vertex of S and involves some form of vertex enumeration in the context of the simplex 

method.   

Candler and Townsley (1982) were the first to develop an algorithm that was globally 

optimal.  Their scheme repeatedly solves two linear programs, one for the leader in all of 

the x variables and a subset of the y variables associated with an optimal basis to the 

follower’s problem, and the other for the follower with all the x variables fixed.  In a 

systematic way they explore optimal bases of the follower’s problem for x fixed and then 

return to the leader’s problem with the corresponding basic y variables.  By focusing on 

the reduced cost coefficients of the y variables not in an optimal basis of the follower’s 

problem, they are able to provide a monotonic decrease in the number of follower bases 

that have to be examined.   

Bialas and Karwan (1982) offered a different approach that systematically explores 

vertices beginning with the basis associated with the optimal solution to the linear 

program created by removing the follower’s objective function.  This is known as the 

high point problem; their algorithm is referred as “Kth-best” algorithm.   

The second approach for solving the linear bi-level programming problem is known 

as the “Kuhn-Tucker” approach.  The fundamental idea is to use a branch and bound 

strategy to deal with the complementarity constraints.  Omitting or relaxing this 

constraint leaves a standard linear programming which is easy to solve.  The various 

methods proposed employ different techniques for assuring that complementarity is 
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ultimately satisfied (Bard and Moore, 1990; Fortuny-Amat and McCarl, 1981; Hansen, 

Jaumard and Savard, 1992; Judice and Faustino, 1992).   

The third method is based on some form of penalty approach.  Aiyoshi and Shimizu 

(1984) addressed the general bi-level programming problem by first converting the 

follower’s problem to an unconstrained mathematical program using a barrier method.  

The corresponding stationarity conditions are then appended to the leader’s problem, 

which is solved repeatedly for decreasing values of the barrier parameter.  To guarantee 

convergence the follower’s objective function must be strictly convex.  This rules out the 

linear case, at least in theory.   

A different approach using an exterior penalty method was proposed by Shimizu and 

Lu (1995) that simply requires convexity of all the functions to guarantee global 

convergence.   

Anandalingam and White (1990) used the gap between the primal and dual solution 

of the follower’s problem for x fixed as a penalty term in the leader’s problem.  Although 

this results is a nonlinear objective function, it can be decomposed to provide a set of 

linear programs conditioned on either the decision variables (x, y) or the dual variables u 

of the follower’s problem.  They showed that an exact penalty function exists that yields 

the global solution. 

In summary, the commonly used algorithms for solving the linear bi-level 

programming problem are the Kth-Best algorithm (Bialas and Karwan, 1982), the Kuhn-

Tucker approach (Bard and Moore, 1990), the complementarity approach (Bialas and 

Karwan, 1984; Judice and Faustino, 1992), the variable elimination algorithm (Hansen, 
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Jaumard and Savard, 1992), and the penalty function approach (Anandalingam and 

White, 1990). 

This dissertation develops a modified version of the original algorithm by Bard and 

Moore (1990) for solving a bi-level programming problem in the third stage of the semi-

continuous robust algorithm.  We develop our own methodology based on strong duality 

theorem and Kuhn-Tucker approach for solving the bi-level programming problem in the 

second stage of the algorithm.   

 

Table 2.3   Summary of Linear Bi-Level Programming Literature 
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 (1982) 

     ×    

Bialas and Karwan  
(1984) 
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Aiyoshi and Shimizu  
(1984) 
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Jeroslow  
(1985) 

       ×  

Bard and Moore  
(1990) 
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Anandalingam and White 
 (1990) 
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Bard  
(1991) 

       ×  

Judice and Faustino 
 (1992) 
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Hansen, Jaumard and Savard  
(1992) 

    ×     

Shimizu and Lu  
(1995) 
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(2000) 
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Assavapokee (2004)  ×   ×    ×  ×  
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2.5 Summary 
 

The work in this dissertation presents a new min-max regret robust optimization 

algorithm called semi-continuous robust algorithm for designing a robust supply chain 

network infrastructure when uncertainty greatly affects the outcomes of the decisions.  

Unlike continuous and discrete robust approaches reviewed in Section 2.3, the semi-

continuous robust algorithm is able to find the min-max regret robust optimal solution 

when uncertain parameters take their values from real compact intervals and/or some 

specific discrete real values. The proposed algorithm can also handle uncertainty in 

coefficients of continuous variables, which cannot be handled by the continuous robust 

approach. The algorithm is also developed for handling the case when correlation among 

parameters exists. 

This new algorithm can be effectively used in designing robust network infrastructure 

for the supply chain including reverse production system when the joint probability 

distributions of key parameters are unknown. The algorithm only requires the information 

on potential ranges and possible discrete values of uncertain parameters, which often are 

available in practice.  Case studies on reverse production system application of the 

algorithm are also presented.  The mixed integer linear programming model for reverse 

production system in this dissertation is most closely to the model by Newton (2000) and 

Pantelides (1996) reviewed in Section 2.2. 

The algorithm also involves the uses of the bi-level programming, which represents 

the game between decision makers and the system, in two of the algorithm’s stages.  The 

modified Kuhn-Tucker approach (Bard and Moore, 1990) with priority branching rules 
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and strong duality theory are used for solving the bi-level programming problems in this 

dissertation. 
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CHAPTER    III 

 

BASIC MODEL AND SCENARIO BASED  

ROBUST OPTIMIZATION 

 

3.1 The Reverse Production System (RPS) Model 

This chapter will begin by introducing the basic mixed integer linear programming 

model which represents our reverse production systems problem when the perfect 

information of model parameters is given.  This model will be referred as RPS model in 

this dissertation.  This RPS model was initially developed for the reverse production 

system planning of carpet recycling presented in Ammons and Realff [1999].  This RPS 

model has been modified from the original version to include sources of materials and 

demand points to the system.  The objective of this model is to maximize the net profit of 

the reverse supply chain system: that is the total revenues of the system minus the total 

operational cost of the system.  The RPS model has ability to make the strategic and 

tactical decisions on the location of collecting centers and processing centers, the type of 

materials collected at each collecting center, the type of processes installed at each 

processing center, and amount of materials collected, processed and transported within 

the reverse supply chain system.  A verbal description of the RPS mathematical model is 

as follows: 
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Maximize:  Net Profit   = (Revenues – Operating and Fixed Costs) 

 Number of units shipped to customer * selling price per unit 

+ Number of units collected * collection fee per unit 

- Fixed costs for storage, process, collection and transportation 

- Fixed costs to open collecting center and processing center 

- Fixed costs to close collecting center and processing center 

- Variable costs for storage, collection, process and 

   transportation 

Subject to:  

1.  Flow balance restrictions between sites and between time periods for each material.                         

2.  Supply restriction for each source, material and time period 

3.  Demand restriction for each customer, material and time period 

4.  Amount sold definition constraint for each customer, material and time period                        

5. Amount collected definition constraint for each site, material and time period 

6.  Logical constraints consisting of relationship among binary decision variables 

7. and 8. Upper and lower bound constraints 

9.  Capacity constraints including collection, process, storage and transportation capacity. 

10 and 11.  Non-negativity and Binary constraints 

The model itself is fairly generic and incorporates the features of reverse production 

system without needing to deviate from the above structure. Transformation tasks in the 

model allow materials to change to different material types.   Tasks also include 

collection, selling and storing.  Tasks are only allowed to occur at sites (both collecting 

and processing sites), which are physical locations.  The model permits materials to flow 
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only along predetermined routes between sites.  A single site can accommodate any of 

the tasks, and each task will have a fixed and a variable cost. 

The mathematical representation of the RPS model is presented in Table 3.5 using the 

following notation for indices, super scripts, parameters and decision variables. Table 3.1 

contains the indices and Table 3.2 contains the super scripts used in the RPS model.  

Table 3.3 contains all parameters and Table 3.4 contains all decision variables in the RPS 

model.  

Table 3.1   RPS Model Indices 

s Supplier 
i Sites 
c Customer 
j material type 
m transportation mode 
p process type 
t time period 

 

Table 3.2   RPS Model Superscripts 

Co Collection 

Sa Selling 

St Storage 

Tr transportation 

Pr Process 

Su Supplier 

Si Site 

Cu Customer 
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Table 3.3   RPS Model Parameters 

(Su)
sjtS  =   Amount of material j that is supplied at supplier s at time period t 

(Cu)
cjtD  =   Amount of material j that is demanded at customer c at time period t 

(Cu)
cjtP  =   Selling Price offered per standard unit of material j from customer c at time  

      period t 

(St)
ijtV  =   Storage cost per standard unit of material j per time period at site i at time  

      period t 

(Co)
ijtV  =   Collection cost per standard unit of material j at site i at time period t 

(Co)
ijtV'  =   Collection fee per standard unit of material j at site i at time period t 

(Pr)
iptV  =   Processing cost per standard unit for process p at site i at time period t 

(Tr)
simtV  =   Transportation cost per standard unit per distance from supplier s to site i  

     using transportation mode m at time period t 

(Tr)
mtii'V  =   Transportation cost per standard unit per distance from site i to i’ using  

      transportation mode m at time period t 

(Tr)
icmtV  =   Transportation cost per standard unit per distance from site i to customer c  

      using transportation mode m at time period t 

dsim =   Distance from supplier s to site i by transportation mode m 

dii’m =   Distance from site i to i’ by transportation mode m 

dicm =   Distance from site i to customer c by transportation mode m 

(Si)
itF  =   Fixed site operating cost if site i is opened at time period t 

(Si)
itF'  =   Fixed site opening cost of site i at time period t 
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(Si)
it'F'  =   Fixed site closing cost of site i at time period t 

(St)
ijtF  =   Fixed storage cost of material j at site i at time period t 

(Co)
ijtF  =   Fixed collecting cost of material j at site i at time period t 

(Pr)
iptF  =   Fixed processing cost for process p at site i at time period t 

(Tr)
simtF  =   Fixed cost for transportation from supplier s to site i using  

     transportation mode m at time period t 

(Tr)
mtii'F  =   Fixed cost for transportation from site i to site i’ using 

     transportation mode m at time period t 

(Tr)
icmtF  =   Fixed cost for transportation from site i to customer c using 

     transportation mode m at time period t 

(Co)
ijtC  =   Maximum collection capacity to collect material type j at site i at time  

      period t 

(St)
ijtC  =   Maximum amount of material type j that can be stored at site i in at time  

      period t 

(Tr)
simtC  =   Maximum amount of material that can be shipped for supplier s to site i using

     transportation mode m at time period t 

(Tr)
mtii'C  =   Maximum amount of material that can be shipped for site i to i’ using 

      transportation mode m at time period t 

(Tr)
icmtC  =   Maximum amount of material that can be shipped for site i to customer c  

     using transportation mode m at time period t 

(Pr)
iptC  =   Maximum amount of material that process p can produce at site i at time  

     period t 
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(Si)
it a  =   1   if site i is allowed to be opened at time period t 

(St)
it a  =   1   if storage is allowed at site i at time period t,  0  otherwise 

(Tr)
simt a  =   1   if shipment by transportation mode m is allowed between supplier s  

      and site i at time period t, 0  otherwise 

(Tr)
mtii' a  =   1   if shipment by transportation mode m is allowed between sites i  

      and i’ at time period t, 0  otherwise 

(Tr)
icmt a  =   1   if shipment by transportation mode m is allowed between sites i  

      and customer c at time period t, 0  otherwise 

(Pr)
ipt a  =   1   if process p is allowed at site i at time period t,   0  otherwise 

(Co)
ijt a  =   1   if collection of material j is allowed at site i at time period t,  0  otherwise 

(Si)
itm  =   1   if site i must be opened at time period t 

(St)
itm  =   1   if storage at site i must be used at time period t,  0  otherwise 

(Tr)
simtm  =   1   if shipment by transportation mode m must be used between supplier s  

     and site i at time period t, 0  otherwise 

(Tr)
mtii'm  =   1   if shipment by transportation mode m must be used between sites i  

      and i’ at time period t, 0  otherwise 

(Tr)
icmtm  =   1   if shipment by transportation mode m must be used between sites i  

      and customer c at time period t, 0  otherwise 

(Pr)
iptm  =   1   if process p must be used at site i at time period t,   0  otherwise 

(Co)
ijtm  =   1  if collection of material j must be done at site i at time period t, 0 otherwise

ρjp =   proportion of material type j consumed by process p 



 41

ρ′jp =   proportion of material type j produced by process p 

 

Table 3.4   RPS Model Decision Variables 

(Co)
ijt x  =   Amount of material collected of type j at site i at time period t 

(St)
ijt x  =   Amount of material stored of type j at site i at time period t 

(Sa)
cjt x  =   Amount of material sold of type j to customer c at time period t 

(Tr)
sjimt x  =   Amount of material shipped from supplier s to site i of type j using  

      transportation mode m at time period t 

(Tr)
mtiji' x  =   Amount of material shipped from site i to site i’ of type j using  

     transportation mode m at time period t 

(Tr)
ijcmt x  =   Amount of material shipped from site i to customer c of type j using  

     transportation mode m at time period t 

(Pr)
ipt x  =   Amount of material processed by process p at site i at time period t 

(Co)
ijty  =   1  if collection of material type j is to be performed at site i at time period t 

     0 otherwise 

(Tr)
simty  =   1  if shipment is to be used between supplier s and site i using 

      transportation mode m at time period t, 0 otherwise 

(Tr)
mtii'y  =   1  if shipment is to be used between sites i and i’ using  

      transportation mode m at time period t, 0 otherwise 

(Tr)
icmty  =   1  if shipment is to be used between sites i and customer c using  

      transportation mode m at time period t, 0 otherwise 

(Pr)
ipty  =   1  if process p is to be used at site i at time period t, 0 otherwise 
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(St)
ijty  =   1  if storage is to be used for material type j at site i at time period t  

     0 otherwise 

(Si)
ity'  =   1  if site i is decided to be opened at period t, 0 otherwise 

(Si)
it'y'  =   1  if site i is decided to be closed down at period t, 0 otherwise 

(Si)
ity  =   1  if site i is operated at time period t, 0 otherwise 

 

Table 3.5   RPS Mathematical Model 

Maximize   (Objective) Maximize Net Revenue 
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3.2 The Discrete Robust Reverse Production System (DRRPS) Model 

This section addresses the scenario based robust approach for solving mixed integer 

linear programming problem under input data uncertainty when all possible values of all 

model parameters can be classified into the finite number of scenarios. The general 

representation of the model can be represented as: 

,
max ( , )

. .     
    0  and  

T T

x y
Z x y c x f y

s t A x B y b
x y

= +

+ ≤
≥ ∈Γ

 

where the set Γ includes any constraints imposed on y. 

The basic components of the model’s uncertainty are a finite set of all possible 

scenarios of parameters,Ω , and the given values of parameters [ ωωωωωω Γ,,,,, bBAfc ] 

under each scenario Ω∈ω . For the specific input data [ ωωωωωω Γ,,,,, bBAfc ] for each 

scenario Ω∈ω , the problem contains two types of decision variables, one modeling 

discrete choice design decisions and the other modeling continuous design decisions. Let 

vector y represents choice design decision variables and let vector ωx denotes continuous 

design decision variables under scenario Ω∈ω . If the parameters’ perfect information is 

given to be a scenario Ω∈ω , the problem can be formulated and solved as: 

,
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When the uncertainty exists, the search for the robust solution is to find discrete design 

decisions ( Ω∈∀Γ∈ ωω   y ), such that the function ))((max ** yZO ωωω
−

Ω∈
is minimized 

where yf
x
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The following algorithm is referred as scenario based robust optimization in this 

dissertation. 

 

Scenario Based Minimax Robust Optimization 

Step 0:  Solve the following problems to optimality 
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Step 1:  Solve the following mixed integer linear programming problem to optimality. 
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Let *δ and *y represent the optimal setting of δ and y respectively. 

Step 2:  Solve the following linear programming problems to optimality Ω∈∀ω . 
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Let *
ωx represents the optimal setting of xω for each Ω∈ω . 

Step 3: The resulting robust solution is *y and the resulting continuous solution for 

scenario Ω∈ω is *
ωx . The difference in objective function value between optimal solution 

and robust solution for scenario Ω∈ω is represented by )( *** yZO ωω − . 

 

When all possible values of all RPS model parameters can be classified into a finite 

number of scenarios, a mixed integer linear programming model called DRRPS model is 

developed by applying the idea of scenario based minimax robust optimization to the RPS 

model.  The parameters and continuous variables include a new dimension of scenario,ω .  

The objective is to minimize the maximum difference over all scenarios between the RPS 

optimal objective function value and the objective function value for the robust decisions. 

The mathematical representation of the DRRPS model is presented in Table 3.10 using 

the following notation for indices, super scripts, parameters and decision variables. Table 

3.6 contains the indices and Table 3.7 contains the super scripts used in the DRRPS model.  

Table 3.8 contains all parameters and Table 3.9 contains all decision variables in the 

DRRPS model. 

 

Table 3.6   DRRPS Model Indices 

s supplier 
i sites 
c customer 
j material type 
m transportation mode 
p process type 
t time period 
ω scenario 
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Table 3.7   DRRPS Model Superscripts 

Co collection 

Sa selling 

St storage 

Tr transportation 

Pr process 

Su supplier 

Si site 

Cu customer 

 

Table 3.8   DRRPS Model Parameters 

(Su)
sjtS ω

 = Amount of material j that is supplied at supplier s at time period t for scenario ω

(Cu)
cjtD ω

 =  Amount of material j that is demanded at customer c at time period t for  

     scenario ω 

(Cu)
cjtP ω

 =   Selling Price offered per standard unit of material j from customer c at  

     time period t for scenario ω 

(St)
ijtV ω

 =   Storage cost per standard unit of material j per time period at site i at  

     time period t for scenario ω 

(Co)
ijtV ω

 =   Collection cost per standard unit of material j at site i at time period t for  

     scenario ω 

(Co)
ijtV' ω

 =   Collection fee per standard unit of material j at site i at time period t for  

      scenario ω 
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(Pr)
iptV ω

 =   Processing cost per standard unit for process p at site i at time period t for  

     scenario ω 

(Tr)
simtV ω

 =   Transportation cost per standard unit per distance from supplier s to site i using

      transportation mode m at time period t for scenario ω 

(Tr)
mtii'V ω

 =   Transportation cost per standard unit per distance from site i to i’ using  

      transportation mode m at time period t for scenario ω 

(Tr)
icmtV ω

 =   Transportation cost per standard unit per distance from site i to customer c  

      using transportation mode m at time period t for scenario ω 

dsimω =   Distance from supplier s to site i by transportation mode m for scenario ω 

dii’mω =   Distance from site i to i’ by transportation mode m for scenario ω 

dicmω =   Distance from site i to customer c by transportation mode m for scenario ω 

(Si)
itF ω

 =   Fixed site operating cost if site i is opened at time period t for scenario ω 

(Si)
itF' ω

 =   Fixed site opening cost of site i at time period t for scenario ω 

(Si)
it'F' ω

 =   Fixed site closing cost of site i at time period t for scenario ω 

(St)
ijtF ω

 =   Fixed storage cost of material j at site i at time period t for scenario ω 

(Co)
ijtF ω

 =   Fixed collecting cost of material j at site i at time period t for scenario ω 

(Pr)
iptF ω

 =   Fixed processing cost for process p at site i at time period t for scenario ω 

(Tr)
simtF ω

 =   Fixed cost for transportation from supplier s to site i by transportation mode m

      at time period t for scenario ω 

(Tr)
mtii'F ω

 =   Fixed cost for transportation from site i to site i’ by transportation mode m at  

     time period t for scenario ω 
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(Tr)
icmtF ω

 =   Fixed cost for transportation from site i to customer c by transportation  

      mode m at time period t for scenario ω 

(Co)
ijtC ω

 =   Maximum collection capacity to collect material type j at site i at  

     time period t for scenario ω 

(St)
ijtC ω

 =   Maximum amount of material type j that can be stored at site i in at  

     time period t for scenario ω 

(Tr)
simtC ω

 =   Maximum amount of material that can be shipped for supplier s to site i by  

     transportation mode m at time period t for scenario ω 

(Tr)
mtii'C ω

 =   Maximum amount of material that can be shipped for site i to i’ by  

     transportation mode m at time period t for scenario ω 

(Tr)
icmtC ω

 =   Maximum amount of material that can be shipped for site i to customer c by  

     transportation mode m at time period t for scenario ω 

(Pr)
iptC ω

 =   Maximum amount of material that process p can produce at site i at  

     time period t for scenario ω 

(Si)
it ωa  =   1   if site i is allowed to be opened at time period t for scenario ω, 0 otherwise

(St)
it ωa  =   1   if storage is allowed at site i at time period t for scenario ω, 0 otherwise 

(Tr)
simt ωa  =   1   if shipment by transportation mode m is allowed between supplier s and  

      site i at time period t for scenario ω, 0 otherwise 

(Tr)
mtii' ωa  =   1   if shipment by transportation mode m is allowed between sites i and i’ at  

      time period t for scenario ω, 0 otherwise 

(Tr)
icmt ωa  =   1   if shipment by transportation mode m is allowed between sites i and  

      customer c at time period t for scenario ω, 0 otherwise 
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(Pr)
ipt ωa  =   1   if process p is allowed at site i at time period t for scenario ω, 0 otherwise 

(Co)
ijt ωa  =   1   if collection of material j is allowed at site i at time period t for scenario ω 

     0 otherwise 

(Si)
itm ω

 =   1   if site i must be opened at time period t for scenario ω 

(St)
itm ω

 =   1   if storage at site i must be used at time period t for scenario ω, 0 otherwise 

(Tr)
simtm ω =   1   if shipment by transportation mode m must be used between supplier s and 

      site i at time period t for scenario ω, 0 otherwise 

(Tr)
mtii'm ω =   1   if shipment by transportation mode m must be used between sites i and i’ at 

      time period t for scenario ω, 0 otherwise 

(Tr)
icmtm ω =   1   if shipment by transportation mode m must be used between sites i and  

     customer c at time period t for scenario ω, 0 otherwise 

(Pr)
iptm ω

 =   1   if process p must be used at site i at time period t for scenario ω,  

      0 otherwise 

(Co)
ijtm ω

 =   1   if collection of material j must be done at site i at time period t for  

      scenario ω, 0 otherwise 

*
ωO  =   Optimal objective value from RPS Model for scenario ω 

ρjpω =   proportion of material type j consumed by process p for scenario ω 

ρ′jpω =   proportion of material type j produced by process p for scenario ω 
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Table 3.9   DRRPS Model Decision Variables 

(Co)
ijt x ω

 =   Amount of material collected of type j at site i at time period t for scenario ω 

(St)
ijt x ω

 =   Amount of material stored of type j at site i at time period t for scenario ω 

(Sa)
cjt x ω

 =   Amount of material sold of type j to customer c at time period t for scenario ω

(Tr)
sjimt x ω

 =   Amount of material shipped from supplier s to site i of type j using  

     transportation mode m at time period t for scenario ω 

(Tr)
mtiji' x ω

 =   Amount of material shipped from site i to site i’ of type j using  

     transportation mode m at time period t for scenario ω 

(Tr)
ijcmt x ω

 =   Amount of material shipped from site i to customer c of type j using  

     transportation mode m at time period t for scenario ω 

(Pr)
ipt x ω

 =   Amount of material processed by process p at site i at time period t for  

     scenario ω 

(Co)
ijty  =   1  if collection of material type j is to be performed at site i at time period t 

     0 otherwise 

(Tr)
simty  =   1  if shipment is to be used between supplier s and site i by  

     transportation mode m at time period t, 0 otherwise 

(Tr)
mtii'y  =   1  if shipment is to be used between sites i and i’ by  

     transportation mode m at time period t, 0 otherwise 

(Tr)
icmty  =   1  if shipment is to be used between sites i and customer c by  

      transportation mode m at time period t, 0 otherwise 

(Pr)
ipty  =   1  if process p is to be used at site i at time period t, 0 otherwise 

)(St
ijty  =   1  if storage is to be used for material type j at site i at time period t,  

      0 otherwise 
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(Si)
ity'  =   1  if site i is decided to be opened at period t, 0 otherwise 

(Si)
it'y'  =   1  if site i is decided to be closed down at period t, 0 otherwise 

(Si)
ity  =   1  if site i is operated at time period t, 0 otherwise 

 

Table 3.10   DRRPS Mathematical Model 

Minimize      δ      (Minimize maximum regret)  

Subject to:
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The DRRPS model obviously becomes computationally prohibitive for finding 

robust solutions for large numbers of scenarios. In the Chapter IV of this dissertation, 

we concentrate on presenting effective algorithmic procedures to generate such 

robust design decisions for such problems. 
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CHAPTER    IV 

 

SOLUTION METHODOLOGIES FOR SCENARIO BASED 

ROBUST OPTIMIZATION WITH A FINITELY  

LARGE NUMBER OF SCENARIOS 

 

4.1  Introduction 

All decision-making problems are compounded in difficulty by the degree of 

uncertainty surrounding the key parameters.  One strategy is for decision makers to make 

decisions with performance close to optimal for all future realizations of parameters’ 

values. Thus, instead of finding optimal decisions for one given future scenario, decision 

makers will search for decisions that are “robust” for a variety of likely future scenarios.  

In this chapter, the uncertainty is represented as a finitely large set of scenarios. The 

mixed integer linear programming formulation is used to represent the decision-making 

situation for each scenario.  Robust decisions for the mixed integer linear programming 

problem can be obtained by solving the min-max regret robust optimization problem 

presented in Chapter III.  The size of the problem grows substantially for each scenario 

considered, and consequently the computation time required to find optimal solutions.  
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In this chapter, we first develop a heuristic algorithm called the scenario relaxation 

(SR) algorithm for solving the scenario based mini-max regret robust optimization 

problems when the number of scenarios is large but finite. This heuristic algorithm 

guarantees the termination at an optimal robust solution but does not guarantee the 

shorter computation time than solving the problem directly.  This heuristic method 

initially considers subset of all scenarios and solves the relaxation of the full problem. 

The optimality condition is then checked. The algorithm terminates if the optimal 

condition is satisfied, otherwise the algorithm will select some subset of scenarios not yet 

considered and add them to generate a new relaxation problem. The application of this 

heuristic is demonstrated in the planning of robust e-scrap reverse production systems for 

the state of Georgia in Chapter V.  The results show a significant improvement in 

computation time over the direct solution method. 

Also in this chapter we extend the use of the accelerated Benders’ decomposition 

algorithm as an alternative solution methodology for the scenario based mini-max regret 

robust optimization problems with finitely large number of scenarios.  The idea of 

accelerated Benders’ decomposition algorithm was originally presented in Santoso 

(2003) for solving two-level stochastic optimization problems.  For the accelerated 

Benders’ approach, this dissertation introduces a set of cuts referred as sub-problem cuts 

that carry the information from sub-problems to the master problem.  Finally, the use of 

the SR algorithm within the accelerated Benders’ decomposition framework is also 

introduced in this dissertation as an alternative solution methodology for the problem. 
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4.2 Scenario Relaxation (SR) Algorithm 

The key insight upon which the SR algorithm is built is that it is often true that only a 

small subset of scenarios must be explicitly examined when searching for the optimal 

robust solution.  This subset will be comprised of two types of scenarios.  The first type 

consists of scenarios required to ensure that the resulting solution is feasible for all 

scenarios. The second type consists of scenarios required to establish the optimal robust 

solution.  Thus, the SR algorithm starts by establishing the first type of scenarios, starting 

with a guess informed by knowledge of the problem.  The algorithm continues 

constructing this set by adding infeasible scenarios based on the current robust solution, 

y.   

The second set of scenario is constructed (after no infeasible scenario exists for the 

current robust solution) by a very simple procedure. The procedure starts by solving the 

problem with some scenarios relaxed.  The optimal solution of this relaxed problem is 

then used to calculate the regrets from optimality for all relaxed scenarios. If the optimal 

value of the relaxed problem, δ, is greater than or equal to all of these regrets, the optimal 

condition can be confirmed and the algorithm terminates at the optimal robust solution. 

Otherwise, a subset of these relaxed scenarios with their regrets greater than δ are 

explicitly considered.  

The reason that we can expect the number of scenarios required for solving the 

problem to be small is that the mini-max regret optimal robust solutions typically have a 

small number of scenarios with *δ equal to the max regret )( *** yZO ωω −  and that this 

constraint will be slack for the rest of scenarios in a finite set of all possible scenarios Ω.  

If we could identify these defining scenarios and those required for feasibility, they 
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would form the subset of scenarios essentially required for solving the problem. From 

these insights and observations, the SR algorithm can be summarized as follows. 

 

Scenario Relaxation Algorithm 

Step 0:  Solve the following problems to optimality and let UB = ∞ and LB = −∞ . 
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Step 1:  Identify a set of scenarios Ω⊆C  (scenarios for feasibility). 

Step 2:  Solve the following problem to optimality. 
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If an optimal solution exists, let *
Cδ and *

Cy  represent the optimal setting of δ and y 

respectively and update LB *
Cδ←  and go to Step 3. Otherwise stop the algorithm with no 

robust solution for the problem. 

Step 3:  Solve the following problems to optimality. 
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If an optimal solution exists for scenario ω, let *
ωx represent the optimal setting of xω for 

each Ω∈ω .  Let W1 include all scenarios such that the problem is infeasible and  
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let W = })(|\{ ****
1 CCyZOW δω ωω >−Ω∈ . 

Step 4:  If Φ≠1W , go to Step 5.  Otherwise, update * * *min( , max( ( )))CUB UB O Z yω ωω∈Ω
← − . 

If UB LB ε− ≤  for non-negative pre-specified ε, the algorithm is terminated and the 

resulting ε-optimal robust solution is *y where * * *max( ( ))O Z y UBω ωω∈Ω
− = . Otherwise, go to 

Step 6. 

Step 5:  Select a set 11 ' WW ⊆ and set '1WCC ∪← and go to Step 2. 

Step 6:  Select a set WW ⊆' and set 'WCC ∪← and go to Step 2. 

 

The following proposition shows that by setting 0ε = , the heuristic algorithm will 

either terminate at an optimal robust solution if one exists or determine that no feasible 

robust solution exists. 

 

Proposition 1:  The scenario relaxation algorithm either terminates at an optimal robust 

solution or determines that no feasible robust solution exists by setting 0ε = . 

Proof:    There are two termination rules in the SR algorithm. The first termination rule is 

in Step 2 when the relaxation problem becomes infeasible. If the relaxed problem has no 

solution, it can only mean that there exists no feasible robust solution to the full problem. 

The second termination rule is in Step 4, when 0ε = , the condition is equivalent to  

1WW ∪  = Ф.  If this is the case, it means that Ω∈∀≤− ωδωω   )( ****
CCyZO . Because *

Cy  is 

a feasible discrete solution to the problem, it is true that:  

******** ))((max))((max CCyZOyZO δδ ωωωωωω
=−≤−=

Ω∈Ω∈
. 
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On another hand, because *
Cδ  is the optimal objective function value of the relaxation 

of the original minimization problem, it is true that ** δδ ≤C . These results show that *
Cy  is 

an optimal robust solution to the problem.                                                                            � 

 

For some problem structures and some scenario designs, set C in Step 1 of the SR 

algorithm can be predetermined. Such is the case with the case study on e-scrap reverse 

production system for state of Georgia presented in the next chapter. 

There are no known theoretical results that determine the methodologies for selecting 

set W’ and set W which will guarantee the improvement in computational time required to 

solve the problem.  In the following section, we present some heuristic algorithms for 

selecting these sets. 

 

Selection Methodology for Set W’ 

In this section, we present three heuristic selection methods for set W’ in Step 6 of the 

SR algorithm.  These alternative approaches are the conservative selection method, the 

fixed size selection method, and the value relation selection method.  Each is addressed in 

turn.  

 

Conservative Selection Method 

The conservative selection method sets W’ to be W in Step 6 of the SR algorithm. 

This selection method requires fewer algorithm iterations than other selection methods 

with the tradeoff of longer computation times per iteration. 
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Fixed Size Selection Method 

The fixed size selection method selects set WW ⊆' in Step 6 of the SR algorithm such 

that W’ is the scenario set containing the m highest )( ***
CyZO ωω −  function values in W 

where |}| ,min{ Wnm i=  and ni is a pre-specified constant for iteration i of the algorithm. 

This selection method requires fewer algorithm iterations when a large ni value is used 

with the trade off of longer computation time per iteration, and vice versa when a small ni 

value is used. 

 

Value Relation Selection Method 

The value relation selection method selects set WW ⊆' in Step 6 of the SR algorithm 

such that  

W’ =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤
−

+−−
∈

Ω∈

Ω∈ εω
ωω

))((max

)())((max
| ***

******

Cuuu

CCuuu

yZO

yZOyZO
W where ]1 ,0[∈ε . 

This selection method requires fewer algorithm iterations when a large ε value is used 

with the trade off of longer computation time per iteration, and vice versa when a small ε 

value is used. 

 

Each of these heuristic methods for selecting the set W’ presented above has 

advantages and disadvantages relative to computational requirements of the SR 

algorithm.  Decision makers have to select the proper selection method based on the trade 

off between number of iterations required for the SR algorithm and the time required for 

each iteration.  
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Selection Methodology for Set W1’ 

In this section, we present two heuristic selection methods for set W1’ in Step 5 of the 

SR algorithm.  These alternative approaches are the conservative selection method and 

the fixed size selection method.  Each is addressed in turn. 

 

Conservative Selection Method 

The conservative selection method sets W1’ to be W1 in Step 5 of the SR algorithm. 

This selection method requires fewer algorithm iterations than other selection methods 

with the trade off of longer computation times per iteration. 

 

Fixed Size Selection Method 

This fixed size selection method selects set 11 ' WW ⊆ in Step 5 of the SR algorithm 

such that W1’ is the scenario set containing m scenarios in W1 with the highest objective 

function value for the phase I problem where |}| ,min{ 1Wnm i=  and ni is a pre-specified 

constant for iteration i of the algorithm.  

An alternative method is to select W1’ such that W1’ is the scenario set containing m 

scenarios in W1 with the lowest objective function value from the following linear 

programming problem. 

*

max         
. .        1

      
               0 

C

s t s
A x s b B y

x
ω ω ω

δ

δ ≤

+ = −

≥
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This selection method requires fewer algorithm iterations when a large ni value is 

used with the trade off of longer computation time per iteration, and vice versa when a 

small ni value is used. 

 

Each of these heuristic methods for selecting the set W1’ presented above has 

advantages and disadvantages relative to computational requirements of the SR 

algorithm.  Decision makers have to select the proper selection method based on the trade 

off between number of iterations required for the SR algorithm and the time required for 

each iteration. 

 

4.3 Accelerated Benders’ Decomposition Algorithm 

It is not unusual for realistically sized mathematical models to produce mixed integer 

linear programs with many thousands or even millions of rows and columns. To solve 

such problems, some method must be applied to convert the large problems into one or 

more appropriately coordinated smaller problems of manageable size. Popular 

decomposition methodologies include Dantzig-Wolfe decomposition (Dantzig and 

Wolfe, 1960), Benders’ decomposition (Benders, 1962) and Lagrangian relaxation 

techniques (Falk, 1967).  

In general, a decomposition principle is a systematic procedure for solving large-scale 

general mathematical programs or specific mathematical programs with special structure. 

The strategy of a decomposition procedure is to iterate between two separate 

mathematical programs. Information is passed back and forth until a point is reached 

where the solution to the original problem is achieved.  
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The decomposition methodology we use for the DRRPS model in this dissertation is 

an accelerated Benders’ decomposition algorithm (Santoso, 2003).  The DRRPS model 

contains only one set of binary decision variables for all scenarios. If their values can be 

fixed, the problem can be partitioned into several linear programming problems (one for 

each scenario) that can be solved independently.   For this reason, the DRRPS model is 

an ideal problem structure for applying the Benders’ decomposition algorithm. 

This section begins by restating a form of the DRRPS model and developing every 

property required for the application of Benders’ decomposition: convexity of the 

objective function and the subgradient required for support function.  This results in a 

statement of resulting master problem and sub-problems.  These structures are used for 

the accelerated Benders’ approach, where several of the cuts developed by Santoso 

(2003) are extended to the DRRPS model and a new type of cut, the sub-problem cut, is 

introduced. 

As previously introduced in Chapter III, the DRRPS model is a mixed integer linear 

programming model with the following structure and Ω is a finite set of scenarios: 

( ) ( )*

,
                   min(max( ))

    subject to:
                                  0             (inventory balancing constraints)   
                                 

T T

x y
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A x
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ω
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This structure can also be rewritten in the following form: 
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and ,   1, 2,3, 4i
y iωπ ∀ =  represent the dual variables associated with the model constraints. 

In order to apply Benders’ decomposition, it is required that )( yf is a convex function 

on y . The following proposition gives this result. 

 

Proposition 2:  )( yf is a convex function on y . 

Proof:  ( ) ))((max)( * yQyFOyf T
ωωωω

−−=
Ω∈

is obviously a convex function on y  because 

of the following reasons. 

1.  )(yQω and ( ) yF T
ω  are concave function on y . 

2.  (-1)*concave function is a convex function. 

3.  Summation of convex functions is also a convex function. 

4.  Maximum function of convex functions is also a convex function.                        � 

 

The key ideas of Benders’ decomposition algorithm, using the convexity of 

)( yf on y , are the use of support functions of function )( yf to approximate )( yf  and 

use the minimum value from this approximation as the lower bound on the actual 
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minimum value of the function.  Note that the support function of function )( yf  at iy  is 

)()( iTi yysyf −+  where )( iyfs ∂∈ is a subgradient of f at iy and )( iyf∂ is the 

subdifferential of f at iy . 

 

Definition 1 (Nemhauser and Wolsey, 1988):  (Subdifferential and Subgradient) the 

subdifferential )( iyf∂ of a convex (concave) function f at iy  is the set of 

vectors ns ℜ∈ satisfying ( ) ( ) ( ) ( )   .i T if y f y s y y y≥ ≤ + − ∀  A vector )( iyfs ∂∈ is called 

a subgradient of f at iy .  

 

The result from the following proposition provides the proper subgradient of f at iy . 

 

Proposition 3:  )()( *
,,
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y

T
y

yfGF iiiii ∂∈−−
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Proof:  From the result of strong duality theory,  
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from )( iTiTT yyFyFyF iii −−−=−
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From proposition 3, the master problem and sub-problems for Benders’ 

decomposition of the DRRPS model can be defined as follows: 

 

Master-problem: 
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, )()( * iiTi yQyFOyf iii ωωω
−−= and YK contains 

all extra cuts together with original constraints and integrality constraints. 

 

Sub-problems: 
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with )()( * iiTi yQyFOyf iii ωωω
−−= as the upper bound on )(yf  if )( iyQω exists Ω∈∀ω . 

The accelerated Benders’ approach is built on the original Benders’ decomposition 

algorithm with accelerator cuts.  The algorithm will terminate when the difference 

between upper and lower bounds is less than some nonnegative predetermined ε.  The 

following section contains the detailed methodology for the accelerated Bender’s 

decomposition algorithm. 

 

Accelerated Benders’ Decomposition Algorithm 

Step 0:  (Initialization) Select }}1,0{,0|{ ||0 yzzDzy ∈Ω∈∀≤∈ ωω   and )( 0yQω exists 

Ω∈∀ω .  Set LB = -∞, UB = +∞, K = 0 and Y0 = }}1,0{,0|{ || yzzDz ∈Ω∈∀≤ ωω   ∪ 

sub-problem cuts and trust region constraints.  Note that 0y can be constructed from SR 

algorithm. 

Step 1:  (Iteration K) Solve sub-problem Ω∈∀ω  for )( KyQω . 

If the solution is infeasible Ω∈∃ω , K←K-1 and go to Step 5. 

Otherwise, YK←YK-1 ∪ Knapsack cuts and go to Step 2. 

Step 2:  Let *4
, Kyω

π be the optimal dual solution for sub-problem of scenario Ω∈ω . 

Let )((maxarg * KKTK yQyFO ωωω
ω

ω −−∈
Ω∈

.  If UB > )()(* KKKT yfyQyFO KKK =−−
ωωω

,  

UB ← )(* KKT yQyFO KKK ωωω
−−  and KOpt yy = . 

Step 3:  If UB – LB ≤ ε  (nonnegative predetermined value), stop and Opty  is the ε-

optimal robust solution.  Resolve sub-problems for optimal ωx Ω∈∀ω . 

Otherwise go to Step 4. 
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Step 4:  Solve master-problem 

K

iT
y

Ti
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ωωω

θ

πθ

θ

 

Set K←K+1, *yyK ← , LB ← θ* and go to Step 1. 

 Step 5:  YK←YK ∪ Extreme ray cuts and go to Step 4. 

 

To accelerate the Benders’ decomposition algorithm, trust regions and additional cuts 

were proposed by Santoso (2003).  These cuts can be extended to the DRRPS model as 

shown below.  Also a new type of cut called the sub-problem cut is introduced.  The 

following subsection provides the detail of trust region cut, knapsack cut, extreme ray 

cut, and sub-problem cut. 

 

Trust Region Constraints 

An undesirable feature of Benders’ decomposition algorithm is the wild oscillation of 

solutions from one region of feasible set to another, which causes slow convergence of 

the algorithm.  Santoso (2003) first introduced the use of trust region constraints with 

Benders’ decomposition for two-stage stochastic programming.  The trust region 

constraint in the master problem at iteration i+1 can be represented as: 

||)1(
}1|{ }0|{

yyy i

ylj ylj
jj

i
l

i
l

   <∆≤+−∑ ∑
=∈ =∈

.  In order to ensure the convergence of the 

algorithm, the trust region constraints will be imposed in the initial iterations of the 

algorithm, and will be dropped once the solution has been stabilized. 
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In this dissertation, we classify trust region constraints into two types. The first type is 

referred as global trust region constraint.  This type of constraint applies the trust region 

concept to all binary decision variables in the master-problem. The second type of 

constraints is referred to as the local trust region constraint. This second type of 

constraint only applies the trust region concept on some of the important binary decision 

variables.  For example, trust region constraints can be applied only to the binary decision 

variables corresponding to site opening decisions, which have the most effect on the 

objective function value of the model.  

 

 Knapsack Cuts 

Santoso (2003) first introduced the use of knapsack cuts with Benders’ decomposition 

for two-stage stochastic programming. This type of cuts can improve the quality of the 

solution from the master problem if the high quality upper bound information is 

available.   

Let ''y  be one of the feasible good robust solutions of the problem attained from any 

heuristic procedure.  The knapsack cut can be constructed by using the following 

arguments. 
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Note that )''(yf can be replaced with any known good upper bound on the optimal 

objective function value.  If a good upper bound is available, then adding the above 

knapsack cuts can have a significant impact in generating a high quality solution from the 

master problem in the iteration i + 1. 

 

Extreme Ray Cuts 

This cut is the classical type of cut for Benders’ decomposition algorithm for 

preventing the master problem from generating the sub-problem infeasible solution.   

Let Ω∈'ω be a scenario such that the sub-problem associated with this scenario is 

infeasible under the solution 'y  from the master-problem.  The extreme ray cut will be 

generated with the purpose of eliminating not only the solution 'y but also some other 

possible infeasible solutions from the next solution of the master-problem.  The extreme 

ray cut generated for the master-problem will have the following structure: 

0)( 4'3'2' ≥++ vyGvdvs TTT
ωωω  

where 432 ,, vvv can be calculated from the following linear programming problem where 

1  is the vector with all elements equal to one. 
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Sub-Problem Cuts 

In the early iterations of the Benders’ decomposition, the master-problem contains 

only logical constraints, }}1,0{,0{ ||yyyD ∈Ω∈∀≤ ωω   and a few cuts.  At these 

iterations, the master-problem tends to produce the solution 'y such that it could be sub-

problem infeasible for some scenario Ω∈'ω .  In order to improve the quality of the 

master-problem solutions to be sub-problem feasible for all scenarios, information of the 

sub-problem should be included in the master-problem constraints.  These additional 

constraints for the master-problem are referred as sub-problem cuts in this dissertation.  

The sub-problem cuts used in this dissertation are listed below. 
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Constraints (1) ensure that the master-problem solution will always have enough 

transportation capacity for the supply of each material at each source for each time period 
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for all scenarios.  Constraints (2) and (3) ensure that if there are some flows into the 

specific site at the specific time period, there will always be some flows out of that site at 

that time period.  Constraints (4) ensure that if there are some flows from any source to 

the specific site, the site will always initiate its collection process.  Constraints (5) ensure 

that if the site is opened, there will always be some activity at that site.  Finally 

constraints (6) ensure that there will always be some flows from some sites to some 

customers in each time period if the minimum numbers of satisfied customers are 

positive. 

This section illustrates one of many possible extensions of the use of the accelerated 

Benders’ decomposition algorithm (Santoso, 2003) for making the mini-max regret 

robust decisions with the finitely large number of scenarios.  Decision makers can 

consider this accelerated Benders’ decomposition algorithm as one of the good 

alternative solution methodologies for this type of the problem. 

     

4.4 Summary 

This chapter presents two alternative solution methodologies for solving the large-

scale mini-max regret robust optimization problems caused by finitely large number of 

possible scenarios when the direct solution methodology fails to solve the problem in 

reasonable amount of time. 

The first alternative algorithm is the SR algorithm, which use the results from the 

observation that the robust solution can be achieved by solving the problem considering 

only a smaller subset of all possible scenarios.  This subset consists of two types of 

scenarios.  The first type of scenarios consists of scenarios that control the feasibility of 
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the solution over all possible scenarios.  The second type of scenarios consists of 

scenarios that control the minimum maximum regret of the problem.  This chapter also 

provides the proof that the SR algorithm converges to the optimal robust solution if one 

exists in finite number of iterations.  Several heuristics for set selection set in the SR 

algorithm are presented as the alternative procedures for decision makers.  Even though 

there is no theoretical proof guaranteeing the faster computational time required for 

solving the problem than the direct method, the result from the next chapter illustrates the 

significant reduction in computational time required for solving the case study problem.    

The second alternative algorithm is the accelerated Benders’ decomposition algorithm 

(Santoso, 2003).  This chapter presents one possible extension of the accelerated 

Benders’ decomposition algorithm for solving the mini-max regret robust optimization 

problem.  When applying the algorithm to the DRRPS model, the new type of cuts called 

sub-problem cut is also presented.   

The next chapter of this dissertation presents an application of the SR algorithm on 

the planning of robust e-scrap reverse production systems for the state of Georgia where 

the problem cannot be solved using the direct approach.   
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CHAPTER    V 

 

CASE STUDY FOR SCENARIO BASED  

ROBUST OPTIMIZATION 

 

5.1 Introduction 

Electronic equipment is ubiquitous in current wealthy societies.  The variety and 

volume make it inevitable that we inherit significant reuse/recycling/disposal challenges, 

including collection, transportation and production costs along with serious hazardous 

waste concerns.   But with this challenge comes an opportunity, and in this case the 

opportunity is to view the e-scrap as a resource and to capture value from the large stream 

of used electronics. 

The objective of this chapter is to describe a case study for the design of a large scale 

system for collecting, transporting, and processing used electronics in the state of 

Georgia. Our objective is to maximize the financial viability of the infrastructure and 

minimize the maximal risk of capital investment when faced with key uncertainties. Due 

to their predominance in the waste stream, our primary focus in this case study is a subset 

of the used electronics stream:  televisions, CPUs, and computer monitors.  

The recycling of electronic equipment in Georgia is a significant problem.  For 

example, we predict that more than 1,500,000 lbs of used televisions, 2,700,000 lbs of 

used computer monitors, and 3,300,000 lbs of used CPUs could be collected and 

processed in the state of Georgia each year if 30% of Georgia state households with 
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recyclable materials participate in the recycle program. The case study considers the 

configuration of a regional electronics recycling system with local area collecting centers 

and a host of processing centers ranging from large, moderate and small size commercial 

firms to non-profit organizations.  An illustration of the physical flows of the reverse 

production system (RPS) for used electronics in Georgia is shown in Figure 5.1. 

   

 

Figure 5.1  Physical Flow of Used Electronics 

 

The next section of this chapter will give the detail of the regional case study for the 

state of Georgia and illustrate the applications of the scenario relaxation algorithm on the 

case study. 
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5.2  Robust Design for E-Scrap Reverse Production System for the State of Georgia 

The case study considers the predominant physical inputs to the system to be used 

televisions, computer monitors, and CPUs. We assume that no material may go 

deliberately uncollected, in other words the variables that represent the inflow of the 

material to the system must equal the amount available for collection. The outputs are in 

several categories of remanufactured units, component parts, and materials listed in 

Figure 5.2. The financial flows, depicting profits and costs in different shades are 

indicated. 

 

 

Figure 5.2  Cash Flow Diagram with Costs (Black) and Profits (White) 
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Figure 5.3  Division of the State of Georgia into 12 DCA Regions 

 

This case study divides the State of Georgia into 12 disjoint regions as shown in Figure 

5.3 based on service delivery regions defined by Georgia’s Department of Community 

Affairs (DCA).  Each region represents a source of electronic waste streams, a centralized 

collection site and also a demand point for the units after refurbishing processes. The 

amount of used electronic equipments available for collection can be approximated from 

the population in each region. 

For e-scrap originating in the state, the case study considers 12 potential state of 

Georgia government-collection centers located in the center county of each DCA region.  

The case study also designates external regions 13 and 14 representing out of state sources 
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of e-scrap. Each collection center is assumed to collect television, monitors, and CPUs 

supplied by the small business and resident sources located within its 100 miles radius.   

Additionally, the case study includes six non-profit collecting centers throughout the 

state and one large commercial collecting center located in Marietta, Georgia. The large-

scale collection center is assumed to collect computer monitors and CPUs supplied by 

large-scale business sources from both inside and outside of Georgia. Figure 5.4 shows all 

potential sites considered in the case study. 

 

 

Figure 5.4  All Potential Sites Considered in the Case Study 
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Supply Information  

 Using percentages determined from recent studies in an adjacent state, we 

estimate the supply of e-scrap by assuming that on average 6.2% of the households have 

an electronic item ready for recycling (Pasco County, Florida, Pilot Program, April 

2000), and 20% to 30% of the total population will participate in the collecting program. 

This case study assumes that the relative proportions of the amounts collected (in lbs) for 

televisions, computer monitors, and CPUs are 50:23:27. The case study also assumes that 

the average weights for televisions, computer monitors, and CPUs are 51.5 lbs, 27.2 lbs, 

and 29.2 lbs respectively (Alachua County Florida, Summary Report, October 1999). The 

sources of computer monitors and CPUs are from residential (15%) and business sectors 

(85%), but the sources for televisions are only from the residential sector.  

 Table 5.1 shows the estimated supply information for each type of the electronic 

equipment from each region under the assumption that 30% of the population will 

participate in the program.   

 
Table 5.1  Georgia E-Scrap Supply Estimation 

 
Region Supply for TVs (lbs)** Supply for Monitors (lbs)* Supply for CPUs (lbs)*

1 133,610 216,400 272,720 
2 87,236 141,290 178,060 
3 657,000 1,064,130 1,341,040 
4 77,388 125,340 157,960 
5 83,970 136,000 171,400 
6 84,318 136,570 172,110 
7 83,339 134,980 170,110 
8 67,680 109,620 138,150 
9 52,283 84,680 106,720 

10 67,605 109,500 137,990 
11 69,912 113,240 142,700 
12 104,024 168,480 212,330 
13 0 90,000 90,000 
14 0 90,000 90,000 
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* CPUs and Monitors: Amount of supply = participation % × 6.2% × Number of 
households × Product proportion × (100/15) 

** Televisions: Amount of supply = participation % × 6.2% × Number of households × 
Product proportion  

 

Collecting Center Information 

The numbers used in the case study for each collecting center are given in Table 5.2. 

 
Table  5.2  Collecting Center Data 

 
Description Value 

Fixed collection cost  $16,000 per year per type of 
material collected* 

Collection cost  $0.01 per pound  
Opening cost for government collection sites  $5,000 per year 
Opening cost for non-profit collection sites  $28,800 per year  
Opening cost for large commercial-collecting center $134,500 per year  
The collection fee charged for small business and 
residential sources  

$5.28 per item 

The collection fee charged by large business 
sources  

$0.6 per item 

*   It is assumed that 1 worker per type of material collected with pay rate of $8 per hour 
working for 8 hours per day for 250 days per year. 

** Assuming subsidies reduce the final cost. 

 

Processing Center Information 

 The case study considers 15 potential commercial processing centers (nine sites 

located in Georgia, two sites located in Tennessee, two sites located in North Carolina, 

and two sites located in South Carolina), six nonprofit processing centers, one large 

commercial processing center, and one prison processing center.  Each facility represents 

an actual refurbishing and/or demanufacturing facility located in Georgia and nearby 

states. Table 5.3 contains the general information for all 23 potential processing centers 

considered in the case study. 
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Table 5.3  General Information for All 23 Potential Processing Centers 

 
Processing Site 

Designation State County/City Annualized Site 
Opening Cost 

Number of 
facilities Type 

1A Georgia Catoosa $28,800 1 
2A Georgia Carroll $28,800 1 
3A Georgia Cobb $28,800 2 
4A Georgia Fulton $28,800 5 
5A Georgia DeKalb $28,800 6 
6A Georgia Gwinnett $28,800 1 
7A Georgia Washington $28,800 1 
8A Georgia Baldwin $28,800 1 
9A Georgia Richmond $28,800 1 
10A Tennessee Davidson $28,800 1 
11A Tennessee Anderson $28,800 2 

12A North 
Carolina Buncombe $28,800 1 

13A North 
Carolina Mechlenburg $28,800 1 

14A South 
Carolina Charleston $28,800 1 

15A South 
Carolina Lexington $28,800 1 

Commercial 
processing 

sites 

1NP Georgia Marietta $28,800 1 
2NP Georgia Atlanta $28,800 1 
3NP Georgia Atlanta $28,800 1 
4NP Georgia Tucker $28,800 1 
5NP Georgia Sandersville $28,800 1 
6NP Georgia East Point $28,800 1 

Nonprofit 
processing 

sites 

1PR Florida Malone $19,200 1 
Prison 

processing 
site 

1AA Georgia Marietta $134,500 1 

Large 
commercial 
processing 

site 
 

 For each processing center, there are six main potential processes:  television 

refurbishment, monitor refurbishment, CPU refurbishment, television demanufacturing, 

monitor demanufacturing, and CPU demanufacturing, but not all processing centers can 
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perform all these six processes. The information for these six processes is presented in 

Tables 5.4 and Table 5.5. 

 
Table 5.4  Variable Costs for Refurbishing and Demanufacturing Processes 

Description Value 
Variable processing cost for refurbishing TVs $0.23 per lbs* 
Variable processing cost for refurbishing monitors $0.44 per lbs* 
Variable processing cost for refurbishing CPUs $0.51 per lbs* 
Variable processing cost for demanufacturing TVs $0.05 per lbs** 
Variable processing cost for demanufacturing monitors $0.09 per lbs** 
Variable processing cost for demanufacturing CPUs $0.08 per lbs** 
Variable processing cost for demanufacturing process in prison site $0.00425 per 

lbs 
*   It is estimated by assuming the processing labor cost is $10 per hour and replacing 

costs are $8, $8, and $10 for TV, monitor, and CPU respectively. The testing process 
will take on average of 10 minutes and the refurbishing process will take on average of 
20 minutes (DAAE30-98-C-1050, 2000) 

** This information is the average of the information from Waters (1998), Pepi (1998), 
and Minnesota Office of Environmental Assistance (2001). 

 

Table 5.5  Fixed Processing Costs for Each Processing Center 

Sites Description Annualized Value 

Fixed processing cost for refurbishing 
all products  

$8,820 per process 
(DAAE30-98-C-1050, 
2000) Commercial 

processing sites  Fixed processing cost for 
demanufacturing all products  $8,000 per process  

Non-profit 
processing sites  Fixed processing cost  $26,667 per process  

(Phillips, 2003) 
Fixed processing cost for refurbishing 
process 

$6,250 per process  
(Nejad, 2003) Large 

commercial 
processing site  Fixed processing cost for 

demanufacturing  process 
$32,000 per process  
(Nejad, 2003) 

Prison 
processing site 

Fixed processing cost for 
demanufacturing process $500 per process * 

* Estimated utility fee per year for the process in the prison 
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Demand Information 
 
 The processing centers provide an output of remanufactured equipment, parts, and 

recycled material to a set of demand locations.  We consider four types of demand 

sources and estimate the quantities using the assumption that the demand for refurbished 

products are greater than or equal to the supply of used products provided by that region. 

The first type of demand comes from people within Georgia who are interested in buying 

refurbished electronic equipment.  For this type of demand, we use the same 12 DCA 

regions to designate the demand locations.  

 The second type of demand source is the group of recycling facilities interested in 

buying metal, plastic, CRT, and other demanufactured materials.   We consider a total of 

five recyclers located in several states:  Georgia (metal recycler), Florida (CRT products 

and electronics recycler), Texas (plastics recycler), and Ohio (CRT glass recycler).   

 The third type of demand comes from both resident and commercial sources that 

are interested in buying refurbished commercial electronic equipments in large batches 

provided by the large commercial processing site.   

 The last type of demand describes landfills to which we can send the non-hazardous 

trash resulting from the demanufacturing.   We consider eight landfills located in Georgia 

and group them into 5 demand points based on the DCA regions. (Landfill location 

information can be found at http://www.wastebyrail.com/network.html.).  Table 5.6 

illustrates the price information for each refurbished product and material. 
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Table 5.6  Price Information for Refurbished Products and Materials 

 
*   EPA-901-R-00-002, September 2000 
** The data is from http://www.scrapcomputers.com 
***The data is from http://www.boxq.net 
 

Transportation Information 

There are three types of transportation cost considered in this case study. The first 

type corresponds to the transportation cost of the people who travel to the collecting 

center and drop off their used electronic equipment. This type of transportation cost is 

approximated by the gasoline cost ($0.15 per mile) and we assume that on average one 

trip can carry up to 50 lbs of electronic equipment. With this approximation, the 

transportation cost per lb per mile is $0.003.  

The second type represents the transportation costs for moving material between 

collection centers and processing centers, the transportation costs for moving material 

between processing centers and recycler demand points, and the transportation costs for 

Parameter Value 
Selling price for plastic ($ per lb) 0.175* 
Selling price for PCB ($ per lb) 0.9* 
Selling price for disc drive ($ per lb) 0.2* 
Selling price for CRT ($ per lb) -0.1* 
Selling price for metal ($ per lb) 0.0175* 
Selling price for wire ($ per lb) 0.165* 
Selling price for power supply ($ per lb) 0.06* 
Selling price for trash ($ per lb) (land fill tipping fee) -0.028* 
Selling price for used TV ($ per unit)  60.00 
Selling price for used monitor ($ per unit)  49.00 *** 
Selling price for used CPU ($ per unit)  49.00 *** 
Selling price for broken CPU ($/lbs) 0.02** 
Selling price for usable CPU ($/lbs) 0.108** 
Selling price for broken monitor ($/lbs) -0.257** 
Selling price for usable monitor ($/lbs) 0.0184** 
Selling price for broken television ($/lbs) -0.25** 
Selling price for usable television ($/lbs) -0.25** 
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moving material between processing centers and landfill demand points. This type of 

transportation can be performed by a large truck with the cost of $2 per ton per mile or 

$0.0009 per lb per mile.  

The last type corresponds to the transportation cost charged by United Parcel Service 

(UPS). This cost is about $0.26 per mile per item. This information can be found on the 

UPS website (www.ups.com). 

The data for the Georgia case study represents a large-scale electronics recycling 

infrastructure design problem.  The objective of the problem is to maximize net profit for 

the system while determining which collection and processing sites to utilize and then 

what quantities of each item type to process into what materials at each site.  

 The key uncertain parameters that we examine are described as follows. 

1. Participation rate.  For one half of the problems, we examined the two situations 

where 20% or 30% of the households with an item to recycle contributed at least one 

used electronic item for collection. 

2. CRT recycler.  Currently there are no leaded glass-to-glass recyclers in the state of 

Georgia, and the closest facility requires expensive transportation of these materials to 

Ohio. We require either that leaded glass materials be transported to the Ohio processor 

or we allow the commercial processors pass these materials amongst themselves (as is 

currently done), even if this may eventually result in the “dumping” of these hazardous 

wastes. 

3. Televisions usability percentage.  Used televisions that cannot be refurbished and 

resold incur a high cost.  However, many households will hold on to their televisions 
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until they no longer work.  In our study we solve our problems with the condition that 

either 10%  or 30% of the collected televisions are in re-usable condition. 

4. CPU & monitor usability percentage.  Similarly, a key uncertainty is the condition of 

the CPUs and monitors that are collected.  We construct half of our problems assuming 

usability rates of (CPU 40%, monitor 40%) and the other half with (CPU 20%, monitor 

20%). 

The four types of uncertainty factors, with two levels specified for each factor, results 

in 24 or sixteen scenarios to be studied.  In other words, each scenario describes a unique 

electronics recycling infrastructure design problem to be solved.  The sixteen problems or 

scenarios are defined in Figure 5.5. 

 

 

Figure 5.5  Key Uncertainty Value Settings for Sixteen Scenarios 
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There are three observations for this case study problem which will help us 

determining the set C (subset of scenarios that controls feasibility of the robust solution 

over all possible scenarios) without any additional calculation. First, the discrete solution, 

which can handle high supply scenarios, can also handle low supply scenarios in this case 

study. Second, the discrete solution, which is feasible under the restrictions on specific 

CRT recyclers, is also feasible for the case without these restrictions. Finally the discrete 

solution, which can handle the scenarios with extremely high and extremely low 

percentage of products re-usability, can also handle scenarios with moderate value on 

percentage of products re-usability. From these three observations, the constraint 

structure and scenario designs of this case study can determine set C to consist of 

scenarios 4 and 16. 

Our case study problems were solved by a Windows 2000-based Pentium 4 1.80GHz 

personal computer with 1GB RAM using Visual Express v13D (Dash, 2002) for the 

optimization software.  MS-Access and Visual basic programming languages were used 

as the case study database and user interface programs. This case study problem consists 

of two main mixed integer linear programming models (RPS and DRRPS) and one main 

linear programming model (RPSLP). The RPS model is used to calculate *
ωO  function 

value Ω∈∀ω  and the DRRPS model is used to search for a robust optimal solution, *y . 

The RPSLP model is used to find *
ωx  and Ω∈∀− ωωω  )( *** yZO  once *y has been 

calculated. The information on the size of each model is summarized in Table 5.7. 
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Table 5.7  Size of Each Model for the Case Study 

 
Model Type 

Number of 
Discrete Variables

Number of 
Continuous Variables 

Number of 
Constraints 

RPS 3,150 76,950 89,433 

DRRPS 3,150 1,231,041 1,384,059 

RPSLP N/A 76,950 80,018 

 

 

Using the direct approach for this problem, the robust optimal solution could not be 

found since the DRRPS model took more than 192 hours of computation time with out 

returning any feasible solution to the problem. On another hand by using SR algorithm, 

the problem can be solved to optimality within 3 iterations using less than 50 hours of 

computational time. The fixed size method of selecting W’ where n = 2 was used. The 

information on computational time and detail of the heuristic algorithm are summarized 

in Table 5.9. Table 5.8 shows the comparison between optimal and robust solution for 

each scenario. The robust infrastructure design for this case study is shown in Figure 5.6 

and Table 5.10. Figure 5.7 shows the bar chart of the objective function values 

comparison for each scenario from Table 5.9. 
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Table 5.8  Comparison between Optimal and Robust Solution for Each Scenario 

Scenario 
 

Optimal Profit 
 

Robust Profit 
 

Regret 
 

% Comparison 
 

1 2,922,602 2,825,162 97,440 96.67% 

2 2,677,033 2,584,692 92,341 96.55% 

3 4,371,895 4,200,988 170,907 96.09% 

4 3,995,216 3,837,216 158,001 96.05% 

5 2,585,981 2,473,352 112,629 95.64% 

6 2,310,663 2,203,656 107,008 95.37% 

7 3,882,715 3,652,868 229,847 94.08% 

8 3,442,097 3,249,933 192,164 94.42% 

9 1,375,246 1,149,325 225,921 83.57% 

10 1,098,493 865,521 232,972 78.79% 

11 1,956,051 1,822,830 133,221 93.19% 

12 1,531,504 1,390,899 140,605 90.82% 

13 1,035,005 797,515 237,490 77.05% 

14 721,951 484,486 237,465 67.11% 

15 1,442,492 1,274,710 167,782 88.37% 

16 981,766 803,616 178,149 81.85% 
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Table 5.9  Computational Time and Detail of the SR Algorithm 

 
Iteration 

 
C 

 
    *

Cδ  
 

  W1 
 

    W 
 

   W’ 
CPU time 

for 
DRRPS 

(minutes) 

CPU time 
for 16 

RPSLP 
(minutes) 

1 {4, 16} 144,454 Ф {3, 7, 8, 
9,10,13, 

14} 

{13, 14} 240 32 

2 {4, 13, 
14, 16} 

228,245 Ф {7, 15} {7, 15} 780 32 

3 {4, 7, 
13, 14, 
15, 16} 

237,490 Ф Ф Ф 1,800 32 

 

 

 

Figure 5.6  Robust Infrastructure Design for Georgia Case Study 
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Table 5.10  Optimal and Robust Solutions for Georgia E-Scrap RPS Infrastructure 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Participation L L H H L L H H L L H H L L H H 
TV reusability H H H H L L L L H H H H L L L L 
CPU & monitor reusability H H H H H H H H L L L L L L L L 
CRT recycler * √  √  √  √  √  √  √  √  

Ro
bu

st 

 Site Location  
1 Gordon Co., GA                  
2 White Co., GA       • •       • • • 
3 DeKalb Co., GA      •   • •   • •    
4 Meriwether Co., 

GA                  

5 Oconee Co., GA           •       
6 Bibb Co., GA • •   • •   • • •  • •  • • 
7 Richmond Co., 

GA                  

8 Chattahoochee 
Co., GA   •    • • • •     •   

9 Toombs Co., GA • • •  • • •  • • • • • • • • • 
10 Dougherty Co., 

GA  •  •        •      

11 Ware Co., GA    •              

C
ol

le
ct

io
n 

Si
te

s 

12 Chatham Co., GA    •    •          
1NP Marietta, GA, GA   • •        •      
2NP Atlanta, GA  • • • • • • • •  • •   • • • 
3NP Atlanta, GA • • • • • • • •  • • • • • • • • 
4NP Tucker, GA •                 
5NP Sandersville, GA   • •   • •    •   • •  

N
on

-p
ro

fit
 S

ite
s 

6NP East Point, GA                  
1A Catoosa Co., GA   •    • •         • 
2A  Carroll Co., GA   • •   • •       •  • 
3A  Cobb Co., GA       • •      •    
4A Fulton Co., GA • •  • • • •  • •    • •  • 
5A DeKalbCo., GA   •     •   • • •   •  
6A  Gwinnett Co., GA • • • • • • • • • • • • • • • • • 
7A  Washington Co., 

GA • •   • •   • • •  • • •  • 

8A  Baldwin Co., GA • • • • • • •    •     • • 
9A  Richmond Co., 

GA   • • •  • •    •     • 

10A Davidson Co., TN                  
11A Anderson Co., TN                  
12A Buncombe Co., 

NC                  

13A Mechlenburg Co., 
NC                  

14A Charleston, SC    •    •          

C
om

m
er

ci
al

 P
ro

ce
ss

in
g 

Si
te

s 

15A Lexington Co., SC •                 
** 1PR Jackson Co., FL    •        •   •   
*** 1AA Marietta, GA • • • • • • • • • • • • • • • • • 

*     CRT recycler: “√” denotes the CRT recycler options are with all CRT recyclers, otherwise, the option 
is only restricted in the CRT recycler in Ohio. 

**   The prison processing site 
*** The large commercial processing site 
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Figure 5.7  Bar Chart of the Objective Values Comparisons for Each Scenario 

 

There are several conclusions that can be drawn from Figure 5.7.  First, it is clear that 

while the robust infrastructure solution does not perform as well in any of the scenarios 

as does the scenario’s optimal solution, the robust solution performs very well in all of 

the possible scenarios (9 scenarios with approximately 95% of the optimal value, 4 

scenarios with approximately 90% of the optimal value, 3 scenarios with approximately 

80% of the optimal value, 2 scenarios with approximately 77% of the optimal value, and 

1 scenarios with 67% of the optimal value).  Second, for the given input data values, it 

appears that economically viable solutions (i.e., solutions that yield a positive net profit) 

can be found for all of the problem scenarios.  Even in financially tough situations like 

Scenario 14, solutions can be determined that yield an estimated positive net profit. 

It is also interesting to analyze how the cost burdens compare between highly 

favorable economic conditions (like Scenario 3, with a high percentages of households 
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participating, a high number of usable televisions collected, and all CRT processors 

available) and unfavorable ones (like Scenario 14, with low participation rates, many 

more unusable televisions, and the restriction of only being able to use the Ohio CRT 

recycler).   Figure 5.8 illustrates this comparison.  In Scenario 14, the transportation costs 

begin to overwhelm processing and other costs.  Both cases are consistent with reports 

from other regions where the transportation costs for electronics recycling compose 

approximately half of the overall system costs.  

Similarly, the relative sources of revenues can be compared when economic 

conditions are highly favorable (Scenario 3) or when they are not as good (Scenario 14).  

Figure 5.9 illustrates this comparison. Under less favorable economic conditions the 

revenue stream is more highly dependent on collection fees as a source of revenue. 

 

Cost Structure of Scenario 3
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Figure  5.8  Comparisons of Relative Costs for Highly Favorable Conditions 
                           (Scenario 3) and Unfavorable Conditions (Scenario 14) 
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Revenue Structure of Scenario 3
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Revenue Structure of Scenario 14
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Figure 5.9  Comparisons of Revenue Sources for Highly Favorable Conditions 

(Scenario 3) and Unfavorable Conditions (Scenario 14) 
 

 

5.3 Summary 

In this chapter, the heuristic algorithm for the scenario based min-max regret robust 

optimization has been applied to the case study of designing the robust infrastructure for 

the realistic size reverse production system problem. The algorithm successfully creates a 

design for used electronics RPS infrastructure in the state of Georgia.  It is distinguished 

by the novel way that it captures uncertainty and produces robust solutions.  Data based 

on a variety of sources has been used to approximate the regional electronics recycling 

infrastructure design problem for Georgia.   

 Sixteen alternative problem scenarios have been analyzed to understand how the 

infrastructure design solutions are affected by key uncertainties in the household 

participation rates, the percentage of used electronics collected that are reusable, and the 

access to glass CRT recyclers.  From these solutions we have learned that the resulting 

net profits and corresponding material flows vary greatly depending on the predicted 

conditions. 
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 A robust infrastructure design has been found that performs well in all of the 

scenarios.  The resulting solutions suggest that an economically viable electronics-

recycling infrastructure is possible for the state of Georgia.  This analysis is now being 

utilized by the Georgia Computer Equipment Disposal and Recycling Council (Georgia 

Code 12-8-33.1) and state agencies as the region’s e-scrap reuse/recycling problem is 

being addressed. 
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CHAPTER    VI 

 

A SEMI-CONTINUOUS ROBUST METHODOLOGY 

 

6.1 Introduction 

Growing attention is being given to the problem of efficiently designing and 

operating reverse supply chain systems to handle the return flows of production wastes, 

packaging, and end-of-life products.  Because the information that exists for these new 

reverse supply chains is limited, solution methodologies for solving strategic 

infrastructure of reverse production systems under uncertainty are critical to support 

effective business and government decision making.  This chapter presents a new robust 

optimization algorithm for designing network infrastructure when uncertainty affects the 

outcomes of the decisions and decision makers are adverse to risk. 

This new algorithm for reverse production system planning can be effectively used in 

designing network infrastructure when the joint probability distributions of key 

parameters are unknown.  The algorithm only requires the information on potential 

ranges and possible discrete values of uncertain parameters, which often are available in 

practice. The algorithm involves the use of bi-level programming, which coordinates a 

“game” between decision makers and the decision environment.  The environment is 

allowed to choose its perturbations and the optimal solution for the set of parameters. 

Simultaneously, the current candidate robust solution is then allowed to respond by 
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changing certain continuous decision values, such as its flows.  This game is played for 

each iteration of the algorithm.   

This chapter also discusses many pre-processing and problem transformation 

procedures for improving the computational ability of the algorithm.  The proof that the 

algorithm always terminates at an optimal robust solution in finite number of iterations is 

also provided.   

The approach can be generalized to the robust design of network supply chain 

systems with reverse production systems as one of their subsystems.  The resultant 

system will tend to be more financially and operationally viable if properly planned, since 

even with the least favorable realization of the parameters, the system may still perform 

close to optimal levels.  Several problems have been solved in Chapter VII to illustrate 

the application of this new algorithm in designing the robust reverse production system 

infrastructures. 

 

6.2 Outline of the Semi-Continuous Robust Algorithm 

The semi-continuous robust algorithm presented here is a newly developed robust 

optimization algorithm able to handle almost all possibilities in the model uncertain 

parameters’ values for both discrete type parameters and continuous type parameters.    

The discrete type parameter is the parameter that takes its values from a finite set of 

discrete values.  The continuous type parameter is the parameter that takes its values from 

a real compact interval.  The semi-continuous robust approach is the combination of a 

three-stage algorithm and several pre-processing algorithms.  The three-stage algorithm is 

structured upon the convergence of an upper and a lower bound to the problem.  The 
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information is sent back and forth between the three stages until the optimality condition 

is satisfied.  

The first stage of the algorithm generates a robust decision based on a considered set 

of scenarios.  After the first stage has been solved to optimality using the RPS and 

DRRPS models, the candidate robust decision is then passed to the second stage.  

The second stage of the algorithm performs the feasibility check on this candidate 

robust decision over all possible scenarios.  If there exists a scenario that is infeasible 

under the current candidate robust decision, the information will be sent back to the first 

stage requesting a new candidate robust decision.  On another hand, if all scenarios are 

feasible under the current candidate robust decision, the information will be forward to 

the third stage of the algorithm.  

The third stage of the algorithm performs several pre-processing steps and determines 

new scenarios to make the maximum regret possible for the current candidate robust 

decision.  The scenarios generated by this stage are then passed back to the first stage. 

Using the scenarios supplied by the third stage, the first stage either confirms the globally 

optimal robust solution or generates a new candidate robust decision.  Figure 6.1 shows a 

schematic of this approach. 

There is one important assumption for applying the semi-continuous robust algorithm 

presented in this chapter:  all model parameters must be independent.  Chapter VIII of 

this dissertation presents a solution methodology for the problem with correlated 

parameters. 
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Figure 6.1  Semi-Continuous Robust Algorithm 

 

In this chapter, we classify the parameters in RPS model into five major types of 

parameters,  ip ∀ i = 1, 2, …, 5.  The parameters of type p1 represent the parameters 

corresponding to coefficient of binary decision variables in the RPS objective function. 

This type of parameter represents site opening costs, site closing costs, fixed site 

operating costs, fixed storage costs, fixed collecting costs, fixed processing costs and 

fixed transportation costs parameters.  

The parameters of type p2 represent the coefficients of the binary decision variables 

located in the functional constraints of the RPS model.  This type of parameters 

represents maximum collection capacity, maximum storage capacity, maximum 

transportation capacity, and maximum process capacity parameters.  

The parameters of type p3 represent all right hand side parameters in the functional 

constraints of the RPS model.  This type of parameters represents the maximum supply 

and maximum demand parameters.  
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The parameters of type p4 represent the coefficient parameters of the continuous 

decision variables in the objective function of the RPS model.  This type of parameters 

represents the selling price per unit, storage cost per unit, collection cost per unit, 

collection fee per unit, processing cost per unit, and transportation cost per unit 

parameters.  

The parameters of type p5 represent the coefficients of continuous decision variables 

in the functional constraints of the RPS model.  This type of parameters represents the 

proportion of material consumed by the process and the proportion of material produced 

by the process parameters. 

The detailed methodologies of all three stages of the algorithm are presented in the 

following sections.  

 

6.3 The First Stage Methodology 

The purposes of the first stage are (1) to find the robust solution for all scenarios 

considered initially from the previous iteration including the new scenarios from the 

second stage and the third stage, (2) to find the lower bound for the global robust optimal 

solution, and (3) to determine if the robust solution is global robust optimal solution for 

the problem.  Let ∆L denote the lower bound for the global robust optimal solution.  

The first stage of this algorithm consists of two main mathematical models (RPS and 

DRRPS models).  The RPS model is used to find the optimal objective function value for 

all available scenarios.  Each scenario may have been identified in the initial scenario set 

or from the second stage or the third stage of the algorithm.  If the RPS problem is 

infeasible for any scenario, there exists no robust solution to the problem.  Otherwise the 
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RPS optimal objective function values for all considered scenarios are used as the 

required parameters in the DRRPS model.  

After the optimal value for the RPS model has been calculated for each scenario, the 

scenario is incorporated into the set of scenarios considered in the DRRPS model.  The 

DRRPS model is used to find the robust solution that achieves the minimum value of the 

maximum regret from the optimal objective function value in all scenarios considered.  If 

the DRRPS problem is infeasible, there exists no robust solution to the problem.  

Otherwise the robust solution generated in this step is sent to the second stage of the 

algorithm if the optimality condition is not satisfied.  The optimal condition will be 

satisfied when the difference between the upper bound and the lower bound is 

sufficiently close.  If this is the case, the algorithm will be stopped with the robust 

optimal solution, which is the robust solution attaining the best upper bound (∆U). In 

other words, the optimal condition will be satisfied when (∆U - ∆L) ≤ ε for some positive 

predetermined ε. 

 

6.4 The Second Stage Methodology 

The purposes of the second stage are to find scenarios that will make the candidate 

robust solution from the first stage infeasible in the RPS model.  This stage of the 

algorithm consists of two main steps.  The first step consists of the pre-processing 

procedure for parameters. The second step consists of solving bi-level linear 

programming problems if the procedure in the first step cannot pre-process all model 

parameters.    
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For a feasibility check after the YΩ solution is given to the RPS model, it is clear that 

the values of parameters in the class of p1 and p4 do not have any effect on feasibility of 

the RPS model.  Also after YΩ is passed to the RPS model, the parameters in the class of 

p2 and p3 can both be considered as right-hand side parameters.  

From these observations, one can find the scenarios that make YΩ  RPS infeasible by 

solving bi-level linear programming problems based on the BLLP model.  The leader 

objective function of the BLLP model is to minimize the minimum value of slack 

variables in the RPS model by controlling all p2 and p3 as the leader variables with 

restrictions on the upper and lower bounds for each parameter.  The follower objective 

function of the BLLP model is to maximize the minimum value of slack variables in the 

RPS model by controlling all x and slack variables in the RPS model with the original 

RPS constraints.  Figure 6.2 states the BLLP model using mathematical notation. 
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Figure 6.2  General BLLP Model 

 

In the general BLLP model, 0 and 1  represent the vectors with the value of 0 and 1 

respectively for all elements in the vectors.  The sign “+” will be used in the model for 
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the less than or equal inequality constraints in the RPS model; otherwise the sign “–“ will 

be used.  If the optimal objective function value of the BLLP model is greater than or 

equal to zero, the current YΩ is identified to be feasible over all possible scenarios.  

Otherwise, the resulting optimal setting of p will represent one scenario which is RPS 

infeasible under YΩ.  The algorithm needs to solve one BLLP model for each initial 

discrete scenario.   

In general, most of the parameters can be pre-processed to either of their bounds even 

before solving the BLLP model.  The following subsections describe the methodology for 

the parameter pre-processing step and the solution methodology of the BLLP model. 

 

Parameter Pre-Processing Step for the BLLP Model 

For any right hand side parameter b, there are two cases that b can be pre-processed. 

Case 1:  Parameter b appears only in less than or equal inequality constraints and all 

coefficients of all variables on the left hand side are nonnegative. 

In this case, it is obvious that parameter b can be set to its lower bound at the optimal 

solution of the BLLP model. 

Case 2:  Parameter b appears only in greater than or equal inequality constraints and all 

coefficients of all variables in the left hand side are nonnegative. 

In this case, it is also obvious that parameter b can be set to its upper bound at the optimal 

solution of the BLLP model. 
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Solution Methodology of the BLLP Model  

After applying the pre-processing step, if there still exist some variables in the BLLP 

model whose value cannot be fixed, the BLLP model can be transformed into an easier 

problem using the results of the following lemma. 

Lemma 1:  The BLLP model has at least one optimal solution *p  in which each element 

of p takes value at its bounds. 

Proof :  Let *p be an optimal solution of the BLLP model such that an element i does not 

take the value form its bounds or U
ii

L
i ppp << * . There are only two possible cases to be 

considered. 

Case 1:  **
is<δ where ( ) **

iii psxA =± . 

In this case, the value of *
ip can be adjusted to either of its bound without any effect on 

the optimality and feasibility of the problem. This statement is quite obvious from the 

optimality of *p and the structure of the BLLP model. 

Case 2:  **
is=δ where ( ) ***

iii psxA =± . 

In this case, we can easily show that *
ip  has already taken the value from its bounds. 

There are two sub-cases to be considered. 

Sign is +:  If L
ii pp >* , ε∃  > 0 such that L

ii pp ≥− ε*  and ( ) ε−>+ ***
iii psxA . 

The value of ( )ixA *  cannot be decreased because of the optimality of *p and *x . For this 

reason the value of *
is can be decreased to ε−*

is . This contradicts the optimality of *δ . 

Sign is –:  If U
ii pp <* , ε∃  > 0 such that U

ii pp ≤+ ε*  and ( ) ε+<− ***
iii psxA . 
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The value of ( )ixA * cannot be increased because of the optimality of *p and *x . For this 

reason the value of *
is can be decreased to ε−*

is . This also contradicts the optimality 

of *δ .                                                                                                                               � 

 

The results from Lemma 1 greatly simplify the solution methodology of the BLLP 

model. By adding dual constraints and a strong duality constraint for the follower 

problem into the BLLP model, the problem is transformed from a bi-level linear 

programming problem to a single level mixed integer linear programming problem as 

shown in Figure 6.3. 
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Figure 6.3  The Modified BLLP Model 

 

The nonlinear term in the constraint 1wpT=δ  can be transformed into mixed integer 

linear constraints by using the results of Lemma 1 as shown in Figure 6.4 where M is one 

significantly large number. 
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Figure 6.4  Transformation of the Strong Duality Constraint in the BLLP Model 

 

These constraints will only be applied on the terms where parameters cannot be pre-

processed, usually a small portion of all parameters. By using the preprocessing step 

together with this solution methodology, the BLLP model can be solved effectively. The 

solution of the BLLP model is used as information for the next step of the algorithm to 

either add scenarios to the first stage or forward a candidate robust decision to the third 

stage. 

 

6.5 The Third Stage Methodology 

The purpose of the third stage is to find scenarios that make the robust decisions from 

the first stage as bad as possible for each of the initial discrete scenarios. This stage of the 

algorithm will generate the scenarios with the objective of maximizing the regret between 

optimal objective function value and the objective function value resulting from the 

candidate robust solution from the first stage for each of the initial discrete scenarios. 

These scenarios will then be transferred to the first stage along with the best (minimum) 

upper bound value on global optimal robust objective function value.  Let ∆U denote this 

best upper bound value.  
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The mathematical model used by this stage is the bi-level programming problem, 

BLPP, with mixed integer variables for the leader problem. In the third stage, the 

algorithm needs to solve the BLPP models, one model for each scenario from the initial 

discrete scenarios.  Let YΩ denote the candidate robust solution from the second stage, 

and let Lp denote the vector of the lower bound values for all parameters, and let 

Up denote the vector of the upper bound values for all parameters. The BLPP model can 

be generally written as shown in Figure 6.5. 
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Figure 6.5  General BLPP Model 

 

The solution methodology for the BLPP model can be classified into four important 

steps. These four steps are (1) parameter pre-processing step, (2) variable and constraint 

elimination step, (3) problem transformation step and (4) solution methodology step.  

Each of these steps is described in the following sections. 
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Parameter Pre-Processing Step 

After studying the structure of the BLPP model, we have found that some of the 

uncertain parameters can be fixed at their bounds at the optimal solution. In some cases, 

there are some simple rules to identify the optimal values of these parameters when the 

information on YΩ is given from the second stage. The pre-processing step allows the 

values for many of these parameters to be fixed even before solving for the BLPP model.  

The pre-processing step for each of the five parameter types is now described. 

 

Pre-Processing Step for Parameter of Type p1 

The parameters of type p1 represent the parameters corresponding to coefficient of 

binary decision variables in the RPS objective function. Each element of this type of 

parameter is represented in the objective function of the BLPP model as 

)(     i i 1i 1i 1 Ω−± YpypMax . 

 

Proposition 4:  Given the value of one specific element of ΩY  called iY  Ω  from the second 

stage and the signs in the objective function are adjusted so that all Up i 1 are greater than or 

equal to zero, an optimal value of the specific element of p1 called p1i can be 

predetermined by the following rules: 

Case 1:  If sign is + and i ΩY = 1, set p1i at L
ip  1 . 

Case 2:  If sign is + and i ΩY = 0, set p1i at Up i 1 . 

Case 3:  If sign is – and i ΩY = 1, set p1i at Up i 1 . 

Case 4:  If sign is – and i ΩY = 0, set p1i at L
ip  1 . 
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Proof:  There are only four possible combinations of the optimal values of y1i and iY  Ω . 

Case :1 ,1   1 == Ω ii Yy  

It is obvious that there is no different result in the BLPP objective function value by 

setting p1i to any value in interval [ UL pp i 1i 1 , ], no matter what the sign is (all values are 

optimal) so by setting p1i at L
ip  1 when the sign is + and by setting p1i at Up i 1  when the sign is 

– gives an optimal value for p1i. 

 

Case :0 ,11 == ΩYy  

If the sign is +, it is obvious that p1i will be set at its upper bound value Up i 1 at the optimal 

solution.  If the sign is –, it is obvious that p1i will be set at its lower bound value Lp i 1 at 

the optimal solution. 

 

Case :1 ,01 == ΩYy  

If the sign is +, it is obvious that p1i will be set at its lower bound value L
ip  1 at the optimal 

solution.  If the sign is –, it is obvious that p1i will be set at its upper bound value Up i 1 at 

the optimal solution. 

 

Case :0 ,01 == ΩYy  

It is obvious that there is no difference found in the BLPP objective function value by 

setting p1i to any value in interval [ UL pp i 1i 1 , ], no matter what the sign is (all values are 
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optimal), so by setting p1i at Up i 1 when sign is + and by setting p1i at L
ip  1  when sign is – will 

give an optimal solution for p1i.                                                                                      � 

 

Pre-Processing Step for Parameter of Type p2 

The parameters of type p2 represent the coefficients of the binary decision variables 

located in the functional constraints of the RPS model. Each element of this type of 

parameters is presented in the functional constraint of the BLPP model as: 

1 2 1 2 2  2
j j

  and  where 0j i i j i i ix p y x p Y pΩ
∃ ∃

≤ ≤ ≥∑ ∑ . 

 

Proposition 5:  Given the value of one specific element of ΩY  called iY  Ω  from the second 

stage, the optimal solution of p2i satisfies the following set of constraints if iY  Ω  is equal to 

one. 

21 i 2 i 2 i 1 i 21 i 2 i 2 i 1 i

21 i 2 i 1 i 2 i 2 i 2 i 1 2 i 2 i

| min(0, ) | (1 )  0  and  (1 ) 0

   and  ( )

L U

U L L U L
i

PY p p y PY p p y

PY p y p p p y p p

− − − ≤ − + − − ≤

≤ ≤ ≤ + −
 

where the new variable i 21PY  will replace the term ii yp  1 2  in the BLPP model. 

If iY  Ω  is equal to zero, an optimal solution of p2i can be attained by fixing the value of p2i 

at its upper bound, Up i 2 . 

Proof:  There are only four possible combinations of the optimal values of y1i and iY  Ω . 

Case :1 ,1   1 == Ω ii Yy  

Because there is no obvious choice of optimal solution of p2i in this case, the algorithm 

has to search for optimal solution of p2i in entire interval [ UL pp i 2i 2 , ]. 
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Case :0 ,1  1 == Ω ii Yy  

It is obvious that by setting the value of p2i at Up i 2  results in the largest feasible region for 

the leader problem and is the optimal setting for this parameter. 

 

Case :1 ,0  1 == Ω ii Yy  

It is obvious that by setting the value of p2i at Lp i 2  results in the smallest feasible region 

for the follower problem and is the optimal setting for this parameter. 

 

Case :0 ,0  1 == Ω ii Yy  

It is obvious that no difference results in BLPP objective function value for setting p2i to 

any value in interval [ UL pp i 2i 2 , ] (all values are optimal). Therefore setting the value of p2i 

at Up i 2 will result in the optimal setting for this parameter.                                            � 

 

Pre-Processing Step for Parameter of Type p3 

The parameters of type p3 represent all right hand side parameters in the functional 

constraints of the RPS model. There are two distinct groups of this type of parameters. 

The first group represents all maximum supply and maximum demand parameters. 

Because these parameters’ values are continuous, they can be handled in the model by 

treating them as continuous variables.  

The second group represents must-logic parameters and allowance-logic parameters, 

which are binary parameters. Because these parameters’ values are binary, it is not wise 

to handle them as additional binary variables in the model. The next proposition will 
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define the rules of setting these parameters’ values to their optimal values. Let ym,i define 

ith must-logic parameter and let yai define ith allowance-logic parameter associated with y1i 

and i ΩY .  Each element of this type of parameter is present in the functional constraint of 

the BLPP model as i i i i i 1i    and    amam yYyyyy ≤≤≤≤ Ω . 

 

Proposition 6:  Given the value of one specific element of ΩY  called iY  Ω  from the second 

stage, an optimal solution of ym,i, is zero and an optimal solution of  ya,i is one and the 

associated logical constraints can be removed from the BLPP model. 

Proof:  There are only two possible values of iY  Ω . 

Case :1 =Ω iY   

It is obvious that the optimal setting of yai has to be one. Setting the value of ymi at zero 

will result in a bigger feasible region for the leader problem, and is thus the optimal 

setting for this parameter. 

 

Case :0i =ΩY  

It is obvious that the optimal setting of ymi has to be zero. Setting the value of yai at one 

will result in a bigger feasible region for the leader problem, and is thus the optimal 

setting for this parameter. 

 

For these reasons, an optimal setting of ymi, is zero and an optimal setting of yai is one. 

Because y1i is a binary variable, the setting method of yai and ymi as proposed will result in 

redundancy of the constraints. From this reason, these type constraints can be removed 

from the BLPP model.                                                                                                 � 
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Pre-Processing Step for Parameter of Type p4 

The parameters of type p4 represent the coefficient parameters of the continuous 

decision variables in the objective function of the RPS model. Each element of this type 

of parameters is presented in the objective function of the BLPP model as: 

)( 2414 iiii xpxp Max −± . 

 

Proposition 7:  Given the value of one specific element of ΩY  called kY  Ω  from the second 

stage, where there exists a constraint in the BLPP model as 2 2  
 j

 i j kx x C YΩ
∃

+ ≤∑ , and the 

signs in the objective function are adjusted so that all Up i 4 is greater than or equal to zero, 

the following rules can narrow the search for an optimal setting of p4i. If kY  Ω is equal to 

one, an optimal setting of p4i is either at U
i

L
i pp 44 or  . If kY  Ω is equal to zero and the sign is 

+, an optimal setting of p4i is U
ip4 . If kY  Ω is equal to zero and the sign is –, an optimal 

setting of p4i is L
ip4 . 

Proof:  There are only five possible cases of the optimal values of x1i and x2i. 

Case i 2 1 xx i = : 

It is obvious that there is no difference in the objective function value of the BLPP model 

by setting p4i to any value in the interval [ UL pp i 4i 4 , ], no matter what the sign is (all values 

are optimal).  By setting p4i at either U
i

L
i pp 44 or  , this setting is also an optimal setting. 
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Case where the sign is + and i 2i 1 xx > : 

It is obvious that by setting p4i at its upper bound value Up i 4 , an optimal setting of p4i is 

attained. 

 

Case where the sign is – and i 2i 1 xx > : 

It is obvious that by setting p4i at its lower bound value Lp i 4 , an optimal setting of p4i is 

attained. 

 

Case where the sign is + and i 2i 1 xx < : 

It is obvious that by setting p4i at its lower bound value Lp i 4 , an optimal setting of p4i is 

attained. 

 

Case where the sign is – and i 2i 1 xx < : 

It is obvious that by setting p4i at its upper bound value Up i 4 , an optimal setting of p4i is 

attained. 

 

These reasons prove the first claim when kY  Ω is equal to one. In the case where kY  Ω is 

equal to zero, the results in first three cases with the fact that x1i is non-negative prove the 

claim.                                                                                                                              � 

 

The results from proposition 7 lead to an important method that can be used to find an 

optimal value of p4i without solving a nonlinear bi-level programming problem. After 
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setting the values of associated p4i to their optimal settings for all kY  Ω with zero value, we 

can successfully handle the variation in the rest of p4i parameters by adding the following 

constraints into the BLPP model. 

Let bii be a binary variable in the model that will take the value of one when U
ii pp 44 =  

or zero when L
ii pp 44 =  and let iPX  41  represents the term ii xp 14  and i 42PX  represents the 

term ii xp 24 .  Figure 6.6 illustrates these required constraints. 

 

 014 41 ≤− i
U

ii xpPX  

41 i 4 1 4 1 4 1 ( | min(0, ) | )(1 ) 0U U U L U
i i i i i i iPX p x p x p x bi− + − + − ≤  

41 i 4 1 4 1 4 1( | min(0, ) | ) 0L U U L U
i i i i i i iPX p x p x p x bi− − + ≤  

014i 41 ≤+− i
L
i xpPX  

024i 42 ≤− i
U

i xpPX  

42 i 4 2 4 2 4 2( | min(0, ) | )(1 ) 0U U U L U
i i i i i i iPX p x p x p x bi− + − + − ≤  

42 i 4 2 4 2 4 2( | min(0, ) | ) 0  L U U L U
i i i i i i iPX p x p x p x bi− − + ≤  

024i 42 ≤+− i
L
i xpPX  
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L
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U
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L
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Figure 6.6  Required Constraints for Parameters of Type p4 
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Pre-Processing Step for Parameter of Type p5 

The parameters of type p5 represent the coefficients of continuous decision variables 

in the functional constraints of the RPS model. This type of parameters represents the 

proportion of material consumed by the process and the proportion of material produced 

by the process.  Because of the restriction that summation of all proportions consumed by 

each specific process must be equal to one and the restriction that the summation of all 

proportions produced by each specific process must be equal to one, these parameters 

would best be modeled as discrete parameters and can be included in initial discrete 

scenarios. 

From the results of these pre-processing steps, one might be misled that all 

parameters will take the value from either of their bounds at the optimal solution of the 

BLPP model. This statement can be shown to be not true by the counter example shown 

in Figure 6.7. 
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Figure 6.7  Counter Example of Fixing Parameters at their Bounds 
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For the counter example, the only optimal solution of p3 is 5 with the optimal leader’s 

objective function value of 5. On another hand, the optimal leader’s objective function 

value is zero when p3 is fixed at either of its bounds. This example shows that considering 

all parameters at their bounds is not enough to solve the problem. 

 

Variable and Constraint Elimination Step 

In the next section, Karash-Kuhn-Tucker (KKT) conditions are applied in order to 

solve the BLPP model.  One important concern on the effectiveness of solving the BLPP 

model is the size of the complementarily slackness constraints which are part of the KKT 

conditions.  The size of these complementarily slackness constraints are determined by 

the number of variables and the number of constraints in the inner problem of the BLPP 

model.  The smaller the number of variables and number of constraints, the more 

efficiently the BLPP can be solved. 

In this section, we propose some elimination steps in order to eliminate unnecessary 

variables and constraints of the inner problem of the BLPP model before applying the 

KKT conditions to the problem.  The ideas of these elimination steps are very important 

and can determine success or failure of the algorithm to solve realistically sized 

problems.  The effectiveness of this elimination step is illustrated in case studies 

presented in Chapter VII.  Three main ideas of these elimination rules are presented as 

follows. 

Elimination by the Information from YΩ 

After the information from YΩ is given from the first and second stages of the 

algorithm, some variables of the inner problem can be predetermined and some inner 
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constraints become redundant.  These variables and constraints can be eliminated from 

the BLPP model by setting those variables to their predetermined values and by ignoring 

those redundant constraints.  The simplest example of this case is if there exists any 

constraint in the inner problem of the BLPP model with the structure, ∑ Ω≤ iij YCx , and 

YΩi = 0, this constraint and all its variables can be eliminated from the model by setting 

all xj to zero and ignoring this constraint. 

Elimination by the Information from Model Parameters 

After the parameter information is given either from the original problem statement or 

from the results of the preprocessing steps, some variables of the inner problem can be 

predetermined and some inner constraints become redundant.  These variables and 

constraints can be eliminated from the BLPP model by setting those variables to their 

predetermined values and by ignoring those redundant constraints.  The simplest example 

of this case is if there exists any constraint in the inner problem of the BLPP model with 

the structure, ∑ ≤ ij Cx , and Ci = 0 (from the original problem or from the results of 

preprocessing steps), this constraint and all its variables can be eliminated from the model 

by setting all xj to zero and ignoring this constraint. 

Elimination by the Results of the First Two Rules 

After performing the previous two elimination steps, some variables of the inner 

problem can be further predetermined and some inner constraints become redundant.  

These variables and constraints can be eliminated from the BLPP model by setting those 

variables to their predetermined values and by ignoring those redundant constraints.  The 

simplest example of this case is if there exists any constraint in the inner problem of the 
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BLPP model with the structure, ∑ ≤+ ikj Cxx , where all xj are previously eliminated 

from the problem and Ci is constant, this constraint and xk variable can be eliminated 

from the model by setting the value of xk to its appropriate value and ignoring this 

constraint. 

Problem Transformation Step 

In searching for a way to solve the BLPP model, it would be helpful to have an 

explicit representation of Inducible Region (IR) of the linear bi-level programming. This 

can be achieved by replacing the follower’s problem with Karash-Kuhn-Tucker (KKT) 

conditions and append the resultant system to the leader’s problem. In another word, the 

BLPP model can be rewritten as a single level mixed integer nonlinear programming 

problem with complementary slackness constraints as shown in Figure 6.8.   

We also would like to point out that the complementary slackness constraints could 

be equivalently replaced by strong duality constraint (as shown in Section 6.4) for the 

problem with no uncertainty in parameters of type p2 and p3.  In this case, the problem 

becomes much easier to handle (no branching on complementary slackness is required). 

There is one final transformation to convert the BLPP model to a single level mixed 

integer linear programming problem with complementary slackness constraints.  This is 

performed by adding all necessary constraints and applying our pre-processing steps as 

shown in Figure 6.9. 

Note that because large portion of YΩ will be zero, the pre-processing and elimination 

algorithms will be able to eliminate a large number of variables and constraints and fix 

the values for a large number of uncertain parameters to their appropriate bounds. This 

means that the pre-processing and elimination algorithms will significantly reduce the 
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size of the BLPP model. For this reason, this proposed algorithm is able to solve the 

large-scale BLPP model effectively, and warrants computational investigation for 

realistic problems. 

Even though the elimination algorithm can significantly reduce the number of 

complementary slackness constraints, it often cannot eliminate all of them. In order to 

solve the BLPP model effectively, the next question is “How are we going to handle the 

rest of the complementary slackness constraints?” One of the most direct approaches for 

dealing with the complementary slackness constraints is the use of big M method. The 

constraints iyxgw ii ∀=        0),(          can be converted into two mixed integer linear 

constraints by replacing them with the following two sets of inequalities constraints with 

binary variables binaryi and a sufficiently large number M: 

ibinaryMyxgbinaryMw iiii ∀−≤≤     )1( ),(   and    . 
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 Figure 6.8  The BLPP Model with KKT Conditions 
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Figure 6.9  Final Version of the BLPP Model 
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Our computational results show that by using the big M method for handling 

complementary slackness constraints, even a small numerical imprecision in representing 

the binary variable, binaryi, value can cause the problem to terminate at the wrong 

solution of the bi-level programming problem. For this reason, the big M method is 

strongly not recommended for handling the complementary slackness constraints in the 

BLPP model. 

 

Drawback of Big-M Method for Handling Complementary Slackness Constraints 

The following results show that by using the big M method for handling 

complementary slackness constraints, even a small numerical imprecision in representing 

the binary variable, binaryi, value can cause the problem to terminate at the wrong 

solution of the bi-level programming problem. The following small example illustrates 

this claim. Consider the following bi-level programming problem. 
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By adding all dual constraints for the follower problem and complementary slackness 

constraints represented by big-M constraints, the following mixed integer linear 

programming problem is equivalent to the previous bi-level programming problem. 
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Figure 6.10 represents the geometric structure and the path from the initial basic 

feasible solution to the optimal basic feasible solution of this problem.  

 

Figure 6.10  Geometric Structure of the Example 

 

If the values of all binary variables (binary1 and binary2) are precisely 0 or 1, this 

problem can be readily solved to optimality. Unfortunately, most current optimization 

software often cannot provide the perfect value of 0 or 1 for binary decision variables for 

all computations.  Numerical estimations are used to make the value like 0.999999 as 1 
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and the value like 0.0000001 as 0. These numerical estimations can cause the serious 

problems in the bi-level programming with big-M complementary slackness constraints.  

The optimal solution of this example is: x1 = 3, x2 = 3, y1 = 1, s = 0, w = 1, a = 0, 

binary1 = 1, binary2 = 1, z = 0.   Now consider the case where the value of binary2 is 

0.99999 instead of 1 and the Mi2 value is 1000, 10000, 100000, and 1000000 for cases 1, 

2, 3, and 4 respectively.  The optimal solutions generated from the optimization software 

for each case are as follows: 

Case 1:  x1 = 3, x2 = 2.99,  y1 = 1, s = 0.01, w = 1,  a = 0, bi1 = 1, bi2 = 0.99999, z = 0.01 

Case 2:  x1 = 3, x2 = 2.90,  y1 = 1, s = 0.10, w = 1,  a = 0, bi1 = 1, bi2 = 0.99999, z = 0.1  

Case 3:  x1 = 3, x2 = 2,  y1 = 1, s = 1,  w = 1,  a = 0, bi1 = 1, bi2 = 0.99999, z = 1 

Case 4:  x1 = 3, x2 = 0, y1 = 1, s = 3, w = 1, a = 0, bi1 = 1, bi2 = 0.99999, z = 3 

The following four figures demonstrate the geometric structure for the numerical error in 

each case. 

Figure 6.10  Geometric Structure for the Numerical Error in Case (Run) 1 



 127

 Figure 6.11  Geometric Structure for the Numerical Error in Case (Run) 2 

 

 

 

 

 Figure 6.12  Geometric Structure for the Numerical Error in Case (Run) 3 
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 Figure 6.13  Geometric Structure for the Numerical Error in Case (Run) 4 

 

These results demonstrate the ineffectiveness of big-M methodology for handling 

complementary slackness constraints, particularly for large instances where the big-M 

value is difficult to be bounded. An alternative methodology, named the Kuhn-Tucker 

Branch and Bound Approach, is presented in the next section. 

This final version of the BLPP model can be solved without computational error by 

using the following branch and bound algorithm. This algorithm starts by solving the 

linear and complementary slackness relaxation problem.  The branch and bound step will 

be performed if there is a violation in complementary slackness conditions. If all 

complementary slackness conditions are satisfied, the branch and bound step will also be 

performed if there is a violation in integrality constraints. 
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Kuhn-Tucker Approach Algorithm for Bi-level Programming 

In the later study of Bard and Moore (1990), they developed an implicit approach to 

satisfying the complementary slackness constraints which is proved to be very effective.  

The methodology presented in this chapter is a modification of their original approach. 

The basic idea of this algorithm is to suppress the complementarity and integrality terms 

and solve the resulting linear sub-problem after adding KKT conditions. At all iterations, 

a check is made to see if complementary slackness conditions and integer restrictions are 

satisfied. If so, the corresponding point is in the inducible region (IR) and hence is a 

potential solution to the BLPP model. If not, a branch and bound scheme is used to 

implicitly examine all combinations of complementary slackness conditions and integer 

restrictions. 

Before presenting the algorithm, we introduce some related notation. Let 

} ,...,2 ,1{ mqW +=  be the index set for the complementary slackness constraints 

)0( =ii gu in the BLPP model (see Section 2.4), and let F be the incumbent lower bound 

on the leader’s objective function. At the hth node of the search tree on the 

complementary slackness conditions, we define a subset of indices WWh ⊂  and a path 

hP  corresponding to an assignment of either .for    0or    0 hii Wigu ∈==   Let 

} |{

}0 and  |{

}0 and  |{

0
hh

ihh

ihh

WiiS

gWiiS

uWiiS

∉=

=∈=

=∈=
−

+

 

For 0
hSi ∈ , the variable ii gu  and are free to assume any nonnegative values in the 

solution of the BLPP model, so complementary slackness will not necessarily be 

satisfied. 
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Kuhn-Tucker Branch and Bound Algorithm (Maximization Problem) 

Step 0:  (Initialization) Set 0
00,  ,  ,  ,  0 and 1L

k k kk S S S W P Fφ φ+ −= = = = = = ∆ −  where 

L∆  is the lower bound on min-max regret from the first stage of the algorithm. 

Step 1:  (Iteration k on node h) Pick an active node from the current tree, which has 

parent node with a maximum objective function value for the LP and complementary 

slackness relaxation problem (in case k = 0, pick node 0 as the selected node) and let h be 

the index of this selected node. Set .for  0 and for  0 −+ ∈=∈= hihi SigSiu  Attempt to 

solve the linear and complementary slackness relaxation problem and store the objective 

value of node h into hF . If the resultant problem is LP infeasible or FFh ≤ , go to Step 3; 

otherwise check if there exists 0
hSi ∈ where 0≠ii gu . If so, select the index, which 

attains the largest value, and label it as i1 and perform branch and bound on this 

complementary slackness condition and identify two child nodes as node k+1 and node 

k+2. For node k+1, let }{ 11 iSS hk ∪← ++
+ , −−

+ ← hk SS 1 , }{\ 1
00

1 iSS hk ←+ , and 

}{ 11 iPP kk ∪←+ . For node k+2, let ++
+ ← hk SS 2 , }{ 12 iSS hk ∪← −−

+ , }{\ 1
00

1 iSS hk ←+ , and 

}{ 12 iPP kk ∪←+ and 2+← kk and perform Step 1; otherwise, check if the resultant 

problem contains any integer variable, which violates the integer restrictions for leader 

problem. If so, perform the regular branch and bound on one of the violated variables and 

identify two child nodes as node k+1 and node k+2. Let 

 ,2 and 1for  ,, 00 ++=←←← −−++ kkjSSSSSS hjhjhj  2let  and +← kk  and perform 

Step 1; otherwise go to Step 2. 

Step 2:  (Updating) hFF =  
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Step 3:  (Cutting branch) Set node h as non-active. If no active node exists, go to Step 4. 

Otherwise go to Step 1. 

Step 4:  (Termination) If LF < ∆ , there is no useful feasible solution to the BLPP model. 

Otherwise, declare the current feasible point associated with F  the optimal solution to 

the BLPP model. 

 

We also would like to point out that setting priorities on the branching variables is 

one of the important factors for improving the solution time of the BLPP model.  For the 

BLPP model, we recommend branching priorities as follows: (1) complementary 

slackness conditions, (2) binary decisions on parameters’ bounds, and (3) high effect to 

low effect infrastructure decision (site opening decisions to activate transportation arc 

decisions).   

The following small example illustrates the use of the Kuhn-Tucker algorithm to 

solve the bi-level linear programming problem with discrete variables for the leader 

problem. 
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Now by adding KKT conditions to the problem, the linear and complementary 

slackness relaxation problem is demonstrated as follows. 
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By performing the Kuhn-Tucker branch and bound algorithm, Figure 6.14 

demonstrates the solution searching methodology of the algorithm. 

 

 

 

 

 

 

 

 

 

Figure 6.14  Solution Searching Methodology of KKT Branch and Bound Algorithm 
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The algorithm starts in step 0 by setting 0=k  −∞=F and .  The algorithm performs 

step 1 next by picking node h = 0 as a selected node and start solving initial problem in 

node 0.  The corresponding solution from node 0 is F0 = 98.88, x11 = 0, x12 = 33.33, x21 = 

0, x22 = 0, y11 = 0, y12 = 0.7407, w1 = 2, s1 = 35, w2 = 3, s2 = 0, w3 = 0, s3 = 100, a1 = 0, 

and a2 = 0.  The algorithm performs the branching step on the most violated 

complementary slackness constraints (w1s1 = 70 > 0) and identifies two child nodes as 

node 1 (s1 = 0) and node 2 (w1 = 0).   

The algorithm then performs step 1 next by picking node h = 1 as the selected node 

and solves the linear programming associated with node 1.  The corresponding solution 

from node 1 is F1 = 28.88, x11 = 0, x12 = 33.33, x21 = 35, x22 = 0, y11 = 0, y12 = 0.7407, w1 

= 2, s1 = 0, w2 = 3, s2 = 0, w3 = 0, s3 = 30, a1 = 0, and    a2 = 0.  The algorithm performs 

the branching step on the violation on integrality restriction of y12 and identifies two child 

nodes as node 3 (y12 = 0) and node 4 (y12 = 1).  

The algorithm then continues to solve the corresponding linear programming problem 

of node 2.  The corresponding solution from node 2 is F2 = 98.88, x11 = 0, x12 = 33.33, x21 

= 0, x22 = 0, y11 = 0, y12 = 0.7407, w1 = 0, s1 = 35, w2 = 0, s2 = 0, w3 = 1, s3 = 100, a1 = 0, 

and a2 = 0.  The algorithm performs the branching step on the most violated 

complementary slackness constraints (w3s3 = 100 > 0) and identifies two child nodes as 

node 5 (s3 = 0) and node 6 (w3 = 0).   

The algorithm then continues to solve the corresponding linear programming 

problems of node 5 and node 6.  These linear programming problems are infeasible and 

are set as non-active nodes.   
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The algorithm then continues to solve the corresponding linear programming problem 

of node 3.  The corresponding solution from node 3 is F3 = 0, x11 = 35, x12 = 0, x21 = 35, 

x22 = 0, y11 = 1, y12 = 0, w1 = 2, s1 = 0, w2 = 3, s2 = 0, w3 = 0, s3 = 30, a1 = 0, and a2 = 0.  

Because the resultant solution satisfies all primal, dual and complementary slackness 

constraints and 03 =≤=∞− FF , the algorithm then sets 03 == FF  and set node 3 as 

non-active node.  

The algorithm then solves the corresponding linear programming problem of node 4.  

The corresponding solution from node 4 is F4 = 25, x11 = 0, x12 = 33.33, x21 = 35, x22 = 0,     

y11 = 0, y12 = 1, w1 = 2, s1 = 0, w2 = 3, s2 = 0, w3 = 0, s3 = 100, a1 = 0, and a2 = 0.  Because 

the resultant solution satisfies all primal, dual and complementary slackness constraints 

and 250 4 =≤= FF , the algorithm then sets 254 == FF and set node 4 as non-active 

node.   

Because no active node exists, the algorithm terminates with the optimal solution to 

the problem as x11 = 0, x12 = 33.33, x21 = 35, x22 = 0, y11 = 0, y12 = 1, w1 = 2, s1 = 0,    w2 = 

3, s2 = 0, w3 = 0, s3 = 100, a1 = 0, and a2 = 0 with the objective function value of 25. 

When the Big-M method is used for solving this example with M = 10,000,000 by 

Xpress IVE, Xpress Optimizer, Xpress BCL and CPLEX 7.5 software, the misleading 

solution is generated as     x11 = 0, x12 = 33.33, x21 = 0, x22 = 0, y11 = 0, y12 = 1, w1 = 2,     

s1 = 35, w2 = 3, s2 = 0, w3 = 0, s3 = 100, a1 = 0, and a2 = 0 with objective function value 

of 95. This example illustrates an unreliable solution from big-M method compared with 

the optimal solution from Kuhn-Tucker branch and bound algorithm. 

The following subsection gives the detail summary of all steps in the semi-continuous 

robust algorithm. 
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Summary of the Semi-Continuous Robust Algorithm 

a) Determine which parameters define scenarios.  From these parameters, determine 

which parameters are discrete and which parameters are continuous.  For all discrete 

parameters, generate the initial set of scenarios based on the combination of finite 

numbers of all possible values of all discrete parameters (initial discrete scenarios).  

For all continuous parameters, determine their upper and lower bound values. 

b) Choose a set of starting scenarios including the set of initial discrete scenarios and 

add them to the set Ω. 

c) Use the RPS model to solve each of the scenarios in Ω to optimality if an optimal 

solution has not already been obtained.  If the RPS problem is infeasible for any 

scenario, the algorithm is terminated with the confirmation that no robust solution 

exists for the problem.  Otherwise the optimal objective function value to the RPS 

problem for scenario ω is designated as O*ω. 

d) Solve the DRRPS model using all scenarios ω in Ω.  If the DRRPS model is 

infeasible, the algorithm is terminated with the confirmation that no robust solution 

exists for the problem.  Otherwise obtain the robust solution, YΩ, and the 

corresponding DRRPS optimal objective function value as the lower bound, ∆L, from 

the set of scenarios Ω and proceed to step e. 

e) From the YΩ information from step d, perform the pre-processing and elimination 

steps and solve the BLLP model for each scenario in the initial discrete scenarios. 

f) If the optimal objective function values of all BLLP models are greater than or equal 

to zero, proceed to step g. Otherwise, add infeasible scenarios to set Ω and proceed to 

step c. 
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g) From the YΩ information forwarded from step f, perform the pre-processing 

algorithm and then solve BLPP models. Each model is associated with each scenario 

of initial discrete scenarios, to generate new scenarios,   1,2,...,i i Mω ∀ = , and 

associated objective function value, which become upper bounds values 

MiU
i ,...,2,1 =∀∆ .  Define new ∆U as min ( }{max

,..,2,1

U
i

Mi
∆

=
, current ∆U).  If {∆U- ∆L}≤ ε 

then stop and the robust solution that attains ∆U in BLPP model is an ε-globally 

optimal robust solution. Otherwise add with  1, 2,...,U L
i i i Mω ∆ ≥ ∆ ∀ =  to set Ω and 

proceed to step c. 

 

The following proposition provides the important result that this semi-continuous 

algorithm will always terminate at an ε-globally optimal robust solution in finite number 

of algorithm steps. 

 

Proposition 8:  The semi-continuous robust algorithm terminates at the robust optimal 

solution in finite number of steps by setting 0=ε . 

Proof:  One of the trivial but ineffective ways of obtaining the robust optimal solution for 

this problem is to enumerate all possible combinations of ΩY and then send these settings 

to the second stage and the third stage of the semi-continuous robust algorithm to check 

for feasibility and to solve for maximum regret associated with each setting. From among 

all these maximum regret values, pick the feasible setting of ΩY with minimum of 

maximum regret values as the robust optimal solution. If none exist, the problem has no 

robust solution.  
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Each time the semi-continuous robust algorithm executes the first stage, if the 

problem is RPS or DRRPS infeasible, the algorithm terminates with no robust solution. 

Otherwise, either a new or the same ΩY setting is generated. In the former case, this 

setting is sent to the second stage for feasibility check. The feasible setting is forwarded 

to calculate its maximum regret possible and the resultant scenarios are recorded and are 

always considered in the rest of the algorithm. In the later case, the semi-continuous 

robust algorithm is terminated with the robust optimal solution. Because there are finite 

numbers of possible combinations of ΩY settings, the claim is proven. 

         

Corollary 1:  By setting 0>ε , the semi-continuous robust algorithm terminates at the 

robust ε-optimal solution in finite number of steps. 

 

Proof:  the proof of this corollary uses the following facts: 

1.  L∆ is a non-decreasing value because by adding constraints to the problem, the 

objective function value can only be worse or be the same. Because L∆ is the objective 

function value of the relaxation problem, L∆ is a lower bound on the minimum 

maximum regret. 

2.  U∆ is a non-increasing value because the algorithm always keeps the minimum value 

of these upper bounds. Because U∆ represents a maximum regret from one feasible 

setting of ΩY , U∆ is an upper bound on the minimum maximum regret. 

3.  The algorithm is terminated when ε≤∆−∆ LU . 

From the results of Proposition 8, Fact 1, Fact 2, and Fact 3, the claim is proven. 
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The following section illustrates the use of the semi-continuous robust algorithm on 

some small problems for understanding purpose.  The application of the semi-continuous 

robust algorithm on the large-scale case study is presented in Chapter VII. 

 

6.6 Example Problems for the Semi-Continuous Robust Algorithm 

Tools Renting Problem  

Every morning, a carpenter has to make his decision on what type of tools he is going 

to rent for that specific day.  There are two types of tools, tool1 and tool2, that he can rent.  

If he decides to rent tool1, he can use it to produce product1 up to P21 units per one day 

which can be sold with the price of $2 per unit.  If he decides to rent tool2, he can use it to 

produce product2 up to P22 units per day which can be sold with the price of $P4 per unit.  

The production of each product not only requires tools but also requires raw materials.  

By using tool1, one units of product1 requires 2 units of raw materials.  By using tool2, 

one units of product2 requires P5 units of raw materials (tool2 is not very reliable).  The 

numbers of raw material available are P3 units per day.  At the end of the day, this 

carpenter has to pay the rental fee for each rented tool.  The rental fees of tool1 and tool2 

are $P1 and $15 per day respectively.  Table 6.1 contains all distribution information of 

each model parameter.  What tool should this carpenter rent at the beginning of each day? 

This problem can be initially described by a stochastic mixed integer linear 

programming problem.  Let x1 and x2 represents his decisions on daily production units of 

product1 and product2 respectively.  Let y1 and y2 represents his decisions on renting tool1 

and tool2 respectively where yi = 1 if he rent tooli and 0 otherwise for i = 1, 2.  Figure 

6.15 illustrates this initial model. 



 139

Table 6.1  Distribution Information of All Model Parameters 

 
Random Parameters 

 

 
Probability Distribution 

P1 Uniform (8, 12) 

P21 Unknown with UB = 38 and LB = 32 
(Average ≈ 35) 

P22 Unknown with UB = 50 and LB = 40 
(Average ≈ 45) 

P3 Triangular Distribution (90, 100, 110) 

P4 Triangular Distribution (1, 2.5715, 4) 

P5 Pr(P5 = 2) = Pr(P5 = 4) = 0.5 
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Figure 6.15  Initial Stochastic Mixed Integer Linear Programming Model 

 

By applying semi-continuous robust algorithm, we start by considering four initial 

scenarios, which cover all possible values of the discrete random variable, P5.  Table 6.2 

contains all parameter’ values and O*ω for each scenario. 
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Table 6.2  All Parameter’ Values and O*ω  for Four Initial Scenarios 

Scenario P1 P21 P22 P3 P4 P5 x1 x2 y1 y2 O*ω 

1 8 32 40 90 1 2 32 0 1 0 56 

2 12 38 50 110 4 2 0 50 0 1 185 

3 8 32 40 90 1 4 32 0 1 0 56 

4 12 38 50 110 4 4 0 27.5 0 1 95 

 

By using this information in Table 6.2, the DRRPS model for these four scenarios can 

be optimally solved.  Table 6.3 contains all solutions of this DRRPS model. 

 

Table 6.3 Solutions of the DRRPS Model for Four Initial Scenarios 

Scenario x1ω x2ω y1Ω y2Ω O*ω Rω O*ω - Rω 

 1 32 13 1 1 56 54 2 

2 5 50 1 1 185 183 2 

3 32 6.5 1 1 56 47.5 8.5 

4 0 27.5 1 1 95 83 12 

 

The candidate robust solution from the first stage is now y1Ω = 1 and y2Ω = 1 with the 

lower bound of 12.  This information is then forwarded to the second stage of the 

algorithm for feasibility check.  After performing the pre-processing step, all parameters 

can be fixed as follows:  P21 = 32, P22 = 40, P3 = 90, and P5 = 2 or 4.  Because these 

settings are already considered in scenario 1 and 3, the current candidate robust solution 

is already feasible for all possible scenarios.  This current candidate robust solution and 
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the lower bound are then forwarded to the third stage of the algorithm.  At this stage, we 

are required to solve two BLPP models (case P5 = 2 and P5 = 4).  By applying parameter 

pre-processing step, P1 can be fixed to the value of 12.  Figure 6.16 illustrates the initial 

form of the BLPP model and Figure 6.17 illustrates the final form of the BLPP model.  

Table 6.4 contains the optimal solution for these BLPP models.  Because the upper bound 

resulting from this BLPP model is 12, the algorithm is then terminated with the robust 

optimal solution of y1Ω = 1 and y2Ω = 1 (the carpenter should rent both tools at the 

beginning of each day).  Table 6.5 contains the comparison between the optimal robust 

solution and the optimal solution from the solution obtained from a standard mixed 

integer linear programming problem that uses average values for the uncertain parameters 

(y1Ω = 0 and y2Ω = 1). 
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Figure 6.16  The Initial Form of the BLPP Model (P5 = 2 or 4) 
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Figure 6.17  The Final Form of the BLPP Model (P5 = 2 or 4) 

 
 

Table 6.4  The Optimal Solution for the BLPP Model 
 

 
Decision Variable 

 

 
P5 = 2 

 
P5 = 4 

x11 0 0 
x12 45 22.5 
x21 0 32 
x22 45 6.5 
y1 0 0 
y2 1 1 

P21 32 32 
P22 45 45 
P3 90 90 
P4 4 4 

O*ω - Rω 12 12 
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Table 6.5 Comparison between the Semi-Continuous Robust Solution 

and the Optimal Solution from the Average Value Problem 
 

  
Maximum Regret 
From Optimality 

 

 
Objective Value under 

Average Value Scenario 

 
Solution for Problem using 

Average Values for 
Uncertain Parameters 

 

 
60.5 

 
71.66 

 
Semi-Continuous  
Robust Solution 

 

 
12 

 
71 

 

 

For the average value problem, the decision makers ignore uncertainty in the model 

parameters and replace all random variables with their mean values.  The results in Table 

6.5 illustrate the superiority of the semi-continuous robust solution over the optimal 

solution for the average value problem. 

 

Example Comparing Semi-Continuous Robust Solutions and End-Point Robust Solutions 

In this section, we illustrate the comparison of the semi-continuous robust solution to 

the robust solution from the discrete robust algorithm that only considers each uncertain 

parameter at its boundaries.  Figure 6.18 illustrates the initial form of the example 

problem. 
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Figure 6.18  The Initial Form of the Problem 

 

Decision makers usually mislead themselves to the conclusion that setting the P3 

random variable value at its boundaries will generate the scenarios, which control the 

maximum regret from optimality.  Figure 6.19 illustrates the discrete robust optimization 

model when considering P3 value only at its boundaries. 
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Figure 6.19  The Discrete Robust Model (Setting P3 at its Boundaries) 

 

The optimal solution to this robust model can be attained by setting y1 = 1, y3 = 1,   

x12 = 10, x22 = 10, x23 = 5 and all other variables at zero.  The minimum maximum regret 

by using the discrete robust solution  (y1 = 1, y2 = 0, y3 = 1) is zero. Decision makers 

would be misled to the erroneous conclusion that this discrete robust solution is an 
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optimal robust solution to the original problem.  Misled decision makers would not be 

aware that the actual maximum regret for the original problem of this discrete robust 

solution might be really far away from zero (five in this case). 

We will now apply the semi-continuous robust algorithm to this problem by using 

two initial scenarios (P3 = 0 and P3 = 10).  The first stage of the algorithm will give the 

candidate robust solution by setting y1 = 1, y2 = 0, and y3 = 1 with the lower bound of 

zero.  This candidate robust solution is then forwarded to the second stage of the 

algorithm for feasibility check.  After performing the pre-processing step, the P3 

parameter can be fixed at zero.  Because this setting is already considered in scenario 1, 

the current candidate robust solution is already feasible for all possible scenarios.  This 

current candidate robust solution and the lower bound are then forwarded to the third 

stage of the algorithm.  At this stage, we are required to solve a BLPP model.  After 

applying parameter pre-processing step and elimination step, the final form of the BLPP 

model is illustrated in Figure 6.20.  Table 6.6 contains the optimal solution for this BLPP 

model. 
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Figure 6.20  The Final Form of the BLPP Model (y1 = 1, y2 = 0, y3 = 1) 
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Table 6.6  The Optimal Solution for the BLPP Model (y1 = 1, y2 = 0, y3 = 1) 

x11 x12 x13 x21 x22 x23 y1 y2 y3 P3 O*ω - Rω 

5 5 0 0 5 5 1 1 1 5 5 

 

 

Because the upper bound resulting from this BLPP model is 5, the algorithm forwards 

the setting of P3 at 5 (scenario 3) and the upper bound of 5 to the first stage of the 

algorithm.  The optimal solution under this new scenario is calculated next and the 

algorithm then solves the discrete robust optimization model under these three scenarios.  

The optimal solution to this discrete robust model is attained by setting y1 = 1, y2 = 1,     

y3 = 1, x11 = 5, x12 = 5, x21 = 5, x22 = 5, x31 = 5, x32 = 5 and all other variables at zero.  The 

first stage of the algorithm will give the candidate robust solution by setting y1 = 1,         

y2 = 1, and y3 = 1 with the lower bound of zero.  This candidate robust solution is then 

forwarded to the second stage of the algorithm for feasibility check.  After performing the 

pre-processing step, the P3 parameter can be fixed at zero.  Because this setting is already 

considered in scenario 1, the current candidate robust solution is already feasible for all 

possible scenarios.  This current candidate robust solution and the lower bound are then 

forwarded to the third stage of the algorithm.  At this stage, we are required to solve a 

BLPP model.  After applying parameter pre-processing step and elimination step, the 

final form of the BLPP model is illustrated in Figure 6.21. 
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Figure 6.21  The Final Form of the BLPP Model (y1 = 1, y2 = 1, y3 = 1) 

 

Because the upper bound resulting from this BLPP model is zero, the algorithm is 

then terminated with the real robust optimal solution of y1Ω = 1, y2Ω = 1 and y3Ω = 1 to the 

original problem.  These results illustrate the superior of the semi-continuous robust 

algorithm over the use of discrete robust optimization algorithm that only consider each 

parameter at its boundaries. 

 

6.7 Summary 

This chapter develops a new semi-continuous robust optimization algorithm for 

dealing with uncertainty in parameter values for reverse production system design 

problems and network infrastructure planning problems.  

The semi-continuous robust algorithm is the first known approach to generate min-

max regret robust solutions when the uncertain parameters in the mixed integer linear 

programming (MILP) network problem take their values from a real compact interval or 

a finite set of discrete values.  The algorithm can be effectively used in designing robust 
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network infrastructure for supply chain systems when the joint probability distributions 

of key parameters are unknown.  The algorithm only requires the information on potential 

ranges and possible discrete values of uncertain parameters, which often are available in 

practice.  The algorithm also involves many pre-processing steps, elimination steps and 

problem transformation procedures for improving its computational ability.  The 

algorithm is proven to either terminate at an optimal robust solution or identify the 

inexistence of the robust solution in finite number of iterations. 

The algorithm can easily be extended to generate the min-max regret robust solution 

to the problem when each uncertain continuous parameter takes its values from more than 

one compact interval (finite number of compact intervals).  In this case, the initial 

discrete scenarios are generated based on the combination of all possible values of 

discrete parameters and all possible compact intervals of continuous parameters.  In other 

words, each scenario in the initial discrete scenarios only contains one possible value of 

each discrete parameter and one possible compact interval of each continuous parameter.  

All remaining steps of the algorithm are the same. 

In the next chapter, case studies are presented for illustrating the application of the 

algorithm on designing the robust supply chain network infrastructure for the realistically 

sized problem. 
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CHAPTER    VII 

 

CASE STUDIES OF SEMI-CONTINUOUS ROBUST 

ALGORITHM ON REVERSE SUPPLY CHAIN PROBLEMS 

 

7.1 Introduction 

The detail methodology of the semi-continuous robust algorithm was introduced in 

Chapter VI.  In this chapter, two case studies are presented to illustrate the use of the 

semi-continuous robust algorithm on designing the robust infrastructure for reverse 

production systems.  The first case study is an example of a moderate size traditional 

reverse production system problem with uncertainty in model parameters.  The network 

represented is not meant to represent an existing system and is constructed only for 

illustrating the use of the semi-continuous robust algorithm on reverse supply chain 

problems.  In this case study, the comparison of the solution quality between the semi-

continuous robust solution and the average case solution is presented to illustrate the 

superiority of the semi-continuous robust solution over the average case solution.  This 

case study also presents the statistical analysis of the relationship between the locations 

of uncertain parameters and the computational time required for solving the problem.   

The second case study is a large Georgia television recycling network with 

uncertainty in supply of obsolete televisions, selling price of refurbished televisions and 

capacity of television refurbishing processes.  The case study is solved using the semi-

continuous algorithm.  The comparisons of the solution time and problem size between 
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the algorithm with and without pre-processing, elimination, and branching rules are also 

presented to illustrate the significant improvement in the BLPP model solution time by 

implementing these rules. 

These case studies illustrate how a robust infrastructure can be generated for a 

strategic reverse production system under uncertainty in model parameters by 

implementing the semi-continuous robust algorithm.  This chapter also illustrates the 

practical use of the algorithm for designing the robust infrastructure of a realistically 

sized reverse supply chain problem. 

 

7.2 Case Study 1 

In this case study, the government of city A is planning to construct a reverse supply 

chain infrastructure for the city.  The resulting infrastructure is required to collect four 

types of obsolete materials from the city for recycling.  These four types of obsolete 

materials can be collected from four different sections of the city.  The supply 

information of these materials in each section of the city is provided in Table 7.1.  

Because of budget restrictions, the government only has three possible locations for 

collection centers and three possible locations for processing centers in the city.  Table 

7.3 contains all the information for each collection center.  At each processing center, 

there are three possible alternative recycling processes.  The information of each process 

is contained in Table 7.2 and the information of each processing center is contained in 

Table 7.4.  The recycled materials can be resold to four possible different demand points 

inside and outside of the city.  The demand information for these recycled materials at 

each demand point is provided in Table 7.5.  Table 7.6 and Table 7.7 contain the distance 
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information and the transportation cost information through the possible network 

respectively.  Table 7.8 presents the fixed annual cost for opening and operating each 

collection center and processing center.  Figure 7.1 illustrates the summary of the 

possible network infrastructure for the problem. 

 

Table 7.1   Supply Information at Each Section of the City 

Section Supply of  
Material 1 (lbs) 

Supply of 
Material 2 (lbs) 

Supply of 
Material 3 (lbs) 

Supply of  
Material 4 (lbs) 

 
Section 1 

(So1) 

Unknown distribution 
UB = 15,000  
 LB = 10,000 

Mean = 12,500 

 
0 

 
0 

 
0 

Section 2 
(So2) 

0 10,000 0 0 

Section 3 
(So3) 

0 0 12,000 0 

Section 4 
(So4) 

0 0 0 Uniform 
(6000,8000) 

 

 

Table 7.2   Process Information 

Recycle Process Process Inputs Process Output 

Process 1 50% Material 1 
50% Material 2 

100% Material 5 with prob = 0.5 
or 80% Material 5 and  

20% Material 8 with prob = 0.5  
Process 2 60% Material 3 

40% Material 4 
90% Material 6 
10% Material 8 

Process 3 70% Material 5 
30% Material 6 

100% Material 7 
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Table 7.3   Collection Center Information 

 
Collection 

Center 
 

 
Material 

 
Collection Fee 

($ per lbs) 

 
($) Fixed 

Collection Cost 

 
Capacity 

Collection (lbs) 

Material 1 -10 6,000 20,000 

Material 2 -10 6,000 20,000 

Material 3 -12 8,000 20,000 

 

Collection 

Center 1 

(Si1) Material 4 -8 4,000 20,000 

Material 1 -10 6,000 20,000 

Material 2 -10 6,000 20,000 

Material 3 -12 8,000 20,000 

 

Collection 

Center 2 

(Si2) Material 4 -8 4,000 20,000 

Material 1 -10 6,000 20,000 

Material 2 -10 6,000 20,000 

Material 3 -12 8,000 20,000 

 

Collection 

Center 3 

(Si3) Material 4 -8 4,000 20,000 
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Table 7.4   Processing Center Information 

 
Processing 

Center 

 
Recycle 
Process 

 
Process 

Availability 

 
Fixed 

Processing 
Cost ($) 

 

 
Variable 

Processing 
Cost 

($/lbs) 
 

 
Capacity Process 

(lbs) 

Process 1 
 

Yes 12,000 5 30,000 

Process 2 
 

Yes 8,000 5 Uniform(15000,30000) 

 
Processing 
Center 1 

(Si4) 
 Process 3 No 

 
N/A N/A N/A 

Process 1 
 

No N/A N/A N/A 

Process 2 
 

Yes 10,000 5 30,000 

 
Processing 
Center 2 

(Si5) 
 Process 3 

 
Yes 12,000 6 Uniform(10000,30000) 

Process 1 
 

Yes 12,000 5 30,000 

Process 2 
 

No N/A N/A N/A 

 
Processing 
Center 3 

(Si6) 
 Process 3 

 
Yes 15,000 6 30,000 

 

Table 7.5   Demand Information 

Demand Point Material Price ($ per lbs) Demand (lbs) 

Demand Point 1 (C1) Material 5 Triangular(35,42.5,50) Uniform(10000,12000) 

Demand Point 2 (C2) Material 6 Triangular(40,42.5,45) Uniform(15000,20000) 

Demand Point 3 (C3) Material 7 Triangular(55,62.5,70) Uniform(20000,23500) 

Material 1 -5 30,000 

Material 2 -5 30,000 

Material 3 -5 30,000 

 

 

Demand Point 4 (C4) 

Material 8 -10 30,000 
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Table 7.6   Distance Information 

 
Distance 
(miles) 

 

 
So1 

 
So2 

 
So3 

 
So4 

 
Si1 

 
Si2 

 
Si3 

 
Si4 

 
Si5 

 
Si6 

 
C1 

 
C2 

 
C3 

 
C4 

So1 - - - - 200 150 100 - - - - - - - 

So2 - - - - 150 150 150 - - - - - - - 

So3 - - - - 100 150 200 - - - - - - - 

So4 - - - - 50 150 250 - - - - - - - 

Si1 200 150 100 50 - 100 100 200 150 400 - - - - 

Si2 150 150 150 150 100 - 100 200 200 350 - - - - 

Si3 100 150 200 250 100 100 - 200 250 300 - - - - 

Si4 - - - - 200 200 200 - 100 200 100 150 80 70 

Si5 - - - - 150 200 250 100 - 200 150 100 90 100 

Si6 - - - - 400 350 300 200 200 - 70 120 100 150 

C1 - - - - - - - 100 150 70 - - - - 

C2 - - - - - - - 150 100 120 - - - - 

C3 - - - - - - - 80 90 100 - - - - 

C4 - - - - - - - 70 100 150 - - - - 
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Table 7.7   Transportation Cost Information 

 
Type of Transportation 

 
Transportation Cost 

 ($ per lbs mile) 
 

 
Annual Capacity 

Transportation (lbs) 

From So to Si 0.05 30,000 

From Si to Si 0.01 30,000 

From Si to C 0.05 30,000 

 

 

Table 7.8   Site Opening and Operation Cost Information 

 
Location 

 

 
Fixed Annual Site Opening and  

Operating Cost 
 

 

Collection Center 1 

Unknown Distribution 
UB = 20,000 
LB = 15,000 

Mean = 17,500 
 

Collection Center 2 

Unknown Distribution 
UB = 20,000 
LB = 15,000 

Mean = 17,500 

 

Collection Center 3 

Unknown Distribution 
UB = 20,000 
LB = 15,000 

Mean = 17,500 

Processing Center 1 30,000 

Processing Center 2 30,000 

Processing Center 3 30,000 
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Figure 7.1  Possible Network Infrastructure for the Problem 

 

Comparison between Semi-Continuous Robust Solution and Average Case Solution 

The semi-continuous robust algorithm is first applied to this problem by using two 

initial scenarios that contain all possible discrete scenarios and capture all boundaries of 

continuous scenarios.  Table 7.9 contains detail information for these two initial 

scenarios.  The algorithm starts by solving two RPS models (one for each initial scenario) 

to obtain O*1 and O*2.  The algorithm continues to solve the DRRPS model by 

considering only these two initial scenarios.  Figure 7.2 illustrates the candidate robust 
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solution to the problem (infrastructure solution from the current DRRPS model) with the 

lower bound on mini-max regret of 45,000.  The optimal objective function value and the 

robust objective function value for each scenario are illustrated in Table 7.10. 

 

Table 7.9  Detail Information of Two Initial Scenarios 

 

Uncertain Parameter 

 

Scenario 1 

 

Scenario 2 

Fixed Opening Cost of 
Collection Center 1 

20,000 15,000 

Fixed Opening Cost of 
Collection Center 2 

20,000 15,000 

Fixed Opening Cost of 
Collection Center 3 

20,000 15,000 

Price of Material 5  50 35 

Price of Material 6 45 40 

Price of Material 7 70 55 

Supply of Material 1 15,000 10,000 

Supply of Material 4 8,000 6,000 

Demand of Material 5 10,000 12,000 

Demand of Material 6 15,000 20,000 

Demand of Material 7 20,000 23,500 

Process 2 Capacity at 
Processing Center 1 

15,000 30,000 

Process 3 Capacity at 
Processing Center 2 

10,000 30,000 

Output of Process 1 100% Material 5 80% Material 5 
20% Material 8 
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Figure 7.2  First Candidate Robust Infrastructure to the Problem 

 

Table 7.10  Optimal and the Robust Objective Function Values 

Scenario Optimal Robust Regret % of Optimal 

1 695,500 665,500 30,000 95.69% 

2 148,892.857 103,892.857 45,000 69.78% 

 

The algorithm now forwards this candidate robust solution to the second stage of the 

algorithm to check for feasibility.  Because scenario one includes the combination of high 
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supply, low demand and low capacity and the candidate robust solution provides a 

feasible infrastructure for this scenario, this solution also provides feasible infrastructure 

for all possible scenarios.  This candidate robust solution and the lower bound are then 

forwarded to the third stage of the algorithm.  At this stage, we are required to solve two 

BLPP models (one for each discrete scenario).  After applying parameter pre-processing 

step and elimination step, the BLPP models are solved by using the branch and bound 

steps presented in Chapter VI.  The results from these BLPP models generate the upper 

bound of 45,000.  Because there is no difference between upper bound and lower bound, 

the algorithm terminates with the candidate robust solution as the optimal robust solution.  

Table 7.12 contains two scenarios generated by this stage of the algorithm and Table 7.11 

illustrates the performance of the optimal robust solution under all four scenarios.  Table 

7.13 illustrates the comparison of the BLPP model solution time between the algorithm 

with and without pre-processing, elimination, and branching rules.  The results illustrate 

the significant improvement in the BLPP model solution time by using these rules. 

 

Table 7.11  Performance of the Optimal Robust Solution 

 

Scenario 

 
Objective 

under 
Robust 
Solution 

 
Objective 

under 
Optimal 
Solution 

 

Regret 

 
% of 

Optimal

Time 
required 

by 
BLPP 
model 
(sec) 

 
Number 
of Nodes 
Explored 

1 695,500 665,500 30,000 95.69% N/A N/A 

2 148,892.857 103,892.857 45,000 69.78% N/A N/A 

3 756,543.58 801,543.58 45,000 94.39% 11,111 24,030,515

4 620,714.28 665,714.28 45,000 93.24% 20,348 50,203,579
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Table 7.12  Two Scenarios Generated by the Third Stage of the Algorithm 

Uncertain Parameter Scenario 3 Scenario 4 

Fixed Opening Cost of 
Collection Center 1 

20,000 20,000 

Fixed Opening Cost of 
Collection Center 2 

15,000 15,000 

Fixed Opening Cost of 
Collection Center 3 

20,000 20,000 

Price of Material 5  35 50 

Price of Material 6 40 45 

Price of Material 7 70 70 

Supply of Material 1 10,000 10,000 

Supply of Material 4 8,000 8,000 

Demand of Material 5 12,000 12,000 

Demand of Material 6 15,000 20,000 

Demand of Material 7 23,499.765 22,857.143 

Process 2 Capacity at 
Processing Center 1 

30,000 30,000 

Process 3 Capacity at 
Processing Center 2 

23,499.765 22,857.143 

 
Output of Process 1 

100% Material 5 80% Material 5 
20% Material 8 

 

Table 7.13  Comparison of the BLPP model Solution Time with Different Rules 

Average Solution Time  
(sec) of the BLPP Model 

 
With Branching Rules 

 
Without Branching Rules

With Pre-Processing and 
Elimination Rules 

15,729.5 100,800 

Without Pre-Processing 
and Elimination Rules 

> 172,800 (with no solution) N/A (CPU out of memory) 
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Table 7.14 compares the semi-continuous robust solution and the optimal solution 

from the average value problem.  The results illustrate the superiority of the semi-

continuous robust solution over the optimal solution for the average value problem.  The 

feasibility of the optimal solution from the average value problem is confirmed by 

feasibility of this solution under scenario one.  Figure 7.3 illustrates the infrastructure 

solution from the average value problem. 

 

 

Figure 7.3  Average Value Solution to the Problem 
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Table 7.14  Comparison between Robust Solution and Average Value Solution 

  
Maximum Regret  
From Optimality 

 

 
Objective Value under 

Average Value Scenario 

Robust Solution (RS) 45,000 376,500 

Average Value Solution (AVS) 440,975 400,500 

Difference 395,375 24,000 

% (RS)/(AVS)  10.2% 94.01% 

 

In the next section, the statistical analysis of the relationship between parameter type 

and solution time of the problem is presented for this case study. 

 

Statistical Relationship between Parameter Type and Solution Time of the Problem 

In this section, the single replicate full factorial experimental design is implemented 

to find the statistical relationship between random parameter type (location in the model) 

and solution time required for the algorithm.  The experiment starts by using the same 

problem presented in the last section with some parameter types being random and some 

parameters types being deterministic at the mean value.  The five factors in this 

experiment are coefficients of discrete variables in the objective function (P1), 

coefficients of discrete variables in the constraints (P2), right hand side parameters (P3), 

coefficients of continuous variables in the objective function (P4), and coefficient of 

continuous variables in the constraints (P5).  Each factor is present at two levels (+ for 

random and – for deterministic).  The design matrix and the response data obtained from 

a single replicate of the 25 experiments are shown in Table 7.15.      
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Table 7.15  Experimental Design Matrix and Response Data (Solution Time) 

 
Factor 

 
Run 

Number P1 P2 P3 P4 P5 

 
Time (sec) 

 
Min-Max 

Regret 

1 – – – – – 1 0 
2 – – – – + 3 0 
3 – – – + – 9.38 5,862.5 
4 – – – + + 14.96 15,862.5 
5 – – + – – 17.75 8,391.667 
6 – – + – + 23.75 20,225 
7 – – + + – 77,052.28 45,000 
8 – – + + + 13,588.17 45,000 
9 – + – – – 7.13 41912.5 
10 – + – – + 1,641.11 45000 
11 – + – + – 314.53 41,912.5 
12 – + – + + 2,150.83 45,000 
13 – + + – – 1,958.67 45,000 
14 – + + – + 9,106.45 45,000 
15 – + + + – 39,069.49 45,000 
16 – + + + + 47,897.43 45,000 
17 + – – – – 5.5 0 
18 + – – – + 6 0 
19 + – – + – 10.38 5,862.5 
20 + – – + + 16.75 15,862.5 
21 + – + – – 14.16 8,391.667 
22 + – + – + 23.7 20,225 
23 + – + + – 58,344.31 45,000 
24 + – + + + 46,573.24 45,000 
25 + + – – – 6 41,912.5 
26 + + – – + 748.17 45,000 
27 + + – + – 175.5 41,912.5 
28 + + – + + 1,663.65 45,000 
29 + + + – – 5,313.12 45,000 
30 + + + – + 6,343.71 45,000 
31 + + + + – 57,879.9 45,000 
32 + + + + + 31,462 45,000 
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We begin the analysis of the experimental results be constructing a normal probability 

plot of the effect estimates.  By using contrasts, we may estimate the 31 factorial effects 

as shown in Table 7.16. 

 

Table 7.16  Estimation of Effects Using Contrasts 

Factor Effect Factor Effect 

P1 983.135 P1P5 568.305 

P1P2 -802.334 P2P3 -202.909 

P1P2P3 -611.013 P2P3P4 -2734.87 

P1P2P3P4 -798.128 P2P3P4P5 3,033.971 

P1P2P3P4P5 -5,084.97 P2P3P5 3,757.619 

P1P2P3P5 -5,738.77 P2P4 -2,501.6 

P1P2P4 -764.056 P2P4P5 3,151.328 

P1P2P4P5 -5,017.3 P2P5 4,468.388 

P1P2P5 -5,893.68 P3 24,243.39 

P1P3 1,171.884 P3P4 21,695.47 

P1P3P4 987.5538 P3P4P5 -6,373.55 

P1P3P4P5 1,375.931 P3P5 -5,646.64 

P1P3P5 723.3888 P4 21,937.72 

P1P4 1,020.448 P4P5 -6,253.83 

P1P4P5 1,444.175 P5 -4,932.26 

P2 627.085   

 

The normal probability plot of these effects is shown in Figure 7.4.  All of the effects 

that lie along the line are negligible, where as the large effects are far from the line.   
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Figure 7.4  Normal Probability Plot of the Effects  

 

There are several conclusions that can be drawn from this normal probability plot.  

The first conclusion is that the interaction effect of P3 and P4 has a significant effect on 

the solution time for solving this problem.  When they both are introduced to this 

problem, the solution time required for solving this problem increases dramatically.  The 

second conclusion is that the effect of the value of parameter of type P5 has a strong 

influence on the solution time for this problem, which means that by changing some 

values for parameters of this type, the solution time for this problem varies widely.  The 

third conclusion is that parameters of type P1 and P2 do not strongly influence the 
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solution times for this problem.  The conclusion for parameters of type P1 is quite 

intuitive because all these parameters can be pre-processed to specific values before the 

algorithm starts solving the BLPP model.  The reason that parameters of type P2 have no 

strong effect to the solution time of this problem is caused by the low number of 

uncertain parameters of this type in this problem instance.  Even though these 

conclusions are specific to this problem instance, they demonstrate that the solution time 

of the semi-continuous robust algorithm is influenced by the location of uncertain 

parameters in the model. 

In conclusion, this case study illustrates the use of semi-continuous robust algorithm 

on the general moderate size reverse production system problem. The statistical analysis 

on the possible relationship between the solution time required and the location of 

uncertain parameters in the model is also presented.  The next case study, Georgia 

television recycling, shows how the semi-continuous robust algorithm is applied to a 

realistically sized reverse production system problem.  

   

7.3 Georgia Television Recycling Case Study 

This case study concentrates on the robust design of reverse production system 

infrastructure for television recycling in the state of Georgia.  We assume that no obsolete 

televisions may go deliberately uncollected, in other words the variables that represent 

the inflow of the material to the system must equal the amount available for collection. 

The outputs are in several categories of remanufactured units, component parts, and 

materials listed in Figure 7.5. The financial flows, depicting profits and costs in different 

shades are indicated. 
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Figure 7.5  Cash Flow Diagram with Costs (Black) and Profits (White) 

 

This case study divides the State of Georgia into 12 disjoint regions as shown in Figure 

7.6 based on service delivery regions defined by Georgia’s Department of Community 

Affairs (DCA).  Each region represents a source of television waste streams, a centralized 

collection site and also a demand point for the units after refurbishing processes. The 

amount of obsolete televisions available for collection can be approximated from the 

population in each region. 

For obsolete televisions originating in the state, the case study considers 12 potential 

state of Georgia government-collection centers located in the center county of each DCA 

region. 
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Figure 7.6  Division of the State of Georgia into 12 DCA Regions 

 

Each collection center is assumed to collect obsolete televisions from the residential 

sources located within its 100 miles radius. Additionally, the case study includes nine 

potential processing centers throughout the state, which are able to perform the television 

refurbishing process and television demanufacturing process.  Figure 7.7 shows all 

potential sites considered in the case study. 
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Figure 7.7  All Potential Sites Considered in the Case Study 

 

Supply Information  

The supply information is estimated by using the results from other studies that the 

supply of e-scrap by assuming that on average 6.2% of the households have an electronic 

item ready for recycling (Pasco County, Florida, Pilot Program, April 2000), and the 

assumption that exactly 25% of the total population in each region except region 1, 3, and 
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12 will participate in the collecting program.  For these three specific regions, we assume 

that the participation rate of the collecting program is varied within 20% to 30%.  The 

supply information of the obsolete televisions is then calculated by using the assumption 

that fifty percent of all products ready for recycle is comprised of obsolete television. The 

case study also assumes that the average weight for one television is 51.5 lbs (Alachua 

County Florida, Summary Report, October 1999).  Table 7.17 shows the estimated supply 

information for obsolete televisions from each region under our assumptions. 

 

Table 7.17  Georgia Obsolete Television Supply Estimation 
 

Region Supply for TVs (lbs) 
1 84,000 – 126,000 
2 68,600 
3 413,200 – 619,800 
4 60,900 
5 66,000 
6 66,300 
7 65,500 
8 53,300 
9 41,000 

10 53,100 
11 54,900 
12 65,400 – 98,100 

 
** Televisions: Amount of supply = participation % × 6.2% × Number of households × 

Product proportion 
 
 
Collection Center Information 

Table 7.18 contains the collection center information used in this case study. 
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Table  7.18  Collection Center Information 
 

Description Value 
Fixed collection cost  $16,000 per year* 
Collection cost  $0.01 per pound  
Opening cost for government collection sites  $5,000 per year 
Inspection cost per television $0.5 per television 
The collection fee charged for small business and 
residential sources  

$5.28 per usable television 
$15 per broken television 

 
*   It is assumed that 1 worker per type of material collected with pay rate of $8 per hour 

working for 8 hours per day for 250 days per year. 
 
 

Processing Center Information 

The case study considers nine potential commercial processing centers (all sites 

located in Georgia). Each facility represents an actual refurbishing and/or 

demanufacturing facility located in Georgia.  Table 7.19 contains the general information 

for all nine potential processing centers considered in the case study. 

 

Table 7.19  General Information for All Nine Potential Processing Centers 
 

Processing Site 
Designation State County/City Annualized Site 

Opening Cost 
Number of 

facilities 
1A Georgia Catoosa $28,800 1 
2A Georgia Carroll $28,800 1 
3A Georgia Cobb $57,600 2 
4A Georgia Fulton $144,000 5 
5A Georgia DeKalb $172,800 6 
6A Georgia Gwinnett $28,800 1 
7A Georgia Washington $28,800 1 
8A Georgia Baldwin $28,800 1 
9A Georgia Richmond $28,800 1 
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For each processing center, there are two main potential processes:  television 

refurbishment and television demanufacturing. The information for these six processes is 

presented in Tables 7.20 and Table 7.21. 

 

Table 7.20  Variable Costs for Refurbishing and Demanufacturing Processes 

Description Value 
Variable processing cost for refurbishing TVs $0.23 per lbs* 
Variable processing cost for demanufacturing TVs $0.05 per lbs** 

*   It is estimated by assuming the processing labor cost is $10 per hour and replacement 
costs are $8 for TVs. The testing process will take on average of 10 minutes and the 
refurbishing process will take on average of 20 minutes (DAAE30-98-C-1050, 2000) 

** This information is the average of the information from Waters (1998), Pepi (1998), 
and Minnesota Office of Environmental Assistance (2001). 
 

Table 7.21  Fixed Processing Costs and Capacity for Each Processing Center 

Sites Description Annualized Value 

Fixed processing cost for refurbishing all 
products  

$8,820 per process 
(DAAE30-98-C-1050, 
2000) 

Fixed processing cost for demanufacturing 
all products  $8,000 per process  

Refurbishing capacity per factory for 
processing center 3, 4, and 5  

213,360 – 320,040 lbs per 
year 

Refurbishing capacity per factory for other 
processing centers 266,700 lbs per year 

Commercial 
processing 
sites  

Demanufacturing capacity per factory  800,000 lbs per year 
 

 

Demand Information 
 

The processing centers provide an output of remanufactured equipment, parts, and 

recycled material to a set of demand locations.  We consider three types of demand 

sources and estimate the quantities using the assumption that the demand for refurbished 

products in each region has a the positive correlation with the population in the region. 
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The first type of demand comes from people within Georgia who are interested in buying 

refurbished electronic equipment.  For this type of demand, we use the same 12 DCA 

regions to designate the demand locations. 

The second type of demand source is the group of recycling facilities interested in 

buying metal, plastic, CRT, and other demanufactured materials.   We consider a total of 

five recyclers located in several states:  Georgia (metal recycler), Florida (CRT products 

and electronics recycler), Texas (plastics recycler), and Ohio (CRT glass recycler). 

The last type of demand describes landfills to which we can send the non-hazardous 

trash resulting from the demanufacturing.   We consider eight landfills located in Georgia 

and group them into 5 demand points based on the DCA regions. (Landfill location 

information can be found at http://www.wastebyrail.com/network.html.).  Table 7.22 

illustrates the price information for each refurbished product and material. 

 

Table 7.22  Price Information for Refurbished Products and Materials 

 
*   EPA-901-R-00-002, September 2000 
** The data are from http://www.scrapcomputers.com 
***The data are from http://www.boxq.net 

 

Parameter Value 
Selling price for plastic ($ per lb) 0.175* 
Selling price for PCB ($ per lb) 0.9* 
Selling price for CRT ($ per lb) -0.1* 
Selling price for metal ($ per lb) 0.0175* 
Selling price for wire ($ per lb) 0.165* 
Selling price for trash ($ per lb) (land fill tipping fee) -0.028* 

Selling price for used TV for region 1, 3, and 12 ($ per unit) 48.00 – 72.00  
(including shipping fee) 

Selling price for used TV for other regions ($ per unit)  60.00 
Selling price for broken television ($/lbs) -0.25** 
Selling price for usable television ($/lbs) -0.25** 
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Transportation Information 

There are three types of transportation cost considered in this case study. The first 

type corresponds to the transportation cost for the people who travel to the collecting 

centers and drop off their used electronic equipment. This type of transportation cost is 

approximated by the gasoline cost ($0.15 per mile) and we assume that on average one 

trip can carry up to 50 lbs of electronic equipment. With this approximation, the 

transportation cost per lb per mile is $0.003.  

The second type represents the transportation costs for moving material between 

collection centers and processing centers, the transportation costs for moving material 

between processing centers and recycler demand points, and the transportation costs for 

moving material between processing centers and landfill demand points. This type of 

transportation can be performed by a large truck with the cost of $2 per ton per mile or 

$0.0009 per lb per mile.  

The last type corresponds to the transportation cost charged by United Parcel Service 

(UPS). This cost is about $0.26 per mile per item. This information can be found on the 

UPS website (www.ups.com). 

The data for this Georgia television recycle case study represent a large-scale 

electronics recycling infrastructure design problem.  The objective of the problem is to 

maximize net profit for the system while determining which collection and processing 

sites to utilize and then what quantities of each item type to process into what materials at 

each site. 
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The key uncertain parameters that we examine are described as follows. 

1. Participation rate. The participation rate of the collection program for regions 1, 3, 

and 12 (the three regions with the highest number of population) are random variables 

that take values from 20% to 30% independently. 

2. Selling Price. The selling price of the refurbished televisions in region 1, 3, and 12 

(the three regions with the highest demand) are random variables that take values from 

$48 to $72 per television independently. 

3. Capacity of Refurbishing Process. The capacities of the refurbishing processes in 

processing centers 3, 4, and 5 (the three processing centers with the highest number of 

facilities) are random variables that take values from 213,360 lbs to 320,040 lbs per year. 

There are three observations for this case study problem which will help us determine 

the subset of scenarios that control feasibility of the robust solution over all possible 

scenarios without any additional calculation (BLLP model).  First, the discrete solution, 

which can handle high supply scenarios, can also handle low supply scenarios in this case 

study. Second, the discrete solution, which is feasible under the extremely low capacity 

process scenario, is also feasible for the high capacity process scenario. Finally the 

discrete solution, which can handle the scenarios with extremely low demand, is also 

feasible for the high demand scenario because there is no restriction that all demands 

have to be met.  

From these three observations, this case study can determine two initial scenarios 

which control feasibility of the solution and capture all possible bounds of all possible 

continuous scenarios for the semi-continuous robust algorithm.  Table 7.23 contains the 

detail information for these two initial scenarios. 
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Table 7.23  Two Initial Scenarios for the Semi-Continuous Robust Algorithm 

 
Type of Random 

Variable 
 

 
Location 

 
Value  

(Scenario 1) 

 
Value  

(Scenario 2) 

Region 1 30% 20% 

Region 3 30% 20% 

 

Participation Rate 

Region 12 30% 20% 

Region 1 $48 per television $72 per television 

Region 3 $48 per television $72 per television 

 
Selling Price of  

Refurbished 
Televisions  

Region 12 $48 per television $72 per television 

Processing Center 3 213,360 lbs 320,040 lbs 

Processing Center 4 213,360 lbs 320,040 lbs 

 
Annual Capacity of 

the Television 
Refurbishing Process 

per Facility Processing Center 5 213,360 lbs 320,040 lbs 

 

Our case study problems were solved by a Windows 2000-based Pentium 4 1.80GHz 

personal computer with 1GB RAM using C++ program and CPLEX 8.1 for the 

optimization process.  MS-Access is used for the case study input and output database. 

In the first iteration of the algorithm, the algorithm is required to solve two main 

mixed integer linear programming models (RPS and DRRPS for 2 initial scenarios) and 

one main linear programming model (RPSLP for 2 initial scenarios).  The RPSLP model 

is used to re-optimize the problem under each scenario when all discrete parameters are 

fixed at the solution of the DRRPS model.  The information on the size of each model 

and the solution time information are summarized in Table 7.24.  Table 7.25 contains all 

solution information from the first stage of the algorithm in the iteration one. 



 177

 

Table 7.24  Size of and Solution Time of Each Model (Iteration 1) 

 
   Model Type 

Number of 
 Discrete  
Variables 

Number of 
 Continuous 
 Variables 

Number of 
 Constraints 

Solution 
Time(sec)

RPS 
 (Scenario1) 

1,174 11,849 14,182 2 

RPS 
(Scenario2) 

1,174 11,849 14,182 2 

DRRPS 1,174 23,698 26,798 35 

RPSLP 
(Scenario1) 

N/A 11,849 12,608 1 

RPSLP 
(Scenario2) 

N/A 11,849 12,608 1 

 

 

 

Table 7.25  Solution Information for the First Stage (Iteration 1) 

 
Scenario 

 
Objective 

Value under 
Robust 

Solution 
 

 
Optimal 

Objective 
Value 

 
Regret 

 
% From 
Optimal 

1 31,786.053 61,473.78 29,687.73 51.71% 

2 108,025.1 138,703.47 30,678.37 77.88% 

 

 

Table 7.26 contains the detail information on the candidate robust solution from the 

first iteration with the lower bound on min-max regret of 30,678.37. 
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Table 7.26  Detail Information of the Candidate Robust Solution (Iteration 1) 

 
Decision Type 

 

 
Candidate Robust Solution 

 
Site Opening Decision 

 
Collection Centers 3, 5, 6, and 9 

Processing Centers 6 and 8 
 

 
 

Collection Decision 

 
Collection Centers 3, 5, 6, and 9 are 

required to collect all possible obsolete 
televisions from any source within 100 

miles radius. 
 

 
 
 

Process Decision 

 
Collection Centers 3, 5, 6, and 9 are 

required to install the television inspection 
process.  Processing Centers 6 and 8 are 

required to install both the television 
refurbishing process and the television 

demanufacturing process. 
 

 

 

Because scenario one is the scenario that controls the feasibility of the robust solution 

over all possible scenarios and this candidate robust solution is feasible under this 

scenario, this candidate robust solution can directly be forwarded to the third stage of the 

algorithm with no additional processing by the second stage. 

At this stage, the algorithm is required to solve one BLPP model with the objective of 

finding the scenario with maximum regret of the candidate robust solution.  Table 7.27 

and Table 7.28 contain the detailed information for this stage of the algorithm. 

 

 



 179

Table 7.27  Detail Information of the BLPP Model (Iteration 1) 

 
Model Type 

 
Number of 
Constraints 

 
Number of  

Binary Variables  
+  Complementary 

Slackness Conditions 
 

 
Number of  
Continuous 
Variables  

BLPP without rules 38,691 1,177 + 24,457 60,763 

BLPP with rules 2,359 328 + 486 593 

 

Table 7.28  Solution Information of the BLPP Model (Iteration 1) 

 
Scenario 

 

 
Robust 

Objective 
 

 
Optimal 

Objective 

 
Regret 

 
% From 
Optimal 

 
Solution 

Time (sec) 

3 158,156.1378 202,448.6378 44,292.5 78.12% 13,306.69 

 

The third stage of the algorithm generates one scenario and the upper bound on the 

min-max regret of 44,292.5 in the first iteration. This information is then forwarded back 

to the first stage to find another candidate robust solution or to confirm the optimality of 

the current best solution.  At this stage, we introduce three scenarios to the problem:  one 

scenario (Scenario 3) from the third stage and two scenarios (Scenario 4 and Scenario 5) 

derived on the basis of the author’s expertise to accelerate the process.  The algorithm 

solves the problem using 3 iterations and terminates at the solution with the maximum 

regret less than 3.33% from the maximum regret of the optimal robust solution.  This 

solution is the same solution previously shown in Table 7.26.  Table 7.29 contains the 

summary of all algorithm steps for the semi-continuous robust algorithm.  Table 7.30 

contains the summary of all scenarios used in the algorithm and Figure 7.8 illustrates the 
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infrastructure of the 3.33% optimal robust solution generated by the semi-continuous 

robust algorithm.  Table 7.31 summarizes the performance of the 3.33% optimal robust 

solution on all six scenarios considered by the algorithm. 

 

 

Table 7.29  Summary of the Algorithm Steps 

 
Iteration 

 
Model 

 
Solution 

Time 
(sec) 

 
Number 

of 
Scenarios 

 
Lower 
Bound 

 
Upper 
Bound 

 
% 

Differe
nce 

Max 
Regret 

by BLPP 
at each 

Iteration 
RPS 4 

DRRPS 35 

 

1 

BLPP 13,306.69

 

2 

 

30,678.37

 

44,292.5

 

44% 

 

44,292.5

RPS 10 

DRRPS 9,422.53 

 

2 

BLPP 61,661.86

 

5 

 

42,074.95

 

 

44,292.5

 

5.27% 

 

44,303.8

RPS 12 

DRRPS 9,221.36 

 

3 

BLPP N/A 

 

6 

 

42,864.75

 

N/A 

 

< 

3.33% 

 

N/A 
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Table 7.30  All Scenarios Considered by the Semi-Continuous Robust Algorithm 

 
Scenario 

 

 
Type of 
Random 
Variable 

 
 

Location 
 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

Region 1 30% 20% 30% 30% 20% 20% 

Region 3 30% 20% 30% 30% 20% *22.452% 

 
 

Participation 
Rate 

Region 12 30% 20% 20% 30% 20% 20% 

 

Region 1 

 

48 

 

72 

 

48 

 

72 

 

48 

 

48 

 

Region 3 

 

48 

 

72 

 

72 

 

72 

 

48 

 

48 

 
 

Selling Price 
of  

Refurbished 
Television  
($ per unit) 

 

Region 12 

 

48 

 

72 

 

48 

 

72 

 

48 

 

48 

 
Processing 
Center 3 

 

213,360 

 

320,040 

 

320,040 

 

320,040 

 

213,360 

 

320,040 

 
Processing 
Center 4 

 

213,360 

 

320,040 

 

320,040 

 

320,040 

 

213,360 

 

320,040 

 
 

Annual 
Capacity of 
Television 

Refurbishing 
Process per 

Factory 
(lbs) 

 
Processing 
Center 5 

 

213,360 

 

320,040 

 

320,040 

 

320,040 

 

213,360 

 

320,040 

 
* The scenarios with maximum regret from the candidate solution need not be end-point 
scenarios.  In this case, the end-point scenarios will result in less regret than this solution. 
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Figure 7.8  3.33% Optimal Robust Infrastructure for Georgia Television Recycle 
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Table 7.31  Performance of the 3.33% Optimal Robust Solution on All Six Scenarios  
                    Considered by the Semi-Continuous Robust Algorithm 

 
 

Scenario 
 

Objective 
Value under 

Robust 
Solution 

 

 
Optimal 

Objective 
Value 

 
Regret 

 
% From 
Optimal 

1 31,786.05 61,473.78 29,687.73 51.71% 

2 108,025.1 138,703.47 30,678.37 77.88% 

3 158,156.137 202,448.6378 44,292.5 78.12% 

4 163,608.67 207,474.4096 43,865.74 78.86% 

5 1,450.05 35,566.58656 34,116.54 4.08% 

6 9,162.088 44,720.82871 35,558.74 20.49% 

 

This case study illustrates the effectiveness of the semi-continuous robust algorithm 

for problems of practical size and structure.  In the next chapter, we will introduce the 

combination of an algorithm called parameter space transformation algorithm and the 

semi-continuous robust algorithm for handling situations when correlations exist among 

parameters. 

 

7.4 Summary 

The case studies in this chapter are illustrative of the application of the semi-

continuous robust algorithm to designing robust infrastructure for reverse production 

systems.  The case studies shows that the algorithm can be applied to realistically sized 

problems.   
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The semi-continuous robust algorithm illustrates the innovation both in theory and in 

application to a real problem.  The algorithm has the potential to be very useful and 

powerful for any area of supply chain strategic planning that can be modeled in the form 

of a mixed integer linear programming under uncertainty in model parameters where the 

joint probability distribution of the uncertain parameters is unknown.  
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CHAPTER    VIII 

 

PARAMETER SPACE TRANSFORMATION ALGORITHM 

 

8.1 Introduction 

One of the assumptions of the semi-continuous robust algorithm is that the algorithm 

requires all model parameters to be independent.  In many practical problems, model 

parameters are correlated.  For example in the reverse production system, the 

participation rate in the recycling program often has negative correlation with the 

collection fee collected per unit of an obsolete product.  This chapter introduces a 

parameter space transformation algorithm in order to transform the parameter space from 

the original parameter space with high correlation to a new parameter space with low 

correlation (or approximately no correlation).  After performing this algorithm, the semi-

continuous robust algorithm can be applied to the problem under the new parameter 

space with less concern on the violation of the independency assumption.  Section 8.2 

presents the detailed methodology of the parameter space transformation algorithm. 

Section 8.3 demonstrates the implementation of the semi-continuous robust algorithm 

after applying the parameter space transformation algorithm.  Section 8.4 illustrates the 

application of the algorithm to the sample problems. 
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8.2 Detailed Methodology for Parameter Space Transformation Algorithm 

Let random variable {1,2,..., }ip i n∀ ∈ be the original model parameters that have 

correlation among one another and let p be the n dimensional random vector such that its 

ith component is pi.  Let },...,2,1{, 1 nipp L
i

U
i ∈∀ℜ∈ be the upper bound and the lower 

bound of each model parameter respectively.  By using the information from the sample 

data set for these model parameters, the algorithm steps are presented as follows: 

 

Step 0:  (Initialization step) let 0a be the vector in nℜ such that its ith component takes the 

value of 0 2

U L
i i

i
p pa +

=  and let x  be the n dimensional random vector such that its ith 

component takes the value of 0i i ix p a= − . Let {1,2,..., }n
ie i n∈ℜ ∀ ∈ be the initial basis 

of the original parameter space. 

 

Step 1:  Use linear regression analysis to generate the approximated linear relationship 

among random variables x1, x2,…, xn with coefficients  {1,2,..., 1}ia i n∀ ∈ − where 

1

1 1 2 2 1 1
1

...
n

n n n i i
i

x a x a x a x a x
−

− −
=

= + + + =∑ .  This function represents a linear subspace with 

dimension 1n − . 

 

Step 2:  Identify sets {1,2,..., 1}I n= − , 1 { | 0}iI i I a= ∈ = and 2 { | 0}iI i I a= ∈ ≠ .  The 

alternative basis of this parameter space can also be represented by 1 ,  i ne i I e∀ ∈ , and 

2 ig i I∀ ∈ where gi represents the n dimensional vector such that its ith component takes 

the value of 1 and its nth component takes the value of ai and zero elsewhere.  Perform the 
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Gram-Schmidt Orthogonalization algorithm starting with 2 ig i I∀ ∈ , 1 ,  and i ne i I e∀ ∈ to 

generate the new orthonormal basis for this parameter space.  Let 

'  {1,2,..., }iu i n∀ ∈ represent this new orthonormal basis and let matrix ' ' '
1 2[   ..... ]nQ u u u=  

represent an orthogonal matrix such that its ith column is the vector '  {1,2,..., }iu i n∀ ∈ . 

 

Step 3:  Let random variable ' {1,2,..., }ip i n∀ ∈  be the new model parameters 

corresponding to the new basis that have low correlation (or approximately no 

correlation) among one another and let 'p be the n dimensional random vector such that 

its ith component is '
ip .  The relationship between vectors p and 'p can be represented as 

'
0p Qp a= + .   

 

Step 4:  Transform all original random model parameters, {1,2,..., }ip i n∀ ∈ , in the 

model to the new random model parameters, ' {1,2,..., }ip i n∀ ∈  by using the relationship 

in step 3.  The upper bound and the lower bound of these new random parameters can be 

attained from the information containing in the sample data set.  

 

This relationship between vectors p and 'p  can be derived as follow.  From the fact 

that ' '

1
( )

n
T

i i j j
j

e e u u
=

=∑ and 1 2
1

[ , ,..., ]
n

T
n i i

i
x x x x e

=

=∑ ' '

1 1
( )

n n
T

i i j j
i j

x e u u
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ' '

1 1
( )

n n
T
i j i j

j i
e u x u

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ , 

the relationship between ' {1,2,..., }ip i n∀ ∈  and {1,2,..., }ix i n∀ ∈  is obviously 

' '

1
( )  {1,2,..., }

n
T

j i j i
i

p e u x j n
=

= ∀ ∈∑  or ' Tp Q x= .  By using the fact that matrix Q is an 
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orthogonal matrix (Q-1 = QT) and the relationship between vector p  and x , the 

relationship between vectors p  and 'p  can be attained.  Figure 8.1 illustrates the 

algorithm steps of the parameter space transformation algorithm. 

 

 

Figure 8.1  Parameter Space Transformation Algorithm 

 

 

8.3 The Implementation of The Semi-Continuous Robust Algorithm  

       After Applying The Parameter Space Transformation Algorithm 

 
After applying the parameter space transformation algorithm to the problem with 

correlated parameters, the resulting model is now ready for the semi-continuous robust 

algorithm.  This section contains the detail methodology for applying the semi-

continuous robust algorithm to the transformed problem.   

 



 189

Transformation in the First Stage of the Algorithm (RPS and DRRPS Models) 

Because this stage of the algorithm only solves the problem based on the 

predetermined finite set of discrete scenarios, there is no transformation necessary in this 

stage of the algorithm.     

  

Transformation in the Second Stage of the Algorithm (BLLP Model) 

After applying the parameter space transformation algorithm to the problem, each of 

the correlated original model parameters is transformed into the affine function of the 

uncorrelated new parameters.  Figure 8.2 illustrates the model structure of the 

transformed BLLP model. 

 

' ' '

, ,

'
0

minimize              

s.t.                  
                 maximize            

                 s.t.           

                               1
            

p

L U

x s

p p p

Ax s Qp a

 s

δ

δ

δ

δ

≤ ≤

± = +

≤

                   0x ≥

 

 

Figure 8.2  Transformed BLLP Model 

 

Perform pre-processing steps stated in Chapter VI on all uncorrelated original model 

parameters.  If there still exist some random parameters in the transformed BLLP model 

that still cannot be fixed, the BLLP model can be further transformed into an easier 

problem by the results of the following lemma. 
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Lemma 2: The transformed BLLP model has at least one optimal solution '*p  in which 

each element of 'p takes value at its bounds. 

 

Proof:  Let '*p be an optimal solution of the transformed BLLP model such that an 

element i does not take the value from its bounds or ' '* 'L U
i i ip p p< < . There are only three 

possible cases to be considered. 

Case 1:  * *
jsδ = where ( )* * '* '*

0j jl l ji i jj
l i

Ax s a p a p a
≠

± = + +∑  and 0 jia j≠ ∃ . 

In this case, we can easily show that '*
ip has already taken the value from its bounds. 

There are four sub-cases to be considered. 

Sign is + and aji > 0:  

If '* 'L
i ip p> , ε∃  > 0 such that '* 'L

i ip pε− ≥  and ( ) ( )* * '* '*
0j jl l ji i jj

l i
Ax s a p a p aε

≠

+ > + − +∑ . 

The value of ( )*

j
Ax cannot be decreased because of the optimality of '*p and *x . For this 

reason the value of *
js can be decreased to *

j jis a ε− . This contradicts the optimality of *δ . 

Sign is + and aji < 0: 

If '* 'U
i ip p< , ε∃  > 0 such that '* 'U

i ip pε+ ≤  and ( ) ( )* * '* '*
0j jl l ji i jj

l i
Ax s a p a p aε

≠

+ > + + +∑ . 

The value of ( )*

j
Ax cannot be decreased because of the optimality of '*p and *x . For this 

reason the value of *
js can be decreased to *

j jis a ε+ . This contradicts the optimality of *δ . 

Sign is – and aji > 0:  

If '* 'U
i ip p< , ε∃  > 0 such that '* 'U

i ip pε+ ≤  and ( ) ( )* * '* '*
0j jl l ji i jj

l i
Ax s a p a p aε

≠

− < + + +∑ . 



 191

The value of ( )*

j
Ax cannot be increased because of the optimality of '*p and *x . For this 

reason the value of *
is can be decreased to *

j jis a ε− . This also contradicts the optimality of 

*δ . 

Sign is – and aji < 0: 

If '* 'L
i ip p> , ε∃  > 0 such that '* 'L

i ip pε− ≥  and ( ) ( )* * '* '*
0j jl l ji i jj

l i
Ax s a p a p aε

≠

− < + − +∑ . 

The value of ( )*

j
Ax cannot be increased because of the optimality of '*p and *x . For this 

reason the value of *
js can be decreased to *

j jis a ε+ . This contradicts the optimality of *δ . 

 

Case 2:  * *
jsδ = where ( )* * '* '*

0j jl l ji i jj
l i

Ax s a p a p a
≠

± = + +∑  and 0 jia j= ∀ . 

In this case, it is trivial to see that the value of '*
ip can be adjusted to either of its bound 

without any effect on the optimality and feasibility of the problem. 

 

Case 3:  * *
jsδ < where ( )* * '* '*

0j jl l ji i jj
l i

Ax s a p a p a
≠

± = + +∑ . 

In this case, the value of '*
ip can be adjusted to either of its bound without any effect on 

the optimality and feasibility of the problem. This statement is quite obvious from the 

optimality of '*p and the structure of the BLLP model.                                                 

 

The results from Lemma 2 greatly simplify the solution methodology of the 

transformed BLLP model. By adding dual constraints and a strong duality constraint for 

the follower problem into the BLLP model, the problem is transformed from a bi-level 
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linear programming problem to a single level mixed integer linear programming problem 

as shown in Figure 8.3. 

' ' '

'
0

1

2

1 2

minimize       
s.t.             

                 

                 1
                 0

                 1 1

                 0

                 

L U

T

T

p p p

Ax s Qp a

s
A w

w

w w

Q

δ

δ

δ

≤ ≤

± = +

≤

≥

=

± − =

= ( ) ( )' '
0 1 0 2

2

( )

                 ,  0

T T
p a w Qp a w

w x

+ = + ±

≥

 

 

Figure 8.3  The New Transformed BLLP Model 

 

The nonlinear term in the constraint ( )'
0 1

T
Qp a wδ = + can be transformed into mixed 

integer linear constraints by using the results of Lemma 2 as shown in Figure 8.4 where 

M is a significantly large number. 

( ) ( ) ( ) ( )

( ) ( )

' ' '
0 2 0 2 2 0 2

'
2 0 2

' ' ' '
2 2 2 2

' '
2 2

   ( )

      

                       (1 )

 

T

ij j i i ij j i i i
i j i j

ij ij i i
i j

U U
ij j i ij j i j

L
ij j i

Qp a w a p a w a p w a w

a PW a w

PW p w PW p w M bi

PW p w

δ δ δ

δ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ± ↔ = + ± ↔ = ± + ±⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
↔ = ± + ±⎜ ⎟

⎝ ⎠

≤ − ≤− + −

≤

∑ ∑ ∑ ∑

∑ ∑

' ' '
2 2

' ' ' ' '
2 2

                  where  cannot be preprocessed

{0,1}

  If  can be preprocessed at  or have the constant value of ,

L
j ij j i j

j

j j j ij j i

Mbi PW p w j p

bi

p p p PW p w

⎫
⎪⎪+ ≥ ∀⎬
⎪∈ ⎪⎭

=

 

Figure 8.4  Transformation of the Strong Duality Constraint in the BLLP Model 
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Transformation in the Third Stage of the Algorithm (BLPP Model)  

There are eight possible cases of correlations among model parameters that require 

different transformations in the BLPP model.  The detail transformation steps of the 

BLPP model for these eight cases are presented as follow: 

 

Case 1:  The correlation exists among model parameters of type p1 and these parameters 

are not correlated with other parameter types. 

Let model parameters 1  ip i A∀ ∈  be correlated with one another and these parameters 

are not correlated with any other parameters in the model.  These parameters appear in 

the original model objective function of the BLPP model as 1 1 1i i i i
i A i A

p y p yΩ
∈ ∈

⎛ ⎞
± −⎜ ⎟
⎝ ⎠
∑ ∑ .  

After applying the parameter space transformation algorithm to the problem, this section 

of the transformed BLPP model can be rewritten as follows: 

| | | |
' '
1 0 1 1 0

1 1

A A

ij j i i ij j i i
i A j i A j

a p a y a p a yΩ
∈ = ∈ =

⎛ ⎞⎛ ⎞ ⎛ ⎞
± + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  

| | | |
' '

1 1 0 1 1 0
1 1

A A

ij i j i i ij i j i i
j i A i A j i A i A

a y p a y a y p a yΩ Ω
= ∈ ∈ = ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞
≡ ± + − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑  

| |
'

1 1 0 1 0
1

A

ij i ij i j i i i i
j i A i A i A i A

a y a y p a y a yΩ Ω
= ∈ ∈ ∈ ∈

⎛ ⎞⎛ ⎞
≡ ± − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑  

| |
'

1 1 0 1
1

( ) ( )
A

ij i i j i i i
j i A i A

a y y p a y yΩ Ω
= ∈ ∈

⎛ ⎞⎛ ⎞
≡ ± − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  
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Because the value of 1( )ij i i
i A

a y yΩ
∈

−∑ is either negative or nonnegative, it is quite obvious 

that one of the optimal settings of '
1 jp is at its bound 1,2,...,| |j A∀ = .  From these results, 

we can transform the BLPP model by using the following steps. 

Step 1:  Add variables '
1 1, 2,...,| |jKP j A∀ =  to the BLPP model and replace the term 

1 1 1i i i i
i A i A

p y p yΩ
∈ ∈

⎛ ⎞
± −⎜ ⎟
⎝ ⎠
∑ ∑  in the objective function of the original BLPP model by 

| |
'

1 0 1
1

( )
A

j i i i
j i A

KP a y yΩ
= ∈

⎛ ⎞
± + −⎜ ⎟
⎝ ⎠
∑ ∑ . 

 

Step 2:  Add binary variables 1 1, 2,...,| |jbi j A∀ =  and add the following constraints to the 

BLPP model 1, 2,...,| |j A∀ = . 

1 1

1 1

' ' '
1 1 1 1 1

' '
1 1 1

         ( ) | |   

         ( ) | | ( 1)

(If the sign is +)
          (1 )

          ( ) (1

ij i i ij j
i A i A

ij i i ij j
i A i A

L U
j j j j j

U
j ij i i j

i A

a y y a bi

a y y a bi

p bi p bi p

KP a y y p M

Ω
∈ ∈

Ω
∈ ∈

Ω
∈

⎛ ⎞
− ≤ ⎜ ⎟

⎝ ⎠
⎛ ⎞

− ≥ −⎜ ⎟
⎝ ⎠

= − +

⎛ ⎞
− − ≤ −⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑ ' '
1 1 1 1 1

' ' ' '
1 1 1 1 1 1 1 1

'
1 1 1

)      ( ) (1 )

          ( )                ( )

(If the sign is )
           

U
j j ij i i j j

i A

L L
j ij i i j j j ij i i j j

i A i A

j j j

bi KP a y y p M bi

KP a y y p Mbi KP a y y p Mbi

p bi p

Ω
∈

Ω Ω
∈ ∈

⎛ ⎞
− + − ≤ −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

− − ≤ − + − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
−

=

∑

∑ ∑

' '
1 1

' ' ' '
1 1 1 1 1 1 1 1

' ' '
1 1 1 1 1 1

(1 )

          ( )                ( )

          ( ) (1 )       ( )

L U
j j

U U
j ij i i j j j ij i i j j

i A i A

L
j ij i i j j j ij i i

i A i

bi p

KP a y y p Mbi KP a y y p Mbi

KP a y y p M bi KP a y y

Ω Ω
∈ ∈

Ω Ω
∈

+ −

⎛ ⎞ ⎛ ⎞
− − ≤ − + − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞

− − ≤ − − + −⎜ ⎟
⎝ ⎠

∑ ∑

∑

( )

'
1 1

' '
1 1

(1 )

where = | | | | | |

L
j j

A

U L
ij j j

i A

p M bi

M a p p

∈

∈

⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∑

∑
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Case 2:  The correlation exists among model parameters of type p1 and p4 and these 

parameters are not correlated with other parameter types. 

Let model parameters 1  ip i A∀ ∈  and 4  ip i B∀ ∈  (without lost of generality, we can 

modify the index such that A B∩ =∅ ) be correlated with one another and these 

parameters are not correlated with any other parameters in the model.  These parameters 

appear in the original model objective function of the BLPP model as 

4 1 4 2 1 1 1i i i i i i i i
i B i B i A i A

p x p x p y p yΩ
∈ ∈ ∈ ∈

⎛ ⎞
± − + −⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑ .  After applying the parameter space 

transformation algorithm to the problem, this section of the transformed BLPP model can 

be rewritten as follow: 

| | | | | | | | | | | | | | | |
' ' ' '
14 0 1 14 0 14 0 1 14 0 2

1 1 1 1

A B A B A B A B

ij j i i ij j i i ij j i i ij j i i
i A j i A j i B j i B j

a p a y a p a y a p a x a p a x
+ + + +

Ω
∈ = ∈ = ∈ = ∈ =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
± + − + + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

 

| | | |
'

1 1 2 14 0 1 0 1 2
1

( ) ( ) ( ) ( )
A B

ij i i ij i i j i i i i i i
j i A i B i A i B

a y y a x x p a y y a x x
+

Ω Ω
= ∈ ∈ ∈ ∈

⎛ ⎞⎛ ⎞
≡ ± − + − + − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑  

Because the value of 1 1 2( ) ( )ij i i ij i i
i A i B

a y y a x xΩ
∈ ∈

− + −∑ ∑ is either negative or nonnegative, it 

is quite obvious that one of the optimal settings of '
14 jp  is at its bound 

1,2,...,| | | |j A B∀ = + .  From these results, we can transform the BLPP model by using 

the following steps. 
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Step 1:  Add variables '
14 1, 2,...,| | | |jKP j A B∀ = +  to the BLPP model and replace the 

term 4 1 4 2 1 1 1i i i i i i i i
i B i B i A i A

p x p x p y p yΩ
∈ ∈ ∈ ∈

⎛ ⎞
± − + −⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑  in the objective function of the 

original BLPP model by 
| | | |

'
14 0 1 0 1 2

1
( ) ( )

A B

j i i i i i i
j i A i B

KP a y y a x x
+

Ω
= ∈ ∈

⎛ ⎞
± + − + −⎜ ⎟
⎝ ⎠
∑ ∑ ∑ . 

 

Step 2:  Add binary variables 14 1, 2,...,| | | |jbi j A B∀ = +  and add the following 

constraints to the BLPP model 1,2,...,| | | |j A B∀ = + . 

1 1 2 1 14

1 1 2 1 14

'
14 1

         ( ) ( ) | | | |   

         ( ) ( ) | | | | ( 1)

(If the sign is +)
          (1

U
ij i i ij i i ij ij i j

i A i B i A i B

U
ij i i ij i i ij ij i j

i A i B i A i B

j

a y y a x x a a x bi

a y y a x x a a x bi

p bi

Ω
∈ ∈ ∈ ∈

Ω
∈ ∈ ∈ ∈

⎛ ⎞
− + − ≤ +⎜ ⎟

⎝ ⎠
⎛ ⎞

− + − ≥ + −⎜ ⎟
⎝ ⎠

= −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

' '
4 14 14 14

' '
14 1 1 2 14 14

' '
14 1 1 2 14 14

'
14 1

)

          ( ) ( ) (1 )      

     ( ) ( ) (1 )

          ( )

L U
j j j j

U
j ij i i ij i i j j

i A i B

U
j ij i i ij i i j j

i A i B

j ij i i
i

p bi p

KP a y y a x x p M bi

KP a y y a x x p M bi

KP a y y

Ω
∈ ∈

Ω
∈ ∈

Ω
∈

+

⎛ ⎞
− − + − ≤ −⎜ ⎟
⎝ ⎠
⎛ ⎞

− + − + − ≤ −⎜ ⎟
⎝ ⎠

− −

∑ ∑

∑ ∑

'
1 2 14 14

' '
14 1 1 2 14 14

( )   

      ( ) ( )

L
ij i i j j

A i B

L
j ij i i ij i i j j

i A i B

a x x p Mbi

KP a y y a x x p Mbi

∈

Ω
∈ ∈

⎛ ⎞
+ − ≤⎜ ⎟

⎝ ⎠
⎛ ⎞

− + − + − ≤⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
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' ' '
14 14 14 14 14

' '
14 1 1 2 14 14

' '
14 1 1 2 14

(If the sign is )
           (1 )

          ( ) ( )           

      ( ) ( )

L U
j j j j j

U
j ij i i ij i i j j

i A i B

U
j ij i i ij i i j

i A i B

p bi p bi p

KP a y y a x x p Mbi

KP a y y a x x p

Ω
∈ ∈

Ω
∈ ∈

−

= + −

⎛ ⎞
− − + − ≤⎜ ⎟
⎝ ⎠
⎛ ⎞

− + − + −⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑ 14

' '
14 1 1 2 14 14

' '
14 1 1 2 14 14

'
1 14

          ( ) ( ) (1 )      

      ( ) ( ) (1 )

where = | | | | |

j

L
j ij i i ij i i j j

i A i B

L
j ij i i ij i i j j

i A i B

U U
ij ij i j

i A i B

Mbi

KP a y y a x x p M bi

KP a y y a x x p M bi

M a a x p

Ω
∈ ∈

Ω
∈ ∈

∈ ∈

≤

⎛ ⎞
− − + − ≤ −⎜ ⎟
⎝ ⎠
⎛ ⎞

− + − + − ≤ −⎜ ⎟
⎝ ⎠

⎛ ⎞
+⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

∑ ∑ ( )'
14| | |L

jp+

 

 

Case 3:  The correlation exists among model parameters of type p2 and these parameters 

are not correlated with other parameter types.  

Let model parameters 2  jp j A∀ ∈  be correlated with one another and these 

parameters are not correlated with any other parameters in the model.  These parameters 

appear in the original model constraints of the BLPP model as 1 2 1i j j
i

x p y≤∑  and 

2 2  i j j
i

x p y j AΩ≤ ∀ ∈∑ .  After applying the parameter space transformation algorithm to 

the problem, this section of the transformed BLPP model can be rewritten as follow: 

| | | |
' '

1 2 0 1 2 2 0
1 1

 and 
A A

i jk k j j i jk k j j
i k i k

x a p a y x a p a yΩ
= =

⎛ ⎞ ⎛ ⎞
≤ + ≤ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑  

| | | |
' '

1 2 1 0 1 2 2 0
1 1

 and 
A A

i jk k j j j i jk k j j j
i k i k

x a p y a y x a p y a yΩ Ω
= =

⎛ ⎞ ⎛ ⎞
≡ ≤ + ≤ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  

From these results, we can transform the BLPP model by using the following steps. 
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Step 1:  Replace the constraints 2 2  i j j
i

x p y j AΩ≤ ∀ ∈∑  in the original BLPP model by 

| |
'

2 2 0
1

 
A

i jk k j j
i k

x a p a y j AΩ
=

⎛ ⎞
≤ + ∀ ∈⎜ ⎟
⎝ ⎠

∑ ∑ . Add variables '
2  jPY j A∀ ∈  to the BLPP model and 

replace the constraints 1 2 1  i j j
i

x p y j A≤ ∀ ∈∑  in the original BLPP model by 

'
1 2 0 1  i j j j

i
x PY a y j A≤ + ∀ ∈∑ . 

 

Step 2:  Add the following constraints to the BLPP model j A∀ ∈ . 

| | | |
' ' ' '

2 1 2 2 1 2
1 1

| |
' ' ' '

2 1 2 1 2 2
1

         (1 )         (1 )

                       where | | max(| |,| |)

A A

j j jk k j j jk k
k k

A
U L

j j j j jk k k
k

PY M y a p PY M y a p

PY My PY My M a p p

= =

=

⎛ ⎞ ⎛ ⎞
≤ − + − ≤ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

≥ − ≤ = ⎜ ⎟
⎝ ⎠

∑ ∑

∑
 

 

Case 4:  The correlation exists among model parameters of type p3 and these parameters 

are not correlated with other parameter types. 

Let model parameters 3  jp j A∀ ∈  be correlated with one another and these 

parameters are not correlated with any other parameters in the model.  These parameters 

appear in the original model constraints of the BLPP model as 1 3i j
i

x p≤∑  and 

2 3  i j
i

x p j A≤ ∀ ∈∑ .  After applying the parameter space transformation algorithm to the 

problem, this section of the transformed BLPP model can be rewritten as follow: 

| | | |
' '

1 3 0 2 3 0
1 1

 and 
A A

i jk k j i jk k j
i k i k

x a p a x a p a
= =

⎛ ⎞ ⎛ ⎞
≤ + ≤ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑  

From these results, we can transform the BLPP model by using the following steps. 
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Step 1:  Replace the constraints 1 3  i j
i

x p j A≤ ∀ ∈∑  and 2 3  i j
i

x p j A≤ ∀ ∈∑  in the 

original BLPP model by 
| | | |

' '
1 3 0 2 3 0

1 1
 and  

A A

i jk k j i jk k j
i k i k

x a p a x a p a j A
= =

⎛ ⎞ ⎛ ⎞
≤ + ≤ + ∀ ∈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ . 

 

Case 5:  The correlation exists among model parameters of type p4 and these parameters 

are not correlated with other parameter types. 

Let model parameters 4  ip i A∀ ∈  be correlated with one another and these 

parameters are not correlated with any other parameters in the model.  These parameters 

appear in the original model objective function of the BLPP model as 

4 1 4 2i i i i
i A i A

p x p x
∈ ∈

⎛ ⎞
± −⎜ ⎟
⎝ ⎠
∑ ∑ .  After applying the parameter space transformation algorithm to 

the problem, this section of the transformed BLPP model can be rewritten as follow: 

| | | |
' '
4 0 1 4 0 2

1 1

A A

ij j i i ij j i i
i A j i A j

a p a x a p a x
∈ = ∈ =

⎛ ⎞⎛ ⎞ ⎛ ⎞
± + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  

| | | |
' '

1 4 0 1 2 4 0 2
1 1

A A

ij i j i i ij i j i i
j i A i A j i A i A

a x p a x a x p a x
= ∈ ∈ = ∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞
≡ ± + − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑  

| |
'

1 2 4 0 1 0 2
1

A

ij i ij i j i i i i
j i A i A i A i A

a x a x p a x a x
= ∈ ∈ ∈ ∈

⎛ ⎞⎛ ⎞
≡ ± − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑  

| |
'

1 2 4 0 1 2
1

( ) ( )
A

ij i i j i i i
j i A i A

a x x p a x x
= ∈ ∈

⎛ ⎞⎛ ⎞
≡ ± − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  

Because the value of 1 2( )ij i i
i A

a x x
∈

−∑ is either negative or nonnegative, it is quite obvious 

that one of the optimal settings of '
4 jp is at its bound 1,2,...,| |j A∀ = .  From these results, 

we can transform the BLPP model by using the following steps. 
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Step 1:  Add variables '
4 1, 2,...,| |jKP j A∀ =  to the BLPP model and replace the term 

4 1 4 2i i i i
i A i A

p x p x
∈ ∈

⎛ ⎞
± −⎜ ⎟
⎝ ⎠
∑ ∑  in the objective function of the original BLPP model by 

| |
'

4 0 1 2
1

( )
A

j i i i
j i A

KP a x x
= ∈

⎛ ⎞
± + −⎜ ⎟
⎝ ⎠
∑ ∑ . 

 

Step 2:  Add binary variables 4 1, 2,...,| |jbi j A∀ =  and add the following constraints to 

the BLPP model 1,2,...,| |j A∀ = . 

1 2 1 4

1 2 1 4

' ' '
4 4 4 4 4

'
4 1 2 4

         ( ) | |   

         ( ) | | ( 1)

(If the sign is +)
          (1 )

          ( )

U
ij i i ij i j

i A i A

U
ij i i ij i j

i A i A

L U
j j j j j

j ij i i
i A

a x x a x bi

a x x a x bi

p bi p bi p

KP a x x p

∈ ∈

∈ ∈

∈

⎛ ⎞
− ≤ ⎜ ⎟

⎝ ⎠
⎛ ⎞

− ≥ −⎜ ⎟
⎝ ⎠

= − +

⎛ ⎞
− −⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑ ' ' '
4 4 1 2 4 4

' ' ' '
4 1 2 4 4 4 1 2 4 4

'
4

(1 )      ( ) (1 )

          ( )                ( )

(If the sign is )
           

U U
j j j ij i i j j

i A

L L
j ij i i j j j ij i i j j

i A i A

j

M bi KP a x x p M bi

KP a x x p Mbi KP a x x p Mbi

p

∈

∈ ∈

⎛ ⎞
≤ − − + − ≤ −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

− − ≤ − + − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
−

∑

∑ ∑

' '
4 4 4 4

' ' ' '
4 1 2 4 4 4 1 2 4 4

' ' '
4 1 2 4 4 4

(1 )

          ( )                ( )

          ( ) (1 )       (

L U
j j j j

U U
j ij i i j j j ij i i j j

i A i A

L
j ij i i j j j ij

i A

bi p bi p

KP a x x p Mbi KP a x x p Mbi

KP a x x p M bi KP a x

∈ ∈

∈

= + −

⎛ ⎞ ⎛ ⎞
− − ≤ − + − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞

− − ≤ − − +⎜ ⎟
⎝ ⎠

∑ ∑

∑

( )

'
1 2 4 4

' '
1 4 4

) (1 )

where = | | | | | |

L
i i j j

i A

U U L
ij i j j

i A

x p M bi

M a x p p

∈

∈

⎛ ⎞
− ≤ −⎜ ⎟

⎝ ⎠
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∑

∑
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Case 6:  The correlation exists among model parameters of type p1, p2, p3 and these 

parameters are not correlated with other parameter types. 

Let model parameters 1  ip i A∀ ∈ , 2  jp j B∀ ∈  and 3  kp k C∀ ∈  (without lost of 

generality, we can modify the index such that A B A C B C∩ = ∩ = ∩ =∅ ) be correlated 

with one another and these parameters are not correlated with any other parameters in the 

model.  These parameters appear in the original model objective function of the BLPP 

model as 1 1 1i i i i
i A i A

p y p yΩ
∈ ∈

⎛ ⎞
± −⎜ ⎟
⎝ ⎠
∑ ∑  and appear in the model constraints of the BLPP model 

as 1 2 1l j j
l

x p y≤∑ , 2 2  l j j
l

x p y j BΩ≤ ∀ ∈∑ , 1 3m k
m

x p≤∑  and 2 3  m k
m

x p k C≤ ∀ ∈∑ .  After 

applying the parameter space transformation algorithm to the problem, this section of the 

transformed BLPP model can be rewritten as follow: 

| | | | | | | | | | | |
' '

1 1 1 123 1 0 1 123 0
1 1

A B C A B C

i i i i in n i i i in n i i i
i A i A i A n i A i A n i A

p y p y a p y a y a p y a y
+ + + +

Ω Ω Ω
∈ ∈ ∈ = ∈ ∈ = ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
± − ≡ ± + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

| | | | | |
'

1 2 1 1 123 1 0 1
1

 
A B C

l j j l jn n j j j
l l n

x p y x a p y a y j B
+ +

=

⎛ ⎞
≤ ≡ ≤ + ∀ ∈⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

| | | | | |
'

2 2 2 123 0
1

 
A B C

l j j l jn n j j j
l l n

x p y x a p y a y j B
+ +

Ω Ω Ω
=

⎛ ⎞
≤ ≡ ≤ + ∀ ∈⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

| | | | | |
'

1 3 1 123 0
1

 
A B C

m k m kn n k
m m n

x p x a p a k C
+ +

=

⎛ ⎞
≤ ≡ ≤ + ∀ ∈⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

| | | | | |
'

2 3 2 123 0
1

 
A B C

m k m kn n k
m m n

x p x a p a k C
+ +

=

⎛ ⎞
≤ ≡ ≤ + ∀ ∈⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

From these results, we can transform the BLPP model by using the following steps. 
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Step 1:  Add variables '
123  iPY i A∀ ∈  to the BLPP model and replace the term 

1 1 1i i i i
i A i A

p y p yΩ
∈ ∈

⎛ ⎞
± −⎜ ⎟
⎝ ⎠
∑ ∑  in the objective function of the original BLPP model by 

| | | | | |
' '

123 0 1 123 0
1

A B C

i i i in n i i i
i A i A i A n i A

PY a y a p y a y
+ +

Ω Ω
∈ ∈ ∈ = ∈

⎛ ⎞⎛ ⎞
± + − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ .  

 

Step 2:  Add the following constraints to the BLPP model i A∀ ∈ . 

| | | | | | | | | | | |
' ' ' '

123 1 123 123 1 123
1 1

' ' ' '
123 1 123 1 123 123

1

         (1 )         (1 )

                       where | | max(| |,| |)

A B C A B C

i i in n i i in n
n n

U L
i i i i in n n

n

PY M y a p PY M y a p

PY My PY My M a p p

+ + + +

= =

=

⎛ ⎞ ⎛ ⎞
≤ − + − ≤ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

≥ − ≤ =

∑ ∑
| | | | | |A B C+ +⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

 

 

Step 3:  Replace the constraints 2 2  l j j
l

x p y j BΩ≤ ∀ ∈∑  in the original BLPP model by 

| | | | | |
'

2 123 0
1

 
A B C

l jn n j j j
l n

x a p y a y j B
+ +

Ω Ω
=

⎛ ⎞
≤ + ∀ ∈⎜ ⎟
⎝ ⎠

∑ ∑ . Add variables '
123  jPY j B∀ ∈  to the BLPP 

model and replace the constraints 1 2 1  l j j
l

x p y j B≤ ∀ ∈∑  in the original BLPP model by 

'
1 123 0 1  l j j j

l
x PY a y j B≤ + ∀ ∈∑ . 

 

Step 4:  Add the following constraints to the BLPP model j B∀ ∈ . 

| | | | | | | | | | | |
' ' ' '

123 1 123 123 1 123
1 1

' ' ' '
123 1 123 1 123 123

1

         (1 )         (1 )

                       where | | max(| |,| |)

A B C A B C

j j jn n j j jn n
n n

U L
j j j j jn n n

n

PY M y a p PY M y a p

PY My PY My M a p p

+ + + +

= =

=

⎛ ⎞ ⎛ ⎞
≤ − + − ≤ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

≥ − ≤ =

∑ ∑
| | | | | |A B C+ +⎛ ⎞
⎜ ⎟
⎝ ⎠
∑
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Step 5:  Replace the constraints 1 3  m k
m

x p k C≤ ∀ ∈∑  and 2 3  m k
m

x p k C≤ ∀ ∈∑  in the 

original BLPP model by 

 
| | | | | |

'
1 123 0

1

A B C

m kn n k
m n

x a p a
+ +

=

⎛ ⎞
≤ +⎜ ⎟
⎝ ⎠

∑ ∑ and 
| | | | | |

'
2 123 0

1
 

A B C

m kn n k
m n

x a p a k C
+ +

=

⎛ ⎞
≤ + ∀ ∈⎜ ⎟
⎝ ⎠

∑ ∑ . 

 

Case 7:  The correlation exists among model parameters of type p4 and (p2 or p3). 

Unfortunately, in this case, the problem cannot be solved directly by using the 

parameter space transformation algorithm and semi-continuous robust algorithm because 

there will be the nonlinear terms appearing in the objective function of the transformed 

BLPP model.  In this section, we present an approximation algorithm for solving the 

problem in this case.   

The algorithm starts by approximately treating the possible values of parameters of 

type p4 as initial discrete scenarios.  Each scenario represents point values or small range 

values of parameters of type p4 combining with the different possible point values or 

range values of other types of parameters based on the information from the sample data 

set. The scenarios are generated such that the parameters of type p4 have approximately 

no correlation with the parameters of type p2 and p3 in each scenario.  The BLPP model 

will then be solved individually using the previous algorithms for each scenario by 

assuming that no correlation exists among parameter of type p4 and parameter of type p2 

and p3.  The following example illustrates the use of this approximation algorithm on a 

sample data set of model parameters. Figure 8.5 illustrates the scatter plots between a 

parameter of type p4 (y axis) and a parameter of type p2          (x axis).  The information 

obviously shows that there exists positively high correlation between these two 
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parameters and we already know that the parameter transformation algorithm will not be 

able to solve the problem in this case.  

   

 

Figure 8.5  Scatter Plots Between p4 and p2 in the Sample Data Set 

 

We will now apply the approximation algorithm previously presented in this section 

by treating the possible values of this p4 parameter as discrete scenarios.  We start by 

classifying the possible values of this p4 parameter into eight scenarios.  Figure 8.6 

illustrates this classification of parameters values into scenarios (each box represents a 

scenario). 

 

Figure 8.6  Classification of Scenarios 
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Figure 8.7 illustrates the scatter plots of these p4 (y axis) and p2 (x axis) parameters 

for all eight scenarios.  The information from these scatter plots shows the significant 

reduction in correlation between these two parameters in each scenario. 

 

 

Figure 8.7  Scatter Plots between p4 and p2 in Each Scenario 

 

The BLPP models will then be solve separately for each scenario by using the semi-

continuous robust algorithm with the assumption that there exists no correlation between 

these p4 and p2 parameters in each scenario. 

There is one important tradeoff for the use of this approximation algorithm.  The 

higher the number of generated discrete scenarios, the more accurate the approximation 

will be.  Unfortunately, the higher the number of scenarios generated, the greater number 

of BLPP models we are required to solve.  With this tradeoff in mind, decision makers 

have to carefully select the number of scenarios generated for this approximation 

algorithm so that they will be able to solve for the high quality robust solutions in 

reasonable time. 
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Case 8:  The correlation exists among model parameters of type p5 and others. 

Because the parameters of type p5 are always discrete parameters in our 

consideration, the algorithm starts by treating the possible values of parameters of type p5 

as initial discrete scenarios.  Each scenario will represent point values of parameters of 

type p5 combining with the different possible point values or range values of other types 

of parameters based on the information from the sample data set. The scenarios are 

generated such that the parameters of type p5 have approximately no correlation with the 

other types of parameters in each scenario.  The BLPP model will then be solved 

individually using the previous algorithms for each scenario by assuming that no 

correlation exists among parameter of type p5 and all other types of parameters.   

 

8.4 Application of the Algorithms to the Sample Problems 

Tool Renting Problem with Correlation between Rental Fee and Capacity (p1 and p2)  

Every morning, a carpenter has to make a decision on what type of tools he is going 

to rent for that specific day.  There are two types of tools, tool1 and tool2, that he can rent.  

If he decides to rent tool1, he can use it to produce product1 up to P21 units per one day 

which can be sold with the price of $2 per unit.  If he decides to rent tool2, he can use it to 

produce product2 up to P22 units per day which can be sold with the price of $P4 per unit.  

The production of each product not only requires tools but also requires raw materials.  

By using tool1, one unit of product1 requires 2 units of raw materials.  By using tool2, one 

units of product2 requires P5 units of raw materials (tool2 is not very reliable).  The 

amount of raw material available is P3 units per day.  At the end of the day, this carpenter 

has to pay the rental fee for each rented tool.  The rental fees of tool1 and tool2 are $P1 
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and $15 per day respectively.  Table 8.1 contains the distribution information of 

uncorrelated model parameters.  Figure 8.8 illustrates the scatter plot between parameter 

P1 (x axis) and P21 (y axis).  The question the model seeks to answer is which tool(s) 

should this carpenter rent at the beginning of each day? 

 

Table 8.1  Distribution Information of Model Parameters 

 Random Parameters Probability Distribution 

P22 Unknown with UB = 50 and LB = 40 
(Average ≈ 45) 

P3 Triangular Distribution (90, 100, 110) 

P4 Triangular Distribution (1, 2.5715, 4) 

P5 Pr(P5 = 2) = Pr(P5 = 4) = 0.5 

 

 
 

Scatter plot for P1 and P21
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Figure 8.8  Scatter Plots between P1 (x axis) and P21 (y axis) 
 

 



 208

This problem can be initially described by a stochastic mixed integer linear 

programming problem.  Let x1 and x2 represents his decisions on daily production units of 

product1 and product2 respectively.  Let y1 and y2 represents his decisions on renting tool1 

and tool2 respectively where yi = 1 if he rents tooli and 0 otherwise for i = 1, 2.  Figure 8.9 

illustrates this initial model. 
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Figure 8.9  Initial Stochastic Mixed Integer Linear Programming Model 
 

 
By applying semi-continuous robust algorithm, we start by considering four initial 

scenarios which cover all possible values of the discrete random variable, P5.  Table 8.2 

contains all parameter values and O*ω for each scenario. 

 

Table 8.2  All Parameter’ Values and O*ω  for Four Initial Scenarios 

Scenario P1 P21 P22 P3 P4 P5 x1 x2 y1 y2 O*ω 

1 8 32 40 90 1 2 32 0 1 0 56 

2 12 38 50 110 4 2 0 50 0 1 185 

3 8 32 40 90 1 4 32 0 1 0 56 

4 12 38 50 110 4 4 0 27.5 0 1 95 
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By using this information in Table 8.2, the DRRPS model for these four scenarios can 

be optimally solved.  Table 8.3 contains all solutions of this DRRPS model. 

 

Table 8.3 Solutions of the DRRPS Model for Four Initial Scenarios 

Scenario x1ω x2ω y1Ω y2Ω O*ω Rω O*ω - Rω 

 1 32 13 1 1 56 54 2 

2 5 50 1 1 185 183 2 

3 32 6.5 1 1 56 47.5 8.5 

4 0 27.5 1 1 95 83 12 

 

The candidate robust solution from the first stage is now y1Ω = 1 and y2Ω = 1 with the 

lower bound of 12.  This information is then forwarded to the second stage of the 

algorithm for a feasibility check.  Now we apply the parameter space transformation 

algorithm to the problem.  The algorithm starts by calculating the vector 

0

12 8 10
2

38 32 35
2

a

+⎡ ⎤=⎢ ⎥
= ⎢ ⎥

+⎢ ⎥=⎢ ⎥⎣ ⎦

 and vector 1'
12 0

21

P
P a

P
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

.  In the next step, the linear regression 

relationship between '
12,1P  and '

12,2P  is established.  The resulting linear relationship is 

( )' '
12,2 12,11.34P P= .  The Gram-Schmidt Orthogonalization algorithm is applied on vectors 

1 2

1 0
 and 

1.34 1
g e

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.  The resulting vectors are ' '
1 2

0.59809 0.80144
 and 

0.80144 0.59809
u u

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.  
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The algorithm then produces two affine functions as follows: 

( ) ( )' '
1 12,1 12,20.59809 0.80144 10P P P= + − +  

( ) ( )' '
21 12,1 12,20.80144 0.59809 35P P P= + +  

Figure 8.10 illustrates the scatter plots of parameter ' '
12,1 12,2and P P , which support the 

validity of independency assumption for the transformed problem. 
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Figure 8.10  Scatter Plots between '
12,1P (x axis) and '

12,2P  (y axis) 

 

By using the information from the sample data set, the upper and the lower bounds of 

' '
12,1 12,2 and  P P are identified as follow: '

12,1 3.41UP = , '
12,1 3.15LP = − , '

12,2 0.56UP = , 

'
12,2 0.051LP = − .  Because these settings (P21 = 32, P22 = 40, P3 = 90, and P5 = 2 or 4) are 

already considered in Scenarios 1 and 3, the current candidate robust solution is already 
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feasible for all possible scenarios.  This current candidate robust solution and the lower 

bound are then forwarded to the third stage of the algorithm.  At this stage, we are 

required to solve two transformed BLPP models (Cases P5 = 2 and P5 = 4).  Figure 8.11 

illustrates the initial form of the transformed BLPP model and Figure 8.12 illustrates the 

final form of the transformed BLPP model.  
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Figure 8.11  The Initial Form of the Transformed BLPP Model (P5 = 2 or 4) 
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Figure 8.12  The Final Form of the Transformed BLPP Model (P5 = 2 or 4) 
 
 
Table 8.4 contains the optimal solution for these BLPP models.  Because the upper 

bound resulting from this BLPP model is 12, the algorithm is then terminated with the 

robust optimal solution of y1Ω = 1 and y2Ω = 1 (the carpenter should rent both tools at the 

beginning of each day).  Table 8.5 contains the comparison between the optimal robust 

solution and the optimal solution from the average value problem (y1Ω = 0 and y2Ω = 1). 
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Table 8.4  The Optimal Solution for the BLPP Model 

 
Decision Variable 

 

 
P5 = 2 

 
P5 = 4 

x11 0 0 
x12 45 22.5 
x21 0 0 
x22 45 22.5 
y1 0 0 
y2 1 1 

'
12,1P  3.41 3.41 
'

12,2P  -0.051 -0.051 

P1 12 12 
P21 37.7 37.7 
P22 50 40 
P3 90 90 
P4 4 4 

O*ω - Rω 12 12 
 

 

Table 8.5  The Comparison between the Semi-Continuous Robust Solution 
    and the Optimal Solution from the Average Value Problem 

 
  

Maximum Regret 
From Optimality 

 

 
Objective Value under 

Average Value Scenario 

 
Solution From Average 

Value Problem 
 

 
57.045 

 
71.66 

 
Semi-Continuous  
Robust Solution 

 

 
12 

 
71 

 

The results in Table 8.5 illustrate the superior of the semi-continuous robust solution 

over the optimal solution from the average value problem. 
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Tools Renting Problem with Correlation between Selling Price and Supply (p4 and p3) 

For this example, we consider the same tools renting example presented in Chapter 

VI with the additional correlation between selling price of product per unit and the 

amount of the raw material available at the beginning of each day.  This example assumes 

that if the amount of the raw material available at the beginning of each day is high, it is 

highly likely that there will be a lot of competition on that day which will cause the 

selling price of product to drop down and vice versa.  Because there is no exact method 

of solving this problem, this carpenter creates four discrete scenarios to capture this 

correlation.  Table 8.6 contains the information on these scenarios. 

 

Table 8.6  Information on Four Discrete Scenarios to Represent Correlation 

 P3 P4 

Scenario1 [105, 110] 1 

Scenario 2 [100, 105] 2 

Scenario 3 [95, 100] 3 

Scenario 4 [90, 95] 4 

 

By applying the semi-continuous robust algorithm, we start by considering 32 initial 

scenarios, which cover all possible values of the discrete random variable, P5 and the 

correlated parameters.  Table 8.7 contains all the parameters’ values and O*ω for each 

scenario. 
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Table 8.7  All Parameter’ Values and O*ω  for Thirty Two Initial Scenarios 
Scenario P1 P21 P22 P3 P4 P5 O*ω 

1 8 32 40 105 1 2 61.5 

2 8 32 40 100 2 2 77 

3 8 32 40 95 3 2 112 

4 8 32 40 90 4 2 147 

5 8 32 40 105 1 4 56 

6 8 32 40 100 2 4 59 

7 8 32 40 95 3 4 64.25 

8 8 32 40 90 4 4 75 

9 12 38 50 105 1 2 64 

10 12 38 50 100 2 2 85 

11 12 38 50 95 3 2 127.5 

12 12 38 50 90 4 2 165 

13 12 38 50 105 1 4 64 

14 12 38 50 100 2 4 64 

15 12 38 50 95 3 4 64 

16 12 38 50 90 4 4 75 

17 8 32 40 110 1 2 64 

18 8 32 40 105 2 2 82 

19 8 32 40 100 3 2 117 

20 8 32 40 95 4 2 152 

21 8 32 40 110 1 4 56 

22 8 32 40 105 2 4 61.5 

23 8 32 40 100 3 4 68 

24 8 32 40 95 4 4 80 

25 12 38 50 110 1 2 66 

26 12 38 50 105 2 2 85 

27 12 38 50 100 3 2 135 

28 12 38 50 95 4 2 175 

29 12 38 50 110 1 4 64 

30 12 38 50 105 2 4 64 

31 12 38 50 100 3 4 67 

32 12 38 50 95 4 4 80 
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By using this information in Table 8.7, the DRRPS model for these four scenarios can 

be optimally solved.  The candidate robust solution from the first stage is now y1Ω = 1 

and y2Ω = 1 with the lower bound of 12.  This information is then forwarded to the second 

stage of the algorithm for a feasibility check.  Because these settings (P21 = 32, P22 = 40,  

P3 = 90, and P5 = 2 or 4) are already considered in these thirty two scenarios, the current 

candidate robust solution is already feasible for all possible scenarios.  This current 

candidate robust solution and the lower bound are then forwarded to the third stage of the 

algorithm.  At this stage, we are required to solve eight BLPP models (cases P5 = 2 and 

P5= 4 combined with four possible scenarios generated by correlation).  Table 8.8 

contains the optimal objective function value of these eight BLPP models. 

 

Table 8.8  Optimal Objective Function Value of these Eight BLPP Models 

 
Maximum 

Regret 
 

 
P4 = 1 

3 [105,110]P ∈

 
P4 = 2 

3 [100,105]P ∈  

 
P4 = 3 

3 [95,100]P ∈  

 
P4 = 4 

3 [90,95]P ∈  

P5 = 2 0.5 12 12 12 

P5 = 4 7.75 3 0.75 12 

 

Because the upper bound resulting from these BLPP models is 12, the algorithm is 

then terminated with the robust optimal solution of y1Ω = 1 and y2Ω = 1 (the carpenter 

should rent both tools at the beginning of each day). 
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8.5 Summary 

This chapter introduces the new parameter space transformation algorithm which can 

be used together with the semi-continuous robust algorithm for solving the mini-max 

robust optimization problem with correlated uncertain parameters.   

The algorithm is constructed based on the idea of transforming the original parameter 

space with high correlation to the new parameter space with low or no correlation.  The 

methodology for handling each possible case of correlations among uncertain parameters 

is presented in the chapter.  Small examples are also presented with the purpose of giving 

the readers a clear understanding of the algorithm. 

The algorithm can easily be extended to generate the min-max regret robust solution 

to the problem when each uncertain continuous parameter takes its values from more than 

one compact interval (finite number of compact intervals).  In this case, the initial 

discrete scenarios are generated based on the combination of all possible values of 

discrete parameters and all possible compact intervals of continuous parameters.  The 

parameter space transformation algorithm and approximation algorithm are then applied 

to each scenario in the initial discrete scenarios separately.  All remaining steps of the 

algorithm are the same. 

In conclusion, the parameter space transformation algorithm and the semi-continuous 

robust algorithm give a good theoretical value to the methodology of solving the mini-

max robust optimization problem with correlated uncertain parameters.  Further studies 

are required for improving the computational ability of the algorithm to handle the 

realistically sized problem.  
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CHAPTER    IX 

 

KEY CONTRIBUTIONS AND FUTURE RESEARCH 

 

9.1 Key Contributions 

Current existing robust optimization methodologies with the deviation robustness 

definition assume that the model uncertainty either can be discretized into the finite set of 

discrete scenarios or is represented by the variation of model parameters which take their 

value within bounded ranges (Newton, 2000).  The problem of applying the algorithm in 

the former case is that the discrete robust optimization model size grows exponentially 

with the number of uncertain parameters.  In the later case, the existing algorithms can 

handle only limited types of parameters and cannot represent the uncertainty represented 

by the combination of discrete and continuous scenarios at the same time.  The existing 

algorithms are not comprehensive and do not address a significant class of practical 

problems. 

In Chapter IV, we developed a scenario relaxation heuristic algorithm and explored 

the use of accelerated Benders’ decomposition algorithm for this discrete robust 

optimization approach when dealing with a large number of scenarios.  The results from 

the case studies illustrate the significant improvement in computational time for the large 

discrete robust optimization problems.   

In Chapter VI, we develop a semi-continuous robust algorithm that is capable of 

solving the robust optimization problems with the deviation robustness definition for 
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dealing with the problem with continuous ranges of random parameters and discrete 

valued random parameters.  This new algorithm can handle all variations (discrete 

scenarios, continuous scenarios and their combinations) in uncertain parameters for 

mixed integer linear programming network problems. This dissertation explicitly includes 

mathematical models and detailed solution methodologies required for the problem. 

These mathematical models and solution methodologies provide a great tool for network 

infrastructure planning that explicitly deals with uncertainty through the use of parameter 

ranges and fixed discrete parameter values without knowing the information on the 

parameters’ joint probability distributions. This type of approach can be useful in 

network infrastructure planning where the joint probability distributions of key 

parameters are unknown and the only information available are the parameters’ ranges 

and fixed discrete values of parameters.  The algorithm is a significant advance beyond 

the current state of the art in robust mathematical programming with a mini-max regret 

objective. 

The semi-continuous robust algorithm can also be used to provide the bounds (both 

upper and lower bound) on the value of minimum maximum regret between optimal 

setting and the robust configuration setting. Terminating the algorithm anytime after the 

third stage has been completed at least once will provide these bounds. If the decision 

makers do not intentionally terminate the algorithm, the algorithm is proven to terminate 

either at an optimal robust solution, or by confirming that no existing robust solution 

exists, in a finite number of iterations.   
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In Chapter VII, the semi-continuous robust algorithm has been applied for solving 

many case study problems of designing the robust reverse logistic infrastructure.  The 

results illustrate the computational efficiency of the algorithm to the problems.    

In Chapter VIII, the parameter space transformation algorithm has been introduced 

with the capability of transforming the original parameter space with correlation into the 

new parameter space with approximately no correlation.  The methodologies of 

combining this algorithm and the semi-continuous robust algorithm are also explicitly 

presented with the capability of solving the robust optimization problem when 

correlations exist among parameters.   

Overall this research facilitates the robust design of network supply chain systems 

(with reverse production systems as one of their subsystems) under a min-max regret 

objective. The resultant system has the potential to be more financially and operational 

viable because for each realization of the parameters, the system still tries to be close to 

the optimal settings.  

 

9.2 Future Research 

In Chapter VI we presented a solution methodology for the third stage of the semi-

continuous robust algorithm.  Within the algorithm, we are required to solve a number of 

BLPP models (one for each possible discrete scenario).  By solving each of these BLPP 

models in parallel, one can make the significant improvement in computational time 

required by the algorithm.  Another interesting idea of the parallel computing is to assign 

different processors to work on different parts of the solution tree when solving the BLPP 

model.  These steps can be achieved by developing the computer codes that assign 
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required tasks that can be processed in parallel to different computer processors and 

combine these solutions for the further use in the algorithm.   

Although our research introduces many effective parameter pre-processing steps, 

variables and constraints elimination steps, lower bound setting techniques, and priority 

branch and bound steps, which have been shown in Chapter VII to be quite effective in 

computational time reduction of the BLPP model, the computational time of the BLPP 

model is still considered to be one of the bottlenecks of the semi-continuous robust 

algorithm.  A future research opportunity is the search for improved pre-processing and 

branching rules for further improvement in computational ability of the BLPP models.   

In the current semi-continuous robust algorithm, we require that the variation of 

parameters of type p5 (coefficient of continuous variables in model functional constraints) 

to be represented by their possible discrete values.  This requirement suits the nature of 

our RPS model perfectly, for the same reasons given in Chapter VI.  For general mixed 

integer linear programming problems, this requirement may be too restrictive.  The 

search for new or modified methodology that is able to solve the problem for semi-

continuous robust solution without this restriction for general stochastic mixed integer 

linear programming problem should be further explored. 

In Chapter VIII, we present the combination of the parameter space transformation 

algorithm and the semi-continuous robust algorithm for solving the problems when 

correlations exist among parameters.  Although these algorithms have high theoretical 

value and introduce the innovative solution methodology to the problem, an interesting 

future research topic is the development of an improved/modified methodology to handle 

realistically sized problems. 
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There are still many different directions this research could lead to in the future.  

Incorporating game theory to look at the interactions of the company’s actions and 

government’s actions within the reverse supply chain system and to find the robust 

supply chain infrastructure of the system are one of the areas to which this research could 

be expanded.  Considering different definitions of robustness and developing new robust 

optimization approach for the problem is another way of expanding this research 

problem.       
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APPENDIX A 

The BLPP Model for Semi-Continuous Robust Algorithm of the RPS Model 

 
Table A1  Model Indices 

s Supplier 
i Sites 
c Customer 
j Material type 
m Transportation mode 
p Process type 
t Time period 

 

Table A2  Model Superscripts 

Co Collection 

Sa Selling 

St Storage 

Tr Transportation 

Pr Process 

Su Supplier 

Si Site 

Cu Customer 

1 Leader problem 

2 Follower problem 

UB Upper bound value 

LB Lower bound value 

Ind Indicator if this value cannot be pre-processed 

* Pre-processed value 
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Table A3  Model Parameters 

 UB(Su)
sjtS  =   Upper bound on amount of material j that is supplied at supplier s at  

      time period t 

LB (Su)
sjtS  =   Lower bound on amount of material j that is supplied at supplier s at  

      time period t 

 UB(Cu)
cjtD =   Upper bound on amount of material j that is demanded at customer j at  

      time period t 

LB (Cu)
cjtD  =   Lower bound on amount of material j that is demanded at customer j at  

      time period t 

 UB(Cu)
cjtP  =   Upper bound on selling Price offered per standard unit of material j from  

      customer c at time period t 

LB (Cu)
cjtP  =   Lower bound on selling Price offered per standard unit of material j from  

      customer c at time period t 

* (Cu)
cjtP  =   Pre-processing value on selling Price offered per standard unit of material j  

      from customer c at time period t, 0 if this value cannot be pre-determined 

Ind (Cu)
cjtP  =   1 if the selling Price offered per standard unit of material j from customer c  

     at time period t cannot be predetermined, 0 otherwise 

 UB(St)
ijtV  =   Upper bound on storage cost per standard unit of material j per time period  

     at site i at time period t 

LB (St)
ijtV  =   Lower bound on storage cost per standard unit of material j per time period  

     at site i at time period t 

* (St)
ijtV  =   Pre-processing value on storage cost per standard unit of material j per time  

     period at site i at time period t, 0 if this value cannot be pre-determined 
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Ind (St)
ijtV  =   1 if the storage cost per standard unit of material j per time period at site i  

     at time period t cannot be predetermined, 0 otherwise 

 UB(Co)
ijtV =   Upper bound on collection cost per standard unit of material j at site i at  

      time period t 

LB (Co)
ijtV  =   Lower bound on collection cost per standard unit of material j at site i at  

      time period t 

* (Co)
ijtV  =    Pre-processing value on collection cost per standard unit of material j at  

       site i at time period t, 0 if this value cannot be pre-determined 

Ind (Co)
ijtV =   1 if the collection cost per standard unit of material j at site i at time period t 

     cannot be predetermined, 0 otherwise 

 UB(Co)
ijtV' =   Upper bound on collection fee per standard unit of material j at site i at  

      time period t 

LB (Co)
ijtV' =   Lower bound on collection fee per standard unit of material j at site i at  

      time period t 

* (Co)
ijtV'  =   Pre-processing value collection fee per standard unit of material j at site i at  

      time period t, 0 if this value cannot be pre-determined 

Ind (Co)
ijtV' =   1 if the collection fee per standard unit of material j at site i at  

      time period t cannot be predetermined, 0 otherwise 

 UB(Pr)
iptV  =   Upper bound on processing cost per standard unit for process p at site i at  

     time period t 

LB (Pr)
iptV  =   Lower bound on processing cost per standard unit for process p at site i at  

     time period t 

* (Pr)
iptV  =   Preprocessing value on processing cost per standard unit for process p  

      at site i at time period t, 0 if this value cannot be pre-determined 



 226

Ind (Pr)
iptV  =   1 if the processing cost per standard unit for process p at site i at  

     time period t cannot be predetermined, 0 otherwise 

 UB(Tr)
simtV  =   Upper bound on transportation cost per standard unit per distance from  

      supplier s to site i using transportation mode m at time period t 

LB (Tr)
simtV  =   Lower bound on transportation cost per standard unit per distance from  

      supplier s to site i using transportation mode m at time period t 

* (Tr)
simtV  =   Preprocessing value on transportation cost per standard unit per distance  

      from supplier s to site i using transportation mode m at time period t, 

     0 if this value cannot be pre-determined 

Ind (Tr)
simtV  =   1 if the transportation cost per standard unit per distance from supplier s  

     to site i using transportation mode m at time period t cannot be predetermined,

     0 otherwise 

 UB(Tr)
mtii'V  =   Upper bound on transportation cost per standard unit per distance from  

      site i to i’ using transportation mode m at time period t 

LB (Tr)
mtii'V  =   Lower bound on transportation cost per standard unit per distance from  

      site i to i’ using transportation mode m at time period t 

* (Tr)
mtii'V  =   Preprocessed value on transportation cost per standard unit per distance from

      site i to i’ using transportation mode m at time period t, 

      0 if this value cannot be pre-determined 

Ind (Tr)
mtii'V  =   Lower bound on transportation cost per standard unit per distance from site i 

      to i’ using transportation mode m at time period t cannot be predetermined,  

      0 otherwise 

 UB(Tr)
icmtV  =   Upper bound on transportation cost per standard unit per distance from site i 

      to customer j using transportation mode m at time period t 
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LB (Tr)
icmtV  =   Lower bound on transportation cost per standard unit per distance from site i 

      to customer j using transportation mode m at time period t 

* (Tr)
icmtV  =   Preprocessing value on transportation cost per standard unit per distance from

      site i to customer j using transportation mode m at time period t, 

     0 if this value cannot be pre-determined 

Ind (Tr)
icmtV  =   1 if the transportation cost per standard unit per distance from site i to  

      customer j using transportation mode m at time period t cannot be  

      predetermined,   0 otherwise 

dsim =   Distance from supplier s to site i by transportation mode m 

dii’m =   Distance from site i to i’ by transportation mode m 

dicm =   Distance from site i to customer c by transportation mode m 

* (Si)
itF  =   Pre-processed value on fixed site operating cost if site i is opened at  

     time period t 

* (Si)
itF'  =   Pre-processed value on fixed site opening cost of site i at time period t 

* (Si)
it'F'  =   Pre-processed value on fixed site closing cost of site i at time period t 

* (St)
ijtF  =   Pre-processed value on fixed storage cost of material j at site i at time period t

* (Co)
ijtF  =   Pre-processed value on fixed collecting cost of material j at site i at time  

     period t 

* (Pr)
iptF  =   Pre-processed value on fixed processing cost for process p at site i at time  

      period t 

* (Tr)
simtF  =   Pre-processed value on fixed cost for transportation from supplier s to site i  

      using transportation mode m at time period t 

*  (Tr)
mtii'F  =   Pre-processed value on fixed cost for transportation from site i to site i’ using

     transportation mode m at time period t 
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*  (Tr)
icmtF  =   Pre-processed value on fixed cost for transportation from site i to customer c 

      using transportation mode m at time period t 

 UB(Co)
ijtC  =   Upper bound on maximum collection capacity to collect material type j at  

      site i at time period t 

LB (Co)
ijtC  =   Lower bound on maximum collection capacity to collect material type j at  

      site i at time period t 

* (Co)
ijtC  =   Preprocessing value on maximum collection capacity to collect material  

      type j at site i at time period t, 0 if this value cannot be pre-determined 

Ind (Co)
ijtC  =   1 if the maximum collection capacity to collect material type j at site i  

     at time period t cannot be predetermined, 0 otherwise 

 UB(St)
ijtC  =   Upper bound on maximum amount of material type j that can be stored at  

      site i in at time period t 

LB (St)
ijtC  =   Lower bound on maximum amount of material type j that can be stored at  

      site i in at time period t 

* (St)
ijtC  =   Preprocessing value on maximum amount of material type j that can be stored

      at site i in at time period t, 0 if this value cannot be pre-determined 

Ind (St)
ijtC  =   1 if the maximum amount of material type j that can be stored at site i  

     in at time period t cannot be predetermined, 0 otherwise 

 UB(Tr)
simtC  =   Upper bound on maximum amount of material that can be shipped for  

      supplier s to site i using transportation mode m at time period t 

LB (Tr)
simtC  =   Lower bound on maximum amount of material that can be shipped for  

      supplier s to site i using transportation mode m at time period t 
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* (Tr)
simtC  =   Preprocessing value on maximum amount of material that can be shipped  

      for supplier s to site i using transportation mode m at time period t, 

      0 if this value cannot be pre-determined 

Ind (Tr)
simtC  =   1 if the maximum amount of material that can be shipped for supplier s  

      to site i using transportation mode m at time period t cannot be  

      predetermined, 0 otherwise 

 UB(Tr)
mtii'C  =   Upper bound on maximum amount of material that can be shipped for site i  

      to i’ using transportation mode m at time period t 

LB (Tr)
mtii'C  =   Lower bound on maximum amount of material that can be shipped for site i  

      to i’ using transportation mode m at time period t 

* (Tr)
mtii'C  =   Preprocessing value on maximum amount of material that can be shipped for 

      site i to i’ using transportation mode m at time period t, 

      0 if this value cannot be pre-determined 

Ind (Tr)
mtii'C  =   1 if the maximum amount of material that can be shipped for site i to i’  

      using transportation mode m at time period t cannot be predetermined, 

      0 otherwise 

 UB(Tr)
icmtC  =   Upper bound on maximum amount of material that can be shipped for site i  

     to customer c using transportation mode m at time period t 

LB (Tr)
icmtC  =   Lower bound on maximum amount of material that can be shipped for site i  

     to customer c using transportation mode m at time period t 

* (Tr)
icmtC  =   Preprocessing value on maximum amount of material that can be shipped for 

      site i to customer c using transportation mode m at time period t, 

     0 if this value cannot be pre-determined 
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Ind (Tr)
icmtC  =   1 if the maximum amount of material that can be shipped for site i  

     to customer c using transportation mode m at time period t cannot be  

     predetermined, 0 otherwise 

 UB(Pr)
iptC  =   Upper bound on maximum amount of material that process p can produce at  

      site i at time period t 

LB (Pr)
iptC  =   Lower bound on maximum amount of material that process p can produce at 

      site i at time period t 

* (Pr)
iptC  =   Preprocessing value on maximum amount of material that process p can  

      produce at site i at time period t, 0 if this value cannot be pre-determined 

Ind (Pr)
iptC  =   1 if the maximum amount of material that process p can produce at site i  

     at time period t cannot be predetermined, 0 otherwise 

ρjp =   proportion of material type j consumed by process p 

ρ′jp =   proportion of material type j produced by process p 

Ω (Co)
ijty  =   1  if collection of material type j is performed at site i at time period t 

     in robust solution from scenario set Ω and 0 otherwise 

Ω (Tr)
simty  =   1  if shipment is used between supplier s and site i using 

      transportation mode m at time period t 

      in robust solution from scenario set Ω and 0 otherwise 

Ω (Tr)
mtii'y  =   1  if shipment is used between sites i and i’ using  

      transportation mode m at time period t 

      in robust solution from scenario set Ω and 0 otherwise 
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Ω (Tr)
icmty  =   1  if shipment is used between sites i and customer c using  

      transportation mode m at time period t 

      in robust solution from scenario set Ω and 0 otherwise 

Ω (Pr)
ipty  =   1  if process p is used at site i at time period t 

     in robust solution from scenario set Ω and 0 otherwise 

Ω (St)
ijty  =   1  if storage is used for material type j at site i at time period t  

     in robust solution from scenario set Ω and 0 otherwise 

Ω (Si)
ity'  =   1  if site i is opened at period t 

     in robust solution from scenario set Ω and 0 otherwise 

Ω (Si)
it'y'  =   1  if site i is closed down at period t 

     in robust solution from scenario set Ω and 0 otherwise 

Ω (Si)
ity  =   1  if site i is operated at time period t 

     in robust solution from scenario set Ω and 0 otherwise 

(Co) 1UB
ijt x =   Upper bound on amount of material collected of type j at site i at time period t

     for the leader problem 

(Co) 2UB
ijt x =   Upper bound on amount of material collected of type j at site i at time period t

     for the follower problem 

(St) 1UB
ijt x  =   Upper bound on amount of material stored of type j at site i at time period t 

     for the leader problem 

(St) 2UB
ijt x  =   Upper bound on amount of material stored of type j at site i at time period t 

     for the follower problem 

(Sa) 1UB
cjt x =   Upper bound on amount of material sold of type j to customer c at time  

      period t for the leader problem 
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(Sa) 2UB
cjt x =   Upper bound on amount of material sold of type j to customer c at time  

      period t for the follower problem 

(Tr) 1UB
sjimt x =   Upper bound on amount of material shipped from supplier s to site i of type j 

      using transportation mode m at time period t for the leader problem 

(Tr) 2UB
sjimt x =   Upper bound on amount of material shipped from supplier s to site i of type j 

      using transportation mode m at time period t for the follower problem 

(Tr) 1UB
iji'mt x =   Upper bound on amount of material shipped from site i to site i’ of type j  

      using transportation mode m at time period t for the leader problem 

(Tr) 2UB
iji'mt x =   Upper bound on amount of material shipped from site i to site i’ of type j  

      using transportation mode m at time period t for the follower problem 

(Tr) 1UB
ijcmt x =   Upper bound on amount of material shipped from site i to customer c of  

      type j using transportation mode m at time period t for the leader problem 

(Tr) 2UB
ijcmt x =   Upper bound on amount of material shipped from site i to customer c of  

      type j using transportation mode m at time period t for the follower problem 

(Pr) 1UB
ipt x =   Upper bound on amount of material processed by process p at site i at time  

      period t for the leader problem 

(Pr) 2UB
ipt x =   Upper bound on amount of material processed by process p at site i at time  

      period t for the follower problem 
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Table A4  Model Variables 

1 (Co)
ijt x  =   Amount of material collected of type j at site i at time period t 

     for the leader problem 

2 (Co)
ijt x  =   Amount of material collected of type j at site i at time period t 

     for the follower problem 

1 (St)
ijt x  =   Amount of material stored of type j at site i at time period t 

     for the leader problem 

2 (St)
ijt x  =   Amount of material stored of type j at site i at time period t 

     for the follower problem 

1 (Sa)
cjt x  =   Amount of material sold of type j to customer c at time period t 

     for the leader problem 

2 (Sa)
cjt x  =   Amount of material sold of type j to customer c at time period t 

     for the follower problem 

1 (Tr)
sjimt x  =   Amount of material shipped from supplier s to site i of type j using  

      transportation mode m at time period t for the leader problem 

2 (Tr)
sjimt x  =   Amount of material shipped from supplier s to site i of type j using  

      transportation mode m at time period t for the follower problem 

1 (Tr)
mtiji' x  =   Amount of material shipped from site i to site i’ of type j using  

     transportation mode m at time period t for the leader problem 

2 (Tr)
mtiji' x  =   Amount of material shipped from site i to site i’ of type j using  

     transportation mode m at time period t for the follower problem 

1 (Tr)
ijcmt x  =   Amount of material shipped from site i to customer c of type j using  

     transportation mode m at time period t for the leader problem 
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2 (Tr)
ijcmt x  =   Amount of material shipped from site i to customer c of type j using  

     transportation mode m at time period t for the follower problem 

1 (Pr)
ipt x  =   Amount of material processed by process p at site i at time period t 

     for the leader problem 

2 (Pr)
ipt x  =   Amount of material processed by process p at site i at time period t 

     for the follower problem 

1 (Co)
ijty  =   1  if collection of material type j is to be performed at site i at time period t 

     0 otherwise for the leader problem 

1 (Tr)
simty  =   1  if shipment is to be used between supplier s and site i using 

      transportation mode m at time period t, 0 otherwise for the leader problem 

1 (Tr)
mtii'y  =   1  if shipment is to be used between sites i and i’ using  

      transportation mode m at time period t, 0 otherwise for the leader problem 

1 (Tr)
icmty  =   1  if shipment is to be used between sites i and customer c using  

      transportation mode m at time period t, 0 otherwise for the leader problem 

1 (Pr)
ipty  =   1  if process p is to be used at site i at time period t, 0 otherwise  

     for the leader problem 

1 (St)
ijty  =   1  if storage is to be used for material type j at site i at time period t  

     0 otherwise for the leader problem 

 

1 (Si)
ity'  

 

=   1  if site i is decided to be opened at period t, 0 otherwise 

     for the leader problem 

1 (Si)
it'y'  =   1  if site i is decided to be closed down at period t, 0 otherwise 

     for the leader problem 

1 (Si)
ity  =   1  if site i is operated at time period t, 0 otherwise for the leader problem 
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(Su)
sjtS  =   Amount of material j that is supplied at supplier s at time period t 

     that make the maximum regret of robust solution from stage 1 

(Cu)
cjtD  =   Amount of material j that is demanded at customer j at time period t 

     that make the maximum regret of robust solution from stage 1 

(Cu)
cjt P  =   Selling Price offered per standard unit of material j from customer c  

     at time period t that make the maximum regret of robust solution from  

     stage 1 

(St)
ijt V  =   Storage cost per standard unit of material j per time period at site i  

     at time period t that make the maximum regret of robust solution from  

     stage 1 

(Co)
ijt V  =   Collection cost per standard unit of material j at site i at time period t 

     that make the maximum regret of robust solution from stage 1 

(Co)
ijt V'  =   Collection fee per standard unit of material j at site i at  

      time period t that make the maximum regret of robust solution from stage 1

(Pr)
ipt V  =   Processing cost per standard unit for process p at site i at  

     time period t that make the maximum regret of robust solution from stage 1

(Tr)
simt V  =   Transportation cost per standard unit per distance from supplier s  

     to site i using transportation mode m at time period t 

    that make the maximum regret of robust solution from stage 1 

(Tr)
ii'mt V  =   Transportation cost per standard unit per distance from site i to i’  

      using transportation mode m at time period t  

      that make the maximum regret of robust solution from stage 1 

 

 

 

 



 236

(Tr)
icmt V  =   Transportation cost per standard unit per distance from site i to  

     customer j using transportation mode m at time period t 

     that make the maximum regret of robust solution from stage 1 

(Co)
ijt C  =   Maximum collection capacity to collect material type j at site i  

     at time period t that make the maximum regret of robust solution from  

     stage 1 

(St)
ijt C  =   Maximum amount of material type j that can be stored at site i  

     in at time period t that make the maximum regret of robust solution from  

     stage 1 

(Tr)
simt C  =   Maximum amount of material that can be shipped for supplier s  

      to site i using transportation mode m at time period t 

      that make the maximum regret of robust solution from stage 1 

(Tr)
ii'mt C  =   Maximum amount of material that can be shipped for site i to i’  

      using transportation mode m at time period t 

     that make the maximum regret of robust solution from stage 1 

(Tr)
icmt C  =   Maximum amount of material that can be shipped for site i  

     to customer c using transportation mode m at time period t 

     that make the maximum regret of robust solution from stage 1 

(Pr)
ipt C  =   Maximum amount of material that process p can produce at site i  

     at time period t that make the maximum regret of robust solution from  

      stage 1 

(Balance)
ijt w  =   Dual variable for material j balance equality constraint for site i in time  

     period t for the follower problem 
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(Supply)
sjt w  =   Dual variable for material j Supply equality constraint for source s in time  

      period t for the follower problem 

(Demand)
cjt w  =  Dual variable for material j Demand inequality constraint for customer c  

     in time period t for the follower problem 

(Collect)
ijt w  = Dual variable for material j Capacity collection inequality constraint  

   for site i in time period t for the follower problem 

(Process)
ipt w  = Dual variable for process p Capacity processing inequality constraint  

   for site i in time period t for the follower problem 

(Storage)
ijt w  = Dual variable for material j Capacity storage inequality constraint  

   for site i in time period t for the follower problem 

(Tr1)
simt w  = Dual variable for Capacity transportation inequality constraint  

   from source s to site i by mode m in time period t for the follower problem 

(Tr2)
ii'mt w  = Dual variable for Capacity transportation inequality constraint  

   from site i to site i' by mode m in time period t for the follower problem 

(Tr3)
icmt w  = Dual variable for Capacity transportation inequality constraint  

   from site i to customer c by mode m in time period t for the follower problem

(Cu)2
cjt sl  = Slack variable for material j Demand inequality constraint  

   for customer c in time period t for the follower problem 

(Co)2
ijt sl  = Slack variable for material j Capacity collection inequality constraint  

   for site i in time period t for the follower problem 

(Pr)2
ipt sl  = Slack variable for process p Capacity processing inequality constraint  

   for site i in time period t for the follower problem 

(St)2
ijt sl  = Slack variable for material j Capacity storage inequality constraint  

   for site i in time period t for the follower problem 
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(Tr1)2
simt sl  = Slack variable for Capacity transportation inequality constraint  

   from source s to site i by mode m in time period t for the follower problem 

(Tr2)2
ii'mt sl  = Slack variable for Capacity transportation inequality constraint  

   from site i to site i' by mode m in time period t for the follower problem 

(Tr3)2
icmt sl  = Slack variable for Capacity transportation inequality constraint  

   from site i to customer c by mode m in time period t for the follower problem

(St)
ijt sd  = Slack variable for dual problem of the follower corresponding to variable (St)2

ijt x

(Pr)
ipt sd  = Slack variable for dual problem of the follower corresponding to variable (Pr)2

ipt x

(Tr1)
sjimt sd  = Slack variable for dual problem of the follower corresponding to variable (Tr)2

sjimt x

(Tr2)
mtiji' sd  = Slack variable for dual problem of the follower corresponding to variable (Tr)2

mtiji' x

(Tr3)
ijcmt sd  = Slack variable for dual problem of the follower corresponding to variable (Tr)2

ijcmt x

(Co)1
ijt CY  (Co)1

ijt
(Co)
ijt yC≡  

(Pr)1
ipt CY  (Pr)1

ipt
(Pr) yCipt≡  

(St)1
ijt CY  (St)1

ijt
)( yC St

ijt≡  

(Tr)1
simt CY  (Tr)1

simt
)( yC Tr

simt≡  

(Tr)1
mtii' CY  (Tr)1

mtii'
)(

' yC Tr
mtii≡  

(Tr)1
icmt CY  (Tr)1

icmt
)( yC Tr

icmt≡  

(Sa)k
cjt PX  2,1       (Sa)k

cjt
)( =∀≡ kxP Cu

cjt
 

(St)k
ijt VX  2,1       (St)k

ijt
)( =∀≡ kxV St

ijt
 

(Co)k
ijt VX  2,1       (Co)k

ijt
)( =∀≡ kxV Co

ijt
 

(Co)k
ijt' VX  2,1      ' (Co)k

ijt
)( =∀≡ kxV Co

ijt
 

(Pr)k
ipt VX  2,1       (Pr)k

ipt
(Pr) =∀≡ kxVipt
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(Tr)k
sjimt VX  2,1       (Tr)k

sjimt
)( =∀≡ kxV Tr

sjimt
 

(Tr)k
mtiji' VX  2,1       (Tr)k

mtiji'
)(

' =∀≡ kxV Tr
mtiji

 

(Tr)k
ijcmt VX  2,1       (Tr)k

ijcmt
)( =∀≡ kxV Tr

ijcmt
 

(Cu)
cjti b  = 1 when LBCu

cjt
Cu

cjt
UBCu

cjt
Cu

cjt PPPP )()()()(    when 0   , ==   

(St)
ijti b  = 1 when LBSt

ijt
St

ijt
UBSt

ijt
St

ijt VVVV )()()()(    when 0   , ==   

(Co)
ijti b  = 1 when LBCo

ijt
Co

ijt
UBCo

ijt
Co

ijt VVVV )()()()(    when 0   , ==   

'(Co)
ijt ib  = 1 when '( ) '( ) '( ) '( ),    0   when Co Co UB Co Co LB

ijt ijt ijt ijtV V V V= =   
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iptipt
UB
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mtiji VVVV )(

'
)(

'
)(

'
)(

'    when 0   , ==   

(Tr)
ijcmti b  = 1 when LBTr

ijcmt
Tr

ijcmt
UBTr

ijcmt
Tr

ijcmt VVVV )()()()(    when 0   , ==   

 

Table A5  Mathematical Model 

Maximize   (Objective) Maximize regret 

      ∑∑∑∑∑∑

∑∑∑∑∑∑
−−

+

t c j

Sa
cjt

IndCu
cjt

t c j

Sa
cjt

Cu
cjt

t c j

Sa
cjt

IndCu
cjt

t c j

Sa
cjt

Cu
cjt

PXPxP

PXPxP

2)()(2)(*)(

1)()(1)(*)( - (Sales Revenue for leader and follower) 

  
)(      

)(      

)(*)()(*)(

jt

1)(*)(1)(*)(

jt

∑∑∑

∑∑∑
ΩΩ ++

+−

i

St
ijt

St
ijt

Co
ijt

Co
ijt

i

St
ijt

St
ijt

Co
ijt

Co
ijt

yFyF

yFyF
 

  

)''''''(

)''''''(

)(*)()(*)()(*)(

1)(*)(1)(*)(1)(*)(

∑∑

∑∑
ΩΩΩ +++

++−

t i

Si
it

Si
it

Si
it

Si
it

Si
it

Si
it

t i

Si
it

Si
it

Si
it

Si
it

Si
it

Si
it

yFyFyF

yFyFyF   



 240

   
∑ ∑ ∑

∑ ∑ ∑
Ω+

−

t p i

(Pr)
ipt

(Pr)
ipt

t p i

(Pr)
ipt

(Pr)
ipt

yF

yF

*

1*

 
  

∑∑∑∑∑∑∑∑

∑∑∑∑∑∑∑∑

≠

ΩΩ

≠

++

−−

t m i ii

Tr
mtii

Tr
mtii

Tr
simt

t m s i

Tr
simt

t m i ii

Tr
mtii

Tr
mtii

Tr
simt

t m s i

Tr
simt

yFyF

yFyF

'

)(
'

*)(
'

)(*)(
'

1)(
'

*)(
'

1)(*)(   

    ∑∑∑∑∑∑∑∑ Ω+−
t m i c

Tr
icmt

Tr
icmt

t m i c

Tr
icmt

Tr
icmt yFyF )(*)(1)(*)( - (Fixed Costs for leader and follower) 

    
∑∑∑∑∑∑

∑∑∑∑∑∑
++

−−

t j i

St
ijt

IndSt
ijt

t j i

St
ijt

St
ijt

t j i

St
ijt

IndSt
ijt

t j i

St
ijt

St
ijt

VXVxV

VXVxV

2)()(2)(*)(

1)()(1)(*)( - (Storage Costs for leader and follower) 

   

∑∑∑∑∑∑

∑∑∑∑∑∑

∑∑∑∑∑∑

∑∑∑∑∑∑

−+

−+

+−

+−

t j i

Co
ijt

IndCo
ijt

t j i

Co
ijt

IndCo
ijt

t j i

Co
ijt

Co
ijt

t j i

Co
ijt

Co
ijt

t j i

Co
ijt

IndCo
ijt

t j i

Co
ijt

IndCo
ijt

t j i

Co
ijt

Co
ijt

t j i

Co
ijt

Co
ijt

VXVVXV

xVxV

VXVVXV

xVxV

2)()(2)()(

2)(*)(2)(*)(

1)()(1)()(

1)(*)(1)(*)(

'

' 

'

' - (Collection Costs and Fees 

for leader and follower) 

    
∑∑∑∑∑∑

∑∑∑∑∑∑
++

−−

t p i
ipt

Ind
ipt

t p i
iptipt

t p i
ipt

Ind
ipt

t p i
iptipt

XVVxV

XVVxV

2(Pr)(Pr)2(Pr)*(Pr)

1(Pr)(Pr)1(Pr)*(Pr)

    

    - (Processing Costs for leader  

  and follower) 

    

∑∑∑∑∑

∑∑∑∑∑

∑∑∑∑∑

∑∑∑∑∑

+

+

−

−

t m i j s
sim

Tr
sjimt

IndTr
simt

t m i j s
sim

Tr
sjimt

Tr
simt

t m i j s
sim

Tr
sjimt

IndTr
simt

t m i j s
sim

Tr
sjimt

Tr
simt

dVXV

dxV

dVXV

dxV

2)()(

2)(*)(

1)()(

1)(*)(

 

  



 241

    

∑∑∑∑∑

∑∑∑∑∑

∑∑∑∑∑

∑∑∑∑∑

≠

≠

≠

≠

+

+

−

−

t m i j ii
mii

Tr
mtiji

IndTr
mtii

t m i j ii
mii

Tr
mtiji

Tr
mtii

t m i j ii
mii

Tr
mtiji

IndTr
mtii

t m i j ii
mii

Tr
mtiji

Tr
mtii

dVXV

dxV

dVXV

dxV

'
'

2)(
'

)(
'

'
'

2)(
'

*)(
'

'
'

1)(
'

)(
'

'
'

1)(
'

*)(
'

 

  

    

∑∑∑∑∑

∑∑∑∑∑

∑∑∑∑∑

∑∑∑∑∑

+

+

−

−

t m i j c
icm

Tr
ijcmt

IndTr
icmt

t m i j c
icm

Tr
ijcmt

Tr
icmt

t m i j c
icm

Tr
ijcmt

IndTr
icmt

t m i j c
icm

Tr
ijcmt

Tr
icmt

dVXV

dxV

dVXV

dxV

2)()(

2)(*)(

1)()(

1)(*)(

 

- (Shipping Costs for leader  

and follower) 

 

 

Subject to: 

  

∑

∑∑ ∑∑ ∑

∑∑ ∑∑

−

+−−

++=

≠

≠
−

p
iptjp

ii m c m p
iptjp

Tr
ijcmt

Tr
mtiji

s m ii m

Tr
jimti

Tr
sjimt

St
tij

St
ijt

x

xxx

xxxx

1(Pr)

'

1(Pr)1)(1)(
'

'

1)(
'

1)(1)(
)1(

1)(

'

ρ

ρ

 

 

tji ,,∀    (Leader) 

 

 

 

 

∑∑=
i m

Tr
sjimt

Su
sjt xS 1)()(  tjs ,,∀    (Leader)   

∑∑≥
i m

Tr
ijcmt

Cu
cjt xD 1)()(  tjc ,,∀    (Leader)   

∑∑=
i m

Tr
ijcmt

Sa
cjt xx 1)(1)(  tjc ,,∀     (Leader)   

∑∑=
s m

Tr
sjimt

Co
ijt xx 1)(1)(  tji ,,∀     (Leader)   



 242

1)(1)((Si)1
1)-i(t

1)(1)(
)1(

(Si)1
it

(Si)1
it

(Tr)1
ijcmt

(Si)1
it

(Tr)1
jimti'

(Si)1
it

(Tr)1
mtiji'

(Si)1
it

(Tr)1
sjimt

(Si)1
it

(St)1
ijt

(Si)1
it

(Pr)1
ipt

(Si)1
it

(Co)1
ijt

''y

'y 

       y

       y

       y

       y

       y

       y

       y

Si
it

Si
it

Si
it

Si
ti

yy

yy

y

y

y

y

y

y

y

≤−

≤−

≤

≤

≤

≤

≤

≤

≤

−

  

ti

ti

tmjci

tmjii

tmjii

tmjis

tji

tpi

tji

,

,

,,,,

,,,',

,,,',

,,,,

,,

,,

,,

∀

∀

∀

∀

∀

∀

∀

∀

∀

     (Leader) 

  

1)()(1)()*(1)(

1)(
'

)(
'

1)(
'

)*(
'

1)(
'

1)()(1)()*(1)(

1)()(1)()*(1)(

1(Pr)(Pr)1(Pr)(Pr)*1(Pr)

1)()(1)()*(1)(

Tr
icmt

IndTr
icmt

Tr
icmt

Tr
icmt

j

Tr
ijcmt

Tr
mtii

IndTr
mtii

Tr
mtii

Tr
mtii

j

Tr
mtiji

Tr
simt

IndTr
simt

Tr
simt

Tr
simt

j

Tr
sjimt

St
ijt

IndSt
ijt

St
ijt

St
ijt

St
ijt

ipt
Ind

iptiptiptipt

Co
ijt

IndCo
ijt

Co
ijt

Co
ijt

Co
ijt

CYCyCx

CYCyCx

CYCyCx

CYCyCx

CYCyCx

CYCyCx

+≤

+≤

+≤

+≤

+≤

+≤

∑

∑

∑

tmjci

tmjii

tmjis

tji

tpi

tji

,,,,

,,,',

,,,,

,,

,,

,,

∀

∀

∀

∀

∀

∀

     (Leader) 

  

∑

∑∑ ∑∑ ∑

∑∑ ∑∑

−

+−−

++=

≠

≠
−

p
iptjp

ii m c m p
iptjp

Tr
ijcmt

Tr
mtiji

s m ii m

Tr
jimti

Tr
sjimt

St
tij

St
ijt

x

xxx

xxxx

2(Pr)

'

2(Pr)2)(2)(
'

'

2)(
'

2)(2)(
)1(

2)(

'

ρ

ρ

 

 

tji ,,∀            (Leader) 

 

 

 

 

∑∑ =
i m

Su
sjt

Tr
sjimt Sx )(2)(  tjs ,,∀            (Leader)   

∑∑ =+
i m

Cu
cjt

Cu
cjt

Tr
ijcmt Dslx )(2)(2)(  tjc ,,∀            (Leader)   

∑∑=
i m

Tr
ijcmt

Sa
cjt xx 2)(2)(  tjc ,,∀            (Leader)   

∑∑=
s m

Tr
sjimt

Co
ijt xx 2)(2)(  tji ,,∀            (Leader)   



 243

ΩΩ

ΩΩ

ΩΩ

ΩΩ

ΩΩ

ΩΩ

+=+

+=+

+=+

+=+

+=+

+=+

∑

∑

∑

)()()()(*)(2)3(2)(

)(
'

)(
'

)(
'

)(
'

*)(
'

2)2(
'

2)(
'

)()()()(*)(2)1(2)(

)()()()(*)(2)(2)(

(Pr)(Pr)(Pr)(Pr)*(Pr)2(Pr)2(Pr)

)()()()(*)(2)(2)(

Tr
icmt

Tr
icmt

IndTr
icmt

Tr
icmt

Tr
icmt

Tr
icmt

j

Tr
ijcmt

Tr
mtii

Tr
mtii

IndTr
mtii

Tr
mtii

Tr
mtii

Tr
mtii

j

Tr
mtiji

Tr
simt

Tr
simt

IndTr
simt

Tr
simt

Tr
simt

Tr
simt

j

Tr
sjimt

St
ijt

St
ijt

IndSt
ijt

St
ijt

St
ijt

St
ijt

St
ijt

iptipt
Ind

iptiptiptiptipt

Co
ijt

Co
ijt

IndCo
ijt

Co
ijt

Co
ijt

Co
ijt

Co
ijt

yCCyCslx

yCCyCslx

yCCyCslx

yCCyCslx

yCCyCslx

yCCyCslx

tmjci

tmjii

tmjis

tji

tpi

tji

,,,,

,,,',

,,,,

,,

,,

,,

∀

∀

∀

∀

∀

∀

   (Follower) 

  

)()(

)3()3()()(

Cu
cjticm

Tr
icmt

Tr
ijcmt

Tr
icmt

Demand
cjt

Balance
ijt

PdV

sdwww

+−=

−++−
 

tmcji ,,,,∀   (Follower)   

sim
Tr

simt
Co

ijt
Co

ijt

Tr
sjimt

Tr
simt

Collect
ijt

Supply
sjt

Balance
ijt

dVVV

sdwwww
)()()('

)1()1()()()(

−−=

−+++
 

tmijs ,,,,∀   (Follower)   

( ) ( ) ( 2) ( 2)
' ' '

( )
' '

Balance Balance Tr Tr
ijt i jt ii mt iji mt

Tr
ii mt ii m

w w w sd

V d

− + + −

= −
 

tmiji ,,',,∀   (Follower)   

(Pr)

(Pr))(Pr)(' )(

ipt

ipt
ocess

ipt
Balance

ijt
p

jpjp

V

sdww

−=

−+−∑ ρρ
 

tpi ,,∀          (Follower)   

)(

)()()()(
1

St
ijt

St
ijt

Storage
ijt

Balance
ijt

Balance
ijt

V

sdwww

−=

−+−+  
tji ,,∀          (Follower)   

0,,,,,, (Pr))()(
'

)()()()( ≥l
ipt

lTr
ijcmt

lTr
mtiji

lTr
sjimt

lSa
cjt

lSt
ijt

lCo
ijt xxxxxxx

0,,,, (Pr))3()2(
'

)1()( ≥ipt
Tr

ijcmt
Tr

mtiji
Tr

sjimt
St

ijt sdsdsdsdsd
0,,,,,, )3()2(

'
)()()(Pr)()( ≥Tr

icmt
Tr
mtii

Trl
simt

Storage
ijt

ocess
ipt

Collect
ijt

Demand
cjt wwwwwww

0,,,,,, 2)3(2)2(
'

2)(2)(2(Pr)2)(2)( ≥Tr
icmt

Tr
mtii

Trl
simt

St
ijtipt

Co
ijt

Cu
cjt slslslslslslsl  

}2,1{
',,,,,,,

∈
≠∀

l
iitpmjcis
 

                     

  

{ }     1 , 0      '',',

,,,,
(Si)1
it

1)(1

11)(111)(1

∈yyy

yy,yy, yy
Si

it
(Si)
it

(Pr)
ipt

Tr
icmt

(Tr)
ii'mt

(Tr)
simt

St
ijt

(Co)
ijt  

iitpmjcis ≠∀ ',,,,,,,  

                     

  

   02)() =Cu
cjt

(Demand
cjt slw  tjc ,,∀    



 244

   02)3()3 =Tr
icmt

(Tr
icmt slw  tmci ,,,∀       

   02)3()3 =Tr
ijcmt

(Tr
ijcmt xsd  tmcji ,,,,∀    

   02)() =Co
ijt

(Collect
ijt slw  tji ,,∀    

   02)1()1 =Tr
simt

(Tr
simt slw  tmis ,,,∀    

   02)1()1 =Tr
sjimt

(Tr
sjimt xsd  tmijs ,,,,∀    

   02)2(
'

)2
' =Tr

mtii
(Tr

mtii slw  tmcii ,,,',∀    

   02)2(
'

)2
' =Tr

mtiji
(Tr

mtiji xsd  tmiji ,,',,∀    

   02(Pr))Pr =ipt
ocess(

ipt slw  tpi ,,∀    

   02(Pr)Pr) =ipt
(
ipt xsd  tpi ,,∀    

   02)() =St
ijt

(Storage
ijt slw  tji ,,∀    

   02)() =St
ijt

(St
ijt xsd  tji ,,∀    

 UB(Su)
sjt

(Su)
sjt

LB (Su)
sjt SS S ≤≤  tjs ,,∀    

 UB(Cu)
cjt

 (Cu)
cjt

LB (Cu)
cjt DDD ≤≤  tjc ,,∀    

 UB(Cu)
cjt

(Cu)
cjt

LB (Cu)
cjt PPP ≤≤  tjc ,,∀    

 UB(St)
ijt

(St)
ijt

LB (St)
ijt VVV ≤≤  tji ,,∀    

 UB(Co)
ijt

(Co)
ijt

LB (Co)
ijt VVV ≤≤  tji ,,∀    

 UB(Co)
ijt

(Co)
ijt

LB (Co)
ijt V'V'V' ≤≤  tji ,,∀    

 UB(Pr)
ipt

(Pr)
ipt

LB (Pr)
ipt VVV ≤≤  tpi ,,∀    

(Tr) LB (Tr) (Tr) UB
simt simt simt V V V≤ ≤  tmis ,,,∀    

(Tr) LB (Tr) (Tr) UB
ii'mt ii'mt ii'mt V V V≤ ≤  tmii ,,',∀    



 245

(Tr) LB (Tr) (Tr) UB
icmt icmt icmt V V V≤ ≤  tmci ,,,∀    

 UB(Co)
ijt

(Co)
ijt

LB (Co)
ijt CCC ≤≤  tji ,,∀    

 UB(St)
ijt

(St)
ijt

LB (St)
ijt CCC ≤≤  tji ,,∀    

 UB(Tr)
simt

(Tr)
simt

LB (Tr)
simt CCC ≤≤  tmis ,,,∀    

 UB(Tr)
mtii'

(Tr)
mtii'

LB (Tr)
mtii' CCC ≤≤  tmii ,,',∀    

 UB(Tr)
icmt

(Tr)
icmt

LB (Tr)
icmt CCC ≤≤  tmci ,,,∀    

 UB(Pr)
ipt

(Pr)
ipt

LB (Pr)
ipt CCC ≤≤  tpi ,,∀    

1  LB 1

1  UB 1

1  UB 1

 LB 1  UB  LB

| min(0, ) | 1 0

1 0

( )

(Co) (Co) (Co) (Co)
ijt ijt ijt ijt

(Co) (Co) (Co) (Co)
ijt ijt ijt ijt

(Co) (Co) (Co)
ijt ijt ijt

(Co) (Co) (Co) (Co) (Co)
ijt ijt ijt ijt ijt

 CY C C ( y )

 CY C C ( y )

CY C y

C C y C C

⎛ ⎞− − − ≤
⎜
− + − − ≤⎜

⎜
≤⎜

⎜⎜ ≤ + −⎝ ⎠

(Co)Ind
ijtC

⎟
⎟
⎟
⎟
⎟⎟

tji ,,∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

 

  

Pr 1 Pr Pr  LB Pr 1

Pr 1 Pr Pr  UB Pr 1

Pr 1 Pr  UB Pr 1

Pr Pr  LB Pr 1 Pr  UB Pr  LB

| min(0, ) | 1 0

1 0

( )

( ) ( ) ( ) ( )
ipt ipt ipt ipt

( ) ( ) ( ) ( )
ipt ipt ipt ipt

( ) ( ) ( )
ipt ipt ipt

( ) ( ) ( ) ( ) ( )
ipt ipt ipt ipt ipt

 CY C C ( y )

 CY C C ( y )

CY C y

C C y C C

⎛ ⎞− − − ≤
⎜
− + − − ≤⎜

⎜
≤⎜

⎜⎜ ≤ + −⎝ ⎠

Pr( )Ind
iptC

⎟
⎟
⎟
⎟
⎟⎟

tpi ,,∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

 

  

1  LB 1

1  UB 1

1  UB 1

 LB 1  UB  LB

| min(0, ) | 1 0

1 0

( )

(St) (St) (St) (St)
ijt ijt ijt ijt

(St) (St) (St) (St)
ijt ijt ijt ijt

(St) (St) (St)
ijt ijt ijt

(St) (St) (St) (St) (St)
ijt ijt ijt ijt ijt

CY C C ( y )

 CY C C ( y )
 

CY C y

C C y C C

⎛ ⎞− − − ≤
⎜
− + − − ≤⎜

⎜
≤⎜

⎜⎜ ≤ + −⎝ ⎠

(St)Ind
ijtC

⎟
⎟
⎟
⎟
⎟⎟

tji ,,∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

 

  

1  LB 1

1  UB 1

1  UB 1

 LB 1  UB

| min(0, ) | 1 0

1 0

(

(Tr) (Tr) (Tr) (Tr)
simt simt simt simt

(Tr) (Tr) (Tr) (Tr)
simt simt simt simt

(Tr) (Tr) (Tr)
simt simt simt

(Tr) (Tr) (Tr) (Tr) (T
simt simt simt simt simt

 CY C C ( y )

 CY C C ( y )

CY C y

C C y C C

− − − ≤

− + − − ≤

≤

≤ + −  LB )

(Tr)Ind
simt

r)

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

tmis ,,,∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

 

  

1  LB 1
' ' ' '

1  UB 1
' ' ' '

1  UB 1
' ' '

 LB 1
' ' ' '

| min(0, ) | 1 0

1 0

(

(Tr) (Tr) (Tr) (Tr)
ii mt ii mt ii mt ii mt

(Tr) (Tr) (Tr) (Tr)
ii mt ii mt ii mt ii mt

(Tr) (Tr) (Tr)
ii mt ii mt ii mt

(Tr) (Tr) (Tr)
ii mt ii mt ii mt ii mt

 CY C C ( y )

 CY C C ( y )

CY C y

C C y C

− − − ≤

− + − − ≤

≤

≤ +

'

 UB  LB
' )

(Tr)Ind
ii mt

(Tr) (Tr)
ii mt

C

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

tmii ,,',∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

 

  



 246

1  LB 1

1  UB 1

1  UB 1

 LB 1  UB

| min(0, ) | 1 0

1 0

(

(Tr) (Tr) (Tr) (Tr)
icmt icmt icmt icmt

(Tr) (Tr) (Tr) (Tr)
icmt icmt icmt icmt

(Tr) (Tr) (Tr)
icmt icmt icmt

(Tr) (Tr) (Tr) (Tr) (T
icmt icmt icmt icmt icmt

 CY C C ( y )

 CY C C ( y )

CY C y

C C y C C

− − − ≤

− + − − ≤

≤

≤ + −  LB )

(Tr)Ind
icmt

r)

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, , ,i c m t

⎫
⎪
⎪∀⎬
⎪
⎪⎭

 

  

( )

( ) ( ) ( )

( ) ( )

0

( | min(0, ) | )(1 ) 0

( | min(0,

(Sa)k (Cu)UB Sa k
cjt cjt cjt

(Sa)k (Cu)UB Sa k (Cu)UB Sa kUB (Cu)LB Sa kUB (Cu)
cjt cjt cjt cjt cjt cjt cjt cjt

(Sa)k (Cu)LB Sa k (Cu)UB Sa kUB
cjt cjt cjt cjt cjt cjt

 PX P x

 PX P x P x P x bi

PX P x P x P

− ≤

− + − + − ≤

− − + ( )

( )

) | ) 0

0

(Cu)Ind
cjt(Cu)LB Sa kUB (Cu)

cjt cjt

(Sa)k (Cu)LB Sa k
cjt cjt cjt

P
x (bi )

PX P x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

}2,1{,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktjc  

 

( )(1 ) 0

( )( ) 0

(Cu) (Cu)UB (Cu)UB (Cu)LB (Cu)
cjt cjt cjt cjt cjt (Cu)In

cjt(Cu) (Cu)LB (Cu)UB (Cu)LB (Cu)
cjt cjt cjt cjt cjt

 P P P P bi
P

P P P P bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, ,c j t
⎫
∀⎬

⎭
 

  

( )

( ) ( ) ( )

( ) ( )

0

( | min(0, ) | )(1 ) 0

( | min(0,

(St)k (St)UB St k
ijt ijt ijt

(St)k (St)UB St k (St)UB St kUB (St)LB St kUB (St)
ijt ijt ijt ijt ijt ijt ijt ijt

(St)k (St)LB St k (St)UB St kUB
ijt ijt ijt ijt ijt ijt

 VX V x

 VX V x V x V x bi

VX V x V x V

− ≤

− + − + − ≤

− − + ( )

( )

) | )( ) 0

0

(St)Ind
ijt(St)LB St kUB (St)

ijt ijt

(St)k (St)LB St k
ijt ijt ijt

V
x bi

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

 
}2,1{,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktji  

 

( )(1 ) 0

( )( ) 0

(St) (St)UB (St)UB (St)LB (St)
ijt ijt ijt ijt ijt (St)Ind

ijt(St) (St)LB (St)UB (St)LB (St)
ijt ijt ijt ijt ijt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, ,i j t
⎫
∀⎬

⎭
 

  

( )

( ) ( ) ( )

( ) ( )

0

( | min(0, ) | )(1 ) 0

( | min(0,

(Co)k (Co)UB Co k
ijt ijt ijt

(Co)k (Co)UB Co k (Co)UB Co kUB (Co)LB Co kUB (Co)
ijt ijt ijt ijt ijt ijt ijt ijt

(Co)k (Co)LB Co k (Co)UB Co kUB
ijt ijt ijt ijt ijt ijt

 VX V x

 VX V x V x V x bi

VX V x V x V

− ≤

− + − + − ≤

− − + ( )

( )

) | ) 0

0

(Co)Ind
ijt(Co)LB Co kUB (Co)

ijt ijt

(Co)k (Co)LB Co k
ijt ijt ijt

V
x (bi )

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

}2,1{,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktji  

 

( )(1 ) 0

( )( ) 0

(Co) (Co)UB (Co)UB (Co)LB (Co)
ijt ijt ijt ijt ijt (Co)In

ijt(Co) (Co)LB (Co)UB (Co)LB (Co)
ijt ijt ijt ijt ijt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, ,i j t
⎫
∀⎬

⎭
  

  

( )

( ) ( ) ( )

( ) ( )

' ' 0

' ' ( ' | min(0, ' ) | )(1 ) 0

' ' ( ' | m

(Co)k (Co)UB Co k
ijt ijt ijt

(Co)k (Co)UB Co k (Co)UB Co kUB (Co)LB Co kUB (Co)
ijt ijt ijt ijt ijt ijt ijt ijt

(Co)k (Co)LB Co k (Co)UB Co kUB
ijt ijt ijt ijt ijt

 VX V x

 VX V x V x V x bi

VX V x V x

− ≤

− + − + − ≤

− − + ( )

( )

'
in(0, ' ) | ) 0

' ' 0

(Co)Ind
ijt(Co)LB Co kUB (Co)

ijt ijt ijt

(Co)k (Co)LB Co k
ijt ijt ijt

V
V x (bi )

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

 
}2,1{,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktji  

 

' ' ( ' ' )(1 ) 0
'

' ' ( ' ' )( ) 0

(Co) (Co)UB (Co)UB (Co)LB (Co)
ijt ijt ijt ijt ijt (Co)

ijt(Co) (Co)LB (Co)UB (Co)LB (Co)
ijt ijt ijt ijt ijt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, ,i j t
⎫
∀⎬

⎭
  

  



 247

Pr Pr (Pr)

Pr Pr (Pr) Pr (Pr) Pr (Pr) Pr

Pr Pr (Pr) Pr (Pr)

0

( | min(0, ) | )(1 ) 0

( | min(0,

( )k ( )UB k
ipt ipt ipt

( )k ( )UB k ( )UB kUB ( )LB kUB ( )
ipt ipt ipt ipt ipt ipt ipt ipt

( )k ( )LB k ( )UB kUB
ipt ipt ipt ipt ipt ipt

 VX V x

 VX V x V x V x bi

VX V x V x V

− ≤

− + − + − ≤

− − +
Pr

Pr (Pr) Pr

Pr Pr (Pr)

) | )( ) 0

0

( )Ind
ipt( )LB kUB ( )

ipt ipt

( )k ( )LB k
ipt ipt ipt

V
x bi

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

 

}2,1{,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktpi  

 

Pr Pr Pr Pr Pr
Pr

Pr Pr Pr Pr Pr

( )(1 ) 0

( )( ) 0

( ) ( )UB ( )UB ( )LB ( )
ipt ipt ipt ipt ipt ( )

ipt( ) ( )LB ( )UB ( )LB ( )
ipt ipt ipt ipt ipt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, ,i p t
⎫
∀⎬

⎭
 

  

( )

( ) ( ) ( )

( )

0

( | min(0, ) | )(1 ) 0

(

(Tr)k (Tr)UB Tr k
sjimt sjimt sjimt

(Tr)k (Tr)UB Tr k (Tr)UB Tr kUB (Tr)LB Tr kUB (Tr)
sjimt sjimt sjimt sjimt sjimt sjimt sjimt sjimt

(Tr)k (Tr)LB Tr k
sjimt sjimt sjimt sjim

 VX V x

 VX V x V x V x bi

VX V x V

− ≤

− + − + − ≤

− − ( ) ( )

( )

| min(0, ) | )( ) 0

0

(Tr)Ind
sjimt(Tr)UB Tr kUB (Tr)LB Tr kUB (Tr)

t sjimt sjimt sjimt sjimt

(Tr)k (Tr)LB Tr k
sjimt sjimt sjimt

V
x V x bi

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ ≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

 
}2,1{,,,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktmijs  
 

( )(1 ) 0

( )( ) 0

(Tr) (Tr)UB (Tr)UB (Tr)LB (Tr)
sjimt sjimt sjimt sjimt sjimt (Tr)Ind

sjimt(Tr) (Tr)LB (Tr)UB (Tr)LB (Tr)
sjimt sjimt sjimt sjimt sjimt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, , , ,s j i m t
⎫
∀⎬

⎭
 

  

( )
' ' '

( ) ( ) ( )
' ' ' ' ' ' ' '

' ' '

0

( | min(0, ) | )(1 ) 0

(Tr)k (Tr)UB Tr k
iji mt iji mt iji mt

(Tr)k (Tr)UB Tr k (Tr)UB Tr kUB (Tr)LB Tr kUB (Tr)
iji mt iji mt iji mt iji mt iji mt iji mt iji mt iji mt

(Tr)k (Tr)LB
iji mt iji mt iji

 VX V x

 VX V x V x V x bi

VX V x

− ≤

− + − + − ≤

−
'( ) ( ) ( )

' ' ' ' '

( )
' ' '

( | min(0, ) | )( ) 0

0

(Tr)Ind
iji mtTr k (Tr)UB Tr kUB (Tr)LB Tr kUB (Tr)

mt iji mt iji mt iji mt iji mt iji mt

(Tr)k (Tr)LB Tr k
iji mt iji mt iji mt

V
V x V x bi

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

− + ≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

 

}2,1{,,,',, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktmiji

 

' ' ' ' '
'

' ' ' ' '

( )(1 ) 0

( )( ) 0

(Tr) (Tr)UB (Tr)UB (Tr)LB (Tr)
iji mt iji mt iji mt iji mt iji mt (Tr)In

iji mt(Tr) (Tr)LB (Tr)UB (Tr)LB (Tr)
iji mt iji mt iji mt iji mt iji mt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, , ', ,i j i m t
⎫
∀⎬

⎭
 

  

( )

( ) ( ) ( )

( )

0

( | min(0, ) | )(1 ) 0

(

(Tr)k (Tr)UB Tr k
ijcmt ijcmt ijcmt

(Tr)k (Tr)UB Tr k (Tr)UB Tr kUB (Tr)LB Tr kUB (Tr)
ijcmt ijcmt ijcmt ijcmt ijcmt ijcmt ijcmt ijcmt

(Tr)k (Tr)LB Tr k
ijcmt ijcmt ijcmt ijcm

 VX V x

 VX V x V x V x bi

VX V x V

− ≤

− + − + − ≤

− − ( ) ( )

( )

| min(0, ) | )( ) 0

0

(Tr)Ind
ijcmt(Tr)UB Tr kUB (Tr)LB Tr kUB (Tr)

t ijcmt ijcmt ijcmt ijcmt

(Tr)k (Tr)LB Tr k
ijcmt ijcmt ijcmt

V
x V x bi

VX V x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ ≤⎜ ⎟
⎜ ⎟⎜ ⎟− + ≤⎝ ⎠

 

}2,1{,,,,, =∀

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ktmcji

 

( )(1 ) 0

( )( ) 0

(Tr) (Tr)UB (Tr)UB (Tr)LB (Tr)
ijcmt ijcmt ijcmt ijcmt ijcmt (Tr)Ind

ijcmt(Tr) (Tr)LB (Tr)UB (Tr)LB (Tr)
ijcmt ijcmt ijcmt ijcmt ijcmt

 V V V V bi
V

V V V V bi

⎛ ⎞− + − − − ≤
⎜ ⎟
⎜ ⎟− − − ≤⎝ ⎠

, , , ,i j c m t
⎫
∀⎬

⎭
 

  

 



 248

REFERENCES 

 
Ahmed, S., N. Sahinidis (1998), “Robust Process Planning Under Uncertainty,” 

Industrial Engineering and Chemical Research, Vol. 37, 1883-1892. 

Aiyoshi, E., Shimizu, K. (1984), “A Solution Method for the Static Constrained 
Stackelberg Problem via Penalty Method,” IEEE Transaction Automatic Control, 
Vol. AC-29, No. 12, 1111-1114. 

Ammons C, Jane, Realff, M. and Newton, D. (1999). “Carpet Recycling: The Value Of 
Cooperation And A Robust Approach To Determining The Reverse Production 
System Design”. Eindhoven University of Technology, Eindhoven, The Netherlands, 
March 1-3, 207-216. 

Anandalingam, G., White, D.J. (1990), “A Solution Method for the Linear Stackelberg 
Problem Using Penalty Functions,” IEEE Transaction Automatic Control, Vol. 35, 
No. 10, 1170-1173. 

Applequist, G., J. Penky, G. Rekalaitis (2000), “Risk and Uncertainty in Managing 
Chemical Manufacturing Supply Chain,” Computers and Chemical Engineering, Vol. 
24, 2211-2222. 

Averbakh, I (2001), “On the Complexity of a Class of Combinatorial Optimization 
Problems with Uncertainty,” Math. Prog., Vol. 90, 263-272. 

Bai, D., T. Carpenter, J, Mulvey (1997), “Making a Case for Robust Optimization 
Models,” Management Science, Vol. 43/7, 895-907. 

Bard, J.F. and J.E. Falk (1982), "An Explicit Solution to the Multi-level Programming 
Problem," Compuers and Operations Research, 9/1, 77-100. 

Bard, J.F., Moore, J.T. (1990), “A Branch and Bound Algorithm for the Bilevel 
Programming Problem,” SIAM Journal of Scientific and Statistical Computing, Vol. 
11, No. 2, pp. 281-292. 

Bard, J.F. (1991), “Some Properties of Bilevel Programming Problem,” Journal of 
Optimization Theory and Application, Vol. 68, No. 2, 371-378. 

Bard, J.F. (1998). Practical Bilevel Optimization. 

Barros, A.I, R. Dekker, and V. Scholten (1998), “A Two-Level Network for Recycling 
Sand:  A Case Study,” European Journal of Operational Research, 110,  199-214. 

Baumol, W.J. and T. Fabian (1964), "Decompostion, pricing for decentralization and 
external economies," Management Science, 11, 1-32. 



 249

Bialas, W.F. and M.H. Karwan (1982), "On Two-Level Optimization," IEEE Trans. 
Automatic Control, AC-26, 1, 211-214. 

Bialas, W.F. and M.H. Karwan (1984), "Two-level Linear Programming," Management 
Science, 30, 1004-1020. 

Ben-Tal, A., Nemirovski, A. (1998), “Robust Convex Optimization,” Math. Oper. Res., 
Vol. 23, 769-805. 

Ben-Tal, A., Nemirovski, A (1999), “Robust Solutions to Uncertain Programs,” 
Operation Research Lett., Vol. 25, 1-13. 

Ben-Tal, A., Nemirovski, A (2000), “Robust Solutions of Linear Programming Problems 
Contaminated with Uncertain Data,” Math. Prog., Vol. 88, 411-424. 

Ben-Tal, A., El-Ghaoui, L., Nemirovski, A. (2000), “Robust Semidefinite Programming,” 
In: Saigal, R., Vandenberghe, L., Wolkowicz, H., (eds), Semidefinite Programming 
and Applications, Kluwer Academic Publishers. 

Bertsimas, D., Sim, M (2001), “The Price of Robustness,” Working Paper, Operations 
Research Center, MIT. 

Bok, J. H. Lee, S. Park (1998), “Robust Investment Model for Long-Range Capacity 
Expansion of Chemical Processing Networks Under Uncertain Demand Forecast 
Scenarios,” Computers and Chemical Engineering, Vol. 22/7, 1037-1049. 

Butler, Renee J. (2003), “Supply Chain Design for New Product,” Ph.D. Thesis at 
Georgia Institute of Technology. 

Candler, W., Townsely, R. (1982), “A Linear Two-Level Programming Problem,” 
Computer and Operation Research, Vol. 9, No. 1, 59-76. 

El-Ghaoui, Lebret, H. (1997), “Robust Solution to Least-Square Problems to Uncertain 
Dats Matrices,” SIAM J. Matrix Anal. Appl., Vol. 18, 1035-1064. 

El-Ghaoui, L., Oustry, F., Lebret, H. (1998), “Robust Solution to Uncertain Semidefinite 
Programs,” SIAM J. Opyim., Vol. 9, 33-52. 

Flapper, S. D. P. (1995), “On the Operational Aspects of Reuse,” Proceedings of the 
Second International Symposium on Logistics, Nottingham, U.K., 11-12 July, 109-
118. 

Flapper, S. D. P. (1996), “Logistic Aspects of Reuse: An Overview,” Proceedings of the 
First International Working Seminar on Reuse, Eindhoven, The Netherlands, 11-13 
Nov, 109-118. 



 250

Fleischmann, M., J.M. Bloemhof-Ruwaard, R. Dekker, E.van der Laan, J.A.E.E.van 
Nunen, L.N. Wassenhove (1997), "Quantitative Models for Reverse Logistics: A 
Review," European Journal of Operational Research, v103/1, 1-17. 

Fleischmann, M. (2000), “Quantitative Models For Reverse Logistics,” (Ph.D. Thesis at 
Erasmus University Rotterdam). 

Fleischmann, M. (2001), “Quantitative Models for Reverse Logistics,” Lecture Notes 
in Economics and Mathematical Systems, Vol. 501, Springer-Verlag, Berlin. 

Fleischmann, M., P. Beullens, J.M. Bloemhof-Ruwaard, L.N. Van Wassenhove 
(2001), “The Impact of Product Recovery on Logistics Network Design,” 
Production and Operations Management, Vol. 10(2), 156-173. 

Fleischmann, M., R. Kuik (2003), “On Optimal Inventory Control with Stochastic 
Item Returns,” European Journal of Operational Research, Vol. 151(1), 25-37. 

Fortuny-Amat, J., B. McCarl (1981), "A Representation and Economic Interpretation of a 
Two-level Programming Problem," Journal of the Operational Research Society, 32, 
783-792. 

Goetschalckx, M., S. Ahmed, A. Shapiro, T. Santoso (2001), “Designing Flexible and 
Robust Supply Chain,” IEPM Quebec. 

Goetschalckx, M., C. Vidal, K. Dogan (2002), “Modeling and Design of Global Logistics 
Systems: A Review of Integrated Strategic and Tactical Models and Design 
Algorithms,” European Journal of Operation Research, Vol. 143/1, 1-18. 

Graedel, T.E. and B.R. Allenby (1995), Industrial Ecology, Prentice Hall, Englewood 
Cliffs, New Jersey. 

Grossman, I.E., and C.A. Floudas (1987), "Active Constraint Strategy for Flexibility 
Analysis in Chemical Processes," Computers Chem. Engng, 11, 105-114. 

Gupta, S.M., K.N. Taleb (1994), “Scheduling Dissembly,” Int. J. Prod. Res., 32/8, 1857-
1866. 

Gungor, Askiner, Surendra M. Gupta (1999), "Issues In Environmentally Conscious 
Manufacturing And Product Recovery: A Survey," Computers and Industrial 
Enginneering, 36/4, 811-853. 

Guterrez, G., P. Kouvelis, A. Kurawarwala (1996), “A Robustness Approach to 
Uncapacitated Network Design Problems,” European Journal of Operations 
Research, Vol. 94, 362-376. 



 251

Hansen, P., Iaumard, B., Savurd, G. (1992), “New Branch-and-Bound Rules for Linear 
Bilevel Programming,” SIAM Journal of Scientific and Statistical Computing, Vol. 
13, No. 5, 1194-1217. 

Hodder, J., M.C. Dincer (1986), “A Multifactor Model for International Plant Location 
and Financing Under Uncertainty,” Computers and Operations Research, Vol. 13/5, 
601-609. 

Huttunen, Anne (1996), “The Finnish Solution for Controlling the Recovered Paper 
Flows,” Proceedings of the First International Seminar on Reuse, Eindhoven 
University of Technology, Eindhoven, The Netherlands, November 11-13, 177-187. 

Jayaraman, V., V.D.R. Guide, Jr., R. Srivastava (1999), “A Closed-Loop Logistics Model 
for Remanufacturing,” J. Oper. Res. Soc., Vol. 50, 497-508. 

Jeroslow, R. G. (1985), “The Polynomial Hierarchy and a Simple Model for Competitive 
Analysis,” Mathematical Programming, Vol. 32, 146-164. 

Judice, J.J., Faustino, A.M. (1992), “A Sequential LCP Method for Bilevel Linear 
Programming,” Annuals of Operation Research, Vol. 34, No. 1-4, 89-106. 

Kouvelis, Panagiotis, Abbas A. Kurawarwala and Genaro J. Gutierrez (1992), 
"Algorithms for Robust Single and Multiple Period Layout Planning for 
Manufacturing Systems", European Journal of Operational Research 63, 287-303. 

Kouvelis , Panos and Yu, Gang. (1997), Robust Discrete Optimization and Its 
Applications, Dordecht, The Netherlands: Kluwer Academic Publishers.. 

Krikke, H.R. (1998), “Recovery Strategies and Reverse Logistic Network Design,” Ph.D. 
Dissertation, University of Twente, Enchede, The Netherlands. 

Krikke, H. R., A. van Harten and P.C. Schuur(1999), "Business Case Roteb: Recovery 
Strategies For Monitors," Computers and Industrial Enginneering, 36/4, 739-757. 

Kroon, L., G. Vrijens. (1995), “Returnable Containers: An Example of Reverse 
Logistics,” Int. J. Phys. Distr. Log. Management, Vol. 25(2), 56-68. 

Lave, Lester, N. Conway-Schempf, N., J. Harvey, D. Hart, T. Bee, C. MacCraken (1998), 
“Recycling Postconsumer Nylon Carpet,” Journal of Industrial Ecology, 2/1, 117-
126. 

Lister, O., R. Dekker. (2001), “Stochastic Approaches for Product Recovery Network 
Design: A Case Study,” Working Paper, Faculty of Economics, Erasmus University 
Rotterdam, The Netherlands. 

Malcolm, S.A., S.A. Zenios (1994), “Robust Optimization for Power Systems Capacity 
Expansion Under Uncertainty,” Journal of Operations Research Society, Vol. 45/9, 
1040-1049. 



 252

Mulvey, J., A. Ruszczynski (1995), “A New Scenario Decomposition Method for Large-
Scale Stochastic Optimization,” Operations Research, Vol. 43/3, 477-490. 

Mulvey, J., R. Vanderbei, S. Zenios (1995), “Robust Optimization of Large-Scale 
Systems,” Operation Research, Vol. 43, 264-281. 

Nagel, Carsten (1997), "Single-use Cameras Within A Multi-use Concept - Ecological", 
IEEE 1, 69-72. 

Newton J, David. (2000). “A Robust Approach for Planning the Strategic Infrastructure 
of Reverse Production System,” Ph.D. Thesis at Georgia Institute of Technology. 

Russell, Clifford and William J. Vaughan (1974), "A Linear Programming Model Of 
Residuals Management For Integrated Iron And Steel Production," Journal of 
Environmental Economics and Management, 1, 17-42. 

Sabri, E., B. Beamon (2000), “A Multi-Objective Approach to Simulataneous Strategic 
and Operational Planning in Supply Chain Design,” The International Journal of 
Management Science, Vol. 28, 581-598. 

Santoso, T., Ahmed, S., Goetschalckx, M., Shaoiro, A. (2003), “A Stochastic 
Programming Approach for Supply Chain Network Design under Uncertainty,” 
Technical Report, School of Industrial & Systems Engineering, Georgia Institute of 
Technology. 

Shimizu, K., Lu, M. (1995), “A Global Optimization Method for the Stackelberg Problem 
with Convex Functions via Problem Transformations and Concave Programming,” 
IEEE Transaction Systems, Man, and Cybernetics, Vol. 25, No. 12, 1635-1640. 

Spengler, Th., H. Püchert, T. Penkuhn, O. Rentz (1997), “Environmental Integrated 
Production and Recycling Management,” European Journal of Operational Research, 
97/2, 308-326. 

Thierry, M., M. Salomon, J. van Nunen, L. Van Wassenhove (1995), “Strategic Issues in 
Product Recovery Management,” California Management Review, 37/2, 114-135. 

Thierry, M. (1997), “An Analysis of the Impact of Product Recovery Management on 
Manufacturing Companies,” Ph.D. Dissertation, Erasmus University, Rotterdam, The 
Netherlands. 

Thuesen, G.J. and W.J. Fabrycky (1993), Engineering Economy, Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey. 

Vidal, C., M. Goetschalckx (1997), “Strategic Production-Distribution Models: A Critical 
Review with Emphasis on Global Supply Chain Models,” Europian Journal of 
Operations Research, Vol. 98, 1-18. 



 253

Vidal, C., M. Goetschalckx (2000), “Modeling the Effect of Uncertainties on Global 
Logistics Systems,” Europian Journal of Business Logistics, Vol. 21/1, 95-120. 

Vidal, C., M. Goetschalckx (2001), “A Global Supply Chain Model with Transfer Pricing 
and Transportation Cost Analysis Allocation,” Europian Journal of Operations 
Research, Vol. 129, 134-158. 

Voudouris, V. (1996), “Mathematical Programming Techniques to Debottleneck the 
Supply Chain of Fine Chemical Industries,” Computers and Chemical Engineering, 
Vol. 20, S1269-S1274. 

Wen, U.P. and Y.H. Yang (1990), "Algorithms for Solving the Mixed Integer Two-Level 
Linear Programming Problem," Computers and Operations Research, 17/2, 133-142. 

Yu, C., H. Li (2000), “A Robust Optimization Model for Stochastic Logistics Problems,” 
International Journal of Production Economics, Vol. 64, 385-397. 

 



 254

VITA 

 
Tiravat Assavapokee was born in Bangkok, Thailand on October 25, 1975.  He 

received his B.S. degree in computer science from KMIT’L, Bangkok, Thailand in 1996, 

and his first M.S. degree in industrial and manufacturing engineering from Oregon State 

University, Corvallis, Oregon USA in 1999.  From 1999 to 2000, he joined HMT 

Technology, Eugene, Oregon USA where he worked as a quality engineer with the 

responsibility of controlling the product quality in all aluminum disk processes.  For the 

first quarter of year 2000, he joined Bangchan General Assembly Co., Ltd, Bangkok, 

Thailand where he worked as a process engineer with the responsibility of controlling 

and analyzing the automobile production processes.  In August 2000, he joined Georgia 

Institute of Technology for continuing his Ph.D. in industrial and system engineering.  He 

received his second M.S. in industrial and system engineering from Georgia Institute of 

Technology, Atlanta, Georgia USA in 2001.  In May 2004, he received his doctoral 

degree in industrial and system engineering.  He joined the Smith Hanley consulting 

group where he worked as a consultant for Norfolk Southern Cooperation in April 2004. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>







    /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




