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Abstract Based on a lifetime of experience, people antic-
ipate the forces associated with performing a manipulation
task. In contrast, most robots lack common sense about the
forces involved in everyday manipulation tasks. In this paper,
we present data-driven methods to inform robots about the
forces that they are likely to encounter when performing spe-
cific tasks. In the context of door opening, we demonstrate
that data-driven object-centric models can be used to hapti-
cally recognize specific doors, haptically recognize classes
of door (e.g., refrigerator vs. kitchen cabinet), and haptically
detect anomalous forces while opening a door, even when
opening a specific door for the first time. We also demonstrate
that two distinct robots can use forces captured from peo-
ple opening doors to better detect anomalous forces. These
results illustrate the potential for robots to use shared data-
bases of forces to better manipulate the world and attain com-
mon sense about everyday forces.

Keywords Mobile manipulation - Haptic sensing -
Service robotics

1 Introduction

Little is known about the statistics of real-world forces associ-
ated with everyday tasks in human environments. While vast
quantities of everyday auditory and visual data are publicly
available for use by humans and machines, publicly available
haptic data is much less common. Capturing and modeling
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the forces associated with everyday tasks could benefit robots
by enabling them to better interact with the physical world.

For example, despite progress towards service robots that
autonomously open doors and drawers, the answers to basic
questions have been unclear, such as, “How hard does a robot
need to pull to open most doors?”. Given the wide variation
in the forces required to initially open a door (e.g., ~60 N
for a spring-loaded door, and <5 N for a kitchen cabinet),
a robot without common sense about everyday forces risks
damaging a locked cabinet or giving up prematurely on a
functioning spring-loaded door. Likewise, while opening a
door for someone, distinguishing forces due to the door open-
ing properly versus the door being in contact with the person
could improve safety.

Within this paper, we present data-driven methods to
inform robots about the forces that they are likely to
encounter when performing specific tasks. We focus on the
example task of pulling open a door. As Sect. 2.4 discusses,
door-opening robots have lacked compelling ways to deal
with many common situations, such as a door that is locked,
blocked, or damaged. In this paper, we provide evidence that
models of real-world forces can be used by robots to better
handle these situations.

The models we present have the following three important
characteristics:

1. Task-specific Each model is specific to a narrowly defined
manipulation task to reduce the complexity of the model
and the data requirements. For this paper, we defined the
task to be smoothly and slowly pulling open a door with
contact restricted to the handle. For our data, the average
linear velocity of the door handle while pulling open a
door in a single trial was between 4.6 and 79.4 cm/s. The
mean of this average velocity across all trials with all
doors was 18.2 cm/s and the median was 14.4 cm/s.

@ Springer



144

Auton Robot (2013) 35:143-159

2. Data-driven The models directly use forces, points of
application of the forces, and kinematics captured during
real-world performance of the task. With a data-driven
approach, we intend to capture the natural variation that
a robot will encounter. For this paper, we used data cap-
tured while opening 26 doors in 6 homes and one office
in Atlanta, GA, USA.

3. Object-centric Each model relates the relevant state of
the manipulated object to the relevant forces applied to
the object to make the models independent of the robot
or human manipulating the object. For this paper, the
models are quasi-static. They relate the opening angle of
the door to the component of the applied force that is
tangential to the trajectory of the point of contact on the
door handle. Our choice of object-centric representations
is intended to make the models useful for distinct robots
and methods of manipulation. For example, it should not
matter how the robot applies the forces, whether with its
left hand, its right hand, or some other part of its body.

1.1 Organization of the paper

Section 2 discusses related work and contrasts it with our
approach. The next three sections present our contributions to
three areas. First, Sect. 3 describes our methods of collecting
force data from robots and humans, a quasi-static model for
doors, and the object-centric representation that we use.

Second, Sect. 4 shows that a standard supervised learning
classifier can recognize the class of a door (e.g., refrigerator
or kitchen cabinet) and the specific instance of a door based
on the forces during opening. Third, Sect. 5 presents a method
for detecting anomalous forces using a probabilistic model
of the forces captured while successfully opening different
doors.

Section 6 presents a comparison of our anomalous force
detection method with two baseline methods. It shows that
using previously captured haptic data enables the detection of
locked doors and contact between the door and an idealized
rigid obstacle more quickly and with lower applied forces.
Section 7 reports results of anomalous force detection from
trials on two distinct robots and discusses the implications of
online state estimation on the performance of our anomalous
force detection method. Finally, Sect. 8 discusses limitations
of our work and directions for future research, after which
the paper concludes with Sect. 9.

2 Related work
2.1 Capturing haptic data

Although vast quantities of everyday visual and auditory data
can be easily accessed on the web, very little haptic data from
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everyday activities can be found. Researchers have looked at
capturing haptic interactions in order to synthesize realistic
haptic sensations for human users, for example (Pai et al.
2000; Dupont et al. 1999; MacLean 1996; Angerilli et al.
2001; Weir et al. 2004; Romano and Kuchenbecker 2011).
Recent work has modeled the forces while opening a refriger-
ator door for realistic haptic feedback in a virtual environment
(Shin et al. 2012). To date, however, this body of work has
emphasized high-fidelity models of objects to convey realis-
tic haptic sensations to people, rather than capturing haptic
datasets to inform robots.

Recently, researchers have begun to collect datasets of
physical properties of objects (Matheus and Dollar 2010)
and of forces during some everyday activities, such as tooth
brushing (Redmond et al. 2010), with the motivation of
informing the design of robot hardware and software. In pre-
vious research, we captured the forces applied to door handles
and the trajectories of the handles while pulling open doors
with the same motivation (Jain et al. 2010). However, these
previous works have not used the datasets to inform robot
manipulation.

2.2 Using forces to inform robot manipulation

There is a large body of research on using realtime force and
tactile signals to improve manipulation. Recent research in
this domain includes work by Romano et al. (2011), Hsiao
et al. (2010), Dollar et al. (2010), Prats et al. (2009), Platt Jr
et al. (2011), Chitta et al. (2011). Similar in spirit to our
approach of using previously captured forces, Chan et al.
(2012) have characterized the forces involved in human-
to-human object transfer and then presented guidelines for
robot controllers for the same task. Wiste et al. (2011) have
used force data from everyday activities from the literature
on rehabilitation research as a guideline for the design of
prosthetic hands.

2.3 Haptic recognition and anomaly detection

In contrast to our use of data-driven object-centric models,
previous research on haptic recognition and anomaly detec-
tion for robot manipulation has often used data-driven models
that are robot-centric or models of the dynamics of the robot
arm.

2.3.1 Data-driven and robot-centric models

Researchers have used data-driven robot-centric models of
haptic data in the form of tactile sensor arrays, joint torques,
and joint angles to haptically recognize objects grasped
by a robot hand (e.g., Navarro et al. 2012; Gorges et al.
2010; Johnsson and Balkenius 2007; Takamuku et al. 2008).
Sinapov et al. (2011) demonstrated that haptic data in the
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form of joint torques associated with specific behaviors for
the entire arm could be used to recognize objects.

Other research has used robot-centric models to detect
anomalous conditions during a manipulation task. For exam-
ple, Rodriguez et al. (2010) have demonstrated that force data
captured during an assembly operation can be used to pre-
dict failure in future trials. Pastor et al. (2011) have shown
that a database of joint angles, joint torques, tactile sensor
information, and accelerometer data can be used to predict
failure as arobot plays-back alearned trajectory for two tasks,
(1) flipping a box using chopsticks, and (2) hitting a pool ball
with a cue stick. Sukhoy et al. (2012) used deviations from a
data-driven model of joint torques during free-space swiping
motions to detect conditions when a magnetic card gets stuck
as a robot swiped it through a card reader.

For these methods, the state of the robot is intertwined
with the haptic representations. For example, these methods
often use ego-centric sensor data parameterized by time or
the robot’s state, such as joint angles. As a result, there is no
direct way for different robots to share data-driven models
that use robot-centric representations. Our approach includes
capturing data in a way that permits transformation to an
object-centric representation. This transformation can enable
distinct robots and humans to share haptic data and data-
driven object-centric models.

Schneider et al. (2009) have presented methods for object
identification with bag-of-features models using haptic data
in the form of readings from tactile sensor arrays on the
robot’s parallel jaw gripper, and the width and height at
which the robot grasps the object. Although Schneider et al.
(2009) presented results from data collected by a single robot,
these models are data-driven and object-centric, and different
robots with similar sensing capabilities may be able to share
these haptic data.

2.3.2 Anomaly detection using joint torque sensors and arm
dynamics

Previous research has used deviations from an expected
torque, predicted using a model of the dynamics of the robot
arm, to detect anomalous conditions (e.g., Dixon et al. 2000;
De Luca and Mattone 2004; Haddadin et al. 2008, 2011).
Determining an accurate model of the arm dynamics
can be challenging. Additionally, these approaches often
detect anomalous conditions in free-space motions. Estimat-
ing expected torques in situations where the robot makes
contact with its environment is more complex (e.g., Morinaga
and Kosuge 2003). For example, while pulling open doors,
forces along the radial direction (and hence the torques at
the joints) can change without triggering an anomalous con-
dition, as discussed in Sect. 3.1. Additionally, the expected
torques will also depend on the characteristics of the object
that the robot is manipulating. As a result, modeling and

representing acceptable torques would have to be more com-
plex compared to free-space motions.

2.4 Robotic door opening

Recently, researchers have developed a number of robotic
systems to operate doors between rooms (e.g., Klingbeil
et al. 2008; Jain and Kemp 2009a; Meeussen et al. 2010;
Chitta et al. 2010; Kalakrishnan et al. 2011; Kormusheyv et al.
2011), and open cabinets, drawers, and appliances (e.g., Jain
and Kemp 2010; Wieland et al. 2009; Diankov et al. 2008;
Riihr et al. 2012; Becker et al. 2011). These efforts have
focused on controllers and planners that enable a robot to
open doors. They have not addressed haptically detecting
contact between the door and the environment (e.g., colli-
sions), or haptically recognizing the door identity or class.

2.5 Prior research by the authors

We have previously developed methods that enable a robot to
autonomously open doors and drawers without prior knowl-
edge of the mechanism kinematics (Jain and Kemp 2009b,
2010). We use these methods in this paper to enable the robots
Cody and a Willow Garage PR2 (Personal Robot 2) to open
doors Fig. (1).

In collaboration with Sturm, Stachniss, and Burgard, we
have shown that a robot can use a database of kinematic
trajectories of mechanism handles to increase the online pre-
diction accuracy of the kinematic state of a mechanism that
it is currently opening (Sturm et al. 2010). We do not use our
research from Sturm et al. (2010) in this paper. However, it is
complementary to the current paper as it looks at kinematic
data, and this paper investigates haptic data.

Lastly, as introduced in Sect. 2.1, we captured the applied
forces and the trajectories of the points of contact while peo-
ple pulled open doors and drawers in our previous work (Jain
et al. 2010). We showed that the forces can be transformed to
an object-centric representation, and we discussed the impli-
cations of such a database of forces and kinematic trajectories
for assistive robot design. In the current paper, we demon-
strate how robots can use such a database in a variety of
ways.

3 Capturing haptic interactions

We describe how we previously captured the haptic inter-
actions for humans and our method for capturing additional
data for the two robots that we use in this paper. We use the
term haptic interaction to refer to a sequence of tuples that
represent the applied force and the state of the object while
a task is being performed. In this paper, a haptic interaction
consists of a sequence of 2-tuples that contain the opening
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Fig. 1 When opening the same mechanism using an instrumented hook
(a)—(c), two humans and two robots apply very similar opening forces
to the handle in spite of their distinct bodies and control. (d) The mean
and standard deviation of the opening force as a function of mechanism
configuration for multiple trials

force (component of the force applied to the door handle that
is tangential to the trajectory of the point of contact) and the
angle through which the door has been opened.

3.1 Quasi-static model of doors

Our methods for haptic identification and anomalous force
detection rely on modeling the relationship between the rel-
evant forces, f, applied to a mechanism, m, and the mech-
anism’s state, 0. As such, we need to make measurements
to obtain estimates of the relevant applied forces, f , and the
relevant state of the mechanism, 0.

In this work, our kinematic model of doors is a single
degree of freedom (DoF) rotary joint whose axis of rotation
is parallel to gravity, as shown in Fig. 2. We have found that at
relatively low opening speeds, the configuration-dependent
forces dominate the haptic interactions (Jain et al. 2010). So,
our model assumes that the relevant state consists solely of
the angle of the door.

Our model also assumes that the relevant force is the com-
ponent of the total force applied to the handle that is tangen-
tial to the trajectory of the point of contact. From Fig. 2,
the tangential component of the applied force will open the
mechanism, while other components will result in constraint
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Fig. 2 Top: Diagram showing the top view of a door as it is opened
using a hook. Bottom: The relevant force, f, is the component of the total
force between the hook and the handle that is tangential to the trajectory
of the point of contact on the door handle. We refer to this component as
the opening force. The radial force, f.,4, will result in constraint forces
at the hinge. The relevant mechanism state is the opening angle, 6

Force Torque

Hoak Sensor

Fig. 3 The hook with a force-torque sensor at its base that we used
for the three data capture systems. Left: Handheld hook used by human
participants. Middle: The hook end effector mounted on Cody. Right:
The hook with an adapter that the PR2 grasped with its gripper

forces at the hinges. In this paper, we will refer to this tan-
gential component as the opening force.

3.2 Estimating the relevant applied force and the relevant
mechanism state

To measure the applied force, we used a rigid hook that we
3D-printed with ABS plastic and instrumented with a six-
axis force-torque sensor (ATI Nano25 with a calibration of
SI-125-3) (Fig. 3).

To estimate the mechanism state, we first measured the
trajectory of the door handle as a human operator (Sect. 3.3)
or arobot (Sect. 3.4) opened the door, using a motion capture
system or forward kinematics, respectively. We then fit a
circle to this trajectory to estimate the radius and the location
of the axis of rotation of the door. This procedure enabled
us to estimate the angle of the door for each point of the
trajectory.

We also used the estimated angle of the door to compute
the component of the force measured by the force-torque
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sensor that was tangential to the trajectory of the point of
contact on the handle. We have previously described our
method for estimating the relevant state and relevant force
in Jain et al. (2010).

3.3 Capturing forces applied by humans

In previous work, we captured the forces and kinematic tra-
jectories as human operators opened 29 doors and 15 drawers
in 6 homes and one office. We created a database of estimates
of the opening force applied to the handle, f , as a function
of the estimated opening angle of the door, 6. For this paper,
we used this database for haptic identification (Sect. 4) and
anomalous force detection (Sect. 5). Figure 1a shows part of
our force and motion capture system, described in detail in
Jain et al. (2010).

As in our previous work, we filtered the captured data and
used trials with a low per-trial average velocity of the door
handle. The mean of this average velocity across all trials
with all doors was 18.2 cm/s and the median was 14.4 cm/s.
For this paper, we removed from consideration all doors that
had fewer than two trials in the database.

3.4 Capturing forces applied by robots

We use a feedback controller that we developed in Jain and
Kemp (2010) to enable two robots to autonomously open a
door without prior knowledge of the kinematics. The input
to this controller is a 3D location and orientation of the door
handle. Additionally, for this paper, we positioned each robot
such that the handle was in its workspace and it was facing
the surface of the door before running the feedback controller
to autonomously open the door.

Both robots use the same feedback controller to autonom-
ously open doors, but they have different low-level control.
We use joint space impedance control on Cody (Jain and
Kemp 2010) and a Cartesian space stiffness controller on the
PR2 (Glaser 2010). Section 7.1 describes the two robots.

While each robot was opening a door, we recorded the
trajectory of the tip of the hook (using joint encoders and
forward kinematics), and the force measured by the force-
torque sensor that we attached to the hook, as shown in
Fig. 3. We then used the method described in Sect. 3.2 to
estimate the opening force applied to the handle, f , and the
angle of the door, 6. We use haptic data from trials with the
robots along with the database of haptic interactions from
humans to report results of anomalous force detection in
Sect. 7.

3.5 Representing a haptic interaction

We represent a haptic interaction as a sequence of tuples
with the estimates of the applied opening force and the

Opening Force (N)

0 10 20 30 40 50 60
Angle (degrees)

Opening Force (N)

10 20 30 40
Angle (degrees)

Opening Force (N)

0 10 20 30 40 50 60 70 80
Angle (degrees)

Fig. 4 Forces recorded while humans opened three doors. Left plots
show applied opening forces as a function of the mechanism’s con-
figuration. Lighter green indicates trials with higher average velocity.
Pictures on the right highlight a key mechanical element of each mech-
anism. Top: Refrigerator, 7 recordings, avg. velocities of 16.5 —23.8°/s.
High initial force due to magnetic door gasket (Shin etal. 2012). Middle:
Springloaded door, 5 recordings, avg. velocities of 6.4 —12.8°/s. Large
forces throughout movement due to linkage at top. Bottom: Cabinet, 4
recordings, avg. velocities of 19.8-29.3°/s. Non-linear spring keeps it
closed with max force at about 4°. Figure reproduced from our previous
publication (Jain et al. 2010)

mechanism’s state, {(fl, 51), (fz, éz), o (fN, éN)}.
Figure 4 shows examples of raw haptic interactions captured
when people opened the pictured mechanisms. For opening
doors, the handle defines the location at which the instru-
mented hook applies forces to the mechanism. For other
mechanisms, the haptic interaction would need to explicitly
include the point of application of the force relative to the
manipulated object.

In this paper, we further process this raw haptic interaction
into a more compact and uniform representation. We first
quantize the opening angle of the door into 1° intervals. We
then represent each haptic interaction by a fixed length vector,
where each element in the vector is set to the mean opening
force applied in the corresponding 1° interval, or setto Na N
if the interval was not encountered. Within this paper, we will
refer to this vector as the haptic interaction vector.
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Fig. 5 Data from the PR2 opening the same mechanism 15 times (five
times from three different positions relative to the mechanism handle).

The mean and standard deviation of the applied opening force, f, as a
function of mechanism configuration

3.6 Sharing haptic data

We now illustrate that haptic interactions from opening doors
can be insensitive to some forms of task variation. First, Fig. 5
illustrates the small variation in the haptic interaction result-
ing from changes in the PR2’s position relative to the handle
of a cabinet. For this test, we positioned the PR2 at three
different positions 10 cm apart along a line parallel to the
surface of the door. The relative height of the handle and its
distance from the robot normal to the surface of the door were
the same.

Second, Fig. 1 shows the mean and standard deviation
(over multiple trials) of data from four sets of trials in which
two humans and two robots opened the same mechanism.
For our choice of the relevant component of the force, the
configuration-dependent force due to the mechanism domi-
nates the variation due to the operator. This observation and
the results in Sect. 7 demonstrate that robots and humans
can share haptic data through a common database of haptic
interactions.

4 Haptic recognition

In this section, we show that standard classifiers trained with
supervised machine learning can recognize the class of a door
(e.g., refrigerator or kitchen cabinet), as well as the specific
door. We used a dataset of 148 haptic interaction vectors,
defined in Sect. 3.5, from four humans opening 26 different
doors as described in Jain et al. (2010). These 148 haptic
interaction vectors include data from one person per door.
In our previous publication, we also demonstrated that when
many different people opened the same door, the variation
in the opening force as a function of the opening angle was
relatively small.
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Fig. 6 Top: The mean and the first two principal components of the
dataset of haptic interaction vectors. Bottom: Scatter plot showing the
projection of all the haptic interaction vectors onto the first two principal
components

4.1 Dimensionality reduction

To reduce the influence of noise and overfitting, we first com-
puted a low-dimensional representation of the haptic interac-
tion vectors with principal component analysis (PCA) using
singular value decomposition. This section is an extension of
the analysis from our previous publication (Jain et al. 2010).
Figure 6 shows the first two principal components and a scat-
ter plot for 148 vectors from 26 doors with the points colored
by mechanism class. The first three principal components
account for 99.4 % of the variance over these 148 vectors.

The scatter plot of Fig. 6 shows that even after projecting to
two dimensions, there tends to be separation between differ-
ent classes of doors. We use these same classes in Sect. 4.3 to
present results on haptic recognition. The points correspond-
ing to the office cabinet class that are close to the freezer class
are from a cabinet which has a magnet in the door, instead
of a spring in the hinge. Qualitatively, the haptic interaction
vectors for this cabinet have a similar shape but lower mag-
nitude compared to freezers, potentially because freezers are
also held shut using magnets.

4.2 Recognizing a specific mechanism

We now present results on haptically recognizing a specific
door after opening it. We assume that the database includes
haptic interactions from previously opening the same specific
mechanism.
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Fig. 7 Leave-one-out cross-validation error as a function of the
dimensionality of the subspace for three classifiers

Figure 7 shows the leave-one-out cross-validation error for
a k-nearest neighbor classifier (k = 1 and & = 3) and a sup-
port vector machine on our dataset for subspaces of different
dimensionality. We used the multiclass C-SVM with a poly-
nomial kernel of degree three as implemented in PyYMVPA
(Hanke et al. 2009).

The cross-validation errors with the KNN classifier (k = 1)
and the SVM were similar. The error was nearly constant
for subspaces of dimensionality > 5. Figure 8 shows the
confusion matrix for the kNN classifier after projecting the
data onto the first five principal components. The leave-
one-out cross-validation accuracy for identifying the mecha-

Fig. 8 Confusion matrix from
leave-one-out cross-validation
with a kNN classifier (k = 1),
after dimensionality reduction to
five dimensions using PCA. The
goal is to recognize a specific
mechanism (Sect. 4.2). The

Freezer 2

Freezer 3
| Freezer 4

nism was 89.7 %. Confusion occurred between mechanisms
for which the opening forces were similar. Scaling this data-
base up to a large size might reveal further mechanism sub-
classes, such as doors made by various manufacturers.

4.3 Recognizing the mechanism class

In this section we look at the problem of identifying the class
of a mechanism after a human or a robot opens it. We assume
that our database includes haptic interactions from opening
mechanisms in the same class, but does not include the spe-
cific mechanism.

We assigned the class labels of “freezer”, “refrigerator”,
“kitchen cabinet”, “office cabinet”, and “spring loaded door”
to each haptic interaction vector in our database.

We used a kNN classifier (¢ = 1) and a 5 dimensional
linear subspace (PCA) for class recognition. For a selected
mechanism, we generated a training set by removing all the
vectors from that mechanism from our dataset to simulate
opening the mechanism for the first time. We then tested the
kNN classifier for each of the vectors from the selected mech-
anism, and repeated this procedure for all 26 mechanisms.

Figure 9 shows the confusion matrix for our dataset. The
cross-validation accuracy for identifying the class for the 26
mechanisms, given that the specific mechanism had not been
encountered before, was 86.4 %. Most of the classification
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Fig. 9 Confusion matrix from cross-validation with a kNN classifier
(k = 1), after dimensionality reduction to five using PCA. The goal is
to identify the mechanism class (Sect. 4.3). The cross-validation error
was 13.6 %

errors were between the refrigerator and freezer classes. Both
of these classes have similar opening forces as a function of
the configuration, with the main difference being the initial
force required to open them.

4.4 Summary

Haptic recognition can serve as a way for a robot to check
that it is correctly performing a manipulation task. For exam-
ple, by recognizing a specific mechanism, a robot could con-
firm that it opened the door it intended to open. Through
recognition of a specific door, it might also infer its location
in an environment. Recognizing the category of a mecha-
nism could help a robot infer other properties. For example,
the category of a door relates to its use, name, appearance,
location, the objects found behind it and the category of the
room. Haptic information in conjunction with other percep-
tual modalities could help make mechanism categorization
more robust or support multi-modal category learning. For
example, arobot could use haptic and visual features together
to recognize a door while opening it, which could then be
used to better detect anomalous forces, as described in the
next section.

S Anomalous force detection

5.1 A simple example

An example of the potential benefit of haptic data can be
observed from Fig. 10, which shows the mean and standard

deviation of the maximum opening force encountered over
the first 10° of opening. The large variation in this initial
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select a maximum force to apply to a door before deciding
that it is locked or malfunctioning. The applied opening force
at which a robot would decide to stop pulling on a door’s
handle could vary from less than 10 N for kitchen cabinets to
greater than 60 N for springloaded doors. Without using this
type of information, a robot risks damaging a locked cabinet
or giving up prematurely on a functioning springloaded door.

5.2 A probabilistic model of the relevant force

We now present a probabilistic model of the relevant
force, f, applied while successfully operating a mechanism,
m, conditioned on the relevant mechanism state, 0, its class,
C, and any previous data from the specific mechanism, Dyg.
Dy is a vector of any forces previously measured at state 6
while operating mechanism m.

We model the relevant applied force at a particular mech-
anism state 0 as being normally distributed and conditionally
independent of other forces, given 8, C, and Dy. So,

_-w?

P(f10,C, Do) = e 2, ey

1
V2mo?
where 1 is the mean and o2 is the variance of our Gaussian
model for the relevant force at mechanism state 8. Our goal
is to estimate ;¢ and o2 given 6, C, and Dy.

5.2.1 Operating a mechanism for the first time

Consider the case when a robot operates a mechanism for
the first time. We assume that the robot knows the class C
to which the mechanism belongs. For example, using vision
and knowledge of the room type, the robot might know that
the door is a kitchen cabinet. The robot also has access to a
database of haptic interaction vectors, defined in Sect. 3.5,
from mechanisms that are members of class C.

In this situation, the robot knows the mechanism’s state 6
and the mechanism’s class C, but Dy is a zero-dimensional
vector, since the robot has not previously operated the specific
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mechanism. We use the haptic data from mechanisms of class
C to estimate 1 and o> with a weighted sample mean and
weighted sample variance, /i and 62 (Bishop 2006). So,

R 2 meC (wm 2. fri;,e)
e 2 meC 2 Wm @

. 2
ZmeC (wm Zi ( r:1‘9 - '0“) )
6% = 3
ZmeC Zi Wm

where f,fw represents the element of the ith haptic inter-
action vector for mechanism m corresponding with mecha-
nism state 6. me C represents selecting a mechanism from all
mechanisms in class C. The weight for mechanism m is

1

~ #of haptic interaction vectors for m

“)

Wi

5.2.2 Operating a mechanism for the nth time

Now, consider the case when a robot operates a mechanism
that it has previously operated. In this situation, the robot
knows the mechanism’s state 0, the mechanism’s class C, and
Dy, which is a vector with previous forces for this specific
mechanism at state 6. In this case, we make a maximum a
posteriori (MAP) estimate (Bishop 2006) of © and o2 with
the following equation:

(@, 6% = argmin {—log P(u, o0, C, Dg)} . %)
(1,02
We use Bayes’ rule to obtain

P(Dglp,02,0,C)P(1, 0216, C)
P(Dyl0, C) '

P(u, 0%, C, Dg) =
(6)

Assuming that the forces from the previous n — 1 oper-
ations of the mechanism were independently drawn from
N (i, 02), then

(0 —)?

P(Dglp,0%,0,C) =[] w (7)

—e
S V2mo?
We model P(u,c?|0,C), the prior distribution over
(u, o?) given the state 6 and class C, as a normal distrib-
ution with mean (4., ;t,2) and covariance matrix diagonal
(ai, 032). We estimate (i, tt,2) and (oﬁ, 032) by first com-
puting the sample means [iy ,, and sample variances 692m of
the measured opening forces at state 6 for each mechanism
m in class C. We then compute (fi,, [L,2) by concatenating
the sample means of fig , and &92 . over all the mechanisms
in class C into a vector. Likewise, we compute (&ﬁ, 632) by
concatenating the sample variances of fig , and 692m.

Equation 5 now simplifies to

~ 2
D! —
(@, 6% = argminz logo + ("_M) +
o

(.02
L2

=\ (00— [y
(—A “) +(—A ") . ®
Ou G2

We find approximate solutions for Eq. 8 using the implemen-
tation of the BFGS optimization algorithm from SciPy (Jones
et al. 2001) with seed estimates . = Z?;ll Dé /(n — 1) and
o? = fs2. The robot is opening the mechanism for the n'h
time and has data from n — 1 previous operations of that
specific mechanism.

5.3 Detecting anomalous forces

We detect an anomaly if the force measured at the current
state of the mechanism, 6, equals or exceeds a threshold force,
ie.

f/‘\g 2 fethrexh . (9)

We do not investigate the potential for a lower bound on
the force, although a low force could also be indicative of
an anomaly. Additionally, our detector only uses the open-
ing force at the current angle of the door. As discussed in
Sect. 8.2.4, features that use information over time or across
multiple configurations of the mechanism could also be ben-
eficial for anomaly detection.

We present three methods of determining f;’””h. The
first method uses our probabilistic model of expected forces
(Sect. 5.2) to detect when forces are unlikely given the mech-
anism’s state 6, the mechanism’s class C, and any previous
operation of the mechanism Dyg. For this method,

fet = i+ né, (10)

where the parameter n serves as a detector threshold that
adjusts the sensitivity and specificity of the anomaly detector.
The other two detectors are baseline methods that use no
prior information about the mechanism or its class. The first
baseline detector sets fe’h’ s equal to a constant ¢. The sec-
ond baseline detector sets f@”"”h =7r- f,-,,,-,ial, where r
defines a fixed ratio of the initial opening force. We have
used this method in our previous work (Jain and Kemp 2010).
Like n, ¢ and r serve as detector thresholds that adjust the
sensitivity and specificity of these anomaly detectors.

5.4 Performance measures for anomalous force detection
We evaluated the performance of anomalous force detection
methods using: (1) the increase in the magnitude of the force

from the onset of contact between the door and an obstacle
and the detection of anomalous force; (2) how much time
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passes between the manually labeled onset of contact and
the detection of anomalous force; and (3) the false positive
rate (i.e. the frequency with which the detector incorrectly
reports a force as being anomalous). Lower force implies
less risk of damage to the robot and the environment, and
less risk of injury to people. Faster detection implies that the
robot can more efficiently respond to the event that caused an
anomalous force, such as by trying a new strategy or stopping
and asking for assistance. A lower false positive rate implies
that the robot will be less likely to falsely detect an anom-
alous force and thereby unnecessarily change its approach or
give up.

6 Evaluation with human data

This section shows that captured haptic interactions can be
used to improve manipulation in two ways. First, by using
captured haptic interactions, an anomalous force detector can
reduce the increase in force from the onset of a contact until
its detection. Second, captured haptic interactions enable
the detector to report contact with an obstacle faster. The
first improvement corresponds to an increase in the safety
of the system by lowering the excess force applied to the
door, and the second corresponds to an improvement in the
efficiency.

Cameras and other non-contact line-of-sight sensors are
not well matched to many of these detection problems, which
naturally occur as anomalous forces. For example, a door
gently touching and deforming a curtain may not be an anom-
alous condition. Also, there may not be any clear visual cue
for a locked door.

6.1 Modeling locked doors and contact with an idealized
fixed rigid obstacle

Our database of haptic interactions consists of collision-free
trials only. In order to compare the performance of these three
anomaly detection methods using this database, we simulated
locked doors, and contact between the door and an idealized
fixed rigid obstacle.

We modeled these situations as a force that increases
monotonically with time while the configuration of the mech-
anism remains constant. The actual rate of increase of the
force over time would depend on the robot control algorithm.
For example, with an impedance controlled robot, we would
expect the force to increase at a rate that depends on the
stiffness at the end effector.

This model enabled us to simulate contact at any con-
figuration of the mechanism and investigate how well our
anomaly detection methods could detect lower magnitude
anomalous forces while avoiding false alarms.
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Fig. 11 Graph illustrating the trade-off different anomalous force
detection methods make between the mean excess force before report-
ing contact (y axis) and the false positive rate, which is the percentage
of times that a collision-free trial is incorrectly reported as having an
anomalous force (x axis). These results use the collision-free dataset
of human trials with simulated contact with an idealized rigid obstacle,
described in Sect. 6.1

6.2 Comparison of anomaly detection methods

For this comparison, we simulated contact at discrete angles
(1° intervals) for all operations of all doors. Given our model
of contact with an idealized rigid obstacle, each of the three
detectors will eventually detect the contact, since the mag-
nitude of the applied force will continue to increase over
time. As such, we focus on the increase in the magnitude of
the force from the onset of contact until its detection, and
the false positive rate. This increase in the magnitude of the
force is the excess force applied to the mechanism before
the detector reports contact with an obstacle. False positives
correspond to the detector incorrectly reporting contact for a
collision-free trial.

Let us assume that the door is at a configuration 6 when

it makes contact. For a given value of féh’”h, the excess

féh’”h — f, where

force before contact is detected will be
f is the estimated opening force at configuration 6 for one
collision-free trial of pulling open the mechanism door.

We compute the average value of this excess force over
all the configurations of all the trials of all the mechanisms
to obtain the mean excess force before an anomalous force
is detected. This average value gives us the y coordinate of a
point in the plot of Fig. 11. The x axis is the percentage of the
configurations for which fe’h’”h < f . Since our database

fyhresh < f is a false

contains only collision-free trials,
positive for anomaly detection.
Figure 11 shows the performance of the three detectors
for different values of n, r, and ¢ on 148 trials from 26 dif-
ferent rotary mechanisms belonging to 5 different classes.
Each point in the plot represents a different value of f hresh
obtained by changing the value of the parameters n, r, and

c for the different methods of detecting anomalous forces.
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For all detectors, increasing the free parameter (n, r, or ¢)
decreases the false positive rate, but increases the unneces-
sary force applied prior to detection.

The blue curve in Fig. 11 shows the performance of our
data-driven detector when opening a particular mechanism of
a known class for the first time. For it, we computed fé hresh
for each trial in our dataset by ignoring all data from that
specific door and computing the sample mean and variance
over all the other mechanisms in the same class, as described
in Sect. 5.2.1. The red curve shows the performance of our
data-driven detector when opening a particular mechanism
of a known class for the second time. For it, we used the data
from all the other mechanisms in the same class, along with
a single collision-free trial from the mechanism, as described
in Sect. 5.2.2 with n = 1. We computed our results using all
possible initial trials for a mechanism. For example, 5 total
trials for a particular mechanism in our dataset would result
in 20 tests, due to there being 4 possible initial trials for each
of the 5 trials.

Figure 11 shows that using captured haptic data can reduce
the excess force for a given false positive rate. It shows that
knowledge of the mechanism class enables the detection of an
anomalous force with a lower excess force, since for any false
positive rate, the blue curve is below the green and yellow
curves. Additionally, it shows that even a single trial with
the specific mechanism decreases the excess force further,
as evidenced by the fact that the red curve is below the blue
curve for all false positive rates.

7 Experiments with two robots
7.1 The robots

We used two different mobile manipulators for this paper.
Figure 1 shows the two mobile manipulators, and Fig. 3
shows how we mounted the hook end effector to them. One
mobile manipulator is a PR2 robot from Willow Garage,
which has two 7 DoF compliant arms with low gear ratios
and current control for the motors at the joints (Wyrobek
et al. 2008). The second robot, Cody, has two compliant
7 DoF arms from Meka Robotics with series elastic actu-
ators for torque control at each DoF.

For low-level 1 kHz control on the PR2, we use low stiff-
ness gains with an open source controller (Glaser 2010) that
is similar to Cartesian stiffness control (Salisbury 1980).
On Cody, we use joint-space impedance control running
at 1 kHz (Jain and Kemp 2009b). Although the two robots
have different lower-level control and actuation, we use equi-
librium point control as described in Jain and Kemp (2010)
on both robots to autonomously open doors with a hook end
effector.

7.2 Online estimation of the relevant force and mechanism
state

To detect anomalous forces using the methods of Sect. 5.3,
a robot needs to generate online estimates of the state of
the mechanism and the opening force while operating the
mechanism. We estimate the radius of the trajectory of the
handle, r, and the location of the axis of rotation, (cy, cy),
which we then use to compute an estimate of the mechanism
state and opening force. We denote (r, ¢y, cy) with B.

We assume that a perception algorithm gives the robot an
initial estimate of the radius of the trajectory of the handle, r,.
As an example, the perception algorithm could compute r,
based on the estimated width of the door and the location of
the handle (Rusu et al. 2008). In addition, the robot estimates
the pose of the tip of the hook using forward kinematics
while operating the mechanism, giving it an estimate of the
trajectory of the handle, ((x1, y1), (x2, ¥2), ...(x, y»)) which
we denote as 7},. The number of points in the trajectory of
the handle, n, increases with time.

Given rp and T,, we compute a maximum likelihood esti-
mate (Bishop 2006) of g as

~

B = argmax P(T,, rp|B), (11)
B

We assume that the observed trajectory, 7,,, and the percep-
tion algorithm’s estimate of the radius, r, are conditionally
independent given 8. So,

P(T,rplB) = P(TulB)P(rplp). 12)

Next, we assume that the perception algorithm’s estimate of
the radius is normally distributed around the true radius of
the mechanism, with a variance of orz. So,

1 _ (rp —f)z

e 2 . (13)
V2ro?

We compute P(7,|B8) using the assumptions detailed in
Sturm et al. (2009), which include assuming that the mea-
surements of the points along the trajectory of the handle,
(xi, yi), are conditionally independent given 8 and have a
Gaussian error with a variance of ogos. These assumptions
result in

P(rplp) =

2
P18 =] e - (14)
i=1 27T0'1%0s

Equation 11 then simplifies to

2
. =2 o (Y@ o)
B =argmin 2p +Z 3 ’
B o i=1 Cpos

15)
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which we optimize using the implementation of the BFGS
algorithm from SciPy (Jones et al. 2001). We then use B to
compute the current state of the mechanism. For our tests,
we set o, = 10 cm, and 0,5 = 1 cm. We set these values
conservatively to reflect uncertainty due to a variety of fac-
tors. For example, perceptual uncertainty when estimating
the width of the door would influence o,, and uncertainty
due to joint encoder resolution and our use of a hook with a
layer of compliant rubber would influence ;.

7.3 Using data captured from humans

For our results with robots in Sects. 7.4 and 7.5, we used
the entire dataset of human trials. This included data from
humans opening the same refrigerator and cabinets that the
robots opened. As a result, although we investigated cases
where the robot opens a door for the first or second time, the
database used to model the prior for the class of mechanism
(P(w, 026, C) from Sect. 5.2.2) included haptic interactions
from humans opening the same door.

7.4 Effect of online estimation on the performance
of anomalous force detection

We investigated how noise in online estimates can impact the
performance of our data-driven anomalous force detector. For
this evaluation, we recorded the trajectory of the hook and the
applied force while robots opened doors. We collected a total
of fifteen collision-free trials consisting of the PR2 opening
an office cabinet five times, Cody opening a different office
cabinet five times, and Cody opening a refrigerator five times.

We then generated multiple haptic interaction vectors,
simulating online estimation of the mechanism state and a
noisy initial estimate of the radius of the door (r,), as fol-
lows: for each of the 15 trials, we computed multiple values
of r, in Eq. 15 by sampling from a Gaussian with mean equal
to the true radius of the mechanism and a standard deviation
of 10 cm. We then used ,é from Eq. 15 to generate simu-
lated online estimates of the state of the mechanism and the
opening force, which is the component of the force tangential
to the trajectory of the point of contact on the handle. The
online estimates of the state of the mechanism improved as
the robot opened the door through a larger angle.

Figure 12 shows the trade-off between the mean excess
force and the false positive rate, analogous to the results from
Sect. 6.2. Errors in the estimates of the mechanism config-
uration (due to uncertainty about the radius and location of
the axis of rotation) resulted in poorer performance when
the robot operates a mechanism for the first time (higher
force on average before detection of contact with an ideal-
ized rigid obstacle). When the robot operates a mechanism
with a known identity for the second time, it has the opportu-
nity to use its previous estimates of the mechanism’s radius.
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Fig. 12 Effect of errors in kinematic state estimation on performance
of anomalous force detection using data captured with Cody and the
PR2

We would also expect an improvement in performance if a
robot were to use methods for kinematic estimation that yield
more accurate initial estimates of the radius of the door and
the state of the mechanism, such as in Rusu et al. (2008),
Sturm et al. (2009, 2010).

7.5 Detecting anomalous forces due to collisions
and a locked door

We also investigated the performance of our data-driven
anomalous force detector with real collisions and a real
locked door. We performed six trials with two robots, Cody
and the PR2, shown in Fig. 13. We either placed an obsta-
cle in front of the door or locked the door. We processed data
collected from these trials off-line for anomalous force detec-
tion using the detector based on our probabilistic model of
applied forces (Eq. 10). We set n in Eq. 10 as the least value
that resulted in zero false positives over our entire dataset
of human trials. Further, we assumed that the robot has an
accurate estimate of the radius of the mechanism (as opposed
to being drawn from a Gaussian around the true radius as
described in Sect. 7.2). Table 1 shows the time (detection
time) and additional force (excess force) between the onset
of contact with the obstacle and detection of an anomalous
force, or between the force on a locked door first exceeding
the expected force and detection of an anomalous force.
Figure 13 illustrates the performance of our data-driven
anomalous force detector. The yellow curve is the opening
force applied by the robot during the trial. The dashed green
and blue lines are the minimum forces at which our methods
would report an anomalous force if the robot were operat-
ing the mechanism for the first time (with knowledge of the
mechanism class), or the second time, respectively. The three
numbered circles (1-3) in Fig. 13 represent the following:
(1) the manually labeled onset of contact with an obstacle or
when the force on a locked door handle exceeds the expected
force; (2) the point at which the robot would have detected an
anomalous force if it were operating the mechanism for the
second time; and (3) the point at which it would have detected
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Fig. 13 Six trials with two different robots to test the anomaly detec-
tion method. Each pair of images shows a picture of the mechanism and
the obstacle that we placed in the path of the door, and a graph that gives
details of the trial. In the graph, the yellow curve is the opening force
applied by the robot during the trial. The dashed green and dashed
blue curves are the minimum forces at which the robot would report
an anomalous force if it were operating the mechanism for the first or
the second time, respectively. The three numbered circles indicate the
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manually labeled onset of the anomalous force, and the points when
the two anomaly detection methods would have reported an anomalous
force, (a) Trial I—Cabinet door makes contact with a box, (b) Trial 2—
Cabinet door makes contact with a box, (c¢) Trial 3—Refrigerator door
makes contact with a box, (d) Trial 4—Refrigerator door makes con-
tact with a chair, (e) Trial 5—Locked cabinet door, (f) Trial 6—Locked
cabinet door

Table 1 Performance of anomalous force detector on trials with cody and the PR2

Detection time (secs)

Excess force (N)

Robot Trial Open door the Open door the
1st time 2nd time 1st time 2nd time
Trial 1 PR2 Cabinet door makes contact with a box 1.1 0.3 2.6 1.9
Trial 2 Cody Cabinet door makes contact with a box 2.4 0.6 3.1 2.1
Trial 3 Cody Refrigerator door makes contact with a box 1.5 1.8 2.6 35
Trial 4 Cody Refrigerator door makes contact with a chair 0.5 0.5 3.7 3.7
Trial 5 PR2 Locked cabinet door 25.5 6.1 5.7 34
Trial 6 Cody Locked cabinet door 1.4 0.7 6.2 34
Mean (std) 5.4 (9.0) 1.7 2.0) 4.0(1.4) 3.0(0.7)
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an anomalous force if it were operating the mechanism for
the first time.

For trials 3 and 4, the robot has a slightly lower force
threshold for detecting anomalous conditions when it is oper-
ating the refrigerator for the first time than when it is oper-
ating it the second time. This also shows up as similar or
better performance while opening the first time compared to
the second time for the results in rows 3 and 4 in Table 1. We
believe that a lower threshold when opening it for the first
time is due to the database of human trials having data from
only four refrigerators, resulting in the mean and variance
not being representative of the mechanism class.

8 Discussion

We now discuss the broader implications and limitations of
this paper, and directions for future research.

8.1 Broader implications

Machine intelligence has benefitted greatly from large collec-
tions of sensory data. Web-based databases of user-generated
content, such as videos from YouTube, images from Flickr,
and 3D models from Google 3D Warehouse, have begun to
support the development of robots and technology relevant
to robots (Klank et al. 2009; Lai and Fox 2009; Kollar and
Roy 2009; Kuffner 2010; Waibel et al. 2011). More gener-
ally, research has shown that large datasets can lead to per-
formance gains and make computationally simple methods
effective (Torralba et al. 2008; Halevy et al. 2009).

Our results in this paper suggest that humans and robots
have the potential to share haptic data to improve robot
manipulation. Additionally, by storing associated contextual
information, such as where the interactions occurred and the
appearance of manipulated objects, robots could anticipate
haptic interactions.

In general, this type of common sense knowledge would
help robots behave more intelligently. In the future, robots
might use these data in numerous ways, including selecting
better postures prior to manipulation, detecting when mech-
anisms are in need of repair, and anticipating when a human
will require assistance. Moreover, these data could be used
by humans to rationally design robots with the kinematic and
force capabilities necessary to perform real-world tasks.

Enabling humans to easily capture the haptic interactions,
such as with a wearable system, could potentially accelerate
the accumulation of this type of data. With motion capture
capabilities and sensors continuing to improve in quality and
decrease in cost, there is the potential for the robotics com-
munity to accumulate large datasets in a practical manner.
Likewise, robots in the field could potentially record their
haptic interactions and upload them to an online database in
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order to produce a continuously evolving source of haptic
knowledge for various manipulation tasks.

8.2 Limitations and future work
8.2.1 More tasks, more data, more robots

In this paper, we have presented results with real-world data
for one manipulation task: slowly and smoothly pulling open
doors. Scaling up our approach to more manipulation tasks,
more mechanisms and trials, and more robots is an impor-
tant area for future inquiry. These could include twisting
door knobs, turning keys, pushing buttons on appliances, and
inserting a cell phone charger into a wall socket. It could also
include tasks relevant to activities of daily living such as bed
baths, shaving, grooming, and manipulating a person’s body
(King et al. 2010).

Data-driven object-centric models of haptic interactions
for these tasks may enable robots to efficiently detect anom-
alous conditions without excessive force. For example, a
robot may be able to haptically detect that it is attempting
to insert the incorrect key or that the door is not completely
shut.

For this paper, we tested our methods on a dataset of forces
from 148 trials of human operators opening 26 doors in 6
homes and one office, and 21 trials from two robots opening
three doors in one office. Our results are promising, and sug-
gest the potential for scaling up to more trials, mechanisms,
and robots, but actually doing so remains an open area for
inquiry. Ideally, the robotics community will begin to col-
lect large-scale datasets of forces from everyday activities
to facilitate progress, much like the computer vision com-
munity has collected and used large datasets of images and
video.

8.2.2 Haptic data from different sensors

In this paper, humans and two robots used a hook instru-
mented with the same six-axis force-torque sensor at the base
while pulling open doors. Additionally, we restricted contact
between the hook and the door to be at the handle. In general,
other sensors, such as joint torque sensors and tactile sensors,
might be used to record the forces.

We have shown that while slowly pulling open a door,
the component of the force tangential to the trajectory of
the point of contact on the door handle primarily depends
on the mechanism and not on the control method used
to open the door. However, different sensors will have vary-
ing accuracy and noise levels. For example, using joint torque
sensing to estimate the force at the end effector will be
affected by the dynamics of the arm and friction and flex-
ibility in the joints. In this paper, we do not discuss methods
for combining data from distinct sensors with varying accu-
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racy and amounts of noise into a common database of haptic
interactions.

Robot-centric models, discussed in Sect. 2.3.1, do not pro-
vide a direct way for different robots to share information,
but they make it easier for a robot to use new sensors by repre-
senting the haptic interaction directly in terms of the robot’s
state and sensors. Our method requires additional effort to
transform the measurements from different sensors into an
object-centric representation, but it offers the potential for
multiple robots to share the transformed data and models of
haptic interactions. Sharing data can be important for acquir-
ing and using large datasets.

8.2.3 Identifying useful object-centric representations

For our current work, we identified the relevant applied forces
and the relevant mechanism state, and found a useful low-
dimensional model by using our task knowledge, modeling
the kinematics, and experimenting with various models. For
example, we found that a quasi-static model was sufficient for
low-speed door opening and that we did not need to include
the angular velocity or angular acceleration of the door in
the relevant mechanism state. Similar models might work
for other tasks with 1 DoF kinematics, such as twisting a
door knob or turning a key. More generally, methods to auto-
mate aspects of the modeling process would be desirable and
machine learning might be able to autonomously discover
appropriate low-dimensional representations.

8.2.4 Haptic detection of events

In this paper, we used relatively simple models of the forces to
focus on the primary goal of demonstrating the value of data-
driven object-centric models of forces for autonomous robot
manipulation. Our probabilistic model of the relevant force
assumes that the opening forces are independent given the
door angle. For anomaly detection, we use a configuration-
dependent threshold on the force. Weakening the assumption
that the forces are independent given the mechanism config-
uration and using additional features for anomalous force
detection are directions for future research.

Incorporating features such as the rate of change of the
opening force with the angle of the door might improve per-
formance. Recent work on haptically detecting events dur-
ing manipulation has demonstrated the use of high-frequency
information to detect events such as collisions while placing
an object on a table (Romano et al. 2011), and motion of lig-
uid inside a container when the container is shaken (Chitta
et al. 2011). Modeling the relationship between the mecha-
nism state and features based on high-frequency haptic sig-
nals might improve the performance of our methods, such as
when detecting a collision.

9 Conclusion

We have demonstrated that humans and robots can capture
and share haptic data in spite of variations in their bodies
and control methods. We recorded relevant forces, locations
of force application, and mechanism states while humans
and two different robots pulled open doors at low speeds.
We then represented the haptic interactions with an object-
centric representation that could be used by distinct robots.
We demonstrated that these data could be used to haptically
recognize mechanism classes, haptically recognize specific
mechanisms, and haptically detect anomalous forces using
data-driven object-centric models.

More generally, we have presented a method for build-
ing probabilistic models of haptic interactions that are data-
driven, task-specific, and object-centric. These models can
be shared by different robots for improved manipulation per-
formance. We have used pulling open doors, an important
task for service robots, as an example to demonstrate our
method.

10 Supplementary material

The dataset and code associated with this paper are part of
the supplementary materials.

A video showing the custom force and motion capture
system that we used to record data from human trials can be
viewed at the following web address: http://www.youtube.
com/watch?v=MIW77v76c]E
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