

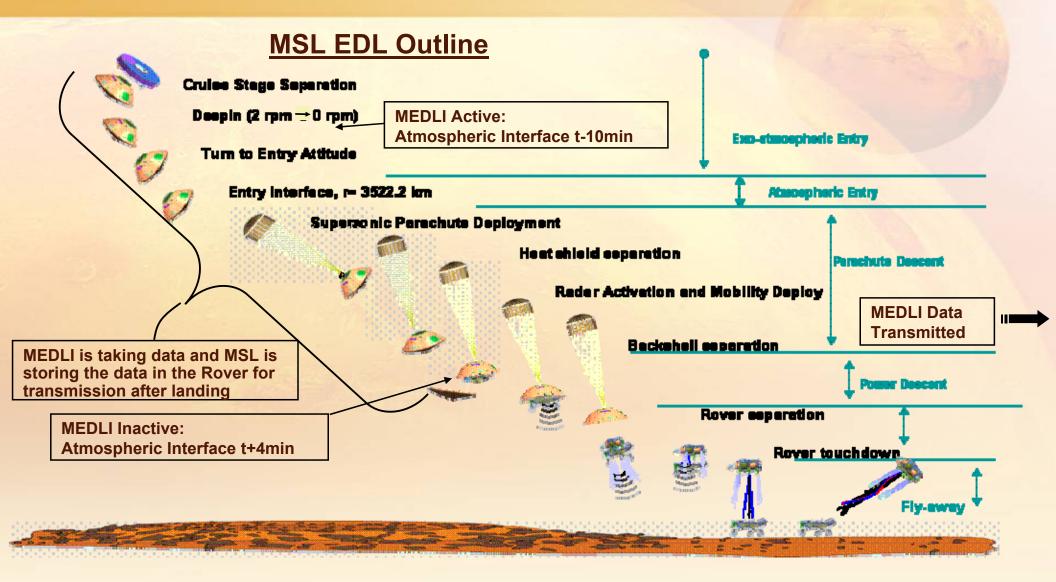


### Mars Entry Atmospheric Data System (MEADS) Requirements and Design for Mars Science Laboratory (MSL)

Michelle Munk, Mark Hutchinson, Michael Mitchell, Peter Parker, Alan Little, Jeff Herath, Walter Bruce, Neil Cheatwood

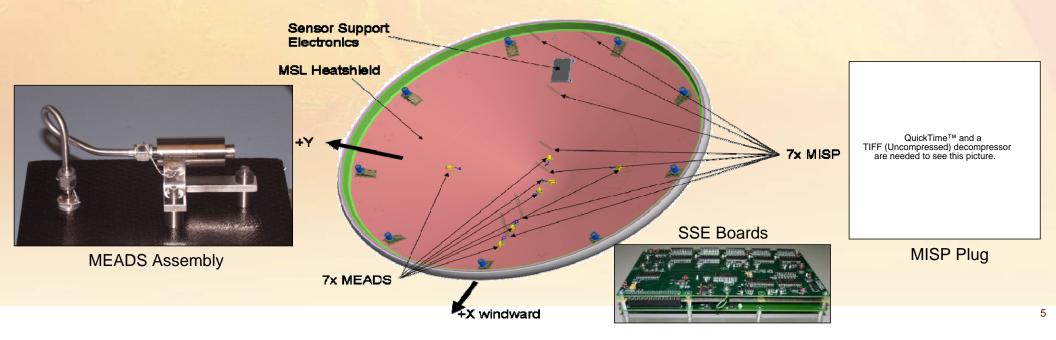
**NASA Langley Research Center, Hampton, VA** 

6th International Planetary Probe Workshop | Atlanta, GA | June 25, 2008

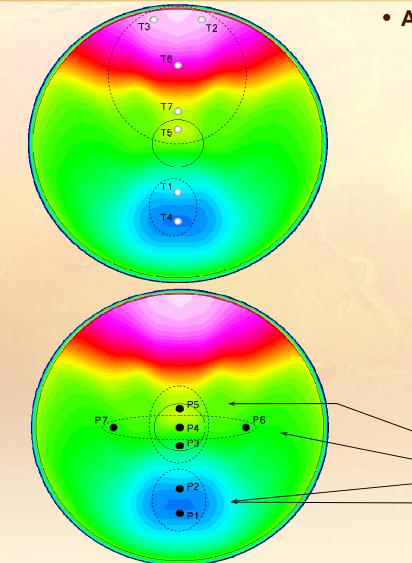



- What is MEDLI?
- MEADS requirements and testing
  - -MSL system aspects
  - -MEADS performance aspects
    - •Transducers
    - Port hole
  - -Environmental Testing
- Recent and Near-Term MEADS activities

### MSL Entry, Descent, and Landing Instrumentation (MEDLI) Rationale


- MSL is taxing the limits of current modeling capabilities for Mars entry missions
  - Aeroheating uncertainties are greater than 50% on heatshield, due to early transition to turbulence, surface chemistry, and ablation induced roughness.
- A primary source of uncertainty is a lack of relevant flight data for improved model validation
  - A small amount of Thermal Protection System (TPS) performance data was obtained from Pathfinder, but no direct measurements of aeroheating, aerodynamics, or atmosphere.
- MEDLI is a suite of instrumentation embedded in the heatshield of the MSL entry vehicle
  - Measures temperature, TPS recession, and pressure
- MEDLI will collect an order of magnitude more EDL data than all previous Mars missions combined
  - Thermocouple and recession sensor data will significantly improve our understanding of aeroheating and TPS performance uncertainties for future missions.
  - Pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes.

### **MEDLI Operations Concept During MSL EDL**



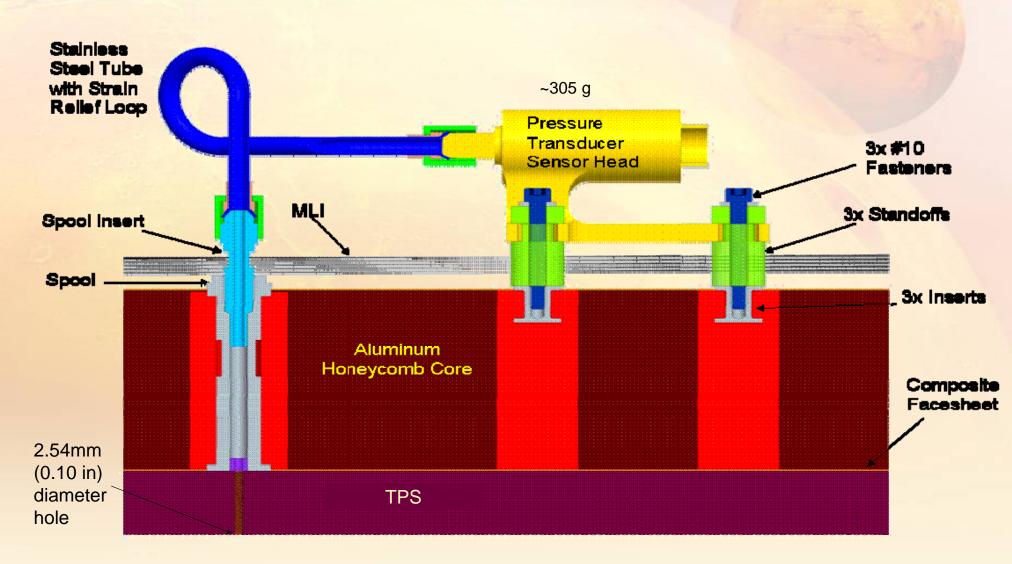

### MEDLI System Description: 7 + 7

- MEDLI Instrumentation consists of:
  - -7 pressure ports through heatshield Mars Entry Atmospheric Data System (MEADS)
  - 7 sensor plugs, each containing four thermocouples and a recession sensor Mars Integrated Sensor Plug (MISP)
- Sensor Support Electronics provides power to the sensors, conditions and digitizes the sensor signals
- Digitized data stream is sent via MSL's Descent Stage to Rover for storage until the data is telemetered back to Earth after landing



### MEDLI Sensor Placement to Meet Science Objectives




#### Aerodynamics & Atmospheric Objectives (MEADS)

- Measure local discrete surface pressure measurements for post flight estimation of:
  - dynamic pressure
  - angle-of-attack
  - angle-of sideslip
- Separate aerodynamics from atmosphere
- Determine density profile over large horizontal distance
- Isolate wind component
- Confirm aerodynamics at high angles of attack

### **Aerodynamics/Atmosphere Objectives**

|   | Technical Objectives   | Location |    |            |    |    |           |    |
|---|------------------------|----------|----|------------|----|----|-----------|----|
|   |                        | P1       | P2 | <b>P</b> 3 | P4 | P5 | <b>P6</b> | P7 |
|   | Basic Surface Pressure | Х        | Х  | Χ          | Х  | Х  | Х         | Х  |
| • | Angle of Attack        | X        | Х  | Х          | Х  | Х  |           |    |
| • | Angle of Sideslip      |          |    |            | Х  |    | Х         | Х  |
| • | Dynamic Pressure       | Х        | Х  |            |    |    |           |    |
| - | Mach Number            | Х        | X  |            |    |    |           |    |

### **MEADS Subsystem Design**



## **MEDLI/MEADS** Requirements

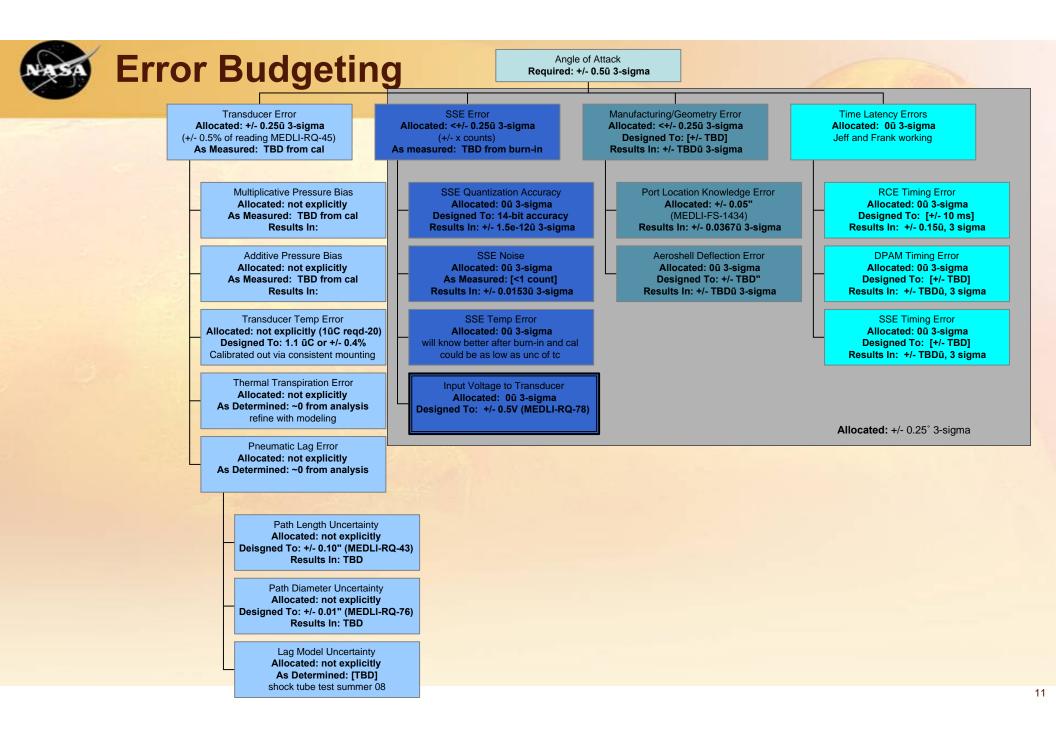
### Overarching MEDLI Requirement: Don't cause harm to MSL

- Hole in TPS must be thoroughly tested
- Hardware must maintain integrity and not impact MSL, through all environments
- Live within 15 kg mass allocation (All of MEDLI) (12.5 kg of removed ballast)
- Stringent PP/CC requirements (100 spores for all of MEDLI)

### MEADS Performance Requirements

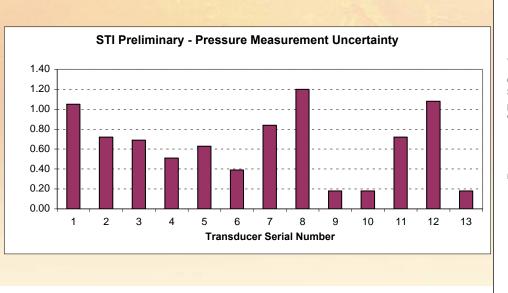
- Measure pressures to reconstruct angle of attack (Alpha) within +/- 0.5 degrees where free stream dynamic pressure is greater than [850 Pa].
- Measure pressures to reconstruct angle of sideslip (Beta) within +/- 0.5 degrees where free stream dynamic pressure is greater than [850 Pa].
- Measure pressures to reconstruct dynamic pressure (qbar) within +/- 2 percent of measured value where free stream dynamic pressure is greater than [850 Pa].
- Measure pressures to reconstruct Mach number within +/- 0.1 where free stream dynamic pressure is greater than [850 Pa].

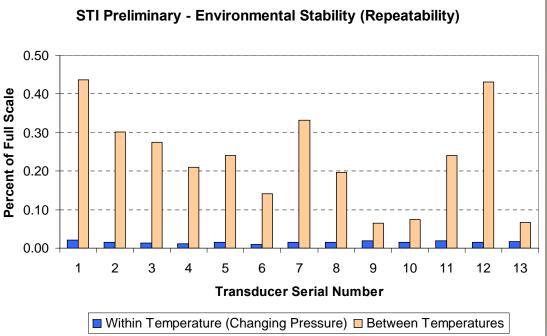


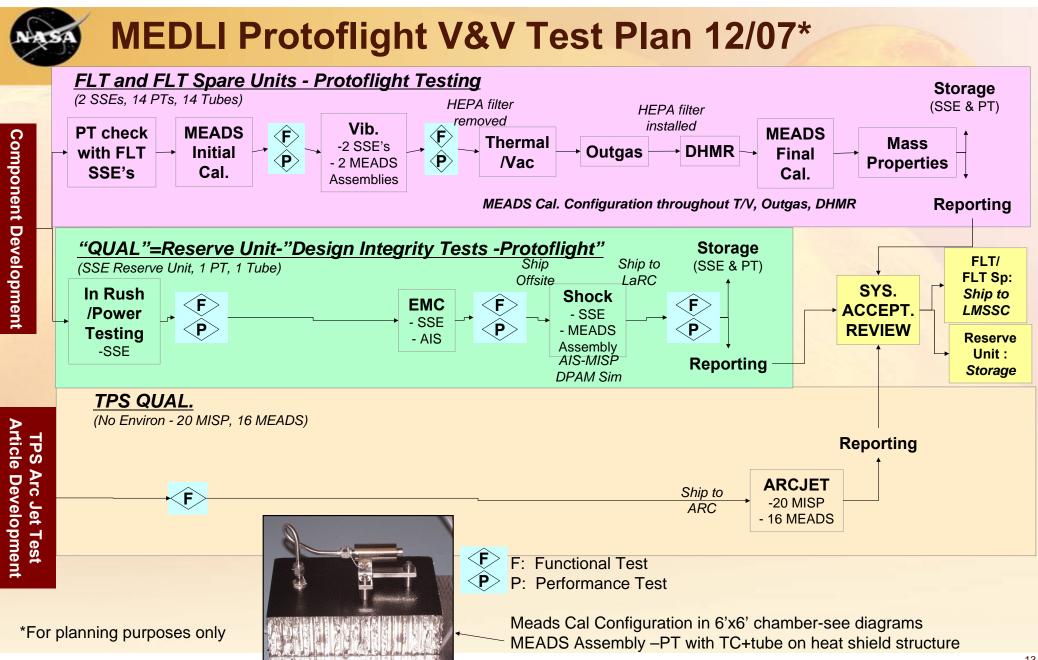

# **MEADS Requirements**

| MEDLI Pressure Port Location                                         | The FS shall determine the locations of the centers of all MEDLI pressure ports as installed to within [±1.27 mm] in pre-<br>flight heatshield coordinates. | Must know where ports are located                                       |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| MEDLI Pressure Port Location Knowledge                               | The Flight System (FS) shall install each pressure port within [12.7 mm] of its nominal location                                                            | Must put ports where expected                                           |
| MEDLI Pressure Port Diameter                                         | The FS shall provide MEDLI pressure ports with a diameter of [2.54 mm +/- 0.001 mm] through the SLA material.                                               | fMust specify diameter to drill                                         |
| MSL Heatshield Material                                              | The FS shall provide PICA that is consistent with the flight lot PICA.                                                                                      | Must have flight-lot TPS for qual testing.                              |
| MEDLI Pressure Port Orthogonality                                    | Each MEDLI pressure port shall be orthogonal to the heatshield surface through the heatshield material [+/- 1.0 degrees].                                   | Keeps port opening circular                                             |
| MEDLI Pressure Transducer Temperature<br>Knowledge                   | The temperature of each MEDLI pressure transducer shall be known, [+/- 1°C], during data collection phase                                                   | The transducers are calibrated producing curves relative to temperature |
| MEDLI Pressure Transducer Temperature<br>Sampling Rate               | The temperature of each MEDLI pressure transducer head shall<br>be sampled at a minimum rate of [0.2 Hz], during data collection<br>phase                   |                                                                         |
| MEDLI Pressure Transducer Survival<br>Temperature Range              | The temperature of each MEDLI pressure transducer head shall be maintained between [-65 F and 200 F].                                                       | To avoid damaging the transducers. We need to monitor.                  |
| MEDLI Pressure Transducer Operating<br>Temperature Range             | The temperature of each MEDLI pressure transducer head shall be maintained between [-65 F and 200 F] during data collection.                                |                                                                         |
| MEDLI Pressure Transducer Electronics<br>Operating Temperature Range | The temperature of each MEDLI pressure transducer electronics shall be maintained between [-54 C and +79 C] during operations.                              | Min and max for operation from vendor (-65 F to 175 F)                  |
| MEDLI Pressure Transducer Electronics<br>Survival Temperature Range  | The temperature of each MEDLI pressure transducer electronics shall be maintained between [-54 C and +93 C] at all times.                                   | Survival temps from vendor (-65 F to 200 F)                             |




# **MEADS Requirements (cont'd)**


| MEDLI Pressure Path Length                             | The length of each MEDLI pressure path shall be less than [381 mm (15 in)]                                                        | Max Allowable Lag. Approx. 15 in. The goal is to have all ports the same length (not required).                        |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| MEDLI Pressure Path Segment Length<br>Knowledge        | The length of each MEDLI pressure path segment shall be known to within [2.54 mm (0.1 in)].                                       | To accurately model system response.<br>Segments include but are not limited to: TPS,<br>spool, tubing and transducer. |
| MEDLI Pressure Path Segment Diameter<br>Knowledge      | The diameter of each MEDLI pressure path segment shall be known to within [0.254mm (0.010 in)]                                    | To accurately model system response.                                                                                   |
| MEDLI Pressure Path Debris                             | Each MEDLI pressure path shall be kept free of obstructions.                                                                      | Can only control until launch. Want integrity checks during cruise. Allow for fiberoptic inspection.                   |
| MEDLI Pressure Transducer Accuracy                     | Each MEDLI pressure transducer shall be calibrated to produce outputs that are [+/- 0.5 % of reading] between [850 Pa and 30 kPa] | Accomplished only with additional calibrations                                                                         |
| MEDLI Pressure Transducer Input Voltage                | The input voltage for each MEDLI pressure transducer shall be [28 V +/- 4V]                                                       |                                                                                                                        |
| MEDLI Pressure Transducer Input Voltage<br>Knowledge   | The input voltage for each MEDLI pressure transducer shall be known within [+/- 0.5V]                                             | We have to ensure this, to achieve 0.5% accuracy.                                                                      |
| MEDLI Pressure Transducer Input Voltage<br>Sample Rate | The input voltage for each MEDLI pressure transducer shall be sampled at a minimum rate of [0.2 Hz], during data collection.      |                                                                                                                        |




### **Pressure Transducer Performance**

- Space-qualified pressure transducers have long lead times
- Requirements based on SEADS, but electronics were removed from pressure head (thermal)
- 2 vendors responded to solicitation: Tavis, Inc. (heritage) and Stellar Technologies, Inc. (STI)
- Both products purchased to reduce schedule risk (both received Oct 07)
- Vendors did vibration testing to MSL protoflight levels, with good results



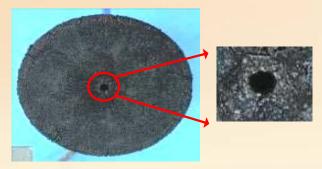




### **Predicted MEADS Flight Environment**

- Arcjet testing requirements come from CFD predictions of flight environment at pressure port locations, margined
- MSL 07-25 Trajectory, +3-Sigma Conditions

|          | Pressure | Heat Flux | Shear | Heat Load |
|----------|----------|-----------|-------|-----------|
| Location | (atm)    | (W/cm2)   | (Pa)  | (J/cm2)   |
| P1       | 0.38     | 59        | 6     | 2200      |
| P2       | 0.38     | 59        | 3     | 2300      |
| P3       | 0.37     | 90        | 30    | 3700      |
| P4       | 0.32     | 128       | 90    | 4500      |
| P5       | 0.24     | 140       | 154   | 4600      |
| P6 & P7  | 0.30     | 108       | 76    | 3600      |


• These conditions ARE NOT the MSL margined flight conditions

### A Hole in the TPS??

- Must do adequate testing to prove that port hole will not cause TPS failure (and that we can get a good pressure measurement....)
- All primary objectives were met during initial developmental arc-jet testing (June 2007)
  - No discernable degradation of port shape at SLA interface for each diameter
  - The amount of surface recession observed was minimal and will not invalidate pressure measurements
  - Demonstrated ability to measure pressure in SLA-561V
  - The bondline temperature for any model never exceeded the maximum allowable
  - Pyrolysis did not show an effect on the measurements at tested conditions; no sleeve needed



Boeing Large Core Arc Tunnel (LCAT)



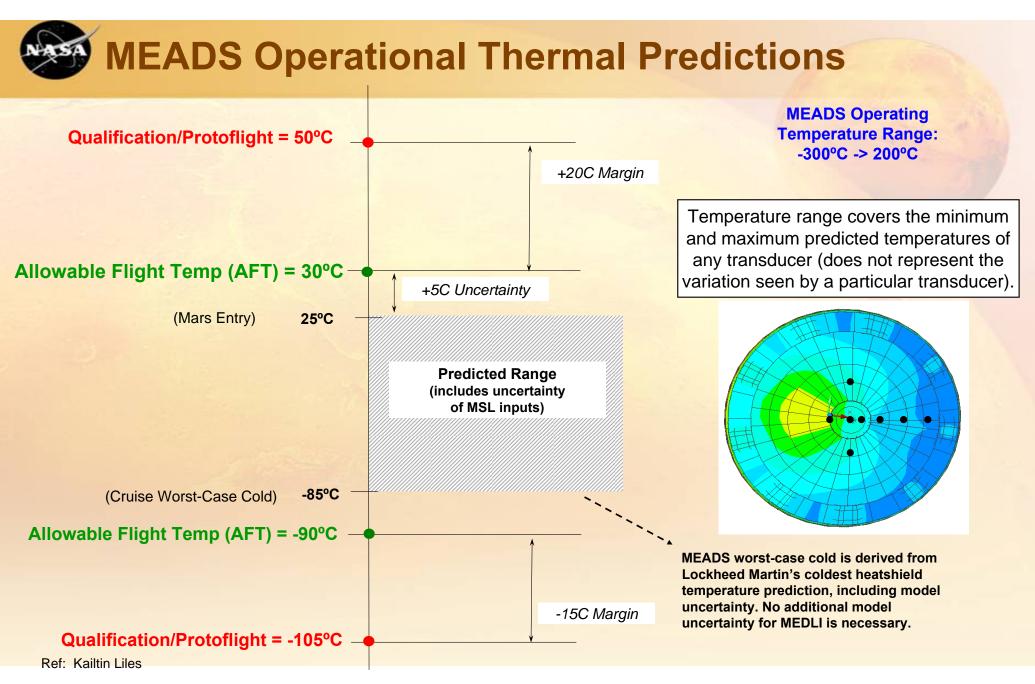
0.10" port hole in SLA-561V

## A Hole in the TPS?? (cont'd)

- MSL switch from SLA-561V to PICA in October of 2007
  - Repeat stagnation testing
  - Shear testing
  - Qualification testing (stagnation and shear)
  - Must now be concerned about port location relative to seams
  - With MSL, defining acceptable hole shape change (bondline temperature still met)
- Challenges
  - Facility availability -- Boeing LCAT is becoming routine for MEADS

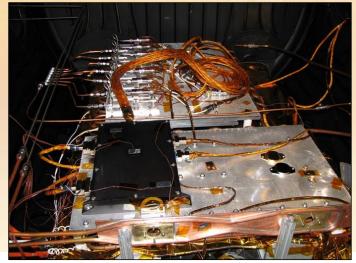
Flow

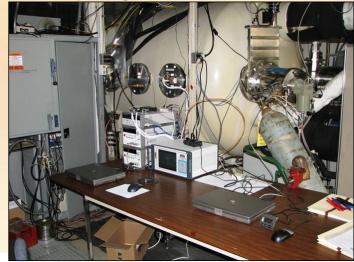
- Synchronization with MSL TPS qualification plan
- PICA porosity
- High pressure, low heating case


#### QuickTime<sup>™</sup> and a TIFF (Uncompressed) decompressor are needed to see this picture.

#### Preliminary 0.04" - 0.10" port holes in PICA

RTV-560


PICA






### **Recent and Near-Term MEADS Activities**

- Completed 9 days of calibration testing for the flight transducers and an SSE box
  - Thermal vacuum chamber operations
  - SSE and transducer temperature independently controlled
  - Series of 8-14 pressure points run at each temperature setpoint; data collected through SSE
- Vibe, shock of qual transducer completed
- Planning calibration of LCAT nozzle for shear testing in July, further stagnation testing with collared PICA models
- Qualification arcjet plans in work with MSL
- Delivery of 1 transducer for Heatshield #1 system tests early August







- MEDLI instrumentation suite (finally!) will measure temperature, pressure, and recession of MSL entry vehicle's heatshield
- MEDLI will collect an order of magnitude more EDL data than all previous Mars missions combined, providing the community with a unique opportunity to validate models and improve predictions for missions to come
- MEADS is proving that a pressure measurement system can operate in an ablative environment
- Taking even a simple measurement system from paper to flight has extreme challenges! (but it's sure to be worth it...)
- There are and will continue to be lots of lessons learned for the next time