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SUMMARY 

 

 The study of conducting, redox-active polymers has rarely wanted for potential 

applications, ranging from modulation of optical properties, charge storage, drug release, 

and more. This subset of redox-active polymers stands in contrast with many of the oft-

cited applications for conducting polymers, such as in photovoltaics and transistor 

technologies, in that the redox-active polymers often take on a much more dynamic or 

active role in the operation of a device or technology. It is notable that, if care is taken in 

the design of a redox-active polymer, the same materials may be utilized for both optical 

and charge storage applications. As a result, this dissertation primarily focuses on the 

application of a family of redox-active polymers in both electrochromic or charge storage 

devices, solution processing strategies for modulating optical properties of polymer 

mixtures, and the stability of these materials with regards to photo-oxidative stress.  

  The presentation of research in this document begins first with the application of 

conjugated polymers to charge storage applications. Detailed in Chapter 3, a water-

processable polymer with a broad electroactive window resembling that of PEDOT is 

used to modify a non-woven CNT textile via drop casting. Cyclic voltammetry was used 

to probe supercapacitor devices fabricated using the hybrid CNT-conjugated polymer 

electrodes, and the capacitive performance was observed to more than double when 

compared to devices fabricated using the unmodified CNT substrate. Subsequently, 

efforts made to study color mixing in electrochromic polymers are detailed in Chapters 4 

and 5. Mixed color stimuli were produced using various combinations of ECPs following 

on the cyan-magenta-yellow subtractive color mixing system, first through the use of a 

“dual active” electrochromic device, and later through the co-processing of ECP mixtures 

into visually homogenous films. The  colorimetric values of the resultant electrochromic 

films were assessed spectroscopically, and quantified in the CIE L*a*b* color space. The 
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access of a broad color gamut using polymers representative of the CMY system is 

demonstrated, as is the ability to “dial in” a color state using the dual active ECD 

configuration, as is the ability to predict the colorimetric properties of a co-processed 

ECP mixture via quantification of a mass extinction coefficient for the component ECPs. 

Finally, the photostability of select ECPs is assessed in Chapter 6. Thin films of two 

ECPs were encapsulated in both air and argon atmospheres, and exposed to a solar 

simulator for durations ranging from 24 hours to 1 month. Characterization of these films 

following irradiation through both spectroelectrochemical and x-ray photoelectron 

spectroscopic techniques demonstrate that while photo-oxidation is observed to occur 

under an air environment, encapsulation in an inert atmosphere precludes photo-oxidation 

and no deleterious effects stemming from long term irradiation are observed. The 

research detailed in this dissertation demonstrates the varied routes to redox-active, 

conjugated polymer application.  
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CHAPTER 1 

INTRODUCTION – CONJUGATED, REDOX-ACTIVE POLYMERS 

 

 Redox-active, π-conjugated polymers have lent themselves to a number of 

applications. The work discussed herein focuses primarily on two of these applications, 

namely electrochromism, and the utilization of redox-activity for the purposes of charge 

storage. However, to properly discuss those applications, one should first have an 

understanding of how each of these properties emerge from the physical characteristics of 

conjugated polymers. The following chapter will hopefully serve as an introduction to the 

field of conjugated polymers in general, and the concepts behind their applications.   

1.1 Introduction to Conjugated Polymers and Electrochromism 

 The study of conjugated polymers as redox dopable conductors largely originated 

with the discovery of two materials: polypyrrole and polyacetylene[1-3].  The properties 

observed in these materials served to lay the groundwork of understanding necessary for 

the work discussed within this dissertation, and while the structures of the polymers 

under study have changed, the physical principles behind their properties remain the 

same. Due to the connection between the properties leading to both charge storage and 

electrochromic (EC) applications, it serves us well to begin with a general discussion of 

conjugated polymers.  

1.1.1.Theory of Conjugated Polymers 

 Any discussion of the fundamental properties behind conjugated, conductive 

polymers would do well to begin with the model of polyacetylene, the discovery and 

study of which led to Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid receiving 

the Nobel Prize in Chemistry in 2000[4]. The chemical structure of polyacetylene, 

consisting of alternating double and single carbon-carbon bonds, leads to the creation of 
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its band structure, which in turn leads to its unique properties. In general, as the number 

of π bonds along a polymer backbone increases, numerous new, discrete energy levels are 

formed, and this process is stabilized by the delocalization of electrons throughout the 

conjugated system. As the number of conjugated π bonds increases, hybridization of the 

newly created energy levels into energy bands occurs at some extent of conjugation. This 

process is illustrated for the polyacetylene repeat unit structure in Figure 1.1.1.1. 

 

Figure 1.1.1.1. Representation of the shift from discrete energy levels to creation of 

energy bands as the conjugation along the polyacetylene backbone increases. The “filled” 

or “HOMO” energy levels/bands are represented in black, while “empty” or “LUMO” 

levels/bands are shown in red. Adapted from Salzner et al[5]. 

When the “band gap” or the “energy gap” (commonly given the symbol Eg) of a polymer 

material is discussed, it is the energy differential between the newly formed valance and 

conduction bands (or HOMO and LUMO levels) that is being referred to. Many of the 

properties commonly studied in conjugated polymers are directly related to the energy 

corresponding to this gap. The hybridization of π bonds into non-discrete band structures 

is arrested somewhere within a “semi-conductor” regime, prior to further hybridization 
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creating an overlap in the valance and conduction bands (a null value for the term Eg) and 

producing a polymer with a metal-like band structure. For better or worse, the effects of 

Jahn-Teller distortion (if one is concerned with specially separated degenerate energy 

levels created in conjugated polymers) or alternatively Peierls distortion (if one is 

concerned with the spacing of electrons along the conjugated axis of a polymer), prevent 

this metallic state from being attained[6-7]. The distortion prevents the alternating single 

and double carbon-carbon bonds in polyacetylene from becoming fully degenerate, where 

each bond would have a bond order of 1.5, and rather the formation of shorter (though 

not as short as double bonds) and longer (though not as long as single bonds) is 

observed[8]. While this scenario is unfortunate for the design of polymers with a truly 

metal-like band structure, the developing understanding of structure-property 

relationships to has been used to tune the energy of the interband of π to π* transition, 

resulting in the diverse family of conductive, electrochromic polymers (ECPs) discussed 

later in this chapter and throughout the rest of this dissertation. Briefly, steric interactions 

along the polymer backbone, particularly those effecting the angle of twisting between 

adjacent heterocycles and subsequently the extent of π orbital overlap, plays a role in 

dictating the energy associated with the π to π* transitions observed in conjugated 

polymers. Should the heterocycles of the backbone be twisted to a further extent out of 

plane, the energy associated with the π to π* transition will be higher, and through this 

higher energy photon absorption materials which appear yellow, orange, and even red 

have been produced. Low degrees of twisting between backbone heterocycles correspond 

with lower energy π to π* transitions, yielding materials which appear blue or violet. 

Materials which reflect or transmit light in the middle of the visible region (variations of 

green) require a material to absorb light in both the high and lower energy portions of the 

visible spectrum simultaneously.  
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 While the band gap energy of conjugated polymers is intrinsically linked to the 

backbone structure, through doping, the structure of the backbone can be altered, 

eliminating one structure (and its Eg) in favor of a new structure with a new value of Eg. 

In the case of oxidation, as more and more portions of the backbone are oxidized, new 

geometries are adopted to maintain an equilibrium. Throughout oxidization as radical 

cations are formed (which can be thought of as polarons in the case of conjugated 

polymers), twisting strain along the backbone is relieved[9-11]. As oxidation of the 

material continues, dicationic or bipolaronic states are formed, due to the relaxation in the 

twisting strain along the backbone being greater for a pair of charges localized at one 

point than it is for two uncoupled charges separated at two points. This process is 

illustrated, using the structure of polythiophene, in Figure 1.1.1.2.  

 

Figure 1.1.1.2. Formation of radical cation (polaron) and dication (bipolaron) states in 

polythiophene upon oxidation. Adapted from Beverina et al[12]. 

 The formation of these bipolaronic states creates structures which are more planar 

in comparison with their undoped states, reducing the energy of any photons absorbed[13]. 

In this fashion the trend emerges that the more twisting strain is relieved (the more 

“relaxed” a system becomes), the more planar the bipolaron units can become, which in 

turn is able to absorb photons of lower and lower energy having the net effect of making 

the oxidized state of an electrochromic material more transmissive in the visible region. 

While this section has largely used polyacetylene as a model to discuss conjugated 
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polymers at large, nearly all the systems discussed in this dissertation are composed of 

aromatic heterocycles similar to the polythiophene seen in Figure 1.1.1.2., which will be 

examined in the following section.   

1.1.2.Recognizing Polythiophene and PEDOT 

 Roughly contemporaneously with the discovery and study of polyacetylene, 

similar properties were noted in polyaromatic materials, such as polypyrrole (PPy) and 

polythiophene (PT). Polypyrrole in particular served as a system of choice in the study of 

many properties of conjugated polyaromatics, including doping and electrochromism[14-

16]. The electrochromic transition observed in PPy is from a yellow-green neutral state, 

with a λmax around 420 nm, to a blue-purple state with a λmax at around 670 nm[17]. While 

this sort of transition might find utility in particular applications, the electrochromic 

properties of unmodified polypyrrole are not particularly useful for display or window 

applications.. Alternatively however, efforts to utilize PPy in charge storage applications 

have been ongoing for years, in part due to the low cost of the pyrrole monomer, and its 

solubility in aqueous systems[18-20]. Additionally, the electron-rich nature of PPy was a 

possible contributing factor to instability over repeated switching, leading to a research 

interest in the study of PT, which is less electron rich. As can be seen for PT in Figure 

1.1.1.2. (and indeed for PPy as well) the 3 and 4 positions are not protected from 

participating in the coupling reactions used in polymerization, which led to mixtures of 

materials produced through α-β and β-β coupling which reduce the effective conjugation 

lengths within the polymer. To circumvent the formation of these structures, these 

positions were protected from coupling via the addition of various alkyl groups, the 

simplest of which is a methyl group[21]. The reduction in the α-β couplings formed 

through this protection scheme extends the effective conjugation lengths along the 

backbone, lowering the bandgap energy in the undoped form and also stabilizing 

polaronic and bipolaronic states formed upon oxidation. This motif was expanded further 
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by using groups that bridged the 3 and 4 positions of thiophene, a notable example of 

which was the synthesis and characterization of 3,4-ethylenedioxythiophene (EDOT), 

which after polymerization is referred to as PEDOT[22-23]. While the structural protection 

against non-conjugative couplings through the 3 and 4 positions was an important aspect 

of this discovery the electrochromic properties of PEDOT were, with particular regard to 

the history of the materials discussed in the remainder of this document, a turning point. 

In its undoped state, PEDOT exhibited a λmax at 621 nm, showing a blue film when 

deposited electrochemically and upon oxidation this absorption was nearly eliminated, 

coinciding with the emergence of an absorption in the near-infrared (NIR) portion of the 

spectrum. While the NIR absorption tails into the visible, giving the oxidized state of 

PEDOT a slight blue coloration, the electrochromic behavior of a visibly colored-to-clear 

behavior is one that stoked interest for future practical application[24-25]. The 

dioxyethylene bridge appended to the core thiophene unit came with benefits beyond 

blocking coupling defects. Donation of electron density into the thiophene π systems 

made the conjugated system as a whole more electron rich. Through this added electron 

density, the HOMO levels of polymers produced using dioxythiophene (DOT) units are 

raised to some degree, which in turn lowers their potential of oxidation (Eox), a property 

which becomes particularly important in the consideration of charge storage applications 

for conjugated polymers discussed in a subsequent section. The following section, 

however, will focus more on the tuning of the value of Eg by design of repeat unit 

structures in order to produce the family of ECP materials spanning the visible spectrum 

that are the focus of much of this document.  

1.1.3. History of ECP Development – Completing the Color Palette 

As previously mentioned, an intrinsic link might be drawn between the Eg of a 

conjugated polymer and the color of its undoped state. Over the previous decades, much 

effort has been directed at elucidating the relationships between repeat unit structures and 
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the properties of polymers created using structures, often referred to simply as “structure-

property relationships”. The conjugated polymers used throughout the work presented in 

this dissertation are no exception to this, and the general system for the design of ECP 

band gaps is shown in Figure 1.1.3.1. 

 

Figure 1.1.3.1. Schematic representation of the general structure-property relationships 

used to tune the color of the undoped state of an ECP. Adapted from the dissertation of 

Justin Kerszulis[26].  

The general principles outlined in Figure 1.1.3.1. have allowed synthetic efforts in the 

Reynolds group to create a family of ECPs, wherein the values of Eg touch either end of 

the visible spectrum, and a variety of colors in between[27-28].  While this family of 

polymers has expanded to include multiple iterations for many of the color states, an 

illustration of the first full ECP “family” is shown in Figure 1.1.3.2. Many of the 

polymers represented in this family are “tuned” via steric interactions in repeat unit 

structures, causing twisting along the polymer backbone and shifting the energy of the π 

to π* transition,  as discussed in Section 1.1.1. In the order from highest strain (twist, and 

consequently Eg) to the lowest, these are ECP-Yellow, ECP-Orange, ECP-Red, and ECP-

Magenta[29-32]. As previously mentioned, to produce ECPs which appear green or cyan, 

dual absorption bands are required to remove both the high and low wavelengths from a 

visual stimulus. In the family of ECPs shown, this was done through the use of donor-
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acceptor (D-A) moieties, wherein the π to π* transitions (absorbing high energy light) are 

tuned with varying degrees of donor content, and donor-acceptor interactions serve to 

provide an absorption band at lower energies[33-35]. This D-A structure also served to 

produce a blue-to-clear material, in ECP-Blue[36]. 

 

Figure 1.1.3.2. Structures and photographs in both neutral and oxidized states for the first 

DOT-based ECP family spanning the visible spectrum. Adapted with permission from 

Dyer et al[27]. Copyright 2011, American Chemical Society. 

It is important to remember though that two other ECP systems make up important 

bookends to this family of materials: MCCP and ECP-Black. The first material, which 

switches between two nearly colorless states, i.e. with a minimal color change between its 

redox states, was developed based on a dioxypyrrole (DOP) heterocycle, rather than the 

DOT systems that make up most of the ECPs in this dissertation. Due to this minimal 

color change, this material was dubbed a “Minimally Color Changing Polymer”, 

frequently shortened to MCCP[37]. This material in particular has been invaluable in the 

refinement of window-type electrochromic devices (ECDs), and its utilization can be 

found throughout Chapters 4 and 6. ECP-Black, while still predicated on DOT moieties 

in its repeat unit structure, is a random copolymer, rather than a well-defined structure 

such as those shown in Figure 1.1.3.2. The random nature of ECP-Black copolymer is the 
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origin of its absorptive properties, which reach from one end of the visible spectrum to 

the other nearly evenly[38-39]. The structure and spectrum of this unique ECP are shown in 

Figure 1.1.3.3. 

 

Figure 1.1.3.3. Spectrum and structure of ECP-Black, illustrating the origin of the broad 

spectral profile of this material from the random nature of its copolymerization. Adapted 

from the dissertation of Justin Kerszulis[26]. 

This material was designed to incorporate random lengths of all donor units, enabling the 

final polymer to absorb light at the lower wavelengths, capturing light in the middle of 

the visible spectrum towards the ultraviolet (UV). The random incorporation of acceptor 

moieties, with a varying number of donor units surrounding each acceptor, enables the 

absorption of low energy light as well. The nearly random formation of both these 

moieties, all donor and donor-acceptor units, during polymerization allows for the 

roughly even spectral profile throughout the visible spectrum, and the even attenuation of 

light across the range of visible light imparts this material with its nearly black 

chromaticity. With this versatile family of electrochromic polymers available for study, 
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the following section will describe potential future applications, as well as offer a bit of 

perspective on the future of development of DOT-based conductive polymers.  

1.2. Applications and Perspective for Conjugated Polymers 

 The field of conducting polymers has matured significantly in the decades 

following the recognition of polyacetylene and polypyrrole. A major focus in this 

document is given towards the electrochromic aspects of conductive polymers, and in this 

area strides are being made to make these materials practically applicable. However, 

while perhaps less able to catch the eye, efforts to utilize the faradaic processes 

coinciding with the reversible redox reactions in the DOT-based polymers for charge 

storage applications have been fruitful as well. The following section will discuss a few 

of these potential applications, and offer a view towards the future of conducting 

polymers. 

1.2.1. ECP Applications and Electrochromic Devices 

The general architecture of electrochromic devices takes two routes towards light 

modulation: transmission and reflection. These terms are most often applied towards lab-

scale devices for either prototyping or performance assessment, however the principles 

behind the naming convention in describing the general activity of the device as a whole 

would carry through to the consumer application level. Further, it’s worth noting that the 

nomenclature applied to ECDs utilizing polymer electrochromes is for all intents and 

purposes identical to the nomenclature applied to devices using non-polymer 

electrochromic materials[15, 40]. Let’s first discuss the design and applications for 

reflective ECDs. The primary difference in reflective and transmissive ECDs is the 

presence of some reflective material, whether incorporated between two transmissive 

electrodes, or as a reflective electrode surface. When the intended application of a 

reflective ECD is to perform a colored-to-white transition, such as might be used in a 
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display type application, a diffuse reflecting additive is incorporated into the electrolyte-

filled space between electrodes, often making use of passivated titanium dioxide (TiO2) 

for this purpose[41-44]. A schematic representation of this form of reflective ECD is shown 

in Figure 1.2.1.1.  

 

Figure 1.2.1.1. Schematic representation of a reflective-type ECD in the a) white and b) 

colored states. Shown is a device with a diffusely reflective white electrolyte additive, 

such as titania.  Adapted from the dissertation of Aubrey Dyer[45].  

One obvious benefit of this form of reflective ECD is that the same material might be 

used on both electrode surfaces, ensuring that, provided processing and film thicknesses 

are relatively uniform, sufficient material will be present for charge compensation to 

either state of the device. Alternatively, reflective ECDs have been fabricated using 

reflective, metallic electrode substrates, rather than the transmissive indium tin oxide 

(ITO) coated glass often employed. In this case, a transmissive electrode is used at the 

“top” of the device, and upon bleaching of the electrochromic materials within the 

device, the reflective metallic electrode “underneath” is revealed[46-48]. The most 

frequently mentioned application of reflective type ECDs is in non-emissive image or 

data displays. Such applications might be applied to indicators on security cards and 

banknotes, advertising displays, or even watches and clock faces[49-53]. One application 

which bridges the transmissive and reflective aspects of electrochromic devices is in the 

dimming of mirrors. More often than not utilized in an automotive setting, ECDs are 

placed in front of rear-view mirrors that might be illuminated by the headlights other 

vehicles. Placing this ECD in a clear state would allow for full reflection, while a 
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darkened state would attenuate the reflected light, preventing a driver from being dazzled 

by the headlights of another vehicle[54-56].  

 The design of transmissive ECDs is nearly identical to that seen in reflective 

ECDs. Neither are diffusely reflective electrolyte additives present, nor metallic electrode 

substrates, and instead electrode surfaces are composed of some transmissive material 

coated onto either glass or plastics. As the goal of this device type is very likely a 

colored-to-transmissivity clear transition, the selection of electrochromic polymers 

becomes pivotal. Where in reflective ECDs, should the same polymer be used on both 

electrodes, one electrode will always be in the fully colored state if the other is to be in 

the bleached state. However in transmissive ECDs, either very judicious selections of 

polymers with opposing doping schemes must be made, or one material which exhibits 

no visible color in both of its oxidation states must be used[57]. In the latter scenario, the 

DOP material described above in Section 1.1.3., MCCP, is a suitable material for use in 

transmissive ECDs, and indeed without the lack of visible color in either of its redox 

states, much of the work presented in Chapter 4 would not have been possible[37, 58-60]. A 

schematic representation of a transmissive ECD utilizing an MCCP coated electrode is 

shown in Figure 1.2.1.2. 

 

Figure 1.2.1.2. Schematic representation of a transmissive-type ECD in the a) colored 

and b) clear states. Adapted from the dissertation of Aubrey Dyer[45]. 

The most obvious application for the transmissive ECD type is its utility in window or 

eyewear applications. Where architectural windows are primarily concerned the term 
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“smart glass”, coined in 1985, has often been used to describe a window with a tunable 

transmittance functionality, though examples of this technology in popular media predate 

the term, such as in the 1982 film Blade Runner[61-62]. The primary functionality of 

transmissive ECDs, and indeed any variation of smart glass technology, is the selective 

and variable transmission of an otherwise static external window or interior glass wall. 

Further, it has been suggested that when applied to external windows in buildings, the 

selectively variable transmission of smart windows will lower cooling or heating 

requirements, due to the ability of windows to match exterior conditions in a fluid 

manner[63-67]. While currently not employing electrochromic polymers as active materials, 

View Inc. and Sage Glass have both been successful in installing EC windows in both 

public and privately owned buildings[32, 68]. While the maturation in the application of the 

electrochromic aspects of conducting polymers is an ongoing process, great strides have 

been made in raising public awareness of both electrochromism and “smart glass” 

technology. There is however another application for conjugated polymers with great 

promise. While in the author’s opinion considerably less flashy and visually appealing, 

the utility of conductive polymers for charge storage applications such as in 

supercapacitors, via utilization of the faradaic currents produced upon their oxidation and 

reduction, offers just as much promise for successful implementation as any EC 

technology. This form of implementation, and its direct relevance to supercapacitor 

devices is discussed in the following section.  

1.2.2. Polymer Supercapacitors and High Surface Area Electrodes 

To discuss the usage of conducting polymers in supercapacitive devices, the simplest 

place to begin is likely in the description of supercapacitors in general. While a textbook-

style definition could suffice, it seems more often than not, the most successful 

description of this class of devices comes relative to two other energy storage device 

types: capacitors and batteries. Capacitors are devices which store electrical energy 
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electrostatically, often via a pair of polarized plates separated by some dielectric 

(insulating) material. This form of device construction is able to store only a (relatively 

speaking) moderate to small quantity of electrical energy per unit volume or mass, 

meaning a capacitor’s energy density is low. On the other hand, a capacitor is able to very 

quickly accept charge for storage or discharge its stored energy, and this rapid rate of 

energy transfer being attainable means most capacitors have a high power density. 

Batteries however (or fuel cells, which will not be discussed here), in a simplistic sense, 

characteristically display the opposite trends. Batteries are often able to store much larger 

quantities of energy per unit volume or mass than capacitors (high energy density), but 

are unable to discharge or accept energy at a high rate (low power density). When 

plotted, this relationship between energy and power densities (or specific energy and 

specific power) is referred to as a Ragone chart, named after David V. Ragone[69], and 

one such plot is shown in Figure 1.2.2.1. Supercapacitors, as can be seen in this chart, are 

device types that seek to bridge the gap between the high power density of capacitors and 

the high energy density of batteries.  

 

Figure 1.2.2.1. Ragone chart, comparing the specific energies and powers of various 

energy conversion systems. Reprinted with permission from Winter et al[70]. Copyright 

2004, American Chemical Society.  
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Devices that fall within the “supercapacitor” range have been viewed as a promising 

avenue for energy storage due to the higher power density, higher energy storage 

densities, and faster charge-discharge cycles, when compared to the Li-ion batteries[71-72]. 

In recent years, much of the push behind research done in the field of supercapacitor 

development has been spurred on by the consumer electronics demand for easily 

portable, light-weight, low form factor, and, if at all possible, flexible energy storage 

devices[73]. In response to these demands, carbon-based, and specifically carbon nanotube 

(CNT)-based, devices have been developed in a range of form factors[74-77]. The 

mechanism of charge storage in many of these carbon-based devices centers around the 

formation of an electrochemical double layer at the electrode-electrolyte interface, and 

devices that utilize this route to charge storage are often referred to as electrochemical 

double layer capacitors, or EDLCs[78]. Part of the success of this mechanism of charge 

storage is reliant on the carbon materials having a sufficiently large surface area over 

which this double layer may form upon polarization. It has been suggested in the 

literature however that the supercapacitive performance of EDLCs is limited by the low 

specific capacitance inherent to the carbon materials often used to produce these 

devices[79-81]. In contrast to the ECDL mechanism of charge storage, redox-active 

materials which store electrical energy faradaically, such as conducting polymers and 

transition metal oxides, have been found to have much higher specific capacitances than 

those observed in EDLC materials[82-85]. Among these redox-active materials (frequently 

referred to as pseudo-capacitors), conductive polymers such as polyaniline (PANI), 

polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives 

have the greatest potential to display a robust flexibility, along-side the high redox-active 

capacitances characteristic of pseudocapacitors[73, 86-92]. One of the many strategies for the 

implementation of conductive polymers for supercapacitor devices has been to form 

composites with carbon electrode materials, ideally making use of both the high surface 

area of carbon substrates (and therefore their relatively high double layer capacitance and 
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power densities) and the high specific capacitance of pseudocapacitive, redox-active 

polymers[93-98]. Many of these efforts have relied on the electrochemical polymerization 

of conductive polymer around a carbon substrate, and while successes have been reported 

via this method, electropolymerization is a process that is difficult to bring to a large 

scale[90, 99-100]. As discussed in Section 1.1.3., and shown in Figure 1.1.3.1., synthetic 

design strategies are capable imparting various solubility motifs to conductive polymers, 

and both aqueous and organic solubilities have been demonstrated for DOT-based 

polymers[28, 101]. The solubility imparted to these polymers opens the door to a new route 

of polymer/CNT composite formation, and efforts to examine the capacitive performance 

of supercapacitive devices utilizing composite electrodes formed via solution processing 

of a conjugated polymer form the basis for the third chapter of this dissertation.  

1.3. Dissertation Thesis 

 The information contained within this document serves to detail the application 

and study of conjugated, redox-active polymers, utilizing both pseudocapacitive charge 

storage properties as well as designed electrochromism.  As seen above, Chapter 1 serves 

as an introduction to the concept of electrochromism, focusing on conjugated polymers 

and the traits that make them an attractive material for study. Also detailed is the utility 

of redox-activity for pseudocapacitive applications, polymer-based supercapacitors, and 

strategies to improve the performance of this technology. Chapter 2 will offer an 

overview of the experimental techniques used throughout this body of work. Chapter 3 

will cover the use of conjugated polymers as a modification to high surface area carbon 

electrodes intended for super capacitor applications. Chapter 4 will focus on 

electrochromic devices, including variations in device architecture for specific 

applications, such as color mixing or self-powering devices. Chapter 5 will detail solution 

co-processing of polymer mixtures for color mixing applications, based largely on the 

CMY subtractive color mixing scheme, and deviations from this scheme in order to 
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optimize specific attributes of mixtures. Chapter 6 will discuss experiments undertaken in 

order to address the question of photo-stability in pi-conjugated materials in both oxygen 

containing and oxygen free environments, as well as dry and electrolyte bearing 

environments.  
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CHAPTER 2 

EXPERIMENTAL AND FABRICATION TECHNIQUES 

 By and large, the majority of the work presented in this dissertation makes use of 

a small handful of techniques. Hopefully, this document will be rife with the technical 

information necessary for similar experiments, in that now that we’ve discussed the 

background for studying redox-active conjugated polymers and their applications, a 

thorough description of the means and methods of that study is in order. The following 

chapter will discuss topics ranging from the casting of polymer films from solutions and 

the fabrication of devices using those films, to characterization techniques such as 

spectral and electrochemical measurements, the derivation of colorimetric information 

from spectra, photography, and surface-sensitive measurements such as x-ray 

photoelectron spectroscopy.  

2.1 Polymer Processing and Device Fabrication 

 The technique likely most central to all of the data presented in this work is the 

processing of polymer films via solution casting methods. Post-synthesis, the physical 

samples of the materials examined in this dissertation frequently consists of finely 

dispersed, dark colored powders. The processing of these materials, via solution casting 

methods, into thin films upon various substrates has opened the door for opto-electronic 

characterization, well-defined electrochemical behavior where charge storage is 

concerned, and amenability to surface sensitive techniques. The film producing 

techniques will be supplemented by details pertaining to the fabrication of devices, both 

electrochromic and supercapacitive, from cast films.  

2.1.1. Spray Casting of Films 

 The process of casting polymer films begins with the production of a polymer 

solution. All of the films that were produced and examined to produce data, save that in 
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Chapter 3, were processed from toluene or chloroform solutions. For the materials 

discussed in this document, polymer concentrations ranging from 2 to 5 mg per milliliter 

of solvent are the most common, and those values are well within the solubility limits for 

the discussed materials.  The preparation of solutions rarely requires additional heating to 

promote dissolution. Should heating be employed however, future students are 

encouraged to use vials with caps loosely affixed, rather than tightly sealed. Overheating 

of a loosely sealed sample may cause the evaporation of solvent, but overheating of 

tightly sealed vials may cause cracked or leaking sample containers. Solution volumes 

prepared ranged anywhere from 2 mL to 25 mL, though the most common solution 

volume prepared was 10 mL, at a concentration of 5 mg/mL. That volume, and the 

concentration stated should be sufficient to cast anywhere from 8 to twelve films from an 

organic solvent, with an area of roughly 2 cm2. Your sample mileage may vary, 

depending on your experience with the casting technique.  

 Once solutions are prepared, substrates should be prepared for casting. The most 

common substrate for casting in this document is overwhelmingly ITO-coated glass 

slides, purchased from Delta Technologies, Ltd, with quoted sheet resistances of 8-12 

Ω/sq. These substrates vary in size depending on the final application, with substrates for 

thin film interrogation having dimensions of 7x 50 x 0.7 mm, and substrates destined for 

device fabrication measuring 25 x 75 x 0.7 mm, though these are often cut in half along 

the short axis to produce two electrodes. Prior to casting, substrates are rinsed with wipes 

wet with acetone. Immediately prior to casting, polymer solutions should be filtered using 

a 0.45 pore size PTFE syringe filter, to remove insoluble material and polymer 

aggregates. If the polymer solution has been allowed to sit, and a large degree of 

aggregation is observed (often a very hazy, albeit translucent liquid), gentle heating may 

be used to break up these aggregates, though solutions should be at room temperature at 

the time of filtering. After filtering, solutions are ready to be sprayed, which may be done 

using an Iwata-Eclipse spray gun, with nitrogen as the carrier gas. Whether toluene, 
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chloroform, or a mixture of the two was used as the processing solvent, the gas pressure 

was set at roughly 20 psi, in order to produce a finely dispersed spray. Further, a gun tip 

to substrate distance of 4-6 inches was maintained throughout casting, with the gun at a 

45° angle to the substrate, moving in a continuously fashion both laterally and axially 

with respect to the substrate during casting.  

2.1.2. Device Fabrication and Assembly 

 Fabrication of simple, window-type electrochromic devices, once films have been 

cast, is a rather straight-forward proposition, or at least a process which involves several, 

independently simple steps. After casting, the first of these steps is to place some form of 

barrier around the active (electrochromic) portion of the substrate being used. Barrier 

materials used in this document come in the form of either a foamed acrylic tape, coated 

in adhesive on both sides (3M VHB tape), or a modified polyisobutylene tape that will be 

discussed in more detail in section 2.6. Frequently, this barrier layer takes the form of a 

double barrier, as illustrated in Figure 2.1.2.1., and the author strongly encourages this 

type of barrier for ECD applications when possible.  

 

Figure 2.1.2.1. Illustration of the “double barrier” bordering scheme for window-type 

ECDs, a simple means of keeping bubbles from becoming trapped within the active area. 
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Putting down this double barrier layer is done for at least two important reasons. First, 

this provides a physical separation between the two electrode surfaces, preventing them 

from shorting together and causing adverse effects. Second, the double barrier leaves 

room for spill-over of the electrolyte added to the device, ideally trapping any bubbles 

formed during the sealing process outside of the active electrochromic portion of the 

device. Electrolyte formulations will no doubt change over the years following this 

document’s publication, but all of the devices described herein make use of an electrolyte 

comprised of propylene carbonate (PC), 8 wt% poly(methyl methacrylate) (PMMA) to 

increase viscosity, and 0.5 M of a given salt, being either tetrabutylammonium 

hexafluorophosphate (TBAPF6) or lithium bis(trifluoromethane)sulfonamide (LiBTI). In 

short, after film casting, the barrier is laid down on one electrode, electrolyte is pipetted 

into the interior barrier, and the second electrode is laid on top. Once joined, a small 

weight (~50 grams) is placed atop the device for roughly five minutes to allow for a good 

contact to be made between the double sided adhesive and both electrode surfaces. After 

this step, copper tape may be used to facilitate electrode contact at the ends of the ITO 

electrodes. This methodology can be adapted to ECD fabrication with little regard for the 

particular features of the substrates being used, which is further demonstrated throughout 

Chapter 4 of this document. 

2.1.3. Drop Casting from Water 

 Solution processing can be as sophisticated as complex roll-to-roll coating 

processes carried out on the industrial scale or, at the other extreme, as simple as placing 

a drop of solution (or suspension) bearing a relevant material onto your substrate of 

choice.  The spray casting described in the previous sections falls somewhere between 

these two in terms of complexity, and formed the overwhelming majority of techniques 

used to study electrochromic polymers. Where the study of materials and structures 

intended for charge storage applications are concerned though, at least as far as this 
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document will detail, drop casting became the solution processing technique of choice. 

Further details of the supercapacitive properties formed via this technique may be found 

in Chapter 3, however this section will provide detailed information on the casting 

technique and its parameters employed to generate that data.  

 As mentioned, drop casting is a very simple method of creating a film of a 

solution-borne material, with very little mystery beyond what’s contained in the name. 

Frequently used to coat button electrodes for electrochemical characterizations, some 

known volume of a solution with a well-defined concentration is pipetted or otherwise 

dispensed onto a substrate, and allowed to sit until fully dry. Really, only two 

considerations are required to undertake drop casting. First, one will have to be able to 

form a solution of the material for which processing is desired, or otherwise form a well 

dispersed suspension. Second, one will have to ensure that the substrates onto which the 

solution is placed is not perturbed throughout the drying, lest solution be knocked off of 

the substrate or remaining solvent cause smudging of the cast film.  

 Beyond the consideration of the general method, this technique as used in Chapter 

3 was used to cast thin films of a water-soluble conjugated polymer onto a non-woven 

carbon nanotube (CNT) substrate to increase the charge storage properties of the CNT 

textile by the addition of pseudocapacitive or faradaic current upon voltage cycling. As 

received, the conjugated polymer in question was functionalized as a carboxylate salt, 

rendering it soluble in water. An aqueous solution of this polymer was prepared at a 

concentration of 5 mg of polymer per mL of water (previously purified to a resistance of 

18 MΩ), and was allowed to stir for 24 hours under very gentle (40-60 °C) heating 

conditions. After fully solvation, the solution was dispensed onto the CNT textile surface 

in 40 μL aliquots via a mechanical pipette with a maximum volume of 100 μL. One the 

number of aliquots proportional to the mass of polymer desired to be deposited were 

dispensed, samples were left on the benchtop over night to dry undisturbed. As roughly 

no more than a milliliter was dispensed onto any one sample, twelve hours proved 
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sufficient to allow for film solidification, and no additional heating was used to dry the 

cast films. After casting and drying, the newly formed polymer-CNT composites were 

soaked in a 1 M methanol solution of p-toluenesulfonic acid (pTSA) for 30 minutes to 

protonate the carboxylate functional groups, rendering it insoluble in aqueous 

environments. This pTSA soak step was followed by a 30-60 minute soak in an 

additional bath of 18 MΩ water to remove any pTSA left in the sample after removal 

from that bath.  

2.1.4. Fabrication of Supercapacitor Devices 

 Following the fabrication of polymer-CNT composite electrodes described in the 

previous section, the composite samples were used to construct capacitive devices. 

Fabrication of these devices is much simpler than the fabrication of electrochromic 

devices described above. As capacitive devices require only that the two electrode 

elements not be in physical contact in order to prevent shorting, a square of cellulose 

filter paper (Quantitative Grade 5, medium pore style, Fisher Scientific) wet with the 

appropriate electrolyte (in this case LiBTI at a concentration of 0.5 M in water) is placed 

between the two polymer-CNT composite electrodes. In turn, the polymer-CNT 

composites, previously soaked with electrolyte solution, were placed onto the surfaces of 

stainless steel shims (0.002” thickness, Maudlin Products, part number 316-002-6-50) in 

order to facilitate electrical contact with the composites. Around this stainless steel-

composite-filter paper sandwich, microscope slides were used to provide structural 

strength to this “device” assembly, and to add a surface across which pressure could be 

applied in order to keep all of the electrically active components in close contact during 

operation and characterization.   

2.1.5. Fabrication of Photoelectrochromic Device 
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 Initially, ITO-glass substrates (15 Ω/sq, Colorado Concept Coatings, LLC) were 

rinsed via ultrasonic bath using a detergent, water, acetone and isopropanol. A ZnO 

solution, prepared from zinc acetate dehydrate and ethanolamine dissolved in 5 mL of 2-

methoxyethanol (all chemicals from Aldrich), was spin coated onto the ITO surface 

(3000 rpm, annealed at 150 °C for 1 hr). Atop this ZnO layer, polyethylenimine 

ethoxylate (PEIE) was cast via spin coating (5000 rpm, annealed at 100 °C for 10 min.), 

and samples were transferred into a glove box with a nitrogen atmosphere for photoactive 

layer coating. In this N2 atmosphere, a layer of PDPP3T:phenyl-C61-butyric acid methyl 

ester (PCBM) was deposited via spin casting (1000 rpm for 1 min, annealed at 75 °C for 

5 min.). PDPP3T was acquired from Solarmer Materials, Inc. and the  PCBM was 

acquired from Nano-C, Inc. The photoactive layer solution was prepared for spin coating 

through dissolution of the two aforementioned materials in a mixture of 

dichlorobenzene:chloroform,1,8-diiodooctane (79:16:5, v/v/v) at a total concentration of 

18 mg/mL, and allowing this mixture to stir overnight. The PEDOT:PSS suspension, the 

final layer of the OPV device, was prepared for casting by adding 5% by volume 

dimethyl sulfoxide (DMSO), and allowing to stir overnight. The PEDOT:PSS suspension 

was spin coated (1000 rpm, annealed 80 °C for 5 min.), and the resultant OPV devices 

were tested in a nitrogen atmosphere. Following OPV device assessment, solutions of 

ECP-Magenta (ECP-M) and MCCP were prepared in toluene to a polymer concentration 

of 2 mg/mL. Solutions were filtered using a 0.45 μm PTFE syringe filter, and casting 

using an Iwata-Eclipse HP-BC airbrush with nitrogen as the carrier gas. Thin strips of 

VHB foamed acrylic tape were used to produce device boundaries. These boundries were 

filled with a gel electrolyte composed of 0.5 M LiBTI in propylene carbonate, with an 

added 8 wt% PMMA and sealed with an additional ECP-OPV assembly. Contact to the 

device was facilitated via strips of copper tape (series 1181, 3M) at the extreme edges of 

each device. 
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2.2 Electrochemical Methods 

 Electrochemical techniques, such as cyclic voltammetry (CV), lend themselves 

readily to the study of the redox properties of conjugated polymers. The following section 

will discuss the basic procedure for gathering CV data on a cast polymer film, as it relates 

to the electrochemical data presented throughout the rest of this document.  

2.2.1. Cyclic Voltammetry 

  Cyclic voltammetry, as a method, can be generally described as a waveform used 

to apply a bias across an electrochemical cell (likely in relation to some reference 

potential). The applied bias is swept linearly and at a constant rate between two extreme 

values, which is then reversed and brought back to its original value in an identical 

fashion, hence the cyclical description. The term cyclic voltammetry itself refers to the 

application of this waveform, however it might be applied either to a three electrode cell 

arrangement, or across a two electrode “device”-type arrangement. Within this document, 

working electrodes (WE) commonly consisted of polymer-coated ITO-glass slides. Pt 

wires and flags served as counter electrodes (CE) and, where used, organic reference 

electrodes (RE) consisted of 10 mM AgNO3 in a 0.5 M electrolyte.  In any following 

figures, where the phrase “vs. Ag/Ag+” may be used, this refers to this 10 mM AgNO3 

reference. Aqueous reference electrodes, containing AgCl, were purchased from 

Bioanalytical Systems, Inc. (BASi, product number MF-2021). The potential of reference 

electrodes was periodically calibrated against a 10 mM Fc/Fc+ solution, making use of 

whichever electrolyte syem pertained to that electrode couple prior to use[102]. This 

electrode arrangement can be compact enough to use within a spectrometer cuvette, and a 

photograph of just this arrangement is shown in Figure 2.2.1.1. The organic electrolyte 

systems used throughout this document made use of the salts TBAPF6 or LiBTI, almost 

exclusively dissolved into propylene carbonate (PC), unless otherwise noted. Aqueous 

electrolytes were composed of 0.5 M LiBTI in water purified to a resistance of 18 MΩ.  
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Figure 2.2.1.1. Photograph of the three electrode electrochemical arrangement inside of a 

spectrometer cuvette. 

 In practical application, the cyclic voltammetry presented throughout this 

document was used to fulfill two purposes. First, potential cycling was used to assess the 

charge storage properties of polymer-CNT composite electrodes at varying scan rates, 

and additional detail pertaining to those experiments may be found in Chapter 3. Second, 

but no less important, cyclic voltammetry was used to “break in” electrochromic films. 

The redox switching behavior of conjugated polymers coincides with the intercalation 

and expulsion of both solvent and counter ion species, and as a consequence of the this a 

shift in spectral properties is often reported before and after the initial switches of a 

film[31, 103-104]. Prior to full spectral characterization, an electrochromic film should be 

subjected to a number of CV break-in cycles, as after only a few switches, films often 

enter a steady state in terms of further switching without any shift in their spectral 

properties. A representation of the break-in cycling, as well as fairly typical cyclic 

voltammetry traces for an electrochromic polymer, specifically ECP-Cyan, is shown 

below in Figure 2.2.1.3. 
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Figure 2.2.1.2. Break-in cyclic voltammogram for a film of ECP-Cyan. The initial cycle 

is shown in red, and 24 subsequent cycles are plotted in black. 

 Regarding the application of cyclic voltammetry to two electrode or device type 

structures, few differences are noted in the voltammograms produced. When performing 

cyclic voltammetry on a device, the reference and counter electrode leads are shorted 

together, making the bias applied across the device self-referential, and for this reason the 

current data collected should not be plotted against a “potential” axis, but rather simply 

an applied voltage. Beyond the physical augmentation of the connection scheme and the 

understanding of differences between an applied potential and applied voltage, the 

procedure and considerations for gathering device CV data are identical to those of the 

three-electrode electrochemical cell.  

2.3 Spectral Techniques 

 Given the focus on the optical properties of conjugated polymers that makes up 

the majority of this document, it’s only natural that the techniques used to carry out those 

characterizations be detailed. Rather than simple spectroscopy though, the dependence of 

each materials optical properties on its redox states necessitates methods than are able to 

marry both electrochemical and spectral characterization. Two methods of 

characterization in particular are utilized in this document, spectroelectrochemistry and 

chronoabsorptometry.  
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2.3.1. Spectroelectrochemistry 

 Spectroelectrochemistry is, put simply, the collection of spectrographic data in 

connection with the application of a steady potential bias across the sample being 

measured. More specifically though, this technique is used to record the spectral behavior 

of an ECP at incremental potentials as applied in by a potentiostat, throughout the 

potential switching window determined for that material. Unless otherwise noted, spectral 

data throughout this document was recorded on a Varian Cary 5000 UV-Vis-NIR 

spectrophotometer. The exception to this are portions of data presented in Chapter 4.3, 

which utilized either an Ocean Optics USB2000+ fiber optic spectrometer or an Optronix 

OL770 spectroradiometer, which will be noted as such. The spectral window accessible 

for recording for the Cary 5000 ranges from 175 to 3300 nm, however a range of 300-

2000 nm allows for the observation of the polaron and bipolaron states formed upon 

oxidation of most electrochromic polymers, though an even narrower window (such as 

350-1600 nm) may be used to focus on the shift observed within the visible region.  

 The common procedure for recording spectroelectrochemical data is fairly simple, 

and as with most methods described in this chapter, is more or less a collection of fairly 

simple individual steps. The cell arrangement should be established within a spectrometer 

cuvette, as shown in Figure 2.2.1.2. First, photographs of the unswitched film should be 

collected (further description found in Section 2.5). Films should then be switched via 

cyclic voltammetry as described in Section 2.2. As few as 5 cycles is often enough to 

ensure no further drift in spectral properties is observed, but additional information on a 

film’s stability to repeated cycling may be gather with more cycling. Following this 

cycling and after ensuring that the thin film in question is within the beam path of the 

spectrometer and unobstructed by wires, counter electrode wires, or reference electrode 

tips, a potential which fully neutralizes the film should be applied potentiostatically. After 

allowing 25-30 seconds for the system to equilibrate, a spectrum is recorded. Following 

this, the doping potential should be increased in fairly small, regular steps, such as at 50 
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or 100 mV intervals, throughout the potential window determined for that material during 

initial characterization, and a spectrum should be recorded at every potential after 

allowing 30 seconds for the system to re-equilibrate at each new potential. After the 

maximum potential for that system has been reached, the traces recorded at each potential 

may be plotted together to form a spectroelectrochemical series. An example of such a 

series is shown in Figure 2.3.1.1. for a film of ECP-Magenta, illustrating the full series at 

left, and highlighting the traces produced by potentials dominated by the neutral state 

absorbance (red), polaron absorbance (blue) and final bipolaron absorbance (black). 

 

Figure 2.3.1.1. Full spectroelectrochemical series for a film of ECP-Magenta (left) and 

isolated spectra of the neutral, polaron, and bipolaron states for that film (right).  

2.3.2. Chronoabsorptometry 

 Chronoabsorptometry, as used in this document, is fairly similar to 

spectroelectrochemistry, in that the data recorded describes the optical properties of an 

electrochromic polymer film, as they shift with a varying applied bias. A notable 

difference is made between the two methods however. While spectroelectrochemistry is a 

fairly static technique, allowing the electrochemical system to reach some steady state 

prior to data acquisition, chronoabsorptometry is by definition a dynamic method, 

recording data from a film actively throughout its electrochromic shift. Further, where 

spectroelectrochemistry records data across a range of wavelengths (most frequently the 

dominant wavelength, or λmax), the physical demands of performing chronoabsorptometry 

dictate that a single wavelength be measured throughout the experiment. Through this 
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method, the time required for a “full” electrochromic switch might be assessed, and 

colloquially, the data gathered via chronoabsorptometry is referred to as electrochromic 

“switching kinetics”. Chronoabsorptometry makes use of a cell arrangement identical to 

that used in spectroelectrochemistry, and is primarily performed using the “Kinetics” 

program written for the Cary 5000 spectrophotometer. A potentiostat is used to apply a 

varying potential using a potential square-wave program, with fully neutralizing and fully 

bleaching potentials entered as the potential values for this square-wave. The duration 

each potential is applied is varied throughout the collection of data, with the longest hold 

duration commonly being 60 seconds, and the shortest being 0.5 or 0.25 seconds. 

Through continued monitoring of a single wavelength throughout this potential cycling, a 

data set similar to that shown in Figure 2.3.1.1. is produced.  

 

 

Figure 2.3.2.1. Chronoabsorptometry (kinetic switching) data gathered for a film of 

ECP-Magenta, cast to 1.0 AU prior to switching, and monitored at the λmax of 608 nm. 

The duration of potential hold is displayed above the data pertaining to that switching 

time.  

The contrast attained at various switching speeds may be determined by subtracting the 

transmittance values attained at either end of a switch for that time regime. Indicated by 

the data shown in Figure 2.3.1.1., for this particular film the re-coloration process appears 

to be the contrast limiting step, as values of high %T are maintained throughout the 
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course of the experiment while the full extent of the low transmission values (observed at 

slower switching speeds) is not attained at 2 and 1 second switching times. Further 

analysis of this type of switching data would allow for the determination of the time 

required to attain 90, 95, or 100% of the full switching contrast for that polymer, though 

this analysis will not be described in this document[105]. Finally, it should be noted that 

not all ECP films are stable to excessively high switching speeds (e.g. sub-quarter second 

switching), and care should be taken in the examination of these switching times. 

2.4 Colorimetry 

 Characterization of the electrochemical and optical responses of conjugated 

polymers on redox cycling are vital points of the description of a material. For the 

application of polymers designed around their electrochromic properties though, a means 

of precisely describing the color of a system is greatly valuable. Common language, and 

even the scientific literature are filled with relative and general terms used to describe 

color: a ball is red, a wall is painted cherry red, the sky looks burnt red, the ground was 

reddish-brown, etc. Still, short of a unique name for every color it’s possible to perceive, 

for comparative or research purposes, language is grossly inefficient in accurately 

describing color. Efforts have been made to fill this need to accurately describe color 

through quantitative means, beginning in earnest at the end of the 19th century with the 

Munsell color system, which sought to define groups of colors of a certain similarity[106-

107]. The most important aspect of the early Munsell system though was its basis on the 

human perception of color, rather than the specific groupings described. While the 

Munsell system is rarely used outside of specialized areas today, the grounding of the 

Munsell system in the physical phenomena of human color vision became the basis for 

most modern systems of color quantification, most notable the International Commission 

on Illumination (Commission Internationale De L’Eclairage) or CIE systems. In the 
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following section, the theory behind both the human perception of color and the means of 

quantifying that perception will be discussed.  

2.4.1. Color Theory and the CIE Color Systems 

 One property of ECPs stands in notable contrast to systems that commonly come 

to mind when displays are considered: electrochromic polymers are non-emissive 

materials. The colors observed in the neutral states of many electrochromic polymers are 

not produced through the emission of photons at specific wavelengths, but rather through 

the reflection (or transmission) of incident light, with portions of the spectrum coinciding 

to the absorptive properties of the ECP in question diminished or removed. This property 

is particularly important in the consideration of mixing colors to produce a third color 

state. 

 The majority of modern display technologies make use of emissive materials, 

which mix color stimuli in an additive fashion (where the primaries sum to produce white 

light), allowing the familiar red-green-blue (RGB) color system to produce full color 

displays. In contrast, non-emissive materials mix color stimuli in a subtractive fashion 

(where the primaries sum to remove all light, producing black), leading to the cyan-

magenta-yellow (CMY) color system, and these two contrasting color wheels are shown 

in Figure 2.4.1.1. 

 

 

Figure 2.4.1.1. Red-Green-Blue (RGB) and Cyan-Magenta-Yellow (CMY) color wheels, 

representing additive and subtractive color mixing, respectively.  
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With a long-term desire for full color display applications for electrochromic polymers, 

and as a consequence of this correlation between non-emissive materials and a 

subtractive color mixing system, color mixing in electrochromic polymers is largely 

dependent on materials displaying neutral-state colors representative of the cyan-

magenta-yellow primaries while attaining largely colorless, transmissive oxidized (or 

bleached) states. Numerous examples of ECPs might be found in the literature which 

exhibit two distinct color states on either side of its electrochromic switch, for instance 

from yellow to red, or blue to red, etc. However, these materials are largely unsuitable for 

the production of full-color displays, due to their incompatibility with the CMY color 

mixing system. The mixing of polymers exhibiting the desired CMY-to-transmissive 

switching behavior, and assessments of the accuracy of predicting the color properties of 

that mixing can be found in Chapters 4 and 5. Before mixing can be discussed in an 

accurate fashion though, color stimuli must first be quantified in some fashion. 

 The task of establishing a system for the quantification of color has been 

undertaken, and further extensively developed, by the International Commission on 

Illumination (Commission Internationale De L’Eclairage, or CIE)[108]. However, to refer 

to the guidelines established by the CIE as a quantification of color could be misleading. 

A more accurate description would be the quantification of the human perception of 

color. The human perception of a color stimulus begins first in the eye, which is 

comprised of both “rod” and “cone” light sensitive cell structures. Where rod cells detect 

merely the intensity and presence of light, cone cells are differentiated into long, medium, 

and short cones cells, each variety having unique sensitivities to the various wavelengths 

that form the visible spectrum. Long cones (L-cones) are more responsive to longer 

wavelength, low energy stimulation, while short cones (S-cones) are more sensitive to 

short wavelength, high energy stimulation and the sensitivity of middle length cones (M-

cones) falls somewhere between. These relative sensitives are illustrated in Figure 

2.4.1.2. As mentioned, human perception of color begins in the stimulation of these cells 
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by light, and this stimulation is transmitted along the optic nerves to the brain, where the 

sensation of color perception is formed. 

 

Figure 2.4.1.2. Relative sensitives of short, medium and long light sensitive cone cells 

comprising the human eye, and the basis of human color vision. Adapted from Ohta et 

al[109]. 

In order to quantify color perception in the human eye, the spectral sensitivities of the 

three cone cell types were rendered to numerical descriptions, referred to as color 

matching functions, and given the names (λ), ȳ(λ), and (λ), reflecting the sensitives of 

L-, M- and S-cones respectively. Taken together, these functions describing the spectral 

response of the human eye are referred to as the CIE standard observer, shown in Figure 

2.4.1.3.  

 

Figure 2.4.1.3. Functions of Standard Observer Functions, describing the activity of the 

human eye during normal color vision. Adapted from Ohta et al[109]. 
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The interplay, or more rudimentarily the overlap, between these three color matching 

functions with a luminous stimulus having a specific spectral power distribution I(λ) is 

used to quantify the CIE tristimulus values X, Y, and Z. The equations describing this 

quantification, assuming a definition of the “visible spectral region” as spanning 380 to 

780 nm, are shown below as Equation 2.4.1.1.  

 

Equation 2.4.1.1. Relationships between observer functions and the spectral power 

distribution of a stimulus, producing the tristimulus values X, Y, and Z.  

These equations can further be adapted to better suit conditions where light is reflected 

off of or transmitted through an absorptive material. For the purposes of consistency, the 

CIE has also described a number of “standard illuminants” for the function of I(λ) (e.g. 

D50, D65, Illuminant D, etc.) as it is fairly clear that the calculated tristimulus values 

describing a color are dependent on the power distribution of the illuminant considered. 

Finally, the K factor calculated as shown in Equation 2.4.1.1. is a normalization constant, 

ensuring that the values of X, Y, and Z calculated all fall within a certain set of bounds 

described for the illuminant used. 

 The tristimulus values X, Y, and Z, while integral to the quantification of a color 

stimulus, do not themselves describe any particular color. Instead, the relative values of 

the tristimulus values  describe a series of color coordinates that might be plotted into 

what is more commonly viewed as a “color space”. These values describing the relative 

contributions of the tristimulus values are given the names x, y, and z, and their 

calculation is shown below in Equation 2.4.1.2. 

 



 36 

 

Equation 2.4.1.2. Calculation of the CIE color descriptors x, y, and z from the 

Tristimulus values X, Y, and Z. 

The color space described by the terms x, y, and z is named the CIE 1931 color space, or 

the CIE xyY color space and is the characteristic “horseshoe” described by this color 

system is shown in Figure 2.4.1.4. Within the color space described by the terms x, y, and 

z are all possible color sensations commonly available to the human eye. The CIE xyz 

color space offers many unique advantages, such as simple illustration of the product of 

mixing color stimuli, but it is not without its faults. The work of MacAdam[110] showed 

that the distance on the chromaticity diagram did not correspond to the degree of 

difference between two sets of color coordinates. Further work on this notion resulted in 

the development of the concept of a MacAdam ellipse, which are collections of xyz 

chromaticity coordinates which describe color stimuli that are visually indistinguishable 

from one another to the human eye. Later color systems described by the CIE sought to 

describe a color space with perceptual uniformity, or a color space where the difference 

between two colors corresponds to their distance from one another within the color space. 

 

Figure 2.4.1.4. The CIE 1931 color space, described by each possible value for the terms 

x and y[111].  
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One result of these efforts is the CIE L*a*b* color space which is frequently used to 

describe the quantification of color in electrochromic polymers, and will be used 

throughout the remainder of this document for this purpose. The L*a*b* color space is 

generated from the tristimulus values X,Y, and Z described above. The equations 

pertaining to the description of the L*a*b* coordinates are shown in Equation 2.4.1.3., 

and a visual representation of the L*a*b* color space is shown in Figure 2.4.1.5. 

 

Equation 2.4.1.3. Equations describing the calculation of the CIE L*a*b* coordinates 

from the CIE XYZ tristimulus values. 

In this color space the value of L* ranges from 0 to 100, and describes the balance 

between the white-black component of a given color stimulus, 0 representing a black 

stimulus, and 100 corresponding to a white stimulus. The a* coordinate describes the 

green-red balance, with negative a* values representing more green, and positive a* 

values corresponding to reds. Similarly, the b* coordinate describes the blue-yellow 

balance of a color stimulus, with negative b* values reflecting blue stimuli and positive  

 

Figure 2.4.1.5. An artist’s representation of the CIE L*a*b* color space[111]. 

b* values indicating a more yellow stimulus. The unique combinations of a* and b* 

coordinates are used to describe unique and visually distinguishable colors (commonly 
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referred to as hue), while the increasing values (away from the origin) of these 

coordinates describe the increasing saturation or intensity of those colors (also referred to 

as chroma). 

2.4.2. Quantification of Color via Instrument and Calculations 

 When pertaining to the quantification of color in electrochromic polymers, a 

spectroelectrochemical series as described above will provide the data required for the 

calculation of color coordinates illustrating the switching behavior[112]. Each spectrum 

gathered within the series is treated in the fashions described above to yield L*, a*, and 

b* coordinates, and the series of these L*a*b* coordinates is plotted to describe the 

chromatic changes undertaken by the ECP under examination throughout its switching 

behavior. Today, this treatment will most frequently be handled by software designed for 

that purpose, namely the Star-Tek colorimetry software installed alongside the control 

programs for the Cary 5000 UV-Vis-NIR spectrometer. As a rule, the settings used to 

perform these calculations are as follows; a simulated D50 standard illuminant was used, 

a 2 degree observer function was selected, and values were calculated directly to L*a*b* 

coordinates rather than say xyY coordinates or tristimulus values. This software package 

performs no calculations in the calculation of colorimetry data that cannot be performed 

with a  sufficiently sophisticated Excel spreadsheet, as shown by Mortimer et al, but it 

can directly read the .csv files generated by the Scan function of the Cary, which is 

useful[112]. Additionally, this software can be made to read spectral data produced by 

other spectrometer control programs, provided sufficient work is put into formatting the 

data to replicate the style of data produced by the Cary software.  

 By way of example of the results of this process, a*b* plots and the L* vs voltage 

(V) trend generated from the spectroelectrochemical series shown in Figure 2.3.1.1 are 

shown in Figure 2.4.2.1. In this example, of a sample of ECP-Magenta to be specific, 

relatively high values of both a* and –b* start indicate a fairly colorful neutral state, with 
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a roughly equal contribution from red and blue stimuli, indicating the purple-magenta 

neutral state of that polymer. Additionally, at low potentials where this magenta state is 

dominant, we can see a lower value for L* being recorded, as some portion of the visible 

spectrum is being attenuated. As the applied potential is increased (as in Figure 2.3.1.1), 

the values for the a* and b* coordinates decrease towards the origin, until a virtually 

colorless state is attained at the fully bleached state, and similarly, the L* value is raised 

as the applied potential increases, as the absorption in the visible is attenuated.  

 

Figure 2.4.2.1. Representative plots of the a* vs b* coordinates and of the L* vs Applied 

Potential (V). 

2.5 Photography 

 An additional note should be made concerning the photography of electrochromic 

polymers. As mentioned in the quantification of color stimuli, the spectral power 

distribution of an illuminant or transmitted light can have a profound impact on the 

perception of the color of a material. This consideration is vitally important for the 

photography of ECPs, and care is taken to photograph materials in settings using an 

illuminant that closely reproduces the spectral power distribution of the standard 

illuminant used to calculate tristimulus values. In the work presented herein, and in the 

literature describing electrochromic polymers at large, a D50 light source (whether 

physically replicated or digitally simulated) is a common choice. The light booths of the 

Reynolds labs are constructed to simulate this light source. Additionally, as various 

wavelengths of light might be reflected or transmitted to various degrees depending on an 
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angle of incidence, care is taken to ensure that an illumination/viewing angle of 0/0 

degrees is used for both quantification and photography. Additionally, photography 

should be performed both prior to and after the electrochromic break-in cycle.  

2.6 Photostability of Electrochromic Polymers 

 The study of the photostability of electrochromic polymers, which in this 

document is undertaken through the long-term exposure of ECP films to a solar simulator 

lamp, represents an additional departure from the suite of methods commonly employed 

in synthesis and characterization. Rather than an emphasis on the immediate 

characterization of a cast material, samples are placed into a certain environment, and 

efforts must be taken to ensure that that environment is not perturbed throughout the 

exposure to the light source being used. The following sections will detail the steps taken 

to prepare and encapsulate the samples under investigation from the outside environment, 

the operation of the light source used to assess the photostability of these materials, and 

finally detail pertaining to the characterization of the samples used in this study after 

long-term exposure.  

2.6.1. Sample Preparation and Encapsulation 

 As mentioned, a significant focus in the study of ECP photostability is given 

towards the encapsulation of samples within a specific atmosphere, and the long-term 

ability of the encapsulation method used to isolate samples from ambient atmospheric 

conditions. However, prior to encapsulation, films must be cast onto a substrate suitable 

for later characterization. In the study presented in Chapter 6, thin films of two polymers, 

the poly(ProDOT) homopolymer (ECP-Magenta) and an N-alkylated poly(ProDOP) 

(MCCP) were used. The casting of films of these two polymers followed the 

methodology outlined in section 2.1.1, with each sample being dissolved in toluene to a 

concentration of 5 mg/mL, and spray cast using nitrogen at a pressure of 20 psi, until an 
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absorbance of 1.0 ± 0.1 AU was reached as measured using the Cary 5000 UV-Vis-NIR. 

An ITO-glass substrate (8-12 Ω/sq) was used for casting, again, as described in section 

2.1.1. Due to a need to minimize encapsulant material usage multiple films, each 

measuring roughly 7 x 50 mm, were cast onto substrates measuring 25 x 75 x 0.7 mm 

through the use of a shadow mask placed over the substrate. After irradiation, samples 

were cut to size (7 x 75 mm) through the use of a diamond-tipped etching tool (SPI 

Supplies, 90° tip angle).  

 Following the casting of films, samples were separated into two groups for 

encapsulation. The first group would be sealed on the benchtop with no steps taken to 

exclude atmospheric oxygen or moisture from the sample, ensuring ambient atmospheric 

conditions within the sample throughout the course of exposure. A second group was 

moved into a glove box with an argon atmosphere for encapsulation, preventing the 

interaction of oxygen or water with the polymer samples throughout the course of 

irradiation. Additionally, a third group of samples was encapsulated within the argon 

atmosphere of a glove box, however these samples incorporated a 0.5 M 

TBAPF6/PMMA/PC electrolyte, prepared as described in section 2.1.2.  

 The encapsulant used throughout this study is composed of a polyisobutylene 

(PIB) tape provided by ADCO Products, Inc. (HelioSeal™ PVS 101), supplied by Prof. 

Samuel Graham of the Georgia Institute of Technology. This rubber was filled with 

desiccant materials to lower water transmission rates, and was further modified with 

silane coupling agents to promote bonding with glass surfaces[113].  In order to form a seal 

around the cast samples, thin ribbons of this tape (1-2 mm wide) were manually cut from 

the larger tape and placed around the edges of the substrates onto which polymer films 

had been cast. After placing the PIB ribbons on the film substrates, a microscope slide cut 

to match the size of the ITO-glass slide was placed on top, creating an impermeable top 

barrier. For samples incorporating the electrolyte mixture, the solution was pipetted into 

the reservoir created by the surrounding edge sealant prior to the addition of the top glass 
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slide. To ensure bonding to both glass slides, the samples were heated on a hot plate to a 

temperature of roughly 110 °C, and compressed for five minutes. After allowing the 

samples to cool, the atmospheric environment inside of the samples was protected by an 

edge sealant that has been shown to have very low oxygen and water transmission rates.  

2.6.2. Atlas XLS+ Testing Chamber and its Operation 

 After the encapsulation of polymer samples, films were irradiated in an Atlas 

SunTest XLS+ benchtop testing system. This system features a single xenon arc lamp as 

its light source, and a glass window between this lamp and the sample testing bed was 

used to filter the light to approximate the spectral power distribution of natural sunlight. 

Further, the energy output of the Xe lamp may be tuned, to a certain degree, and the 

energy output of this lamp was adjusted to measure 1000 W/m2, through the use of a 

calibrated silicon photovoltaic reference cell (Oriel I-V Test Station, Model 91150V, 

Newport Corporation). This was done in an effort to replicate the solar output expected 

from the AM 1.5 light source frequently employed in the study of photovoltaics, as 

defined by the American Society for Testing and Materials (ASTM)[114]. Once the output 

of the lamp has been set, the operation of this testing chamber is extremely simple. 

Through the use of a touch-screen interface on the front of the chamber, programs may be 

created for the irradiation of samples, with cut-offs based either on irradiation time, 

wattage output, or total experiment time may be selected. In the data presented in Chapter 

6, the variable used to examine photostability in ECPs was the total irradiation time 

endured by samples, and programs were created for this purpose with irradiation times 

ranging from 24 hours out to 1 month of total irradiation time (or 744 hours, 31 days). In 

order to compare the irradiation time within the sample chamber to a “real world” 

parallel, many manufacturers may supply a spreadsheet capable of making a rough 

estimation upon (occasionally persistent) request. These conversions are largely 

predicated on the wattage setting used throughout irradiation, whether or not sample 
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heating was utilized, and the temperature of that heating, in combination with the 

duration of sample testing. The real world reference used to make these conversions are 

frequently dosimetry values for some prolonged period of time, in a specific geographic 

region. One commonly employed reference is referred to as a “Florida sun test”. In 

practical terms, test samples are placed at some location in southern Florida, and exposed 

to the relatively harsh conditions of that environment months or years at a time. Using 

dosimetry values recorded during long-term testing sessions (years at a time), a rough 

equivalency can be drawn between the dosage with which a testing sample is irradiated in 

a testing chamber with that to which it may have received during one of these “Florida 

tests”. It should be again stressed that these conversion values are in no way concrete 

values, having their basis as such variable factors such as the weather in southern Florida, 

but they might be used to offer a very rough guideline for actual usage conditions. In the 

case of the wattage used in these experiments, the dosage delivered to samples 

corresponds to a conservative estimate of 6-12 months in outdoor Florida testing 

conditions. Further, a subset of samples from each grouping were used as “standards” for 

the effects of the irradiation. These samples were fabricated and encapsulated in a fashion 

identical to those that underwent irradiation in the Suntest XLS+ system, however these 

samples were instead stored in darkness. These standard samples were stored for time 

periods identical to those used for irradiation. Following exposure or storage for the 

requisite time point, samples were gently heated on a hot plate (70 °C) and the top 

microscope slide cover and any remaining PIB sealant was removed from the ITO-glass 

substrates.  

2.6.3. Sample Characterization: Spectroelectrochemistry and XPS 

 Following sample irradiation, sample characterization was directed towards 

assessing the electrochromic performance retained by samples, as well as an examination 

of what if any chemical transformations had taken place during the course of exposure to 
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the high-intensity light source. The first focus of characterization, the assessment of 

electrochromic performance, was carried out through the use of cyclic voltammetry and 

spectroelectrochemistry. The methodologies utilized for both of these techniques match 

those described in sections 2.2.1 and 2.3.1. A 0.5 M TBAPF6/PC electrolyte system was 

used for both techniques, which were run concurrently for each sample. During cyclic 

voltammetry, a three electrode cell was constructed within a cuvette as described in 

section 2.2.1, and 5-10 cycles at a scan rate of 75 mV/s were used to break each sample 

in prior to spectral analysis. During spectroelectrochemistry, data was recorded in a 

window of 350-1600 nm.  

 In addition to the spectroelectrochemical characterization, x-ray photoelectron 

spectroscopy, or XPS, was used to probe composition of the surface of photostability 

samples. The instrument used to perform XPS studies on the samples prepared was a 

Thermo Scientific K-α X-ray photoelectron spectrometer. In short, this system, and most 

modern, commercially built XPS apparatuses function in the following fashion. An 

aluminum source is bombarded with high-energy electrons from a heated filament, 

inducing that source to emit primarily x-rays of an energy corresponding to the relaxation 

of an electron from the “L” shell or the 2p orbitals to the “K” shell, or 1s orbital of that 

aluminum source. The emitted x-ray light is non-monochromatic, and monochromation is 

normally produced by diffracting this beam off of a quartz disk, followed by re-focusing 

of the x-ray beam. This monochromated x-ray light, the energy of which is sufficient to 

liberate and eject core electrons, is directed onto the surface of the sample under 

examination. The ejected electrons are passed through an electron kinetic energy 

analyzer, which in this instance (and quite frequently) is a hemispherical kinetic energy 

analyzer (HKEA). By sweeping the pass energy of the HKEA, the full range of electrons 

ejected by the incident x-rays may be detected with a band pass dictated by the 

specifications of the HKEA, and a signal in electron counts is detected by some electron 

capture device following the energy analyzer. The binding energies of the detected 
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electrons is calculated, in a simple sense, via assuming a conservation of energy from the 

incident x-rays. As the x-ray photons have a well-defined energy upon monochromation 

(~1486 eV), the binding energy of an ejected electron corresponds to the energy of the x-

ray photon that liberated it, less the kinetic energy retained by the electron on ejection. As 

electron binding energies are often characteristic to specific elements, and further specific 

to the chemical environment surrounding the atom from which it was liberated, XPS data 

is most often presented as the electron counts detected against an axis of binding energies 

in electron-volts (eV), as shown in Figure 2.6.3.1. Spectra are often presented either as 

including data from the entire breadth of binding energies examined, referred to as a 

survey spectrum, or as narrower, element and orbital specific scans.  

 

Figure 2.6.3.1. Representative survey (left) and element specific (right) spectra x-ray 

photoelectron spectrographs. The element specific spectrum corresponds to the binding 

energy of carbon 1s electrons.  

 Naturally, additional considerations must be taken when using this technique, the 

least of which is the necessity of an ultra-high vacuum (UHV) environment within the 

entire sampling chamber to allow for a sufficient flux of x-rays to the sample target, and 

an environment in which ejected electrons might have a mean free path sufficient to reach 

the detector assembly unperturbed. Due to the need for a UHV environment in particular, 

XPS samples are typically solid surfaces. Additionally, due to the requirement that 

ejected electrons have a mean free path long enough to reach the detector, electrons 

ejected from material any deeper than roughly 8-12 nm in a sample are rarely if ever 
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detected, as collision with sample material closer to the surface is nearly a certainty. This 

last aspect makes XPS a particularly surface-sensitive technique, and though depth 

profiling with reactive ion etching is a possibility, this technique was not employed in the 

work described in Chapter 6.  

 Both the ProDOT and ProDOP polymer samples mentioned above were analyzed 

via XPS, and element specific spectra were gathered for the C1s and O1s orbitals for all 

samples, and the S2p and N1s orbitals for the thiophene and pyrrole based materials, 

respectively. Repeated scans were signal averaged to produce the acquired data, and the 

number of scans collected for the C1s, O1s, S2p and N1s orbitals were 4, 4, 16, and 12, 

respectively. Prior to each scan, the analysis chamber of the XPS system was permitted to 

reach a pressure no greater than 10-8 torr. An elliptical spot size of 400 μm (long axis) 

was used to irradiate the surface of samples. Further, due to the semiconductor nature of 

the conjugated polymer films examined, a low energy electron “flood gun” was used to 

minimize sample charging throughout examination, and maintain sample neutrality.  
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CHAPTER 3 

SUPERCAPACITORS UTILIZING HIGH SURFACE AREA 

CARBON SUBSTRATES MODIFIED WITH REDOX-ACTIVE 

POLYMERS 

 In this chapter, we will be examining the application of redox-active, conjugated 

polymers for charge storage applications. The faradaic processes tied to the redox 

reactions can be viewed as analogous to the static double layer capacitance encountered 

in common capacitors, however the energy and power densities frequently encountered in 

the application of pseudocapacitive polymers show the potential to bridge the gap 

between batteries and capacitors. Materials and devices with the potential to bridge this 

gap, discussed in Chapter 1, are often referred to as supercapacitors. Specifically, the 

following chapter describes the utilization of a recently developed aqueous solution 

processable PEDOT analog, and its application to “high surface area” carbon nanotube 

(CNT) electrodes. The fabrication of the composite polymer-CNT electrodes, as well as 

their utilization in a supercapacitive device will be described, followed by an examination 

of the charge storage properties of the resultant devices.  

3.1. Pseudocapacitive and High Surface Area Electrode Materials 

 As discussed in Chapter 1 pseudocapacitive materials such as conjugated 

polymers or redox-active transition metal oxides are, when properly utilized, often 

observed to demonstrate energy and power densities characteristic of the 

“supercapacitor” region of the Ragone plot[69]. However, pseudocapacitive materials are 

not the only class of materials able to attain these values. Supercapacitors predicated on 

carbon electrode materials, such as activated carbon powders, graphene and its oxides, as 

well as carbon nanotubes have become a major focus in the development of 
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supercapacitive materials[20, 75-77, 115-119]. As the mechanism of charge storage in many of 

these carbon-based electrode materials centers around the formation of a double layer, as 

in a traditional capacitor,  the particularly high surface areas frequently observed in many 

carbon materials is the route through which supercapacitive behavior is reached. These 

high surface areas also makes them an attractive candidate for the creation of composite 

electrodes, as the charge stored by pseudocapacitive materials is also a function of 

surface area. Further, while the thermal and electrical properties of many carbon based 

electrode materials are excellent, the mechanical and flexibility properties of one material 

in particular drew attention. This material, a non-woven CNT textile or fabric produced 

via a continuous vapor deposition process, is an excellent candidate for pseudocapacitive 

material functionalization and indeed reports of such efforts can be found in the 

literature[99, 120-121]. Of particular note is a report of the functionalization of this non-

woven CNT textile with PANI via electrodeposition, producing physically robust, 

flexible electrodes, photographs and SEM images of which are shown Figure 3.1.1.1. The 

images shown serve to demonstrate the mechanical flexibility of the CNT substrate both 

(a) pre- and (b) post-PANI  deposition, and illustrates various PANI morphologies 

obtained when electrodeposition is performed at various current densities, ranging from 2 

to 16 mA/cm2, showing the retention of an open, porous morphology. The demonstration 

of this material’s utility in the fabrication of composite carbon-based electrodes brought 

the material to our attention, and samples of this CNT textile were generously provided 

by the research group of Dr. Gleb Yushin of the Georgia Institute of Technology.  

 As with the double layer capacitance of carbon electrodes, the charge stored by 

pseudocapacitive materials is a function of surface area. Further, the contribution to the 

total capacitance in a device from pseudocapacitive materials may be much higher than 

double layer capacitance, by as much as 100 fold[122]. It therefore becomes desirable to 

merge these two classes of supercapacitive materials so to speak, utilizing carbon 

substrates as high surface area scaffolds onto which pseudocapacitive materials might be 
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deposited. The fabrication and study of carbon-pseudocapacitor composites has been an 

active field of research, making use of a broad variety of both carbon and 

pseudocapacitive materials[99, 123-130].    

 

Figure 3.1.1.1. Photographs and SEM images of PANI-coated non-woven CNT textile. 

Reproduced with permission from Benson et al[99]. Copyright 2013, Wiley-VCH. 

 Focusing particularly on the application of conjugated polymers, polyaniline 

(PANI), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) have been 

utilized in the production of these composite electrodes[86-96]. As discussed in Chapter 1, 

many of these reports utilize electrochemical polymerization as the means through which 

carbon electrode substrates are modified with pseudocapacitive polymers, a process 

which is fairly difficult to bring to a large, high-throughput scale[90, 99-100].  In specific 
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relevance to the work detailed in this chapter while the redox characteristics of PEDOT, 

such as a low onset of oxidation, broad electroactive window, and stability to repeated 

cycling, are desirable, due to its lack of appended solubilizing groups PEDOT itself (and 

its propylene bridged analogs) are all but insoluble and are commonly 

electrodeposited[131-133].  Recently, synthetic efforts directed towards the creation of 

soluble PEDOT analogs, chiefly through copolymerization of ProDOT and EDOT 

monomer units (the prior being modified with solubilizing groups) has produced a 

soluble, solution-processable polymer with remarkably similar redox properties to pure 

PEDOT. The repeat unit structure of this polymer is composed of one ProDOT unit 

flanked by EDOT units, and therefore referred to as solvent resistant ProDOT-EDOT2 

(shortened to SR-ProDOT-EDOT2) throughout this document, is shown in Figure 3.1.1.2. 

 

Figure 3.1.1.2. Repeat unit structure of SR-ProDOT-EDOT2.  

The synthesis and characterization of this material will be detailed elsewhere, however its 

utilization as an organic and aqueous solution processable, pseudocapacitive PEDOT 

analog is described in the following sections. Further, a specific nomenclature has been 

develop to refer to this material based on its solubilizing functionalities, which will be 

discussed further in section 3.2.1. 

3.2 Solution Processing of Pseudocapacitive Material 

 As previously mentioned, the overwhelming majority of research into the 

application of pseudocapacitive, conjugated polymers for charge storage applications 

have utilized electropolymerization as the means through which electrode surfaces are 
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modified. While the production of solution processable conjugated polymers was 

reported years ago, via the addition of alkyl chains in the case of organic solubility and 

functionalization with carboxylate groups in the case of aqueous solubility, the materials 

produced through these means displayed redox properties with greatly reduced potential 

for applications in charge storage, owing to their narrow electroactive windows[32, 134]. 

Recently, efforts to create materials which possess both the redox properties desirable for 

charge storage application and solution processability have produced the polymer shown 

in Figure 3.1.1.2., opening new avenues for composite electrode supercapacitors 

fabrication. Naturally, the application of solution processing to supercapacitor fabrication 

presents a new suite of challenges, and preliminary attempts in this direction are 

described in the following section.  

3.2.1. Polymer Drop Casting 

As described in Chapter 2, the solution processing technique chosen for the 

production of composite CNT-polymer electrodes was drop casting. With the goal of 

creating a homogenous coating of pseudocapacitive material throughout as much of the 

porous carbon textile as possible, this technique was chosen in favor of other solution 

casting techniques such as spray casting, due to the longer drying times associated with 

drop casting. While amenable to the casting of films onto non-porous surfaces, the drying 

times of aerosolized droplets of polymer solutions (frequently seconds in the case of 

organic solvents or aqueous solutions cast onto a heated substrate) are likely too short to 

allow for any form of penetration into the porous network of CNT fibers that comprise 

the CNT textile substrate. Additional detail pertaining to the drop casting carried out to 

produce the composite CNT-polymer electrodes examined in this chapter may be found 

in Chapter 2, however a description of the modification of the solubility of ProDOT-

EDOT2 used to achieve the final electrode structures is warranted, and a scheme of this 

process is shown in Figure 3.2.1.1. As synthesized, ProDOT-EDOT2 features branched 2-
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ethylhexyloxy solubilizing groups, frequently utilized to impart solubility in organic 

solvents such as toluene or chloroform[32]. To render this structure soluble in an aqueous 

environment, the 2-ethylhexyloxy moieties are saponified via reflux in the presence of 

potassium hydroxide, producing the polycarboxylate salt referred to as water soluble 

ProDOT-EDOT2 (WS-ProDOT-EDOT2)
[134].   

 

Figure 3.2.1.1. Defunctionalization of an organic processable ProDOT-EDOT2 structure 

to a water processable salt, followed by protonation to a solvent resistant acid.   

Solutions of this polycarboxylate salt were prepared, as described in Chapter 2, 

and were drop cast onto the surface of samples of the non-woven CNT textile substrate, 

described above.  After allowing sufficient time for solvent evaporation, polymer films 

were observed to solidify on the surface of the CNT textile samples, and ostensibly, 

within the interior of these substrates as well. It is well worth noting that a number of 

caveats are deserving of recognition in this process. First, while polymer films were 

observed to solidify following drop casting onto the CNT substrates, in all likelihood, 

some casting solvent remains in the cast films. The description of these films as “dry” 

only serves as a relative description, and does not attempt to describe the cast films as 

devoid of solvent. Second, in the absence of the physical observation of penetration of 

cast polymer into the interior of the CNT substrate, polymer films can only be assumed to 

be in contact with any of the interior surface area of the CNT substrate. The application 

of electron microscopy techniques, such as scanning electron microscopy (SEM), to a 

cross section of the composite electrodes offers to clarify this point, which will hopefully 

be addressed in the near future. As mentioned, drop cast solutions were allowed to dry, 
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and the resulting CNT-polymer composites were subsequently immersed in a solution of 

para-toluenesulfonic acid (pTSA) in methanol to pronate the carboxylate salts, rendering 

the cast ProDOT-EDOT2 films largely insoluble.  

 In order to gauge the capacitive contribution of cast ProDOT-EDOT2, the 

modification of the CNT substrates was carried on a percent weight (wt%) basis. In this 

scheme, the mass of ProDOT-EDOT2 added to each CNT substrate was set to be some 

percent of the average weight of the CNT textiles, i.e. if a CNT textile was seen to have a 

mass of 2.0 mg, a 50 wt% modification of this substrate with ProDOT-EDOT2 would see 

1.0 mg of polymer cast onto the substrate, and the resulting composite would have a 

nominal weight of 3.0 mg. In this fashion, composites electrodes were fabricated at 

weight percent modifications of 20, 40, 60, 80, 100, and 150 wt%. The mass of ProDOT-

EDOT2 cast onto the CNT textiles was controlled via variation of the volume of drop cast 

polymer solution, as the solution was produced at a known concentration of 5 mg/mL.  

3.3 Supercapacitors Utilizing HSAE-Redox Polymer Composites 

 Following fabrication of the composite non-woven CNT textile-ProDOT-EDOT2 

electrodes, characterization of capacitive performance was carried out in a symmetrical 

device setting. The following sections describe the fabrication of supercapacitor devices 

utilizing the composite electrodes described above, as well as the characterization of the 

capacitive properties of composites as a function of weight percent ProDOT-EDOT2 

added.  

3.3.1. Device Preparation 

 Following the casting of ProDOT-EDOT2 onto the non-woven CNT textile 

substrate to produce the composite CNT-polymer electrodes, pairs of these electrodes 

were used to produce supercapacitor devices, and a more detailed description of this 

process may be found in Chapter 2. In this process, pairs of composite electrodes 
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(featuring the same wt% polymer modification) were wet with a previously prepared 

aqueous electrolyte solution. Due to the mechanical flexibility of the CNT substrates (and 

the resulting composites), a metallic flag made from stainless steel shim stock was used 

as a more rigid current collector. The stainless steel flags used were expected to 

contribute very little capacitance to the completed device structure and to evidence this 

cyclic voltammograms, collected from devices fabricated with stainless steel alone vs 

unmodified CNT textile placed in contact with the stainless steel shim stock, are shown 

in Figure 3.3.1.1., showing the minimal charge contribution of the stainless steel 

electrode.  

 

Figure 3.3.1.1. Cyclic voltammograms of capacitive devices utilizing stainless steel 

electrodes vs electrodes of CNT textile on stainless steel backing.  

The composite electrodes, following wetting with the aqueous electrolyte, were placed on 

the surface of the stainless steel flags. It should also be noted that prior to device 

fabrication, a bias which is expected to oxidize the cast ProDOT-EDOT2 was applied to 

one electrode, and that this “pre-doping” is essential for optimal device performance, as 

has been documented elsewhere[132]. Pairs of electrodes (CNT-polymer composite on a 

stainless steel shim backing) were separated using cellulose filter paper soaked in the 

aforementioned electrolyte solution, and glass slides were used as an outer housing for 

the “device”, which was held together via the compression supplied by a pair of binder 



 55 

clips. Connections were made to either electrode via the stainless steel flags, the ends of 

which extended out of the glass slide housing.  

3.3.2. Device Characterization 

 Initial characterization of devices utilizing the composite CNT:ProDOT-EDOT2 

electrodes consisted primarily of cyclic voltammetry, carried out as described in Chapter 

2. Cyclic voltammograms were recorded at various scan rates (20, 50, 100, and 200 

mV/s) in a one volt range (0 to 1 V, a range determined by the stable cycling range for 

the aqueous electrolyte mixture) for devices comprised of composite electrodes featuring 

each wt% ProDOT-EDOT2 modification previously mentioned, from 0 wt% (unmodified 

CNT textile) to 150 wt%. Cyclic voltammograms recorded at 20 mV/s representative of 

devices produced using composite electrodes of each wt% modification produced are 

shown in Figure 3.3.2.1., illustrating the roughly linear trend in peak current values 

recorded and increasing ProDOT-EDOT2 content.  

 

Figure 3.3.2.1. Cyclic voltammograms of prototype supercapacitor devices, composed of 

unmodified non-woven CNT textile and various weight percent additions of the ProDOT-

EDOT2 pseudocapacitive polymer, recorded at a scan rate of 20 mV/s. 

Worth noting here is the range of scan rates applied in the course of cyclic voltammetry, 

which were 20, 50, 100, and 200 mV/s. A challenge frequently encountered in the use of 
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high surface area electrode materials, particularly those predicated on double layer 

capacitance, is the that there is often a trade between ever higher surface areas (and 

consequently energy densities) and the speed at which charge may be added or removed 

from electrode materials. As a consequence of this, scan rates commonly employed in 

characterizing high surface area materials (optimized for energy density) are low, on the 

order of single to tens of millivolts per second,  with values ranging from 2 to 20 mV/s 

frequently cited[92, 135]. In regard to a one volt operating window, these scan rates 

correlate to anywhere from 200 second to 50 second charge/discharge times, directly 

impacting the metric of power density (kW/kg). Naturally, the vast range of opportunities 

for the employment of supercapacitive devices means that and equally vast range of 

power and energy density requirements will need to be met. However the redox 

properties of ProDOT-EDOT2, which is observed to switch very rapidly, allows for 

higher scan rates and therefore higher power densities to reasonably, i.e. without an 

excessive loss in capacitive performance, be examined. 

 As previously mentioned, a roughly linear trend  is seen in the correspondence 

between peak current values observed during the recording of CV experiments and the 

wt% ProDOT-EDOT2 modification. This roughly linear trend is further evidenced when 

the average values for capacitance, calculated on the basis of both areal and mass 

capacitance (mF/cm2 and F/g, respectively), is plotted vs the percent substrate mass 

polymer addition, as is done in Figure 3.3.2.2., for capacitances calculated at a scan rate 

of 20 mV/s. It should be duly noted that the mass values used to calculate the data shown 

in Figure 3.3.2.2. represent the mass of the composite electrodes alone (the sum of the 

CNT and ProDOT-EDOT2), and that the masses of the electrolyte, filter paper separator, 

stainless steel electrode, or glass slide housing were not taken into account. Further, this 

is also the case wherein energy and power density values are discussed later.  
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Figure 3.3.2.2. Trend in areal and mass capacitance values vs weight percent addition of 

ProDOT-EDOT2,  calculated at a scan rate of 20 mV/s. 

The trend in areal capacitance is observe to increase throughout the wt% modification 

range examined. This particular trend is not unexpected, as the geometric area of the 

CNT substrates was fixed at 1.56 cm2 while additional pseudocapacitive material was 

added throughout the trend. More telling however is the trend observed in the mass 

capacitance values. At lower wt% values, a linear growth is observed, ranging from 0 

wt% to roughly 60 wt%, and representing nearly a doubling in the mass capacitance 

values recorded (6 vs 11 F/g). However following this range, beginning at 80 wt% added 

ProDOT-EDOT2, values calculated for mass capacitance are observed to plateau as 

expected, with a minimal change in mass capacitance observed between 80 and 100 wt%, 

and a slight loss recorded at 150 wt%. This observation served to further qualify the trend 

observed in Figure 3.2.2.1., by determining the optimal wt% ProDOT-EDOT2 

modification. Given its position as the highest observed mass capacitance prior to the first 

observed loss, samples with 100 wt% cast ProDOT-EDOT2 were determined to be the 

“optimal” electrode composition. Cyclic voltammograms representative of devices 

fabricated using this electrode composition are shown at various scan rates in Figure 

3.2.2.3. 



 58 

 

Figure 3.3.2.3. Cyclic voltammograms of non-woven CNT textile/ProDOT-EDOT2 

composites with 100 wt% ProDOT-EDOT2 content at various scan rates. 

 As previously mentioned, the exceptional redox properties of ProDOT-EDOT2 (to 

be detailed elsewhere at a later date), allow for the examination of capacitive 

characteristics at much higher scan rates than are commonly employed, and the CV traces 

shown in Figure 3.3.2.3. illustrate desirable characteristics for charge storage 

applications, such as a nearly rectilinear I-V relationship at scan rates as high as 100 

mV/s, while a nominal loss in this aspect of performance is noted at 200 mV/s. Recently, 

a method to qualify this desired capacitor behavior has been suggested in the literature as 

borrowing from a common method of photovoltaic characterization, in the form of 

calculator of the CV “fill factor”[132]. In short, the ideal performance of a capacitive 

device would be an entirely rectilinear I-V relationship, and the calculation of a fill factor 

value attempts to quantify the deviation from this ideal behavior. The higher the degree 

of “fill” in this ideal behavior observed in a CV trace recorded for a device, the more 

ideal its capacitive behavior. This concept is illustrated in Figure 3.3.2.4., showing the 

cyclic voltammogram of a device fabricated with 100 wt% composite electrodes. Further, 

fill factor values were calculated for this “optimum” electrode composition at various 

scan rates, and these values are also shown in Figure 3.3.2.4. 
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Figure 3.3.2.4. Representative cyclic voltammogram recorded at 50 mV/s, illustrating the 

concept of calculating fill factor in a charge storage application. 

 The loss in capacitive performance at higher scan rates shown in Figure 3.3.2.3. 

and Figure 3.3.2.4. is, to varying degrees based on electrode composition, nearly a 

universal feature of the CNT:ProDOT-EDOT2 electrodes described in this work, and 

indeed in nearly all reports of composite pseudocapacitive electrode materials. To further 

demonstrate the trends in capacitance values at higher scan rates, average values for areal 

and mass capacitance are shown as a function of scan rate in Figure 3.3.2.5.  

 

Figure 3.3.2.5. Scan rate dependence of areal and  mass capacitance for various non-

woven CNT textile/ProDOT-EDOT2 composite devices. 

As mentioned, an inverse relationship between scan rate and capacitive figures of merit is 

seen for each electrode composition. However, the trends observed in Figure 3.3.2.5. 

extend beyond the quantification of areal and mass capacitance values. The trend in the 
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energy density (given units of W*h/kg), shown in Figure 3.3.2.6., is observed to follow 

closely with the trends seen in the values of mass capacitance vs percent polymer 

addition and capacitance vs scan rate. At a constant scan rate, values are seen to climb as 

a function of percent substrate mass polymer addition, plateauing at 80 to 100 wt% cast 

ProDOT-EDOT2, and descending to a very minor degree at 150% polymer addition. 

Further, each of these values is seen to decrease with increasing scan rate. The trend 

recorded in power density (in units of kW/kg) however, follows a slightly different albeit 

expected pair of trends. As with the previously calculated capacitive figures of merit, the 

value of power density is seen to increase with increasing ProDOT-EDOT2 content in the 

composite electrodes, again plateauing at values of 80 to 100 wt%, and decreasing to 

some nominal degree at a composition of 150 wt% ProDOT-EDOT2. However, the trend 

in power density as a function of scan rate follows an inverse relationship with regard to 

scan rate, in contrast to all other figures of merit used to qualify device performance. 

Given the definition of power as the transfer of energy as a function of time, this 

relationship with scan rate is hardly unexpected.  

 

Figure 3.3.2.6. Trends for the values of energy density and power density in 

supercapacitor devices utilizing CNT/ProDOT-EDOT2 composite electrodes of various 

percent weight polymer modifications, at various scan rates. 

 The last figure of merit employed to qualify the performance of supercapacitive 

devices fabricated using composite CNT:ProDOT-EDOT2 electrodes is stability with 
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recorded to repeated cycling. Using the optimized electrode composition (100 wt% cast 

ProDOT-EDOT2), a device was cycled repeatedly at 50 mV/s. Cycling was ended after 

5000 cycles had been recorded, and the areal capacitance was calculated from data 

collected every 1000 cycles. These cyclic voltammograms are shown in Figure 3.3.2.6., 

along with the trend observed in areal capacitance over the course of cycling.  

 

Figure 3.3.2.6. Cyclic voltammograms and areal capacitance values illustrating the 

stability of a non-woven CNT textile:ProDOT-EDOT2 composite device. 

While referring to 5000 cycles as “long term” cycling stability might be spurious, it is 

worth observing that no loss in capacitive performance is observed over the course of 

cycling. While variations are in the value of areal capacitance are reported throughout the 

course of cycling, the difference between the initial and final values is nearly negligible, 

illustrating that the composite CNT-polymer electrodes described in this chapter are, at 

least with regard to the length of 5000 cycles, stable to repeated cycling. Further, in the 

work published on the PANI-CNT composite electrodes developed within the Yushin 

group, cycling stability out to 30,000 cycles was demonstrated.  

 The devices described in this chapter serve to illustrate the potential application of 

pseudocapacitive polymers in charge storage applications, via the modification of high 

surface area electrode substrates. Following modification, the capacitive performance of 

non-woven CNT textile electrodes (excellent electrode materials in and of themselves) 

was seen to roughly double in the case of mass capacitance, energy density, and power 
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density when cycled at 20 mV/s. Further, at a scan rate of 20 mV/s, values for areal 

capacitance were observed to roughly quintuple at the optimal electrode composition, and 

suitable values for CV fill factor were observed for scan rates <200 mV/s.  Finally, 

stability to repeated cycling at a scan rate of 50 mV/s was demonstrated, a result in line 

with reports of polymer supercapacitors showing stability to multiple hundreds of 

thousands of cycles.  

Additionally, as mentioned the most frequently cited method for the deposition of 

pseudocapacitive polymers is electropolymerization of monomer unit onto a substrate 

electrode. Solution processing of polymer pseudocapacitive material demonstrated here 

finds potential utility in the high through-put fabrication of supercapacitive electrodes, 

and further potential for large area substrate modification. As this work represents 

particularly preliminary methodologies and results, there is a great deal of room for 

improvement in all aspects of the work, from the casting of polymer solutions, to 

characterization and optimization of the resulting CNT-polymer composites, and finally 

in device architecture and construction. 
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CHAPTER 4 

ELECTROCHROMIC DEVCIES FOR COLOR MIXING AND 

HYBRID DEVICES 

 

In Chapter 3, the reductive-oxidative cycling of conjugated polymers was exploited to 

produce devices capable of storing charge in a pseudo-capacitive fashion. In this chapter, 

we will be detailing another facet of redox cycling in certain conjugated polymers, 

namely the evocation or elimination of color in the materials being cycled, or 

electrochromism. Specifically, we will be focusing on ECDs. Within this chapter, 

electrochromic devices will be used to study the production of mixed color stimuli by 

layering ECP films spatially in a “dual active” ECD. This work on dual active ECDs, 

described in Sections 4.1 through 4.2., is largely adapted from the published article listed 

as reference 59, “Mapping the Broad CMY Subtractive Primary Color Gamut Using a 

Dual Active Electrochromic Device”[59]. Further, in Section 4.3. of this chapter an 

alternative device structure is described, which features photovoltaic materials integrated 

into the ECD structure, producing a self-powering “photoelectrochromic” device. This 

section is adapted from the published article listed as reference 136, “A Vertically 

Integrated Solar-powered Electrochromic Window for Energy Efficient Buildings”[136]. 

4.1. Color Mixing in Electrochromic Polymers 

 As was described in Chapter 1, considerable effort has gone into the development 

of the family of ECPs which span the visible spectrum. The following section will briefly 

describe a few previous efforts to circumvent this effort in the creation of new 

electrochromic color states through the route of color mixing, or the usage or multiple 

electrochromic layers with differing optical properties to produce a mixed or summed 

color stimulus. 
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4.1.1. Device Models: Electrochromic Pseudo-devices 

 Prior efforts in the application of color mixing to conjugated polymers using 

electrochromic devices have been reported in the literature, though many of these initial 

studies focused on the design of a device to produce a particular (often achromatic) color 

state[46, 58, 137-138]. In many of these efforts, the extreme color states, i.e. the fully reduced 

and fully oxidized states of both ECPs used, was the primary focus, however the work 

reported by Unur et al[138] represented an early effort to systematically map the color 

states produced upon the progressive bleaching of each of the active ECP layers. Due to 

the need to individually address each active material layer, a cell arrangement referred to 

as a “dual polymer electrochromic device” was constructed featuring a pair of “working” 

electrodes sharing a common counter and reference electrode, and controlled via 

bipotentiostat. This cell arrangement is shown in Figure 4.1.1.1. 

 

Figure 4.1.1.1. Chemical structures of ECPs examined utilizing the “dual polymer 

electrochromic device” and a schematic representation of the pseudo-device. Reprinted 

with permission from Unur et al[138]. Copyright 2008, American Chemical Society.  

Due to its reliance on counter and reference electrodes, this arrangement was later 

referred to as a “pseudo-device” architecture, however the design proved useful in the 

study of color states produced in the progressive and step-wise oxidation of each of the 

“active” polymer layers. The charts of color states accessible through this cell 

configuration, shown in Figure 4.1.1.2. served as the inspiration for the presentation of 

data used in the study of color states accessible through the CMY color mixing scheme 
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discussed in this chapter, and the cell configuration used to attain this data was modified 

for a true “ECD” arrangement and renamed a “dual-active ECD”, further discussed 

Chapter 4.2. 

 

Figure 4.1.1.2. L*a*b* color coordinates and photographs of intermediate color states 

observed upon the progressive oxidation of polypropylenedioxypyrrole and PEDOT 

films. Reprinted with permission from Unur et al[138]. Copyright 2008, American 

Chemical Society. 

4.1.2. Utility and Applicability of Color Mixing Strategies 

 The effort of producing a new ECP frequently takes the course of synthetic 

development of a novel polymer structure, followed by characterization of the material 

properties of that polymer, which in turn informs our understanding of the structure-

property relationships in ECPs. However, considerable time and labor is required for this 

process. Further, while these synthetic efforts have been fruitful in coarse color control, 

variations to a polymer backbone are less likely to allow for the fine control necessary to 

access the variations and shades of color needed in display type applications. Through the 

use of thin films of cyan, magenta, and yellow ECPs, subtractive color mixing allows the 

hue of an electrochromic device (ECD) to be selected and tailored to an application 
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significantly increasing access to various subtle shades. At the level of material 

application, particularly when their optoelectronic properties become the focus of a 

researcher’s interest, electrochromic polymers could potentially be thought of as 

pigments, or a set of materials that alter the color of reflected or transmitted light due to 

the selective absorption of portions of the visible wavelengths of light. Following on this 

pigment train of thought, in printing and dyeing, multiple pigments are frequently mixed 

together to produce a color stimulus that is a product of its constituent pigments. As such, 

a similar approach might be applied to ECPs. This approach could reasonably be 

examined via two avenues; first, films might be layered or spatially separated such that 

light from a source is modified by each ECP layer separately prior to reaching an 

observer and alternatively,  ECPs with differing color properties might be more 

intimately mixed through co-processing, producing a single film with color properties 

representing the sum of its constituent ECPs. An examination of the first route, wherein 

films are separated spatially, is described in the following section, while the latter co-

processing approach will be discussed in Chapter 5. 

4.2. Dual Active Electrochromic Devices for Color Mixing  

 Among the family of ECPs described in Chapter 1, section 1.1.3. “History of ECP 

Development – Completing the Color Palette”, are three polymers of particular note, 

namely the ECPs that exhibit a magenta-, cyan-, or yellow-to-transmissive transition, 

often referred to as ECP-M, ECP-C, and ECP-Y, due to their amenability to color mixing 

via the subtractive CMY color model (see Figure 2.4.1.1.).  The structures of these 

materials may be found in Figure 1.1.3.2., but are reprinted in Figure 4.2.1.1. below. In 

order to spatially separate the ECP films under examination, such that they are 

individually addressable and selectively bleached, an ECD analogous to the 3 electrode 

pseudo-device shown in Figure 4.1.1.1. was produced. The structure of this device is 

shown in Figure 4.2.1.1., and owing to the dual, separately addressable active ECP layers, 
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this architecture is referred to as a “Dual Active” ECD. The following sections serve to 

describe its fabrication, as well as the colorimetric properties observed upon its 

characterization. 

4.2.1. Device Structure and Fabrication 

 To construct the dual active ECDs, ECP films were first spray cast onto ITO-glass 

substrates to the appropriate optical density. Films were cast until an optical density of 

0.8 absorbance units at λmax, or 0.4 in the case of MCCP, as monitored on a Varian Cary 

5000 UV-vis-NIR spectrophotometer, was reached. Each film was sprayed over an area 

measuring 1.2 x 1.7 cm, through the use of a shadow mask. Two borders were created 

using strips of VHB foam acrylic tape; the first border is placed around the ECP films 

cast onto the center of the substrate, and then a second border is placed around the outer 

edges of the substrates, shown in Figure 4.2.1.1.c (gray gasket). The LiBTI gel electrolyte 

mixture (described in Chapter 2) was transferred into the reservoir created by the tape, 

and the counter electrode slide placed on top. The process of creating borders of VHB 

tape around the edges of both the cast ECP and ITO-glass substrate, followed by the 

addition and encapsulation of gel electrolyte is repeated on the reverse of the double-

sided ITO-glass slide used as the counter electrode layer to add the second ECD portion 

and to create the completed device. Contact was made to the devices using ½ inch EMI 

shielding copper tape. 
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Figure 4.2.1.1. (a) Structures of ECPs-M, -Y, -C, and the DOP-based MCCP (R=2-

ethylhexyl). (b) Exploded view and (c) photograph of a “dual active” ECD, including 

voltage control scheme. Reproduced with permission from Bulloch et al[59]. Copyright 

2014 American Chemical Society. 

Cyclic voltammetry was used to establish stable switching voltages for each ECP-MCCP 

pairing. Cyclic voltammograms for individual, i.e. not dual active, ECDs utilizing ECP-

M, ECP-C, and ECP-Y as the working electrode materials and MCCP as the counter 

electrode material are shown in Figure 4.2.1.2, alongside photographs of these devices in 

their voltage extremes, i.e. fully colored and fully bleached states. The windows 

established were -0.6 to 1.4 V, -0.4 to 1.4 V, and -0.2 to 1.6 V for magenta, cyan, and 

yellow ECDs, respectively.  Owing to the construction of the dual active device allowing 

each working electrode to be controlled independently, the voltage windows established 

with these ECDs are translatable to the dual active architecture. 
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Figure 4.2.1.2. (a) Cyclic voltammetry and photographs of the (b) colored and (c) 

bleached states of ECDs utilizing ECPs-M, -C, and –Y as the “active” or colored ECP. 

Reproduced with permission from Bulloch et al[59]. Copyright 2014, American Chemical 

Society. 

4.2.2. Comparison to Stacked Devices and Saturation 

 Initial color mixing experiments were performed using a simple “stacked” device 

architecture which lacked the central double sided counter electrode (layer 3 in the device 

cutaway shown in Figure 4.2.1.1.), and were instead comprised of two independent 

ECDs, of the type shown in Figure 4.2.1.2., placed back to back. To gain a better view of 

how color mixing is achieved in both dual active and stacked devices, each side might be 

envisioned as a tunable filter. The two ECP films in series will absorb a portion of the 

light from the illuminant before reaching an observer, producing a mixed color stimulus. 

Tuning these ECP filters is accomplished by independently controlling the voltage 

applied to each device, decreasing light absorption in the visual region as each ECP is 

oxidized. Unlike a simple filter, the construction of both dual active and stacked devices 

include a number of optical interfaces (e.g. air to glass, glass to ITO, etc.), which also 

play a role in the spectral profile of light reaching an observer[139]. The influence of these 

interfaces in the stacked device structure on color properties is illustrated in Figure 
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4.2.2.1., which compares the color states accessible in a cyan + yellow (green) stacked 

device (a) with the corresponding dual active structure (b). The color gamut produced in 

each architecture was probed by gradually increasing the voltages applied across each 

film, and recording a photograph and the colorimetric data of the mixed color stimuli as a 

function of these two applied voltages. The differences in the two device architectures are 

visually apparent via the photographs, with the stacked device shown in the upper half of 

Figure 4.2.2.1. exhibiting muted, or less saturated, color states. The L*a*b* coordinates 

associated with each color state can then be used to quantitatively demonstrate the larger 

degree of color saturation seen in the dual active structure via the equation where color 

saturation (Sab) is the ratio of chromatic color (C*
ab) to the total color sensation[140-141]. 

 

Equation 4.2.2.1. Equation for the calculation of color saturation.  

As shown in Table 4.2.2.1., using this measure to compare the saturation of the color 

states at the four color extreme corners of Figure 4.2.2.1. (green, cyan, yellow, and 

transmissive color states), higher degrees of saturation are observed in the green and cyan 

states of the dual active device relative to the stacked device.  
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Figure 4.2.2.1. Comparison of the color states in stacked (a) and dual active (b) cyan + 

yellow ECDs. Photographs are shown alongside the L*a*b* coordinates corresponding to 

the accessed color, and the applied voltages at which that color is accessed. Reproduced 

with permission from Bulloch et al[59]. Copyright 2014, American Chemical Society. 

Table 4.2.2.1. Comparison of saturation values calculated for dual active and stacked 

devices shown in Figure 4.2.2.1. 

 

Further, the color saturation of the transmissive state in the dual active device is seen to 

be lower than that of the stacked device, indicating that a more color neutral and 
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transmissive bleach state is produced using the dual active device. Interestingly, a higher 

degree of yellow saturation is observed in the stacked, rather than the dual active device, 

though the difference is slight. Following this demonstration of a generally higher 

saturation of color in the dual active device structures, devices designed to mix ECP-M 

and ECP-C stimuli were constructed, as well as devices for ECP-M and ECP-Y mixtures. 

Photographs of the color states observed, as well as the L*a*b* coordinates 

corresponding to those color states and the voltages at which they were observed are 

shown in Figure 4.2.2.2.  

 

Figure 4.2.2.2. Examination of the gamut of color states in dual active (a) magenta + 

cyan and (b) magenta + yellow devices. Reproduced with permission from Bulloch et 

al[59]. Copyright 2014, American Chemical Society. 
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The results shown in Figures 4.2.2.2. further emphasizes the tunable nature of the color 

states exhibited by the ECPs used in the device construction, with each color state readily 

accessed via the application of a specific pair of voltages across each portion of the 

device. In addition to the comparison of saturation values between devices, comparison 

of the L*a*b* coordinates of the colors produced in the ECDs with color standards 

commonly perceived as saturated colors, such as those of the Munsell color checker 

system, can be used to gauge the performance of color production[142]. While other color 

standards exist, such as the Pantone system, the Munsell color system is based on the 

human perception of color, whereas most other systems are intended for use in textile 

dyeing or printing settings. The ability to match colors can be quantified through the 

value of ΔEab, the color difference or the “distance” between two points in a color space. 

In the CIELAB color space, this value is calculated via the equation shown as Equation 

4.2.2.2. 

 

Equation 4.2.2.2. Equation for the calculation of the color difference between two sets of 

chromaticity coordinates in the CIE L*a*b* color system. 

When comparing the green states of the dual active and stacked devices in Figure 4.2.2.1. 

with Munsell green (which has L*a*b* coordinates of 55, 38, 31), the value of ΔEab is 

determined to be 50 in the stacked device, but only 15 in the dual active device. This 

smaller color difference in the dual active device indicates it to better match a hue 

commonly accepted as “green” to the casual observer. The ability of the dual active 

device to produce more saturated shades that better match color standards extends to the 

cyan (ΔEab=16 in dual active and ΔEab=23 in stacked vs Munsell Cyan) state as well, 

though both devices are nearly equal in their ability to match the Munsell standard yellow 

(ΔEab=36 in dual active, ΔEab=35 in stacked). These measures of performance, higher 

values of color saturation, as well as the ability to produce less muddled shades that more 
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accurately match color standards indicate that the dual active device architecture is a 

preferable model to use in ECD color mixing studies. 

 4.2.3. The Full Dual Active ECD Gamut 

 We have discussed and seen it demonstrated that green and its primary colors are 

well represented with a dual active device, but a full color display needs more than just 

variations of green. If colors ranging from oranges to yellows and purples to blues are to 

be generated, the color mixing of other primary pairs is necessary. For this reason dual 

active devices with cyan-magenta (top) and magenta-yellow (bottom) combinations were 

constructed and characterized as illustrated by the photographic and colorimetric results 

shown in Figure 4.2.2.2. While this device does produce blue tones, the coordinates of 

the fully neutral state of this device (cyan -0.2 V,  magenta -0.4 V) are closer to a purple 

than a blue with a ΔEab of 14 vs Munsell purple as compared to the ΔEab of 23 vs 

Munsell blue. This shift in the secondary color, moving from blue to purple, is likely due 

to the difference in saturation of the films used. The color saturation (Sab) in an ECP cyan 

device shown in Figure 4.2.1.2. is 27, as compared to the magenta device also shown in 

Figure 4.2.1.2. for which Sab=60. A similar disparity in the saturation of the constituent 

ECP films of the magenta-yellow device in Figure 4.2.2.2. lends to the orange hue of the 

fully neutral color state.  This difference in saturation could be overcome by, in the case 

of the cyan-magenta device, increasing the thickness of the deposited cyan film, and 

thereby increasing the chromaticity and saturation of that component. However the 

optical density of the films employed in devices were set equal to one an-other for the 

purposes of this investigation[143]. What is evident from Figures 4.2.2.1. and 4.2.2.2. is the 

ability to “dial in” a color state by applying a set of particular voltages across the two 

halves of a dual active ECD. 

 Taken together, the breadth of the color states accessed using these dual active 

devices form a color gamut, particular for these ECP materials at a specific optical 
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density.  This gamut, shown plotted in the a*b* color space in Figure 5, is to our 

knowledge the first of its kind to be produced using subtractive color mixing in 

electrochromic polymers, where the color points shown correspond to the color points 

from Figures 3 and 4. 

 

Figure 4.2.3.1. Plot of a*b* values of all color points recorded with dual active devices. 

Reproduced with permission from Bulloch et al[59]. Copyright 2014, American Chemical 

Society. 

This gamut, plotted as if all points were of equal L* value, shows a broad range of 

accessible color states. The coloration of points shown in Figure 4.2.3.1. are not 

photographs of devices, as is the case in Figures 4.2.2.1. and 4.2.2.2., but rather a color 

mapping performed during data work up, by converting the L*a*b* coordinates for each 

point to RGB values. It should be noted that the space between the plotted points, or the 

color resolution of the displayed gamut, is a function of the voltages applied to the dual 

active device. These measurements were made utilizing 200 mV steps through-out stable 

switching ranges. By utilizing smaller voltage steps, additional color states not shown can 

be accessed. The only exception to this voltage stepping regime is made in the case of 

ECP-Y films, which include an oddly spaced point at 0.7 V, which was included due to 

the large degree of change that occurs at this voltage in order to illustrate a more smooth 

transition. If a finer control of the applied voltages can serve to “fill in” the accessible 

color states of the gamut, the features of greatest interest then become the color states 
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with the greatest chromaticity, or the points that make up the outer bounds of the gamut. 

These boundaries, shown below in Figure 4.2.3.2., reflect the limits of color production 

in these materials, at the specific optical density examined. 

 

Figure 4.2.3.2.. Exterior and interior bounds of the color gamut generated through 

subtractive mixing of ECPs –C, –M, and   –Y. Reproduced with permission from Bulloch 

et al[59]. Copyright 2014, American Chemical Society. 

A number of points are brought up by the examination of boundaries of the accessed 

color gamut. First, the borders displayed include a tail in the lower right quadrant, shown 

to be from the magenta + yellow device. The reason for the inclusion of this tail is to 

demonstrate variability between devices. Given the variability inherent in lab-built 

devices, these bounds can be expected to fluctuate to a certain ex-tent with the assembly 

of each device, and with a sufficient number of devices this variability would likely 

average out. Second, while there is variation from device to device, each dual active 

device can achieve a very transmissive state. This is provided in the inset to Figure 

4.2.3.2., which shows the coordinates for each of the dual active devices with the ECPs in 

their fully oxidized states. Third, while points are plotted in accordance with their a*b* 

values, a third dimension (L*) is not represented, save by the coloring of plotted points. 

Were the L* dimension taken into account in plotting the mapped gamut would appear as 

an ovoid shape in the L*a*b* color space, with an apex towards the yellow and a nadir in 

the purple-blue region, rather than a distorted circle. Consideration of this third L* 

dimension brings up another point of interest. While precise control over the a*b* color 
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state has been demonstrated utilizing this type of dual active ECD, variation in L* occurs 

as a consequence of the bleaching and evocation of color in the ECPs used. No direct 

control over the lightness or darkness of the color states produced using a dual active 

device is present.. To address the absence of control over the white-black balance in this 

type of device, a fourth “ECP-Black” component could also be incorporated into a 

hypothetical pixel, varying in shades of black[38]. This practice is common in printing, 

where the subtractive color mixing system employed here is almost exclusively referred 

to as “CMY-K”, with K short for “Key”, a press printing term for black. Direct control 

over the L* value would allow for further expansion of this three dimensional color 

gamut, permitting access to color states otherwise precluded by the bleaching of the cyan, 

magenta and yellow ECPs. With the incorporation of this fourth element to control 

luminosity of mixed colors, the concern once again becomes the ability of the ECPs to 

produce a wide gamut of saturated color states. If instead the bounds laid out by the 

saturation of the primaries are of concern, then one source of limitation is plain to see in 

Figure 4.2.3.2., namely the lack of saturation in the cyan primary. In summary, it has 

been demonstrated here that ECPs are suitable for the generation of a wide gamut of 

colors through secondary mixing when layered as two distinct films, exhibiting both 

vibrantly colored and highly transmissive states in equal measure. In addition, color states 

may be selectively tuned as intermediate partially bleached color states, readily accessed 

by the judicious application of voltages. The large number of distinct color states 

accessible through this partial oxidation of ECP materials, in either individual films or 

when coupled as two or more tunable filters, result in a wide color gamut encompassing a 

considerable variety of color permutations within its bounds 

4.3 Hybrid Photoelectrochromic Devices 

 The following section departs from the ECDs intended for the study of color 

mixing discussed above, and branches to address another challenge of electrochromics 
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application: powering a device.  The work described in this section is largely adapted 

from the published article listed as reference 136, “A Vertically Integrated Solar-powered 

Electrochromic Window for Energy Efficient Buildings”, and describes the fabrication 

and characterization of a fully solution processed, tandem photovoltaic-electrochromic 

device assembly. 

4.3.1. Device Overview and Deposition of OPV Device 

 Each of the electrochromic devices discussed so far in this dissertation 

have required an external source to provide the bias and current needed for the reduction 

or oxidation of their ECP components. Several groups have made efforts to fabricate 

devices with power generating structures either integrated into a device architecture or 

into an integrated assembly, creating what might be termed self-powering, or 

photoelectrochromic, devices[144-148]. Often, the photovoltaic component of these devices 

are merely incorporated into the periphery of a device, however even when incorporated 

into the layered stack of the PV component must be highly transparent, often leading to 

the use of sputter deposited materials or some external power source to facilitate one half 

of the electrochromic switch. As an alternative to these methods, an organic photovoltaic 

(OPV) device was solution processed onto a transparent electrode, with the top-most 

layer deposited consisting of a thin, nearly transparent, and conductive PEDOT:PSS 

coating. Onto this PEDOT:PSS layer, ECP films were cast as described in Chapter 2, 

making use of ECP-M as the active material and MCCP as the counter polymer. Various 

schema related to the fabrication and operation of this device, such as an illustration of 

each of the layers composing the device, the scheme for ECD encapsulation, as well as 

the switching scheme are shown below in Figure 4.3.1.1. For the sake of completeness 

and to avoid ambiguity, we’ll make a brief discussion of the casting of the OPV device 

layers, which was performed by Dr. Yinhua Zhou. These fabrication steps are more 

completely discussed in Chapter 2, Section 2.1.5.For a more complete description of the 
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deposition, operation of, and synthetic and design strategies used in the fabrication of the 

OPV device shown in Figure 4.3.1.1. and in this section, the reader is directed to 

published article from which this section is adapted[136], as well as further publications 

describing the OPV materials employed[149-151].  

 

Figure 4.3.1.1. Photoelectrochromic schema illustrating (a) full device layering (b) ECD 

encapsulation scheme, and (c) switching arrangements. Reproduced with permission 

from Dyer et al[136]. Copyright 2014, Wiley-VCH. 

 The selection of materials for the OPV portion of the photoelectrochromic device 

hinges on the use of one material in particular, poly(diketopyrrolopyrrole-terthiophene) 

or PDPP3T, the structure of which is shown in Figure 4.3.1.2.  
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Figure 4.3.1.2. Structure of poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) 

Due to PDPP3T’s nature as a conjugated polymer with a relatively low band gap, the 

majority of its absorbance lies in the near infrared, rendering it nearly transparent in the 

visible region. This property more than anything else renders PDPP3T particularly well 

suited towards application in visibly transparent OPV applications[149].  

Prior to processing, ITO substrates were rinsed via ultrasonic bath, and following 

this, a ZnO solution was cast onto the surface by spin coating. Following this, 

polyethylenimine ethoxylate (PEIE) was cast via spin coating, and samples were 

transferred into a glovebox with a nitrogen atmosphere. Inside the glovebox, the 

photoactive layer, consisting of PDPP3T:phenyl-C61-butyric acid methyl ester (PCBM) 

was deposited via spin casting. Subsequent to the casting of the photoactive layers, a film 

of  PEDOT:PSS was cast as the final layer of the OPV device. Again, for characterization 

results of the OPV layers utilized in this work, the reader is directed to the original 

publication.  

4.3.2. Casting of Electrochromic Polymers 

 To cast the ECD portions of the photoelectrochromic device, solutions of ECP-

Magenta (ECP-M) and the DOP-based Minimally Color Changing Polymer (MCCP) 

were prepared in toluene. Solutions were filtered, and cast via airbrush as described in 

Chapter 2. Thin films of each ECP were cast onto the outer PEDOT:PSS surface of the 

OPVs described in the previous section, and acrylic tape were used to produce device 

boundaries, again, as described in Chapter 2. A gel electrolyte composed was pipetted 
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into the device area, and sealed as other ECDs described. Finally, contact to the device 

was facilitated via strips of copper tape. 

4.3.3. Characterization of Photoelectrochromic Device 

 The completed photoelectrochromic device is operated via a series of external 

connections, from the appropriate PV electrodes to the EC electrodes. This scheme is 

illustrated in Figure 4.3.1.1. This scheme works off the selective reduction of one of the 

two ECP layers, meaning when the device is in its colored state, a reducing bias is 

applied to the ECP-M coated electrode, causing the oxidation of the opposing MCCP 

layer. Conversely, the bleached state of the device is accessed by applying a reducing 

bias to the MCCP-coated electrode and causing the oxidation of the ECP-M layer on the 

opposing electrode.  

 Spectroscopically, the majority of the visible absorbance observed in this device 

structure is due to the cast ECP-M layer in the device. The OPV device layers themselves 

are reasonably transmissive, with one cell maintaining a transmittance of 76% at 550 nm 

(the wavelength of greatest sensitivity in the human eye), while a pair of cells maintains a 

transmittance of 58% together. The spectra of the uncoated OPV cells is shown in Figure 

4.3.3.1. Further, spectra taken of the completed photoelectrochromic device, with the 

ECD portion in its fully bleached and fully colored states is also shown in Figure 4.3.3.1., 

illustrating a break in the various absorbance motifs represented throughout its spectra. 

Within the visible (below roughly 680 nm), the absorbance profile is dominated by the 

ECD portion, namely ECP-M in its colored and bleached states. Above this threshold and 

entering the NIR (between 680 and 1100 nm), the spectral profile is dominated by the 

absorbance of the doped PEDOT:PSS layers. Further into the NIR (>1100 nm), 

absorbance is likely dominated by the bipolaron absorbance created in the ECD layers, 

and this profile changes little at either extreme electrochromic switching, as one ECP 

component (either ECP-M or MCCP) is ensured to be oxidized at any given time.  
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Figure 4.3.3.1. Spectra (a) both a single (red) and a pair of (blue) OPV devices utilizing 

PDPP3T, and (b) spectroelectrochemistry of a photoelectrochromic device in its extreme 

color states. Reproduced with permission from Dyer et al[136]. Copyright 2014, Wiley-

VCH. 

The spectroelectrochemical data shown in Figure 4.3.3.1., for the purposes of comparison 

with more traditional ECD structures, was gathered under potentiostatic control. Further, 

the use of a potentiostat to record this data provides a baseline for comparison of the 

performance of the ECD under the self-powering conditions utilizing the OPV layers by 

applying voltages similar to those recorded during the testing of the OPV devices. As an 

acceptable degree of transmittance is observed in the completed photoelectrochromic 

device structure, gauging the electrochromic performance under the self-powering 

conditions was warranted. Given that the voltages produced by the OPV layers was 

observed to be high enough to cause oxidation or reduction of the selected ECP, the 

largest limiting factor to electrochromic performance under this regime was believed to 

be the rate at which the OPV layers could generate charge sufficient to complete the 

reduction or contra-oxidation. To gauge this performance, a device was connected via the 

scheme shown in Figure 4.3.1.1., however the addition of a single pole-single throw 

(SPST) switch between the connected electrodes allowed for the interruption of the bias 

application and subsequent flow of current. Under illumination of a solar simulator 

(Oriel, output intensity of AM 1.5, or 1000 W/m2), the connection scheme shown in 

Figure 4.3.1.1. was maintained via the SPST switches for a fixed amount of time, in order 
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to gauge the degree of switching attained. This process was repeated in both the forward 

(bleaching) and reverse (coloring) connection scheme, and the results of this test are 

shown in Figure 4.3.3.2.  

 

Figure 4.3.3.2. Switching of a photoelectrochromic device during the (a) bleaching and 

(b) coloring processes against time. Reproduced with permission from Dyer et al[136]. 

Copyright 2014, Wiley-VCH. 

In the spectra shown in Figure 4.3.3.2., the spectrum of the initial state (either (a) fully 

colored or (b) fully bleached) is shown in black, and spectra for subsequent time points 

are shown as colored traces (red = 1 second, blue = 2 second, etc). Seen in the inset to the 

spectra for the bleaching process in Figure 4.3.3.2., the contrast attained under this 

connection scheme plateaus rapidly, with an almost negligible increase in observed 

contrast beyond a 2 second connection. Further, the reverse or coloring process is 

observed to be equally fast or faster, with the majority of the observed contrast being 

attained in under one second, though there is an appreciable increase in the observed 

contrast out to three seconds, where the value seems to plateau. Additionally, the 

photoelectrochromic devices produced displayed a trait often observed in ECPs, namely 

electrochromic memory, or a bistability of oxidation states. Due to the oxidative stability 

of the neutral state of the polymer, the color of an ECP film is not expected to 

spontaneously oxidize to the bleached state. Conversely, the stability of the bipolaronic 

oxidized state is sufficiently high that the bias used to attain that state can be 
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disconnected entirely from an ECD system, and the colorless state will persist for some 

time, often for a length of 10-20 minutes in bench top fabricated devices,  independent of 

the external bias. This behavior was observed in the photoelectrochromic devices by 

recording reflectance spectra of devices throughout the application of the bias provided 

by the OPV layers, and further recording data following disconnection of that external 

bias. This behavior is illustrated in Figure 4.3.3.3., which reports the percent reflectance 

at 550 nm, throughout the application of a device bleaching potential and into an open 

circuit state, with this transition denoted by dashed lines colored to the respective 

bleaching bias application time. In Figure 4.3.3.3., the reflectance values recorded prior 

to the open circuit state (to the left of the dashed line) illustrate the change in reflectance 

brought about in the photoelectrochromic device through the application of a bleaching 

bias for the lengths of time denoted in that Figure’s legend. At the point of disconnection 

from that external bias (the dashed line), in almost all cases the reflectance increase 

observed (brought about by the bleaching of the ECD portions).  

 

Figure 4.3.3.3. Observation of electrochromic memory in photoelectrochromic devices. 

Reproduced with permission from Dyer et al[136]. Copyright 2014, Wiley-VCH. 

The memory effect is apparent in the low rate of “drift” to a lower degree of reflectance 

following the removal of an external bias (dashed lines). Interestingly, the electrochromic 

memory appears to be largely independent of the degree of bleaching attained with the 
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rate of downward drift (recolorization), following the application of a bleaching bias for 1 

second, is rather low after an initial nominal drop immediately following removal of the 

external bias. The rate of recolorization after the application of a bleaching bias at longer 

application time points is similarly low, though the rate of drift observed after a 2 second 

application is rather large when compared to other time points observed. It should be 

noted that each measurement recorded to observe this memory effect was limited to a 

time frame of 75 seconds, due to sampling limitations in the software used to control the 

spectroradiometer employed to gather this data. Due to this limit, the “memory” period 

recorded after a bleaching bias was applied to the device for 1 second (following an 

initial 5 second rest period) is 69 seconds of “memory”, while the memory period 

following a 30 second application of the bleaching bias was only 40 seconds, again, 

following an initial 5 second rest.  

 The results observed show this device architecture as a promising proof-of-

concept for self-powering electrochromic windows. Further, the use of methods such as 

solution processing in the fabrication of the devices can be made amenable to large-scale 

and high throughput processes. However while a promising proof-of-concept, much 

additional work is required before this process might be adapted on an industrial scale as 

some of the techniques used, such as spin coating, are likely incompatible with a large-

scale setting. Finally, while device optimization is likely to improve both photovoltaic 

and electrochromic performance, the techniques used might also be adapted for use on a 

flexible, transparent and conductive substrate.  
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CHAPTER 5 

SOLUTION CO-PROCESSING FOR COLOR MIXING 

APPLICATIONS 

 

 In chapter 4, the use of novel electrochromic device types served to examine, to a 

limited extent, the color mixing properties of several series of electrochromic polymers 

spatially separated into a “dual active” structure[59]. The neutral state color properties of 

the polymers used in the dual active devices allowed for color mixing along the well-

established cyan-magenta-yellow subtractive color mixing scheme, and in this chapter we 

will be taking that color mixing scheme one step further. Rather than spatially separate 

pairs of ECPs to achieve the production of a secondary color state, materials have been 

co-processed from the same solution, to create a single, visually homogenous ECP 

film[60]. 

An additional goal will be to shed light on a possible means of predicting the color 

properties of these co-processed films, and further, to quantify of the accuracy of that 

means. Mixtures of ECPs intended to produce vividly hued films will be examined, and 

this work, described in Sections 5.1 through 5.3, is largely adapted from the published 

article listed as reference 60, “An Electrochromic Painter's Palette: Color Mixing via 

Solution Co-processing”. Following the production of vivid, multicolored films, the co-

processing method will be extended to the production of achromatic mixed ECP films 

and a comparison of these blended films to the synthetically produced ECP-Black will be 

made.  

5.1 Subtractive Color Mixing via Solution Co-processing 

 The solution processability of the electrochromic polymers produced in the 

Reynolds’ labs over the previous decades opens a number of avenues to address 
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challenges in inventive ways[27-28, 33, 152]. This section will describe how the solution 

processability of ECPs can be used for the purposes of tailoring the color properties of 

cast films. In order to properly discuss the control of color properties through control 

over ECP mixture compositions though, a description of the theory behind this fashion of 

subtractive color mixing is in order.  

5.1.1. Theory of Subtractive Color Mixing 

 Non-emissive technologies, such as liquid crystal, electrophoretic, and 

electrochromic displays produce a visual stimulus in a subtractive fashion, i.e. through 

interactions with transmitted or reflected, rather than emitted, light. This light can be 

produced from ambient sources, or be the result of a back lighting display element, but 

regardless of the source of the attenuated light, the mechanism of subtractive color 

generation is largely the same. The development of colored-to-clear ECPs discussed so 

far in this document employed synthetic design strategies, i.e. modulation of electronic 

absorption transitions through structure-property relationships, for broad color targeting 

in order to create polymers of a specific hue[27-28, 38]. However, subtleties of color 

perception and the intricacies of polymer structure and material color relationships mean 

that fine color control is, at best, difficult. Color mixing, or more specifically the mixing 

of pigments of differing optical properties to produce a new color state, serves as an 

alternative to synthetic routes of color control and is a well-established practice in the 

printing industry. Color mixing theory asserts that if two color stimuli are mixed, the 

resulting color stimulus will lie at some point along a line connecting the two mixed 

stimuli on a chromaticity diagram[153]. Practically, this observation has resulted in the 

CMY-K and RYB color mixing systems, commonly used as the models of subtractive 

color mixing.  

 Among the family of electrochromic polymers developed in the Reynolds’ labs, 

three vibrantly colored to highly transmissive switching polymers, representative of the 
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cyan, magenta, and yellow subtractive mixing primaries are available for the study of 

color mixing in ECPs. The repeat unit structures of these polymers, along with 

photographs of thin films of each at both potentials producing fully colored and fully 

bleached states are shown in Figure 5.1.1.1. To demonstrate the color mixing that can be 

produced in solution, photographs of ECP solutions are shown at the bottom of that same 

figure, illustrating the vibrant colors of the CMY materials, as well as their ability to 

produce the highly saturated secondary green, red, and blue hues.  

 

 

Figure 5.1.1.1. Structures and photography of CMY representative electrochromic 

polymers in solution and thin films. (a) The repeat unit structures of each of the three 

ECPs selected are shown above, where R= 2-ethylhexyl. (b) Photographs of colored and 

bleached polymer thin films are shown below their respective repeat unit structures. (c) 
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Solutions of ECPs-C,-M, and Y at concentrations of 2 mg/mL, and 1:1 w/w ratios of 

these solutions. Figure reproduced with permission from Bulloch et al[60]. Copyright 

2015, American Chemical Society. 

In order for color mixing to be performed in a precise fashion, the link between relative 

“strength” of the pigments used and the quantity of pigment physically present in a 

sample must be established. The elucidation of this link, in terms of extinction 

coefficients, is described in the following section. 

5.1.2. Determination of ECP Mass Extinction Coefficients 

 As was discussed in Chapter 4, where the solution processing and examination of 

the color properties of ECPs is concerned, treating the materials as inks is at least on a 

technical level a reasonable approach to take. If one desired to mix two pigments into an 

ink such that each pigment contributed equally to the mixed color stimulus produced, you 

would need to know how “strongly” each pigment absorbed it’s respective band of light, 

allowing you to adjust the relative masses of each pigment in the mixture to balance them 

out. Where most pigments are concerned, the quantification of absorptive strength takes 

the form of a molar absorptivity or extinction coefficient, and is given the symbol “ε”. In 

materials where the chromophore units consist of molecules with a well-defined 

molecular or molar mass, this determination is relatively straight forward, utilizing 

spectroscopy of solutions of a known concentration and following largely on the 

assumptions made within the Beer-Lambert law. The determination of extinction 

coefficients becomes slightly more complex when the chromophore units are distributed 

along some number of repeat unit heterocycles (as is the case in electrochromic 

polymers), rather than neatly packaged within one discrete molecule. The determination 

of extinction coefficients becomes even further complicated when a fair portion of a 

material’s mass is included in non-absorptive moieties, as is the case of the alkoxy 

solubilizing chains appended to the ECPs. Due to these considerations, experimental 
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determination of the “molecular weight” of the distributed chromophore within ECPs is 

particularly difficult. 

  Alternatively, the total mass of the polymer in solution can be substituted for the 

molecular weight normalization, i.e. substituting a g/mL term for a mol/L concentration 

term in the Beer-Lambert law,  producing a mass extinction coefficient (εmass)
[33]. For the 

purposes of the experiments described in this chapter, the density of the polymer samples 

was assumed to be 1.0 g/cm3, however the densities of ECPs-Cyan, -Magenta, and –

Yellow were experimentally determined to be 1.06, 1.02, and 1.01 g/mL, via flotation 

measurement. In order to determine polymer mass extinction coefficients (εmass), dilute 

ECP solutions (50 μg/mL in chloroform) of ECPs-Cyan, -Magenta, and -Yellow were 

prepared and spectra of these solutions were recorded with a Varian Cary 5000 UV-Vis-

NIR spectrophotometer. Values for εmass were calculated via the Beer-Lambert law, 

again, substituting a sample concentration in units of g/mL for the molar mass term for 

the analyte concentration term[33]. The extinction coefficients of ECPs-Cyan, -Magenta, 

and -Yellow are shown below in Figure 5.1.2.1. as a function of wavelength.  

 

Figure 5.1.2.1.  Mass extinction coefficients, in chloroform,  as a function of wavelength 

illustrating the increasing relative absorptivity in the order of ECPs-C, -M, and –Y. The 

extinction coefficients shown were calculated by assuming a polymer density of 1 g/cm3
. 

Figure reproduced with permission from Bulloch et al[60]. Copyright 2015, American 

Chemical Society. 
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The value of the extinction coefficients for each of the CMY polymers at the wavelength 

of maximum absorption (λmax) was used as the basis on which mixture compositions were 

determined. By way of example, the values of εmass at λmax for ECPs Magenta and Cyan 

were determined to be 2.9x104 and 2.5x104 cm-1, respectively. The ratio between the 

values of εmass for ECPs Magenta and Cyan is 0.87, and therefore to produce a mixture 

with equal contributions to the visual stimulus from the components, 0.87 parts of ECP-

Magenta should be used to 1 part ECP-Cyan. It should be noted however that this method 

produces mixtures with equivalent contributions to a visual stimulus, however only at the 

λmax for each polymer. Using this method, two component ECP mixtures of the CMY 

representative polymers were made at 1:1 ratios. Mixtures were again composed at a 

concentration of 50 μg/mL, and the spectra recorded for these solutions are shown below 

in Figure 5.1.2.2..  

 

Figure 5.1.2.2. Spectroscopy of 1:1 ECP mixtures in chloroform solution. The relative 

masses of each component ECP in these mixtures was informed by the mass extinction 

coefficients observed. Figure reproduced with permission from Bulloch et al[60]. 

Copyright 2015, American Chemical Society. 

It should be understood that this method is only accurate to a first approximation for the 

mixture of any given pair of ECPs, due to the number of factors not addressed by this 

method, such as the differences in chromophore mass or size between polymers, the non-
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absorptive weight fraction of the respective polymer masses mentioned previously, and 

the non-linearity of the eye’s color sensitivity. Further, overlap in the spectral profile of 

each component ECP, such as the overlap of the profiles of ECP-C and ECP-Y around 

400 nm.  

5.1.3. Calculation of Theoretical Mixed ECP Color Stimuli 

 The use of any experimental method calls for controls against which the veracity 

of data obtained might be gauged. Where the co-processing of ECP mixtures is 

concerned, the experimental method in question is using the calculated mass extinction 

coefficients to produce ECP mixtures with specific color properties. The control against 

which this method will be compared is the calculation of the color properties of 

theoretical mixtures of ECPs at identical mixing ratios to those used experimentally. As 

per the theory of color mixing described above, if the chromaticity coordinates of a 

mixed color stimulus (a* and b* in the CIELAB system) lie along a line connecting the 

two stimuli being mixed, then it follows that the mixed chromaticity coordinates should 

follow the trend expressed in Equation 5.1.3.1.: 

 

Equation 5.1.3.1. Equations to calculate chromaticity coordinates of a mixed color 

stimulus in the CIE L*a*b* color space. 

where a1
* and a2

* are the a* coordinates of the materials being mixed, x and y are the 

fraction contributions of each component, and a3
* is the a* coordinate of the mixture 

produced. Similarly, b3
* is the b* coordinate of the mixture produced, calculated in an 

identical fashion.  As ECPs-Cyan, -Magenta, and -Yellow are the pigments being mixed 

in this series, the a* and b* values of neat films of each polymer will produce the values 

of a1
* and a2

*  or b1
* and b2

*   used in these calculations.  
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 By way of example, if a 3:1 mixture of two pigments were to be made, and 

pigments 1 and 2 had a* values of 50 and 25, respectively, the calculation of the a* value 

of the mixed stimulus (a3
*) would be as follows: 

 

Predicted color values for mixtures with compositions of 3:1, 1:1, and 1:3, weighted by 

the value of εmass at λmax  for all mixtures. 

5.2. Solution Co-Processing of ECP Mixtures 

 Using the mass extinction coefficients to produce some degree of parity in the 

contribution from the ECP pigments being mixed, in coordination with the calculation of 

theoretically mixed color coordinates as a basis for comparison, the physical deposition 

of the ECP mixtures becomes the next step in the assessment of this mixing method. This 

section will discuss the details immediately pertaining to the deposition and spectroscopy 

of the unswitched or “as cast” mixed ECP films. For a more complete description of the 

method of spray casting polymer solutions, the reader is directed to the section dedicated 

to that topic in Chapter 2.  

5.2.1. Casting of ECP Mixtures 

 ECP samples were prepared by mixing samples with compositions conforming to 

the ratios described for the calculation of theoretical color values, i.e. mixtures were 

made at ratios of 3:1, 1:1, and 1:3, for each ECP combination. Each mixture was 

dissolved in chloroform to a concentration of 2 mg of polymer per mL of solvent, and 

neat chloroform was used for each sample to ensure complete dissolution. Mixtures were 

allowed to stir over night, with no additional heating. Following mixing, no resistance in 

filtration was noted, suggesting  total dissolution of the polymer samples into the 

chloroform solutions. Prior to casting, ITO-glass slides were rinsed using isopropanol, 

followed by acetone, and were wiped dry. Films were cast over an area roughly of 25 x 
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50 mm, using an Iwata-Eclipse airbrush with nitrogen at a pressure of 20 psi. Films were 

cast until an absorbance of 1.0 absorbance units was reached, regardless of the 

wavelength which reached that benchmark first.  

5.2.2. Color Properties of As Cast Films 

 Prior to the electrochemical cycling of the cast ECP films, a comparison was 

made between the observed and calculated chromaticity coordinates for each mixture. As 

the chromaticity coordinates being assessed in this case pertain to dry or “as cast” films, 

the chromaticity coordinates for ECPs-Cyan, -Magenta, and -Yellow in this as cast state 

were used to calculated the theoretical color points under consideration. The theoretical 

points are shown alongside the experimentally observed points in Figure 5.1.3.1.  

 

Figure 5.1.3.1. Predicted and observed a*b* chromaticity coordinates in as sprayed ECP 

films. a*b* values for neat CMY ECP films as well as varying ratios of each binary ECP 

mixture. Chromaticity values estimated from the chromaticity coordinates of the neat 

CMY ECPs are shown as black triangles. Figure reproduced with permission from 

Bulloch et al[60]. Copyright 2015, American Chemical Society. 

By way of a qualitative assessment of the general trends observed, an underestimation of 

mixture chromaticity is a universal feature in the application of this model to “as cast” 

films, evidenced by all predicted color values lying closer to the origin than the 
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experimentally observed values. Further, values for the quantification of the color 

difference between the experimentally observed and theoretically predicted chromaticity 

values are fairly large (≥10 in any one chromaticity coordinate) in the ECP-C:ECP-Y 

(green) and ECP-C:ECP-M (blue) mixtures shown, but much closer agreement is seen in 

the ECP-M:ECP-Y (red) mixture. A description of the calculation this color difference 

term may be found in section 5.3.1. 

 A degree of outward “bowing” in the experimentally observed chromaticity 

values is also observed for each mixture examined. A number of factors might influence 

this bowing behavior, such as differences between the optical properties of the solution 

environments used to estimate mass extinction coefficients and those encountered in the 

thin film environment, or other differences discussed above, such as the use of extinction 

coefficient values corresponding to λmax values alone. While a comparison of the 

theoretical and experimentally observed chromaticity coordinates in the as cast state is a 

good place to begin the assessment of this method, in order to properly assess the 

predictability of CMY color mixing using ECPs, they should to be regarded as the 

functional, electro-active materials they are, and they are handled as such in the following 

section.  

5.3. Characterization of Mixed ECP Films 

 Prior to spectroelectrochemical characterization, films were switched via cyclic 

voltammetry, utilizing an EG&G PAR 273A potentiostat and a three electrode cell 

arrangement, as described in Chapter 2, section 2.2.1. An electrolyte consisting of 0.5 M 

TBAPF6 in propylene carbonate was used, and films were potential cycled 2-3 times, 

after which point no further differences in spectral properties were observed on repeated 

cycling. Following this initial cycling, a potentiostatic regime was used to record spectra 

of each film in the fully neutralized and fully oxidized (colored and bleached, 

respectively) states. This section will discuss the features observed within this 
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spectroelectrochemical interrogation, as well as the color properties derived from the 

spectral data and a comparison to the theoretically calculated chromaticity coordinates for 

switched films.  

5.3.1.Spectroelectrochemistry 

 In order to treat the cast ECP films as electroactive coatings, thin films 

corresponding to the solutions shown in Figures 5.1.2.1. and 5.1.2.2, i.e. neat solutions of 

ECPs-C, -M, -Y, and the 1:1 εmass : εmass mixtures, were spray cast onto ITO-coated glass 

slides in order to spectroscopically monitor the oxidation and re-neutralization of the 

films prepared, referred to as switching. The spectra recorded for these films are shown in 

Figure 5.3.1.1. As previously discussed, differences in optical properties are often 

observed when moving from solution to thin film environments. However, particular note 

should be made of the changes observed upon the initial oxidation-reduction cycling of 

some ECP films (referred to as the electrochemical break-in). For many polymers, these 

observed differences are minor, but in the case of ECP-M, a notable degree of peak 

sharpening is observed, along with an increase in the absorption maxima at λmax for both 

observed peaks in that sample. This sharpening is readily apparent in Figure 5.3.1.1 

(compare with the ECP-M trace shown in Figure 5.1.2.1 and 5.1.2.2.), the transmission 

spectra of the neutral (colored) and oxidized (bleached) states of films after their 

electrochemical break-in cycles. 
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Figure 5.3.1.1. Spectra of the fully colored state and most transmissive states attained are 

shown for films of (a) neat ECPs-C, -M, and –Y, and (b) 1:1 ECP mixtures. These spectra 

serve to illustrate both the high contrast available in the neat ECP films, as well as the 

effect of lower contrast components on the transmissive state of a mixture. Figure 

reproduced with permission from Bulloch et al[60]. Copyright 2015, American Chemical 

Society. 

This shift in optical properties becomes an important factor when attempting to quantify 

the color contributions from ECP-M to a given mixture. This effect can most easily be 

seen when comparing the ECP-M spectra shown in Figure 5.1.2.2. and 5.3.1.1.b, 

recorded prior to and after potential cycling, respectively. Films were originally sprayed 

until an optical density of 1.0±0.05 AU at λmax was reached, but upon switching, an 

increase in the ECP-M absorption intensity is again observed, coinciding with the 

sharpening of the peaks observed in the absorption profile. This shift in optical properties 

upon electrochemical switching, and it’s influence on the final color properties of the 

ECP mixtures will be revisited in the discussion of the prediction of an ECP mixture’s 

color properties. 

The spectra shown in Figure 5.3.1.1. also allows for the examination and 

comparison of the oxidized (bleached,  transparent) states in both the neat and mixed 

ECP films. The electrochromic contrast, measured as the difference in transmittance at 

λmax between the colored and bleached states of a given ECP at is highly dependent on 

the extent to which a material can bleach it’s color upon oxidation. The CMY ECP 

materials employed in this study exhibit varying degrees of this ability, shown as the 

dashed traces in Figure 5.3.1.1., and from these it can be seen that ECP-Y retains the 

highest level of visible light absorption upon bleaching and ECP-M the lowest. This 

observation becomes especially important in the context of retained absorption in the 

bleached state of a mixture. Figure 5.3.1.1. illustrates that the bleached state of an ECP 

mixture is limited by the component with the least transmissive bleached state, leading 

the mixture lacking ECP-Y entirely to have the most transmissive bleached state, while 

the mixture containing both ECPs-Y and -C in equal proportion has the least transmissive 
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bleached state. This observation should be qualified with the understanding that even the 

“least transmissive” bleached state reported in this study still exhibits a comparatively 

high degree of transmission and color neutrality, but the limiting effect of one of the 

components in a mixture is an influential factor. It should be noted that the data presented 

in this chapter, both spectral and colorimetric, was collected under a steady-state regime, 

i.e. a steady current response signifying a stabilization in the extent of film oxidation 

induced was observed prior to spectra being recorded. Likely due to the disparity in the 

onset potentials for oxidation between the CMY polymers, varying degrees of oxidation 

are observed in each component in a given mixture, producing a number of intermediate 

color states rather than a smooth, binary colored-to-bleached transition as observed in the 

neat ECPs. 

Spectroelectrochemical series were generated for each mixture composition, at 

each mixing ratio. A representative series of spectra are shown in Figure 5.3.1.2, 

specifically of a 1:1 ECP-C:ECP-M film, illustrating the sequential initial bleaching of 

the ECP-M component at roughly 0.3 V (peaks ~550 nm, green trace), followed by 

bleaching of the ECP-C component (~400 and 700 nm), as the potential applied across 

the film is increased step-wise from -0.3 V to 0.9 V.  

 

Figure 5.3.1.2 Representative spectroelectrochemical series of 1:1 εmass : εmass ECP-

C:ECP-M mixture. Figure reproduced with permission from Bulloch et al[60]. Copyright 

2015, American Chemical Society. 
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The application of this method to each cast film produced similar spectroelectrochemical 

series, often featuring the sequential bleaching of both ECP components as the potential 

applied to the film was raised incrementally. While the sequential bleaching effects 

observed are interesting, for the purposes of gauging the accuracy of color component 

prediction, the spectroelectrochemical data is much more valuable when rendered into 

L*a*b* chromaticity coordinates. Each of the spectra recorded were used to generate a 

set of chromaticity coordinates describing that spectra, via the method described in 

Chapter 2.4, through a software interface. The following section will feature a closer 

examination of the chromaticity coordinates observed, as well as a description of their 

proximity to the predicted values.  

5.3.2. Colorimetry and Quantification of Divergence  

After generating L*a*b* coordinates for both neat CMY films and those of the 

varying mixture compositions, values were plotted to illustrate how the chromaticities of 

the mixed ECP films varied with an increasing applied potential. The chromaticity values 

observed for each mixture of ECP-C and ECP-M produced, detailing both the a*b* 

chromaticity trends and the shift of the L* value throughout the electrochromic 

bleaching, are shown in Figure 5.3.2.1. 

 
Figure 5.3.2.1. (a) Colorimetry of ECPs-C and –M, with the chromaticity (a* vs b*) of 

ECP-C:ECP-M mixtures, and (b), the luminance values (L*) against the applied potential 

for ECPs-C and –M, and the corresponding mixtures. Figure reproduced with permission 

from Bulloch et al[60]. Copyright 2015, American Chemical Society. 
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The trends in the observed values are characterized by the loss of chromaticity, first by 

the loss of the ECP-M contribution, producing a series of color states in the cyan range (-

a*,-b*), followed by a loss of ECP-C color contribution as well, resulting in a final color 

neutral state, close to the origin. Associated with the loss of color contributions, there is 

an increase in the luminance, or L* value, brought about as the various ECP components 

are induced into highly transmissive bleached states. 

The control of chromaticity and luminance in ECPs via the application of a 

potential as shown in Figures 5.3.1.2. and 5.3.2.1. is well documented, and the two states 

relevant to this study are those presented in Figure 5.3.1.1., namely the fully colored and 

fully bleached states[154]. The chromaticity coordinates for these states, for each of the 

ECP mixtures prepared as well as neat ECP films, are shown at left in Figure 5.3.2.2. 

Also shown in the plot shown in Figure 5.3.2.2. are the chromaticity values predicted via 

the method described above, based on a given mixture’s composition. Finally, 

photographs of the mixed ECP films in both the vibrantly colored and highly 

transmissive bleached states are also shown at right in Figure 5.3.2.2., to illustrate the 

continuous and visually homogenous film properties obtained, as well as offering a 

means to better visualize the colors represented by the a* b* chromaticity coordinates 

plotted. Generally speaking, the chromaticity points in Figure 5.3.2.2. show a lesser 

degree of divergence from the values predicted than was observed in the “as cast” films, 

shown in Figure 5.1.3.1. The lowest degree of divergence is seen in the ECP-M:ECP-Y 

mixtures (red points) and the  greatest divergence observed in the ECP-C:ECP-Y 

mixtures (green points), as was observed with the colorimetry of the “as cast” films. The 

divergences from the predicted values are quantified by the value of ∆Eab
*,or the color 

difference. This term, which calculates the Euclidian distance between two sets of 

chromaticity coordinates, is defined by the CIE 1976 conventions with the following 

equation: 
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Equation 5.3.2.1. Equation for the calculation of the color difference between two sets of 

chromaticity coordinates in the CIE L*a*b* color system. 

A lower color difference (small ΔE) signifies a pair of colors that are closer to being 

identical, and a larger color difference (large ΔE) indicates a pair with a greater 

difference. The a*b* values recorded for the mixed ECP films are shown in Table 1, 

along with the values predicted using the L* a *b* coordinates of neat ECP films, and the 

value of ∆Eab
* for these pairs. As mentioned, generally the highest degree of agreement 

between the predicted and observed values occurs in the ECP-M:ECP-Y mixtures, with 

values of ∆Eab
* ranging from 12-14. To qualify these values a ∆Eab

* value of less than 

~2.3 signifies a pair of colors that are, commonly, perceptually indistinguishable. In 

essence, the difference between the pair of colors falls below a “just noticeable 

difference” (JND) threshold, and color pairs with ∆Eab
* values in the range of ~10 will 

therefore be noticeably different from one another, though similar[155-156]. A poorer 

agreement between the predicted and observed color values is seen in the ECP-C:ECP-M 

mixtures, with values ranging from 15-19, though a fair degree of consistency is seen in 

the error in prediction for this mixture. Finally, a remarkable degree of inconsistency is 

noted in the ECP-C:ECP-Y mixtures, with the two lowest ∆Eab
* values recorded (8 and 

11), as well as the highest (25) seen in this family of mixtures. 
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Figure 5.3.2.2. (a) Predicted and Observed a*b* Chromaticity Coordinates in 

Electrochemically Switched ECP Mixtures with Colored and Neutral State Photographs 

of Each Mixture. Chromaticity values of neat CMY ECPs and mixtures of varying 

composition, after electrochemical switching. Predicted values are again shown in black 

(squares). (b) Photographs of the mixtures in both the colored and bleached states are 

shown on the right. Figure reproduced with permission from Bulloch et al[60]. Copyright 

2015, American Chemical Society. 

By estimating the mass extinction coefficients of electrochromic polymers representative 

of the CMY color mixing models, the ability to estimate the colorimetric coordinates of a 

mixture of these ECPs has been demonstrated. This method, in its current form, makes a 

number of assumptions regarding variables that are likely to influence the accuracy of the 

predictive model described. 

Table 5.3.2.1. Chromaticity (L*,a*,b*) values of each ECP mixture examined, 

experimentally observed and predicted from neat CMY-ECP color values. Quantification 

of agreement between the predicted and observed color values is shown as the value of 

ΔEab
* 

 

Mixture 

Composition 

Predicted Observed ΔE*
ab 

L* a* b* L* a* b* - 

75:25 C:M 41 -12 -28 55 -14 -33 15 

50:50 C:M 58 7 -34 41 9 -42 19 

25:75 C:M 53 27 -41 43 40 -42 16 

75:25 M:Y 59 33 -16 47 39 -15 14 

50:50 M:Y 71 19 16 61 18 26 14 

25:75 M:Y 83 6 49 74 4 57 12 

25:75 C:Y 89 -13 55 85 -19 59 8 

50:50 C:Y 82 -19 30 73 -34 48 25 

75:25 C:Y 76 -25 4 70 -34 4 11 
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The variable mass of solubilizing alkyl chains appended to the ECP backbones are not 

accounted for, and an estimation of polymer densities is made by fixing all density values 

at 1 g/cm3, to name a few. Even with these assumptions having been made, a fair degree 

of accuracy in the prediction of a given ECP mixture’s chromaticity coordinates is 

demonstrated, and by reducing the number of assumptions applied to the calculations it is 

likely that a much greater degree of accuracy may be demonstrated. 

5.4. Optimizing Achromatic Mixtures for Contrast and Color 

 With a demonstration of the utility of solution co-processing in generating 

continuous and well switching mixed ECP films, efforts were directed towards producing 

achromatic ECP films. This strategy for color production and tuning offers an 

opportunity to recreate the broad and achromatic spectral profile of such materials as 

ECP-Black (the structure and spectra of which are discussed in Chapter 4.4.2.) through 

mixtures of electrochromic polymers. However, by substituting high contrast ECPs which 

do not feature D-A moieties (suspected to lead to a lower than desired optical contrast in 

ECP-Black) to cover wavelength regions that are otherwise absorbed by the complex 

repeat unit structure of ECP-Black, the electrochromic properties of the mixtures 

produced stand to see improvements in both optical contrast, owing to the minimization 

of the donor-acceptor content, and in color properties due to the ability to fine-tune the 

mixture compositions  

5.4.1. Co-processing Mixtures for Achromatic Films 

 Following the traditional subtractive color mixing model centered around cyan, 

magenta, and yellow hues, a co-processed mixture of ECPs of those colors, referred to as 

Blend 1, was produced. Spectra and photographs of this CMY mixture are shown in 

Figure 5.4.1.1, and indeed produced notably achromatic films in the neutral state (a*=-3, 

b*=4). For the structures and spectra of ECPs-Cyan and -Magenta, the reader is referred 
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to Figure 5.1.1.1. above. It should be noted that the work regarding broadly absorbing,  

achromatic films makes use of an alternate polymer structure producing a vibrant yellow 

to highly transmissive switching pattern, referred to as ECP-Yellow-2 (referred 

throughout the remainder of Section 5.4 as simply ECP-Yellow), and the structure and 

spectra of this polymer can be found in Figure 5.4.1.2.[157] In order to produce a mixture 

with these color values, large contributions from both ECP-Cyan and ECP-Yellow were 

required, which has several drawbacks with regards to the fully oxidized state of the 

blend film. Upon oxidation, the donor-acceptor copolymer ECP-Cyan also exhibits a 

tailing into the visible region, similar to ECP-Blue[36]. While the incorporation of the 

donor-acceptor polymer ECP-Cyan is in contrast to the design logic of eliminating the 

use of donor-acceptor polymers, no all-donor material adequately captures light in the 

650-750 nm region. Additionally, the increased donor content in ECP-Cyan allows for a 

more transmissive oxidized state as compared to ECP-Blue. Further, the incorporation of 

ECP-Yellow is also problematic due to this material being the highest gap material used 

in any of the mixtures. In order for this high-gap polymer to become fully transmissive, 

the neutral state absorption, which rests in the 400-500 nm range of the visible, must be 

shifted all the way to the near infrared. Such a large shift in spectral profile results in the 

polaronic and bipolaronic charge carrier absorptions being located closer to the visible 

region than would otherwise be desired and this proximity also leads to substantial tailing 

into the visible, leading ECP-Yellow to have one of the most substantial residual visible 

absorption profiles in the oxidized state of the ECPs used for mixing.  As a result, the 

donor-acceptor character of ECP-Cyan and the high gap nature of ECP-Yellow, led the 

CMY mixture to have an integrated contrast across the visible of 42%, showing no 

improvement over ECP-Black, also at 42 %. 
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Figure 5.4.1.1. Spectra and photos of blends for black to transmissive electrochromic 

films: (a) Blend 1 - Cyan, Magenta, Yellow  (b) Blend 2 -  Cyan, Pink, Periwinkle, 

Yellow (c) Blend  - Cyan, Pink, Periwinkle, Orange 

Table 5.4.1.1. Comparison of contrast and CIELAB values for ECP-Black and ECP 

blends. Values in red are to highlighted to direct the reader to the blend exhibiting the 

lowest degree of chromaticity (Blend 2) and the highest contrast (Blend 3). 

 

 In order to improve on this formulation, the rather counter intuitive step was taken 

to replace the component with the highest contrast, ECP-Magenta. The replacement 

polymers, referred to as ECP-Pink and ECP-Periwinkle, are largely similar to ECP-

Magenta, in that they are comprised of all donor repeat unit structures and exhibit a high 

contrast in the visible region. The structures and spectra of these two new components, 

along with those of the retained ECP-Cyan and –Yellow components are shown in Figure 

5.4.1.2.  

 

Blend %T430-730 T430-730 Reduced Oxidized 

Red Ox - L* a* b* L* a* b* 

ECP-Black 19 61 42 47 3 -14 84 -5 -5 

Blend 1 14 56 42 47 -3 4 81 -4 -3 

Blend 2 17 61 44 46 0 -3 84 8 -4 

Blend 3 17 65 48 36 6 -7 84 -4 -6 
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Figure 5.4.1.2. Structures of and neutral state spectra of components of Blend 2 (Cyan-

Pink-Periwinkle-Yellow) four component blend; spray cast thin films on ITO-glass. 

Further and most importantly, they possess similar band gaps to ECP-Magenta, ECP-Pink 

having a slightly higher gap and ECP-Periwinkle having a slightly lower gap. These 

substitutions were made to benefit mixtures in two ways. First, by adding a fourth 

component and spreading out the wavelength regions covered by those components, a 

more leveled and achromatic spectral profile could be produced via mixing, by fine-

tuning the mixture composition to fill in gaps in the absorption profile observed in the 

CMY mixture. Second, by spreading out the absorption profiles of the ECPs covering the 

middle wavelengths (500-650 nm), the content of ECPs-Cyan and -Yellow required to 

produce an achromatic spectral profile could be reduced, and ideally the contrast of the 

subsequent mixture would be improved as a result. The spectral profile and photography 

of this mixture, referred to as Blend 2, is shown at center in Figure 5.4.1.1., and its 

colorimetric values are compared to both ECP-Black and the CMY mixture (Blend 1) in 

Table 5.4.1.1., showing that a mixture of very low chromaticity (a*=0, b*=-3) was 

produced. Further, a slight improvement in the contrast was indeed observed, with Blend 

2 exhibiting an integrated contrast of 44%, compared to the 42% of both ECP-Black and 

the CMY mixture, Blend 1.  
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 Given the improvements to the mixture properties seen with these methods of 

substitution, further formulations were sought. While an acceptable substitute for ECP-

Cyan is not currently available, an alternative to ECP-Yellow is available as ECP-

Orange, the structure and spectra of which are shown in comparison with ECP-Yellow in 

Figure 5.4.1.3. 

 

Figure 5.4.1.3. Comparison of the structures and normalized spectra of ECPs-Yellow and 

–Orange.  

ECP-Orange is still a higher band gap material, though lower than ECP-Yellow, and this 

allows for the formation of polaronic and bipolaronic absorptions further into the near IR, 

leading to a lower residual visible absorption profile when compared to ECP-Yellow. 

Therefore, substituting ECP-Orange for ECP-Yellow produces a mixture that sacrifices 

the achromaticity of the resultant mixture to a slight degree, for the sake of producing a 

mixture with a notably improved contrast. This  four component mixture, referred to as 

Blend 3, the spectra and photography of which is shown at right in Figure 5.4.1.1., does 

indeed possess a higher chromaticity when compared with Blends 1 and 2, with 

chromaticity values of a*=6, b*=-7 in the neutral state. It should be noted that these 

values still represent a largely achromatic color state, particularly when the luminance 

value of L* is considered, Blend 3 possessing an L* value of 36, much lower than any 

other blend. Further, the substitution of the lower contrast ECP-Yellow for the higher 
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contrast ECP-Orange did indeed produce the desired effect, with the integrated contrast 

of the mixture, at 48%, shows a considerable improvement over both ECP-Black and the 

alternative mixture formulations. 

 Within this chapter, we have explored the co-processing of polymer blends for the 

purposes of tailoring the color properties of a mixture. A demonstration of the application 

of traditional pigment color mixing principles was applied to conjugated polymers, 

though with many assumptions having been made in the process, and a few factors 

remaining unaccounted for. Despite the exploratory nature of the work described, a fair 

degree of agreement between the expected and observed chromaticity values is reported. 

This agreement suggests that the method shows promise in simplifying the route to 

practical applications for electrochromic polymers. Future efforts to address the 

methodological issues discussed in Sections 5.1-5.3, as well as continued synthetic efforts 

to produce novel materials with which to study color mixing properties, will also help to 

further that effort. Section 5.4 has highlighted the application of this color mixing method 

to a practical challenge, i.e. improving the spectral performance of a black-to-clear 

electrochromic film. Via this method, improvements in both the chromaticity and contrast 

of a mixture were reported. Further efforts to refine either the materials applied towards 

this practical challenge, or improvements in the mixture compositions discussed are 

likely to produce further improvements in electrochromic performance.  
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CHAPTER 6 

PHOTOSTABILITY OF SELECT ELECTROCHROMIC 

POLYMERS 

 

 Prior chapters in this dissertation have largely discussed work geared towards the 

practical application of conjugated polymers, whether via the utility of  electrochromic or 

charge storage properties. However, one aspect of the application of conjugated polymers 

has remained unaddressed in this dissertation and to an appreciable extent in the literature 

at large. Electrochromic films are, naturally, best utilized to modulate the intensity or 

spectral power density transmitted or reflected through them. The long-term effects of 

this ECP-light interaction regarding the continued performance of the ECP films, or the 

photostability of electrochromic polymers and conjugated polymers at large, remains a 

point of contention when discussing the practically of ECP applications. The work 

described in this chapter attempts to at least partially address the question of ECP 

photostability by exposing ECP films of varying composition, under varying atmospheric 

conditions, to the high intensity irradiation of a solar simulator and subsequently 

examining the electrochromic and chemical properties of the ECP films. 

6.1 ECP Photostability : Design and Execution 

 While the interpretation of characterization data is essential as the work described 

in this chapter is frequently exploratory in nature, experimental design considerations are 

equally important to the conclusions drawn from that data, if not occasionally more so. 

The following sections discuss the selection of specific ECP samples for this study on 

photostability, as well as the steps taken to encapsulate and isolate ECP films and details 

pertaining to irradiation conditions employed.  
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6.1.1. ECP Sample Selection 

 The introductory chapter to this dissertation presented the reader with a large 

family of electrochromic polymers developed within the Reynolds labs, using various 

structural motifs to achieve different neutral state color properties. Further, materials 

based on both the DOT and DOP heterocycle unit were discussed, and regularly 

employed throughout the work detailed in the following chapters.  When devising the 

experimental parameters of exploratory work on the photostability of electrochromic 

polymers, the initial question asked is “Which, if any, of these materials is best suited to 

serve as a general model for ECP photostability?”. After deliberation, it was decided that 

two materials, ECP-Magenta and MCCP, offered to represented the broadest set of the 

ECPs described in Chapter 1, and the repeat unit structures of these materials are shown 

in Figure 6.1.1.1[32, 37].  

                      

Figure 6.1.1.1. Structures of ECP-Magenta and MCCP 

 First, ECP-Magenta, or the poly(propylenedioxythiophene) homopolymer was 

selected to represent the dioxythiophene based polymers, as this structural unit is found in 

almost all of the DOT-based ECPs. Further, considering the exceptions of ECP-Red and 

ECP-Orange, which feature acyclic alkoxy groups appended to the 3 and 4 positions on 

the thiophene unit, the structures surrounding the center of conjugation (the thiophene 

core) are arguably similar enough to the ECP-Magenta repeat unit that similar 

phenomena would be encountered upon irradiation. The second material, MCCP, was 

chosen as representative of DOP-based repeat unit structures. While the family of ECPs 

discussed in Chapter 1 features only this example of a DOP-based polymer, MCCP is 
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employed almost universally in the window-type electrochromic devices discussed in this 

dissertation. Due to its degree of utility in window-type ECDs (the variety most likely to 

be employed in applications where a high degree of exposure to sunlight would be 

expected), the assessment of the photostability of MCCP was deemed worthwhile. The 

casting and encapsulation prior to exposure to an illuminant of these two ECPs is 

discussed in the following section.  

6.1.2. Substrate Preparation and Film Casting 

 As the characterization of ECP samples following exposure to the source of 

illumination would entail cyclic voltammetry and spectroelectrochemical measurements 

to assess electrochromic viability, samples were cast onto a substrate of ITO-glass, in an 

identical fashion to the ECP casting practices discussed in Chapter 2. Prior to casting, 

ITO-glass substrates were rinsed with toluene, isopropanol, and finally acetone and 

allowed to dry. Films of ECP-Magenta were cast until an optical density at λmax (556 nm) 

of 1.0 ± 0.15 AU (absorbance units) was reached. To reflect film thickness most often 

employed in the ECDs discussed in this dissertation, MCCP films were cast until an 

optical density at λmax (315 nm) of 0.5 ± 0.1 AU was reached. To allow space for the 

addition of an encapsulating gasket, films were cast onto substrates measuring 25 x 35 

mm, and films were cast to have an area similar to the spectrometer cuvette sized ITO-

glass slides, with an area of ~ 7 x 25 mm through the use of a mask. Following the 

casting of ECP films, samples were transferred to a glove box with an argon atmosphere 

for storage prior to encapsulation. 

 It could reasonably be said that the highest hurdle to the examination of ECP 

photostability is the devising of an encapsulation scheme that is both practical and 

sufficiently robust to ensure the preservation of the atmospheric conditions under which 

ECP films are tested. With regard to the exclusion of both oxygen and water vapor, it is 

rather fortunate then that the development and study of barrier materials which prevent 
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the intrusion of water vapor and oxygen (herein referred to simply as “air”) is an active 

field of research, as the question of photo- and photo-oxidative stability does not pertain 

exclusively to conjugated ECPs. In a recent report from Kim et al, a polyisobutylene 

(PIB) edge sealant modified with desiccant materials and functionalized with silane 

coupling agents was used to encapsulate electrochromic devices[158]. A substantial 

improvement in device longevity was observed when compared to the use of a 

conventional epoxy sealant, under conditions of elevated temperature and humidity, 

though samples were not exposed to a high-intensity light source in that study. The 

barrier properties of this PIB sealant were demonstrated to be sufficiently robust that it 

could meet the challenge of maintaining the environmental conditions around 

encapsulated ECP films (atmospheric composition, absence of water vapor, etc.) during a 

prolonged period of irradiation, such that the long-term photo-stability of select 

electrochromic polymers  might be assessed. Using the PIB sealant described by Kim et 

al, films of ECP-Magenta and MCCP were encapsulated in both air atmospheres (so as to 

promote photo-oxidation) and a dry argon atmosphere such that photo-oxidative 

degradation might be prevented, and this encapsulation scheme is shown in Figure 

6.1.2.1. 

 

Figure 6.1.2.1. Schematic representation of encapsulation scheme used in photostability 

testing. 

6.1.3. Irradiation of ECP Films 
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 Following encapsulation, samples were transferred to the Atlas Suntest XLS+ 

testing station. Samples were placed on the floor of the testing chamber, with the 

uncoated glass cover slide closest to the lamp. Prior to testing, the output of the Xe arc 

lamp incorporated into the testing station was tuned to match the output of an AM 1.5 

light source, and the details of this process can be found in Chapter 2.6[114]. As further 

described in Chapter 2, the spectral power density of this Xe lamp is filtered to 

approximate that of natural daylight, lending the irradiation conditions of the 

encapsulated ECP samples to be most closely matched to a thin film exposed to daylight, 

behind a thin (1.1. mm) pane of glass. All samples were irradiated under these conditions, 

with the length of the irradiation being the only factor differentiating samples within the 

same sample type. Irradiation times used throughout the study of ECP photostability were 

24 hours, 48 hours, one week (168 hours), two weeks (336 hours), and one month (31 

days, or 744 hours). Additional samples, referred to as “standards” were stored in 

darkness at a temperature of 25 °C for lengths of time identical to those used for sample 

irradiation. These standard samples were cast and encapsulated in a fashion identical to 

those samples which underwent irradiation. Following irradiation or storage, samples 

were gently heated on the bench top using a hot plate set at 70 °C for roughly five 

minutes to allow for removal of the glass cover slide, and any remaining sealant was 

removed from the ITO-glass substrate. 

6.2 Characterization of ECP-Magenta Photostability 

 While films of both ECP-Magenta and MCCP were irradiated and characterized 

concurrently, we will begin our discussion first with the observations made in the case of 

ECP-Magenta. 

6.2.1. Spectroelectrochemistry and Cyclic Voltammetry 
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 Following irradiation, ECP-Magenta films were removed from the sample 

chamber of the Atlas SunTest system, and gently heated on a hot plate to allow for the 

removal of the glass cover slide as well as any sealant material remaining on the ITO 

surface. Following this preparation both ECP-Magenta films irradiated while under  air 

and argon atmospheres, representing each irradiation time point designated, were 

switched (i.e. potential cycled) prior to the recording of spectroelectrochemical 

measurements. Additional spectra were recorded in this fashion for “standard” samples, 

which were identically encapsulated but were not exposed to the solar simulator, and 

rather stored in a darkened cabinet. Spectra  were recorded at potentials at which the fully 

colored and fully bleached states are attained (-0.5 and 0.8 V vs Ag/Ag+, respectively). 

After the recording of spectra for each sample, a ready basis for comparison of 

electrochromic performance is found in the measure of contrast, or the difference in 

percent transmittance (Δ%T) between the fully colored and fully bleached states. Given 

ECP-Magenta’s dual peak absorption profile, the wavelength at which this contrast was 

measured was chosen to be 550 nm, in close correspondence to the higher energy peak in 

ECP-Magenta’s characteristic spectrum ,and the wavelength to which the human eye is 

most sensitive. 

 Over the course of irradiation, a trend can be seen to emerge in the contrast values 

measured (and therefore the persistence of electrochromic and redox behavior) for each 

sample type, and this trend in contrast values at 550 nm against irradiation time is shown 

in Figure 6.2.1.1.  
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Figure 6.2.1.1. Electrochromic contrast recorded during the irradiation of ECP-Magenta 

films under varying environmental conditions.  

Of immediate concern regarding the data shown in Figure 6.2.1.1. is the rapid decrease in 

contrast where films are irradiated in an air atmosphere, reaching a contrast of 0% within 

48 hours. However, equally of note is the persistence of electrochromic contrast values 

where films of ECP-Magenta encapsulated with an argon atmosphere are concerned, with 

no significant decrease in the contrast values being observed after one month of 

irradiation. This result in particular serves to illustrate that, given proper handling 

conditions, DOT-based electrochromic polymers are potentially photo-stable for 

considerable lengths of time, even when exposed to a significant light source. Further, the 

trend seen in Figure 6.2.1.1. is largely in accord with previous reports regarding the 

stability of conjugated polymers; namely, that in addition to the presence of oxygen 

and/or water vapor, light is required for degradation processes to occur[159-163]. The 

contrast recorded for samples which were not exposed to the solar simulator, though 

samples were encapsulated in both argon and air atmospheres, is not seen shift over the 

course of their storage times.  

 Given the observation of this trend, a comparison of the spectra recorded at the 

final time point (744 hours, or one month) offers to further demonstrate the photo-

stability of ECP-Magenta, given proper encapsulation. Shown in Figure 6.2.1.2. are two 



 116 

sets of spectra corresponding to films encapsulated in air and argon environments and 

exposed to one month of continuous irradiation. Cyclic voltammograms, recorded during 

the initial potential cycling of the above films, are also shown in Figure 6.2.1.2. What is 

immediately apparent in the spectra recorded is the lack of both absorption within the 

visible region (red and black traces, largely overlaid) as well as the lack of redox activity 

in the samples irradiated in air. 

 

Figure 6.2.1.2. Spectroelectrochemistry and cyclic voltammetry of ECP-M samples 

irradiated in air and argon atmospheres. 

The loss of the visible absorbance (a form of photo-bleaching) helps to qualify the loss of 

contrast seen in the air irradiated samples in Figure 6.2.1.1., illustrating that a value of 

0% contrast is not a matter of simply non-existent electrochromic behavior, but rather 

more likely the result of some number of photo-oxidative processes, as previously 

suggested. Again though, notable is the perseverance of redox-activity in films irradiated 

under an inert, argon atmosphere, and the similar persistence of the characteristic redox 

activity of ECP-Magenta. Here, even after one month of continuous illumination with a 

solar simulator, no deleterious effects are noted for either the colored or bleached redox 

states, and the doublet peak structure of the colored state absorption as well as the highly 

transmissive bleach state spectrum are observed.  

6.2.2. X-ray Photoelectron Spectroscopy (XPS) 
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 While the comparisons of redox and electrochromic characteristics of 

encapsulated samples serves to illustrate that given proper care, DOT-based ECPs are 

likely photo-stable over significant lengths of time, little information is offered by these 

methods on the structure of the ECP structures following irradiation. For this purpose the 

surface of ECP films, encapsulated and exposed to a solar simulator as previously 

described, were probed via x-ray photoelectron spectroscopy (XPS).  Spectra of the 

C(1s), O(1s) and S(2p) core level orbitals for films of ECP-Magenta were recorded, and 

the C(1s) and S(2p) spectra for films irradiated in air can be found in Figure 6.2.2.1. 

Similarly, films irradiated in an argon atmosphere are shown in Figure 6.2.2.2. As these 

spectra are often more useful for diagnostic purposes in identifying the products of 

degradation, we will address these first, and briefly discuss the O1s spectra, as well as the 

spectra recorded for the standard samples later on.  

 

Figure 6.2.2.1. XPS spectra over time of the C1s and S2p orbitals in ECP-M irradiated 

under an air atmosphere.  
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Figure 6.2.2.2. XPS spectra over time of the C1s and S2p orbitals in ECP-M irradiated 

under an argon atmosphere. 

Identified in the XPS spectra shown in Figure 6.2.2.1., the C(1s) orbital of an ECP-

Magenta film irradiated in an air atmosphere, are binding energy signals corresponding 

chemical environments expected in the ProDOT-based ECP-magenta, such as (C-C) at 

284.8 eV and (C-O-C) at 286.6 eV[164]. In addition to these signals, peaks are identified at 

higher binding energies which suggest the addition of oxygen to the repeat unit structure 

upon photo-oxidation, such as (C=O) and (O-C=O) at 287.8 and 289.1 eV, 

respectively[164-167]. These C(1s) signals suggest the addition of oxygen to the repeat unit 

structure grow in over the course of the irradiation as the intensity of these peaks relative 

to the C-C peak at 284.8 eV peak grows, reaching a maximum at some point between 48 

hours and 7 days of irradiation. Concurrently, the S(2p) spectra of the air-encapsulated 

samples initially show a doublet peak with high intensities at the binding energies for the 

S(2p1/2) and S(2p3/2) signals, at 164 and 165.2 eV[164, 167-168].  However as with the C1s 

spectrum, throughout the course of irradiation the relative intensities of these signals 

diminishes, to be largely replaced by a broad peak, likely a poorly resolved doublet, 

centered at 169 eV. This signal has been found to be indicative of the formation of sulfon 

(SO2) moieties, further indicating the incorporation of oxygen into the polymer backbone 

structure[68, 164, 167].  
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 However, this behavior is almost entirely absent in films encapsulated under an 

argon atmosphere. In the C(1s) spectra shown in Figure 6.2.2.2., while strong intensities 

are observed for the (C-C) and (C-O-C) signals throughout the irradiation time frame, 

only one additional signal appears rather anomalously at 289.1 eV, suggesting formation 

of (C=O) moieties, after a month of irradiation. Given the rapid time course of oxygen 

incorporation observed in the spectra shown in Figure 6.2.2.1., the emergence of this 

signal likely is a result of a developing fault in the encapsulant material, allowing for the 

introduction of atmospheric oxygen into the sample. As the PIB sealant was laid down in 

a rectangular pattern formed by stripes cut from the a ribbon, the corners where these 

strips are made to meet are the most likely locations for the development of faults in the 

encapsulation. Further, no growth of the binding energy signals indicative of the 

formation of the sulfon groups observed after irradiation in air is observed. These 

observations, both the perseverance of electrochromic contrast as well as the lack of 

growth of additional binding energy signals, serve to illustrate the photo-stability of ECP-

Magenta, provided care is taken to preclude conditions which foster photo-oxidation 

specifically, and adequate barrier materials are used to ensure the persistence of those 

conditions. 

Finally, as previously mentioned, while O (1s) spectra are often not as 

diagnostically useful, it is worth noting that in the spectra recorded for the ECP sample 

irradiated under and argon atmosphere, what is likely only one peak is observed, centered 

at 532.7 eV as seen in Figure 6.2.2.1.. Similarly, the O (1s) spectra recorded for films 

irradiated under and air environment has a maximum value at 532.7 eV, however the 

peak recorded is considerably broader towards the higher binding energy range, 

suggesting the formation of chemical environments around oxygen atoms in line with the 

formation of (C=O), (O-C=O), and (SO2) signals. 
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Figure 6.2.2.3. XPS spectra of the O1s orbital in ECP-M films irradiated in argon and air 

atmospheres.  

 As mentioned earlier, in order to qualify the spectra recorded for samples 

irradiated under air and argon atmospheres, ECP films were similarly encapsulated and 

stored in darkness for periods identical to those used for irradiation. Shown in Figure 

6.2.2.4. are the C (1s) and S (2p) spectra recorded for these films at the longest time point 

used, 1 month. As can be seen from these spectra, no difference is noted between the 

binding energy signals between air and argon stored samples. For instance, in the C (1s) 

spectra, two signals in particular are observed, at 284.8 and 286.6 eV, corresponding to 

the (C-C) and (C-O-C) bonding scheme expected ab initio from the repeat unit structure. 

Similarly, a doublet peak is observed for both samples in the S (2p) signal, centered at 

binding energies expected for the 2p3/2 and 2p1/2 signals for the thiophenic sulfur.  
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Figure 6.2.2.4. XPS spectra of C1s and S2p orbitals of ECP-M stored for one month in 

darkness, under both air and argon atmospheres. 

6.3 Characterization of MCCP Photostability 

 In the previous section the characterization of ECP-Magenta samples following 

irradiation in various atmospheric conditions (or storage in darkened conditions) was 

discussed extensively. As mentioned, trials were run concurrently using both ECP-

Magenta and MCCP films, and the following sections pertain to the analogous 

characterization of MCCP samples.  

6.3.1. Spectroelectrochemistry and Cyclic Voltammetry 

 As previously mentioned, samples of the DOP-based MCCP were tested in an 

identical fashion to films of ECP-Magenta. In further similarity with ECP-Magenta, a 

trend emerged in the relationship between conditions of encapsulation during prolonged 

irradiation and the persistence of redox activity and subsequently electrochromic 

performance. This is demonstrated via the spectra recorded at either extreme of the 

potential window for MCCP (-0.5 to 0.7 V vs Ag/Ag+) following one month of 

continuous irradiation, as well as the CV traces, shown in Figure 6.3.1.1. 
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Figure 6.3.1.1. Spectroelectrochemistry and cyclic voltammograms of MCCP films 

irradiated for 24 hours (air) and 1 month (argon). 

Those samples encapsulated in an air environment prior to irradiation with a solar 

simulator (red and black dashed traces) were seen to deteriorate relatively rapidly, with 

no redox or electrochromic behavior evident. Through the spectra shown are 

representative of films following one month of irradiation, similar behavior was observed 

after 24 to 48 hours of irradiation. Those samples sealed within an inert argon atmosphere 

however were observed to be stable throughout the time frame established for 

irradiations, and consequently the electrochromism and redox behavior characteristic of 

MCCP was observed.    

6.3.2. X-ray Photoelectron Spectroscopy (XPS) 

 Following irradiation, the C (1s), N (1s) and O (1s) orbitals of films of MCCP 

were probed via XPS. Select spectra are shown in Figures 6.3.2.1. and 6.3.2.2., namely 

the C (1s) and N (1s) spectra for air encapsulated samples (Figure 6.3.2.1.) and the same 

spectra for the samples encapsulated within an argon atmosphere (Figure 6.3.2.2.). 

Further following the trend established in the case of ECP-Magenta, where films of 

MCCP were irradiated in the presence of an air atmosphere, new signals at binding 

energies associated with (C=O) and (O-C=O) units (287.8 and 289.1 eV) are seen to 

appear rapidly, in almost all cases in under 24 hours, a time point by which a loss in 
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electrochromic character is noted in MCCP as shown in Figure 6.3.1.1. In contrast to the 

growth of new peaks observed in the case of ECP-Magenta, and likely due to the 

different route to the addition of the solubilizing alkyl chain, these new peaks are much 

lower in relative intensity, when compared to the signals observed for the (C-C) and (C-

O-C) chemical environments (284.8 and 286.6 eV). In the case of ECP-Magenta, the 

growth of higher binding energy peaks in the C (1s) spectra is seen to occur within 

roughly 48 hours, coinciding with the loss in contrast reported in Figure 6.2.1.1. This is a 

particularly important observation when considering that at the 48 hour time point in the 

S2p spectrum, while a shift in relative peak intensity is noted, the un-oxidized sulfer 

signal is still the dominant doublet peak, suggesting that the oxidation of the bridging 

ether moieties in ECP-Magenta occurs more readily, and is also closely tied to the loss of 

electrochromic and redox characteristics. This trend likely the case where MCCP is 

considered as well, with the relatively easy photo-oxidation of the bridging ether moieties 

occurring within 24 hours of irradiation in an air environment, severely curtailing the 

electrochromic properties of the polymer film. Further, in the N (1s) spectra obtained, 

while initially only a single peak is likely to be present, representative of the (-NR-) 

environment, the signal broadens at later time points, after at least two weeks of 

continuous irradiation. The growth of these new signals in the N (1s) spectrum however 

lags far past the loss of redox and electrochromic activity in MCCP samples. 
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Figure 6.3.2.1. XPS spectra over time of the C1s and N1s orbitals in MCCP irradiated 

under an air atmosphere. 

 In those samples encapsulated under an argon atmosphere, little to no changes are 

reported during the course of irradiation. Present are the signals for the (C-C) and (C-O-

C) chemical environments (284.8 and 286.6 eV), however the relative intensities of these 

to signals is not observed to shift over the course of sample irradiation. It should be noted 

however that, in some samples, a should appeared to form in samples irradiated for 14 

days (green trace, Figure 6c), suggestive of the signals observed in the air encapsulated 

samples. For these reasons, and the absence of these signals in the samples irradiated for 

one month, this is likely the result of non-adequate sealing of sample films allowing trace 

amounts of air into the sample environment. Examination of the N (1s) spectrum in the 

argon atmosphere samples shows a signal fit with a single peak throughout the course of 

irradiation, centered at 399.6 eV, characteristic of the (-NR-) environment[165-166, 169-170].  
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Figure 6.3.2.2. XPS spectra over time of the C1s and N1s orbitals in MCCP irradiated 

under and argon atmosphere. 

Examination of the O (1s) spectra recorded, shown in Figure 6.3.2.3., follows almost 

implicitly the trend established by the ECP-Magenta samples detailed previously. In the 

air encapsulated samples, a large degree of peak broadening is observed throughout the 

course of irradiation, indicating the addition of new oxygen bonding motifs to the 

structure of MCCP. In contrast, the spectra recorded for the argon encapsulated samples 

do not demonstrate this peak broadening behavior.  

 

Figure 6.3.2.3. XPS spectra of the O1s orbital in films of MCCP irradiated under argon 

and air atmospheres.  

6.4 Electrolyte-bearing Samples 

 The previous sections regarding the photostability of ECP materials have all dealt 

with, for the sake of experimental clarity, the simplest role an ECP film might take, i.e. as 
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a coating on a solid substrate. This arrangement is far removed however from the setting 

in which case practical usage might be found, such as in an electrochromic device, due to 

the absence of a supporting electrolyte or an opposing electrode surface. While the 

photostability of ECPs as no more than a material has been discussed in previous 

sections, photostability in slightly more complicated environments is well worth 

examining. To bring the ECP samples under examination one step closer to the ECD 

stage the addition of a gel electrolyte, commonly used in device prototyping, was carried 

out just prior to encapsulation. Further, as the instability of ECP samples in the presence 

of an air atmosphere has been established, electrolyte-ECP samples were only 

encapsulated under an argon atmosphere.  Due to the more complicated chemical 

environment this would produce at the surface of the ECP films under study, following 

irradiation, films were not examined via XPS as before. However the observation of 

electrochromism via spectroelectrochemistry, or its absence, following irradiation when 

in physical contact with this electrolyte mixture, would suffice to demonstrate ECP 

stability given proper handling and encapsulation conditions.  

6.4.1. Spectroelectrochemistry of Electrolyte-bearing samples 

 As with previous photo-stability samples, samples were examined following the 

various lengths of irradiation established, the longest of which was one continuous month 

of irradiation under a solar simulator. Spectra recorded following the final time point  at 

one month, at bleaching and coloring potentials for both ECP-Magenta and MCCP, are 

shown in Figure 6.4.1.1. Illustrated in these spectra is the retention of electrochromic 

behavior following one month of irradiation, readily demonstrating two main points. 

First, films of each of these polymers, in the presence of this particular electrolyte 

formulation, are stable to prolonged irradiation. 
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Figure 6.4.1.1. Spectroelectrochemistry of an ECP-M film irradiated for 1 month under 

an argon atmosphere, in physical contact with a gel electrolyte.  

In the case of ECP-Magenta, no loss in contrast is observed at 550 nm, nor is the spectral 

profile of ECP films irradiated in this fashion altered to any appreciable degree. As is the 

case with ECP-Magenta, the MCCP films (represented by the one month sample shown 

in Figure 6.4.1.1.), are seen to show the electrochromic behavior characteristic of that 

material. The second point made by the spectra shown in Figure 6.4.1.1 is to reinforce the 

necessity for proper handling and encapsulation in the application of DOT- and DOP-

based electrochromic polymers. As previously observed, had these films been 

encapsulated on the benchtop, the presence or absence of the gel electrolyte mixture 

would likely have a much lesser impact on film stability than the presence or absence of 

water vapor or oxygen. 

 The results discussed in this chapter, while arguably preliminary, serve to 

demonstrate the photo-stability of conjugated, electrochromic polymers provided care is 

taken to preclude conditions which have been observed to foster photo-oxidation. This 

observation is relatable to both DOT- and DOP-based conjugated polymers, and future 

studies would benefit from focusing on photo-stability in environments more akin to a 

full electrochromic device setting, as well as the examination of alternative 

electrochromic polymer repeat unit structures.  
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CHAPTER 7 

PERSPECTIVE AND SUGGESTIONS FOR FUTURE RESEARCH 

 

 The materials, devices, and data discussed in this thesis are presented in an effort 

to demonstrate a few of the many modes of application for conjugated polymers, and 

those demonstrated here pertain directly to electrochromic and supercapacitive 

applications. More broadly however, this dissertation as a whole might be summed into 

three theses.  

The first of these is demonstrated in Chapter 3, and is in some regards two-fold. 

Through synthetic control of the solubilizing groups appended to the main conjugated 

portion of a polymer chain, aqueous solubility and processability might be attained, as 

was previously demonstrated by Shi et al in 2012. This observation becomes more 

relevant in light of its utility in the modification of high surface area electrode substrates 

for charge storage applications, particularly due to the prevalence of electrodeposition as 

the means to carry out such modifications, and the difficulties faced when applying this 

method to large-scale and high-throughput settings. The utility of this method was 

demonstrated through the modification of a non-woven CNT textile substrate with 

ProDOT-EDOT2 processed from a water solution, wherein capacitive performance was 

observed to nearly double on a gravimetric basis and nearly quintuple on an areal basis. 

While a demonstration of the application of solution processing towards the fabrication of 

composite CNT-polymer electrodes has been made and the capacitive performance of the 

resultant composite electrodes has been examined, much is left to understand regarding 

the physical characteristics of the composite electrodes. Imaging of both the surface and 

cross sections of the composite electrodes, likely through electron microscopy, will do 

much to inform our knowledge of the degree of electrode coverage attained through the 

solution processing steps taken, and this will in turn inform steps taken in the future to 
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optimize the solution processing technique to create a more intimate interface between 

the solution cast pseudocapacitive polymers employed the substrates on which they’re 

cast. 

 The second of the three theses put forth in this dissertation pertains to the 

application of color mixing in electrochromic polymers. Materials-level strategies 

towards tailoring the optical properties of electrochromic materials offer a recourse to the 

purely synthetic, structure-property relationship driven methods more commonly applied 

to tune the optical and colorimetric properties of electrochromic materials.  Demonstrated 

in Chapters 4 and 5 are two divergent routes towards the application of color-mixing in 

ECPs. The first, through the utilization of an electrochromic device architecture featuring 

physically separate and individually addressable electrochromic films, illustrated the 

attainability of a broad color gamut using pairs of ECP films representative of the cyan-

magenta-yellow subtractive color mixing primaries. The latter, eschewing  the physical 

separation of ECP films, demonstrates that co-processing of ECP mixtures can be used to 

achieve similar color-mixing effects, and that the products of this process may follow a 

predictable color mixing scheme, discernable through ECP mixture composition. With 

regards to the future of research into the application of color-mixing strategies to 

electrochromic polymers, the broad gamut attained in Chapter 4 and the visual 

homogeneity of mixed films cast in Chapter 5 suggest that discrete patterning of ECP 

elements is likely to produce a similarly wide gamut while displaying the same visual 

continuity as the co-processed films. Given sufficiently patterned electrode substrates, 

these discretely deposited color elements could conceivably be individually addressed, 

allowing for greater control over the color properties of a completed ECD.    

 Finally, the results presented in Chapter 6 attempt to address the persistent notion 

regarding the purported instability of conjugated polymers under high intensity 

illumination. Examined through spectroelectrochemistry and XPS following a controlled 

period of irradiation, photo-oxidation of conjugated polymers is indeed an enduring 
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challenge to the practical application of ECPs. Presented in tandem with this re-

confirmation of photo-oxidative instability however is the observation that steps taken to 

preclude the conditions known to foster photo-oxidation (namely, the presence of 

atmospheric oxygen and water vapor) are effective at maintaining the chemical, and 

therefore functional, integrity of ECPs. Encapsulation of ECP films with a 

polyisobutylene rubber sealant is sufficient to limit the intrusion of atmospheric oxygen 

and water vapor, inhibiting photo-initiated degradation. A pair of caveats are naturally 

apparent in this finding however, both the range of materials involved in the study as well 

as the duration over which the study was carried out. As an exploratory effort, two 

polymer structures out of a much larger family were selected for experimentation, 

representative of the two major structural motifs present in the aforementioned family. 

While the results obtained might be generalized for structures not studied, results 

obtained directly from the remainder of electrochromic polymers available would best 

inform out understanding of photo-stability in ECPs. Further, exposure to the solar 

simulator used to assess photostability was limited to one month in the efforts discussed 

in Chapter 6. While this period of one month may be thought of as six to twelve months 

of “real world” light exposure, an examination of the photostability of ECPs over a much 

longer time frame is necessary to demonstrate suitability of ECPs for long-term, i.e. 

multi-year, applications.  
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