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SUMMARY

The IEEE 802.3aq standard recommends a multi-tap deciseabfick equalizer
be implemented to remove inter-symbol interference andtimddystem noise from data
transmitted over a 10 Gigabit per Second (10 Gbps) multi-grfdzer-optic link (MMF).
The recommended implementation produces a design in angapabcess. This design
process is diicult, time consuming, and is expensive to modify if first psiison success
is not achieved.

Performing the majority of the design in a well-charactedizigital process with sta-
ble, evolutionary tools reduces the technical risk. ASIGigie rule checking is more pre-
dictable than custom tools flows and produces regular, tapkaresults. Register Transfer
Language (RTL) changes can also be relatively quickly iiglisted when compared to
the custom flow. However, standard cell methodologies goe@®rd to achieve clock rates
of roughly one-tenth of the corresponding analog process.

The architecture and design for a parallel linear equalinerdecision feedback equal-
izer are presented. The presented design demonstrated ampBlEmentation of 10 GHz
filters operating in parallel at 625 MHz. The performancehef filters is characterized by
testing the design against a set of 324 reference chanrteds.e$ults are compared against
the IEEE standard groups recommended implementation. imbarlequalizer design of
20 taps equalizes 88% of the reference channels. The dedesdback equalizer design
of 20 forward and 1 reverse tap equalizes 93% of the refereim@aenels. Analysis of the

unequalized channels in performed, and areas for congmesearch are presented.

Xi



CHAPTER 1
INTRODUCTION

In this chapter, the research topic is defined and an inttamfuto the research area is
given. The sections contained in this chapter include teeaeh objective, the problem

statement, and an overview of the current research in gmaliire.

1.1 Research objective

The objective of this research is to find and implement a ntetbaecover data transmit-
ted through a 10 Gbps Ethernet (10 GbE) fiber, sampled widrledved, low resolution
2.5 Gbps analog-to-digital converters (ADC) using a stamhdall application-specific in-
tegrated circuit (ASIC) process. The specific implemeatagirocess considered in the ex-
amples in this thesis is that of a 90 nm complementary metalessemiconductor (CMOS)
ASIC tool set. The process of recovering data that has beeopted by channel modal
imperfections and additive noise is called electronic elisn compensation (EDC). Elec-
tronic dispersion compensation is normally performed eénahalog domain at symbol rate
prior to a monolithic analog-to-digital converter.

There are many theoretical advances that have been proppséiter EDC researchers,
but their common theme is the requirement for the implentemtdo be performed in a
full custom digital or analog design flow. A full custom digjior analog design flow adds
significant technical risk to the project. Sources of thgk include increased complex-
ity, additional gate-level simulations, increased desigd layout time, and the increased
schedule impact of late design changes.

The goal of this research is to perform the EDC design in a-aleracterized digital
process with stable, evolutionary tools that will reduceribk from a timing closure aspect.
The design process is referred to as “standard-cell” peobesause the physical layout

macros are chosen from a limited selection of pre-builtglesi If the digital logic is



implemented using a standard-cell methodology, the ontyareing part of the circuit to
be implemented in an analog process is the ADC. By re-usirgdar, well-characterized
ADC, the custom layout work is significantly reduced.

The standard-cell methodology has some significant adgastaver the custom layout
methodology. Standard-cell design rule checking is mosgliptable than custom tool
flows and produces regular, repeatable results. Regiatesfar level (RTL) code changes
can also be relatively quickly implemented when comparatiéaccustom flow.

While the ease of use and faster turn around time are halsnairkhe standard-cell
process, the custom design flow is generally able to reacthifaster speeds. The rule
of thumb is that custom layout can achieve up to an order ofnmade improvement over
tool-driven layout. For example, EDCs currently on the nearkre implemented in an
analog 90 nm process and operate at 10 GHz. Personal exqeevigh this 90 nm digital
library has shown that the fastest clock speed achievabidli® 800 MHz - 1 GHz range.

The majority of the adaptive equalizers on the market todaynaplemented via custom
design flows simply because of the performance a customrmléieig can achieve. Up to
this point, there has not been an equalizer design that poatebss data at 10 GHz and still
be implemented in a standard-cell process. Until such gydesas found, performance
and engineering tradeffostudies could not be performed. The research presented here
demonstrates that 90 nm is the first process step where a 1EBBzan be implemented
in a standard-cell methodology.

The key result of this research is a description of a pair @paide filters fully im-
plemented in an RTL methodology for a 10 Gbps optical fiber mamications link. In
addition, the proposed design’s performance is charaeirand compared against the

theoretical performance specified by the IEEE 8082.3ag/siumlip.

IRTL is a coding methodology for hardware description largass(HDLs). The circuit designer explicitly
defines the registers (also referred to as flip-flops) and hevotitputs of one register become the inputs of
another register. This type of coding methodology tendsadyce the most highly timing-optimized results,
yet still remains readable.



1.2 Problem statement

The goal of the IEEE802.3aq group (106 Ethernet Over Fiber Distributed Data Interface
class Multi Mode Task Force) is to define a physical mediumdsded such that Ethernet
frames can be transmitted across a variety of inexpensive-made fibers (MMF) with

a maximum bit error rate (BER) of 1E-12 for a minimum distan£@20 to 300 meters,
depending on type of fiber.

The research performed by the IEEE study group concentoat@sphysical medium
device (PMD) performing data recovery at th@DAat a rate of 10 GHz using a decision
feedback equalizer (DFE) to remove the inter-symbol-fetence (I1SI). Initial analysis [1]
of the representative MMF models reported that in order farite impulse response (FIR)
filter to invert some of the channels, a very large fractiynsppaced equalizer (FSE) would
be required.

The recommendation from the IEEE study group was a 20 fap(tWo samples per
symbol) FSE along with a DFE composed of 4 taps spaced at thbeadyate. Analysis
showed that this configuration could equalize 95% of the ritezal fiber models. The
IEEE study group had proposed that this filter design can ti®@Hz in either a custom
analog, SiGe, or CMOS process in a blind equalization modee@ompanies began to
design to the standard, it was found that blind equalizatroald not work reliably. Re-
search teams that have implemented products for this sthhdse added an eye opening
monitor to provide an approximation of a training sequen@k.Peeters Weerfy 2006,
Personal Communication)

An analog or custom implementation has several benefits amedpo a register transfer
level (RTL) design. First, it is much more powsfieient. Second, a custom implementa-
tion typically results in a physical layout that can be cledlat rates that are an order of

magnitude higher than what can be expected for a synthesdjghas reducing power and

2Dr. Peeters Weem is employed by Intel as a research enginegking on various fiber-optic PHY
implementations. | met Dr. Peter-Weems when he was an aothdr Intel's 802.3ag PHY project, where
he was responsible for modeling the behavior of Intel's pegal PHY design.



area as well.

By using a custom design flow, the design team assumes som&daicrisk. The
custom design flow is significantly morefidicult than an RTL flow and making changes to
the design can be very expensive. A change to even a minoofdéwe circuit may require
that the entire design be re-laid out by hand. After the ceamgnplemented, all the design
rule checks and physical simulations that were previoustygopmed must be repeated, a
lengthy and expensive process. If a process shrink occlasustom process, the entire
IC layout may have to be repeated in order to take advantathe gimaller feature size.

On the other hand, if the number of filter taps is changed in &b &esign, the
change can be implemented very quickly. RTL generics canhibeged and the code
re-synthesized with very littlefiort. The same ability to react quickly to design changes
also benefits the RTL design in the process shrink scenahie pfevious synthesis scripts
are easily modified to use the new library and then can be eetg@d. Only additional
CPU time is required for the new digital layout to be creafdue amount of redesign work
in an RTL flow is limited to the physical ADCs. The physics ofragess shrink guarantee
that routing and propagation time decrease. Thereforee ardesign has made timing in
a larger, slower processes, the expectation is that thgrdasil easily make timing in the
smaller, faster process.

The IEEE 802.3aq study group is interested in providing atg8mi for the vast majority
of the installed fiber at the maximum distance of 300 m. Thd&lem under investigation
is if a reasonable subset of fibers can be equalized withoumdpdo resort to custom or

analog layout.
1.3 Background: Adaptive filters for equalization
The prior art for this research can be classified into threie my@as:

1. The theoretical derivation of architectures and methioasinvert an unknown chan-

nel. In particular, those methods that minimize some peréoce measurement in



order to converge to a steady-state approximation of tharela Examples of us-
ing adaptive filters for ISI cancellation, such as FIR-LM3;H) and various other

architectures, are reviewed in Section 1.3.1 on page 5.

2. Research into methods for pipelining or re-arranging ®Dfe algorithm with-
out changing the underlying theory. In other words, how tkente theory more

tractable for implementation. Section 1.3.2 on page 13®wesithis prior art.

3. Research into methods for implementing high-speed ARG#icon, either as mono-
lithic high speed converters or as a collection of lower gpegerleaved units, is

covered in Section 1.3.3 on page 19.

1.3.1 Adaptive filter theory, algorithms, and implementatons.

Researchers have been working to solve the problem of sztabol interference (ISI)
since the days of the first modems. By 1985, the volume of resqaublished on the
subject of adaptive filters and how to remove ISI wasisient for Qureshi [2] to publish
a codified summary of the previous two decades. The sourceriaafor his review in-
cluded over 110 distinct papers and extended back to thea.@86s. In this publication,
Qureshi utilized a common mathematical framework for althaf reviewed methods so
that the reader could concentrate on the conceptual andexttinal diferences, not on
those caused by fllerent derivation and notational styles. Some of the iterasgorted in

this paper were as follows:
e The definition of ISI and how itféects diferent media.

¢ Linear equalization and theftierences between symbol spaced and fractionally spaced

equalizers (FSE).
e Decision feedback equalizers (DFE), and how théedirom linear equalizers (LE).

e The diference between filters implemented in a direct versus toamespform.



e Implementing least mean square (LMS) equalizers.
e The performance tradeffs of binary integer math.

¢ The implementation of analog and digital equalizers, asasgbrogrammable equal-

izers.

The essential theory of an LMS adaptive filter is concepyugliite simple. Data that
is recovered from an unknown channel is filtered with an FiferfilThe output of the filter
is “sliced” by a quantizer, and the pre- and post-quantizddas are compared with each
other. The dierence between the desired and the actual result is defing &srror.”
After the error has been determined, the tap weights of ttez &ire updated in a direction
that would have reduced the error of the previous data sanijile process then repeats
with another set of input data. If the proper performancerimet used and the amount of
error adjustment that is performed at each step is the rigler@f magnitude, over time the
filter should contain an approximation of the inverse of laa$mission channel. Figure 1
describes the basic steps of an adaptive FIR, direct foren.filt

The objective of an adaptive filter is to minimize a perforrameasurement by ad-
justing the filter’'s cofficients in response to an error calculation. In the LMS cdse, t
performance measurement to be minimized is the square eftbeterm. The mechanics
of the LMS derivation, which is where the weight update ckttan is defined,is best left
to other sources, for example, see Barry et al. Chapter 9H8t.our purposes, we will
simply report the LMS equations in (1) so that they can berrefeto later. The formula

notation used in [4] is adopted as our standard notation.

Ck = G[n— 1] + ue[n]x[n — K] Tap Update (1a)

e[n] =d[n] —y[n] Error Calculation (1b)
N

y[n] = Z c[n]x[n — K] Output Calculation (1c)
k=1



step size (1)

Weight Update »
> Circuit cp.C

2

Training Signal

_«lL_ Output

yln] Qfyln}

1. A data sample, x[n], enters the two tap filter.
2. The filter coefficients C,, C, are used to calculate the FIR output y[n].

3. The error signal e[n] is calculated using y[n] and d[n]. d[n] is either the quantized
version of y[n] or a training signal that contains the desired filter output.
4. A combination of error signal, input data signal, and current tap

weight is used to produce a new set of tap weights in the weight update

circuit.

Figure 1. Expanded view of an adaptive filter showing the compsition of the two tap forward filter.

The N in (1c) represents the number of taps in the feed forward.filtbe remaining
terms in (1) are defined in Figure 1.

Qureshi reviews up through the development of LMS and sonite gériants, but does
not describe either the block or delayed variant. Clark ef%] proposed a method for
calculating a set of LMS outputs given a set of data inputse ifitplementation method
proposed was to convert a serial data stream into a paretleffslata and then calculate
a “block set” of data either in the time or frequency domaimc®all the data sets were
calculated, the weight update was calculated by averati@gndividual weight updates
from the corresponding serial LMS implementation. Figush@ws a conceptual diagram
of this proposal.

Equation 2 shows the modifications that are made to the 4avi&l equations for the
block LMS algorithm. [5] showed that the miss-adjustmertt aanversion rate are equiv-
alent to the standard LMS algorithm if the step size used enbilock algorithm is equal

to the number of blocks multiplied by the standard LMS stee.siBlock Step Size =
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X[n] FIR Filter Banks
x[n-1] .
2] Update

yin-1], e[n-1] Circuit
ADC [—pp] MM

-4 -3]X[n-5] | —————>

x[n-4] x[n-3]:x[n-5] TR 3ll':fs

x[n-5] X[n-4]:x[n-6] 4], e d] Filter
y[n-4], e[n-

X[n-6] X[n-5[:X[n-7] |-ap—— P
y[n-5], e[n-5]

X[n-7] X[n-6]:x[n-8] Vi), en6]

x[n-8] x[n-7]:x[n-9]

y[n-71, e[n-7]
x[n-9]

- | g >

Sample Rate Sample Rate/8 Clock
Clock

Figure 2. Example of the block LMS architecture with block size of eight and three filter taps originally
proposed by Clark et al.[5]This example calculates eight fier outputs for every tap update calculated.
Eight data samples are collected between filter calculatics) allowing the filter clock to be run, in theory,
at % the data symbol rate. In reality, the filter clock rate most likely is faster than % the symbol rate

8
because the error and weight update must be calculated beferthe next set of filter results is begun.



D Cycles

X[n] »[5] - p-| Weight Update >

Circuit

Figure 3. An example of the delayed LMS architecture propose by Long et al. [4]. The forward filter
and slice operation occur within a single data clock cycle, it the calculation of the weight update is
allowed to be delayed as long as the delay does not exceed thedth of the filter. Thus the tap weights
being used to calculate the filter output could be several cyes old.

L = LMS Step Size)[5, pg 28] The tap update equation variablis used to retrieve the

sample values that were multiplied by a particular tap wheareor calculation occurred.

m = LEJ Define the cofficient time index (2a)
mL
2
c[m] = c[m-1]1+ —u Z e[r]xr — K] Tap update (2b)
L r=(m-1)L+1
e[n] =d[n] —y[n] Error calculation (2c)
N
y[n] = Z c[m]x[n—K] Output calculation (2d)
k=1

The codficients are updated after evdrputput calculations; hence the definition of the
separate time index. (2b) shows that every tap is updatécaniaverage of therror « data
product that occurred during block

In [4, 6], the authors show that introducing a delay in thefleccent adaptation has
only a minor éfect on the steady-state behavior ([6], page 1403), as lotigeasgtep size is
chosen with sfiicient care. This result led them to define the “delayed LMNL3) al-
gorithm. Equation 3 shows the modification made to the stahidslS algorithm notation

to account for the delay. Th2 in (3) and Figure 3 represents the total amount of delay in



Training Signal

f[n]
xin—| FFF Fiter —g

T c b[n]A QiyIn])

y'[n]

FBF Filter |-~ D

N Taps
Ak

e[n] —»| FBF WUC

M Taps

Figure 4. A block diagram of the decision feedback equalizedata path. The DFE differs from the
forward equalizer by the addition of an FIR filter in the feedback path between the output and input
of the slicer. The feedback filter uses past decisions to préa the ISI affecting the current symbol. The
error calculation is used to update both the feed-forward awl feedback filters.

the feed forward and cdgcient update paths.

c[n] = c[n— 1] + uen]x[n —k — D] Tap update (3a)

eln—-D] =d[n- D] -y[n- D] Error calculation (3b)
N

y[n-D] = Z c[n—D - 1]x[n— k — D] Output calculation (3¢c)
k=1

The discussion of the block and delayed LMS algorithms hasded on adaptive fil-
ters that are composed of a single FIR filter bank and thatat@en the input data from
the ADC. This method is equivalent to looking at a long lengftthe fiber at an instant in
time, and then trying to decide what the bit in the middle posiis, based on the wave-
form ahead and behind the bit of interest. This approach doeallow the system to take

advantage of a powerful piece of information, knowledgeheflbits that directly preceded
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the bit of interest in time. In a dispersive fiber channel, ti@st significant impact on a
given bit will be these data bits that were transmitted imiaedly prior to its own trans-
mission. The decision feedback equalizer (Figure 4) usedgqurs decisions to predict the
ISI contribution at the current sample time.

The DFE algorithm does not change the format of the LMS equoatibut simply adds
a few more to the set (4). The DFE algorithm adds an additibrRffilter in the feedback
path, along with the associated weight update circuit. €ed back filter (FBF) is normally
much smaller than the FFF, but there is no requirement fertthbe so. The notation used

in (4) matches that of Figure 4.

f[n] = ZN: c[n]x[n — K] Forward filter output calculation (4a)
kl\:/ll
b[n] = Z an]y[n - K] Feedback filter output calculation (4b)
k=1
c[n] = c[n— 1] + ue[n]x[n—K] Forward filter tap update (4c)
an] = a[n— 1] + uen]y'[n - K] Feedback filter tap update (4d)
y[n] = b[n] + f[n] Input to slicer (4e)
d[n] = select (training input, y'[n]) Selection of training signal (4f)
e[n] = d[n] —y[n] Error calculation (49)
y'[n] = Quantize(y[n]) Slicer output (4h)

In [7], the authors review and derive statistical and nuo#nmmethods for setting the
FFF and FBF coficients. Unfortunately, these methods require absolutevletuge of
the transmitter and data channel characteristics whichairavailable a’priori in this so-
lution space. However, this work makes an additional cbation by demonstrating the
equivalence of the “predictive” architecture to the onevam@bove. Unfortunately, this

alternative model still diers the feedback issue that will be discussed in sectio.1.3.
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The adaptive version of the DFE is derived in Barry et al.[34d6]. The method the
DFE uses to remove ISl is essentially the same as the linemliegr. An error signal
is used to adjust the filters so as to produce less error ondkiedata cycle. The DFE
has a deficiency when compared to the linear equalizer. Whdh makes an incorrect
decision, a single error is possible. Since a DFE assumealtipast decisions are correct,
an incorrect decision by a DFE tends to induce a burst of rror

Up to this point, the term LMS has been used to describe liegaalizers. However, the
term does not define an architecture, but rather a methodsvhoimimization. Therefore,
the DFE algorithm may also be described as an LMS algorithinceSthe publication
of [5, 6], there has been a plethora of proposals for modifinatto the LMS algorithm.
These proposals suggest new ways to make LMS converge[8steduce complexity
and area[9], fit the algorithm into a regular array[10], opnove steady-state behavior for
a particularly dificult channel [11]. The majority of these proposals becommace than
academic references, as they are rarely implemented.

For most commercial implementations, block, delayed, dakeMS is used because
the algorithms are simple and easily partitioned into hardwsoftware, or mixed imple-
mentations. More importantly, the simple LMS algorithmsrkvéor the vast majority of
channels. (W. Smith2006, private communication.) For those cases where acphatiy
difficult channel is required to be equalized, if the initial LM8plementation does not
give suficient performance, then one of the methods proposed in ateaga study might
be attempted.

The use of the LMS algorithm for channel equalization hasaieed a primary imple-
mentation choice for over 30 years because of its low conitylard its performance over
a wide variety of practical channels. There have been margifroations suggested, but

only two have become prevalent: the block and delayed dlgos [5, 4]. These two are

SWesley Smith is a Principal Engineer with Intel's Softwanel &olutions Group. He is currently a com-
munications architect designing systems supporting ez IP. He has over 25 years experience designing
and implementing adaptive LMS equalizers, cancelers aner adaptive systems for voice band and DSL
modems.
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Figure 5. lllustration of the critical iteration process bound (IPB) in a serial DFE system. The IPB is
the path around the loop through the slicer. For a single tap €edback filter the IPB includes a full
multiplier and adder.

used as starting points for many proposals, but there harerereported implementations

of a block, delayed LMS algorithm.

1.3.2 Pipelining for implementation tractability.
Standard wisdom says that in order to equalize a high-speeedispersion serial data
channel, some type of decision feedback equalizer is requBome channels may require
a feed forward filter (FFF) as well. The forward filter sectiman remove the pre-cursor
ISI, but, to remove the post-cursor ISI, a DFE must be impleeck

The implementation issue with a DFE is the single-cycleatien bound through the
feedback filter and the adder, as shown in Figure 5. At firsdggdathe iteration process
bound (IPB) loop in the serial DFE shown in Figure 5 does nqteap to be a critical
impediment. If the feed forward filter can be pipelined toiaeh arbitrary speeds, why
not the feedback filter? The primary architectural hazattlas pipelining of the FFF was
performed at the cost of increased latency through the.filfethe FBF is pipelined to
have one cycle of latency, then the most significant postasiterm will not be equalized.
Instead, only the ISI contribution from two cycles befonetiavill be equalized. For every
additional clock cycle of latency in the FBF implementatiome additional post-cursor
term is not equalized. The parallel implementatiofiens the same structural hazard as the

serial case; the feedback loop (Figure 6); the current awiplue relies on the decisions
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If the FFF filters are arranged in parallel to produce L outputs
every clock cycle, then the FBF filters must produce data at L
outputs per clock cycle. This increases the IPB by a factor of
L from the serial implementation.

Figure 6. Illustration of how the IPB affects attempts to implement a parallel DFE. Although the feed
forward filters are placed in parallel, the requirement for t he DFE outputs to be resolved in a serial
fashion results in no net change to the required timing. A sigle output must resolve in a 10 GHz clock
cycle.

made for the immediately previous data values. In the FFeFothput of the filter does not
depend on the output of the previous data values.

Finding ways to speed up or completely eliminate this looplbeen the goal of many
researchers. Solutions for this problem fall into two categs, which will be discussed in

detail later:

¢ Pipeline the original algorithm in some way so as to redueedw iteration bound

time, but do not try to eliminate the hazard.

e Preserve the intent of the original algorithm, but re-chemaze it so that the loop is

unrolled, or some other method to remove the hazard is eragloy
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1.3.2.1 Pipelining to reduce the iteration process bound

References [12—19] are all examples of recent methodsttieatpt to insert pipeline stages
into a filter in order to increase the sample rate. Referefisl4] insert register delays
into a flat FIR filter in an attempt to increase the sample timia)e [15-19] focus on a
DFE system. Each of these methods has some interestingbedians to the art, but they
all have a critical liability in that they can only produceeoresult per clock cycle.

In [12], Karkada, Chakrabarti and Spanias propose a twedsional matrix of pro-
cessing engines to perform the block LMS (BLMS) algorithnmisTstructure reduces the
total execution time by dividing the work into parts that ¢enspread across processing en-
gines. Regardless of how the work is divided, expanding dhgisn to incorporate a DFE
still requires the the result of the previous calculatiofobethe current sample calculation
can be started. The penalty of only being able to calculagesample at a time precludes
use of such a DFE in our method, but the authors do mentiontewmoesi that could be of

potential use to us.

e Definex[n] as the sampled data and let N represent number of items iitokbek.”
Then, if x[n] is stationary, the error summation stepepfi] = 3 2=N(d[N] - ym[N])
does not need to include all of the individual error caldola. AsN increases, the
stability bound oru (step size) becomes tighter. For a block LMS implementation

this potentially allows area and power savings.

e If x[n] is stationary and slowly time-varying, the delay in thedack loop will af-
fect the convergence speed [12, pg 132], but not the finaltrésar optical fiber, the
impulse response drift has been specified as 100 Hz to 1 KHxavHith is 200,000
times slower than the worse case fméent update time of our proposed system.
Therefore, our system may be considered to meet the slowyyneacriteria, allow-

ing maximum pipelining of the implementation for maximunesg.

Douglas, Zhu, and Smith [13] propose pipelining a transgdsen FIR filter, with the
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addition of an LMS correction term first proposed by Poltmg#j. Poltmann’s correction
term compensates for the delayed error update relativeetsehial, non-delayed LMS
algorithm. Poltmann defines a correction term to the weiglate calculation step so that
the DLMS algorithm converges at the same rate as the origM& algorithm. This is the
only implementation found that actually implements Poltmia correction term. One of
the trade-f's with this algorithm is that the output delay is equal to thenber of taps in
the filter.

Although the Douglas algorithm includes the error term upda part of the FIR filter
implementation, the error correction term consumes a fsogmit amount of resources and
does not appear to be required for the types of channels baidged. The standard LMS
requires A multiplies in the FIR filter implementation N(tap multiplies to generate the
output of the filter, andN multiplies to generate tap weight update equation.) Theglas,
Zhu and Smith algorithm consumebl 5 1 multiplies. When multiplied by 16 to form a
block LMS algorithm, these extra resources make the algorintenable for our purposes.
Douglas, Zhu, and Smith identify two areas that ardficlilt” to implement with adaptive

delayed LMS filters:
1. The authors claim that the adjustment of the optimum szpis problematic.

2. The authors claim that implementing a binary tree addethi® error update step is

difficult to perform in VLSI.

In [14], Yi et al. propose a re-timed version of both a direntl &ransformed FIR filter for
an FPGA implementation of an adaptive equalizer. Theirtgmius scalable in hardware
(in terms of addingleleting taps) but only produces one output per clock cyatecannot
be modified for parallel operation.

Chakraborty and Pervin [15] perform some innovative loopliimg of the DFE equa-
tion so that the most significant term is produced first, wtattbws zero latency for the

DFE. The only drawback from our perspective with this impéernation is that it can only
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Figure 7. Flow diagram of the pipelined adaptive DFE algorihm proposed by Shanbhag and Parhi.
The algorithm is fully pipelined to maximize the clock speed The circuit has not removed the feedback
loop around the quantizer, which consists of a full adder bedre the slicer, and an adder after the slicer
from which the error is calculated. The feedback loop is stiltoo long for operation at a 10 GHz clock

rate. The Dy values represent delays added during dferent steps of the pipelining process. All the
Di’s were added during the same step. If the delay blocks are répced with wires, the block diagram

reduces to the same form as Figure 4.

produce a single output per clock cycle, regardless of hetif@perates.

In [16], Wang et al. show a “hybrid” form of a direct form DFEh&y make the claim
that because the taps that are further away from the cursdess important, they can be
updated at a slower rate, thus sharing hardware which redbeearea, circuit complexity,
and power consumption.

Like [16], [17] proposes a method of partial ¢beient updates to reduce the complex-
ity (and thus the power and area consumption). This papédsan previous works by
providing a theoretical justification for the minimizatianteria that had previously been
only quantitatively derived. In essence, the prior arteexd and theoretically justified
in [17] shows that by properly selecting the next block of fiogents to be updated, a
normalized LMS (NLMS) algorithm converges with a properhosen step size.

Shanbhag and Parhi [18] suggest a heavily pipelined methttied'predictor” DFE

architecture that was originally shown to be equivalenhtostandard DFE architecture in
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[7]. The input to the slicer is a two input adder, which seeaisd the perfect IPB.

Regardless of how much the DFE feedback path is pipelinati|litequires one clock
cycle between every output produced. The IPB has been rédaceery fast execution,
but it still requires a two input adder to execute at 10GHzjcWwhs not possible for a
standard-cell process.

In [19], Gatherer and Meng provide a parallel implementatban ADFE circuit that
self-corrects for incorrect decisions. In this case, therdfiel” label indicates that blocks
of data are being executed in parallel but within the blockdaia, the individual data
samples are still calculated individually. The proposedhoe inserts a preset code in
between every block so that every block DFE knows the previaia values. Depending

on the block size, this approach could create up to 20% ohcpldiss.

1.3.2.2 Re-characterizethe algorithm

In a paper describing how to implement CDMA algorithms iniw@ilglogic [21], Parhi
proposes a way to unroll a quantizer loop. In this paper, tirelling theory is developed
and several several examples of how to unroll a two- and liewet quantizer loop are
shown. With some manipulation, Parhi’s two-level quantib®mp can be shown to be
equivalent to the DFE feedback loop that has been the subjesct much research. The
chief benefit of Parhi’s proposal is that the mathematicsairealculated as outputs from
registers, and the final result is selected from two preutaled inputs. This selection
process can be performed by a digital multiplexer. The lamplling is tractable because
for most DFE implementations, the number of taps in the FBall. In this investigation
only two taps will be used so the four-level quantizer is appiate.

A derivation of Parhis proposal is made in [22]. The autharggest that rough esti-
mates of a channel’s characteristics can be made in advaxcesad to pre-set the most
significant taps of the DFE. The pre-calculated values aaddfward filter can be added
in parallel, while the lessor DFE taps are calculated. Tédkices the number of adders in

the unrolled pipeline. In this implementation however, th@nnels can not be estimated
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apriori. The critical timing path remains the same for bdgoathms.

1.3.3 Interleaved analog-to-digital converters and mondthic high speed EDCs.
When experienced engineers hear the term “interleaved ‘AD&hy times their first thought
is of gain and @'set mismatches and how to reduce tiea of using non-matched ADCs
to sample a single waveform. This view is most likely resldnstitutional knowledge of
an dfect that was first reported by Hodges and Black [23] in 198Chis paper, the au-
thors analyze and implement a quad array of smaller, slomadog-to-digital converters in
an attempt to reduce the area of a fully paralfet@mparison circuit. They found that by
interleaving smaller ADC'’s, the conversion time can be psduby 12, and the required
area can by reduced by when compared with a full parallel ADC. In addition, mesri

for the sensitivity of diferent array non-linearities were reported:

e The array is eight times as sensitive to phase mismatch osatin@le clock as gain

mismatch.

e The array is 1.3 times as sensitive tiiset mismatch as gain mismatch.

Hodges and Black also derive expressions for calculatisgeduction of the system
SNR for a set of design parameters. Overall, array mismatcaesed a decrease of 2 dB
(from 41.5 db SNR) in the output SNR, as measured by error pegrsus pure tone signal
power. They did postulate that in general, phase, gain, &isg¢tomismatches between
the individual converters in the array would be manifes®thareased non-linearities in a
monolithic analog-to-digital converter.

In our application, we are not trying to digitize an eighten bit value that has unique
properties (i.e, a video signal) for each bit. We are sang@iserial data stream and trying
to determine if the value is a ‘0’ or a ‘'1’. We may be receivingalti-bit representation
that we will first have to evaluate for th¢l0threshold, but quantizatiorffects will not
have the impact that they would in a Nyquist rate converteafoapplication like a video

stream.
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We have not found prior art that quantifies thiéeets of dfset and gain dierences
between sub-rate ADCs in a serial data stream applicationeder, Milijevic and Kwas-
niewski [24] measured less than one dB of signal loss due ito mésmatch when 10
interleaved ADCs were calibrated via a “Digital Referen@doGlation” step. Varzaghani
and Yang measured a loss of roughly 2.5 dB due to a clock pit@0 ps peak-to-peak.
This clock jitter corresponds to roughly 1.2% of the samplatock rate of 600 MHz.
Varzaghani and Yang tested their device in a 0.18uM CMOSqa®ic

As a comparison point to the ASIC method that we are invesitigathe current state of
the artin a full custom process needs to be described. 3egeent papers have shown that
if the design is implemented in an analog or full custom digitrocess, the chip designer
has several tradefls available in the complexity versus performance arena.

Milijevic and Kwaniewski [24] describe a method for a 4 Sheceiver that uses eight
interleaved ADCs with a single tap DFE to implement a blindtt/e bit receiver. Each
copy of the equalizer calculates two speculative outpstjming that the previous sample
was either a one or a zero. When the previous value is knownixssglects from between
the two speculative choices, and the result is output on dgative edge of the sampling
clock phase. One of the more interesting claims from thisepagp that the coéicient
update does not have to be performed every cycle but can beaedy a factor of the
number of interleaved equalizers. The timing requirementtie half cycle output from
the previous decision makes this design unsuitable for alCA®plementation. At 10
GHz, the spacing between the negative edge of one clock @maséhe following clock
phase is 5 ps, which is too fast for an ASIC mux and latch setog ¢onstraint.

The three architectures for a custom DFE presented by Li,g\Wand Kwasniewski
[25], extend the single tap DFE lookup architecture to twostalf current mode logic
(CML) is available as part of the process and the equalizerated CML latch can be
combined into a single instance, 10 &loperation is possible across a significant amount

(18”) of standard circuit board material (FR4.) This arehttire presents the saméidult
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Figure 8. Varzaghani and Yang'’s pipelined ADC and ISI equalker circuit. As the ADC resolves one
bit at a time during the conversion process, the IS| is remove. There are actually two pipelines in the
circuit. The first pipeline is between successive symbolshé second pipeline is between the stages of
the ADC resolution process. Figure reproduced from [27, Fig5].

requirement as other proposals; the switching frequengyires analog components. In
addition, this is a pure DFE implementation. Our method iregupre- and post-cursor ISI
cancellations, adding an additional full-adder to the égerncritical timing path.

Like [25], the follow-on work [26], requires that the datd9be equalized one bit at a
time, implying operation at 10 GHz. Even if the equalizertdrthe circuit is split into
even and odd components so that it can run at half rate, tlo& obguirement is still too
fast for our methodology. In our operation, we will be recajvdata 16 bits at a time, thus
invalidating this architecture as a possible solution lfer problem we are investigating.

Varzaghani and Yang [27] proposed an architecture wheregdestap DFE is imple-
mented inside the analog-to-digital converter. Their rodtis to formulate ISI as a per bit

multiplicative error of the previous sample and then remitneelS| as each bit is resolved
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in the current ADC data sample. What is of particular intereshat their method might
be applied to the two tap DFE filter to allow pipelining. Theshseignificant challenge in
porting this algorithm will be to recast it in terms of usinj\ae bit quantized value as the
input, as opposed to the analog input signal the authoropep

Xia, Ajgaonkar, and Rosenkranz [28] report on an equaliesigh for 10 Gbps Ether-
net. In this paper, the authors develop an FIR-DFE equalegruses non-linear elements
where the input data is squared or multiplied against othéx damples for some of the
taps. Significantly improved results were obtained congp&wehe linear FIR-DFE adap-
tive filter. The issues with this architecture are (1) datagas still have to be calculated
in series and (2) the non-linear operators make the timisgeis experienced by a stan-
dard DFE implementation even worse. The authors also adatithis implementation is
significantly complex and will impact area and power.

All of these methods assume that the equalization is being doe bit at a time, and
only the Rosenkranz paper proposes both a pre- and postrd&issolution. The other
common assumption of these papers is that the analog comigaarel custom layout tasks
will allow the designs to run at the clock speeds necessaryadt, the assumption of an
analog process is required if a 10 Gbps signal is to be predesially, one bit at a time.

For the design being proposed here, the ADCs produce datplesiat a rate of 20
GSpS. In each clock cycle, 32 data samples are consumed,Gadécision outputs are
produced. The 802.3ag study group proposal requires aypsextfilter, which then places
a requirement on any DFE addition that is added to the FSEuesSince there are no
alternative FSE architectures that exist with the requpedormance, any DFE addition
must produce 16 samples in a single 625 MHz clock cycle. Oitémes reviewed to date,
only the Varzaghani architecture shows any promise of éxegat this rate, and then only

for a single tap DFE system.
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1.3.4 Literature search summary

Several types channel equalization methods have been eedrand their relative merits
reported upon. The class of equalizers known as linear egusilhas been shown to be
fairly delay tolerant allowing arbitrary insertion of pip®e registers in order to achieve de-
sired clock rates. The classic architectures of block ahaydd LMS, along with several
other linear equalizer variations, have been reviewed lagid pertinent contributions char-
acterized. Most of the recent linear equalizer architestattempt to increase the algorithm
speed when implemented on a general purpose processoedhimdues are generally not
useful for a hardware implementation when compared withathikty to arbitrarily create
duplicate, parallel calculation cores.

The decision feedback equalizer architecture has beenrstmuse the knowledge of
previous decisions to improve equalizer performance onyrohannels. The drawback of
the DFE is the feedback loop, and the timing requirementsjitoises on the implemen-
tation. Several proposed methods of reducing the impadteofagedback loop have been
reviewed, their uniform results are to reduce the calomhetielay imposed by the feedback
loop, not eliminate it. The majority of the reviewed methadscentrate on novel CPU
array architectures or methods to reduce the calculatioa bf the feedback filter. For
a hardware implementation, the loop unrolling method redube feedback loop to the
smallest time delay. None of the reviewed proposals suggestthod to calculate more
than one DFE output per clock cycle.

The final topic area reviewed was that of interleaved an&dedigital converters. Initial
publications indicated that phase and gdiiset of the array components inserted noise into
the frequency spectrum of the sampled signals. More recgperp have suggested that
these sources have been eliminated for monolithic intedraircuit implementations by
new techniques of on-chip calibration. The third noise sewefined in the original papers
was that of clock skew between the array components. Saeeeht research papers have

reported the achievable clock skew at both 130 and 90 nm gsasteps. Similar clock
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skew will be inserted into our research methodology.
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CHAPTER 2
SIMULATION MODELING ENVIRONMENT

2.1 Introduction

The most deterministic method by which to characterize #réopmance of the proposed
design would be to fabricate the design in the chosen 90 nndatd-cell process and
physically test the design under real-world conditions.e Phimary impediment to this
plan is cost. The expense of obtaining a “slot” in a fab andtre refundable engineering
cost of building multiple mask layers exceeds the budgethisrproject.

Even for a large commercial company, these costs are naataind can exceed one
million dollars. Before a company will commit such a largeamt of fiscal resources, the
design will normally undergo an extensive testing procé@$e testing regimen is divided

into several segments.

1. Functional verification exercises every state in thegiteagainst all possible input
vectors. The bulk of this testing is performed before thegies synthesized and

converted to a gate representation.

2. Once the synthesis and layout task is complete, the mit@aths are checked to
ensure that the setup and hold timing margins are met beteeeny source and

destination node. This task is referred to as "closing tgriin

3. Once the design has passed all of the static timing cheeksral models of the de-
sign’s operating performance afflidirent voltage, process, and temperature corners
are generated. These models are then simulated using a&sabtke verification
suite that was executed in step 1. This process is referres ttback annotated
timing simulations” because the actual path delays aretatewinto the simulation

model. These tests verify that the synthesis engine hasattyrrouted the design
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with suficient margin for various operating conditions. Once theststare com-

plete, the design is released to the factory for production.

4. When the parts are returned after fabrication, the fonelitests are repeated in the

lab using the actual hardware.

In the author’'s experience, pre-silicon verification taskasume 50-60% of the project
man-hours, while the design tasks consume only 25%. Bec¢hag®e-silicon verification
process is used in industry to prove that the design is reathe treleased to production,
it will be used in this project to prove that the design is rstband operates correctly. In
order to avoid performing an analog-digital co-simulatithve dfects of noise and modal
dispersion will be simulated as digitaffects and applied to the data before the digital
simulation is executed on the signal plus noise data set.

The static timing checks in step 2 verify that the design epiérate at the desired clock
rate. The static timing checks require a completely syntleesdesign, models for the
analog pads, a clock tree, and the built in self test (BISid®o be inserted. This level of
design preparation requires specialized tools and fabfgpemdels that are not available.

For this project, we are not required to prove that the predagesign is ready for
fabrication, but rather that the design has a reasonableapiity of being successfully
fabricated. The timing closure process is an iterative @oéminating in the checklist
enumerated above. At each stage of the design, timing chegekperformed to ensure
that when the design enters the final timing check phasee @@ no egregious timing
offenders. Therefore, instead of completing the entire tintingcklist, the first several
stages of the checklist will performed, stopping when thd step requires tools or models
that are not available.

The detailed procedure that will be used for validating ti@sign is as follows:

1. The digital design will be synthesized using the targatdard-cell library with a 7%

timing margin, which will account for optimistic routing @®ates. Timing margin

26



is normally added for block level synthesis. The purposenefrhargin is to make
sure that if input or output delays have been incorrectlyreged the neighbor block
may have enough excess margin to enable the overall pathettheeflip-flop setup

timing requirements.

Routing congestion is another reason why timing margin edwuring block level
synthesis. When all the design blocks are placed into th&CARluting congestion
in dense areas of the design is common. Timing margin alless than optimal

routing to be used to route around the congestion.

The amount of margin used for block synthesis depends orhtracter of the design
and the surrounding blocks. A small design with a regulaa-getth structure might
only assign a 5% timing margin, whereas a very large mux bioight use a timing
margin of 10% or higher. The complex logic in this design is@ntrated in the
multipliers and adders, which operate on only two inputspstance. Therefore, the
amount of routing congestion is expected to be minimal. Res¢ reasons, a margin

of 7% was chosen for this design.

. Using the known characteristics of the interleaved AD&Cs)odel of each channel
will be created with which to filter the digital data. The awgldfects of clock
jitter, transmitter and receiver noise, and the channdl walimposed during the
data generation step. By moving all of the channé&ats into the data set, the
purely digital RTL simulation is dticient. Once the input data set contains all of
the analog and optical imperfections, the operation of tigéad receiver can be
simulated. By using worst-case assumptions for those osetinat have not been
characterized before, and measured real-world perforendata for the portions of
the design that have been characterized in a lab, this stepnsure that the analog
noise éfects are accounted for in the simulation. The performandtleesnalog-to-

digital converters has already been validated in existioglpcts.
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3. A self checking RTL testbench will be used to charactetfieeperformance of the
design under test (DUT) against each fiber model. This tgstiifl validate the

architecture and detailed design of the proposed adaptee fi

This chapter discusses the architecture and detailedrdesiye simulation environment,

including the methodology used to account for the analogenoi

2.2 Analog noise sources

The world outside the digital portion of the adaptive equalimposes most of the signal
corruption. Therefore, the raw digital data operated onHeydigital filter must be cor-
rupted in the same fashion in order for an accurate measuterhhe design performance
to be made. For each noise contributor or corruption so@@arresponding step in the
data generation or simulation environment has been addédeiorder that the noise oc-
curs in the physical world. Figures 9 and 10 show the physindlnoise models used to
simulate the fiber optic communications link from the lasansmitter to the array of inter-
leaved ADCs in the receiver. (Section 2.4 on page 33 diseusse the sub-rate interleaved
ADCs are used to sample a 20 GHz signal.)

The physical characteristics are either specified as was# alues by the IEEE stan-
dard committee or are measured performance metrics ofi€@de&m products. The IEEE
standard specifies the pulse rise time. The transmitter ezgver noise figures are mea-
sured performance values for a produtiat implemented the 2.5 GHz ADCs being used
in this proposed design.

Figure 9 illustrates the physical data path of the opticaletel. Data is launched from
a transmitter with a 47 ps rise time and is injected into an FEI&ss multi-mode optical
fiber. At the other end of the optical fiber, the light is cortedrinto an electrical signal by
the PIN diod@rans-impedance amplifier that comprises the optical veceiAn array of

eight analog to digital converters produces eight, fivarhiies for every four data symbols

1The product referenced was a 2.5 Gbps ABDGC pre-production test shuttle produced by Intel in one
of their fabs.
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Figure 9. Identification of the components that make up the plgsical transmission system. Binary data
is launched into an optical fiber by a driver with a 47 ps rise time, transmitted over a multi-mode
optical fiber with certain modal dispersion characteristics, converted back to an electrical signal by a
PIN diode/TIA, and is finally sampled by a set of eight interleaved analg-to-digital converters.

27dB 31dB
SNR Tx SNR Rx
Noise Noise
10 GSpS
B[')n;;y 8x 2A5D88p8 Decimate 5 bit
" Stream h(n) | C Q > 1.5% Clock 12%0((3;:22 B SaDrita:e}
Upsampled to 47 ps Jitter P
160 GHz Rise time

Pulse

Figure 10. A system diagram identifying the noise sources,na how they are modeled. The noiseless
channel model for the optical fiber is represented byh(n), while the Tx and Rx noise represent the
additive Gaussian noise that simulates theffects of the physical transmitter and receiver.
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received.

Figure 10 illustrates the signal processing model of theengburces in the physical
system. The transmission laser induces relative intensitye (RIN) noise. In the refer-
ence product, RIN has been characterized to be a maximum B2 additive white
Gaussian noise (AWGN). The data plus AWGN is corrupted bgrfilg the signal plus
noise with the impulse response of the chosen channel. Tteabphannel shapes the
signal and transmitter noise, which is then received by thedfode/trans-impedance am-
plifier (TIA). The PINTIA produces a voltage output proportional to the receivigda.
The PINTIA induces noise that is a function of the receiver’s inpegtivity. The TIA

noise contribution has been characterized as adding addittolored noise at 32 dB SNR.

2.3 Digital noise sources

The final noise contributor in the transmission system issediby clock jitter between
the eight phases of the ADC 2.5 GHz clock. Figure 11 shows ds&red, perfect phase
relationship between theftierent clock phases.

The digital clock layout is performed with the goal of achmgya perfect phase rela-
tionship between the phases. However, there will be sontie ptaase dterences caused
by routing diferences and manufacturing tolerances. Of additional contiee PLL that

generates the flerent clock phase inside the IC is not a perfect generatomélhdause

some phase and periodfidirences on a dynamic basis within a part because of heat and

age. The dynamic ffierences will also vary from part to part based on process amim
facturing tolerances.

Others [27] have reported achieving roughly 1.5% cloclefjiin 013 um processes.
Similar performance has been reported in the 90 nm liteed9]. To simulate theféects
of clock jitter caused by the various routing, manufactgyiand process variations, the

sampling of the data will beffected by simulated jitter.

2Another way to express this would be to say that after theenwiss added, the output SNR was 27 dB.
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Figure 11. A timing diagram demonstrating how eight interleaved ADCs operating at 2.5 GHz can
sample a symbol train transmitted at 10 GHz with two samples pr symbol.
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10 GHz Clock | | |
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Figure 12. A diagram demonstrating the relationship of the ©iannel models over-sampled sequence
numbers to the symbol rate of 10 GHz. The impulse response dfi¢ channel model was produced with
a sample rate of 160 GHz, or an over-sampling rate of 16. If theample sequence was to be decimated
to symbol rate, sample number eight would be saved. Since B/2 FSE is being implemented, two
samples per symbol are saved, for a decimation factor of eighThe ideal sampling locations would be
at[4,12], but, by choosing adjacent samples, ADC sample dk jitter can be simulated.

2.3.1 Clock jitter simulation

The impulse responses for the various fibers were generatiedwampling resolution of
160 GHz to yield an over-sampling rate of 16. If the systenm@peieveloped used a single
sample per symbol, the ADCs would be configured to sampleamtialdle of the symbol
period at sample eight. For®/2 FSE, where two samples per symbol are utilized, the
obvious choice would be to take th& and 12" samples. One method to model clock jitter
would be to take neighboring samples from the perfect [4¢A8k. Adding 1.5% of clock
jitter to the 2.5 GHz sampling clock would require jitteritige 400 ps clock by 6 ps. The
smallest available sampling resolution is that of the 16(zGhhe samples, which has a
period of 6.4 ps. @setting the filter output by one of the 160 GHz samples results
jitter of 1.6%. Therefore, the clock jitter may be simulatedsampling the output signal
at an dfset of+1.

The entire simulation is performed at the channel model $anape of 160 GHz. Once
the channel output is calculated at this rate, two sampléssof6 samples per symbol are
converted to five bit precision and saved with the remainarg@es being discarded. The
decimated data is saved into equivalent Matlab and textdie&ts. The text file is used
by the VHDL simulation. Figure 12 shows the clock relatiapsbetween how the data

samples are counted in the 160 GHz channel model and how tirea&n occurs.
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2.4 Matlab test bench

The Matlab test bench generates the data sets for the RTUationuto process. This
process is completed in three major steps: (1) Generatidheofandom stream of data;
(2) generation an impulse response from the statisticairedlanodel; and (3) filtering of
the data set with the channel model, followed by additionhef moise contributions and
decimation of the filtered data set.

Generation of the random data stream is performed by usegahdn function in
Matlab such that 1Q@O00 data samples of [-1, 1] are generated. The random daiarses
is up-sampled by a factor of 16 to simulate transmitting tamdequence at 160 GHz in
order to match the impulse response sample rate. The uptedrdata is saved to become
the reference data for error detection and training latéhénsimulation. This single raw
data set is then used to generate the data set for every dlenmg tested. Every channel
is tested with the same raw data set so that performance csopsmay be made.

The channel models used in this research are referred toheesCambridge Data Set”
[30]. This data set was originally designed by a group at Gaigb University to simulate
the worst case modal delays of multi-mode fibers. The datecsaprises models of 108
fibers, each with various defects. Each fiber has three mddelsunch dfsets of 17,
20, and 23um. The launch fiset measures how far into the fiber the light source was
inserted. These fiber models were selected by the IEEE 89&/8&king group as the fiber
references to which the equalizer would be designed against

Once the impulse response for a channel is calculated,aes@aling operations are
performed before using the result to filter the raw data. Theulse response is scaled
so that the minimum value in the impulse response is zerandpevalue is one, and the
energy in the impulse response totals one.

The next step in the data generation is to use the generat@didimpulse responses
along with white and colored noise to create the simulatice toansmitted and recovered

signal for each channel being tested. The simulated RINenoide added to the signal
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is created by generating a random data sequence at 160 GHzalit it by the ratio of
the energy in the data signal and the desired TX SNR (27 dB).RIN noise is added to
the data signal to create a model of the signal at the outptiteofransmission pin. The
data signal and TX noise is then filtered with the channel isgresponse. This colors the
white noise that was added at the transmitter, as well asdtaesignal, with the response
of the channel.

At the receiver, additional colored noise is added to theréid signal to simulate the
receiver imperfections. Raw white noise is generated usiegame method that was used
to generate the TX noise with the exception that the recé&MR is used (31 dB). Once
generated, the white noise is colored by filtering witi'adder Bessel filter with a 7.5 GHz
cutoff frequency. The % order Bessel filter has been shown to approximate the cadarat
of the noise that the receiver adds to the digitized sigrfl [3

Once these operations have been completed, the data \@ttémillion data samples
long and contains the over-sampled data signal as it shqulelaa at the input of a mono-
lithic ADC. The final two steps of the data generation pro@sdo simulate thefiects of
using interleaved ADCs instead of a monolithic ADC and tovartthe infinite precision
data vector into a five bit, twos complement representation.

Simulation of the interleaved ADCs occurs during the detiomastep of the data set
from a 160 GHz sampling rate down to the nominal 10 GHz symatd.r Because the
FIR filter uses two samples per symbol, the decimation steplditheoretically take the
4™ and 12" data samples from each symbol. These sampling points aidistqnt from
each other and areffset from the rising and falling clock edges in the raw dataalg
(See Figure 12). By decimating at points other than [4,12yeéner, the &ects of clock
jitter between the interleaved ADC's can be simulated. Tdigepn used in the simulation
is [4,11,5,11,4,11,5,11], which gives a repeating jittatt@rn of [0 ps,-6 ps+6 ps, -6 ps].
For example, the first symbol is sampled by ADCs zero and odesamples the 160 GHz

data model at points four and eleven. The second symbol iplsdmat model points five
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and eleven. Symbol five is sampled at the same place that $yméavas sampled.

After decimation, the data is rounded, quantized to 5 balrgsn, and saved as Matlab
and text files. The data file intended for the RTL simulatiosdaled to a five bit integer
representation, where the five values are coded as (Sig&;2 2-2,2-3). The coding is
pre-set by the architecture of the ADC. The conversion fraratfhg point to integer is
performed so that the RTL can read integer values from a tiexafid convert them to
bit vectors. Performing this conversion in Matlab is muckieaand more féicient than
performing the format conversion in VHDL.

Once all 324 data sets have been generated and saved intatedpat files, the RTL
testbench is run on each data file. The testbench recordsugatiata points inside the
design and exports the data to text files at the end of the atronl Some of the exported
data is used for calculating the bit error rate of the filtdre Dit error rate calculation could
be performed in RTL, but a less error prone method is to readithulation output records

into Matlab and calculate the BER using the built in funcéy that Matlab provides.

2.4.1 Bit error rate calculation
In a presentation to the IEEE study group, Bhoja et al. [32c#ped the adaptive equal-
izer performance metric target ak + 12 Bhoja, Voois, and Shanbhag also specified an

equation by which to calculate the BER:

1 Vi -V,
BER:—erfc( ! 0). (5)
2 202

Equation 5 actually calculates the probability of a bit emgiven statistics of the signal.

Theerfc function is defined as:

erfc(x) = % foo e dt. (6)

By examining the argument to tlee fc function in (5), a instinctive understanding of how
the bit error probability is calculated can be gained. '¥Iﬁ§(¥9 term is the distance of the

symbols from the slice pointv; andV, correspond to the centers of the PDFs-atand
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Example of How BER is Calculated
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Figure 13. The probability density functions (PDF) of the deisions at the input to the quantizer deter-
mine the BER. By recording the value that is presented to theliker and the correct decision, the PDF
for the +1 and —1 symbols can be created. The means and standard deviationstbie symbols are used
to calculate the argument to the erfc function, which then gres the bit error rate for the simulation.
The erfc function calculates the error under the curve for the tails of the symbols that cross the slicer
line into the other half of the PDF graph. Essentially the BERcalculation determines the probability
that a received symbol will be incorrectly classified by the licer. The slicer's decision point is zero
Volts. A symbol corresponding to+1 that is modified by the channel to have a value of less than 0 sl
will be incorrectly classified as a—1 and a single bit error will have occurred.

Close up of Error Region in BER PDF Graph
- 1
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‘‘‘‘‘‘ Negative 1 PDF
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PDF of False -1
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Figure 14. A close-up view of the tails of the PDF in the falseletect region. The BER is one-half the
area under the “+1" curve from negative infinity to zero plus one-half the corresponding area for the
“—-1" curve.
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—1in Figure 13. The average oflL and-1 is zero, which is the value the quantizer uses as
a decision point.

Thei\/z term divides the distance between the slice point and théslcenter point
by the sctrandard deviation. Thus, thefc function calculates the probability of bit error
using the number of standard deviations that the symbobm the slice point. The BER
can be increased by decreasing the standard deviation ookingithe symbols further

away from the slice point. Figure 14 shows an expanded viethefrea around the slice

point for a case where the standard deviation is large cosdp@arthe symbol separation.

To obtain a BER greater than0BE — 12, ther(vlz;vo) > 7.02.

The formula suggested by Bhoja et al. assumes that the gice ig the midpoint
between the two symbol values and the standard deviatidreisame for each symbol.
Agrawal provides an alternative formulation that allows #tandard deviations to be dif-
ferent for the two symbols and the symbol placement to be asstnic around the slice
point [33]:

BER = %(erfc (:11*—_\(/)2) + erfc (%)). (7)

The zeros in the numerator of teefc argument represent the slice point of zero \Volts.
Notice that instead of using predetermined symbol valugsug¢es the mean values of
observed data. If the equalizer applies a Diset to the quantizer input or if the two
symbols had dferent standard deviations, (7) would correctly calculaeeBER, whereas
(5) would ignore these importantftkrences. The BER calculation defined by Bhoja et al.

(5) can be obtained by substituting teefc definition (6) into Agrawal’s equation (7) and
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making some assumptions.

11 2 ™ . 2 (7 e
BER=-|— et dt+—f et dt 8a
4(w‘f VR ] o
Assume thatro =0y == ocandthajuyy = —u; == u (8b)
1{ 2 [~ 2
BER=7| = f et dt + — f et dt] (8c)
Vr J Vr J
1 2 *
BER=7|—=(2) f et dt) (8d)
vr
2 2 ™
BER =7 = f ) et dt] (8e)
7T (T\/E
1
BER =3 erfc (L@) (8f)
ag
: Vi -V
In (8b) we assumed symmetric means. Therefore 70 (89)

(8h)

BER :% erfc (Vl _ VO)

202

In addition to using all four of the calculated statisticgraval's formulation [33] al-
lows the slice slice point to be moved relative to the symladligs in order to optimize the
BER performance. This feature is not needed in this invastig because the equalizer
does not appear to inject an D@get. Choosing zero as a slice point significantly reduces
the implementation complexity. The RTL slicer can be impdeed by inverting the sign
bit at the input to the slicer. A sign bit of ‘1’, which indicg a negative number, is inverted
to become a binary zero. Likewise, a sign bit of ‘O’ is invelrte become a binary ‘1’.

During the simulation of each channel, the VHDL model resadd exports to a text
file the value of the input to the quantizer. Once imported Miatlab, the data is sepa-
rated into logical values corresponding to 1s and 0s. Thenraed standard deviation is

calculated for the ‘1" and ‘0’ data sets, and the BER is caitad using (7).
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2.5 RTL test bench

The RTL test bench consists of several functions includapgi file management, instanc-
ing of the adaptive filter, test case management (clock aset mmanagement), and data

recording functions.

2.5.1 Input file management

The test bench opens two input files at the beginning of thelsition. The data input file
contains 200000 five-bit samples corresponding to ADC samples space@ ps3ncre-
ments. The ADC samples are stored in the text file as repesitigte samples from ADCs
zero through seven. The test bench aggregates 32 samplesr samples per ADC, into
a vector and sends a single vector to the adaptive equalizey 625 MHz clock cycle.

The second data file contains the reference data in a vec@®000 binary values.
The single bit values are collected into 16 bit vectors amd &ethe adaptive filter bank ev-
ery 625 MHz clock cycle. The reference values are used atagmbing of the simulation
to train the filter and to simulate the use of an explicit tragnsequence or an eye-opening

monitor. The eye-opening monitor has been used on the orljale 10 GbE product
[31, pg 8].

2.5.2 Instancing the adaptive filters

The test bench instances sixteen copies of the adaptivediitecontrols the movement of
data between each instance. Each copy of the adaptive étteives a unique subset of the
input data vector every clock cycle. The unique subsetsaoo20 of the 32 data values in
the input data vector. The test bench controls the generafithe sub-vectors as well as

the alignment of the filter outputs, error calculation odspand data.

2.5.3 Test case management
The test bench performs several management functions ahaiatly would be controlled

by software running on an external processor.

1. Tap bump. An LMS adaptive filter uses the method of steepest decenndbtlfie
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optimum filter codficients. By definition, the optimum filter c@iecients may require
more taps than what are implemented. If this occurs, theimgtkaps will continue

to accumulate energy in affert to make the error zero, which can cause other taps to
become stuck at local minimas. One common method to cowttiia phenomenon

is to multiply each tap by a fraction close to one which themses the other taps to
move df their local minima if they were indeed stuck there. [W. Smilersonal

communication, 2006]

The test bench may command each tap to multiply its currdnevay the ratio of
254/255. Taps zero through nineteen are commanded in seriesingp’ltheir tap
weight every 256 clock cycles. 256 clock cycles aréfisient for the other taps to
settle out to a new minima before the next tap is bumped. Egristbumped’ every

N x 256 clock cycles.

2. Tap centering. In order to maximize the energy in the equalizer taps, timéecgap
should have the largest magnitude. The location of the ceayes set by aligning the
reference bit and the output of the filter. If two fiber’s gralgtays or physical lengths
are diferent, the filter output may have to be delayed forwards dkwands in time
by several bit intervals. The filter output may be shiftedihw referenc#raining

signal may be shifted the opposite direction by the same amou

The test bench has a management function that looks for thesiatap magnitude
and shifts the reference signal until the center taps corited most energy. This
function would normally be contained in an external prooessut, by placing the
hardware to support the calculation in the design, the loathe external processor
can be significantly reduced and the response time signilydacreased. For exam-
ple, by adjusting the cursor backwards for three bit intisrvidlne BER for fiber 34,
offset 17, was improved fromEL- 9 to 1E — 20.

3. Reset coordination A DFE circuit, when present as part of the equalizer, must be
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held in reset until the FSE portion of the circuit producelsdvautputs. If the DFE
attempts to adapt to the string of zeros that the FSE produtstart-up, the series
of tap updates can bias the FSE taps to an unrecoverablesdiytthe time the first
FSE output is produced. The test bench coordinates two aepaset circuits, one
for the FSE filters and a second reset for the DFE, the errculzdion block, and

the weight update calculation circuit.

. Error counting and statistics gathering. The test bench monitors and records cer-
tain key intermediate values in the design. The recordegegatan be written to an
external text file for analysis by external programs. Thedeted to calculate the

BER is gathered via a data recorder.

The other operation that this module performs is countimgaitcurrence of errors.
The test bench tracks incorrect results and from this, deters when the filter taps
have converged. Upon convergence, this module commanditéngo shift from
training mode to decision directed mode. In training mole reference data is used
to form the error calculation. In the decision directed madtie output of the slicer

is used to form the error signal.

. Simulation execution scripts The RTL test bench is able to control the operation of
a single test run, but VHDL is not a batch processing langu#@berefore, a series of
PERL language scripts were created to automate test aperdtne RTL test bench
assumes predefined values for the input and output file nahhesPERL execution
script creates filesystem file links between the generictioptput file name and the
actual directoryfile name. Thus allowing multiple input data files to be crddte

different amounts of additive noise and the results to be saws&ptrate directories.
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2.6 Simulation summary

The simulation environment is composed of Perl, Matlab artDY software. Matlab is
used to create a data set for each fiber optic cable undettig@isn and to simulate the
effects of the analog channel and additive noise on the readv&ta. The designs were
described using VHDL and a test bench was created to helgisgehe design. The test
bench is self checking and exercises the data path as weleastious utilities that are
present in the digital portion of the design. Perl scripesw@sed to automate the test bench
so that regressions can be run over the entire data set, asaipfo a single test at a time.
Finally, various Matlab scripts are used to analyze thegoerénce of the VHDL design
using data files generated during the test bench runs.

The correct operation of the test bench is a primary requergrfor proper assessment
of the design performance. The test bench itself has begactead to tests in order to verify
that the test bench detects all possible error conditiodscarrectly reports all gathered

statistics.
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CHAPTER 3
PARALLEL LINEAR EQUALIZER RESULTS

This chapter presents the architecture, design and peafarenof a parallel digital linear
equalizer. The equalizer is shown to combine the delayed bBhttblock LMS algorithms,
be synthesizable in a 90 nm process, and to execute with anumniclock speed of 625

MHz, resulting in an aggregate data rate of 10 Gbps.

3.1 Current 10 GHz analog EDC methodology

The IEEE 802.3aq standards body (1Q€dn FDDI-grade Multi-Mode Fiber Study Group)
has reported a linear equalizer with approximately BDspaced taps can equalize 95% of
the fibers in the Cambridge data set, albeit with a larger Eptital power penalty than
desired by the IEEE [1, pg. 11]. In addition, a combinatiod®f~FE and 3 DFE taps can
equalize BER < 1071?) approximately 97% of the Cambridge channels. The studypjso
recommended implementation is an adaptive filter with 20tioaally spaced equalizer
(FSE) taps and four DFE taps. This configuration is preditdemtjualize 95% of the chan-
nels with a 6 dB optical power penalty.

The recommended implementation is a serial one, where eaiVidual symbol is
processed by an equalizer with a clock rate of 10 GHz. By $pagithat the equalizer
would operate with a 10 GHz clock, the study group essentglécified that the equalizer
and analog to digital converter would be constructed in alagnprocess. Since a digital
implementation is proposed in this research, the roufid@ise added by performing the
equalization using fixed-point math must be controlled aadtitional source of error.

A 10 GHz clock is not feasible in a standard-cell 90 nm ASICcess given current
capabilities. Such a design consumes too much power, arath of such a high rate is
too difficult to route to a large number of standard cells. In addjtzomonolithic 10 GHz

ADC is not available, forcing the use of interleaved 2.5 GH2@s. As a result of these
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restrictions, a 10 GHz clock cannot be used for the digitgido The decision not to use
a monolithic ADC adds additional sources of noise to thosetified by the study group.
The architecture proposed in this chapter accounts fordisgRrror sources identified by

the IEEE, as well as the additional sources imposed by theted system.

3.2 Converting analog algorithms to digital implementatins.

When converting an analog implementation into a digital,dhere are several purely
digital considerations that must be managed. These caasioles might be viewed as
side-dfects to the mainféort of converting the target algorithm. However, not havang
plan to mitigate these “secondaryifects can be a serious mistake. If untreated, these
effects can cause an otherwise valid algorithm to fail.

As an example, the primaryffert in this proposal was to convert a serial 10 GHz
analog algorithm into a parallel algorithm that could operat a lower clock rate, but still
perform at an aggregate 10 Gbps rate. The sample rate &lgomiust be converted into
one that operates in parallel ﬁtthe clock rate. The secondarffects to be managed are
a mix of the standard issues that arise when implementing matigital logic and signal
processing algorithm-specific timing issues. The specifjital implementation issues that

were managed or mitigated during this design are as follows:

¢ Bit width versus the impact on closing timing: As bit width increases, adders and
multipliers become more complex and, thus, operate sloimeaddition, there is a
significant impact on routing complexity. Routing five bitstiveen two nodes such
that the path delay variation between the end points is simaliuch easier than
trying to perform a similar action on a 12 bit value. In gehegtse more bits used to

store information, the morefdicult it is to meet the timing objectives.

e Bit width versus algorithm performance: A signal processing algorithm is ulti-
mately precise when infinite precision math is used. In a fp@dt, fixed bit width

design, every calculation that involves truncating a digwlls noise to the result.

44



The magnitude of the noise can be as large as one half the ehtbhe next lowest
bit. Some algorithms do not perform well with a large amounbhaise from this

source.

Pipelining for timing closure versus the dfects of pipeline delay on a feedback
algorithm and power consumption: Adding pipeline registers allows faster clock
rates but also consumes additional power. A flip-flop consusignificantly more
power than an “and” gate and does not perform any calcukatidading pipeline
stages adds logic that does not perform any “work”, consymeser, and adds la-

tency.

Trading off dynamic range versus precision for a fixed bit width implemena-

tion: When implementing binary math with a fixed number of bits, dieeision of

where to place the binary point is of primary concern. Sgttime binary point to
the far left allocates more of the limited number of bits te fhactional portion of
the number. This method biases the implementation towakestey mathematical
precision, as the magnitude of the error caused by rounditrgiocation is reduced
by a power of two for every additional place that the binarynpcs shifted to the

left.

If the binary point is shifted too far to the left, and the neatiatical operation being
performed is a summation or multiplication whose magnitgdewvs quickly, the

magnitude of the result might grow larger than what can beedt the bit vector.

When this occurs, the operation is said to have “overflow&be diference between
the smallest and largest values that can be representetied tt&e dynamic range
of the bit vector. Shifting the binary point to the right toopide storage for the
growth of intermediate results reduces the possibilitywairiow but also reduces the
precision of the fractional storage. The majority of thedithe most significant bits

are not used, wasting the storage that could be used forspacivarious methods
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exist in the digital designer’s toolbox to handle this isdme care must be taken so

as to not &ect the main algorithm’s performance.

The conversion of the serial adaptive equalizer algorithto & parallel one has some
unique challenges, but there are additionéidlilties caused by replacing the high-speed

monolithic ADC with an interleaved bank of slower rate ADCs.

3.2.1 Slower interleaved versus faster monolithic ADC

The conversion rate of an ADC is controlled by the longestaf time constraints: the
sampling window and the conversion time. The sampling wimdothe amount of time

that the sampling capacitor takes to charge to the inpuasaymd determines how quickly
the capacitor can track the changing input sequence. Thergian time is the amount of
time needed to convert the value stored on the input capdoitodigital value. A 10 GHz

ADC must be able to charge the capacitor at 10 GHz and redoévdigital output before

the next signal time.

In this project, a 10 GHz ADC is not available and has beeracsa with eight 2.5 Gsps
ADCs. The interleaved ADCs have a conversion rate of 2.5 Gspgsa sampling window
in excess of 20 GHz. With &/2 FSE, the fective sampling rate is 20 GHz. Thus, the
chosen ADCs have the required sample-and-hold performiamicare too slow in their
conversion from an analog signal to a digital signal. By gsemght interleaved ADCs,
the conversion time can be mitigated. As with any engingetiade df, replacing the
monolithic ADC with an interleaved bank of ADCs introduceseav set of complications
that must be managed.

In a standard analog 10 Gbps EDC the system only requires Bxizakd EDC. This
results in an implementation with the smallest area and podeditional advantages of
the analog methodology include only having to calibratenglsi ADC and only having to
mitigate the jitter on a single clock. In a system with intested ADCs, there are multiple

calibration circuits required and the designer must be eorexl with the post-calibration
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output relationship between the interleaved ADCs. Therjidh a single clock can be char-
acterized and controlled to fall within an acceptable patam When interleaved ADCs
are driven by dferent phases of a clock, the jitter on each phase can contburedte a
phase-to-phase timing relationship that is outside theydegiter parameters. The routing
of the clock phases to the ADCs must be performed with care.

At the beginning of this research, the use of multiple ADCs egpected to require the
modeling of each ADC as a separate entity, with individuakland éset parameters and
that doing so would add a substantial source of noise, agidedan [23]. However, as
further research was conducted into the state of the arttediated circuit ADC design,
recent techniques [27] in laser trimming and on-chip caliibn circuits were found to
have eliminated many of the problems reported in [23] andhave commonplace in the
industry. The one diiculty that has not been eliminated is the ADC reliance on tbekc
phase between the members of the interleaved array. Toaterihis &ect, the simulated
clock phases have been jittered by 1.5%, which is equivabessingle 160 GHz time slot.

The details of this implementation are covered in secti@nl2on page 32.

3.3 Derivation of the block delayed LMS algorithm

The algorithm proposed in this section is a combination efdalayed LMS (DLMS) and
block LMS (BLMS) algorithms which are well known and origllyadescribed in [4, 5].
The algorithm introduced in this paper (referred to as “Blelayed LMS”, or BDLMS)
applies the relaxed céiecient update timing rules defined in DLMS to the BLMS algamith
and results in a parallel, scalable, high symbol-rate aigidaptive filter.

The block LMS algorithm [5] proposes a calculation reductroechanism whereby
outputs are calculated in the standard serial fashion wighrésulting error terms saved
until some number have been accumulated. The number sacatlad the “block size.”
In one cycle, “block size” number of outputs and error termes @alculated and used to

calculate a single update to the filter. This update is theageeof the individual updates
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that would have been applied in the serial algorithm.

In the BLMS algorithm, the updated déieients are applied as soon as the block size
is finished. For example, if the block size is 16, then as s@ohbaoutputs are calculated,
the tap weights are updated before calculation starts &l M output sample. The worst
case delay between an error term being calculated and tbewgdate being applied is
Block Size — 1 samples, and the average is one-half the block size. Byagwey the
error terms, the instantaneous fiox@ent updates are smoothed, but over time the BLMS

algorithm delivers performance equivalent to the standarl LMS algorithm. Figure 15

re-introduces the BLMS algorithm that was originally dissed on page 8.

- |
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Figure 15. A reminder of the BLMS architecture. See Figure 2 @ page 8 for a full discussion of this

architecture.
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Figure 16. A reminder of the DLMS architecture. See Figure 3 o page 9 for a full discussion of this
architecture.

In the delayed LMS algorithm [4], every output data sampleakulated in a serial
fashion identical to the regular LMS method. Rather than edmately updating the tap
weights based on the previous error before calculatingeéiReautput, the algorithm allows
the tap update to be delayed by a fixed amount for every updhtes, the DLMS method
allows the filter output and error term calculation to be pipel.

Figure 16 summarizes the delayed LMS algorithm, which dates the updates one
sample at a time. After the filter operation has begun and Dpkss1have been calculated
(where D is the pipeline delay of the filter output and the lecadculation step), an update
will be applied to the filter set based on a single error resuthe end of every sample
time. The DLMS research defined several boundary conditibascan be used in the
current research to place a limit on possible solutions T4{e conditions specified were
(2) how much delay can be tolerated between the use of thedmtrand the error update
from that sample and (2) an upper boundary on the step sitecdhdd be used in the
steepest decent algorithm.

The guideline defined for maximum delay is that if the chate@hg equalized changes

at some frequency, then the maximum delay in the error caiomn must be less than the
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period between changes. If the channel characteristicggehahile the first output is being
calculated, the filter update could be in the wrong direction

In the BLMS algorithm, the amount of delay betweenfticeent use and tap update is
variable but constrained to be fairly small. The delay isdixethe DLMS algorithm but
can be longer than the BLMS algorithm. The BDLMS algorithnil weed to extend the
update time of the BLMS into the range supported by the DLMS.

The maximum expected rate of change in fiber, short of somgtidestructive like a
fiber kink or disconnect, is in the range of 100 Hz to 1 KHz [1]t 8Asymbol rate of 10
GHz and a clock rate of 625 MHz, a DLMS design could withstapdai625,000 clock
cycles of delay and still converge. Therefore, a standariBlimplementation should be
able to converge given a fairly long pipeline for the 10 Gbpsifioptic system.

A 10 GHz serial rate DLMS algorithm cannot be implementedsteadard cell process
because that would require running digital multipliers acldiers at 10 GHz. The clock
buffers in the chosen process cannot operated at this rate.stegdites for this digital
process are less than 1 GHz. Other experiences with this 9prooess have shown a
reasonable logic cone at a clock rate of 625 MHz. The propoleet rate of 625 MHz is
a power of two multiple of 10 GHz, which makes the interlegvamd digital design easier.
The method of the proposed algorithm is to integrate thekobowd delayed algorithms,
resulting in an algorithm where sixteen filter results arkwdated in parallel and their
outputs fed into parallel error calculation and weight updarcuits.

In the standard BLMS algorithm, the average delay betweerpkainput and weight
update iIBLOCK_SIZE /2. In the implemented BDLMS, the average delay is 27 times as
large as the BLMS algorithm because of the pipelining resgliiThe pipeline delay caused
by the digital implementation must be analyzed to ensurethieadelay does not prevent
the circuit from converging.

The BDLMS algorithm (Figure 17) consists of eight interled\VADCs operating at a

combined sample rate of 20 Gsps. This provides two data ssnmelr symbol. The data
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samples are collected into a 32 sample data vector at 625 Mk the data vector, 16
sub-vectors are generated, and passed tofl€reint FSE filters. Each sub-vector contains
20 of the 32 data samples. Each FSE produces a single resalbpk cycle, which is then
passed to 16 parallel error calculation blocks. The errtautation blocks determine the
error between the FSE output and the desired output at afratee@utput per clock cycle.
The weight update circuit calculates the amount that eadh t&f should be changed in
order to reduce the average error for each tap. Figure 18 giveverview of the algorithm
and shows the clock cycle delay associated with each sub-par

The next section details the impact of process limitationshe architecture of the

resulting design and discusses the details of the propassgdrd

3.4 BDLMS architecture and design

The architecture being proposed is a combination of thekbéo delayed LMS algo-
rithms. BLMS suggests that a set of 16 filter outputs can beutated with the same set
of filter codficients and the updates resulting from the calculation caavieeaged and
applied before the next set of filter output calculationsitbegn the BDLMS method,
the filter operation, error calculation, and tap update aj@ns have been pipelined for
maximum speed. Beginning with the performance analysimpaed by the IEEE study
group, a 20 taff /2 FSE was chosen as the implementation target. The propd3eiB
method scales to any size FSE without any impact on the atgorother than resources
and pipeline delay. If a flierent size FSE were desired, the circuit could be quicklyimod
fied by changing the VHDL generic statements that controfittez widths. The flexibility
gained by using VHDL is fiset by its slower performance. As previously discussed, the
trade-dt between bit width and operation speed is one of the primasigdelata pointsin a
digital design. Before the BDLMS algorithm could be decidgdn, the capabilities of the
synthesis library had to be characterized so that maximtwmi@iihs for each mathematical

operation could be set. This data would allow tradis-a the algorithm implementation
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Figure 17. The data flow diagram of the proposed block delayed MS (BDLMS) algorithm. The data
signal is sampled by eight interleaved ADCs, bfiered into 32 data samples at 625 MHz, and processed
by 16 instances of the BDLMS adaptive filter. Each parallel filer consists of a 20 tap FSE, error
calculation block, and a shared weight update calculation iccuit. The clock cycle labels show the
latency through each part of the circuit.
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to be decided upon.

3.4.1 Synthesis derived restrictions on the architecture

One of the challenges of implementing theoretical DSP #lyois in hardware is the wide
dynamic range that intermediate results tend to have. Foted fpoint implementation,
one cycle may find an intermediate result overflowing, while oycle later the result is so
small that it gets truncated to zero or worse, negative ohes i$sue is essentially an MSB
versus LSB (most significant bit versus least significant tbitde-dt. If the fixed binary
point is biased to provide flicient bits at the MSB end, then overflows are prevented
because the dynamic range is large enough. If the binaryt oblased towards the LSB
end, then the precision of the algorithm is improved. In goathm that uses an error
term to decrease the steady state error, the LSB value setedidual error. Once the
error term drops below the LSB, the algorithm is done corimgrglf the LSB is set too
large, the adaptive equalizer will not converge to a smadlugih residual error, and the
implementation will not extract data at the desired date.rat

To find the largest size operations that could be performettienchosen process, a
series of synthesis experiments were conducted. Starithghe largest inputs supported
by the synthesis library, the adder and multiplier circwse synthesized, reducing the
input width at every timing failure. The largest componehtg could operate at 625 MHz
were found to be an 11 bit, two stage multiplier, and a 25 Inig¢ stage, full adder.

The results of the synthesis test create the boundariegwitiich the implementation
must live. For example, anything that must be used as an toputmultiplier such as the
error, sample data, and dieient must be 11 bits or less. The leaf nodes of any adder
trees must be less than 25 bits. Given that the multipliemged to inputs of 11 bits, the
maximum adder tree depth is either limited to three stagesverflow protection must be

included in the adder tree.

In order to avoid overflow, a fixed point multiplier wit bit inputs produces an output of sizal dits.
A fixed point adder of siz&l produces siz&l + 1 outputs. Therefore, starting with 11 bits as the input & th
multiplier produces an output of 22 bits, which then leavese bits for adder growth.
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Figure 18. This data flow diagram demonstrates the mapping ofthe ADC samples into registers at a
rate of 2.5 GHz and then into a 32 sample wide register at 625 ME&

3.4.2 Converting serial data to a parallel format
The first step in the process is to convert the incoming 10 Galsdata stream into a
625 MHz parallel data stream. Figure 18 shows how the datc&ved from the fiber in a
serial fashion and converted into a 32 sample wide pardhatture.

Figure 19 explains how the parallel data is distributed &t FSEs. Each of the filters
receives a data vector to operate on. Data vectors zeroghnone require parts of their

data vector to be copied from the previous data vector.

3.4.3 Forward filters

Each forward (FSE) filter operates on ten symbols, each slooboposed of two samples,
for a total input to the filter of twenty, 11-bit data valuesdawenty, 11-bit cofficients.
The next filter in line receives nine of the same ten symbaigpping the oldest symbol
and adding a newer symbol, but receiving the same 2@icmnts. The multipliers and

adders that comprise the filter have registers inserted ety intermediate operation.
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Figure 19. This data flow diagram demonstrates how each FSE @pates on 20 of the 32 data samples
in the parallel register. Those FSEs that are older use a mixfadata from the current parallel register
and the immediately previous register to generate a 20 samplvector.
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This structure allows the filter to accept a new batch of ingwery 625 MHz clock cycle.
Figure 20 details the bit growth and the register placemantie FSE filter.

Notice that although the bit growth is shown in Figure 20, piwysical wires are a
constant 25 bit value. The simulation analysis showed nescatoverflow resulting from
not expanding the adder tree to 27 bits, as would theorBtibal required. The dynamic

range of the system is such that the filter output never gremugmto require the extra bits.

3.4.4 Weight update circuit

The weight update circuit (WUC) block is a wrapper for sel/etdb-blocks. The logic in
the WUC calculates the error for each filter, calculates thiglt update for each tap, and
applies the update to the tap holding register. The WUC 13 @sponsible for delaying
the input and reference data so that the weight update asilmublock has the correct data

samples. Figure 21 shows the component parts of the WUC block

3.4.4.1 Error calculation
The first step of the WUC is to calculate the error for the jadtalated output. The error
calculation step is straightforward and is simply the saditon of the FSE filter result from
[+1, -1]. The selection ot1 is based on the combination of training mode, the sliced FSE
value, and the reference signal. The design of the errouledion block is shown in Figure
22

If the circuit is operating in training mode, the referenedue used is selected frosi,
else the inverted sign bit of the filter output is used. Therfittutput is in twos complement
notation, a sign-bit of ‘1’ represents a negative numbetavhisign-bit of ‘0’ represents a
positive number. A binary ‘0’ chooses-dl as the input into the subtraction circuit. The

error output is 25 bits. There are 16 of the error calculabiocks, one for each FSE filter.

3.4.4.2 Weight update calculation circuit
The standard LMS equations were defined on page 6. For caradepinplicity, the tap

update equation (part c) has been redefined in simpler tertmasthe block modifications
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Figure 20. This data flow diagram indicates the locations oflie pipeline registers in the 20 tap FSE
filter. The signals between mathematical operations are a5 bits. The bit width labels in the Figure

demonstrate the theoretical bit growth of the signal. Extesive simulation demonstrated that providing

more than 25 bits for the signals in the filter was not necessar
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Figure 21. The weight update circuit (WUC) consists of sevel sub-blocks, including the error calcu-
lation block and the tap weight storage registers. The WUC alo delays the data from the ADCs so that
the tap weight update calculation filter uses the proper datdor the current error result.

can be more intuitively discussed. The simplified notatmntlie serial tap update equation
is
Ck[n+ 1] = Step Size = Error,, = Datay, + C¢[n] . 9)

In Equation 9C,[n] andCy[n+ 1] represent the value of thé&' codficient at the current
time n, and at the next time cycle + 1, respectively. The&tepSize is the adaptation
parametey. Error, represents the flerence between the desired and actual filter output
for the current timen. Datay , represents the data value that was in the filter at tinmetap
locationk. For a given tafC, at timen, the update is the error for the entire filter multiplied
by the data value that was in the tap at the time. Therefoeegdiita amount added to the
codficient is relative to the product of the error magnitude arddata magnitude.

For the block delayed LMS algorithm, the error update equas very similar but is

now composed of the average of the error-data product:

-1

Ck[n+ 1] = C«[n] + StepSize = Errorn = Datay,, ;. (20)
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Table 1. Example of how the data sample indices are numbered ia small filter.
Tap | 0| 1 2 3
Output
0 do | “O” | “O” | "O”

dy | do | “O” | “O”
d, | dy | do | “O”
ds| dr | di | do
dy | d3 | dy | dy
ds | dy | d3 | do
ds | ds | ds | ds

OO A~ WN K

This equation explains that every tap has 16 error-dataystedhat contribute to its
update. The key to implementing (10) is to recognize the satiom as an FIR filter in
which the error term replaces the normal@méent. Once equation 10 has been recognized
as an FIR filter equation, the nexfi@itulty lies in determining which data values should be
used in the calculation.

Determining the causal relationship between 16 filter sfr20 tap weights and 36 data
values can be challenging. The first step in specifying #letionship is to determine the
location of every data value relative to every tap. To explhe steps, the solution to a four

tap filter problem will be demonstrated.
1. Number the input data samples from 0 to 6, with 0 being tee(fdest) data sample.

2. Create a table with one column for each tap in the filter, @melrow for each filter

output to be calculated.

3. Fill the table with the data sample numbers that would lesqamt in each tap at the
output time. At time 0, only tap zero will contain a data valuél following taps
will contain their res¢power-up values. Table 1 demonstrates how the table should

look for a four tap filter at timen = 6.

4. To calculate the filter outputs, perform a series of mlyltgccumulate operations

starting with tap 0. The input to each multiply step is theueain the tap number
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Table 2. The example table re-labeled to demonstrate the tapeight update calculation.
OutputTime| 3 | 4 | 5| 6
Tap Number
0 d; | dy | ds | dg
1 dy | d3 | dy | O5
2 dy | dy | d3 | g
3 o | dy | dy | s

at the top of the column and the data sample number listedeaintbrsection of
the output row and tap number column. At time= 1, the filter output would be

Tap(0)«Data(1)+Tap(1)«Data(0). Store the filter output in the varial@atput [n].

5. By substitutingk = 2 andn = 3 into Equation 9, we can see the error that is calculated
at time 3 is multiplied by the data sample that was in tap 2leTabs used to findl;

at the intersection of tap 2 and output time: 3.

G, [4] = Step Sizex Errors Dataz,3 +Co [3] . (11)

This example has shown that Table 1 can be read in tffierdnt manners. When calculat-
ing the filter output, the table can be used to look up whicmtapber should be multiplied
by which data sample. When calculating the tap update emudtie table can be used to
match the error with the data sample number for a given tapbeunCalculating the in-
puts for the tap update equation using Table 1 might be cersildto be using the table
“backwards”, as the table is used by starting with the row, r@ading the output along the
column. Transposing the table places the outputs in thasluscation. Table 2 transposes
a portion of Table 1 as a demonstration.

The previous example demonstrated how to determine theamrsdaip between the
equation inputs for the case where a single filter output vedsutated for every tap up-
date. For the adaptive equalizer being discussed in thisrpaf outputs are calculated for
every tap update. We will revisit our four tap filter exampseaademonstration, with the

modification that four outputs (3 through 6) will be calcelfrom the same tap weights.
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The filter calculation step is the same as in the previous pigmse Table 1 to align
the tap value and proper data value. However, the tap weajbtilation step must now
take into account the errors calculated at times 3 throudstg the example of Equation

11, determine the values for each tap for outpu®s 3 6. The tap update equation for tap

two can be shown to be:

New Tap 2 Weight = StepSize = (Error(3) = Data(1) + Error(4) = Data(2) +
Error(5) « Data(3) + Error(6) = Data(4)) + (12)

Current Tap Weight.

From Table 1, the summation can be seen to be the vector imodugt of the error
vector and the tap column vector. Given this result, we cailyedetermine the causal

alignment of the error output calculation, the data samplealrer, and the tap number,

from the unrolled FIR calculation table.

1. Write out the FIR calculation equations for each of the #itBrs being implemented,

as shown in Table 1.
2. Calculate the FIR filter's outputs and the correspondmgrs.
3. Create a row vector, populated with the result of the eratculation steps.

4. Build a column vector with the data samples that are enai@éiin the column be-

neath each of the tap labels in Table 1.

Using this procedure, the tap update for tap 2 is found to be:

New Tap Weight = Current Tap Weight + StepSize
(ErrorRowVector « Tap2ColumnVector). (13)
New Tap Weight = Current Tap Weight + StepSize =

([€3, €4, €5, €5] * [, d3,ds, ds]’). (14)
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The preceding two examples have shown how an easily gedeiatite of FIR filter
equations can be used to determine the relationship betsveamncalculations, data inputs,
and tap weights. For the FSE filters that are being invegtthiat this project, the relation-
ship is a bit more complicated. Because each data symbohpased of two samples,
the distance between data samples in the tap column vedieoisin the examples, the
distance was one. Table 3 demonstrates how the data sanipés dign relative to the
output calculation number and tap weight for the FSE filters.

Once the input data, tap weights, and error values are aljghe tap update equation
may be calculated by reusing the RTL that was used to cakthatfilter outputs. The tap
weight vector is replaced with the error vector, and the ijaga vector is rearranged. The
FSE filter bank was sixteen filters of twenty taps, where asWhiC filter bank is twenty

filters of sixteen taps.

3.4.5 Hfects of cofficient storage register precision

Figure 23 shows the original design of the WUC along with tiep-size multiply and up-
date of the tap weight. During the performance analysis@béthe project, discrepancies
were found between the RTL results and the predicted Madiablts. In an fort to char-
acterize where the flerences were being introduced, a cycle accurate Matlab Innade
written.

The model accounted for thdfects of round-&, truncation, and limited precision
mathematical operations that were occurring in the RTL. iftiestigation showed that the
difference was not being introduced by the limited precisiomefdodficient used in the
FSE filter output calculation. Rather, the error was beitigpttuced by the truncation of the
weight update calculation prior to multiplication by thestsize. When the truncation was
removed and the cdigcient storage register changed to 25 bits, the bit erroringpeoved
significantly.

There are two possible explanations for this behavior. Tisei that when the mean

of the quantization error exceeds the mean of the tap uptteteSNR of the update falls
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Table 3. The table shows the indices of the sample data valugsat are in each filter and tap after the first 50 samples have etered the adaptive equalizer.
To calculate the output of a given filter, the cofficient values stored in the taps across the top row are multipgd by the data sample numbers listed at the
intersection of the tap and filter number in the body of the talde. The 20 results are summed in a row to generate the filter redt. To find the sample data
values that should be used to calculate the tap update valuerfa given tap, the table is rotated 90 degrees so that the tappw becomes the column entry on
the left side of the table (return the page to its normal readng orientation). For each item in the filter row, use the errorthat was calculated for that filter.

Tap | 0| 1|2 | 3|4 |56 |7|8|9(10|{11|12|13|14|15|16|17|18]|19
Filter

0 19|18 17|16|15|14|13|12(11410, 9 8| 7| 6|54 |3|2|1]|0
1 21/20|19|18|17|16|15|14|13|12(11|10{ 9| 8| 7| 6|5 |4]| 3|2
2 23(22|21(20|19|18|17|16|15|14(13|12|11|10| 9 | 8| 7|6 | 5| 4
3 2524123221211 20|19|18|17|16|15|14(13|12|11|10| 9 | 8| 7 | 6
4 27126 25(24|123|22|21,20(19|18|17|16|(15|14|13|12|11,10| 9 | 8
5 2912827126125 24|2322121,20(19|18|17|16|15|14|13|12|11|10
6 31130292827 |26|25|24|23|22|21/20|19|18|17|16|15|14| 13|12
7 331321313029 |28|27|26|25|24|23(2221120(19|18|17|16|15|14
8 35134133321 31[30|29|28|27|26(25|24(23|22|21|20|19|18/| 17|16
9 3713635343332 31[30(29|28(27|26[25|24|23|22|21|20|19|18
10 [ 39|38|37|36[35(34|33(32|31[30|29[28|27|26|25|24|23|22|21|20
11 [41|140|139|38|37|36|35(34|33(32|31[30|29|28|27|26|25|24|23]|22
12 (4314214114039 (38|37[36|35[34|33[32/31[{30(29|28|27|26|25|24
13 [ 4544143142141 (40|39(38|3736|35[34|33[32,31|{30(29|28|27]|26
14 | 47|46|45|44|43(42|41(40|39|38|37[36|35(34|33(32[31|30|29]| 28
15 [ 49|48 |47|46|45|44|43(42|141,140|39|38|37|36|35(34(33|32|31]|30
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Figure 23. This diagram shows the original design of the weltyf update calculation circuit. The circuit
is a 16 tap filter, one tap for each of the FSE filters. Each tap cefficient represents the error of the
corresponding FSE filter output. The 25 bit result of the FIR filter is truncated to 11 bits so that the
update value can be scaled by the step size. Once the weightaor is calculated, it is added to the
current tap weight for use in the next FSE calculation cycle.
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below one and the system cannot converge. The other exgamsathat when the average
tap update is less than one LSB, the tap update gets trurtcazedb, and the system stops

converging. Essentially, the tap weights start oscilgaanound the optimum value.

BER vs. Quantization Noise Ratio
-10
10 T T T T
F1017
F6023
-20| | — — — F8017

10

BER
[any
o

4 -3 0 1

10 10 107 107" 10 10
Quantization Noise / Mean Tap Update

mean(quantization noi se)

mean(coef ficient update)
Three fibers demonstrate that when the quantization noise eeeds the average tap update value, the

guantization noise becomes the noise floor in the system andts the system performance.

Figure 24. A demonstration of how the circuit BER is dfected by the ratio

The analysis of the experimental results showed that wherratio of the mean of

the quantization error to the mean update of the center tapeebed one, the BER was
n ization Error
adversely ffected. When mean(Quantizatio ror)
mean(Center Tap U pdate Value)
becomes the dominant noise source. Figure 24 shows how tBeoL$he tap weight

> 1, the quantization error

storage registerfiects the circuit BER for a selection of three fibers. The assciof

the graph is the ratio between the mean of the quantizatiaor end the mean of the
codficient update for the most significant tap. Table 4 shows tieespondence between
the predicted mean [34] of the error and the measured mean d@ measure the mean
error, the cycle accurate Matlab model calculated the taghwepdate value twice: once

as an infinite precision Matlab variable and once as a fixedtg®TL calculation. The
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Tap 10 Convergence when LSB = 78
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Figure 25. The behavior over time of the center tap for fiber 10 offset 17, when the LSB of the tap
storage register is278. Rather than converging to a steady-state behavior, the tagveight begins to
oscillate.

difference between the two calculations was stored and the nadam calculated at the

end of the simulation.

Table 4. This table demonstrates that the error caused by tracating the error calculation closely
matches the predicted values.

Fiber | LSB | Predicted Mean Quant. ErrgrMeasured Mean Quant. Error
F1017| 11 -0.00024467 -0.00024414
F1017| 14 -3.0518e-005 -3.0266e-005
F6023| 11 -0.00024467 -0.00024545
F6023| 14 -3.0518e-005 -3.0836e-005
F8O17| 11 -0.00024467 -0.00024541
F8017| 14 -3.0518e-005 -3.0722e-005

Figures 25 and 26 show how the center tap for F1LO17 convengesine for the cases
where the LSB is 2 and 2. In the 28 case, tap oscillation is observed. In Figures 27
and 28, the tap update value for the center tap is plottedhsigaine. In the LSB= 28
graph, over 50% of the tap updates over time are exactly zerine case where the LSB
is 271, only 2% of the cofficient tap updates over time were zero.

Changing the ca@cient storage from 11 bits to 25 bits allows the full preamsad the
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Tap 10 Conversion for LSB = 214
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Figure 26. The behavior over time of the center tap for fiber 10 offset 17, when the LSB of the tap
storage register is2-4. The tap weight is approaching its steady-state value, withut oscillation.

X107 Tap 10 Coef Update Value for LSB = 28
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Coef Update Value
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Figure 27. The tap weight update values over time of the centdap for fiber 10, offset 17, when the
LSB of the tap storage register is278. Over 50 % of the tap updates in this case are zero, indicating
that the calculated error was too small to be represented an@as truncated to zero.
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%1072 Tap 10 Update Value for LSB = 214
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Figure 28. The tap weight update values over time of the centdap for fiber 10, offset 17, when the
LSB of the tap storage register is2-14. Only 2% of the tap updates in this case are zero, indicatinghat
the calculated error was too small to be represented and wasuncated to zero.

weight update circuit to be used but, then, introduces angjnelosure problem. In the
original design, the results of the weight update circuitereuncated to 11 bits so that the
truncated result could be multiplied by an 11-bit step sef®te being added to the current
11 bit tap weight. (See Figure 20.) If the full 25 bit resultloé weight update circuit is to
be added to the existing tap weight, the step size multiplyb&ia 25 bit number multiplied
by an 11 bit number, which results in a 36 bit number. Trumgathe 36 bit result to 25
bits does notfiiect the convergence of the filter. The problem is closingrtgnPreviously
(Section 3.4.1 on page 53), it was reported that the largekiply that could be performed
at 625 MHz was two 11-bit operands.

There are several potential ways to solve the timing proldaused by expanding one
of the inputs to the multiplier. The first method examined weagipeline the multiply op-
eration and trade latency for speed. This solution is camedly simple, but considerably

more dificult to implement:
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1. The synthesis library does not allow asymmetric inputstime multiplier. Therefore,
both inputs had to be changed to 25 bits, and the 11 bit stepasz sign extended
to 25 bits.

2. The output vector expanded to 50 bits wide, and the midtigrew to four times the

size of the original 11 bit multiplier.

3. When the 25-bit x 25-bit multiplier was instantiated witie deepest pipeline avail-

able in the synthesis library, timing was not passed at &alaie of 625 MHz.

In order to implement a full 25-bit multiplier at 625 MHz, afidirent multiplier core
must be used. The synthesis library used did not have a latget®n of pipelined mul-
tiplier cores, although a fferent library might have an alternative architecture thatha
pass timing. The other solution would be to hand code a pipdlmultiplier core using
VHDL. This solution was rejected in favor of a more elegartison.

Originally, the adaptive equalizer was conceptualized asng a variable step size
that could be modified from the external general purposegasm. However, when the
adaptive equalizer design was simulated in Matlab, the stepwas never modified from
the default of 1E-3. Further investigation showed that 8iep size was dticient for
all fibers and that, for those fibers that did not convergengimy the step size did not
substantially change the performance.

Therefore, the implemented solution for the step size plidation problem was to
modify the design to use a fixed step size df@D9765, which is 2° and is very close to
0.001. Because the multiplicand is a power of two, the multg@eration can be replaced
with a binary digit shift. In this case, by shifting the biggvoint of the weight update
error calculation by ten bits to the right, the multiplicatioperation can be replaced. This
modification results in a substantial area and power savilfidgter a step size other than
a power-of-two is required, the first attempted solutionudtidoe to approximate the step

size as the sum of a small number of powers-of-two and to uggescycle 25-bit adders

70



to add shifted versions of the weight update calculation.

The errors that caused the redesign of the circuit demdadttaat greater precision
was required in the tap storage register. Therefore, thaefithition of the storage register
was modified from what is used in other places of the circuitthe 25 bit output of the
weight update calculation circuit, the binary point is betn bits 14 and 13. To multiply
the result by 21°, the data values could be shifted ten bits to the right, gt sxtending
the data value and shifting the binary point ten spaces tiethis much more areafcient.
By doing so, the binary point is now between bits 24 and 23 Wit 24 representing®2
During all the simulation runs, the maximum magnitude of angficient was less than
two. In order to ensure the circuit has enough operating matige maximum coécient
storage value is set to plus 3, which allows a margin of alrB6%t and places the sign bit
of the new vector at bit 26. The weight update calculationltas sign extended from bit
24 to 26 and bits 26 down to 2 are relabeled as 24 down to 0. Thiedure truncates
the least significant two bits from the weight update caltoileand assigns the LSB of the
storage register to beZ.

Figure 29 shows the implemented version of the weight updateiit. The stored
codficient value is truncated to 11 bits before the multiply operain the FSE with no

adverse fiects on the system performance.

3.4.6 Implementation Figures of merit
After the code was implemented it was synthesized and p&issied at a rate of 669 MHz,
which is a 7% margin over the desired rate of 625 MHz. This mmargmpensates for any
routing path estimation errors that the first pass syntreegiine makes and is considered
standard design practice in industry when using this sywmhaethodology.

The power consumption, while high, can be reduced by takewgral straightforward
steps. This estimate assumes that all of the circuit is fonictg all of the time. This
assumption is not necessary as, once the taps have convérgeetror calculation and

weight update circuit could be turnedf @r run infrequently. Cycling this circuitry on a
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Figure 29. The data flow diagram of the weight update calculaon filter circuit as implemented. The
truncation of the error so that it could be multiplied by the step-size has been replaced with a binary
shift to the right by ten binary digits. This binary shift is a Imost equivalent to the multiplication by
a step size of 1E-3 and allows the full 25-bit precision of theutput to be preserved. The tap storage
register has also been modified to store a 25-bit value. Thepavalue is truncated to 11 bits before being
used in the FSE multiplication.
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Table 5. Linear equalizer implementation figures of merit.

Parameter Value | Comment

Synthesized Clock Speed 669 MHz | 7% routing margin above 625 MHz
Number of Multipliers 656 11 bit full fixed point multipliers
Number of Adders 640 25 bit full fixed point adders
Number of 90nm instances 582E3 | instance= 90nm cell

Power Estimate 16.5W | Worst case switching frequency

low duty cycle would cut the power consumption almost in harhis approach, while

feasible, would still be far from competitive with an analagplementation.

3.5 Linear equalizer results

All 324 channel models were simulated with a test length & 000 random bits. The de-
fault cursor position was set to zero. When the results vadrelated, 265 of the 324 fibers
converged with a bit error rate of less thalg 4 12. Investigation of the non-converging
channels found several fibers that did not have their lafggstveight near the center of
the filter once the filter had converged.

Those fibers that failed to converge were tested with a neéershifting program that
walked the cursor over a range of negative ten to positiveatethan additional twenty-three
fibers converged under aftérent cursor alignment. This cursor position search woatd n
mally be controlled by an external processor running a softvgearch algorithm. Hard-
ware supports this search by providing the ability to shi# teference tap on software
command. Fiber F34017 is one of the fibers that converged @sbédt had been applied.
Figure 30 shows how shifting the main tap to the center pos#ifects the performance of
the filter.

Figures 31 and 32 show theflidirence in the input to the slicer and the resulting BER
when the cursor location is shifted in the RTL. The Figuresasthe input to the quantizer
over time. The abscissa axis represents the sample nunmb#reaordinate axis is the value
produced by the forward filter to the slicer. The graphs shioows the system converges

around the $1,-1] decision points. The standard deviation and mean e@fdtta points
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around each tail set the bit error rate. Figure 30 demomestithiat shifting the reference
value by three sample times improves the BER from 1E-9 toQE-2

Once the fibers that required a cursor shift to converge areuated for, the overall
performance of the linear equalizer implementation of tlBIS algorithm can be ex-
amined. A plot of the results sorted by BER are shown in Fig@d&e Overall, the linear

equalizer can equalize 88.1% of the fiber channels.

3.5.1 Fibers that do not converge with the LE

That there would be some fibers that would not converge wighlittear equalizer was
expected. After all, the DFE is considered a required smuith this type of application.
Using a Matlab model of a one-tap DFE, fiber 8#fset 20 was examined. The best result

that can be obtained with fiber 87fset 20, is & — 11. The impulse response (Figure 34)

Tap Locations for F34017
0 Shift BER = 1E-9
-3 Shift BER = 3E-20

15 T T T
h — — — LE taps 0 Shift
I’ \ LE taps —3 Shift
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o 05F
>
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>
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©
[ ot
-0.5F
_1 1 1 1
0 5 10 15 20

Tap Number

Figure 30. A demonstration of how performance is improved wien the main lobe of the filter is near
the center tap. The Figure shows the tap values for fiber 34 fiset 17, with a shift of zero and negative
3. In the unshifted, default alignment, the exponent of the BR is half that of the shifted alignment.
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Figure 31. Convergence of fiber 34, fiset 17, with cursor shift=0. With shift =0, the BER of the circuit
is1E - 9.
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Figure 32. Convergence of fiber 34, fiset 17, with cursor shift= -3. With shift = -3, the BER of the
circuit is 1E — 20. Notice that the legs of the graph taper significantly more tlan the shift =0 graph.

75



is almost a delta function. The impulse response graph @ulzded in time steps of 160
GHz, so the taps are very closely spaced.

In Figure 35, the post convergence linear equalizer tapplateed. The spacing be-
tween these taps is 20 GHz. By comparing the taps with the lsepesponse, it may be
observed that the implemented linear equalizer taps argpaotd close enough to limit the
peak to the center position and the side-band taps are fantedlternating positive and
negative values by trying to approximate the energy in th@desponse. In other words,
the impulse response fallsf@oo quickly and cannot be approximated by a linear equalizer
with taps spaced as far apart as this implementation. TheB#R the LE can accomplish

with this channel is 3E-11, but with a single tap DFE, the BERIioves to 3E-20.

Linear Equalizer BER for Shifted References
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Figure 33. The 20 tap, 72 linear equalizer results. 88.1% of the test fibers were equized by the linear
equalizer.
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F87020 impulse response
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Figure 34. The impulse response of fiber 87 fiset 20, which was not able to be equalized by the linear
equalizer implementation. Notice that there are over 300 saples in the impulse response, and that the
samples were obtained by sampling at 160 GHz.
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Figure 35. The post-simulation tap weights for fiber 87, éfset 20. The spacing between these taps is 20
GHz. Notice that the tap spacing is too far apart and the filtercannot approximate the very narrow
temporal response of the fiber.

77



3.6 Analysis of LE results, comparison with IEEE 802.3aqg comittee

In the analysis performed by the IEEE 802.3aq standards [dds pure FSE was deter-
mined to require over 30 taps in order to equalize 95% of thergiland still imposed a
larger optical power penalty than what was budgeted.

This research has demonstrated a method to equalize 88% slthect fibers with
only 20 FSE taps. The implementation has been shown to petis twith a minimum
BER of 1E-12, even when the additive noise figures used torgenthe data are derived

from the worst case noise figures measured from an existing PH
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CHAPTER 4
DECISION FEEDBACK EQUALIZER RESULTS

4.1 Introduction

The ideal solution to an inter-symbol interference thatlsamodeled as an FIR system is
a decision feedback equalizer. As shown in Section 3.5.1age 74, there are channels
in the data set that would benefit from having a DFE architecttHowever, the DFE
adds a feedback loop to the system. This feedback loop isrthegy implementation
impediment of the high-speed DFE circuit. As discussed atige 1.3.2 starting on page
13, the removal of the feedback loop has been the focus of mem®arch papers. Figure
36 shows an example of an implementation of a serial DFE.

y_slicer[n] Binary
Decisions

B atincance e
C1*® CZ»@
o

y_dfe[n]

y_slicer[n] = Q(y_ffe[n] + C1*y_slicer[n-1] + C2*y_slicer[n-2])
Figure 36. The feedback portion of a DFE filter. The two-tap DFE filter is implemented in a “standard”
serial format.
The feedback loop begins at the output of thiédelay element and proceeds through
the DFE filter, the addition of the FSE output, the slicer, badk to the first delay element.
Unlike the FSE, where the output does notféect the value of then(+ 1)¥ output, the

previous DFE outputs must be resolved to calculate the ”uUBEE output. To process
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data at line rate, the feedback loop must execute at 10 GHz.

Although the standard cell process used is very fast and @adlé large cones of logic
at high clock rates, this process is not fast enough for theutsiof a full adder to resolve in
a single clock period, much less the path through the feddidtar. In order to implement
a DFE in a digital process, the feedback loop must eithermeved or modified to operate

in our process at the symbol rate.

4.2 Addition of a DFE section to the BDLMS algorithm

In addition to the feedback loop, the DFE solution must beadesde addition to the current
linear equalizer architecture. Designing a DFE soluti@t gnevents the forward filter from
operating at speed is not a workable solution. Therefoeeattticipated system diagram
can be drawn by taking into account these restrictions.

Extending the parallel linear equalizer architecture (Fégl9, page 55) to add a DFE
core results in the DFE system implementation shown in Eigdf. The same timing
requirements that were present in the linear equalizegdesust still be satisfied for the
DFE design. Therefore, the system design must allow 16 ¢taitjoube calculated in a
single clock cycle.

Additionally, the weight update circuit must calculate tDEE update equation in ad-
dition to the FSE taps. Once these constraints on the systeraraerstood, potential

solutions can be evaluated.

4.2.1 Unrolling the DFE feedback loop
Parhi’s [21] CDMA loop unrolling paper provides a startingiqt for the methodology of
unrolling a digital feedback loop. Substituting the actualues ¢1) for the older slicer

output allows a further simplification to be made as showni &) (
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Figure 37. The anticipated data flow block diagram for the Blak Delayed LMS algorithm with DFE
filters attached. This diagram takes into account the constaints imposed by the linear equalizer and
DFE solution spaces.

81



y_dlicer[n] = Q{FeedBackFilter[n] + y_f fe[n]}
NumTaps

FBF[n] = Z Coefi[n] * y_dicer[n —i]
i=1
FBF[n] = C4[n] = y_slicer[n— 1] + C,[n] = y_slicer[n — 2]
but y dicer[n—i] e +1

(15)
SO FBF[n] =+C; G,

Q(y_ffen] + Cyn] + Cy[n]) (y_slicer[n—1:n-2] == [00])
. Q(y-f fe[n] + Cy[n] — Co[n]) (y-slicer[n—1:n-2] == [01])
y_slicer[n] =
Q(y-ffe[n] — Ca[n] + Co[n]) (y-slicer[n—1:n-2] ==[10])

Q(y-ffe[n] — Cafn] - C5[n]) (y-slicer[n—1:n-2]==[11])

Once the FBF output is shown to be an additive combinatiohefitter codficients, all
possible combinations of the déieients can be calculated in advance as long as the number
of taps are not large enough that area begins to become arnofite implementation of
Equation 15 is illustrated in Figure 38.

The primary benefit of this formulation is that the FBF can efined between the
output of the FFF and the output of the quantizer as showngarEi38. The math in the
DFE can be pipelined as long as the number of cycles addedasgregious. Because of
the small step size (), the maximum update Step Size = Average (Data = Error).
Assuming a worse case average value for the datd @nd a worst case error condition of
+2, the diference between any two updatesid Dver a delay ofN cycles, the worst case
error in the cofficients isN =27 or roughlyN * 2E —3. Simulations showed that this worst
case update does occasionally occur, as the largest upztatedn iterations of the design
was recorded to be2—- 3. When the largest tap weight update for each converged fiber
was recorded, the mean maximum tap update was found to be @ndbr of & — 4. This
amount of error is on the same order of magnitude as the gadioi error introduced if

the LSB of the tap storage register represents Zhe diference between the quantization
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Figure 38. The data flow diagram for the unrolled DFE core. All possible combinations of the FSE
filter output and DFE coefficients are pre-calculated. The outputs from prior filters are used to select
the correct output of the current filter.
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FFF Fiter [ ® FBF Filter —® Output[1,n]

FFF Filter [—® FBF Filter ——® Output[2,n]
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——» Output[14,n]

FFF Filter |—® FBF Filter —® Output[15,n]

Figure 39. An example of the critical path in a single tap DFE @cuit. The DFE critical path is the
series of 16 muxs connected in series. Output zero is the oktevalue, and is calculated first. Every
other output from one to fifteen is calculated in numerical oder. All 16 outputs must be resolved
within a 625 MHz clock cycle.

induced noise and this delayed source is that quantizatidinced noise is permanently
lost. The delayed cdkcients eventually receive their update. As shown in theiraig
DLMS papers [4], if the output decision is based on an out ¢ dat of co#ficients, there
is little impact to the overall convergence charactersstas long as the updates occur faster
that the channel impulse response drifts.

For a two tap DFE implementation, the critical path has besgluced from sixteen,
two tap FIR filters, to sixteen, four-input muxes. Figure &nbnstrates the critical path

through the feedback filter blocks. Figure 39 shows thatuttith depends on the resolution
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of output 14, which depends on output 13, etc. For simpliitg figure is drawn showing
the critical path for a single tap DFE system. In a two-tap DéiEput 2 would depend on

outputs 1 and 0.

4.3 DFE core implementation

Once the DFE core is unrolled, the DFE cell can be insertedd®st the FSE filter and the
error calculation block. Figure 40 shows how the paths m#ie DFE core contribute to
the critical path. The diagram shows that the unrolled dilgor's critical path starts with
the storage register for the “sliced” variable, propag#tesugh 16, four-input muxes, and
ends back at the storage register. Although the DFE blo&katteiched to parallel forward
filters, the DFE blocks are connected together in series.

Previous diagrams have been oriented with output 15 at fheftthe diagram. Output
zero is the oldest output, and must be calculated first, witipwds one through fifteen

following in order.

4.3.1 DFE core synthesis results

Once the system block diagram was finalized, both Matlab aridrRodels were devel-
oped and iterated until a reasonable implementation wasatbéind analysis demonstrated
improved results when compared with the linear equalizeacedhe Matlab and RTL sim-
ulations produced equivalent results, the final step in tloegss was to determine what
logic/algorithm changes were necessary in order to close timing.

The full DFE module, consisting of 16 two-tap DFE cores wast synthesized, and
failed timing by approximately 1.3 ns. A second test synthess performed using 16
one-tap DFE modules, and the circuit failed again, this toy@57 ps. As a final attempt
to pass timing, the critical timing path of the DFE core wagpl@emented as a stand-alone
test circuit (Figure 41) and synthesized. The test circoitsisted of two, one bit inputs
that are registered inside the block, and a one bit mux.

When synthesized, the block contains just the criticalnigrpath of the full DFE core,
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Figure 40. A block diagram of the DFE critical path showing the components inside the DFE core that
contribute to the critical path.
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Figure 41. Three instances of the DFE test core and how the gomit from the mux is routed to the
selection port of the next mux in the critical path. The test ore for each FBF contains only two, one-bit
registers and a one bit mux. The resulting synthesized bloclks much more narrow than the full DFE
core. As a result, when all 16 cores are instanced, the critit path through the muxes passes timing.

the clock-to-output path of a register, and the delay patbuigh a two-input mux. The size
of the synthesized block is just large enough to containegesters and the mux. The test
core was then connected in the same fashion as the full DF& aad synthesized. This
test circuit of 16 serially connected DFE cores passed gmiith a critical delay path of
1.56 ns, or a maximum execution speed of 640 MHz. This is aimafgnly 2.56%, less
than the 7% margin that is normal design practice.

The critical timing path in the test circuit and full DFE aiit were compared and
found to consist of the same logic cone. The critical paths=is of the chain of logic that
starts with output number 15 from the previous calculatrans through the select line and
output port of 15 multiplexers, and ends at the input porhefdutput data register. The
only differences between the test and full DFE circuit were in the anotipath delay
between the register to mux and mux output to the selectiongbdhe next mux in the

chain. Figure 41 shows the layout of the test circuit that syaghesized. In this case, the
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Figure 42. The synthesized size of the full DFE core. Two inahces of the full DFE core are shown
connected together. The critical path in this case is much liger than the equivalent path in the test
DFE core synthesis.

outer blocks are drawn to the physical scale that they sgizbé to. Observe that the outer
boundary of the DFE core is close to the edge of the mux, whitdisein the critical path.

Figure 42 shows the synthesized size of a small portion ofulhé6 parallel one tap
DFE cores. In this case, the adders inside the core have rhad@RE core much taller
than the test circuit. The boundary of the DFE core is veryaigay from the edge of
the mux. Therefore, the DFE filter result signal must traighiicantly further in the full
implementation when compared to the test circuit.

The ideal solution would be to keep the logic inside the DFEesthe same, but stretch
the containers so that the output of a mux is very close tortpetiof the next mux in line.
Figure 43 demonstrates what the ideal synthesis resultdtoak like for a one-tap DFE
core.

There are several solutions to this problem, but unforelgaall of them involve find-

ing additional resources. The compute server that wasadlaifor the synthesis was an
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Figure 43. The ideal aspect ratio for the synthesized full DE core is shown. Notice that the height of
the synthesized container is roughly that of the mux, and thathe path between the two muxes is very
short.

older machine with only 4 GB of RAM There were computers with more RAM available
for use, but those machines had an operating system coniflictive synthesis tool. There-
fore, the only choice of machine was the older machine wittitéd amounts of RAM.

When the full parallel DFE core was synthesized with the 1&&ores in a top-down
fashion, the synthesis machine ran out of memory. Next, yhéhssis was performed in
a bottom-up order. In this method, the DFE core was syntadsiouted, and saved as a
macro. Next, the top-level synthesis was performed, icstgnthe previously saved DFE
core macro.

The DFE core was labeled with a ‘sébnttouch’ attribute to prevent it from being
loaded into memory 16 times. When just the DFE core was sgizéé, the timing con-
straints placed on the inputs did not result in the Joagrow implementation, instead the
synthesis tool claimed that the circuit was un-achievadiéd,gave up. A cell boundary for
the synthesis tool could be defined, but that functionabtyuires a software license that
was not available for this research.

Another solution would be to individually synthesize thempmnent parts of the DFE

core and then try to instantiate them into a lgragrow block. This approach would take a

When compared with the amount of RAM a “normal” PC contain§Btof RAM would appear to be a
very large amount. The average ASIC place and route platfoday is a 64 bit server containing 16 to 32
GB of RAM.
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very long time and require more skill with the synthesis tihait was not available.
Atool-based solution to this problem was searched for esxtety, but eventually all the
possible methods were rejected for one reason: lack of reseuOnce this result became
obvious, the only solution was to validate the test synthasia reasonable simulation
of what could be accomplished with enough resources. A desgiew was held with
several synthesis tool expeitand the experimental results discussed. The result of the
design review was that the critical path synthesis testtestithe single tap test core were
suficient to show that timing closure could be achieved on the ouigut net if the routing

of the net was performed with ficient care and a realistic set of resources.

4.3.2 BDLMS architecture with DFE

Once the synthesis constraints for the DFE cores were faupretiude a DFE core larger
than one tap, the complete system diagram for the DFE impi@atien of the BDLMS
algorithm can be drawn (Figure 44). The addition of the DFEesanodifies the LMS

system design slightly:

1. The data that is used in the error calculation step mustabedsfor the additional
latency caused by the DFE calculation time, adding an aniti480 registers to the

power and circuit area.

2. The weight update circuit must now calculate an addititeqa update for the DFE

tap, adding an additional 16-tap FIR filter, with the assieclarea and power costs.

4.4 Decision feedback equalizer circuit results
Using the one tap, pipelined DFE system design previoudgudised, all 324 channel
models were simulated with the default cursor position €04 Of the 324 channels,

287 converged with a bit error rate less thah-112. Upon inspection there were several

2For help with this problem, | consulted with R. fidge and J. Mulrooney. R. Siiidge is an ASIC
Architect with Intel and has successfully designed the itegcture for over 20 commercial telecom ASICs
for Nortel and Intel. J. Mulrooney is a synthesis tool leathmvintel and has over 15 years of ASIC synthesis
experience, the last five years of which has been spent wpvkith the library in question.
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Figure 45. The performance of the one-tap DFE, 20 tap /2 FSE BDLMS circuit. The circuit is able to
equalize 93.8% (or 304 out of 324) of the IEEE fiber set. Of thelfiers that do not converge with a single
DFE tap, 15 were found to converge with one to five additional BE taps, with 11 converging when two
DFE taps are used.

fibers that were found to not have their main lobe near theecenft the filter. Those

fibers that failed to converge were tested with a Matlab @ogthat shifted the cursor
over a range of negative ten to positive ten. Any improvesevdre recorded and the
equivalent RTL simulation performed. As a result, an addgi 17 fibers converged with
new alignments. After the cursor alignment experiment veaspete, a total of 304 out of

324 fibers (93.8%) converged to a BER less than 1E-12 (Fidae 4

4.4.1 Fibers that do not converge with 1 DFE tap.

While being able to equalize almost 94% of the fibers is a vaptovement from the linear
equalizer performance, it still does not meet the IEEE stadtid goal of 95% equalization.
The number of DFE taps required to converge the remainingreia was investigated and
is shown in Table 6.

The results indicate that adding a second DFE tap to the mgat¢ation will result in
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Table 6. For each fiber that was not equalized by the one-tap DE, a test was performed to find the
number of DFE taps required in order to reach the performancetarget. This table shows that five of
the fibers could not be equalized with six taps. The largest ga is achieved by adding a second DFE
tap.

=

Number of Fibers that equalize with 2 DFE Taps 1
Number of Fibers that equalize with 3 DFE Taps
Number of Fibers that equalize with 4 DFE taps
Number of Fibers that equalize with 5 DFE Taps
Number of Fibers that equalize with 6 DFE Taps
Number of Fibers that do not equalize with more than|6

DFE Taps

glrR| k| k|-

a solution that meets the IEEE goals of equalizing 95% of tbestvcase, legacy fiber.
Repeating this research with a 60 or 45 nm process wouldyliethieve the goal of im-
plementing a two tap DFE system. Meeting the IEEE 802.3aglsta’s suggested imple-
mentation of 20 FSE taps and 4 DFE taps is unlikely even witkstef process. However,
the 29 DFE tap equalizes an additional 11 channels, bringing tte tw 315, or 97.2% of
the test set. With this implementation, it may not be neggdsaimplement the complete

|[EEE standard.

4.4.2 Comparison with serial DFE algorithm

An interesting question is how these results compare with@Hz, serial DFE algorithm,
using Matlab’s double precision floating-point mathenwdtibrary. Figure 46 shows how
the RTL results compare against the Matlab theoreticaltsesthis figure shows that the
double precision, non-delayed serial results are better those obtained by the physical
implementation. This result is expected, as truncatfteces alone reduce the precision and
BER of the algorithm. For most of the channels, thigéedlences are minor and unimportant,
but for those channels that are close to the 1E-12 BER pesiocer metric, Figure 47
shows that there are eight channels where the performanedtyenposed by the parallel
implementation is enough to cause the circuit to have anssxegor rate. For those eight
channels, the serial BER can be as much as 80 dB better th&Tth@nplementation.

This was the penalty for implementing the design in a fixedhpdligital process.
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Serial 1 Tap DFE and RTL 1 Tap DFE Implementation
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Figure 46. The performance of the RTL DFE circuit is comparedagainst the perfect Matlab serial

implementation. This Figure is sorted by the Matlab BER. Thae are some channels that appear to
perform better in the RTL implementation, but those results all occur at the very low BER rates where

estimates of BER are less reliable. At realistic BER rates,he serial implementation performs better

than the parallel, RTL implementation.
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Serial 1 Tap DFE and RTL 1 Tap DFE Implementation
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Figure 47. The high BER region of the DFE performance graph isexamined in greater detail. There
are eight channels whose performance was fficient in the serial Matlab model but when implemented
in RTL was deficient.
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4.5 Summary of DFE Results

Using VLSI loop unrolling techniques, the iteration proedsund that has limited the
performance of digitally implemented DFE designs has béegliped and shown to have
substantially similar performance to the standard selggrahm. While a combined syn-
thesis of the full DFE adaptive equalizer circuit was notgiole because of CPU memory
limitations, the performance of the individual compondrds been characterized and been
judged to be achievable by those experienced in synthegmisg and control.

The resulting design of 20 FSE taps and 1 DFE tap is able tolizequ23.8% of the
fibers and an additional DFE tap will enable the circuit to&ge 97.2% of the fibers
modeled, exceeding the IEEE standard’s requirement of 9&#&&chieving it using two

fewer DFE taps than was recommended.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Research Conclusions

Using a novel method, a serial adaptive equalizer has beareded into a parallel imple-
mentation. This work has resulted in an RTL implementatibaroadaptive equalizer for
10Gb Ethernet. This implementation significantly redubescomplexity of the design and
layout tasks because it uses existing lower rate ADCs, ankthaining implementation is
performed in a purely digital process. The linear equalidesign is able to equalize 88%
of the worst case fibers.

The iteration process bound that served as the primary imaed to the implementa-
tion of a parallel DFE algorithm has been unrolled, leadothe first RTL implementation
of a 10 Gbps adaptive equalizer. The presented one-tap Di&&izey has been shown to
equalize 93.8 % of the fiber data sets. Process improvemavedieen identified that have
the potential to improve the equalization rate to 97%, edcwpthe original IEEE study

group’s goal of equalizing 95% of the subject fibers.

5.2 Research Contributions

The described research makes several novel contributetiset general knowledge of

adaptive filters.

1. Digital control of adaptive filters. The advantages of analog adaptive filters have
been discussed earlier in this thesis. These advantagedén@duced power con-
sumption and the use of monolithic ADCs. One of the major thaaks with an
analog design is the tap convergence algorithm must beatmaiby analog logic,
imposing a limit on the complexity of the convergence altjon. In addition, the
taps may not be pre-set based on a’priori knowledge, as therat a digital inter-

face from which to control the taps. By implementing a digdantrol loop, the
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proposed design is the first 10 GHz adaptive filter that allawysneral purpose pro-
cessor to interact with the adaptive filter, and allow thelpegling of codicients.
In addition, because the gradient descent algorithm igydesdiin digital logic, the
LMS algorithm may be replaced by another method with littlgoact on the high
speed portion of the circuit. LMS is used because it is sitplenplement, fast, and
has low overhead. The proposed design allows the LMS logieteeplaced with a

more robust or complicated algorithm without impacting pleeformance.

. 10 GHz linear equalizer. The linear equalizer design demonstrates a parallel, scal-
able filter that is speed independent. By providing a metlooddréak the adaptive
equalizer into parallel blocks, the adaptive equalizer may be implemented in a
digital as opposed to analog process. The analog processds more subject to
process, temperature, and signal integritigets. The design process is essentially
a manual one, any changes to the design may require a cotypiete layout. A
digital design process may be re-targeted to a new foundprasess using only
CPU cycles, and the post-layout design checking is much toot@riven, requiring
substantially fewer man hours, thus becoming much less prome. The presented
linear equalizer design could easily be expanded to equali20 GHz system by
keeping the same clock rate and doubling the number of filttances. To double
the operating speed of an analog system would require a etend-design of the
entire circuit. The proposed digital design could be cotagefrom a 10 GHz system

to a 20 GHz system very quickly.

. Parallel ADCs for an adaptive filter. Analog adaptive filters use monolithic ADCs
running at very high rates of speed. The main obstacle to ¢lsegd of these con-
verters is the conversion speed of the analog signal to tatigpresentation, not the
sample window. By demonstrating that the digital adaptiverfis tolerant of parallel

ADC:s, this project has eliminated the dependence on the A@@earsion speed and
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moved the dependency to the sampling window. This allowgeptdéeams to either
greatly increase their sample rate, or, use the currengjddsr several generations

of projects, rather than having to design a new ADC for evaty mcrease.

4. Digital 10 GHz DFE implementation. By unrolling the DFE feedback loop, a one
tap DFE has been demonstrated and shown to be feasible. ndwiilif a problem
required a DFE, an analog implementation was required. eraer many problems
that would benefit from having a DFE solution, but the impletagon cost was
too great. Now, simple DFEs may be designed into solutioaswlere previously

off-limits because of the cost of the analog implementation.

5.3 Future Work

There are several areas of work that are candidates foefutgearch.

e Up-sample and interpolate the measured impulse respoossbw more precise
clock jitter simulation. The goal of the research would beharacterize how much
clock jitter on the ADCs can be tolerated before significarfgrmance degradation
occurs. During this research, experiments were perforntestevthe delay between
the LE taps and the DFE taps was the primary variable, but ndgsive results were
found. These experiments were performed before a serioosiarthe simulation
was resolved, so the error may have been maskingibets of the delay. In addition,
the range of the delay was constrained to under 100 cyclesdbr to prove that the
predicted delay boundary of 625e3 clock cycles is corrdw,upper range of the
delay time needs to be extended. In addition, a new data goestep needs to be
created to simulate a changing channel at 1 KHz. This woldsvad boundary to be

found on how much the DFE can be pipelined in #io® to implement 2 DFE taps.

e Can the selective tap update methods suggested in [16, 1#jlized to reduce the

power consumption, and if so, by how much?
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e The proposal [27] to implement the EDC inside the ADC mighimlified to work
with a post-resolution ADC value. Initial investigatiortanthe recasting of this al-
gorithm suggests that the critical path is the summatiohi&e operands. This crit-
ical path was test synthesized and found to meet timing fomsung three, five-bit
operands within an 833 ps clock period. Thus, if the algarittan be successfully

recast, then implementation should be feasible.

e M-ary phase shift keying (M-PSK) can be considered a supeafsbe pulse ampli-
tude modulation method used in the 10 Gbps Ethernet standiéed 10 GbE, M-
PSK uses a blind equalization algorithm to remove multhatd ISI €fects. The
methods used in M-PSK tend to be computationally complexeaf the type that
can be performed in an analog implementation. An investgaif M-PSK blind
equalization algorithms could be performed with an eye tdeaonversion into a
parallel algorithm. The blind equalization algorithm cdtihen be applied in place
of the LMS methodology proposed here, removing the need faiaing sequence

or eye-opening monitor.
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