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GEORGIA INSTITUTE O:F TECHNOLOGY 
ENGINEERING EXPERIMENT STATION 

ATLANTA. GEORGIA 30332 

August 3, J. 964 

Office of Grants and Research Contracts 
National Aeronautics and Space Adrninistration 
Washington 25, D. C. 

APR 2 2 1970 

Attention: Code SC 

Subject: Research Grant No. NsG-:>71 
Semiannual Status Report for the Period 
February 1, 1964 to August 1, 1964 
(Georgia Tech Project No. A-765) 

Gentlemen: 

The following represents a sum1nary of the project status during 
the subject report period. 

1 . The Status 

The official approval of the research grant was received 
April 8, 19 64. Sine e the spring quarter started March 31, 19 64, 
faculty work-loads had already been established and would have 
been difficult to reallocate. Also, it was not possible to obtain 
a graduate student to assist on the project so close to the end 
of the academic year. It was for these reasons that work on 
the project was not started until June 15, 1964. Due to this 
delay, it is probable that an extension of time may be needed. 
No money was drawn from the project funds during the period 
February 1 to June 15, 1964. 

2. Personnel 

Mr. Wolfram Stadler, graduate student in the School of 
Engineering Mechanics, was employed as a graduate assistant 
( 1 /2 time) beginning June 1 S, 1964. He received the degree 
Master of Science of Aerospace Engineering from Georgia Tech 
in June 1964, and is continuing his Ph. D. program in Engineering 
Mechanics. He will be assisting in all phases of investigation 
pertaining to the project. The work accomplished by him will be 
considered as contributory material for his Ph. D. thesis. One 
additional graduate assistant may be employed, starting September 
1964. 
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3. Progress During the Reporting Period 

Grant No. NsG-561 
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(a) Mr. Stadler worked for approximately two weeks 
on a bibliography of references pertinent to the project. He 
will also be responsible for keeping this bibliography up to 
date. 

(b) The governing differential equations related to the 
axisymmetric response of a conical shell subject to blast 
load were formulated, based on the membrane theory of 
shells. The technique of separation of variables was employed 
in obtaining the general solution. An analysis is being made, 
applicable to the response of a conical shell. It is intended 
that a manuscript for this portion of information will be 
prepared. 

(c) A further method being applied to obtain the solution 
of the system, is that of integral transforms. The problem was 
not suitable to the application of Hankel transforms, and it seems, 
at the moment, that the use of Laplace transforms may result 
in a satisfactory solution. 

4. Plans for Next Reporting Period 

(a) It is hoped to extend the applicability of integral 
transforms to the solution of dynamic response problems in
volving blast loads. 

(b) The study will be extended to other shells of revolu
tion. For the most part, elastic membrane theory will be used 
in formulating the problem. 

(c) Progress on the project has been quite satisfactory 
and no major difficulties are foreseen at the present time. 

The expenditures on the subject grant to date are as follows: 



JTSW I c 

Direct Salary and Wages 

Project Director 

Graduate Assistant 

Mate rials and Supplies 

Overhead (20% of Direct 

Grand Total 

$ 

$ 

$ 

CoE:t) $ 

$ 
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1,697.21 

600.00 

2,297.21 

1. 15 

459.67 

2,758.03 

Resnectfullv submitted. 

(./' v 
James Ting-Shun Wang 
Project Director 



GEORGIA INSTITUTE OF TECHNOLOGY 
ENGINEERING EXPERIMENT STATION 

ATLANTA, GEORGIA 30332 

February 3, 1965 

APR 2 2. \Q70 
Office of Grants and Research Contracts 
National Aeronautics andSpace Administration 
Washington 25, D. C. 

Attention: Code SC 

Subject: Research Grant No. NsG-571 
Semiannual Status Report for the Period 
August 1, 1964 to January 31, 1965 
(Georgia Tech Project No. A-765) 

Gentlemen: 

The following represents a sumrnary of the project status during the 
subject report period. 

1. The Status 

As was pointed out in the previous semiannual report, dated 
August 3, 1964, work on the project did not start until June 15, 1964. 
Professor Robert E. Stiemke, Administrator of Research and 
Secretary of the Georgia Tech Research Institute has submitted a 
request dated December 21, 1£t64, to Dr. T. L. K. Smull for an 
extension of time from January 31, 1965 to June 15, 1965. 

2. Personnel 

Mr. Chi.:...Wen Lin was en1ployed as a graduate assistant (1/3 
time) beginning September 1, 1.964. He received a Master of Science 
degree in Engineering from the University of Florida in August of 
1964 and is continuing his Ph. D. program in Engineering Mechanics 
here at the Georgia Institute of Technology. He will be assisting in 
all phases of investigation pertaining to the project. The work accom
plished by him will be considered as contributory material for his 
Ph. D. thesis. 

3. Progress During the Repor!:ing Period 

(a) On September 1;. 1964, a manuscript entitled "Axisymmetric 
Response of a Conical Shell to Blast Load, " was submitted to the 
Acoustic Society of America ' for review. No word has been heard 
from the Society concerning the acceptability of the manuscript. 

(b) A simply supported cylindrical panel under a time- dependent 
load has been studied. The general solution to the governing differ en
tial equation has been obtained by use of an integral transform technique. 
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A specific example is currently being worked out. Preliminary 
computer results based on the general solution seem to compare 
favorably with experimental data presented in the paper "Blast 
Loading of Small Buried Arches, Journal of Structural Division, 
ASCE, October, 1964," by Jay R. Allgood. More computational 
work concerning wider aspects of the specific example will be 
carried on. 

(c) The general problem concerning the axisymmetric 
response of paraboloidal shells of revolution has been formulated 
according to membrane theory. The non-constant coefficients 
involved in the system of governing differential equations are 
lengthy and complex. To obtain a general solution to the system 
of differential equations is d:iffieult. The current attempt has been 
focused on a truncated paraboloidal shell of revolution. Since the 
metric tensor varies slowly from point to point on the middle sur
face of the shell at the region away from the tip, an approximation 
is made that the derivatives of the metric tensor are negligible. 
The governing differential equations have been simplified to some 
extent. It is believed that a solution to the resulting equations can 
be obtained. 

(d) The axisymmetric response of a spherical shell to a 
time -dependent load based on bending theory has been studied. It 
is found that a series solution in terms of Legendre polynomial 
is capable of describing the :response of a complete spherical shell, 
a simply supported hemi-sphertcal shell, and a clamped hemi
spherical shell with modified boundary conditions. 

4. Plans for Next Reporting Period 

(a) Additional computer work will be made on the specific 
example of the cylindrical panel in order to have a better under
standing concerning the response of a shell subject to blast loading. 

(b) The solutions for a truncated paraboloidal shell of revolu
tion based on the approximation mentioned in 3 (c) will be sought. 
It is hoped that the investigation of the truncated one will give better 
insight into the general problern so that solutions may be obtained 
for general paraboloidal shells of revolution. 

(c) Numerical examples will be made for a complete spherical 
and a hemi-spherical shell. An attempt will be made to find solutions 
for a segment of spherical shell. The task is seemingly more diffi
cult than that of a complete or a hemi-spherical shell. 

(d) The work on the project is progressing satisfactorily. 
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The expenditures on the subject grant to date are estimated as follows: 

Direct Salary and Wages 

Project Director 

Graduate Assistant 
(1/2 time) 

Graduate Assistant 
(1/3 time) 

Materials and Supplies 

Overhead (20% of Direct Cost) 

Computer 

Grand Total 

$ 4,577.79 

2,475.00 

1,000.00 

$ 8,052.79 

$ 20.00 

~ 1,614.56 

$ 9,667.35 

~ 100.00 

~ 9,767 . 35 

The Grand Total includes estimated expenditures during January of 1965. The 
exact figures for the January month will be shown in the transaction in February. 

JTSW/c 

RP.snP.~tfullv suhmit.t.P.c1_ 

V 'James Ting~un Wang 
Project Director 



GEORGIA INSTITUTE OF' TECHNOLOGY 
ENGINEERING EXPERIMENT STATION 

ATLANTA. GEORGIA 30332 

August 12, 1965 

Office of Grants and Research Contracts 
National Aeronautics and Space Administration 
Washington 25, D. C. 

Attention: Code SC 

Subject: Research Grant No. NsG-571 
Semiannual Status Report for the Period 
February 1, 1965 to July 31, 1 '965 
(Georgia Tech~ Project No. A-765) 

Gentlemen: 

The following represents a sumrnary of the project status during the 
subject report period. 

1. The Status 

The official expiration date of the research grant was 
February 1, 1965. Approval from the Office of Grants and Research 
Contracts dated March 31, 196i5 for continuing research under subject 
grant through June 15, 1965, was received. 

An official proposal for the second year (beginning June 16, 
1965 and ending June 15, 1966) was submitted to the Office of Grants 
and Research Contracts on February 18, 1965. The approval for the 
extension for one additional year was verbally confirmed by Dr. J. G. 
Etgen, Office of the Basic Research and Applied Mathematics. 

2. Personnel 

Messrs. Wolfram Stadler and Chi-Wen Lin, graduate research 
assistants of Engineering Mechanics, will continue to assist in all 
phases of investigation pertaining to the project. Mr. Lin has suc
cessfully passed the qualifying examination which is required for all 
possible Ph. D. candidates in Engineering Mechanics at the Georgia 
Institute of Technology. His work load for the project has been 
changed from one -third time to five -twelfth time since June 16, 1965. 

3. Progress During the Reporting Period 

(a) No final word has been received from the Acoustic Society 
of America concerning the acceptability of the manuscript "Axisym
metric Response of a Conical Shell to Blast Load." 

(b) A manuscript entitled "Dynamic Response of a Cylindrical 
Shell Segment Subjected to an Arbitrary Loading," was submitted to 
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and was accepted by the Ninth JY.Iidwestern Mechanics Conference. 
The paper will be presented at the conference, August 18, 1965, 
at the University of Wisconsin, Madison, Wisconsin and will be 
published in the Proceedings. 

(c) The axisymmetric response of a complete cylindrical 
shell fixed at both ends has been studied. When the longitudinal 
inertial term is omitted, the preliminary study seems to indicate 
that a general solution can be obtained by use of an integral trans
form technique. 

(d) The study of the axisymmetric response of paraboloidal 
shells of revolution has been continued. The current effort has been 
concentrated in analyzing the f:ree vibration case. The two coupled 
governing differential equations formulated according to the mem
brane theory may be decoupled. The resulting equations become 
extremely lengthy. For a truncated shell where the meridional lines 
are slightly curved, additional approximation may be made by neg
lecting certain small quantities. The governing differential equations 
may be reduced to canonical form. A numerical scheme by use of 
finite difference technique has been established for finding the natural 
frequencies. The recent computer results for a relatively shallow 
paraboloidal shell of revolution seem to compare favorably with the 
lowest natural frequency obtained by C. N. DeSilva and G. E. Tersteeg 
in the paper "Axisymmetric Vibrations of Thin Elastic Shells," Jour. 
Acoustical Society of Amer~ca, April 1964, for a spherical shelfOf 
comparable dimensions. 

The general problem concerning the axisymmetric vibration of 
a paraboloidal shells of revolution based on bending theory has been 
formulated. The equations of :motion obtained are very lengthy and 
complex. Additional effort in Ghecking the final expressions is 
needed. Only numerical methods will be attempted in finding the so
lution of the problem. 

(e) The study of the axisymmetric response of a spherical 
shell has been continued. The recent effort has been concentrated 
on hemi-spherical shell. 

4. Plans for Next Reporting Period 

(a) A specific example concerning the axisymmetric response 
of a complete cylindrical shell with fixed edges will be worked out. 
Further investigation by including all inertial terms for axisymmetric 
as well as asymmetric cases will be attempted. 

(b) Additional computer work will be made on the paraboloidal 
shells of revolution based on n1embrane as well as bending theories. 

(c) The study concerning a hemi-spherical shell will be con-
tinued. The results may be extended to analyze the free vibration of 
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a composite shell (cylinder with a spherical bottom). An attempt 
will also be made to find solutions for a spherical shell segment. 

(d) The work on the project is progressing satisfactorily. 

The expenditures on the subject grant through July 31, 1965 are esti
mated as follows: 

Direct Salary and Wages 

Project Director 

Graduate A,ssistant 

Graduate Assistant 

Other Personal for 
Computer Programming 
and Report Reproduction 

lVIaterials and Supplies 

Overhead (20% of Direct Cost) 

Computer 

Grand Total 

JTSW/c 

$ 7,148 

4,050 

2,175 

400 

$ 13,773 

$ 100 

~ 2,775 

$ 16,648 

~ 500 

! 17,148 

Respectfully submitted, 

·t.~ames T1ng-;:5nun wang 
Project Director 

(/ 
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ABSTRACT 

The dynamic response of thin elastic conical shells subject to blast 

load is formulated according to membrane theory. The solutions are obtained 

by the technique of separation of variables 0ith Poisson's ratio neglected. 



NOMENCLATURE 

All symbols are defined in the text where they first appear, and some 

of the major symbols are listed below: 

a n' b n 

E 

e xx' eee 

h 

t 

(;(_ 
' 

s 
m, n 

N xx' Nee 

p 

Po 

r(x) 

t 

td 

v, w 

x, e 

an' ~n 

a 

p 

v 

wn' w~ 

Generalized Fourier coe~ficients 

Modulus of elasticity 

Strain components 

Thickness of shell 

Length of shell 

Linear differential operators 

Indices 

Stress resultants 

Transient pressure 

Peak overpressure 

Weight function 

Time 

Duration of transient pressure 

Displacement components 

Coordinates 

Separation constants 

Half apical angle 

Mass density of material 

Poisson's ratio 

Circular frequencies 



INTRODUC~~ION 

A theoretical study of the axisymmetric response of conical shells 

to blast load is presented in this invest i gation. The shell is elastic and 

homogeneous. Two partial differential equations which govern the displace

ment components in normal and meridianal directions are derived. The 

solutions are obtained by use of the technique of separation of variables. 

The governing differential equations are essentially unseparable. To 

overcome this difficulty, an . approximation is made so that the equation of 

motion for free vibration is satisfied to its mean value along a generator. 

The results are expressed in series form. 

Some progress has been made in the analytic treatment of the response 

of cylindrical and spherical shells to bl~st load; it appears that very 

limited work on the conical shell has bee~ presented. The investigations 

made by Bluhm [4], Herrmano and Mirsky [8] are good for conical shells with 

small apical angle~ . 

1 



FORMULATION OF THE PROBLEM 

The axisymmetric response of a thin conical shell under blast load will 

be formulated based upon elastic membrane shell theory. The meridianal 

lines and parallel circles will be used as the coordinate system (x:, e) 

as shown in Figure (1). The usual assumptions for thin shells, such as given 

by Timoshenko [14], are used. Due to sy~1etry of loading and the geometry 

of the structure, the displacement or motion is independent of coordinate e. 

Furthermore, no shears exist on the meridianal lines. 

By summing forces in x and normal directions (Figure (1)), the equations 

of motion are found to be 

= ( 1 ) 

-~ .~ 
x tan a = (2) 

where v ~ and w are respectiv~ly the components of displacements in the x and 

normal directions. p and p are components of loading in the x and n direc-
x n 

tions. Nxx and Nee are stress resultants in the x and circumferential 

directions. p is the mass density of the material. 

The stress, strain, and displacement relationships are 

e = Qy 
XX ax (3a) 

1 
a) eee = -(v - w cot 

X 
(3b) 

2 



Figure l. Coord· lna tE: S' s l tern and S ymbols. 
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N 
Eh 

(exx + veee) ~ ~r/[~ +:Y... (v - w cot a)] ;(4a) = 2 = XX 1 X - v 

Nee 
Eh 

(eee + vexx) 
_ _Eh_ [ l ( v - w cot a) + ~ ~-~] ( 

I )(4b) = = \ ' 2 1 - v2 x 1 - v 

where eXX and eee are components of strain in X and e directions, respectively. 

E is the modulus of elasticity and v is the Poisson 1 s ratio. 

Substitution of Equations (4a) and (4b) into Equations (1) and (2) yields 

the following governing differential equations: 

a 2v P,(l 2 92v + l av :Y... aw y_ +Y:!._ - v ) cot a- cot a = 2 X ax X ax 2 · 2 E at2 
ax X X 

p ( 1 2 
2. ( 1 

2 2 - v ) 
'jJ_ av +y_ Y:L cot - ).l ) tan ~ n. 

2 a = a X ax 2 E at
2 Eh 

X X 

The possible boundary conditions are as follows: 

1. Closed Cone: 

v(o, t} is finite 

v(x
2

, t) = 0 if supported at x - x
2 

, [Q_yc + )L ( t )] ax· X V - W CO a x=x2 = 0 i f free at x = 

v(x, o) 

t=t 

= Q_y (x, o) = w(x, o) 
at 

4 

= ~ (x, o) 
at = 0 

2 -p ( 1 -;!__) ·x 
(5a) Eh 

tari a (5b) 



2. Truncated Cone: 

Case I. Supported in x-direction at both ends. 

(~) With zero initial displacements and velocity 

v(x
1

, t) = v(x2 , t) = v(x Y o) - UY (x o~ ) = 0 
- at ' 

w(x, o) = ~ (x, o) = 0 (6 a) 

(b) With initial displacements and zero initial velocity 

v(x
1

, t) = v(x
2

, t) - ~ - at ( x' o) - ~ ( ) = 0 - at x, o 

v(x, o) = F(x), w(x, o) = G(x) 

Case II. Supported in x~direction at x = x
1 

and free at x = x
2 

(a) With zero initial displacements and velocity 

[ Q_y + ~ ( v - w cot a).J = 0 ax X x=x
2 

v ( x
2

, t) 

w(x, o) 

= .Qy (x, o) 
at 

= ~ (x, o) 
at 

V=t 

-- V (X, 0) 

= 0 

= 0 

(6b) 

(6c) 

(b) With initial displacements and zero initial velocity 

[~~ + ~ (v - w cot a)] 

v(x2 , t) = Qy 
(x, o) at 

v(x, o) = 

w(x, o) = 

5 

x==x 
2 

t=:t 
l 

- · ~ at 

F(x) 

G(x) 

= 0 

(x, o) = 0 (6d) 



Since the shock wave front, in general, travels with very high speed, it 

is reasonable to assume that the blast loading function varies with respect 

to time only. The actual loading function is shown irr Figure (2a). Since 

the rise time t is usually short, the re l ation between force and time may 
r 

be approximated by the following continu.o u~; functions: 

p (1 - J~) -t/t p = e d 
0 , td 

or 

p = p ( 1 - t/td) 
0 

which are shown in Figure (2b). td is the duration of the load and p
0 

is 

the peak overpressure. 

6 



(a) 

"\: 
..__ _________ \.~_ ............ ;::::,..._ ______ _ 

t:.~ fc~ t 

(b) 

Figure 2. Load-Time Relation. 
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ANALYSIS 

For a simpler case, consider Poisson 1 s ratio to be small and thus 

negligible and the loading as normal to the surface. The governing differen-

tial Equations (5a) and (5b) then reduce ~o the following form: 

a2
v + l~ v +YL cot 

e_ a2v 
a = 2 2 2 E at

2 ax x- ax X ,. X 

y_ YL cot a = 
e __ 

tan a + 
e_ 

tan a2
w 

a 2 2 Eh E 
at

2 
X X 

The homogeneous solution, neglecting the forcing function, will be sought 

first. By adding Equations (?a) and (?b), we obtain 

a
2

v + l ~ = 
ax2 

X ax 

Equations (8a) and the following equation will be used for seeking 

homogeneous solutions: 

y_ 
2 

X 

Y:J_ cot a 
2 

X 

= 

For possible separation of variables, the homogeneous solutions are 

assumed in the following form: 

w 
c 

co 

n=O 

W (x) f (t) 
n n 

8 

(7 a) 

(7b) 

(Sa) 

(8b) 

( 9) 



v 
c 

n=O 

\i (><) 9 (t) n n 

Substitution of Equations (9) and (10) into Equation (Sa) yields 

2. d
2 p d

2 
f = ~ V Q_g2 + -E tan a W 2 E n dt n dt 

For Equation (15) to be separable, we take 

d2V l dVn + ~2 e.. __ n +-- v = 0 
dx

2 x dx n E n 

tan a w 2 v v = a = n n n n 

d2g 2 - 2 d2f 

dt2 + ~n gn - a 
n dt2 

(10) 

(ll) 

(12) 

(13) 

( 14) 

where ~ and a are separati 1n constants. a is perfectly arbitrary since 
n n n 

we may take 

gn 
gn = 2 

a nr 
and 

v 2 v = a 
n n n 

Equation (10) is thus reduced ! to 

9 



00 00 

v = \
1 

V (x) g (t) = 
c ~ n n 

\ V (x) g (t) 
~ n n 

(lOa) 

n=O n=O 

It is seen that the condition shown in Equation (13) will not satisfy 

Equation (8b). This indicates that the governing differential Equations (Sa) 

and (8b) are essentially unseparable. To overcome this difficulty, Equation 

(8b) may be replaced by an equivalent condition based on a physical point of 

view. It is known that Equation (8b) represents the equation of motion of an 

infinitesimal element of the shell in the normal direction. We write the 

equation of motion for an element along the total length of a generator as 

the condition equivalent to Equation (8b), i.e. 

X 

I 2 _xl (v - w cot a) dx ( 15) 
xl 

Substitution of Equations (9), (lOa) and (13) into Equation (15) yield 

2 
x2 V (x) 

(g + cot a f ) J _n __ dx = 
n n x 

( 16) 
xl 

We shall use the absolute values of the integra~ds to evaluate the 

integrals shown in Equation (16). The integrals when divided by the length 

of the shell, t, will be interpreted as the mean values of the functions , . -' 

under the integrals. Equation (16) thus reduces to 

g (t) + cot2 a f (t) 
n n 

= ( 17) 

10 



where 

= 

X 

J
. 2 SJ.. 

x V ~ sgn V dx 
x

1 
E n n 

x2 

S 
v 
. .....n sgn vn dx 

(18) 

x
1 

x 

This approximation, Equations (15) through (18), will mean that Equation (8b) 

is satisfied to its mean value along a generator. 

or 

where 

Elimination of g (t) between Equations (14) aQd (17) yields 
n. 

K 
n 

2 2 
P. cot a f 
~'-'n n 

1 •) 2 = - ( cos e c ·~ a + P. ) 
~'-'n fln 

fln 

H 
n 

(.32 2 
t cot a = .. n 

= 0 

The general solution of Equation (19) becomes 

~ 1 

(19) 

(20) 

(2la) 

(2lb) 



f = A cos w t + B sin w t + E cos w t + D sin w t (22) n n n n n n n n n 

where 

+K + / ( K ) 2 - 4 H n n n = 2 
(22a,) 

and 

= 
+K - J ( K ) 2 - 4 H n _ n n 

2 
(22b) 

are two natural frequencies associated with each n. This fact has also 

appeared in the discussions given by Baker [2] and Lamb [10] for spherical 

shells. 

g (t) may be obtained by substituting Equation (22) into (17); we have 
n 

g ( t) 
n 

= ( w
2

- cot2 a)(A cos w t + B sin w t) ~n n n n n n 

+ ( - 2 t 2 )(C- w- t ~ w - co a cos + D n n n n n sin w t) 
n 

(23) 

It is seen that Equation (12) is the standard form for Bessel's equation 

of zero order with solution 

v 
n = A jP " IP A J (R -E x) + B Y (P ~ ~E x) n o ~n n o ~n (24) 

12 



where J andY are Bessel's function of first and second kind, respectively. 
n n 

If the shell forms a closed cone~ B must be zero since v should be . n 

finite at x = 0. The eigenvalues ~n may be generated by applying the geometric 

boundary condition at x = x2 . 

Case I. Supported condition, v(x
2

, t) = 0 from Equation (22) 

Case II. 

and the roots are 

(-{ j~ X = 2 o 405, 5 · 520 • . • • 
JJn E 2 

Free end condition a.y (x
2
,t) = 0 which leads to ax 

and the roots are 

P- !£ X = 0 , 3 • ,3 3 2 , 7 . 0 16 .... 
JJn ,J E 2 

(25a) 

(25b) 

For a truncated conical shell, geometric boundary conditions listed in 

Equation (6) will be applied to Equation (24) in order to determine ~n and 

the ratio of A 
n 

"' to B . 
n 

13 



Case I. The conditions v(x 1,t) = v(x2,t) = 0 lead to the following 

Case II. 

homogeneous algebraic equations: 

J o (Sn J1 xl) Yo ( ~ n ,J1 x 1 ) " A n 
= 0 (26) 

J (~ A X ) Yo(~n ~/1 x2 B o n E 2 n 
! 

For non-trivial solutions, the determinant of the coefficient 

matrix must vanish. Hence, 

and 

" A 
n 
~ = 
B 

n 

3o (~n.J1 xl) 

1o (~n J1 x2) 

= 
yo (~n J1 xl) 

yo (~n J1 x2) 

Yo(~nJ1 x~) = 

1o(~nJ1 xl) 

yo ~~n J1 x2) 

1o (~n J1 x2) 

( - av 
The conditions v x2,t) ax (~t) = 0 result in 

" A 
..11 
8 

n 

and 

Yo(~n ~ x2~ 
1oq3nJ1 x2) 

J~ (~n J1 xl) 

1o (~Ii,J1 x2) 

--

14 

= 
y~ (~n J1 xl) 

J~ (~n j ~ xl) 

y~ (~n J1 xl) 

yo (~n J ~ x2) 

(27) 

(28a) 

(28b) 



The solutions of Equations (27) and (28) will give the eigenvalues ~n· 

The first several roots of Equation (27) and (28) can be found in [1] or 

[9]. It is a generally known fact that for large x, the Bessel functions 

involved in the Equation (24) behave very much like trigonometric functions. 

This phenomenon can be revealed from Equation (12). 

d2V l dVn Q2 _P 
__ n+---+tJ V = 0 
dx2 x dx n E n 

By a change of variable of the form 

u 
n 

Equation (16a) is transformed into 

2 
+ (P E_ 

tJn E 

v ,;--;. 
n 

.L) u 
2 n 

)( 

If the values of x are large we may assume 

1 ') n 
- (( p•~ L 

2 tJn E 
X 

= 0 

(29) 

(29a) 

and neglect it in Equation (29a). The solution of Equation (29a) is seen to 

be 

v 
n 

u 
== ___!} == 

JX ~ [A cos ( P ,fl_E; x) + B s in ( P ~E x ) J 
~A n tJn : n tJn (30) 

15 



-

The eigenvalues ~n for the two cases shown in Equation (6) are 

Case I. 

and 

Case II. 

and 

'A 
n 

A 

A 
n 

~ n -- 11rr fl. 
t p 

= -tan(~ IT x1) ~ n~ p n = 

(3la) 

(Jlb) 

(3lc) 

(3ld) 

where t = x
2

- x
1

. Equation (30) will be valid for truncated 

conical shells. 

Substitution of Equation~3 (22) and (:24) or (22) and (30) into Equations 

(lOa) and (9), the following general homogeneous solutions are obtained: 

co 

Vc = \ Xn(x) [(~ w
2

- cot2a)(A cos w t + B sin w t) L n n n n n n 
n=O 

+ (~ Q
2 - cot2a)(C cos w t + D sin w t)] n n n n n n ( 32a) 

and 

16 



00 

W = ~ -X (x)(A cos w t + B sin w t + C cos~ t + D sin~ t) (32b) c ~ n n n n n n n n n 
n=O 

where 

X (X) 
n 

= J (P /fJ_ ) + y (P J e_ x) An o ~n ~ E x o ~n E ... exact (32c) 

or 

in which 

A = A /B n ::1 n 
(32e) 

The particular solutions will be sought next. and 

-a -ax be the linear operators. By eliminating v between Equations (8a) 

and (8b), the particular solution for w is taken as 

'") 

[
3 tan tan 2 a~ a p - p a X --2 } + C

1 
log X + C

2 Eh E2h at2 
(33) 

where 

J. 2 2 2 ;/4' 
= ~(3 tan a - cot a) ~0- (~) tan ax J)(x15) (34) 

1'7 



Substitution of Equation 0 .3) into Equation (8b), we obtain the parti-

cular solution for v 

2 2 a 2w 
v = w cot a - L tan ap + f22L tan a __Q 

p p Eh E at2 

cl and c2 will be determined by satisfying the geometric boundary 

conditions for v at both ends of the shell. 

(35) 

The particular solutions are then expanded into the follow~g series: 

and 

where 

w 
p 

a n 

b 
n 

00 

v = l: a X (x) 
n n p 

= 

= 

= 

n=O 

{2 
xl 

(2 
xl 

(2 
xl 

(2 
xl 

cot a X (x) 
n 

r(x)V X (x)dx p n 

2 
r(x)X (x)dx n 

r(x)W X (x)dx p n 

2 
r(x)X (x)dx n , 

18 

(35a) 

(35b) 

(36a) 

(J6b) 



where r(x) is the weight function. It should be noted that a and b , the n n 

generalized Fourier coefficients, are functions of t. 

The final solutions of v and w are obtained by combining Equations (32a) 

to (35a) and (32b) to (35b),respectively . Or, 

co 

w = L- cot a X (x) (A cos w t + B sin w t n n t1 n n 
n=O 

+ c cos w t + D sin w t - b ) (37 a) n n n n n 

and 

co 

v = I X (x)[~ w2 - cot2 
a)(A cos w t + B sin w t) n n n n n n n 

n=O 

( -2 2 - w t) + a J (37b) + ~nwn - cot a) (C cos w t + D sin n n n n n 

The following initial conditions wil.L be used to determine the unknown 

coefficients A , B , C , and D : 
n n R n 

v(x,o) = a:L (x,o) at = w(x,o) - illY ( ) 0 - at x,o = 

By applying conditions listed in Equation (38) to Equations (37a) 

and (37b), we obtain 

A 
n 

= 

19 

(38) 

( 39a) 



c 
n 

B n 

D 
n 

= 

= 

2 2 
b (0)(~ w -cot a) t a (0) 

n n 0 n 

( 2 _2) 
~n wn -- wn 

ab 2 2 a a 
-· ____!]( o) ( ~w - wt a) - ___ll(O) 

at n at 
2 _2 

w ~ (v.:, - w ) n n n n 

From Equation (22a) and (22b), it is seen that 

(39b) 

(39c) 

(39d) 

(40) 

The response, after the shock wave has passed the structure, will be 

00 

w = ~ -cot a X (x)(A 4 cos w t + B' sin w t G n n n n n 
n=O 

+ c' cos w t + o' sin w t) n n n n (41 a) 

and 

00 

v = \ X (x)[~ w2 - cot2a)(A' cos w t + B1 sin w t) 
~ n · n n n n n n 

n=O 

+ (~~2 - cot
2
a) (c' cos w t + D 

1 sin w t)] 1n n n n n (4lb) 

20 



The unknown coefficients will be determined by using the known conditions 

which are evaluated from Equations (37a) and (37b). 

21 



EXAMPLE 

For illustrative purposes, an example for a truncated conical shell with 

both ends supported is presented here. The boundary conditions shown in 

Eq uation (6a) are thus used. The following data are considered: 

= a = n/ 4 

The solutions of Equation (27) tabulated in [9] indicate that 

~2 e_ 
n E 

(42) 

where t = x2 - x
1

. Therefore, the homogeneous solution shown in Equation 

(32d) will be used. 

and 

where 

The particular solutions for this cas ~:; will be taken as 

w 
p 

2 
v = ~ ( - 2<_ + c 

1 
1 o g x + c

2
) p

0 
( 1 - t/ t ~ ) 

p Eh 12 

22 

(43a) 

(43b) 

(44a) 



and 

(44b) 

It is seen from Equations (43a) and (43b) that 

a a (0) a ( 0) n _n __ 
(45a) at 

·-
td 

and 

ab (o) b (0) n _n __ 
(45b) at 

--
td 

From Equation (18), we have 

p t2 E X sin lliJ: X ( • tTI:Ir._X) - ~; gn . s 1n . 
t ' ,. t 

dx 
XI 

fln = (2; sin DTI~K s g n ( s in n~ x ) dx 
t 

(46a) 

xl 

in which the integral involved in the denominator will be taken in the 

following form: 

sin (46b) 

2.3 



The series shown in Equation (46b) converges rapidly and if only the first 

term is considered, Equation (46a) is approximately equal to 

5nt Q 
E 

n = n-:;1 (46c) •n 
.2 +2: 2n 
6 (~n + j) 

j=l 

From Equations (21) and (22), we have 

(46d) 

and 

2 
+(~2 .E t +J lf+(~f ~ ~nJ2- L(m/ & 

(\J 
2 n fln 

= p 
- 2 [ fl ,, fl t p (46rr) 

2~n 
r) n n 

-~-w 
n 

By use of Equations (32d), (36) and (43), the Fourier coefficients a and b 
n n 

be~ome 

a 
n 

6P X 2 
= _0 (1 - ttt) j' 2 ( X + C- 1 + C- ) r:: Sl'n 01t:X dx Eh t - 12 1 lj g X 2 II/ X t 

d x
1 

(47 a) 

24 



6p X 2 
_o ( 1 _ .:L.) J 2 (x - - - nnx 

bn = Eht t · 4 + Cl log :x: + c2 ) Jx sin -t- dx 
d x

1 

or 

where 

k 
n 

I : 

(_1 ) 712 5/2 . 5/2 = \n-:; [-(3nn) cos 3rm + (2n:IT) cos 2nn 

- ~ {~ J)nR cos 3nn + J2nTI cos 2nn 

. 3/2 Jx2 
( 1) 1/2 . nnx d = - X Sln -- X 

t x
1 

t 

25 

(47b) 

(48b) 



in which Cis the Fresnel's integral and is tabulated in [9]. Substituting 

t = 0 into Equation (48) we have 

(49a) 

. D5/2 c- c-
tvo.v [ 1 2 1 ,x2 1/2 ( ) J S l. n n~x dxJ bn 0 = 6 Eh 4 hn + t2 kn + t7/2 xl x log x ~ (49b) 

The transient response is then determined by substituting Equations (44) 

through (49) into Equation (39) and then (37). The response fort> td can 

readily be determined by use of Equation (41). 

26. 



CONCLUDING REMARKS 

The governing differential equations were made separable with approximation. 

The natural frequencies w and Q corresponding to specific modes are therefore 
n n 

not exact. It is of interest to note that there exists two natural frequencies 

corresponding to each mode. This fact is true for the extensional vibration 

for spherical shells as discussed in [2] and [10]. No exact solution or 

experimental data seemed to b~ J a~ailable at .the present time in order to 

evaluate the error, due to the approximation made in the analysis, involved 

in the present solution. The method of solution presented in this study is 

straightforward. However, the solutions expressed in series form appear to 

be lengthy when numerical results are needed. High speed electronic CGmputers 

may be efficiently employed for this purpose. Since the response of one case 

may look entirely different from the other case even for two identical shells, 

if the durations of the load are different; hence, no numerical example is 

presented in this paper. 

2~ 
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·~ 

Closed form expressions are obtained for the displacement, in the radial, 

circumferential and axial directions respectively, for a cylindrical shell 

segment subtended by an arbitrary angle e and subjected to an arbitrary 
0 

load-distribution. Laplace and finite FotiTier sine and cosine transforms 

are employed to accomplish the solution. A numerical example, utilizing an 

idealized equivalent triangular blast loac~ , is included to provide a com-

pari son with available experimental data c;,s found in the literature. Further-

more, the effect of the magnitude of the thickness to radius of curvature 

ratio (~), and of the negligence of the inertial terms in the axial and 

circumferential directions, on the frequencies, are investigated. 
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INTRODUCTION 

Experimental data, concerning the response of buried arches or tubes to 

blast wave loading is available to some extent; however, adequate theories 

and theoretical solutions upon which the design of such structures may be 

based are lacking in the literature. The present solution is to provide 

a step in this direction. 

The investigation is restricted to the dynamic response of a simply 

supported cylindrical shell segment subjected to an arbitrary loading. The 

basic system of equations is taken directly from [5] and modified only by the 

inclusion of the inertia terms and forcing functions. The equations then are 

non-dimensionalized with respect to the length of the arch, L, the subtended 

angle e and the decay time of the applied blast load, in order to simplify 
0 . 

the necessary calculations. This system of linear partial differential 

equations is reduced to a linear algebraie: system in the transformed displace-

ment functions, by eliminating the time dependence by means of the Laplace-

transformation and the spatial dependence by means of double, finite Fourier 

sine and cosine transforms. A simple application of Cramer's rule, and the 

inversion of the transformed displacement functions results in the final, closed-

form solutions. ·:t 

A numerical example, the dynamic response of a semicircular cylindrical 

shell, is included to provide a qualitative comparison to experimentally 

obtained data [1]. The comparison here was possible only so far as the order 

of magnitude is concerned, since the arch tested in [1] was stiffened con-

siderably by the surrounding soil so that it was to be expected that the 

measured deflections resulting from the dynamic load would be less than those 

obtained by truncating the theoretical series solutions obtained in this paper. 

The times at which the peak deflections occurred also compare favorably. 

2 



The effect on the natural frequencies of the system, of the omission of 

the inertial terms in the axial and circumferential directions for varying 

values of the ratio ~ is found to be negligible (of the order of 1%) for the 

higher frequencies, up to a certain limiting value, beyond which the inertial 

terms must be included. 

3 



Notation: 

Bar above a letter denotes the Laplace transform of a function 

with respect to the non-dimensional time variable 'T 

(c)(s) Superscripts (s) and (c) denote finite Fourier sine and cosine 

transforms respectively. 

(cs)(cc)(ss) Superscripts (cs), (cc) and (ss) denote successive finite Fourier 

transforms. 

[] Denote references in the bibliography. 

d Equivalent decay time. 

E Modulus of elasticity 

h Thickness of shell. 

L Length of shell. 

M Moment. 

N Normal or shear force. 

Surface loading components in the directions indicated by the 

subscripts. 

R Radius of the cylindrical :3hell segment. 

s Laplacian parameter. 

t Time variable. 

u,v,w Displacements in the x,y, z ·-directions (Figure l). 

v Poisson's ratio. 

p Density. 

4 



Equations of Motion 

The static equations of general cylindrical shell theory may be found in 

[5]. These equations are modified by the inclusion of the inertial forces 

and arbitrary forcing functions. They thence have the form: 

2 2 
(1-v ) (p _ ph o u) 

Eh u ot2 

where the loading components :pu' pv' and ])w are functions of x, 9, and t. 

The problem is completely formulated;, when the following boundary and 

initial conditions are included: 

a) initial conditions: 

w(x, e,o) 

wt(x,e,o) 

u ( x, e , o ) :::: v ( x, e ·' o ) 

b) boundary conditions: 

i) imposed on e 

u(x,o,t) u(x,9
0
,t) O· J 

v 9(x,O,t) ve(x,eo,t) ::::: 0 j 

w(x,O, t) w(x,e ,t) 
0 

Oj 

w99 (x,O,t) w99 (x,9
0
,t) 

5 

o· J 

o· J 

0; 

( l) 

( 2) 



FIG.I 
CYLINDRICAL SJfELL SEGMENT 
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ii) imposed on x 

u (o)e)t) u (L)8)t) o· 
X X 

) 

v(o)e)t) v(L)8)t) 0; 

w(o)e)t) w(LJ8Jt) -- 0; 

w (o)e)t) 
XX 

w (L)8)t) 
XX 

0, 

where the subscript notation has been used to denote partial differentiation. 

It is convenient to non-dimensionalize equations (l)J and (2)) by intro-

ducing the following non-dimensional ratios: 

X e t u v w * pu * pv * pw 
~ L"; qJ e ; T d; u v ·w L"; pu E"; Pv E"; pw E) L' L' 

0 

where d is the equivalent decay t;lme of the shock-load. This characteristic 

constant is used since the prime concern here is blast and impulsive loading. 

The substitution of these non-dimensional variables in equation (l) and the . 

subsequent Laplace transformation of these equations) in conjunction with the 

initial conditions results in 

(a) 

a2y + a2u ow + b a2v -* 2-
(b) ( 3) bl - b - b p + b s v 

0~2 d~dqJ 2 octJ 3 oqJ2 4 v 5 

au + av 
c w - a4w a4w a4w 

(c) 
a~ cl octJ 2 c3 ~- c4 ~-~~qJ2 - c5 OqJ 4 

7 



where 

a3 

a4 

2 
1 (1-\)) 

2R
2

8
2 
0 

2 1(1-\) ) 
h 

2 2 
(1-\) )p1 

Ed
2 

bl 

b2 

b3 

b4 

= 
1(1+\)) 
R8 (1-\)) 

0 

212 

2 
R e (1-\)) 

0 

21
2 

2 2 
R e (1-\)) 

0 

21(1+\)) 
h 

2 2(1+\))1 p 

Ed
2 

1 
cl \)Re 

0 

1 
c2 \)R 

h
2

R 
c3 

1213\) 

h2 
c4 

6RL\)8 2 
0 

c h
2
1 

5 l2\)R3e4 
0 

and where it is assumed that the p 's are Laplace-transformable. 

2 R(l-\) ) 
c6 h\) 

2 R(l-\) )p1 
c7 

E\)d2 

The linear system (3) of partial differential equations is now trans-

formed to a linear system of algebraic equations by the application of finite 

Fourier sine and cosine transforms [4](see also appendix),with the boundary 

conditions (2), i.e. 

2 -(cs)( ) -(sc)( ) -(ss)( ) (A
11 

+ s ) U m,n,s + A
12

v m,n,s + A
13

w m,n,s == Q.
1

(m,n,s) 

-(cs)( . , ~ -(sc)( . ) · ( · 2)-(ss)( ) A
31 

U m, n,? J. + ~32 V m, n, s + A
33 

+ s W · m, n, s = Q.
3 

(m,'n, s). 

( 4) 

8 



Here) the superscripts indicate the type of transformation and the order in 

which they were carried out. Furthermore) the arguments (m)n)s) of the 

transfo:rrried functions are order-preserving with respect to the arguments 

(s)~)T) of the original functions. The coefficients A .. in equation (4) are 
lJ 

given by 

A 
ll 

2 2 a + a S 
m 3 n 

a5 

a a S 
l m n 

a5 

b 4 -*(sc) 
b pv ; 

5 
(5) 

where a = mn and f3 = rm are the transform parameters for s and ~ respectively. 
m n 

An investigation of these coefficients A ... reveals that they are symmetric) 
lJ 

which was to be expected from the symmetry of the original equations. This 

2 
symmetry becomes quite useful if one observes that the s 's may be interpreted 

as the eigenvalues of a real) symmetric matrix) obtained from equation (4)) 

and as such must be real [2]. With this in mind) Cramer's rule may be applied 

to equation (4) and the solutions written in the form: 

3 
U( cs) (m) n) s) --I Q. :K:1j(m)n)s) --

J 
j=l 
3 

V(sc)(m)n)s) 
\ 

Q. :K2j(m)n)s~ ( 6) =L J 
j=l 
3 

-(ss) =I Q_. :K
3

. (m) n) s ~ W · ( m) n) s) 
J J . ' 

j=l 

9 



where the Q.'s are the loading functions as defined in (5) and where 
J 

with 

K .. (m,n,s) 
lJ 

c .. 
- - lJ 
- 2 2 

s +w
1 

D.. E .. 
+ ·-~- + __2:.J__ 

2 2 2 2 
s +~2 s +w

3 

2 2 2 
cl3 = c3l = (w2 -w3 ) [Al3wl +Al2A?-3-Al3A22] 

/}:,( w2) 

2 2 4 2 2 
c

22 
= (w2 -w3 ) [wl -(All+A33)wl +~llA33-Al3 J 

/}:,( w2) 

2 2 2 
(w2 -w3 ) [A23wl +A12Al3-AllA23] 

/}:,(w2) . 

2 2 4 2 2 
(w2 -w3 ) [wl --(All+A22)wl +AllA22-Al2 J 

/}:,( w2) 

2 2 4 2 2 
D

11 
= (w3 -wl ) [w2 -(A22+A33)w2 +~22A33-A23 J 

15.( w2) 

10 

( 7) 



D22 (w3 2 -ill:J_2 )[w2 4- (All +A33 )w/ +~ll A33-Al3 2 J 

~(uP) 

11 



and 

as obtained by some algebraic manipulat ion and by means of a partial fractions 

separation. 

2 
The w. 's are obtained by setting s 

l 
-A. in the determinant of the co

l 

efficient matrix of equations ( 4), and then solving the cubic equation 

obtained by expansion of the determinant. Here, e1 , e2 and e
3 

are given by 

From Descartes~ rule for the roots of a polynominal it is known that (9) can 

have only negative roots as long as e
1

, e
2

, e
3 

> 0. Since this must be the 

case, if the solution is to remain stable, it is justifiable to write the 

solution in the form (6). 

The inversion of equations (6) with respect to the Laplace transformation 

is,now accomplished through the application of the convolution integral 

defined by 

T 

F ( ·l) *G (T) ~- ·s · ·F ( T-t ) G ( t ) dt 
0 

12 



The result is 

u(cs)(m,n,'T) 

v(sc)(m,n,'T) 

w(ss) (m, n, 'T) 

where 

Ql(m,n,C) 

Q2(m,n,C) 

Q3 (m, n, ') 

since 

Also, 

3 'T 

=I S Qj(m,n,,)K1j(m,n,T-C)dC 

j=l 0 

3 'T 
=I S Qj(m,n,C)K2j(m,n,T-,)d' 

j=l 0 

3 r =I Qj (m, n, ')K3j (m, n, 'T- ')d' 

j=l 0 

*(cs)( ) kp m,n,, u 

kp:( cs) (m, n, ') 

*(ss)( ) kpw m,n, C 

k. 

K .. (m,n,T) 
lJ 

C.. D.. E .. 
w~J sin w1T + w~J sin w2T + w;J sin w3T, 

1-l { } denoting the inverse Laplace transform. 

(10) 

The final step in obtaining the solution of the system of equations (1) 

is the inversion of the Fourier sine and cosine transforms. These operations 

are carried out with the use of the inverse transforms as defined in the 

13 



appendix. The inversion may be separated into two parts: 

a) inversion w.r.t. ~ 

00 3 

2 L { I rQ}m, n, (;)Kl/m, n, T-t;;)dt;; }sin J'lncp 

n=l j=1 o 

00 3 

2 L {I rQ/m,n, (;)K3j (m,n,T-C)dC}sin J'lncp 

n =1 j=l o 

b) inversion w.r.t. s 

(11) 

00 3 

I { I · . ~ T Q j ( m, n, C)~} m, n, T- C) dC} 

V(t,~,T) 

m=l n:=l j=l o 

sin ~ ~ cos a S n m 

3 

2 \ { ( s c ) ( ) . \' L v m' 0' T + 2 La 
m=l n=l 

{I ST Qj(m,n,C)K2j(m,n,~~c;)d(;}cosj'lncp} 
j=l 0 

sin rv s: ""m'=> 

00 00 • 3 

4 L L {I STQj(m,n,(;)K
3

j(m,n,T-C)d(;}sin J'lncp 

m=l n=l j=l o 

sin 0! s 
m 

(12) 

Equations (12) represent the solution of the dynamic equations of a cylindrical 

shell segment subjected to an arbitrary loading, arbitrary to the extent, 

naturally, that the loading function be Fourier transformable. 

14 



The expressions for the stresses and moments in terms of the .displacements 

are given by [5] 

N N[ au+~ (av _ w)]· 
XX ax R ae ' 

l(av ) au] 
Nee = N[ R a e - w + 'J ax ; 

1 )[ 1 au av 
N x e = 2 N ( 1 - 'J 'R a e + a~z J ; 

2 a -~2 
M = - D [ a w + .:::.._ ( _.::!_ + ~~) J . 

XX ax2 R2 ae (~92 ' 

(13) 

1 (av a2
w) a2

w] Mae = -D C --z ae + 2 + 'J 2 ; 
R c ae ax 

2 
M = D(l _ 'J) 1 [ av a w J 

X e R ax + axo·B . 

Eh Eh3 
where N = l-'J2 and D = 

12
(l-'J2 ). Note that equations (13) are in terms of the 

dimensional variables. 



Comparison with Experimental Data 

Unfortunately, no experimental data are available which correspond exactly 

to simple support conditions. Of the considered experimental data, that which 

most closely approximates the case of simp1y supported edges is obtained from 

[1], where a buried arch subjected to short and long duration blast-loading is 

considered. In order to keep the nurnerica1 calculations as simple as possible, 

this type of loading is simulated by an eq·-1i valent (equivalent in the sense 

of the same total impulse) triangular pulse load of the form 

where p represents the peak overpressure, and dis the equivalent decay time. 
0 

Transformation and substitution in equation (12) results in 

sin a s sin 13 cp. m n (14) 

This expression, with the particular values: 

1.3564 X 10-3 lb 
2 

.0478 in, 57.6 in, 
sec 

h L = p 4 
in 

Po 7.5 psi, d 76 msec, E 30 X 106 psi, e 11 
0 

is used to obtain the deflections in non-dimensional form. 

The experimental and theoretical data. can be compared only in order of 

magnitude due to the discrepancies mentioned above. In the numerical 

evaluation of equation (12), care must be exercised in truncating the resultant 



series, since convergence is slow. The difficulty arises for fixed m, with n 

increasing, since the radial frequency, w
1

, initially decreases, and thereafter 

m:Jnotonically :increases for some n depending on m. The 

TABLE 1 

Numerical Comparison with Experimental Data 

Experimental Theoretical 

ill (m=l) cycl 
l n=3 msec .105 .132 

Peak Crown 
Deflection in inches .172 .535 

Max. Response 
at Crown in msec 15 36 

interval, in which wl decreases, becomes smaller with a decrease in eo, i.e. 

approaching the shallow shell range, and with an increase in*· . From Figure 2 

it is apparent that, in view of the large difference in frequencies the omission 

of the inertial terms for u and v has little effect for the lower modes. 

Figure 3 indicates that there is a peak deflection at 13 msec. This, however, 

is a relative maximum; the maximum occurs at 36 msec as indicated in Table 1. 

The difference in the numerical values of the deflections is explained in 

[1] as the result of a difference in soil density, i.e. small reductions in 

soil density resulted in a large percentage increase in the deflection. The 

frequency in Table 1, corresponding to the first inextensional symmetrical 

mode, was measured with no endwalls in the arch. Since simple supports were 

assumed in the numerical example, an increase in the frequency is to be expected. 

The absence, in the theoretical response curve (Figure 3), of the damping 

exhibited for the experimental deflection curve is to be attributed to the 

rough approximation given by the triangular load. 

1'7 



Effect of the Omission of the Inertial ~Cerms 
in the Axial and Clrcumferentlal Dlrections. 

The investigation of the omission of the inertial terms is restricted to 

the effect on the radial frequency. The effect on the deflection is not con-

sidered. The frequencies, as obtained here, are compared to those calculated 

from the expression [4] 

1 L~N ('2 2 )2 ----- - ~ + ~ + 
hpR2 R2 m n 

where 

N 
nn 

EhA.
4 

m 

e· 
0 

(15) 

Equation (15) is based on shallow shell theory, omitting the inertial terms in 

the u and v -directions. For the higher frequencies there is virtually no 

error introduced by using (15), even out of shallow shell range. However, the 

error in the fundamental frequency (m=l, n=l) increases as e increases, and 
0 

becomes 41% for eo=n. The frequencies increase with increasing~ up to 

h 
R 

1 
20

, which was taken to be the upper bcund for thin shell theory [3]. 

Again, the error introduced by using (15) instead of (9) to obtain the fre~ 

quencies is negligible. 

It must be emphasized that the range of applicability of equation (15) 

is limited to a certain frequency range. As was discovered by E. Reissner [6] 

for spherical shells, there also exist limiting values of the frequencies of 

a cylindrical shell segment, beyond which, the inertial terms must be included. 

It was not yet possible to determine an indicative parameter. The range of 

applicability of (15) decreases as~ increases and as 9
0 

decreases. As can be 

h 1 
seen from Table 2, equation (15) is useleE:s for R = 20 when n ~ 15, m = 1, or 

for ~ ~ when n > 31, m = 1. (The latter values do not appear in the table). 

18 



e = TT e -
0 0 

h 1 1 -
R 300 300 r--

h w1 w* 1 w1 
r-- -- --

1 214.5 302.1 47.1 

3 49.7 52.6 63.2 

51 
26.5 27.1 

I 
174o5 

7 37.1 37·5 342.0 

9 59·3 59·7 565.2 

11 88.1 88.5 844.3 

13 122.9 123.3 1179.1 

15 163.6 164.0 1570.0 

17 210.1 210.5 2016.4 

P-9 262.5 262.8 2518.7 

TT 

3 

TABLE 2 

NON-DIMENSIONAL FREQUENCIES 
(m = 1) 

1 1 -200 100 

w* 1 w1 w* 1 w1 w * 1 

49.7 47.9 50.5 51.6 54.4 

63.5 98.8 99·5 197.5 198.6 

174.9 273·9 274.4 547·7 548.8 

342.3 536.6 537.2 1073.1 1074-3 

565.6 889.9 887.5 1773·7 1774.9 

844.6- 1324.7 1325.3 2649.4 2650.6 

1179·5 1850.1 1850.1 3700.3 3701.5 

1570.2 2463.2 2463.7 4926.4 4927.5 

2016.7 3163.8 316~.3 6327.5 6328.7 

2519.0 3952.0 3952.1 7904.0 7905.1 

1 1 
45 20 

w1 w* 1 ~ w * 1 

97.8 71.5 120.37 126.97 

438.3 440.9 987.0 992.9 

1215 ·9 1?18 .4 2738.2 2744.3 

2382.3 2384.9 5365.2 5371·5 

3937.6 3940.2 8867.7 8874-5 

5881.7 5884.4 13245 13253 

8214.6 8217.4 18498 18507 

10936.0 10939.0 .21723 24637 

14047.0 14049.0 24619 31643 

17546.0 17549.0 27514 39525 



Conclusions 

The response of a cylindrical shell segment_, subtended by an arbitrary 

angle 8 and subjected to an arbitrary loading_, is obtained_, based on thin 
0 

shel.l theory. 

In summary: 

l o Inertial terms affect mainly the freq_uency corresponding to the first 

2. 

3. 

inextensional mode in the radial direction. (n = 1_, m increasing). 

h 
The introduced error increases with decreasing ~· 

To obtain the freq_uencies correspor._ding to the higher longitudinal modes 

(n 2: 15 for * = 2
1
0 and m == l) the :Lnertial terms must be included. 

4. Comparisons with experimental data are favorable as far as order of 

magnitude is concerned. 
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APPENDIX 

The Fourier sine and cosine transforms are given by [4]: 

a) Single transforms: 

Sine transform: f(s)(n) 
a 

~ f(cp)sin~ncpdcp. 
0 

Cosine transform: f(c)(n) 
r a 
~ f(cp)cos~ncpdcp. 

0 

Single inverse transforms: 
(X) 

Inverse sine transform: f(cp) ~I 
n=l 

(X) 

l() +-2aL Inverse cosine transform: f(cp) = -f c (o) 
a 

n=1 

b) Simple double transforms: 

f(s,cp) 

Double sine transform: f(ss)(m,n) 
b \'a 
~. j f(s,cp)sinamt;sin~ncpdcpds. 
0 0 

Double cosine transform: f( cc) (m, n) 
b a · 

~ ~ f(s,cp)cosamscos~ncpdcpds. 
0 0 

Inverse simple double transforms: 

Inverse double sine transform: f(s,cp) ~b I 2. f(ss)(m,n)sinamSsin~n'P· 
n=l m=J-

Inverse double cosine transform: 

!___ f(cc)·( ) 2 o,o 
a 

cos a s ~cos~ cp. 
m) n 

00 

+~\ 
2 L.J 

a n=l 

00 

( ) 22 \ { ( ) ( ) f cc (o,n)cos~ncp + L f cc (m,O )+2L f cc (m,n) 
a m=l n=l 

21 



c) Mixed double transforms: 

Sine-cosine transform: f(sc)(m,n) 
b a 

S S f(s,cp)sinamscosSncpdcpds 

0 0 

Cosine-sine transform: f(cs)(m,n) S
b ,a 

j f(s,cp)cosamssinSncpdcpds 

0 0 

Inverse mixed double transforms: 

Inverse sine-cosine transform: f(s,cp) 22 I {f(sc)(m,O) + 2I f(sc)(m,n) 

Inverse cosine-sine transform: f(s,cp) 

a m=l n=l 

cos S cp1sina s 
n) m 

00 

2
2 I ( ) f cs (O,n)sinS cp 

n 
a n=l 

00 00 

+ 
4

2 
I L f(cs)(m,n)sinSncp'cosams 

a m=l n=l 

mn nn 
where a = --b and S m n a 

Note that, in general 

It is clear that when these transform methods are applied the relevant 

assumptions concerning the functions to be transformed are made, namely that 

they satisfy Dirichlet's conditions in their respective intervals, and that the 

iterated integrals may be taken successively, i.e. 

and 

r(s)(m,cp) = s\(S,cp)sinamSdS 

0 

r(sc)(m,n) = rr(s)(m,cp)cosSncpdcp. 

0 

22 
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