
REVISION NO. F7 ORIGINAL

'roject No. E-24-616 GTRIMPt 	DATE 2/2/83

'roject Director: Schoolobije TSyF. Dr. John M. Hammer

Funded: S

Cost Sharing No:

6/30 .9C,
(Reports) 9/'10/85 (Performance) %ward Period: From 1115/81 	To

Sponsor Amount: Total Estimated: $74,506

:ost Sharing Amount: $

rifle: Models of Human Performance Using . Text Editors (Information Science)

OCA Contact 4l3MINISTRATIVE DATA

I) Sponsor Technical Contact:Program Officer

H. E. Bamford

N/A Military Security Classification:

(or) Company/Industrial Proprietary:

31111:EONIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

PROJECT ADMINISTRATION DATA SHEET

iponsor: National Science Foundation

Type Agreement: Grant No. TST-8217440

Frank Huff x4820

2) Sponsor Admin/Coniractual MattersGrants Official

Sharon Graham

Division of Program Section

NSF .

Washington, DC 20550

(202) 357-9555

)efense Priority Rating: 	N/A

Divison of Grants & Contracts

Directorate for Administration

NSF

Washington, DC 20550

(202) 357 -9843

t EST R I CT I ONS

ee Attached 	NSF 	Supplemental Information Sheet for Additional Requirements.

Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

quipment: Title vests with nTT

:OMMENTS:

k Includes a 6 month unfunded flexibility period.

t,y

, 31-1a3■\

sV
,;. 	 (18, 	LL\
 n

•
'ravel:

DPI ES TO:

Iesearch Administrative Network

lesearch Property Management

accounting

rocurement/EES Supply Services

\ ji R search Security Services

eports Coordinator (OCA)

GTRI

Library

Research Communications (2)

Project File

Other Hammer

 Other

GEORGIA INSTITUTE OF TECHNOLOGY
	

OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date 3/14/88

Project No. 	E-24-616

Includes Subproject No.(s) 	N/A

Project Director(s) 	John M. Hammer

Sponsor 	 NSF

School/KKK 	ISyE

GTRC/Q {

Title 	 Models of Human Performance Using Text Editors (informarinn sr-ipilnp)

Effective Completion Date: 6/30/86 (Performance) o/30/RA 	(Reports)

Grant/Contract Closeout Actions Remaining:

None

Final Invoice or Copy of Last Invoice Serving as Final

Release and Assignment

ED Final Report of Inventions and/or Subcontract:
Patent and Subcontract Questionnaire
sent to Project Director r--1

Govt. Property Inventory & Related Certificate

ED Classified Material Certificate

ED Other 	

Continues Project No. 	 Continued by Project No. 	

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting

'":Procurement/GTRI Supply Services
'Research Security Services
Reports Coordinator (OCA)
Program Administration Division

:Contract Support Division

Facilities Management - ERB
Library
GTRC
Project File
Other

•

Int. J. Man-Machine Studies (1984) 21, 203-212

A display editor with random access
and continuous control

JOHN M. HAMMER

Center for Man—Machine Systems Research, Georgia Institute of Technology,
Atlanta, Georgia 30332, U.S.A.

(Received 3 June 1983, and in revised forM 12 October 1983)

An analysis of human information-processing during editor positioning led to a text
editor with two significant features: continuous control and random access to text.
Continuous control is a feature that allows the user to control the editor while it
executes a positioning command. It will be shown that such a style of interaction
eliminates difficult design decisions and leads to new methods of positioning an editor
which are also less sensitive to human error. Random access to the text file means that
the editor can be positioned to any point in the file in a constant time. The advantage
of random access is that it is noticeably faster than the sequential access used by most
editors. The implementation of continuous control and random access is discussed.

Introduction

An editor that is more quickly positioned by users is described. Two features are
responsible. The first is continuous control, where the user can control the editor while
it executes a positioning command. The second feature is random access to text in
which the editor can be positioned in constant time to any page in the file.

This article contains five parts. The first briefly describes the environment in which
the editor was used. The second part describes the editing task for which this editor
was designed. Positioning an editor and our view of human information-processing
during editing are described. The third part reviews previous literature with special
emphasis on editors designed with a particular view to humans. The fourth and fifth
parts describe continuous control and random access to the text.

The editor ran on a DECsystem-10 using advanced CRT displays capable of cursor
positioning and insert/delete line operations. The most common transmission speeds
were 2400 and 9600 baud. The DECsystem-10 is a 36-bit wide, medium size mainframe
used primarily for timesharing. It is found primarily in universities and research centers.

The roughly two dozen users of the editor were primarily computer engineers and
artificial intelligence researchers who made sophisticated use of the computer. Several
secretaries, who edited for several hours a day, were also users. The files edited were
typically 1000 or more lines. Many of the users became interested in the editor through
other users. The view of editing and the human factors view of editing were not,
however, a result of observing these users. Instead, the author simply attempted to
design a better editor for personal use.

TERMINOLOGY

The phrase positioning an editor will be used (for economy of space) for moving
the editor's internal screen cursor from one point to another point in the text file.

203

0020-7373/84/090203+10$03.00/0 	 © 1984 Academic Press Inc. (London) Limited

204
	

J. M. HAMMER

The term module will be used to refer to procedures and subroutines in programs and to
chapters, sections, etc., in text files.

The editing task

The user was assumed to be a programmer familiar with the program or document
being edited. Positioning, the only aspect of editing to be discussed here, was assumed
to be either local—such as changes within the same module—or global, which could
be to another module located anywhere in the file. Further, the user was assumed to
desire locality in the effects of most editor commands. Thus, most commands could
affect only the current module. The editor was designed for files that consisted of a
number of modules. It was not designed to edit data files or databases, although it
could be used for this task.

HUMAN INFORMATION-PROCESSING

The editor was designed to facilitate human information-processing during editor
positioning. Many kinds of human information-processing abilities are used during
text editing—visual perception, planning, memory retrieval, motor control, etc. In this
section the abilities that are assumed to be used during editor positioning are presented.
Although plausible, their existence is based only on informal observation, not controlled
experiments. Furthermore, these abilities are assumed to be important factors in human
performance while editing.

The first assumption is that the human must estimate the distance between two points
in a file (i.e. the current location and the desired location) except when the distance
is very small. Rather than requiring estimation, the editor displayed text continuously
to the user. When the desired line was under the screen cursor, the user stopped the
editor.

The second assumption is that a human may know the text around the desired
location (thus, editor commands that search for text), but that the text between the
current and desired location will not be considered when the search key is formulated.
Thus, the search key might be longer or shorter than needed (choosing an optimal key
requires examination of all text between the current and desired location). As will be
seen later, the editor is designed to accommodate the tendency for too short and too
long keys.

The third assumption is that humans make errors while positioning an editor. A
natural and sometimes-used accommodation is a command to undo the effects of the
previous command. While such a command was available in this editor, the approach
taken was to minimize the negative impact of errors.

The fourth assumption deals with human memory-retrieval during global editor
positioning. The human is assumed to be able to retrieve easily the name of the module
to which the editor is to move. Thus, in moving long distances, modules are more
convenient mnemonics than relative or absolute page and line numbers.

DESIGN PHILOSOPHY

The assumptions about human information-processing lead to two design philosophies.
The first, which is novel, is that the user remains in control while the editor is executing
a positioning command. This means that the user may make certain modifications to

CONTINUOUS CONTROL RANDOM ACCESS MONITOR
	

205

a command during its execution or stop the command prematurely to execute another
command. To remain in control, the user must receive continuous feedback on what
the editor is doing. Yet, under certain situations, the user must be able to limit the
amount of feedback because the intermediate editor actions are not needed. Finally,
the editor must be kept close to the user. The editor cannot be controlled if it has a
dozen lines in the output buffer to the terminal, for any action the user types will take
effect a dozen lines ahead of what the terminal is displaying.

The second design philosophy is that the text file be viewed as a collection of
modules. Local editor positioning was assumed to remain within one module, which
was assumed to be stored on one page of text. Thus, most positioning commands
would not move the editor away from the current page. The contents of a page, no
matter how large, were stored entirely in main memory. Access to other pages was
primarily through a global search and by page name. Associated with every page was
a list of zero or more names that were used to retrieve that page. All pages were stored
in a random access disk file for fast access that was independent of the editor's current
position. While random access pages accessed by name is not novel (Samuel, 1977),
it has not been described in the archival literature.

Literature

Surveys describing editing and major editors are Meyrowitz & van Dam (1982a, b),
respectively. A review of relatively recent research on the human–computer interface
aspects of editing is Embley & Nagy (1981). The implementation of display editors is
discussed in Finseth (1980).

The remainder of this section will discuss editors that were designed for a specific
view to human information-processing. Also explored will be the implications of a
view for the editor.

The Xerox Star (Smith et aL, 1982) was designed to have a concrete and simple
interface. It is concrete because all entities---objects and actions—are represented by
screen icons. Either can be selected by a mouse, a pointing device. Finally, the screen
icons display all available aspects of the Star. There are no hidden mechanisms.

The simplicity of the Star interface is in its command interface. The same universal
command set is consistently used to manipulate all entities—text, file, messages, icons
themselves, etc. The interface is also intended to be modeless. Thus, any action can
be taken in any situation.

EMACS (Stallman, 1981) was designed to be extensible and self-documenting. While
no models of human information-processing are explicitly stated, there are some
implicit assumptions. First, the users are assumed to be computer scientists. Second,
these experts will need to customize the editor for a variety of tasks. Finally, the editor
design is best done by these experts instead of by a designer who cannot anticipate
all the needs of and improvements by the experts.

The consequence of these assumptions is that EMACS contains two parts: a display-
text management package plus an editor programming language. Expert users can and
do modify the editor program. Stallman considers distributed editor modification to
be a success. Many of the features of the default EMACS editor program were developed
by users.

206
	

J. M. HAMMER

Ed (Kernighan & Plauger, 1981) is the editor distributed with UNIX. Ed, like UNIX,
was designed to be concise and powerful. It achieves these ends by a clever combination
of a small set of primitives. Thus, it is held to be human-engineered (for computer
scientists). Unfortunately, its terse straightforward design has recognized problems
(Norman, 1981). Because Ed is intended to receive commands from another process
through a one-directional pipe (as well as from a keyboard) it provides virtually no
feedback. Consequently, a user has difficulty determining the editor's mode. Second,
Ed's straightforward design will cause it to do exactly what the user requests, whether
dangerous or not.

The UNIX developers are correct in stating that a simple interface should be a
contribution to good human-engineering. However, Norman is correct in showing that
the simplicity is not apparent to the casual user, and that the simple absence of feedback
is a drawback even for experts.

Continuous control

Continuous control is described in two sections. The first describes the implementation
of various control features. From understanding the implementation one can gain some
idea of the editor's capabilities. The second section describes the advantages that arise
from these and other capabilities. In particular, we will explain how the editor supports
the previously described forms of human information-processing.

EXECUTION OF A COMMAND

Virtually every positioning command was executed in a central routine which is
described as follows. The routine had four arguments.

1. UNITS—the size (character, word, line, or page) and the number of units to be
crossed before stopping the positioning.

2. KEY—an (optional) text string to search for.
3. SCROLL—a boolean that determined if the screen cursor was maintained on the

same line as the internal cursor. If true, the user saw where the editor was while it
moved. If false, the editor moved—without changing the display—to the new, final
location and then updated the display.

4. QUERY—a boolean that determined if the keyboard was queried during execution
of a command.

The code was as follows:
repeat

move I UNIT;
optionally search for KEY;
if 	SCROLL
then SCROLL_DISPLAY;
if 	QUERY
then 	QUERY_KEYBOARD;

until moved over requested number of UNITS
or 	found KEY
or 	command issued
or 	moved to end of text;

CONTINUOUS CONTROL RANDOM ACCESS MONITOR
	

207

if 	not SCROLL
then FIX_SCREEN;

In a commonly used local search command, a search KEY would be specified, the
UNITS specified as an infinite number of lines contained on this current page, and
SCROLL and QUERY would be true. In executing this command, the routine would
move down one line and check for occurrence of the search key. If found, a flag would
be set to terminate the loop. Otherwise, the screen would be scrolled (if necessary) to
keep the current line displayed on the screen, and the keyboard queries. This process
continued until finished (e.g. key found in text or no more text lines) or until the user
typed something at the keyboard.

The actions taken by SCROLL_SCREEN, QUERY_KEYBOARD, and
FIX_SCREEN will be discussed next. The other code sections are fairly typical of an
editor and will not be discussed.

SCROLL_SCREEN kept the user informed of the editor's current position. If the
editor was positioned to a line that preceded or followed the top line or bottom line
on the screen, respectively, then the screen was scrolled. The routine then always
positioned the screen cursor to the editor's current internal cursor.

QUERY_KEYBOARD could take several actions. Already mentioned have been
stopping execution of a command and executing another command. A space character
simply stopped execution and was itself discarded. The space was chosen because it
should be fast; the terminal space bar is large and directly under the thumbs at almost

all times. A control character (all commands began with control characters) also stopped
execution ; when control returned from this routine to the top level, this control character
was read as a command, which would most likely result in another call to the central
routine.

QUERY_KEYBOARD also allowed two modifications during the execution of the
current command. The first modification was to change SCROLL to false, which caused
the display to cease being scrolled. This modification is useful when the user decides
not to watch what text the editor passes over. For example, the local search command
(described above) displays all the text it passes over. The user can, however, shut off
this feedback for the duration of one command. Control-0 was chosen to be this
command since this key serves the same purpose outside the editor.

The second modification (under QUERY_KEYBOARD) was to control the length
of the output buffer. Its length controlled how far ahead the editor was of the screen.
If it was too large, the editor could easily be 10 or 20 lines ahead of the display, with
these same lines being in the output buffer waiting to be transmitted to the terminal.
If the length was too small, the terminal could not be driven at its rated speed due to
timesharing. The buffer length could be varied dynamically by the user to respond to
differences in the system load and the baud rate. The digits 0-9 were used for this
function.

FIX_SCREEN's purpose was to insure that the line at which the editor was internally
positioned was also displayed on the screen. It would be called if the screen were
known to need adjustment to display the current line. It recognized three cases. First,
if the current line was on the screen, it did nothing. Second, if the current line was
just off the top or the bottom of the screen, it was scrolled. Finally, if the current line
was far off the screen, the best that could be done was to erase the screen and display
the current line and its neighbors.

208
	

J. M. HAMMER

This redisplay began by first displaying the current line (presumably, the most
important) in the center of the screen. Following that, lines above and below the current
line were alternatively added until the screen was full. In cases where the current line
was the first or last line of a page, the redisplay started at the top or bottom of the
screen, respectively, and filled toward the other boundary (thus, providing immediate
feedback about being at either end of the page). This redisplay process also included
calls to QUERY_KEYBOARD thus allowing: (1) the redisplay output to be stopped
to execute another command; (2) the output to be stopped; and (3) the buffer length
to be controlled.

Although the lines are displayed in an unusual and what may seem to be a distracting
order, it is consistent, even desirable for continuous control. Showing the current editor
position first is showing the most important line first. Thus, the order lines are displayed
is better for continuous control.

ADVANTAGES OF CONTINUOUS CONTROL

The advantages of continuous control are the elimination of certain difficult design
decisions, better support for some methods that humans use to position editors,
tolerance for human error, and synergism of editing features.

The first advantage is to eliminate certain static design decisions that are better made
dynamically by the human while editing. An example of this is scanning for a particular
line of text by scrolling the display. Most editors have commands to move the editor
position forward or backward N lines. This command is often used when scanning
for text. N often can be omitted, in which case it defaults to some value, say 16. Of
course, N = 16 is practically always suboptimal (unless exactly 16 lines were required).
Further, typing a value for N is extra effort.

With continuous control, the user need only indicate the direction the editor is to
move. The editor then continuously scrolls the display in that direction. When the
desired line appears at the cursor, it can be stopped by command. This mode of
interaction better supports the user's scanning than do traditional editors. Of course,
the user is unlikely to be able to stop the editor exactly on the desired location.
Commands to move one line can be used to achieve final positioning.

The second advantage is the feedback provided by commands, especially search
commands, as they execute. For example, the local search command (stays on the
current page) displays every line it crosses over as it looks for the key. The search can
be stopped if something of interest is noticed or the command is found to be in error.
Displaying the intervening text could be a disadvantage if the feedback level itself
were not controlled. Fortunately, it is controlled. Finally, the control of command and
feedback is dynamic—it is not chosen when the command is initially entered but rather
as results of the command are seen. Certainly, it is better to take action after partial
results are displayed rather than try to predict those results before the command is
issued.

A third advantage lies in a pair of commands that repeat the previous search and
return the editor to its previous position. The command to repeat the previous search
is most useful when the original search key was either intentionally or unintentionally
made too short. This one keystroke command (which for speed was keyed by striking
the control key and space bar) is often a fast way to reach the desired location
with a short string. In fact, this command is able to keep the editor continuously

CONTINUOUS CONTROL RANDOM ACCESS MONITOR 	 209

moving towards the desired location, and thus is used to control the editor
continuously.

In fact, the repeat search key is often used too quickly, causing the editor to move
past the desired position. To its aid comes the one keystroke command which returns
the editor to the previous position. Since reverting is so easy, the user is allowed to
be sloppy in using the repeat search command. Thus, these two commands demonstrate
a tolerance for human error.

The design has other aspects that make it tolerant of human error. If a search string
is chosen erroneously (nothing in the file matches), the user will receive feedback about
the large amount of text the editor is crossing over. The volume of this feedback may
tip off the user that the search is not working, and it may be stopped. If the user
visually scans text in the wrong direction, the editor can be turned around very quickly.

Editor feature synergy is demonstrated by FIX_SCREEN, the repeat search, and
the revert position commands. Suppose that a global search is issued for each instance
of a routine call and that repeat search will be used to find successive instances. Each
instance will be displayed by erasing the screen and filling from the center outwards.
This output can be terminated by a new command as soon as the user determines that
this instance is not the one required. Repeat search and revert position will complement
each other as previously described. Each of these features is individually powerful,
but they become more powerful when used in conjunction. To see this, consider the
absence of each feature one at a time. If the display output could not be stopped early
by command, a single keystroke repeat search command is much less effective, for the
user must still wait for the output to finish before the next instance is displayed. If a
search can be repeated only by issuing a new command of two or more keystrokes,
the user is unlikely to be able to get the command off before the screen is filled anyway.
Finally, if the revert position command was unavailable, the user would (as explained
earlier) have to be more careful when issuing repeat search commands.

INCREMENTAL SEARCH

Incremental search is a form of search in which entering one additional character of
the search key causes the editor to position immediately to the next instance of the
just-lengthened key. Ordinary searches, in contrast, wait until the entire key is specified
before any positioning is done. Incremental searching was, to the best of the author's
knowledge, first implemented in EMACS (Stallman, 1981). Its aims are consistent with
allowing the user to control the editor during positioning by giving feedback.

While other editor features described in this article were successful, incremental
search did not operate as expected. It appears that updating the screen after each
character had a negative effect on human attention, for the eye was drawn to the screen.
Perhaps other methods of screen updating that limit the amount of feedback (a window
of three lines or a bit-mapped display) might make this positioning method more usable.

RELATED FEATURES IN OTHER EDITORS

Continuous control may appear to be similar to command canceling and incremental
redisplay, both of which have been implemented in other editors. This section shows
the difference between them.

Meyrowitz & van Dam (1982a, Section 3.4.1.3) discuss command canceling, or
stopping a command that has gone awry. Canceling is often implemented with a

210
	

J. M. HAMMER

software interrupt that cleans up and jumps to the command level. In contrast, a
continuous control editor interacts with the user during command execution. This
interaction is motivated by our own view of human information-processing. For
example, feedback is necessary for control; our editor provides it and even allows
control of feedback itself. Some of the commands of a continuous control editor can
be designed so that they must be stopped.

Incremental redisplay delays updating the screen while the user continues to enter
commands. By delaying feedback, it reduces transmission bandwidth if a number of
changes are made to some text. It is an excellent idea if the terminal is not served by
a high transmission speed. Because it is based on delayed feedback, it takes a somewhat
different approach from continuous control, which provides full feedback.

Random access text

The editor, as stated earlier, imposed a structure on the file. It was to be a sequence
of pages, where each page was assumed to contain one procedure or several related
procedures. Pages were stored in a random access file. Although this practice is not
new (Samuel, 1977), it has not been described in the archival literature. It is described
here.

Because the user was assumed to want most commands to have only local effect,
most positioning commands would not leave the current page. The farthest a scroll or
local search would move was the first or last line on a page. All local commands

scrolled the text so that the user could see what was happening (of course, the user
could discontinue this output). If the file was split into pages as assumed, the amount
of scrolling output (feedback) would be reasonable. Of course, some commands did
cross page boundaries, and they did not scroll the screen. The global search did,
however, display the first line of every page it entered, thus indicating progress (the
computer is actually serving the user) and feedback on the distance being covered. To
the same goal, the routine that read in pages also simultaneously loaded the screen.
Thus, the first lines of a page were displayed before the last lines were entirely read
in. This practice violates modular program design, which would have separated page
access from display, and would have the page entirely read in before the first line was
displayed. The advantages to the user of an immediate display outweighed the problems
of increased program complexity.

Random access to text pages offers two advantages. First, random access gives
noticeably faster response to retrieval of text that is far from the current location. For
example, the SOS editor on the VAX 11/780 requires roughly 0.07 s/disk block (real
time) to move to another point in a file. Of this time, 0.03 s/block is due to the seek
and transfer rate of the disk alone. For files of 100 blocks, these times become quite
noticeable.t

The second advantage of random access is having labels or tags which point to
certain locations in the file. The tag allows positioning by name rather than by page
and line number. It is also superior to global search because of speed and the uniqueness
of tags. Tags can be implemented at very little additional cost since the variable-sized
pages must be indexed.

t Real time response was measured on a lightly loaded system. The disk transfer and seek rates are
2 µs/byte and 38 ms average, respectively. The SOS butler size is 10,000 bytes; a block is 512 bytes.

CONTINUOUS CONTROL RANDOM ACCESS MONITOR 	 211

The only disadvantages to random access text are (I) a rare delay for expanding the
file to accommodate a just-enlarged page and (2) the wasted space due to blocking,
which leaves empty space for expansion at the end of each record. These two factors
trade off against each other. Allocation in smaller units reduces waste but increases
the frequency of expansion. For reasonable allocation sizes, random access text will
on the average far outperform sequential access.

Conclusion

An editor with random access to text and user continuous control over positioning
has been described. Its design was based on assumptions about human information-
processing during text editing. The editor's special features make it faster, less error
sensitive, and more natural for editor tasks.

This preparation of this article was supported by the National Science Foundation under
Grant No. IST-79-1647 and Grant No. IST-82-17440.

References

EMBLEY, D. W. & NAGY, G. (1981). Behavioral aspects of text editors. ACM Computing Surveys,
13(1), 33-70.

FINSETH, C. A. (1980). A theory and practice of text editors. Technical Memo 165, Laboratory
for Computer Science, M.I.T., Cambridge, Massachusetts.

KERNIGHAN, B. W. & PLAUGER, P. J. (1981). Software Tools in Pascal. Reading, Massachusetts:
Addison-Wesley.

MEYROWITZ, N. & VAN DAM, A. (1982a). Interactive editing systems: part I. ACM Computing
Surveys, 14(3), 321 -352.

MEyRowirz, N. & VAN DAM, A. (1982b). Interactive editing systems: part 2. ACM Computing
Surveys, 14(3), 353-415.

NORMAN, D. A. (1981). The trouble with Unix. Datamation, 27(12), 139-150.
SAMUEL, A. (1977). E. Stanford Artificial Intelligence Laboratory Memo.
SMITH, D. C., IRBY, C., KIMBALL, R., VERPLANK, B. & HARSLEM, E. (1982). Designing the

Star Interface. BYTE, 7(4), 242-282.
STALLMAN, R. M. (1981). EMACS: the extensible customizable, self-documenting display editor.

Proceedings. ACM SIGPLAN/ SIGOA Conference on Text Manipulation, Portland, Oregon,
pp. 147-156.

Appendix: Implementation of the indext

This index implemented for random access was required, first of all, to describe pages
so that they might be randomly accessed. Second, the index was required to map
names—text strings—onto pages. Third, the entire file was to be readable by compilers
without a conversion step to and from a special editor format. Thus, the index, stored
at the front of the file it described, was to be interpreted as a comment by compilers.
Also, pages were required to be physically stored in the logical order they appeared
to the user.

A BNF description of the index page is (for an Algol program):

(index page)
	

= (first line)(page) +(last line)
(first line)
	

= (comment char)COMMENT(CRLF)

t Based on Samuel (1977).

212
	

J. M. HAMMER

(page)
(comment char)
(name)
(start)
(end)
(last line)

= (comment char)(start)(end)(name)*(CRLF)

= (token)I(token)((number))
= disk block number
= disk block number
= (comment char); (CRLF)

The index was maintained as a comment by (first line), (last line), and (comment
char). The editor would examine the file extension to determine what type of file it
was (FORTRAN, LISP, Pascal, etc.) and determine what values should be assigned
to these meta-symbols. Each page in the file was described by a (page) in the index.
The first and last disk blocks of the page were given by (start) and (end), respectively.
The (name), if present, allowed that page to be accessed by a character string name
rather than by page number.t If the (name) contained a parenthesized number, the
editor would search down the page for that name. The (name) could be edited by a
special mode in the editor.

Retrieving a page was a matter of reading the disk blocks belonging to the page into
primary memory. Writing a page simply put the buffer contents back into the page's
disk blocks, while zero filling the unused disk block(s). If editing expanded the page
so that it would not fit in its allocated disk space, the file was first expanded by moving
pages in a file and then adjusting the index to make it agree with the file.

Other processors—compilers and text editors—can read the specially formatted file
without difficulty. As mentioned earlier, the index page is a comment. The unused
portions of disk blocks contained zeroes, which in ASCII are NUL characters. By
convention, NUL is ignored on input by all programs. Files produced by other programs
are converted to the special format by the editor. The special format is indicated by
a NUL as the first character in the file. No other program would produce a NUL as
a first character.

t Any unambiguous abbreviation of a (name) would work.

To appear in Human-Computer Interaction, G. Salvendy and M. Oshima, eds.,
Elsevier Publishing Co., 1984, which contains papers from the First USA-Japan
Conference on Human-Computer Interaction, Honolulu, August 1984.

STATISTICAL METHODOLOGY IN THE LITERATURE ON HUMAN FACTORS IN COMPUTER
PROGRAMMING

JOHN M. HAMMER

Center for Man-Machine Systems Research, Georgia Institute of Technology,
Atlanta, Georgia 30332 (USA)

INTRODUCTION
This article examines some actual and recommended practices for design of

experiments in human factors of computer programming. The first practice
examined is the actual level of power in the statistical tests conducted on
controlled experiments. Power is defined as the probability of accepting the
alternative hypothesis (that a difference exists) when it is true. Power
depends on the number of subjects, the squared difference in means relative to
subject variance (termed effect size), and the commonly reported significance
level, usually p=.05. Because programmer variance is usually considered to be
relatively high, statistical power was hypothesized to be relatively low in
this literature. This hypothesis was tested by calculating the power of tests
in the published literature and comparing the average power to recommended
levels and to other similar studies.

The second experimental practice examined was methods for controlling
programmer variance. Basically, this was an examination of the literature for
tests (e.g., grade point average, months of experience) that correlated with
programmer performance. If good tests can be found, they can be used to make
experiments more sensitive by accounting for the predicted performance in the
experimental design.

POWER OF STATISTICAL TESTS IN THE LITERATURE
Power has been defined as the probability of accepting the alternative

hypothesis of a difference due to treatments, given that this hypothesis is
true. In general, statistical testing involves establishing two mutually
exclusive hypotheses. The first is the null hypothesis (HO) of no difference
due to changes in the independent variable. The second is the alternative
hypothesis (H1) that this difference does exist. There are Type I and Type II
errors which correspond to HO and H1, respectively. The probability of a Type
I error (Type II error) is that of accepting HO (H1) when it is false.
Reported for virtually every statistical test is the probability of Type I
error, or significance level (e.g., "p<.05"). Power, which is virtually
always omitted, is 1 minus the probability of Type II error.

Power is important both before and after an experiment. 	Before an
experiment, power can be used to plan rationally the number of subjects to be
used. The experimenter must select a significance level (usually, p=.05), a
minimal power level (power=.80 is recommended (Cohen, 1977)), and an effect

Page 2

size. 	From power tables, the appropriate number of subjects can 	be
determined. The most difficult selection is effect size, since it requires
the experimenter to predict the cell means and the variance before the
experiment is run. In this study, observed effect sizes are calculated and
tabulated along with power. Knowledge of these observed values should be an
aid to future experimental planning. Prediction can be based, at least
partially, on past observation.

Power is also important after an experiment, especially for interpreting
effects that lack significance. Many researchers are reluctant to accept the
null hypothesis in this situation. In fact, a calculation of power reveals
what should be done. 	If, for effects of interest, power is high, the null
hypothesis might well be accepted. 	High power simply indicates that the
posited effect size of interest would have been detected if it existed. If,
on the other hand, power is low, judgment should be suspended until an
experiment is run (or the existing one replicated) with more subjects or other
precision-increasing refinements.

Literature Reviewed
Articles from journal articles and conference proceedings on human factors

in computer programming were selected for power analysis. Technical reports
and theses were not examined. This admittedly biases the results somewhat,
since unpublished experimentation, especially that never committed to paper,
is often suspected to have low power.

The literature of controlled experiments on software complexity was,
notwithstanding the above, also omitted from the study. The reason is the
fundamental difference in the goal of this area for explaining variance in
human performance. Human factors experiments attempt to show that an
experimental factor has a significant effect on human performance. As will be
shown later, such a factor might typically account for 10 to 40% of the
variance. Software complexity, on the other hand, tries to predict human
performance as completely as possible. It typically can account for 60 to 80%
of the variance.

Rules for Power Analysis
The rules for power analysis were as follows:
1. Only tests significant at p.K.05 were examined even though other

marginally significant results were reported. This practice further
biases the observed power in an upward direction. Further, power was
computed using p=.05 even if a lower p was stated. Only two-sided
testing was used, even if the author(s) used one-sided tests.

2. Only ANOVA F-ratios, t tests, and correlation coefficients (r) were
examined. 	Chi-square, 	binomial, and nonparametric tests were
ignored. No tests on differences in means (Duncan, Newman-Keuls)
were examined.

3 In ANOVAs, the significance of the overall mean and all interactions
were ignored. The latter were ignored because interactions are not
typically sought in most designs, are difficult to interpret in the
framework of this study, and often could not be studied due to lack
of information.

4. A maximum of 10 tests per experiment were analyzed for power. If an
article reported more than one experiment, it could have up to 10
tests included for each experiment. This was done to avoid a bias in
favor of experiments with many tests. The first ten tests presented
were analyzed.

Page 3

5. Sufficient information had to be present to do the power calculations
(F-test: 	cell size, means; 	t-test: cell size; r: cell size).
For F tests, the mean square error often had to be estimated from the
expected value formula for F.

6. The test must have been on some aspect of human performance that was
measured under controlled experimental conditions. 	Regressions
between two variables, 	neither of which represented human
performance, were ignored.

All F and t test measures of effect size were converted to the square root of
percent variance explained to allow comparison with r (Cohen, 1977).

Results
The total number of tests that were power analyzed was 122. 	The power

averaged .83; 	its standard deviation was .19. Only 36% of the tests had
power less than the recommended value of .80. The effect size, expressed in
terms of the square root of the percentage of variance explained, averaged
.44; its standard deviation was .14. The effect size data were roughly
normally distributed, though skewed slightly to the right. Using Cohen's
terminology of small (r=.10), medium (r=.25), and large (r=.50) effects, 67%
of the effects are medium up to large, and 28% are large (Cohen, 1977). Using
recommended medium effect size in pre-experimental power analysis would appear
to be quite conservative, since less than 5% of the effects are less than
medium.

Similar power analyses of other published literature have been done.
Comparison of this study with others is difficult because we calculated effect
sizes whereas others assumed various sizes and then determined the power.
When an effect size of r=.50 was assumed (the closest value to our observed
r=.44), the following were observed:
Study 	 Average Power 	Tests with power<.80
Chase and Chase, 1976 	 .86 	 28%
Brewer, 1972 	 .78 	 29%
Katzer and Sodt, 1973 	 .79 	 46%
It should not be assumed that actual effect sizes in these other areas are as
large as r=.50.

Conclusion
The power of tests in human factors literature on computer programming is

as high as that in other areas where power analytic studies have been done.
The original hypothesis of low power is incorrect. Ideally, experimenters
would begin to incorporate a power analysis into their research planning. The
distribution of (significant) observed effect sizes, as given above, should
assist this planning.

VARIANCE CONTROL
Individual differences in programmer performance are a major problem in

designing experiments. The ratio of best to worst performance for a group of
programmers is often claimed to be 10:1 or 20:1 (Grant and Sackman, 1967)
(Curtis, 1980) (Dickey, 1981) (Curtis, 1981). This difference is much larger
than the 1.5:1 and 4:1 found for experts and intermediate level users,
respectively, in a text editing task (Card et al., 1983). It should be noted
that these large differences have been observed primarily on debugging times.

Page 4

If tests were available to predict these differences to some degree, the
predictions could be accounted for in the experimental design. The experiment
would then become more sensitive, i.e., better able to detect true effect
differences or to use fewer subjects. The appropriate designs which account
for tests (termed concomitant variables) are randomized block designs and
analysis of covariance (ANOCVA). The former uses the concomitant variable to
group subjects into relatively homogeneous blocks. Each subject in the block
is then randomly assigned to a treatment. ANOCVA performs a regression on
concomitant variable simultaneously with an analysis of variance on the
independent and dependent variables. ANOCVA is, however, not likely to be
useful for two reasons (Keppel, 1973). First, ANOCVA requires many
assumptions be true for it to be valid. Second, it is superior to randomized
blocks designs only when the concomitant variable is correlated r>.60 with
programmer performance. Since this is unlikely, randomized block designs
would be preferred.

The results reported here are based on an examination of the same
literature used in the power study. Basically, I looked at regression studies
and experiments which had already attempted to account for programmer
differences. Space limitations preclude the inclusion of a table which would
allow direction examination of the correlations.

For professional programmers, months of programming experience has been
found to be a fair predictor for program reading and writing performance.
Correlations of .50 were found between the logs of experience and program
writing plus debugging time (Chrysler, 1978). Correlations of .45 and .78
were found between experience and program comprehension scores (Moher and
Schneider, 1981). They also found a multiple correlation of .62 between
experience plus number of computer science courses and program writing time.
Their high correlations must not be viewed too enthusiastically, for they
purposefully sought out very diverse groups of subjects. Higher correlations
are expected under such situations (Montgomery and Peck, 1982).

For professional programmers, there does not appear to be any good
predictor for debugging tasks. No significant correlations were found between
experience and debugging time in (Grant and Sackman, 1967). Experience was
not found significant on tasks of program comprehension, modification, or
debugging in (Sheppard et al., 1979). This result is counter to the above
findings of Chrysler and Moher and Schneider. They did find the number of
known programming languages and the number of familiar FORTRAN concepts to be
correlated with debugging performance for professionals with less than 3 years
experience. This result did not hold for more experienced professionals.

For advanced computer science students, a number of highly predictive
measures appear to be available. In (Moher and Schneider, 1981), multiple
correlations of .66 to .74 were found between program comprehension and
writing tasks and the regressors: 	number of computer science courses,
computer science grade point, and years of programming. 	The advantage of
these three regressors is that they are relatively independent.

For beginning programmers, many regressors were tried in (Barfield et al.,
1983), (Lucas and Kaplan, 1974), (Mayer, 1975), and (Shneiderman, 1977). From
the standpoint of having large correlation coefficients and appearing in more
than one study, the best regressors would appear to be SAT-Math scores,
college course grade(s) either in the introductory programming course or in
calculus or chemistry, and years of experience programming. Given that many
beginning students today will have personal computer experience, it should be
included in any attempt to predict performance.

Page 5

For both professional and student programmers, a pretest is a possible
choice for a concomitant variable. If the experimental task is program
comprehension, one or more initial program comprehension pretests (the same
test(s) for all subjects) could be used as a concomitant variable.
Correlations between 3 modification task scores ranged from .31 to .60 and
between 3 modification scores and recall scores ranged from .39 to .49
(Shneiderman, 1977). Correlations between scores on reading and writing tasks
varied from .63 to .69. One disadvantage of pretesting is additional
resources invested in it. This may be especially so if multiple pretests must
be given to determine a stable level of performance.

An alternative to any use of concomitant variables is repeated measures, in
which a subject is run under every experimental condition in the experiment.
The subject serves in effect as his or her own control. While this approach
may at first seem to be ideal, problems can and do arise. Consult (Poulton,
1982) and (Greenwald, 1976) for details.

Conclusion
Methods have been discussed for reducing programmer variance through the

use of a concomitant variable for randomized blocking. Using these results,
it should be possible to increase substantially the precision of experiments
on computer programming. Very little effort is required to sort subjects into
relatively homogeneous blocks prior to random assignment to experimental
conditions. 	Given the wide range of research from which these conclusions
have been drawn, they should be regarded cautiously. 	The potentially large
returns certainly merit investigation.

SUMMARY
This study has examined the literature on human factors in computer

programming to study two aspects of programmer variance. The first was to
determine if the reportedly large differences in programmers caused
statistical tests to be of low power and effects small relative to noise.
This appears to be untrue. The second aspect studied was methods for
controlling for large programmer variance in experimental designs. A number
of promising concomitant variables were identified for randomized blocking,
which should be able to increase the precision of experiments in this area.

ACKNOWLEDGMENT
This research was supported under NSF Grant IST 82-17440.

REFERENCES
Barfield, W., LeBold, W.K., Salvendy, G., and Shodja, S., 1983. 	Cognitive

factors related to computer programming and software productivity. Proc.
Human Factors Society - 27th Annual Meeting, 647-651.

Card, S.K., Moran, T.P., and Newell, A., 1983. 	The 	Psychology 	of
Human-Computer Interaction. Erlbaum, Hillsdale, NJ, 469 pp.

Brewer, J.K., 1972. On the power of statistical tests in the American
Educational Research Journal. Amer. Educ. Res. J., 9: 391-401.

Chase, L.J. and Chase, R.B., 1976. A statistical power analysis of applied
psychological research. J. Applied Psychol., 61: 234-237.

Page 6

Chrysler, E., 1978. 	Some basic determinants of 	computer 	programming
productivity. Comm. ACM, 21: 472-483.

Cohen, J., 1977. Statistical Power Analysis for the Behavioral Sciences.
Academic, New York, 474 pp.

Curtis, B., 1980. Measurement and experimentation in software engineering.
Proc. IEEE., 68: 1144-1157.

Curtis, B., 1981. Substantiating programmer variability. 	Proc. IEEE., 69:
846.

Dickey, T.E., 1981. Programmer variability. Proc. IEEE., 69: 844-845.
Grant, E.E. 	and Sackman, H., 1967. 	An exploratory investigation 	of

programmer performance under on-line and off-line conditions. 	IEEE
Trans. Human Factors Elec., 8: 33-48.

Greenwald, A.G., 1976. Within-subjects designs: 	To use or not to use?
Psychol. Bull., 83: 314-320.

Katzer, J. and Sodt, J., 1973. An analysis of the use of statistical testing
in communication research. J. of Communication, 23: 251-265.

Keppel, G., 1973. 	Design 	and 	Analysis: 	A 	Researcher's 	Handbook.
Prentice-Hall, Englewood Cliffs, NJ, 658 pp.

Mayer, R.E., 1975. 	Different problem-solving competencies established in
learning computer programming with and without meaningful models. J.
Educ. Psychol., 67: 725-734.

Moher, T. and Schneider, G.M., 1981. 	Methods for improving controlled
experimentation in software engineering. Proc. Fifth Int. Conf. Soft.
Eng., 224-233.

Montgomery, D.C. and Peck, E.A., 1982. 	Introduction to Linear Regression
Analysis. Wiley, New York, 504 pp.

Poulton, E.C., 1982. Influential companions: 	Effects of one strategy on
another in the within-subjects designs of cognitive psychology. Psychol.
Bull., 91: 673-690.

Sheppard, S.B., Curtis, B., Milliman, P., and Love, T., 1979. 	Modern coding
practices and programmer performance. Computer, 12: 12, 138-146.

Shneiderman, B., 1977. Measuring computer program quality and comprehension.
Int. J. Man-Machine Studies, 9: 465-478.

STATISTICAL METHODOLOGY IN THE LITERATURE ON HUMAN FACTORS IN COMPUTER
PROGRAMMING

JOHN M. HAMMER

Center for Man-Machine Systems Research, Georgia Institute of Technology,
Atlanta, Georgia 30332 (USA)

INTRODUCTION
This article examines some actual and recommended practices for design

of experiments in human factors of computer programming. The first
practice examined is the actual level of power in the statistical tests
conducted on controlled experiments. Power is defined as the probability
of accepting the alternative hypothesis (that a difference exists) when it
is true. Power depends on the number of subjects, the squared difference
in means relative to subject variance (termed effect size), and the
commonly reported significance level, usually p=.05. Because programmer
variance is usually considered to be relatively high, statistical power
was hypothesized to be relatively low in this literature. This hypothesis
was tested by calculating the power of tests in the published literature
and comparing the average power to recommended levels and to other similar
studies.

The second experimental practice examined was methods for controlling
programmer variance. Basically, this was an examination of the literature
for tests (e.g., grade point average, months of experience) that
correlated with programmer performance. If good tests can be found, they
can be used to make experiments more sensitive by accounting for the
predicted performance in the experimental design.

POWER OF STATISTICAL TESTS IN THE LITERATURE
Power has been defined as the probability of accepting the alternative

hypothesis of a difference due to treatments, given that this hypothesis
is true. In general, statistical testing involves establishing two
mutually exclusive hypotheses. The first is the null hypothesis (HO) of
no difference due to changes in the independent variable. The second is
the alternative hypothesis (H1) that this difference does exist. There
are Type I and Type II errors which correspond to HO and H1, respectively.
The probability of a Type I error (Type II error) is that of accepting HO
(H1) when it is false. Reported for virtually every statistical test is
the probability of Type I error, or significance level (e.g., "p<.05").
Power which is virtually always omitted, is 1 minus the probability of

I Type II error.
Power is important both before and after an experiment. 	Before an

experiment, power can be used to plan rationally the number of subjects to
be used. The experimenter must select a significance level (usually,
p=.05), a minimal power level (power=.80 is recommended (Cohen, 1977)),
and an effect size. From power tables, the appropriate number of subjects
can be determined. The most difficult selection is effect size, since it
requires the experimenter to predict the cell means and the variance
before the experiment is run. In this study, observed effect sizes are
calculated and tabulated along with power. Knowledge of these observed
values should be an aid to future experimental planning. Prediction can
be based, at least partially, on past observation.

Power is also important after an experiment, 	especially for
interpreting effects that lack significance. 	Many researchers are
reluctant to accept the null hypothesis in this situation. 	In fact, a
calculation of power reveals what should be done. If, for effects of
interest, power is high, the null hypothesis might well be accepted. High
power simply indicates that the posited effect size of interest would have
been detected if it existed. If, on the other hand, power is low,
judgment should be suspended until an experiment is run (or the existing
one replicated) with more subjects or other precision-increasing
refinements.

Literature Reviewed
Articles from journal articles and conference proceedings on human

factors in computer programming were selected for power analysis.
Technical reports and theses were not examined. This admittedly biases
the results somewhat, since unpublished experimentation, especially that
never committed to paper, is often suspected to have low power.

The literature of controlled experiments on software complexity was,
notwithstanding the above, also omitted from the study. The reason is the
fundamental difference in the goal of this area for explaining variance in
human performance. 	Human factors experiments attempt to show that an
experimental factor has a significant effect on human performance. 	As

will be shown later, such a factor might typically account for 10 to 40%
of the variance. Software complexity, on the other hand, tries to predict
human performance as completely as possible. It typically can account for
60 to 80% of the variance.

Rules for Power Analysis
The rules for power analysis were as follows:
1. Only tests significant at p1.05 were examined even though other

marginally significant results were reported. 	This practice
further biases the observed power in an upward direction.
Further, power was computed using p=.05 even if a lower p was
stated. Only two-sided testing was used, even if the author(s)
used one-sided tests.

2. Only ANOVA F-ratios, t tests, and correlation coefficients (r)
were examined. 	Chi-square, binomial, and nonparametric tests
were ignored. 	No tests on differences in means 	(Duncan,
Newman-Keuls) were examined.

3. In ANOVAs, the significance of the overall mean and all
interactions were ignored. 	The latter were ignored because
interactions are not typically sought in most designs, are
difficult to interpret in the framework of this study, and often
could not be studied due to lack of information.

4. A maximum of 10 tests per experiment were analyzed for power. If
an article reported more than one experiment, it could have up to
10 tests included for each experiment. This was done to avoid a
bias in favor of experiments with many tests. The first ten
tests presented were analyzed.

5. Sufficient information had to be present to do the power
calculations (F-test: cell size, means; t-test: cell size; r:
cell size). For F tests, the mean square error often had to be
estimated from the expected value formula for F.

6. The test must have been on some aspect of human performance that
was 	measured under controlled experimental 	conditions.
Regressions between two variables, neither of which represented
human performance, were ignored.

All F and t test measures of effect size were converted to the square root
of percent variance explained to allow comparison with r (Cohen, 1977).

Reseal is 	 -
The total number of tests that were power analyzed was 122. The power

averaged .83; its standard deviation was .19. Only 36% of the tests had
power less than the recommended value of .80. The effect size, expressed
in terms of the square root of the percentage of variance explained,
averaged .44; its standard deviation was .14. The effect size data were
roughly normally distributed, though skewed slightly to the right. Using
Cohen's terminology of small (r=.10), medium (r=.25), and large (r=.50)
effects, 67% of the effects are medium up to large, and 28% are large
(Cohen, 1977). Using recommended medium effect size in pre-experimental
power analysis would appear to be quite conservative, since less than 5%
of the effects are less than medium.

Similar power analyses of other published literature have been done.
Comparison of this study with others is difficult because we calculated
effect sizes whereas others assumed various sizes and then determined the
power. When an effect size of r=.50 was assumed (the closest value to our
observed r=.44), the following were observed:
Study 	 Average Power 	Tests with power<.80
Chase and Chase, 1976 	.86 	 28%
Brewer, 1972 	 .78 	 29%
Katzer and Sodt, 1973 	.79 	 46%
It should not be assumed that actual effect sizes in these other areas are
as large as r=.50.

Conclusion
The power of tests in human factors literature on computer programming

is as high as that in other areas where power analytic studies have been
done. The original hypothesis of low power is incorrect. Ideally,
experimenters would begin to incorporate a power analysis into their
research planning. The distribution of (significant) observed effect
sizes, as given above, should assist this planning.

VARIANCE CONTROL
Individual differences in programmer performance are a major problem in

designing experiments. The ratio of best to worst performance for a group
of programmers is often claimed to be 10:1 or 20:1 (Grant and Sackman,
1967) (Curtis, 1980) (Dickey, 1981) (Curtis, 1981). This difference is
much larger than the 1.5:1 and 4:1 found for experts and intermediate
level users, respectively, in a text editing task (Card et al., 1983). It
should be noted that these large differences have been observed primarily
on debugging times.

If tests were available to predict these differences to some degree,
the predictions could be accounted for in the experimental design. The
experiment would then become more sensitive, i.e., better able to detect
true effect differences or to use fewer subjects. The appropriate designs
which account for tests (termed concomitant variables) are randomized
block designs and analysis of covariance (ANOCVA). The former uses the
concomitant variable to group subjects into relatively homogeneous blocks.
Each subject in the block is then randomly assigned to a treatment.
ANOCVA performs a regression on concomitant variable simultaneously with
an analysis of variance on the independent and dependent variables.
ANOCVA is, however, not likely to be useful for two reasons (Keppel,
1973). First, ANOCVA requires many assumptions be true for it to be
valid. Second, it is superior to randomized blocks designs only when the
concomitant variable is correlated r>.60 with programmer performance.
Since this is unlikely, randomized block designs would be preferred.

The results reported here are based on an examination of the same
literature used in the power study. Basically, I looked at regression
studies and experiments which had already attempted to account for
programmer differences. Space limitations preclude the inclusion of a
table which would allow direction examination of the correlations.

For professional programmers, months of programming experience has been
found to be a fair predictor for program reading and writing performance.
Correlations of .50 were found between the logs of experience and program
writing plus debugging time (Chrysler, 1978). Correlations of .45 and .78
were found between experience and program comprehension scores (Moher and
Schneider, 1981). They also found a multiple correlation of .62 between
experience plus number of computer science courses and program writing
time. 	Their high correlations must not be viewed too enthusiastically,
for they purposefully sought out very diverse groups of subjects. 	Higher
correlations are expected under such situations (Montgomery and Peck,
1982).

For professional programmers, there does not appear to be any good
predictor for debugging tasks. No significant correlations were found
between experience and debugging time in (Grant and Sackman, 1967).
Experience was not found significant on tasks of program comprehension,
modification, or debugging in (Sheppard et al., 1979). This result is
counter to the above findings of Chrysler and Moher and Schneider. They
did find the number of known programming languages and the number of
familiar FORTRAN concepts to be correlated with debugging performance for
professionals with less than 3 years experience. This result did not hold
for more experienced professionals.

For advanced computer science students, a number of highly predictive
measures appear to be available. In (Moher and Schneider, 19b1), multiple
correlations of .66 to .74 were found between program comprehension and
writing tacks and the regressors: number of computer science courses,
computer science grade point, and years of programming. The advantage of
these three regressors is that they are relatively independent.

-For beginning programmers, many regressors were tried in (Barfield et
al., 1983), (Lucas and Kaplan, 1974), (Mayer, 1975), and (Shneiderman,
1977). From the standpoint of having large correlation coefficients and
appearing in more than one study, the best regressors would appear to be
SAT-Math scores, college course grade(s) either in the introductory
programming course or in calculus or chemistry, and years of experience

t programming. Given that many beginning students today will have personal
computer experience, it should be included in any attempt to predict
performance.

For both professional and student programmers, a pretest is a possible
choice for a concomitant variable. If the experimental task is program
comprehension, one or more initial program comprehension pretests (the
same test(s) for all subjects) could be used as a concomitant variable.
Correlations between 3 modification task scores ranged from .31 to .60 and
between 3 modification scores and recall scores ranged from .39 to .49
(Shneiderman, 1977). Correlations between scores on reading and writing
tasks varied from .63 to .69. 	One disadvantage of pretesting is
additional resources invested in it. 	This may be especially so if
multiple pretests must be given to determine a stable level of
performance.

An alternative to any use of concomitant variables is repeated
measures, in which a subject is run under every experimental condition in
the experiment. The subject serves in effect as his or her own control.
While this approach may at first seem to be ideal, problems can and do
arise. Consult (Poulton, 1982) and (Greenwald, 1976) for details.

Conclusion
Methods have been discussed for reducing programmer variance through

the use of a concomitant variable for randomized blocking. Using these
results, it should be possible to increase substantially the precision of
experiments on computer programming. Very little effort is required to
sort subjects into relatively homogeneous blocks prior to random
assignment to experimental conditions. Given the wide range of research
from which these conclusions have been drawn. they should be regarded

SUMMARY
This study has examined the literature on human factors in computer

programming to study two aspects of programmer variance. The first was to
determine if the reportedly large differences in programmers caused
statistical tests to be of low power and effects small relative to noise.
This appears to be untrue. The second aspect studied was methods for
controlling for large programmer variance in experimental designs. A
number of promising concomitant variables were identified for randomized
blocking, which should be able to increase the precision of experiments in
this area.

ACKNOWLEDGMENT
This research was supported under NSF Grant IST 82-17440.

REFERENCES
Barfield, W., LeBold, W.K., Salvendy, G., and Shodja, S., 1983. Cognitive

factors related to computer programming and software productivity.
Proc. Human Factors Society - 27th Annual Meeting, 647-651.

Card, S.K., Moran 	T.P., and Newell, A. 	1983. 	The Psychology of
Interaction. nteraction. Erlbaum, Hillsdale, NJ, 469 pp.

Brewer, J.K., 1972. On the power of statistical tests in the American
Educational Research Journal. Amer. Educ. Res. J., 9: 391-401.

Chase, L.J. and Chase, R.B., 1976. 	A statistical power analysis of
applied psychological research. J. Applied Psychol., 61: 234-237.

Chrysler, E., 1978. 	Some basic determinants of computer programming
productivity. Comm. ACM, 21: 472-483.

Cohen, J., 1977. Statistical Power Analysis for the Behavioral Sciences.
Academic, New York, 474 pp.

Curtis, B., 1980. 	Measurement and experimentation in software
engineering, Proc. IEEE., 68: 1144- 1157.

Curtis, B. 1981. Substantiating programmer variability. 	Proc. IEEE.,
69: 846.

Dickey, T.E., 1981. Programmer variability. Proc. IEEE., 69: 844-845.
Grant, E.E. and Sackman, H., 1967. 	An exploratory investigation of

programmer performance under on-line and off-line conditions. IEEE
Trans. Human Factors Elec., 8: 33-48.

Greenwald, A.G., 1976. Within-subjects designs: To use or not to use?
Psychol. Bull., 83: 314-320.

Katzer, J. and Sodt, J. 1 1973. An analysis of the use of statistical
testing in communication research. J. of Communication, 23: 251-265.

Keppel, G., 1973. 	Design and Analysis: 	A Researcher's 	Handbook.
Prentice-Hall, Englewood Cliffs, NJ, 658 pp.

Mayer, R.E., 1975. Different problem-solving competencies established in
learning computer programming with and without meaningful models. J.
Educ. Psychol. 67: 725-734.

Moher, T. and Schneider, G.M., 1981. Methods for improving controlled
experimentation in software engineering. Proc. Fifth Int. Conf.
Soft. Eng., 224-233.

Montgomery, D.C. and Peck, E.A., 1982. Introduction to Linear Regression
Analysis. Wiley, New York, 504 pp.

Poulton, E.C. 1982. Influential companions: Effects of one strategy on
another in the within-subjects designs of cognitive psychology.
Psychol. Bull., 91: 673-690.

Sheppard, S.B., Curtis, B., Milliman, P., and Love, T., 1979. 	Modern
coding practices and programmer performance. 	Computer, 12: 	12,
138-146.

Shneiderman, B., 1977. 	Measuring computer 	program quality 	and
comprehension. Int. J. Man-Machine Studies, 9: 465-478.

154
	

IEEE TRANSACTIONS ON SYSTLMS, MAN. AND CVIM RNETICS, VOL. SMC-I6, NO. I, JANUARY/FEBRUARY 1986

Significance Testing of Rules in Rule-Based Models
of Human Problem Solving

C. MICHAEL LEWIS AND JOHN M. HAMMER

Abstract—Rule-based models of human problem solving have typically
not been tested for statistical significance. Three methods of testing rules
—analysis of variance, randomization, and contingency tables—are pre-
sented. Advantages and disadvantages of the methods are also described.

INTRODUCTION

Many researchers have used rule-based systems to model hu-
man problem solving [1], [3], [6], [7], [11], [12]. Typically, the
rule-based system has a large number of rules, each of which has
several free variables that were adjusted during the modeling
process. For the most part, significance testing of these rules has
not been much of a consideration. It should be. It is certainly
possible to describe N data perfectly with N rules using a trivial
model that simply reproduces the data. While there is no evi-
dence that this has happened in any of the research reported to
date. there is a certain danger of overfitting a rule-based model.

In this article we present three methods for testing the statisti-
cal significance of rules and other components of rule-based
models. Throughout this article we shall assume that the per-
centage of behavior matched (e.g., commands) is the performance
measure of interest. Two of the testing approaches, however, are
not limited to this measure. They may be used to study any
performance measure, though it may well be possible for a rule to
produce a statistically significant effect on one performance
measure but not another. The remainder of this article contains a
section on notation, three sections on testing by analysis of
variance, randomization, and contingency tables, respectively,
and two concluding sections on applicability of the various tests
and validity of these models.

NOTATION

A rule-based system consists of three toiliponents. The first is
a set of rules of the form IF condition THEN action. The meaning
of the rule is that if condition is true, then action could be taken.
For example, the following rules describe behavior at a traffic-
light-controlled intersection:

IF
	

in intersection 	 THEN proceed
IF 	yellow and arrival at intersection

before the light turns red
	

THEN proceed
IF
	yellow and arrival at intersection

after light turns red
	

THEN stop
IF
	green 	 THEN proceed

IF
	red
	

THEN stop
IF
	red and right turn 	 THEN proceed

Manuscript received April 5, 1985; revised August 12. 1985. This work was
supported by NASA-Ames Research under grant NAG 2-123.

The authors arc with the Center for Man-Machine Systems Research,
Georgia Institute of Technology, Atlanta. GA 30332. USA.

IEEE Log Number 8405909.

If this model can successfully match human behavior, then the
rules form a model of the human. Often, the rules are interpreted
as a model of the human's knowledge. Intuitively, the better the
model matches human behavior, the better the model.

The rules can be transformed easily into a computer program
as follows. First, control statements are added that cause the
program to examine the rules repeatedly and execute those whose
conditions are true. Second, in order to compare model and
subject actions, an input statement is added before the first rule.
This statement reads the state vector (e.g., the lights, the traffic,
short term memory) that was available to the human when his or
her decision was made. The program looks something like this the
following:

WHILE TRUE DO BEGIN

READ(STATE);

IF 	(in intersection)
	

THEN proceed
ELSEIF (yellow) AND (predict arrival at

intersection before light turns red) THEN proceed
ELSEIF (yellow) AND (predict arrival at

intersection after light turns red)
	

THEN stop
ELSEIF (green)
	

THEN proceed
ELSEIF (red) AND (right turn)

	
THEN proceed

ELSEIF (red)
	

THEN Stop

END:

The second component of a rule-based system is a conflict
resolution strategy. It selects the rule to execute when multiple
conditions are true. In the above example, a rank-order resolution
strategy was shown. It simply uses the first rule that matches. The
ranking of rules can then be interpreted as a subject's strategy.
Some other conflict resolution strategies include random selec-
tion, meta-knowledge, and backtracking. A random selection
strategy simply picks at random one of the many matching rules.
A meta-knowledge strategy has a higher level rule-based system
that chooses which rule to execute. A backtracking strategy will,
if necessary, try all possible matches. It should also be noted that
it may be possible to write the rule conditions so that there is
always exactly one rule that matches.

The third component of a rule-based system is the input and
internal variables. The input variables correspond to external
data. The internal variables correspond to human short-term
memory, which may be changed by the action part of rules. Both
internal and input variables are examined by the condition part
of rules.

Evaluation of Models

When comparing subject and model performance, the model is
usually run open-loop without any knowledge of subject actions.
In other words, the model can simply be treated as another
subject. When comparing subject and model behavior, the model
is usually run closed-loop as follows. The model has as input the
same state vector the subject saw. The model chooses an action,
and then it is recorded whether the subject and model agree.
Then the subject's action is used to control the system, and the
process repeats. The reason for always following the subject's
action is as follows. If the subject and model action differed and
both were used, then the state vectors would be unequal after
applying these actions. The model and the subject would then be
working on different problems, and a comparison of their actions
would make little sense.

The following sections on testing rule-based models will specify
ways in which the model will be modified and then run. The
typical modifications are to delete or modify one or more rules.
Running a model, perhaps in a modified form, means to compare
its overt behavior, (e.g., commands) to a subject's and determine
the percentage in agreement.

0018-9472/86/0100-0154$01.00 P1986 IEEE

ISLE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SNIC-16, NO. 1, JANUARY/FEBRUARY 1986 155

ANALYSIS OF VARIANCE

The analysis-of-variance approach is the simplest of the three
approaches for testing rule significance. To use it. each rule in the
model is equated with an independent variable. The meaning of
the variable is that at its high level, the rule is in. the model, and
at its low level, the rule is deleted from the model. The rule-based
model is then run 2' times (for each subject), which corresponds
to a run with each possible subset of rules present. It must make
sense for the model to do nothing, or else the model must he
augmented before testing with a special nondeletable rule that
applies when no other rule applies. The resulting data can then be
analyzed as an N-way factorial.

To economize on model runs, fractional factorial designs should
be used. The full factorial design, proposed above, will estimate
the effects of many high-order interactions that cannot occur. In
fact, the interpretation of an interaction is that the corresponding
rules interact. An example would be two rules, the first of which
stores some value in a temporary variable and the second of
which uses the temporary variable. Such rule interaction is com-
mon, but rarely do many rules interact. An inspection of the
rule-based model will reveal what interactions could occur. It
should be possible to create experimental designs which test only
the desired interactions.

The testing of condition components of rules is also possible.
In this case the reduction in error attributable to the greater
specificity provided by the additional condition can be evaluated.
Suppose, for example, that a significance test of each of the
conjunctive conditions of a rule is desired. For example

IF condition, AND condition 2 AND condition 3 THEN

Proceeding as before, three independent variables might be
equated. one with each of the three conditions. A three -way
ANOVA could be run to test each of the three clauses. It would
most likely be necessary to estimate the value of the response at
the point where all three conditions have been deleted from the
rule. Obviously, this process could be extended to cover all of the
conditions for all of the rules in the model.

The testing of groups of rules as a whole is also possible. To do
this, an independent variable is equated with several rules, not
just one as was done initially. The experimental interpretation is
that the entire set of rules is either present or absent from the
model during an experimental run. This pooling of rules corre-
sponds to a supersaturated experimental design and may be the
only economical means of testing models with many rules. One
logical choice for pooled rules would be interacting rules. Another
choice would be the modeler's organization of rules into groups
(e.g., S-rules and T-rules [6]).

Analysis of variance makes several assumptions, one of which
is that error residuals are normally distributed. Moderate depar-
tures from this assumption do not produce large deviations in
calculated and actual significance levels. If the normality assump-
tion is known or seriously thought to be incorrect, an approxi-
mate technique [4] may be used. Simply, the data are replaced
with their ranks, and the remainder of the analysis of variance
calculations remain unchanged. The significance levels produced
by this method are reported to be nearly equal on normally
distributed data to that produced by the standard F-test. The
rank transformation is more robust with respect to the distribu-
tion of the data, though it is not a distribution-free test. Finally,
the hypothesis being tested here is whether the presence of a rule
(or some other similar entity) explains a significant amount of
variance in the subjects' performance. This significance is inde-
pendent of the significance of other rules (or other entities) but
may be dependent on the conflict resolution strategy. It is im-
portant to note the hypothesis because the next section tests
somewhat different ones.

RANDOMIZATION

The second approach to testing a rule involves forming a
randomization distribution by randomly permuting a rule. Sup-
pose a particular rule is under test. Its action can be replaced by

a random action (e.g., a random number generator that chooses
commands according to a priori frequencies). The model, with a
single modified rule, can be run many times. Its matching perfor-
mances can be considered a randomization distribution. The
model in its unaltered form can then be run, and its resulting
performance be referred to the randomization distribution. If its
matching were higher than 95 percent of the randomly generated
values, the null hypothesis could be rejected at the five-percent
level (one-sided). The null hypothesis would be that a random
action would be as suitable as the proposed action in the rule
under test. The empirically determined significance level is partial
in that it is potentially dependent on all the other rules being
present in the model as well as conflict resolution strategy.

The condition part of a rule can be tested by a very similar
method. There is a minor difficulty in that a random number
generator in the condition part of a rule does not appear to make
sense. A solution would seem to be to create various mutant
conditions by randomly selecting condition clauses from other
rules in the model. The null hypothesis being tested here is that
random conditions are as suitable as the proposed condition in
the rule under test. The significance level attained is partial just
as the one obtained in testing actions.

An entire rank-order conflict resolution strategy may also be.
tested by randomization. Basically, a randomization distribution
of performances can be obtained by running all possible rank
orderings (or a Monte Carlo sample) of rules. The performance of
the model with the original rank ordering can be referred to this
distribution as above. The significance level obtained is depen-
dent on the rules.

CONTINGENCY TABLES

Contingency tables are used to analyze nominal data. If the
following is a rule-based model:

IF condition, THEN action,
IF conditiOn 2 THEN action ,

•

IF condition„ THEN action,,.

Then a contingency table may be set up as follows:

action, action , 	• • • action„

condition,

condition,

condition„
NOT (condition, OR...
OR condition„)

The last row in the table covers the conditions that are not
covered by any rules. The observed data fill the table in the
obvious way: for a given state vector and subject action, the
unique condition which holds is determined, and the cell under
the subject's action is incremented. A model that matched the
data perfectly would have all zero entries off the diagonal.

Certain restrictions must be met to employ contingency tables.

1) Conditions must be mutually exclusive (2 rules cannot fire
at the same time).

2) Actions must be overt.
3) Each action must be unique (2 rules cannot issue the same

action).

These restrictions may be met in a variety of ways. Mutual
exclusivity will be satisfied by any model containing conflict
resolution, rank-ordering, or disjoint rule provisions. The unique
action requirement may be accommodated by phrasing composite
rules in which constituent rules prescribing the same action are
joined by disjunction.

action, 	 action„

X2 = 1

X2 = 2

X2 = 1

X2 = 2

Delete

Delete

156 	 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. sic-l6. NO. 1, JANUARY/FEBRUARY 1986

The performance of the rules in matching the data can be
evaluated with a chi-square or similar tests. The hypothesis is
tested whether conditions and actions are independent. i.e..
whether there is a significant difference between the proportions
given the rules and the overall proportions. As a consequence,
rules containing infrequently used actions receive more latitude
using these tests than they do under a simple percentage of
commands matched measure.

Testing a set of rules is also possible as follows. The null
hypothesis is that there is no relationship between the action and
the conditions aside from the relationship that is already de-
scribed by the existing rules. Consider the test for the rule:

X1 -= 1

X1 = 2

Two statistics are computed. The first is a maximum likelihood
estimate of chi-square (G 2) for the complete table. The second is
a test of quasi-independence pj for a reduced table in which cells
corresponding to rule(s) under test are excluded. This corre-
sponds in the preceding table to one cell per row for conditions
covered by the rule(s). If the original G 2 is significant and the
quasi-independent one is not, this implies that the rules capture
the dependency of the actions on the conditions. While attractive
in directly referencing observables, this method requires large
samples with replications of observed combinations of variables.
(Unobserved combinations are treated as structural zeros.)

Other Statistics

A nonparametric analog to the coefficient of determination R 2
 is Th [8], which may be used to determine the percentage of

variance explained in the actions by a rule or rule set. Thus

1

To, 	 1

= table entry in row, , column,

x +,=Ex,,

N = total number of observations.

Individual rules, the disjunction of rules issuing a particular
action, or the complete rule set consolidated into disjunctions by
action can be evaluated in this way. If uncovered observations are
excluded, r,, may be interpreted as the extent to which actions
covered by the rule are explained. If all observations are present,
a N + 1st category should be formed following the distribution
of the uncovered actions. This Th is interpretable as the extent to
which rules explain all the actions.

Values of Th are asymptotically related to x 2 , allowing signifi-
cance testing. Thus

(N — 1)(I — 1)r,,.

This statistic tests the hypothesis that r,, = 0, corresponding to
the premise that there is no relation between conditions and the
actions prescribed by the rule(s).

A similar statistic proportional reduction in error (PRE) [2]
measures the reduction in error achieved by predicting actions
based on the rules rather than assigning the modal action under

all rules and is given by

E p,„1-P+.,

	

PRE — 	I

1 — P 4.„,

where

	

P,„, 	max(P, i)

P = max(P.i)

Pei = Nu/N.

As demonstrated by this potpourri of procedures, a unified
technique for testing rule significance based on multinomial
sampling is yet to be developed. PRE answers the pragmatic
question of gains in prediction. The quasi-independence proce-
dure provides its complement by testing for unmodeled con-
sistencies. Rules can be simultaneously tested in a contingency
table but their contributions to rule set performance will remain
unknown. 7., allows both significance testing and estimation of
effects but cannot evaluate rule set performance without pooling
rules by action.

APPLICABILITY OF VARIOUS TESTING METHODS

For testing the degree to which a model's behavior matches a
subject's, all three methods will work. A contingency table is
clearly the best, however, since it requires the minimum in
computation. Randomization is clearly the worst technique be-
cause of the large amount of computation and the partial signifi-
cance levels it produces. A fractional factorial ANOVA is clearly
superior to randomization on both of these points. ANOVA and
randomization can both be used to test rules that modify internal,
unobservable states. Contingency tables cannot.

For testing overall performance measures, (e.g., time to solu-
tion, total errors) only randomization and ANOVA are suitable,
with ANOVA preferred. Ordinarily, much more emphasis is
placed on behavior than on performance, since behavior is much
more difficult to model. There are situations in which testing
hypotheses about both performance and behavior is desirable.
One might want to show that a certain set of rules will affect
behavior but not performance. For example, Morris and Rouse
[10] have observed that theoretical training given process control
operators often fails to change their performance. It would be
interesting to test this concept analytically in a rule-based system.
For example, a group of rules might be identified as the intended
consequences of theoretical training. The model might be run
with and without these rules, using ANOVA to evaluate perfor-
mance measures and contingency tables to evaluate behavioral
differences.

The randomization method can be used on two hypotheses.
The first, and more important, is to test the significance of a rank
ordering of rules. This would seem to be the only way to test this
type of resolution strategy. The second use is to test the hypothe-
sis that part of a rule performs no better than random. This test
would seem to be of little use, since ANOVA can test nearly the
same hypothesis.

VALIDITY

The previous methods arc generally devoted to evaluation of
rule performance and do not address the issue of rule validity.
Just as a high R 2 does not imply that all terms of its regression
equation are significant, a high r,, does not vouchsafe for the
future predictiveness of its rules. This distinction becomes im-
portant in the identification phase of rule-based modeling. Unlike
identification based on parameter estimation, the identification
of rules requires a search of the space of possible rules. An
inductive pattern matcher must consider a large number of
potential rules. In evaluating identification it becomes necessary

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 1, JANUARY/FEBRUARY 1986 157

S rules
size of
rules

generate
rules

X - (010000)
X - (100011)
X - (110010) generate

stimulus
data

X 1 & x2 • 1 data
to make

apply rules to
S giving (S,R)

(0 10000) ,01
(100010,0]

((110010),11

permute a fraction
r of the response

[(010000),1)
((10001),0)
[(110010),1)

'rule Induction
program

x2 	1

compare
rules

r, which is the
error rate

4
Fig. 1. Block diagram for rule induction with an example output from each

block.

to account for the probability of finding rules of comparable
quality by chance. To answer this question the structure of the
event space (observed combinations of condition variables), dis-
tribution of actions, and extent of search (set of possible rules)
must be considered simultaneously.

Filbert and Christensen [5] refer to this problem as contrived-
ness: "... the tendency of a search procedure to uncover ap-
parent patterns where none exist." They suggest a randomization
test for measuring the extent to which a search procedure un-
covers contrived rules. The data consist of many pairs of state
vectors with subject responses. The state vectors are left undis-
turbed, but the responses are randomly permuted. The resultant
permuted data has reasonable state vectors paired with random
responses. Contrivedness is the degree to which the search proce-
dure can make sense of this random data. When many permuted
data sets are searched, the search procedure results from a
randomization distribution against which the results from the
original, unpermuted data can be referred. While the previously
mentioned randomization test will give an idea of how opportu-
nistic the search procedure is, it does not say how to refine the
search procedure so as to avoid contriving rules.

CONCLUSION

This article has identified several ways of testing a rule-based
model of human problem solving. The amount of testing seems to
be on a par with the size of the model. Left unresolved for the
most part was the problem of contrivedness of automatic rule
identification. It seems fitting to close with the description of an
interesting and difficult question in identification of rules. As
stated earlier, many cognitive models have been built using
rule-based models. Sometimes these models are built when the
investigator has access to the subject's thinking. This is always
the case in developing a rule-based expert system. Other investi-
gators, particularily those running experiments with humans, may
have only the data (i.e., commands) to examine.

An important theoretical question is the limits to identification
of rules from data that contain response errors. While there has
been work in machine learning, it does not seem that anyone has
examined this question [9]. It does seem important, because it
bears on our ability to construct models. This problem also seems
to be very difficult to solve formally. Hence, a preliminary
investigation could be done via simulation, as shown in Fig. 1.
Basically, the approach is to generate some rules and some
random stimuli, apply the rules, add noise, and try to identify the
rules from the noisy data.

The following would seem to affect identification:

1) the amount of data and its coverage of the stimuli domain,
2) size and number of rules,
3) the number of times a rule fires, and
4) the level of noise.

It might also be interesting to investigate the addition of oracle
variables in rule identification. An oracle variable is an extra
variable (beyond the original stimulus vector) that provides infor-
mation that ordinarily is not available. The first oracle variable
might be a single bit to tell whether the response was in error.
Another set of oracle variables would identify which rule fired.
Yet another set of oracle variables could identify the variables
that are part of the rule that fired. While these oracle variables
may appear to be practically giving the solution to the identifica-
tion program, they do not. These variables would be treated the
same as any of the real stimulus variables. The identification
program would have to infer the meaning of these variables in
order to make use of them.

While it does appear theoretically interesting to determine how
much oracle variables can add, there are important practical
benefits as well. Oracle bits could approximate the hunches of a
human investigator. For example, the investigator may suspect
certain data to be in error, a certain rule to have fired, or that
only certain variables could be influencing the operator's decision

158
	

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 1, JANUARY/FEBRUARY 19f

(from a verbal protocol). These hunches are a second order
human-machine system: the investigator's attempt to identify
(with a program) the rules of the human in the first-order
human—machine system.

REFERENCES

J. R. Anderson, The Architecture of Cognition. Cambridge, MA:
Harvard, 1983.

[2] Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multi-
variate Analysis: Theory and Practice. Cambridge, MA: MIT, 1975.

[3] S. K. Card. T. P. Moran. and A. Newell, "Computer text editing: An
information processing analysis of a routine cognitive skill," Cognitive
Psychology, vol. 12, 1980.

[4] W. J. Conover, Practical Nonparametric Statistics, 2nd ed. New York:
John Wiley, 1980.

[5] R. F. Eilbert and R. A. Christensen, "Contrivedness: The boundary
between pattern recognition and numerology," Pattern Recognition, vol.
15, no. 3, 1982.

[6] R. M. Hunt and W. B. Rouse, "A fuzzy rule-based model of human
problem solving," IEEE Trans. Syst, Man, Cybern., vol., SMC-14, no. 1,
1984.

[7] A. Knaeuper and W. B. Rouse. "A rule-based model of human problem
solving behavior in dynamic environments," IEEE Trans. Syst., Man,
Cybern., vol. SMC-15, no. 6, Nov. 1985.

[81 R. J. Light and B. H. Margolin, "An analysis of variance for categorical
data," J. Amer. Statistical Association, vol. 66, 1971.

[9] R. Michalski J. Carbonell and T. Mitchell, Machine Learning., Palo Alto,
CA: Tioga, 1983.

[10] N. M. Morris and W. B. Rouse, "The effects of type of knowledge upon
human problem solving in a process control task," IEEE Trans. Syst.
Man, Cybern., vol. SMC-15, no. 6, Nov. 1985.

[11] A. Newell and H. A. Simon. Human Problem Solving. Englewood
Cliffs, NJ: Prentice-Hall, 1972.

[12] W. B. Rouse. S. H. Rouse, and S. J. Pellegrino, "A rule-based model of
human problem solving performance in fault diagnosis tasks," IEEE
Trans. Syst. Man, Cybern., vol. SMC-10, no. 7, 1980.

.7r

GEORGIA TECH 1385-19115

DESIGNING TOMORROW TODAY

January 29, 1986

Georgia Institute of Technology
School of Industrial and Systems Engineering

Atlanta, Georgia 30332-0205
(404) 894-2300

Ms. Lynn Boyd
Office of Contract Administration
Campus

Dear Ms. Boyd:

This letter and its attachments are a progress report for the period
January 1984 to January 1985 for NSF IST 82-17440 (E24-616). Please
arrange to forward it to the appropriate official at NSF.

The remainder of this letter describes the technical aspects of the
work performed. The actual period might more properly be considered June
1984 to January 1986, not the one stated above. The remainder of this
letter will briefly weave together a background for these articles, which
are:

Hammer, J.M., Significance testing of the keystroke-level model,
submitted for publication.

Lewis, C.M. and Hammer, J.M., Significanst testing of rule-based
models, to appear in IEEE Trans. Systems, Man, and Cyberentics,
1986.

Hammer, J.M., Inference of rule-based models: A research prospectus
(a concept paper to interest funding agencies).

As an overview, a concern for methodology has been the primary

focus during the period covered. Along this line has been

1. reexamination of the statistical validity of a seminal work in
human-computer interaction,

2. the development of several methods of testing rule-based models
of cognition,

.3. a novel way of looking at the problem of identifying rules, which
is interesting both as computation-and cognition.

An Equal Education and Employment Opportunity Institution 	 A Unit of the University System of Georgia

The first article, ("Significance testing of the keystroke-level

model"), is a reexamination of Card, Moran, and Newell's keystroke-level

model. Their approach to predicting the time for a task is to break it

into subtasks, determine the time for each type of subtasks, and then add

the appropriate number of subtask times. This approach is basically a

linear model; the most common way of testing such a model is to use

multiple linear regression, which the original authors did not use. The

attached article describes multiple linear regression testing of the

model, which gives greater ability to test hypotheses about the model.

The conclusions the authors originally drew do not appear to be as strong

under this more powerful form of testing.

The second article, ("Significance testing of rules in rule-based

models of human problem solving"), describes three methods for testing

rule-based models of human problem solving. Many researchers have built

such models that fit the data overall. There has not been any testing on

individual rules to determine if each contributes to model fit. As the

article shows, testing is very straightforward, for it uses conventional

statistical methods (i.e., ANOVA and fractional factorials,

randomization, and Chi-square).

The most interesting part of the second article (appears in the

conclusion) is the concept of rule identification. This is developed

more fully in the third paper ("Inference of rule-based models").

Although significance testing can show that a given rule is statistically

significant, it cannot show that the given rule is identical or close to

one used by the observed process. A model containing rules equal that of

an observed process would be more scientifically interesting than a model

whose rules were only statistically significant in mimicing the process

behavior. The approach of rule identification gives rise to three

problems, one in computational theory and two in cognitive science. The

computational question is first, how to identify a rule-based model that

uses a finite amount of unobservable memory. In addition, it is important

to determine the distance between the estimated rules and the process

rules. This distance likely depends on a large number of factors such as

the amount of data, the amount of memory in the process, the noise, etc.

The first cognitive question is the use of the above algorithm to

identify an expert's method of performaing an interactive task. The second

cognitive question is how to modify the algorithm to make it identify rules

as humans do. More specifically, what cognitively plausible limitations

can be placed on the inference algorithm so that its inferences are similar

to those of a novice user. The user's task is to use some interactive

device and to form a mental model of its behavior. The inference method

would observe the same data as did the human and would form a rule-based

model of the interactive device. The human's rules and the inference

method's rules would then be compared. An overall goal of this research

would be to study mental models in a more objective way.

To conclude, there is a validity theme running throughout this work.

It begins in statistics and ends in identification and cognition. I am

quite excited by the ideas contained in the third article. I hope you

find them interesting.

J 	Hammer' --
sistant Professor

INFERENCE OF RULE-BASED MODELS:
A RESEARCH PROSPECTUS

John M. Hammer
Center for Man-Machine Systems Research

Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

This proposed research is concerned with using an inductive rule

inferencer to identify and model a human who is operating or learning a complex

interface. It is proposed first to modify an existing induction program

[Michalski 1980] so that it can infer rules using variables beyond those

provided as input to it. These hidden variables correspond either to human

short-term memory or a mode in a complex interface. The second part of the

proposed research would use the rule inferencer to build a rule-based model of

an expert who is using a complex interface. Specifically, the model would

predict how the expert chooses an editing method. The third part of the

proposed research would use the rule inferencer as a model of how a novice user

builds a rule-based mental model of a complex interface. The rules produced by

the inferencer, which would also be attempting to build a rule-based mental

model of the interface, would be viewed as optimum. These optimum rules would

be compared to the user's rules in order to detect systematic biases. These

systematic biases would be used to modify the inductive identifier to make its

rules more like the user's. A suitably modified inductive inferencer could

then be considered to be a cognitive model of human learning.

INTRODUCTION

Given a set of data, how might the mechanism producing that data be

determined? One of the most frequently used mechanisms in modeling human

problem solving is the rule-based model (e.g., [Anderson 1983], [Newell and

Simon 1972], and [Rouse 1980]). Many rule-based models have been built, but

there has been little consideration of using an inductive rule inferencer to

construct these models. The potential benefits of using an inferencer include

speed, problem size, objectivity, and testability. As for speed and size, an

inductive rule inferencer can probably analyze a large data set faster than a

human. An important advantage of an inference method is its objectivity.

While results can be tailored to some extent by limits on inputs and the form

of allowed inferences, the results are repeatable. It should be possible to

test the inference method to determine if it is capable of structure recovery.

The remainder of this section contains a description of the domain to be

studied and a description of the inductive inference problem. The remaining

sections of the paper are on:

- the inductive inferencer and the changes needed to make it usable on
the problems in the proposed research.

- how the inferencer will be used to study the expert's choice of
method.

- how the inferencer will be used to model the novice's acquisition of a
mental model.

- the relationship of the proposed research to that of Ohlsson and
Langley, VanLehn, and Tatsuoka.

- a conclusion.

A Description of the Domain Being Considered

There are three general characteristics of domains to which this

methodology could be applied. The first is that the system be essentially

2

discrete. A discrete system has discrete inputs, states, and outputs. In

contrast, the topic of most work in mental models is on analog systems:

motion, heat, and electricity, [Gentner and Stevens 1983]. A second

characteristic, which is implied by the first, is that there is a rule-based

description of the system. This means only that the system behavior can be

described by a rule-based system, which is theoretically equivalent to whatever

means are used to implement the system. Third, the discrete inputs may be
•

relatively large in number. The implications for induction of this are

discussed later in this section.

Any system that has these characteristics could be used as the domain to

test the inference methods. Some examples are interactive computing, operating

a complex, discrete device such as a telecommunication system, or fault

diagnosis of a complex system.

The domain proposed is interactive computing, specifically text editing.

Both experts and novices will be studied. The expert task is choosing from a

large number of commands available that could accomplish the expert's goal

[Hammer and Rouse 1982]. For example, suppose the goal of positioning the

editor to another point in the text. Some possible methods include using a

search string, scrolling the display and looking for the target, counting the

relative distance to the target, pointing with a mouse, etc. Within each of

these methods there may be sub-methods that represent different strategies

(e.g., different search strings). The choice of positioning method may depend

on display variables, previous methods used, and characteristics of the text.

The research goal would be to infer a rule-based model of the expert's choice

of method. Furthermore, the inferencer would be constrained to produce rules

that were cognitively plausible, a topic developed further in a later section.

3

The inferencer will also be used to study the way a novice understands a

text editor. By understand, we mean finding out if the user knows what the

editor will do in response to a specific sequence of keystrokes (e.g., ESCAPE A

RETURN). We shall not be concerned with whether the user can use the

knowledge, even though this is an important question. The research goal would

be to modify the inferencer (in cognitively plausible ways) to produce rules

that are similar to the novice's.

A Description of the Inference Problem

The phenomena to be modeled is described formally as follows. There is a

chronological sequence of data. Each datum contains an input (stimulus) and

response. The input is a vector of discrete variables. The response is a

single discrete variable.

<I 	I12 ,..., I 	R1>
11' 12" 1N' 1

•

•
•

<Imi , Im2 ,..., ImN , Rm>

The inference problem is to build a rule-based model that would produce the

sequence of responses from the sequence of inputs. It is often the case that a

rule of the model depends only on some subset of the input variables.

Furthermore, a rule may depend on unobservable memory variables. These memory

variables may be changed by other rules in the model.

The formal view of the problem is applied to modeling the expert's choice

as follows. The inputs are the variables displayed to the expert. The

response is the expert's chosen method or command. The unobservable memory

variable is the expert's goal. The problem is to build a rule-based model that

4

predicts the expert's responses from knowledge of the inputs. Note that the

rules will make explicit how the unobservable variables are used and changed.

The formal view of the problem applied to novice learning is as follows.

The input vector corresponds to the values displayed to the novice plus the

input command entered by the novice. The response is the response of the

interface to the command. The unobservable memory variables correspond to the

modes and settings of the interface that are not displayed to the user. The

inference problem of the novice is to identify a rule-based model of the

interface. The research problem is to modify a computer-based inferencer so

that its inferences are similar to that of the novice.

THE INDUCTIVE RULE INFERENCER

The motivations for using an inductive rule identifier include speed,

size, objectivity, and testability. The latter two are important

considerations from a methodological point of view. The use of a rigorous

inference method would tend to remove subjectivity from the construction of

rule-based models. For the most part, rule-based models have been built by

humans using subjective inference from verbal protocols or the raw

input-response data described earlier. While using subjective methods does not

mean that its results are incorrect, an objective method is preferable. An

additional advantage of an objective, computer-based method is that it would be

usable in intelligent CAI courseware.

Testability is an additional advantage of an objective rule inferencer.

Its ability to identify rules may be measured. In the section on identifying

expert's rules and in Appendix A, a plan for testing structure recovery is

5

outlined. This plan, summarized briefly, would determine the extent to which

the inferred rules would approximate the actual rules.

Inferencer Requirements

Three major requirements are made of an inferencer to be used in this

research. First, it must be capable of identifying rules using few of the

input variables when many potential variables are available. The reason for

this is that realistic interfaces have a large number of variables, of which

only a small number are important at any one time. A second requirement is to

infer the use of memory. As described earlier, memory is a part of both

interfaces and expert human operators. A third requirement is either that the

inferred rules be in a cognitively plausible form or that the inference process

be cognitively plausible. The specifics of this are deferred until the

sections on expert and novice research. For the most part, the changes

required by cognitive plausibility to the inferencer are relatively minor.

Michalski [1980,1983] has developed INDUCE, a practical algorithm for

identifying input-output relationships from data. This algorithm can find

rules involving few variables even when there are many input variables from

which to choose. It cannot infer missing variables (e.g., the use of short

term memory). 	Thus, it would have to be modified to do so. The remainder of

this section degcribes how that would be done.

Modifications to INDUCE

The basis for adding an observable variable to a model is a choice between

two models. One way of choosing between two models would be to select the one

whose structure is closer to a known, a priori structure. One alternative when

there is no known, a priori structure (' e.g., no known memory limit) is to

select the simpler model. The remainder of this section describes how the

6

current version of INDUCE would respond to data that depended on unobservable

variables. It will also be obvious how to take advantage of this.

Suppose that INDUCE is attempting to identify a rule-based process that

depends on one unobservable memory that may contain any one of a finite set of

symbols. Since this unobservable is unavailable to INDUCE, it will search the

input space for other variables whose random variables just happen to explain

the data. Thus, the inferred rules will be the conjunction of an excessive

number of clauses. Each rule explains only a relatively small number of the

observed data. On the other hand, if the unknown variables were known to

INDUCE, there would be fewer rules, each of which would cover more of the data.

Thus, successful identification of unobservable variables will result in a

simpler model.

To estimate the unobservable variable, the following process would be

used. First, produce an inferenced rule set from observable-only data. This

rule set would have the characteristics described above. Then, form an

augmented set of data by the following clustering process. Label each datum

with the rule(s) that cover that datum. Find the median distance from a given

rule to every other rule in the data, where the distance between two data is

the time or number of chronological steps between them. The result of this

will be a matrix of inter-rule distances. Cluster analysis can then be used to

group the rules. Finally, each datum is augmented with one additional nominal

variable: the cluster that covered that datum. The cluster, which is based on

chronological proximity, is assumed to correspond to an operator's goal. The

resultant augmented data is reanalyzed with INDUCE.

Note that the number of clusters is a free parameter in the above

procedure. It would be varied to produce the maximum simplification of the

model.

7

EVALUATION ON EXPERTS

The first use of the inferencer will be to build a rule-based model of an

expert who is using a text editor. As stated earlier, the editing task to be

modeled is the choice of method. The issues that are relevant to this research

are the nature of cognitively plausible rules and the structure recovery and

significance testing.

Cognitively Plausible Rules

The basis for cognitively plausible rules comes from our understanding of

skilled performance. The following are usually held characteristic of an

expert.

1. The expert can recognize patterns in the input.

2. Small differences in the input are recognized and taken advantage of
to produce superior performance.

3. Backtracking and problem solving do not occur (at least for the tasks
considered here).

4. A decision may be based on a large number of inputs, which have been
organized into patterns to reduce memory load. The number of
patterns used in a decision, however, is probably small. The patterns
are not known a priori, unfortunately.

5. While there is pattern recognition in the expert, there are some cues
that the expert would not use because they would take too long to
calculate. For example, an exact distance is a cognitively
implausible cue, though an estimated distance is not.

6. The activation of a previously used method may remain high enough to
cause it to be reused.

The leap from the basis to the limits on rule form is somewhat tenuous.

Following are the limits and their justification (if necessary).

1. A rule may depend on a goal, which is an unobservable memory variable.

2. A rule may use only a limited number of inputs. The limit is larger
for an expert than a novice.

3. If the input is represented at a higher level than the raw input, then
the patterns must be cognitively plausible to compute. Basically,
this is a question of how to represent the input to the inferencer.

8

Ideally, we would like to infer a representation level, but it is not
clear how to do this.

4. The rule may use only simple pattern matching. There is no
backtracking.

5. The rule may depend on the previous action.

Additionally, a rank-ordered conflict resolution strategy will be used. This

is mostly a result of how the inferencer produces output. It would not be easy

to change this. Finally, it would be desirable to be able to input hunches

that certain decisions depended on certain variables. The sources of these

hunches could be verbal protocols or eye tracker data. The only modification

to INDUCE would be to bias it in favor of certain variables.

Significance Testing/Structure Recovery

Appendix A describes a significance testing/structure recovery problem in

rule-based system identification. The problem is that after a set of rules has

been identified, either by a human or by a program, it is still unknown how

close the estimated rules are to the actual rules. The appendix describes an

ambitious program for testing the effects of a wide variety of factors on the

success of rule identification. To reduce the scope of that program, the

following local testing is proposed. Suppose as a part of the research

previously outlined that a three rule system is identified from 67 data, where

each datum has an input vector of length fifteen. Then, the ability of the

rule inferencer to identify rules would be tested under exactly those

conditions. Several hundred simulations would be run with 67 data, each with

input of width fifteen. The known, a priori rule sets would consist of two,

three, and four rules. The rules used would be both similar and dissimilar to

those originally identified, to determine if the inferencer was sensitive to

such changes. This procedure would give a local measure of the capabilities of

the rule inferencer.

9

INDUCTIVE RULE INFERENCE AS A MODEL OF RULE-BASED MENTAL MODEL FORMATION

This section proposes modeling the human who is learning a new, complex

interface as an inductive inferencer. Viewed generally, this is clearly what

the human is doing: attempting to ascertain the general operation of the

interface from the specifics of a sequence of situations. A case could easily

be made that inference is the human's preferred way of learning. Humans seem

to prefer examples to explanatory text in documentation, at least for initial

learning.

In this problem we want to concentrate on how the human forms a mental

model. Our definition of mental model is the ability to predict the operation

of the interface. Specifically, this means describing or displaying the

interface to the user, telling the user what the next command is, and asking if

the user knows what the response will be. Of course, there are other

definitions of mental model. This is not to say that ours is right or wrong,

only that it is the one used here. Furthermore, it may be that the user has

internalized the operation of the interface (to the extent that the above

questions can be answered) but still cannot use the internalization. This

problem is not considered here.

The role of the inductive rule inferencer would be to serve as a model of

the human. The inferencer would have access to the same data as the human. By

using the inferencer, we expect to find systematic differences between its

rules and the human's. These differences are due to differences in the

inference methods of the inferencer and the human. Inititally, the inferencer

would not serve as a suitable theory of how the human infers a mental model.

We intend to incorporate the systematic biases into the inferencer to make it a

suitable model of rule-based mental model formation. The biased inferencer

would then produce the same kind of rules as would humans. The remainder of

10

this section describes the kinds of cognitively plausible biases that might be

incorporated into the inferencer.

Cognitive Bias in Induction

A number of cognitive biases in inference are presented and justified

here. Some of them will clearly occur and some are merely plausible. In other

cases there may be support for inference limits for certain kinds of

constructs, but it may not be clear what form the limits take.

The first bias would be to limit the data available to the inferencer.

INDUCE normally uses all of the data to infer rules. A plausible cognitive

limit would be to use only the K most recent data, where K is relatively small.

This limit would be consistent with what humans could retain in memory.

A second bias would be to limit the number of input variables in the data.

For example, the input might contain ten variables. The induction process

might be constrained to use only four of these; the others are ignored. While

this kind of limit is almost certainly present in humans, it is difficult to

model unless the four variables are known. It may be possible to use the

display salience of the variables to choose the limited set that are attended

to.

A third bias would be to expect rules to depend on surface variables

rather than complex patterns built up out of surface variables. This is simply

the complement to the expert's ability to use patterns.

A fourth bias is to expect rules to use only a small number of variables

(three or four). This limit would be lower than that of the expert.

A fifth bias has to do with unobservable variables. Unfortunately, it is

difficult to say what form this bias might take, although it seems certain that

humans will have difficulty with this kind of inference. Of course,

11

discovering this phenomena or incorporating it into the model does not explain

i t.

To conclude, most of the inference limits proposed here are fairly simple:

there is a limited ability to make use of the data. Our intent is first to

gain more precision in describing these biases or, alternatively, to discover

new ones. Following that, the biases are to be incorporated into the

inferencer to form a cognitively plausible model of inference.

RELATED WORK

Ohlsson and Langley [1985], VanLehn [1983], and Tatsuoka [1985a,b,c] have

conducted related research in the use of inductive or statistical inference in

identifying models of arithmetic subtraction errors. The remainder of this

section first briefly discusses their research and then discusses the

differences between theirs and ours.

Ohlsson and Langley [1985] have studied automated diagnosis of subtraction

bugs. Their program DPF searches for a sequence of intermediate states (a

path) between the initial problem formation and the given student solution,

which may be correct or incorrect. The search is best-first, where best is

determined by an evaluation function. This evaluation function is intended to

take cognitive plausibilty into account. For example, it will not compute

intermediate results that are never used, nor will it compute intermediate

results twice. Its heuristics include minimizing memory due to the number of

intermediate results, satisfying previously established goals and in the

preferred order, achieving maximum satisfied subgoals per step, and minimizing

the length and number of errors of the inferred path.

VanLehn [1983] has built a program that learns how to subtract from seeing

worked examples. The program is given a sequence of ten lessons, each of which

12

teaches a different facet of subtraction (e.g., borrow, borrow from zero,

etc.). The inductive part of the model constructs program that correctly solve

the examples. Some of these programs contain systematic bugs, which are the

result of improper, though plausible inference.

The execution of the programs produces buggy subtraction. The bugs

exhibited by the program at various lesson points are collected into a large

set. This set and the set of systematic bugs produced by students exposed to

similar lessons are compared.

Tatsuoka and her colleagues [1985a,b,c] have developed statistical

clustering techniques for classifying errors according to known bugs.

Basically, there are a set of features to classify a problem worked

incorrectly. This is input to a cluster analysis, which groups a number of

solutions by these features. If a student sometimes uses a buggy rule, then

there will be a cluster of responses that can be traced back to that rule. The

advantage of this statistical approach is that it is insensitive to

nondeterministic bugs.

Relationship of Proposed to Existing Research

The strongest connection between the two are the concepts of cognitive

plausibility. These limits are used in the justification for limitation on

search and induction in VanLehn's and Ohlsson and Langley's work. On the other

hand, subtraction bugs seem to be limited to subtraction. Repair Theory [Brown

and VanLehn 1980] describes how a buggy procedure might be modified to run when

it does not quite fit the problem. It is not clear what there is to be

repaired when the novice is forming a mental model. There may be an

opportunity for repairs when the user recalls how the interface works. If the

recall provides only a partial answer, repairs may be made to fill in the

unknown. If the repairs are similar to Repair Theory, then it may be that the

13

mental model has a knowledge representation like a procedure. If the repairs

are different, then there is evidence for a separate representation for mental

models.

The weakest connection between the proposed and existing research has to

do with the problem domain. The following table summarizes the differences

between subtraction and human-computer interaction.

Attribute

Subtraction

Human-Computer Interaction

Previous research

Problem
characteristics

Much-bug libraries

Highly positional
Small number of inputs
One correct solution

method
No feedback on errors
Solution unknown to

student

Very little-exploratory
research-problem space
uncertain.

Somewhat positional
Large number of inputs
Several solution methods

Partial feedback on errors
Text solution known to user

User
	

Problems disappear
	Problems remain

with maturation

Memory
	 Use of memory is
	Identification of memory

closely related to 	use is more removed from
the problem 	 problem and more difficult

Data
	 Temporally sparse 	Temporally dense

Finally, there is a small but important difference in the research

question. The existing research is concerned with bugs in a procedure. The

proposed research is concerned with novice understanding of the underlying

model. If the proposed research were to be done on subtraction, the question

would be whether the novice understood the positional number system.

14

CONCLUSION

The proposed research has three noteworthy features. First, it

investigates human interaction with a complex interface, an area that is

generally recognized to be of considerable importance. Second, it uses an

objective methodology — inductive rule inference — to study both expert and

novice behavior. Third, the models built a cognitively plausible, not just ad

hoc mechanisms for data explanation.

The plan is to use a 36 month period as shown below:

months 	 description
6-9 	 modifications to INDUCE
12 	 model of an expert
12-15 	 model of a novice

The estimated annual budget for this project is $110,000.

15

APPENDIX A

A THEORETICAL INVESTIGATION INTO RULE IDENTIFICATION

To study the problem of rule identification, a theoretical investigation

is proposed, which is summarized in Figure 1. A simple version of the process

is described here. It begins with a known set of rules. Input data ' (stimuli)

are then generated, and the rules are executed on the data to produce output

(responses). A few of these stimuli-response pairs are randomly chosen to be

errors; their responses are permuted. This noisy data is then given to a

rule induction program, which attempts to generate rules from data. Note that

this program has access only to the stimulus-response pairs, not to the

original rules. The output of the induction program is a set of estimated

rules. The original and estimated rules are then compared. Ideally, the two

sets of rules should be identical.

Table 1 lists a number of factors that would seem to affect rule

identification. For example, the amount of data has an effect on all inference

procedures. For this particular problem, the ratio of the number of data to

the number of rules may be more useful. Another example is the complexity of

the rules, both in their specificity and in their use of short-term memory.

Obviously, any rule that depends on short-term memory (a hidden mechanism) is

inherently more difficult to identify.

In principle, it might be possible to prove theorems on the effects on

identification by various factors shown in Table 1. In practice, these proofs

seem to be very difficult. Therefore, simulation will be used to examine

1 Throughout this prospectus the data are assumed to come from a human who is
operating (or repairing) a complex system (e.g., a computer, a communication
system, a malfunctioning engine). The stimuli are the variables that are
perceivable on the human-machine interface. The responses are the actions or
commands issued by the human.

known
original
rules

data

execute
rules
on data

add
noise

identify
rules

from data
(a perfect observer)

1
estimated

rules

compare original
and estimated

rules

Figure 1. Diagram of the rule identification problem

16

Table 1. Factors that potentially affect rule identification.

Data

1. The amount of data.

2. The distribution of data in the input space. If the input is viewed

as occurring in a multi-dimensional space, the degree to which the

space is covered uniformly (or alternatively clustered in some areas)

would seem to affect it.

3. Correlation in the data. If two input variables are correlated, then

there naturally should be difficulty deciding which one a rule should

use.

Noise

1. The level of noise in the data.

2. The structure of noise. Errors could occur for multiple reasons:

a. random

b. systematic - an incorrect rule is chosen for execution

1. cue missed (attention failed)

2. cue change missed (change expectation failed)

3. rule preconditions nearly match

4. rule had previously been chosen and had retained some

activity

Rules

1. The number of rules.

2. The complexity of rules. The number of variables and the number of

clauses.

3. The number of times a rule fires. A rule with very specific

preconditions may be difficult to identify, especially if the noise

were relatively strong.

4. The use of memory.

17

18

effects of these factors. The effects of the factors would be described in

terms of effects on confidence intervals.

Confidence intervals require a measure of distance between two rules. A

distance may be calculated as follows. Two rules may be compared if and only

if their right hand sides (i.e., the actions) are equal; otherwise, the rules

are incomparable. The distance between two rules is then the difference

between the two boolean functions in their left hand sides. Each of these two

functions can be expressed as a set of minterms according to the laws of

boolean algebra. The absolute distance between these two sets is the number of

minterms that they do not have in common. The relative distance is the

absolute distance divided by the total number of terms.

The distance between two sets of rules would be considered to be the sum

of the distances between individual rules that are paired under some between-

set matching. If it is not obvious how to match the rules, then the minimal

distance could be defined as the minimum across all possible matchings.

Important Theoretical Issues Related to this Study

There are several important theoretical issues that might be resolved by

the methodology to be developed. First, suppose a rule-based model can be made

to match much of the action-by-action data of a human, who is assumed to be

following a set of rules. Does a high degree of action-by-action matching

imply the model's rules are equal to the human's? The simulation evaluation

would tell us the conditions under which this is true.

The second question is whether rule-based models are appropriate models of

human problem solving. This issue occasionally receives intense debate. If a

rule inferencer which produces optimum rule sets is not too successful at

matching behavior, the appropriateness of this type of model would be in

19

question. Currently, we do not know the answer to this because the degree of

match can be controlled by the investigator's willingness to add additional

rules to the model. Adding rules will improve the degree of match but brings

the danger of an overfit model [Lewis and Hammer 1985].

The final question involves inference of a model of human error. Suppose

that the human's rules are complete and correct. A human error, then, could be

regarded as a failure in the control mechanism (or conflict resolution) that

selects a rule for execution. Many mechanisms have been suggested (see [Norman

1981,1983] for examples). It would be interesting to attempt to distinguish

inductively the various error mechanisms that were operating on a known set of

rules. This is inference of the control mechanism which presumably could be

approached in the same manner as inference of rules.

20

APPENDIX B

RELATED RESEARCH

Described below are two areas of research that are funded by NASA-Ames

Research Center. Dr. Everett Palmer is the grant monitor. Both of these are

supervised by Dr. Hammer. There is, of course, other research in the Center.

Aiding the Operator During Novel Fault Diagnosis

Human operators are often present in complex systems to diagnose novel

failures. Unfortunately, specific training and written procedures are

impossible for a novel failure because it cannot be foreseen. The research

problem is to design a computer aid to assist the operator in diagnosing the

failure [Yoon and Hammer 1985].

The aid contains two components: a qualitative model and a decision-

making bias recognizes. The qualitative model has a component level

representation of the device. This representation describes both the correct

mode of operation as well as several known incorrect modes of operation. The

operator's task is to determine the mode of operation of each component in the

device. This assignment of modes must both explain the failure symptoms and be

consistent. A consistent assignment obeys every constraint that a component

imposes on its neighbors. To a certain extent, the qualitative model is able

to solve this mode assignment problem, although the computation is

combinatorially explosive. Note that if a component fails in a mode not

described by the qualitative model, the operator will be able to extend the

model by adding a new description.

The decision making bias recognizers observe the operator's actions on the

interface. If a bias is detected (e.g., anchoring on an initial hypothesized

failure), the operator is alerted or warned about the problem.

The evaluation plan is to build a model of the Orbital Refueling System, a

21

shuttle payload for refueling orbiting satellites. This system is larger and

more complex than systems described by existing qualitative models.

Engineering students will then diagnose failures both with and without the

aid.

Using F=ma to Predict Aircraft Manuevering Errors

One approach to building an error monitoring system is to code an expert

system to watch for out-of-tolerance situations. The approach taken here is

different. To predict manuevering, deep knowledge is used. This knowledge is

the aerodynamic equations of motion (represented symbolically), which represent

the forces acting on the aircraft. The problem that is repetitively solved is

to determine if a constraint will be violated in the near future by a

particular control action the pilot might take. If not, other constraints and

other controls are considered.

If a problem could occur at a particular time, then this knowledge

represents a plan for avoiding constraint violation. In particular, this plan

solves a very sticky problem of when automation should take control from the

pilot. As time begins to run out, the pilot is warned about constraint

violation. At the last possible instant, automation takes over if the pilot

has not already solved the problem.

This approach using deep knowledge would seem to be more generable,

reliable, and verifiable than an ad hoc expert system.

22

REFERENCES

Anderson, J.R. 1983. The Architecture of Cognition. Harvard: Cambridge, MA.

Brown, J.S. and VanLehn, K. 1980. Repair theory: A generative theory of bugs
in procedural skills. Cognitive Science, 4.

Gaines, B.R. 1976. Behavior/structure transformations under uncertainty, Int.
J. Man-Mach. Stud., 8.

Gentner, D. and Stevens, A.L. (eds.). 1983. Mental Models. Lawrence Erlbaum:
Hillsdale, NJ.

Gold, E.M. 1967. Language identification in the limit. Inf. Control, 10.

Hammer, J.M. and Rouse, W.B. 1982. The human as a constrained optimal text
editor. IEEE T. Sys., Man, Cyber., 12.

Hammer, J.M. 1984. Statistical methodology in the literature on human factors
in computer programming, in Salvendy, G. (ed.) Human-Computer Interaction.

 Elsevier: New York.

Hammer, J.M. 1985. Significance testing of the keystroke-level model,
submitted to IEEE T. Sys., Man, Cyber.

Lewis, C.M. 1985. Identification Methods for Rule-Based Models, Ph.D. thesis
in progress, School of Psychology, Georgia Institute of Technology, Atlanta,
GA.

Lewis, C.M. and Hammer, J.M. 1985. Significance testing of rules in rule-based
models, to appear in IEEE T. Sys., Man, Cyber.

Maryanski, F.J. and Booth, T.L. 1977. Inference of finite-state probabilistic
grammars, IEEE T. Comput., 26.

Michalski, R.S. 1980. Pattern recognition as rule-guided inductive inference,
IEEE T. Pattern Anal. Mach. Intell., 2(4).

Michalski, R.S. 1983. A theory and methodology of inductive learning, in
Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (eds.) Machine
Learning. Tioga: Palo Alto, CA.

Newell, A. and Simon, H. 1972. Human Problem Solving. Prentice-Hall:
Englewood Cliffs, NJ.

Norman, D.A. 1981. Categorization of action slips, Psych. Review,88(1).

Norman, D.A. 1983. Design rules based on analyses of human error, Comm. ACM,
26(4).

Ohlsson, S. and Langley, P. 1985. Identifying Solution Paths in Cognitive
Diagnosis. Carnegie-Mellon Robotics Institute Report, CMU-RI-TR-85-2.

23

Rouse, W.B. 1980. System Engineering Models of Human-Machine Interaction.
North Holland: New York.

Tatsuoka, K.K. 1985. Diagnosing Cognitive Errors: Statistical Pattern
Classification and Recognition Approach. University of Illinois at Urbana-
Champaign, CERL Report 85-1-0NR.

Tatsuoka, K.K. and Yamamoto, K. 1985. Application of Component Scoring to a
Complicated Cognitive Domain. University of Illinois at Urbana-Champaign,
CERL Report 85-2-0NR.

Tatsuoka, K.K. and Tatsuoka, M.M. 1985. Bug Distribution and Pattern
Classification, University of Illinois at Urbana-Champaign, CERL Report
85-2-0NR.

Van der Mude, A. and Walker, A. 1978. On the inference of stochastic regular
grammars, Inf. Control, 38.

VanLehn, K. 1983. Felicity Conditions for Human Skill Acquisition: Validating
an AI-Based Theory. Xerox PARC Report CIS-21.

Yoon, W.C. and Hammer, J.M. 1985. Aiding the operator during novel fault
diagnosis, Proc. 1985 IEEE Conf. Sys., Man, and Cyber., pp. 362-365.

SIGNIFICANCE TESTING OF THE KEYSTROKE—LEVEL MODEL

John M. Hammer

Center for Man—Machine Systems Research

Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

The Keystroke—Level Model [Card et al., 1980b] predicts the time for an

expert user to complete a task using an interactive computer system. To use

the model, the task is expressed as a sequence of subtasks such as keystrokes,

mental delays, mouse pointing. The predicted task execution time is the sum

of the subtask times.

While the overall model fits the data well, the contributions of the

various subtasks to the model have not been tested for significance. In this

article, we show how to do this as well as test the significance of the rules

for placing mental delays. We also examine the data of Allen and Scerbo

[1983], who among others found that the Keystroke—Level Model under—predicts

task times.

J

INTRODUCTION

The use of linear models to predict task time for human-computer interac-

tion is discussed here. In the first part, the Keystroke-Level Model [Card et

al., 1980b] is presented and reviewed. Its components are then tested using

linear regression. The results show, first, that it is simple to build and

test these models. Second, simplifications and alternate interpretations of

the Keystroke-Level Model are discussed. The second part of the paper exam-

ines the data of Allen and Scerbo [1983]. They as well as Roberts and Moran

[1983] and Gould and Alfaro [1984] found the model under-predicted task times.

A linear regression model is used to examine their data. Regression will

allow us to determine the maximum to which a given linear model will fit the

data.

LITERATURE REVIEW

The Keystroke-Level Model predicts the time for an expert to complete a

routine task using an interactive computer system. To predict the time, the

system designer must express the task as a sequence of elementary operators.

The total execution time is

T
k
*N

k
+
Tp*Np

+
Th*Nh + (T

Nd
*Nd + TLd*Ld) + Tm *N m + Tr

where the symbols are defined in Table 1. The N's for overt actions come from

counting the number of operators necessary to do the task in an optimal

manner. The T's for these actions were estimated from from other sources of

data -- typing tests, pilot experiments, etc. For the mental operator, Nm is

estimated by applying a set of five rules (shown below). T
m was estimated by

regression. The model was able to explain 95% of the variance in average task

times. From these results, Card et al. argue that the Keystroke-Level Model

2

is suitable for use in system design.

Tests of the Kevatroke-Level Model

Roberts and Moran [1983] tested a set of benchmarks for evaluating edi-

tors. One of their performance measures was the time for an expert to com-

plete a sequence of editing tasks. On the eight different editors tested,

they found the Keystroke-Level Model to under-predict consistently the average

time. The under-prediction, they claim, was from the subjects' using longer,

more conservative methods than those of the model. Only relative differences

in model predictions of approximately 25% or more were reliable predictors of

real differences.

Allen and Scerbo [1983] repeated the above benchmark on the ED text edi-

tor. When using the optimal methods assumed by the Keystroke-Level Model, the

prediction was 61% of the actual time. When subjects' actual methods were

used, the predictions increased to 77% of the actual time. Based on these

observations, they argue first that methods need to be predicted because of

the improvement in accuracy. Second, they argue that more accurate parameter

values alone will not improve accuracy. Instead, a more explicitly cognitive

model is needed to predict the variety of cognitive delays that occur.

Gould and Alfaro [1984] conducted an experiment on text editing using a

display editor, a simulated handwriting recognition system, and a simulated

voice recognition system. They noted that the Keystroke-Level Model predic-

tions were 33% to 50% of the time required for editing. They attribute the

under-prediction to a difference in experimental conditions. For example,

Card et al. conducted their experiments while placing a heavy emphasis on

speed. The other studies reported above were conducted under more naturalis-

3

tic settings.

STUDY ONE

Card et al. used regression to estimate the value of T
m. Because the

model is a linear combination of terms, linear regression can be used to esti-

mate simultaneously all the T's and test the significance of each term.

Before explaining these results, a brief review of regression is given.

Regression

Regression is a method for building models from data. For example, sup-

pose a model is desired of the following form:

Tout = T0 + T1*N1 + T2*N 2 + ... + Tn*Nn

Tout istheoutput(responsOmultheN.
1 are inputs (regressors), all of which

are given to the regression program. The program will estimate the T i 's that

cause the model to best fit the data. 	Furthermore, the regression program

will provide the significance of each T i , the probability that the T i is dif-

ferent from zero. If it is not significant, then the corresponding term T.*N.
1 1

can be dropped from the model. (The remaining coefficients must then be rees-

timated to make the new model fit the data). This is justified because an

insignificant term does not contribute to the predictive or descriptive power

of the model.

The usual performance measures for a regression model are the coefficient

. of determination R
2
and the error mean square MSE. R2 is usually described as

the fraction of variance explained. It is the amount of squared deviation of

the response that can be attributed to variation in the regressors. All other

things constant, a higher R
2
is better. MS

E is a measure of the squared dis-

4

tance between the model's predicted response and the observed response.

Before accepting a regression model, diagnostic tests should be performed

to insure that it is not unduly influenced by a few data. The following were

performed. The first test was for an outlier in the regressor space. Any

datum that was an outlier (more than three standard deviations out) in the

Mahalanobis distribution was removed. The second test was for data that

exerted an undue influence on the coefficients. A datum with a Cook's dis-

tance > 1 was removed. In addition, diagnostic plots of residuals were exam-

ined.

Advantages and Disadvantages of RegreAaiqn

Most of the advantages have already been mentioned: significance testing

of terms, alternate model examination, tests for fit and outliers. A major

advantage of regression is that it gives a lower bound on the model error,

MSE . 	This is because the coefficients are chosen to minimize the error

between the predicted and actual response. Any other set of coefficients

(say, one that makes more physical sense or is closer to a priori estimates of

the coefficients) will have a larger error. Note that regression eliminates

bias.

Both bias and error are important in the Keystroke-Level Model. 	Regres-

sion can be used only to study the latter. The importance of error from a

practical standpoint can be seen in the following example. We would be

pleased with a model that had estimates one-half of actual and a relative

error (after rescaling) of 1%. A model with an underestimate of 1% and a

relative error of 50% would be far less satisfactory.

5

The disadvantages of regression are potential traps that can befall the

analyst who does not conduct tests of the model. The first is the danger of

an overfit model. The coefficients are determined from the data, which may

cause the model to look better than it is. This difficulty may be overcome by

using many more data than free variables (regressors). The second danger is

that the estimated coefficients may not be close to our a priori estimates of

them. For example, many of these estimates of T k in the results below are

larger than the measured typing rate.* There are several possible explanations

for this. The first is that the difference is due to a mild form of overfit-

ting. This in particular can be misleading, because the regression model will

not predict new observations any better than a model that had not been over-

fit. A second explanation might be that the regression estimate is better.

It might seem reasonable that the typing rate during editing is slower than

that of a typing test.

A third danger is that the regression model may be based on correlation,

not causality. 	For example, Kendall and Yule [1950] observed a strong rela-

tionship (R
2
= .98) between the number of mental defectives per 10,000 popula-

tion and the number of radio receiver licenses issued in the U.K. for the

years 1924-1937. This relationship is nonsensical. What is really happening

is that detection of mental competency and the cost of electronics are chang-

ing with time. The danger of correlation is avoided by using regressors that

are certainly direct influences on the response.

A final danger is that the regression model may be controlled by only a

few of the many data. An example of this would be an outlier in the regressor

*Rather than looking at the point estimate of the coefficient, one might
examine some confidence interval about the estimate to see if it contains the
a priori value.

6

space. It would inflate R 2
, thus making the model look better than it is.

Data with undue influence were removed as described earlier by examining

Mahalanobis' and Cook's distances.

Regression Testing g rhq 0;iginal Keystroke-Level Model

The original Keystroke-Level Model was tested with linear regression

using the original 32 data from Table 9 of [Card et al., 1980b, p404]. The 32

tasks are four editing tasks, each done with three different text editors,

five graphics editing tasks, each done with three different graphics editors,

and five executive tasks, each done with a different executive program. For

each task, the data are the observed task time (response) and the regressors

the time for K, P, H, M, D, and R. It should be noted that the observed task

time is the average of between 9 and 38 observations from a number of sub-

jects. There are almost 900 observations behind the 32 task times.

In addition to testing the basic model, the seven different programs were

entered as indicator variable regressors. There were three indicator vari-

ables for the three text editors, three for the three graphics editors, and

one variable for the collection of executive programs. The indicator variable

can show if the model is sensitive to the interactive system used.

The number of deleted M's were also entered into the regression. The

Keystroke-Level Model has five rules, based on assumed user chunking behavior,

which determine where M's should appear in the model. The rules are as fol-

lows.

0. Insert an M before every K that is not part of an argument string.
Insert an M before every P that selects a command.

An indicator variable is a regressor that can take a value of either zero
or one.

7

1. If an operator following an M is fully anticipated in the operator
preceding the M, delete the M.

2. If a string of MK's belong to a cognitive unit (e.g., a command
name), delete all M's but the first.

3. If a K is a redundant terminator (e.g., the terminator of a command
immediately following the terminator of its argument), delete the M
before the K.

4. If a K terminates a constant string (e.g., a command name), then
delete the M before the K. Keep the M before a variable string (e.g.,
an argument string).

Rule 0 was applied to determine the initial set of M operators. 	(The tasks

are described in [Card et al., 1983].) Rules 1 through 4 were then applied to

each task and the number of M operators deleted by each rule for each task was

tabulated. The following expression is being added to the model for testing

T *N + T *N + T *N + T *N m1 m1
	m2 m2 	

m3 m3 	
m4 m4

Nm. is the number of M operators deleted by rule i. Tm. is the time for an M
1 	 1

operator deleted by rule i. If the model is correct, the M 1 through M4 terms

will not be statistically significant.

Because of the physical interpretation of the operators, a problem con-

taining zero K, P, H, D, M, and R should take zero time to execute. Hence,

the intercept was forced to•be zero. It should be noted that an intercept

might be a suitable interpretation of average acquisition time, if that time

had been included in the response. This interpretation depends on the assump-

tion that the intercept is a constant independent of problem size. It should

also be noted that allowing an intercept would not have substantially changed

8

the results reported here.

Model Criteria

The selection of the "best" regression model is partially a subjective

matter and also dependent on the future use of the model [Montgomery and Peck,

1982] [Draper and Smith, 1981]. The potential uses of a model are data

description, prediction, control, and parameter estimation. Since prediction

is tne purpose of the Keystroke—Level Model, the following criteria were used

to select the best model.

1. Each term in the model must be statistically significant.

2. The MSE should be minimized.

Results

The BMDP9R statistical program, all possible subsets regression, was run

using the terms for K, P, H, D, M, R, and the seven indicator terms. (The

deleted mental operator analysis appears later.) Some of the better models are

shown in Table 2. All models are fit to the same data. Equation four contains

the same terms as the original Keystroke—Level Model, though all coefficients

were determined by regreSsion. Some of these models explain more variance

than the original model; none of them is much better than another.

The regression results can be interpreted as follows. 	First, the H

operator, part of the original model, does not account for any variance. This

is easily explained in that an H nearly always accompanies a P or a D. Thus,

once P and D are in the model, the addition of H explains nothing. Second,

the Executive term, as originally suggested by Card et al., is significant;

Executive tasks take about 5 seconds less than would otherwise be predicted.

9

None of the editor indicator terms is significant. 	This suggests that the

moael predicts well for editors, and that new values for T
m

and T
k are needed

when Executive tasks are modeled.

The M operator is significant in the full model. There is a practical

problem in that the unique variance explained by any of the operators is low

when other operators are in the model (see Table 3). Since M does not explain

much variance, it could be dropped from model 2 (giving model 5). There is a

theoretical consideration that allows weakly significant terms to be dropped

from a regression model, which was first observed by Box and Wetz [1973] (see

also [Suich and Derringer, 1977]). They observed that statistical signifi-

cance was insufficient for prediction. To be useful, the calculated F—ratio

for the regression needs to exceed the critical (p=.05) value by a multiple of

4 or 5 at the least. Ellerton [1978] has observed that the same is true of

partial F—tests (such as those on a single coefficient). This explains why

dropping M would not affect prediction accuracy.

If the Executive task data is removed and the regression repeated, M may

also be dropped for this reason, as its F(1,22)=9.18 is less than four times

the critical value, 4.30. This practice may be useful with M, since it is

much more difficult to count the number of M's in a task. This is primarily

due to the need to consider the rules for placing M's. This is not necessary

with physically observable actions. It should also be noted that the contri-

bution of the D operator is also weakly significant. This may be due to it

1 0

being used only in 3 of the 32 tasks.

Luling the Deletion gale!

As described earlier, the number of deleted M operators was tabulated and

entered as terms. Due to the high correlation between M1 through M4 and the

original terms, a two step procedure was used. First, all significant terms

(i.e., K, P, D, R, M, and Executive) were forced into the model. Then, M 1

 through M4 were tested to see if any of them explained additional significant

variance.

Nuir"e1143 werenotsignificant;theirestimatesz_,Tm , and Tm
3 ml 	2

were very close to zero. Only M4 was significant (Tm = 1.87, F=7.62). This
4

would suggest that rule four deletes an M that might better be left in the

model. This tends to confirm the observation that users sometimes pause after

committing themselves to a course of action [Allen and Scerbo, 1983]. An

alternative explanation is that M 4's are correlated with something else that

is increasing the execution time.

This result is related to an interesting, more general problem known as

the statistical significance of rule-based models. A rule-based model is a

set of situation-action pairs that can be used to model human behavior, typi-

cally problem solving [Card et al., 1980a] [Rouse et al., 1980] [Hunt and

Rouse, 1984] [Newell and Simon, 1972] [Anderson, 1983]. An open question is

how to test the statistical significance of these rules. Testing should be

done because there is a danger of an overfit model. For example, a rule-based

model with as many rules as data points is clearly overfit. For some signifi-

cance testing solutions to this problem, see [Lewis and Hammer, 1985].

Summary

A regression model fit to the original data demonstrated the following.

For the original Keystroke-Level Model, the operators K, P, D, M, and R are

significant. The H operator is not. Executive systems were significantly

overestimated, but there were no differences between editors. The M and D

operators, while significant, do not add to the predictive power of the model.

Of the four rules for deleting M operators, three appear to be correct but one

appears to delete a delay that might exist.

12

STUDY TWO

The second part of this article uses the data from [Allen and Scerbo,

1983] to test some further hypotheses. The data came from an experiment that

they conducted. Six users experienced with the ED text editor did 62 tasks

from Roberts' benchmark [Roberts 1979]. Each task consisted of two subtasks:

search and edit. During the search subtask, the editor was positioned to the

line that was to be changed. During the edit subtask, the line was changed.

Sometimes, a search did not occur because the editor was already positioned at

or near the next change. For each subtask, they predicted the number of M and

K operators that should occur. After collecting the data, they also identi-

fied the actual number of M and K operators used by each subject for each sub-

task.

The data used in this article were as follows. The search and edit sub-

task times were combined. The overall, error-free time, less the acquisition

time, was used as the dependent variable. For some data sets, the error time

was included in the response. The independent variables, or regressors, were

either the predicted (rule-based) number of M and K or the observed (method-

restricted) number of M and K.

The questions studied are presented on separate sections below. 	In

brief, these questions are as follows. The first is the degree to which a

linear model will fit this new set of data. The second question is whether an

improved fit is obtained by using the method-restricted rather than rule-based

number of operators. The third question is the effects on fit of including

tasks with errors. The fourth question is on the fit of a linear model on

13

individual performance in comparison to group performance.

Lineaz Model Ell

The first question examined was the relative error in a linear model fit

to these data. As noted earlier, the Keystroke-Level Model has under-

predicted times on all uses of the model except on the data from which it was

created. If regression is used to re-estimate all of the coefficients, this

bias will disappear. What will remain, however, is the MS E error term. 	This

term, when divided by the average task time, can be regarded as a relative

error.

The regression model is shown on line 1 of Table 4. The relative error

is 38%, which is larger than the 22% observed by Card et al. It is not possi-

ble to compare these two relative errors with each other or with a regression

on predicted and observed times from Roberts and Moran [1983]. The reasons

for this are as follows. Card et al. had up to ten replications of a given

task for each of four subjects. Up to forty data were averaged and then used

for model building. Averaging reduces the noise and between-subject variance

and hence the relative error. Allen and Scerbo had six subjects perform each

task once and could only average across subjects. Roberts and Moran's rela-

tive error is not comparable because it is based on a long sequence of tasks,

not on single tasks. The effects of averaging data are discussed in a later

section.

A related question is the reasonableness of the estimated values for T
m

and Tk . 	While both appear reasonable, the value for T k of .26 is different

from the typing test keying rate of .19 seconds/keystroke. The actual value

14

is well withing a 95% confidence interval of the estimated value (.26 t .18).

Linear Model Eit with Observed gngalat gagata

The second question is what effect using method-restricted predictions

has on the linear model fit. The results above are from rule-based predic-

tions, which are predictions of the minimum M and K needed to do a task. It

is also possible to make predictions from what a subject actually did

(method-restricted predictions). Thus, it is an important question as to how

much improvement there is with method-restricted predictions. Linear models

are less attractive if method-restricted predictions are substantially better.

To test this, the observed, or method-restricted number of M and K were

regressed against the time. The results are shown in line 3 of Table 4.

There is no improvement. The explanation for this is simple. The observed M

and K are strongly correlated with the predicted (see Table 4, lines 4 and 5).

Lineal Madel, Eit with Errgr, Time IngluAgA

Question 3 was on the effects of including error time in the time to be

predicted. This is important because errors do occur, and it might be desir-

able to compensate for them in overall predictions. On the other hand, if

including errors causes large decreases in accuracy, removing errors may be

worth the effort. Line 6 in Table 4 shows that including errors has only a

moaest impact on the relative error.

Model Eig 	Individual users

If a linear model approach is valid, it should be as suitable a model of

individuals as it is of data averaged across individuals. To test this, six

models were constructed of the six individual users. The regressors used were

15

the observed number of keystrokes and mental operators. Only tasks with no

error time were used. The results were shown in Table 5. As can be seen, the

linear model does not fit individuals as well as it does the average (Table 4,

line 3). There are two reasons why averaged data is fit better than indivi-

dual data. The first is that individual differences are removed. If this

were the dominant phenomenon, it could be claimed that a linear model

describes task aspects but not individual aspects of performance. The second

phenomenon that occurs in averaged data is the reduction in random noise.

Since there is no replication of tasks by the same subject in Allen and

Scerbo's data, it is not possible to determine which of these phenomena dom-

inates.

To investigate the sources of variance more fully, the individual perfor-

mance data of the three text editors POET, SOS, and BRAVO on four tasks each

was examined. These data are the individual replications before averaging

from the experiment of Card et al. A random effects one-way ANOVA was used to

compare between- and within-subjects variance. Within-subjects variance

corresponds to noise (assuming there is no learning). Between-subjects

difference corresponds to individual differences. The results are shown in

Table 6. Nine of the twelve between-subjects differences are significant.

Typing speed differences were not taken into account in this analysis, and

they may be an important factor, especially in longer problems like T4. These

results suggest that the Keystroke-Level Model may take advantage of the

16

averaging of both subject differences and noise.

CONCLUSION

Multiple linear regression has been used to evaluate the significance and

power of individual terms of the Keystroke-Level Model. It would also seem

appropriate to have used this method to develop the original model on the ori-

ginal, unaveraged data. 	Though the same model would result, R 2 would have

been lower due to the presence of noise variance. It would also have been

possible to test subject factors to account for individual differences.

Replicated data also suggest a lack of fit test. This test compares the vari-

ance of the average to predicted value against the variance due to replication

(noise and individual differences). The lack of fit test should not be signi-

ficant for the regression model to be accepted. For the original Keystroke-

Level Model, the lack of fit is significant (F(31,854)=3.2, p<.001). Removing

the Executive tasks does not change this (F(26,700)=2.7, p<.001). When the

lack of fit test is significant, the conclusion is that one or more terms are

missing from the model.

Also demonstrated was the ability to build easily models of phenomena not

previously examined. For example, including error time and tasks with non-

prescribed methods was relatively easy for the data of Allen and Scerbo. It

would also be possible to model data without a priori estimates of coeffi-

cients. Both of these practices could save analysts considerable time in

model building. It would also be possible to investigate other kinds of

delays, such as time delays before or after a command, delimiter, or keys-

troke, without making a detailed examination of the data.

17

Further improvement in the Keystroke-Level Model would seem to require a

more exact way of predicting how the user deviates from the optimal sequence

(would remove under-prediction) or predictions of mental operations that are

not highly correlated with overt physical actions (would reduce relative error

under a regression testing procedure). Both of these improvements would seem

to be difficult undertakings. It would be relatively easy to describe the

suboptimalities, and relatively difficult to predict when they do and do not

occur.

There is an alternative design approach that uses a description of a

suboptimality. This approach is to design the suboptimality out of the sys-

tem. By this it is meant that the interface does not require the user to take

an action that is often done suboptimally. Consider the following extended

example. Suppose the user wants to position the editor down to a line in the

file. This line may or may not be on the display, but assume it is 25 lines

away. The user does not know this distance exactly and chooses to have the

next 20 lines displayed. This request is then repeated. Time is wasted while

15 lines are needlessly displayed.

It would seem to be difficult to predict the number of lines requested

(e.g., 20), unless the user's habits dictated a request for 20 lines or the

available command always displayed 20. If neither of these were true, a more

precise model would require as a component a model of the user's understanding

of the text and the distances within it.

To design a command to support this kind of positioning is difficult.

Any fixed decision (e.g., offer a single keystroke command to display 20

lines) will not work well in every situation. Any command requiring as an

argument the number of lines to display will be much slower to type. Neither

18

eliminates the user's suboptimality of not knowing the precise distance to the

desired line.

To design the user's suboptimality out of the system is to offer commands

that allow the user to edit optimally without perfect knowledge of the text.

For this example, the command could simply start the display scrolling down-

ward. When the editor reached the desired spot, the user could strike a key

to stop it. Under this arrangement, single keystroke commands could be used,

large amounts of excess text need not be displayed (which would cause the user

to wait), the display runs at the maximum viewable speed, difficult design

decisions (which are not globally optimum anyway) are avoided, and the user

does not need to know how far away the desired line is.

While this example makes use of conventional terminal displays rather

than bit-mapped workstation displays, the same general approach applies to

much of human-computer interaction. For further information on how this

approach was applied throughout an editor design, see [Hammer, 1984].

ACKNOWLEDGMENT

This research was supported by the National Science Foundation under

Grant IST-82-17440.

19

REFERENCES

Allen, R.B., and Scerbo, M.W., "Details of command language keystrokes," Act

Tzansatigna ga 04fice Information gzataml, 1(2), 1983.

Anderson, J.R., The Aggnigaglma al gggaitiaa, Harvard: Cambridge, 1983.

Box, G.E.P. and Wetz, J.M., "Criteria for judging adequacy of estimation by an

approximating response function," T.R. 9, Dept. of Statistics, University

of Wisconsin, Madison, Wisconsin, 1973.

Card, S.K., Moran, T.P., and Newell, A., "Computer text editing: 	an

information-processing analysis of a routine cognitive skill," Gagni4i,me

Fsvcholnwg, 12(1), 1980a.

Card, S.K., Moran, T.P., and Newell, A., "The Keystroke-Level Model for user

performance time with interactive systems," Communicatign4 ag ghg AgM,

23(7), 1980b.

Card, S.K., Moran, T.P., and Newell, A., Ihg ganhaigga 21 Emau-Comuuteg

Intetaction, Lawrence Erlbaum: Hillsdale, NJ, 1983.

Draper, N.R., and Smith, H. Annlied Agmagign Anal/gia, 2nd ed., Wiley: New

York, 1981.

Ellerton, R.R.W., "Is the regression equation adequate? - A generalization,"

Technnmettic4, 20(3), 1978.

Hammer, J.M., "A display editor with random access and continuous control,"

IgtgEnAgianAl Journal gl Man-Maghine 4tudiea, Vol. 21, pp. 203-212, 1984.

Lewis, C.M. and Hammer, J.M., "Significance testing of rules in rule-based

20

models of human problem solving," to appear in IEE4 TgaRsaqgiSIBA 2A AYA7

tens, MAE, an Cyhemletiqg, 1985.

Hunt, R.M., and Rouse, W.B., "A fuzzy rule-based model of human problem solv-

ing," 1,UE Tzanaac,tiQns ss SystemA, ass, and g/hgAssliss, 14(1), 1984.

Kendall, M.G. and Yule, G.U., As Isggs4sggiss gs ghs Dashg3 21 StatiAtic4,

Charles Griffin: London, 1950.

Montgomery, D.C., and Peck, E.A., IsgEsSugiss Is Linea; Regeasiun

Wiley: New York, 1982.

Newell, A. and Simon, H. A., Human} gzaleul Sglyiss, Prentice-Hall: Englewood

Cliffs, NJ, 1972.

Roberts, T.L. Evaluation of Computer Text Editors, Report SSL-79-9, Xerox

Palo Alto Research Center, Palo Alto, CA, 1979.

Roberts, T.L., and Moran, T.P., "The evaluation of text editors: Methodology

and empirical results," Communications 21 he Agm, 26(4), 1983.

Rouse, W.B., Rouse, S.H., and Pellegrino, S.J., "A rule-based model of human

problem solving performance in fault diagnosis tasks," XEE4 Itanaatignq

gs luggms, Lisa, and Cvbe4neica, 10(7), 1980.

Suich, R. and Derringer, G.C., "Is the regression equation adequate -- one

criterion," Is.shunmet;i„ss, 19(2), 1977.

21

Symbol Meaning

Tk 	time per keystroke

N
k 	number of keystrokes

Th 	time for moving hand to mouse from keyboard or vice versa

N
h 	number of homes

time for pointing with a mouse

N
P

number of pointings

N
d 	

number of lines drawn

Ld 	
length of lines drawn

T
N, 	constant time to draw a line

T
L u
	time to draw a line that is proportional to length „

T
m
u 	time for a mental delay

N
m 	

number of mental delays

T
r 	response time for computer

Table 1. Symbols for the Keystroke-Level Model.

22

Model K P H D R M Exec. MSE R
2

1 1.52 .92 1.25 .87 .92 .68 -4.85 2.20 .979
32.49 50.84 .85 14.44 34.22 10.43 7.29

2 1.54 .94 .85 .92 .67 -4.97 2.20 .979
33.64 55.35 14.06 34.69 10.37 7.73

3 1.13 .95 .92 .69 .95 2.45 .972
20.98 46.92 13.40 21.81 21.25

4 1.12 .94 1.50 .94 .69 .95 2.45 .973
20.61 42.90 1.00 13.84 22.00 21.25

5 2.33 1.00 .63 .87 -7.70 2.58 .970
437.23 49.84 6.35 23.23 17.72

6 2.33 1.13 .85 -7.55 2.78 .963
367.87 59.44 18.58 14.36

Table 2. Models, term significance, and performance measures.

The table is interpreted as follows. Each row is
a model as determined by BMDP9R. If an entry
contains numbers, then the operator at the top of
the column is a term in the model. For example,
in model two, K, P, D, R, M, and Executive are in
the model but H is not. The two numbers are the
coefficient (top) and the F-test value (bottom).
The F value becomes significant (p=.05) at about
F=4. The coefficient is expressed relative to
the time used in the original model. For exam-
ple, if the coefficient of P is .92, then the
time for a P is .92 times the time for a P in the
original model, which was 1.1 seconds. Also
shown in the rightmost two columns are the error

mean square and R
2

.

23

Contribution to

Operator 	 R
2

K .028
P .046
D .012
R 	 .029
M 	 .009

Executive 	.006

Table 3. Unique contribution to R 2
by terms in model two.

24

No. Model R
2

MS
E

Average

Task

Relative

Error Units

1 2.10Mr+.26Kr .91 6.24 16.6 38% seconds
2 Keystroke—Level .97 2.44 11.3 22% seconds
3 1.30Mm+.26Km .91 6.21 16.6 37% seconds
4 Km=1.31Kr .95 6.26 25.2 25% keystrokes
5 Mm=1.21Mr .98 1.12 6.9 16% mental operators
6 2.92Mr+.24Kr .88 8.98 20.9 43% seconds

Table 4. Models of Allen and Scerbo's data.

Km (Mm) denotes the method—restricted number of
keystrokes (mental operators). Kr (Mr) denotes
the rule—based number of keystrokes (mental
operators).

25

User Model R
2

MSE

Average
Time

Relative
Error

1 1.111+.08g .76 5.0 7.7 65%
2 2.5M+.13g .81 10.7 19.3 55%
3 2.4M-.03g .86 7.1 12.7 56%
4 .88M+.51K .80 8.6 15.2 57%
5 2.8M-.06g .69 11.8 15.0 79%
6 .03M+.56K .92 4.4 12.3 36%

Table 5. Models of Individual Users.

Underlined terms are not significant.

26

Editor Task F—ratio Significance

POET Ti F(3,27) 1.85 ns
T2 F(3,19) 12.56 p<.001
T3 F(3,21) 20.54 p<.001
T4 F(3,16) 40.33 p<.001

SOS Ti F(3,27) 4.12 p<.05
T2 F(3,28) 5.08 p<.01
T3 F(3,33) 16.43 p<.001
T4 F(3,13) 25.44 p<.001

BRAVO Ti F(3,28) 3.58 p<.05
T2 F(3,28) 1.64 ns
T3 F(3,34) 2.08 ns
T4 F(3,29) 3.94 p<.05

Table 6. Significance of between— to within—subjects differences.

27

SIGNIFICANCE TESTING OF RULES IN RULE-BASED MODELS

OF HUMAN PROBLEM SOLVING

C. Michael Lewis

John M. Hammer

Center for Man-Machine Systems Research

Georgia Institute of Technology

Atlanta, Georgia 30332

A

INTRODUCTION

Many researchers have used rule-based systems to model human problem

solving [1,3,6,7,11,12]. Typically, the rule-based system has a large

number of rules, each of which has several free variables that were

adjusted during the modeling process. For the most part, significance

testing of these rules has not been much of a consideration. It should

be. It is certainly possible to describe N data perfectly with N rules

using a trivial model that simply reproduces the data. While there is no

evidence that this has happened in any of the research reported to date,

there is a certain danger of overfitting a rule-based model.

In this article we present three methods of testing the statistical

significance of rules and other components of rule -based models.

Throughout this article we shall assume that the percentage of behavior

matched (e.g., commands) is the performance measure of interest. Two of

the testing approaches, however, are not limited to this measure. They

may be used to study any performance measure, though it may well be

possible for a rule to produce a statistically significant effect on one

performance measure but not another. The remainder of this article

contains a section on notation, three sections on testing by analysis of

variance, randomization, and contingency tables, respectively, and two

concluding sections on applicability of the various tests and validity of

these models.

NOTATION

A rule-based system consists of three components. The first is a

set of rules of the form IF condition THEN action. The meaning of the

rule is that if condition is true, then action could be taken. For

example, the following rules describe behavior at a traffic light-

controlled intersection:

IF In intersection 	 THEN proceed

IF Yellow and arrival at intersection

before the light turns red 	THEN proceed

IF Yellow and arrival at intersection

after light turns red 	 THEN stop

IF Green 	 THEN proceed

IF Red 	 THEN stop

IF Red and right turn 	 THEN proceed

Figure 1. Rules for traffic lights.

If the above model can successfully match human behavior, then the rules

form a model of the human. Often, the rules are interpreted as a model

of the human's knowledge. Intuitively, the better the model matches

human behavior, the better the model, all other things equal.

The rules can be transformed easily into a computer program as

follows. First, control statements are added that cause the program to

examine the rules repeatedly and execute those whose conditions are true.

Second, in order to compare model and subject actions, an input statement

is added before the first rule. This statement reads the state vector

(e.g., the lights, the traffic, short term memory) that was available to

the human when his or her decision was made. The program looks something

like this:

WHILE TRUE DO BEGIN

READ(STATE);

IF 	(in intersection) 	 THEN proceed

ELSEIF (Yellow) AND (predict arrival at

intersection before light turns red) 	THEN proceed

ELSEIF (Yellow) AND (predict arrival at

intersection after light turns red) 	THEN stop

ELSEIF (Green) 	 THEN proceed

ELSEIF (Red) AND (right turn) 	 THEN proceed

ELSEIF (Red) 	 THEN stop

END;

Figure 2. Rules in a program.

The second component of a rule-based system is a conflict resolution

strategy. It selects the rule to execute when multiple conditions are

true. In the above example, a rank-order resolution strategy was shown.

It simply uses the first rule that matches. The ranking of rules can

then be interpreted as a subject's strategy. Some other conflict

resolution strategies include random selection, meta-knowledge, and

backtracking. A random selection strategy simply picks at random one of

the many matching rules. A meta-knowledge strategy has a higher-level

rule-based system that chooses which rule to execute. A backtracking

strategy will, if necessary, try all possible matches. It should also be

noted that it may be possible to write the rule conditions so that there

is always exactly one rule that matches.

The third component of a rule-based system is the input and internal

variables. The input variables correspond to external data. The

internal variables correspond to human short-term memory, which may be

changed by the action part of rules. Both internal and input variables

are examined by the condition part of rules.

Evaluation of Models

When comparing subject and model performance, the model is usually

run open-loop without any knowledge on subject actions. In other words,

the model can simply be treated as another subject. When comparing

subject and model behavior, the model is usually run closed-loop as

follows. The model has as input the same state vector the subject saw.

The model chooses an action, and then it is recorded whether the subject

and model agree. Then, the subject's action is used to control the

system, and the process repeats. The reason for always following the

subject's action is as follows. If the subject and model action differed

and both were used, then the state vectors would be unequal after

applying these actions. The model and the subject would then be working

on different problems, and a comparison of their actions would make

little sense.

The following sections on testing rule-based models will specify

ways in which the model will be modified and then run. The typical

modifications are to delete or modify one or more rules. Running a

model, perhaps in a modified form, means to compare its overt behavior,

(e.g., commands) to a subject's and determine the percentage in

agreement.

ANALYSIS OF VARIANCE

The analysis of variance approach is the simplest of the three

approaches for testing rule significance. To use it, each rule in the

model is equated with an independent variable. The meaning of the

variable is that at its high level, the rule is in the model, and at its

low level, the rule is deleted from the model. The rule-based model is

then run 2
N times (for each subject), which corresponds to a run with

each possible subset of rules present. It must make sense for the model

to do nothing, or else the model must be augmented before testing with a

special, nondeletable rule that applies when no other rule applies. The

resulting data can then be analyzed as an N-way factorial.

To economize on model runs, fractional factorial designs should be

used. The full factorial design, proposed above, will estimate the

effects of many high order interactions that cannot occur. In fact, the

interpretation of an interaction is that the corresponding rules

interact. An example would be two rules, the first of which stores some

value in a temporary variable and the second of which uses the temporary

variable. Such rule interaction is common, but rarely do many rules

interact. An inspection of the rule-based model will reveal what

interactions could occur. It should be possible to create experimental

designs which test only the desired interactions.

The testing of condition components of rules is also possible. In

this case the reduction in error attributable to the greater specificity

provided by the additional condition can be evaluated. Suppose, for

example, that a significance test of each of the conjunctive conditions

of a rule is desired. For example,

IF condition
1
 AND condition

2
AND condition

3
THEN

Proceeding as before, three independent variables might be equated, one

with each of the three conditions. A three-way ANOVA could be run to

test each of the three clauses. It would most likely be necessary to

estimate the value of the response at the point where all three

conditions have been deleted from the rule. Obviously, this process

could be extended to cover all of the conditions for all of the rules in

the model.

The testing of groups of rules as a whole is also possible. To do

this, an independent variable is equated with several rules, not just one

as was done initially. The experimental interpretation is that the

entire set of rules is either present or absent from the model during an

experimental run. This pooling of rules corresponds to a supersaturated

experimental design, and may be the only economical means of testing

models with many rules. One logical choice for pooled rules would be

interacting rules. Another choice would be the modeler's organization of

rules into groups (e.g., S-rules and T-rules [6]).

Analysis of variance makes several assumptions, one of which is that

error residuals are normally distributed. Moderate departures from this

assumption do not produce large deviations in calculated and actual

significance levels. If the normality assumption is known or seriously

thought to be incorrect, an approximate technique [4] may be used.

Simply, the data are replaced with their ranks, and the remainder of the

analysis of variance calculations remain unchanged. The significance

levels produced by this method are reported to be nearly equal on

normally distributed data to that produced by the standard F-test. The

rank transformation is more robust with respect to the distribution of

the data, though it is not a distribution-free test. Finally, the

hypothesis being tested here is whether the presence of a rule (or some

other similar entity) explains a significant amount of variance in the

subjects' performance. This significance is independent of the

significance of other rules (or other entities) but may be dependent on

the conflict resolution strategy. It is important to note the hypothesis

because the next section tests somewhat different ones.

RANDOMIZATION

The second approach to testing a rule involves forming a

randomization distribution by randomly permuting a rule. Suppose a

particular rule is under test. Its action can be replaced by a random

action (e.g., a random number generator that chooses commands according

to a priori frequencies). The model, with a single modified rule, can be

run many times. Its matching performances can be considered a

randomization distribution. The model in its unaltered form can then be

run, and its resulting performance be referred to the randomization

distribution. If its matching were higher than 95% of the randomly

generated values, the null hypothesis could be rejected at the 5% level

(one-sided). The null hypothesis would be that a random action would be

as suitable as the proposed action in the rule under test. The

empirically determined significance level is partial in that it is

potentially dependent on all the other rules being present in the model

as well as conflict resolution strategy.

The condition part of a rule can be tested by a very similar method.

There is a minor difficulty in that a random number generator in the

condition part of a rule does not appear to make sense. A solution would

seem to be to create various mutant conditions by randomly selecting

condition clauses from other rules in the model. The null hypothesis

being tested here is that random conditions are as suitable as the

proposed condition in the rule under test. The significance level

attained is partial just as the one obtained in testing actions.

An entire rank order conflict resolution strategy may also be tested

by randomization. Basically, a randomization distribution of

performances can be obtained by running all possible rank orderings (or a

Monte Carlo sample) of rules. The performance of the model with the

original rank ordering can be referred to this distribution as above.

The significance level obtained is dependent on the rules.

CONTINGENCY TABLES

Contingency tables are used to analyze nominal data. If the

following is a rule-based model:

IF condition 1
 THEN action

IF condition2 THEN action 2

•
•

IF condition THENTHEN action

then, a contingency table may be set up as follows:

action
1

action
2

actions

condition)

condition 2

•

•

conditions

NOT (condition, OR...OR
conditions)

• • •

Figure 3. A contingency table for rules.

The last row in the table covers the conditions that are not covered by

any rules. The observed data fill the table in the obvious way: for a

given state vector and subject action, the unique condition which holds

is determined, and the cell under the subject's action is incremented. A

model that matched the data perfectly would have all zero entries off the

diagonal.

Certain restrictions must be met to employ contingency tables:

1. Conditions must be mutually exclusive (2 rules cannot fire at

the same time)

2. Actions must be overt

3. Each action must be unique (2 rules cannot issue the same

action)

These restrictions may be met in a variety of ways. Mutual

exclusivity will be satisfied by any model containing conflict

resolution, rank-ordering, or disjoint rule provisions. The unique

action requirement may be accommodated by phrasing composite rules in

which constituent rules prescribing the same action are joined by

disjunction.

The performance of the rules in matching the data can be evaluated

with a chi-square or similar tests. The hypothesis is tested whether

conditions and actions are independent, i.e., whether there is a

significant difference between the proportions given the rules and the

overall proportions. As a consequence, rules containing infrequently

used actions receive more latitude using these tests than they do under a

simple percentage of commands matched measure.

Testing a set of rules is also possible as follows. The null

hypothesis is that there is no relationship between the action and the

conditions aside from the relationship that is already described by the

existing rules. Consider the test for the rule:

IF (x 1 = 1 or x
1
 = 2) and (x

2
= 1) THEN action

1 	 1

Action 1

Actionn

1

X2 =

X2 =

1

2

Delete

2

X2 =

X2 =

1

2

Delete

Figure 4. Table for testing a set of rules.

Two statistics are computed. The first is a maximum likelihood estimate

of chi-square, (G
2
) for the complete table. The second is a test of

quasi-independence [2] for a reduced table in which cells corresponding

to rule(s) under test are excluded. This corresponds in a table such as

figure 4 to one cell per row for conditions covered by the rule(s). If

the original G
2
 is significant and the quasi-independent one is not, this

implies that the rules capture the dependency of the actions on the

conditions. While attractive in directly referencing observables, this

method requires large samples with replications of observed combinations

of variables. (Unobserved combinations are treated as structural

zeros.)

Other Statistics

A nonparametric analogue to the coefficient of determination R
2

is

T
b

[8] which may be used to determine the percentage of variance

explained in the actions by a rule or rule set.

X1 =

X 1 =

E 	E X.
2
. - -

1
E
 2

X1
	

ij 	N N. ij
1 i+ j 	 1

T b = 	 1
N - Ts/ E X.

= table entry 	j Xij 	 i
Xi+ = E X .

J
X+j 	3 1

= E X..
. 1

N = total number of observations

Individual rules, the disjunction of rules issuing a particular action,

or the complete rule set consolidated into disjunctions by action can be

evaluated in this way. If uncovered observations are excluded, Tb
may be

interpreted as the extent to which actions covered by the rule are

explained. If all observations are present, a N+lst category should be

formed following the distribution of the uncovered actions. This T
b

is

interpretable as the extent to which rules explain all the actions.

Values of T
b
are asymptotically related to x

2
allowing significance

testing.

2
X(I-1)(J-1) = (N-1)(I-1)T b

This statistic tests the hypothesis that T b = 0, corresponding to the

premise that there is no relation between conditions and the actions

prescribed by the rule(s).

A similar statistic, PRE (proportional reduction in error) [2]

measures the reduction in error achieved by predicting actions based on

the rules rather than assigning the modal action under all rules.

PRE -

E P. 	P im 	+m
1

1 - P
+m

where

P
im = 	 j max (Pi .) j
P+m = mlx (P+ .)

P
ij

= N
ij

/ N

As demonstrated by this potpourri of procedures, a unified technique

for testing rule significance based on multinomial sampling is yet to be

developed. PRE answers the pragmatic question of gains in prediction.

The quasi-independence procedure provides its complement by testing for

unmodeled consistencies. Rules can be simultaneously tested in a

contingency table but their contributions to rule set performance will

remain unknown. T b allows both significance testing and estimation of

effects but cannot evaluate rule set performance without pooling rules by

action.

APPLICABILITY OF VARIOUS TESTING METHODS

For testing the degree to which a model's behavior matches a

subject's, all three methods will work. A contingency table is clearly

the best, however, since it requires the minimum in computation.

Randomization is clearly the worst technique because of the large amount

of computation and the partial significance levels it produces. A

fractional factorial ANOVA is clearly superior to randomization on both

of these points. ANOVA and randomization can both be used to test rules

that modify internal, unobservable states. Contingency tables cannot.

For testing overall performance measures, (e.g., time to solution,

total errors) only randomization and. ANOVA are suitable, with ANOVA

preferred. Ordinarily, much more emphasis is placed on behavior than on

performance, since behavior is much more difficult to model. There are

situations in which testing hypotheses about both performance and

behavior is desirable. One might want to show that a certain set of

rules will affect behavior but not performance. For example, Morris and

Rouse [101 have observed that theoretical training given process control

operators often fails to change their performance. It would be

interesting to test this concept analytically in a rule-based system.

For example, a group of rules might be identified as the intended

consequences of theoretical training. The model might be run with and

without these rules, using ANOVA to evaluate performance measures and

contingency tables to evaluate behavioral differences.

The randomization method can be used on two hypotheses. The first,

and more important, is to test the significance of a rank ordering of

rules. This would seem to be the only way to test this type of

resolution strategy. The second use is to test the hypothesis that part

of a rule performs no better than random. This test would seem to be of

little use, since ANOVA can test nearly the same hypothesis.

VALIDITY

The previous methods are generally devoted to evaluation of rule

performance and do not address the issue of rule validity. Just as a

high R
2 does not imply that all terms of its regression equation are

significant, a high T b does not vouchsafe for the future predictiveness

of its rules. This distinction becomes important in the identification

phase of rule-based modeling. Unlike identification based on parameter

estimation, the identification of rules requires a search of the space of

possible rules. An inductive pattern matcher must consider a large

number of potential rules. In evaluating identification it becomes

necessary to account for the probability of finding rules of comparable

quality by chance. To answer this question the structure of the event

space (observed combinations of condition variables), distribution of

actions, and extent of search (set of possible rules) must be considered

simultaneously.

Eilbert and Christensen [5] refer to this problem as contrivedness,

...the tendency of a search procedure to uncover apparent patterns where

none exist." They suggest a randomization test for measuring the extent

to which a search procedure uncovers contrived rules. The data consist

of many pairs of state vectors with subject responses. The state vectors

are left undisturbed, but the responses are randomly permuted. The

resultant permuted data has reasonable state vectors paired with random

responses. Contrivedness is the degree to which the search procedure can

make sense of this random data. When many permuted data sets are

searched, the search procedure results form a randomization distribution

against which the results from the original, unpermuted data can be

referred. While the previously mentioned randomization test will give an

idea of how opportunistic the search procedure is, it does not say how to

refine the search procedure so as to avoid contriving rules.

CONCLUSIONS

This article has identified several ways of testing a rule-based

model of human-problem solving. The amount of testing seems to be on a

par with the size of the model. Left unresolved for the most part was

the problem of contrivedness of automatic rule identification. It seems

fitting to close with the description of an interesting and difficult

question in identification of rules. As stated earlier, many cognitive

models have been built using rule-based models. Sometimes these models

are built when the investigator has access to the subject's thinking.

This is always the case in developing a rule-based expert system. Other

investigators, particularily those running experiments with humans, may

have only the data (i.e., commands) to examine.

An important theoretical question is the limits to identification of

rules from data that contain response errors. While there has been work

in machine learning, it does not seem that anyone has examined this

question [9]. It does seem important, because it bears on our ability to

construct models. This problem also seems to be very difficult to solve

formally. Hence, a preliminary investigation could be done via

simulation, as shown in Figure 5. Basically, the approach is to generate

some rules and some random stimuli, apply the rules, add noise, and try

to identify the rules from the noisy data.

The following would seem to affect identification:

1. the amount of data and its coverage of the stimuli domain

2. size and number of rules

3. the number of times a rule fires

4. the level of noise

generate
rules

rules
size of
rules

X = (010000)
X = (100011)

XI & X2 + 1 	X = (110010) generate # data
stimulus to make
data

apply rules to
S giving [S,R]

[(010000),0]
[(100011),0]
[(110010),1]

permute a fraction
r of the response

[(010000),1]
[(100011),0]
[(110010),1]

rule induction
program

X2 + 1

compare
rules

r, which is the
error rate

Figure 5. Block diagram for rule induction.
An example output from each block is shown.

It might also be interesting to investigate the addition of oracle

variables in rule identification. An oracle variable is an extra

variable (beyond the original stimulus vector) that provides information

that ordinarily is not available. The first oracle variable might be a

single bit to tell whether the response was in error. Another set of

oracle variables would identify which rule fired. Yet another set of

oracle variables could identify the variables that are part of the rule

that fired. While these oracle variables may appear to be practically

giving the solution to the identification program, they do not. These

variables would be treated the same as any of the real stimulus

variables. The identification program would have to infer the meaning of

these variables in order to make use of them.

While it does appear theoretically interesting to determine how much

oracle variables can add, there are important practical benefits as well.

Oracle bits could approximate the hunches of a human investigator. For

example, the investigator may suspect certain data to be in error, a

certain rule to have fired, or that only certain variables could be

influencing the operator's decision (from a verbal protocol). These

hunches are a second order human-machine system: the investigator's

attempt to identify (with a program) the rules of the human in the

first-order human-machine system.

REFERENCES

[1] Anderson, J.R., The architecture of cognition, Cambridge, MA:
Harvard, 1983.

[2] Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W., Discrete
Multivariate Analysis: Theory and Practice, Cambridge, MA: MIT,
1975.

[3] Card, S.K., Moran, T.P., and Newell, A., "Computer text editing: An
information processing analysis of a routine cognitive skill,"
Cognitive Psychology, Vol. 12, 1980.

[4] Conover, W.J., Practical Nonparametric Statistics, 2nd ed., New
York: Wiley, 1980.

[5] Eilbert, R.F. and Christensen, R.A., "Contrivedness: The boundary
between pattern recognition and numerology," Pattern Recognition,
Vol. 15, No. 3, 1982.

[6] Hunt, R.M. and Rouse, W.B., "A fuzzy rule-based model of human
problem solving," IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 14, No. 1, 1984.

[7] Knaeuper, A. and Rouse, W.B., "A rule-based model of human problem
solving behavior in dynamic environments," IEEE Transactions on
Systems, Man, and Cybernetics, in press.

[8] Light, R.J. and Margolin, B.H., "An analysis of variance for
categorical data," Journal of the American Statistical Association,
Vol. 66, 1971.

[9] Michalski, R., Carbonell, J., and Mitchell, T. (eds.), Machine
Learning, Palo Alto, CA: Tioga Publ., 1983.

[10] Morris, N.M. and Rouse, W.B., "The effects of type of knowledge upon
human problem solving in a process control task," IEEE Transactions
on Systems, Man, and Cybernetics, in press.

[11] Newell, A. and Simon, H.A., Human Problem Solving, Englewood Cliffs,
NJ: Prentice-Hall, 1972.

[12] Rouse, W.B., Rouse, S.H., and Pellegrino, S.J., "A rule-based model
of human problem solving performance in fault diagnosis tasks," IEEE
Transactions on System, Man, and Cybernetics, Vol. 10, No. 7, 1980.

AN INFORMATION-THEORETIC MODEL OF HUMAN SEARCH

STRING SELECTION IN TEXT EDITING

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

By

Robert C. Andes, Jr.

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Industrial Engineering

Georgia Institute of Technology

September, 1987

AN INFORMATION THEORETIC

MODEL OF HUNAN SEARCH STRING SELECTION

IN TEXT EDITING

Approved:
4

D . John M. Hammer, Adviso

Dr. William B. Rouse

Dr. Russell G. Heikes

Date approved by Advisor 	70 1fg?

ACKNOWLEDGEMENTS

I would like to thank my advisor, John Hammer, for all of the

conceptual input, ideas, and endless editing advice provided in the

completion of this thesis. Without his valuable guidance, this thesis

would never have happened.

I would also like to thank Dr. Russ Heikes for statistical advice

in the design of experiments and analysis of the data. A special thanks

goes out to Richard Robison who provided guidance on the use of C for

simulation and creative use of UNIX during simulation and collection of

empirical data.

Finally, an especial thanks is extended to my spouse Susan for her

love, patience, encouragement, and editing help during the entire thesis

production process. Thank you, Susan.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 	

LIST OF TABLES 	iv
LIST OF FIGURES 	

SUMMARY 	vi
CHAPTER I: INTRODUCTION 	1
CHAPTER II: A REVIEW OF THE LITERATURE 	4

Types of models 	5
Mathematical Models of Text 	6

Word—Based Models of Text 	13
Word Frequency Based Editing Strategies 	14

Models of Human Performance in Text Editing 	16
Important Variables to Current Research 	25

CHAPTER III: A MODEL OF THE HUMAN SEARCH STRING SELECTION PRO-
CESS 	27

Model Introduction 	27
Model Overview 	28
Model Implementation 	29
Analysis of Model Components 	32

Model Input 	32
Estimation of Scaling Factors 	33

Summary 	37
CHAPTER IV: AN EMPIRICAL STUDY OF SEARCH STRING SELECTION 	39

Introduction 	 39
Text Searching Experiment 	40

Independent Variables 	40
Familiarity 	40
Distance Information 	41
Problem Type 	41

Dependent Variables 	42
Successes 	42
Search Strings 	42

Blocking Factors 	43
Statistical Design 	43

Subjects 	46
Training 	46
Procedure 	47
Experimental Results and Analysis 	49
Discussion 	50

iii

A Reanalysis of the Data 	53

Frequency Estimation Experiment 	54

Subjects 	54

Procedure 	54

Estimation Task Results 	55

Discussion 	56

CHAPTER V: COMPARATIVE ANALYSIS OF MODEL VERSUS HUMAN PERFOR-
MANCE 	58

Introduction 	58

Performance Analysis 	58

Search String Length Comparison 	60

Discussion 	61

CHAPTER VI: AN ALTERNATE MODEL OF SEARCH STRING SELECTION 	64

Background On Alternate Model 	64

Alternate Model Overview 	 65

Model Implementation 	67

Analysis of Model Components 	67
Text File Transition Matrix Process — 	68

Computer Model of Text Editing Environment 	69

The Simulation Process 	69

Model Comparison 	71
CHAPTER VII: CONCLUSIONS 	73

Empirical Study 	73

Models 	75
Conclusions and Suggestions for Future Research 	76

APPENDIX A 	79
APPENDIX B 	87
APPENDIX C 	90
APPENDIX D 	 107

REFERENCES 	113

iv

LIST OF TABLES
Table 	 Page

3-1 	Scaling factor regression results 	35

4-1 	Mean Number of Correct Responses By Familiarity and
Distance Information Condition 	50

4-2 	ANOVA Results 	50

4-3 	Regression results of estimation task by familiarity
type 	55

LIST OF FIGURES
Figure 	 Page

2-1 	Upper and Lower Bounds for the Entropy of English (from
Shannon, 1951) 	11

2-2 	Text Searching Procedure Using the POET Editor 	17

3-1 	Two state Markov Process 	29

4-1 	Experimental Design and Linear Model 	44

5-1 	Mean Subject vs. Model Search String Lengths. 	Search
Successes Under Familiar Condition 	60

5-2 	Mean Subject vs. Model Search String Lengths for Suc-
cessful Searches Under Unfamiliar Condition 	61

vii

A empirical study is conducted and human behavior is compared to

model performance, with accurate estimates of human performance

obtained. An alternate model of search string selection is also given.

CHAPTER I

INTRODUCTION

The introduction of the word processor into computing and writing

environments has changed the way man transposes his thoughts into the

written text. The "word processor" allows the freedom to write more

efficiently and to easily rethink and alter the ideas with a visual

reference (e.g., either with a printed copy or the CRT display).

The primary environment for this thesis is the text editor. 	In

this environment, the human frequently desires to change some part of

the existing text. During this task the text editor becomes an

indispensable tool, particularly in large files in which the desired

text is not visible until the editor is positioned close to the text to

be altered. There are several methods used to locate text in a large

file (e.g., line-feed methods, screen by screen visual scanning, use of

search commands).

Possibly the most efficient method of locating text is by the

editor search command, or pattern scanning. The subject of this thesis

is text searching behavior. Most modern editors search text by taking a

character string, or sequence of letters, numbers, etc., as its

argument. When invoked, it will position the cursor at the first

character of the first occurrence of the specified character string in

1

2

the text file. The first occurrence of the string may not be the

desired location, resulting in a search failure. The human will then

have to reissue the command to look for the next occurrence, which can

be time consuming. The efficient search, therefore, relies on the

human's knowledge of the text content and searching strategy to quickly

and accurately locate the text of interest.

Text searching within a text editor is a small part of document

preparation. However, modeling of such a process is justified: Typing

and document preparation comprise several billions of dollars of the

nations gross national product. By the same token, computer programs

are written and maintained using the same text editors as those used in

document preparation. 	Often the maintainer or editor of a large

production software system is not the original programmer. 	Since the

editor of a document is typically not the writer, it can be seen how the

use of text editors can greatly enhance speed and efficiency of

producing both documents and computer programs. By understanding the

cognitive and probabilistic processes that underly text editing

behavior, methods and tools can be developed to improve the text editing

environment.

This thesis addresses the issue of how humans select the length of

a search string in text editing tasks, particularly while editing

computer program code. Editing computer programs introduces more

complexity into the searching tasks due to the different syntactical

nature of the text and the expanded character set used in programming.

3

As the length of the given search string increases, accuracy and

keying costs increase. For the purpose of this research, it is assumed

that a human will increase the search string length until the desired

probability of success (e.g., finding the desired location on the first

try) exceeds some threshold. A model is proposed that represents the

human's estimated probability of search success in terms of a predefined

threshold of information-theoretic bits. An increase in search string

length is related to the value of the threshold. The probability of

finding the desired text is modeled as a two-state Markov process. A

more detailed explanation of the model is contained in Chapter 3.

CHAPTER II

A REVIEW OF THE LITERATURE

The literature pertinent to search string selection involves models

of text and models of human text processing performance. Models of text

are especially interesting from the digital computing viewpoint, since

most text processing is now performed on the computer word processor.

These models can be deterministic or probabilistic. Text processing

studies typically analyze human performance within a specific context,

in order to identify the underlying cognitive structures and processes

responsible for the observed behavior.

The literature reviewed in this chapter will be used to identify

the variables most pertinent to human performance modeling in text

editing. Probabilistic models are given considerable attention in this

review; the model developed in this thesis is probabilistically—based.

Time and rule—based models of the human in text editing are also

discussed, supplying important variables to the model. Finally, the

issues of text familiarity and probabilistic knowledge are examined. It

is important to note that there are two sets of variables used in this

study. One set is the variables pertinent to the development of a search

string selection model. These will be incorporated into the computer

model. The second set is manipulated as independent factors in an

empirical study.

4

5

Types. 	models

Analysis of human text creation behavior has influenced two major

types of models: mathematical models of text and models of the human

information processor.

Mathematical models have used statistics 	and conditional

probabilities to predict the occurrences of letters and/or words in text

environments. For example, an information theoretic model related to

the entropy and redundancy of the English language was developed by

Shannon (1951). Zipf (1949) has empirically shown that word usage

frequency is directly related to word length and can be modeled in terms

of probability. Ehrlich, Damon, and Cooper (1983) have demonstrated the

utility of word frequency—based strategies in text editing.

In contrast, performance modeling is a technique used to model

human information processing performance in text editing. Models of the

human can be either time—based or rule—based in nature. Model accuracy

is determined by comparing model and human performance. Time—based

models estimate the amount of time required to execute a particular

editing task (e.g., the length of time to complete the insertion of a

word in a line of text). The research of Card, Moran, and Newell

(1983a) focuses on operations conducted during human computer

interaction. A common application of such a model would be used to

estimate human performance within a newly developed editor, in lieu of

actual experimentation.

6

Rule—based models of human text editing behavior describe the

human's strategies in specific situations. For example, Card, Moran,

and Newell (1983b) modeled selection of search methods when the distance

to desired text varied from one to several lines of text.

Only a few accurate models of the human information processor in

text editing tasks exist and these models vary in content.

Reviewed here are model types from two perspectives: those that

model text itself and those that model human performance within the

editing context. Although the nature of the models are quite different,

important variables to the model of search string selection are

extracted from both model types and incorporated into the thesis model.

Additionally, the model variables extracted from the literature are also

analyzed in a validation experiment.

Mathematical lizirla I=

Mathematical models of text generation from letters, words, or

phrases have been developed using stochastic process models and

information theory (Shannon, 1951; Edmundsen, 1955; Barnard, 1955; Cover

and King, 1978; Markov, 1913). For some of these models (e.g., Markov,

Shannon), the underlying assumption is that text can be looked upon as

the result of a stochastic process whose successive outcomes are

constrained by semantics, reflected in the given probability

distributions.

7

For example, the Markov chain (Markov, 1913) was developed to

analyze the sequential organization of letters in terms of a stochastic

process. The discrete process of sequential letter dependencies is

described as state transitions, or the discrete Markov process. The

general case can be described as: There exist a finite number of

possible "states" of a system: S1 , Sp..., Su. In addition there is a

set of transition probabilities; p i(j) the probability that if the

system is in state S i it will next go to state S i . This theory is

applied such that a letter is produced for each transition from one

state to another. The states correspond to the "residue of influence"

from the preceding letters. When state dependencies increase, the

residue of influence increases by an associated conditional probability.

One especially relevant theory based on the Markov chain is

Shannon : s (1951) information theory analysis. Shannon's theory is based

on the generation of text by providing successive approximations to

English using Markov chains of higher and higher order. The Shannon

study is the mathematical basis of this thesis.

Shannon proposed that a method of estimating the entropy and

redundancy of a language (e.g., the English language) could be

constructed from the knowledge of the statistics possessed by those who

speak the language. Information Theory provided a consistent

mathematical basis for investigations into encoded information

transmitted over various media. With the introduction of digital

computers to mass communication networks, a great deal of interest was

expressed in digital encoding methodologies; Shannon's work was

8

dedicated to finding a suitable, economical way to encode the symbols of

a language in this format.

Shannon's theory on the redundancy of a language is based on the

relative entropy of that set of symbols. Entropy measures how much

average information (i.e., reduction in uncertainty) is produced by each

letter of a text in a printed language. If this language is then

translated into bits, the entropy (H) of the language is the average

number of bits per letter of the original language. The redundancy, on

the other hand, measures the amount of potential loss of information in

the language due to its syntactical structure and frequency statistics.

For example, in English there is a strong tendency for "t" to be

followed by "h", reducing the average information transmitted by each

letter.

The general concept was that humans can be presented only partial

information, and based on the accumulated knowledge of the statistics of

the language used (e.g., syntactic and phonetic conventions), inferences

can be made pertaining to the entire content of the information. For

example, if shown the letters "roo", a human has some reasonable idea of

the letter that immediately follows the second "o" (e.g., t, k, f, m,

etc.). This inference structure could then be employed to allow for

more economical data transmission. Conceptually stated, the knowledge

possessed about a certain set of symbols in a constrained environment

(e.g., a printed language) influences the human's decisions about the

content and arrangement of these symbols.

9

The basic method for calculating the relative 	entropy and

redundancy of a language is described as a series of approximations F 0 ,

F1 , F2 ,..., Fn that account for successive statistics of the language

and approach H as a limit (Markov chains). These approximations are made

by using a successively conditional probability involving one more

letter of preceding text. For example, a probability would be

calculated for the number of times the letter "d" followed the trigram

"wor", then a probability would be calculated for the number of times

the letter "s" followed the 4-gram "word", etc. In Shannon's case, the

approximations were made using an empirical estimator.

Fn , or "N-gram entropy" is commonly defined as the entropy

calculation per letter for the Nth letter (based on conditional

probabilities through (N-1) letters), where:
n
E p(b.,j)
i=o 	1

Z P(bi ,j)
i=o

Where b. is a block of (N-1) letters, and:

j is the Nth letter,

p(b i ,j) is the probability of the Nth letter, j,
with conditional probability dependency on the contents

of b..
1

The probability p(b i ,j), or the probability of the N-gram (e.g., the

number of times the letter string "abcd" (a "4-gram") occurs in a

printed language) is determined empirically from the probabilities of

the letter N-gram. The N-gram is estimated by extrapolation, or in

F
n

_

log2 pbi(j) 	(1)

log2 p(b i ,j) + E p(b i) log p(bi)
i=o

Shannon's case, by estimation. The quantity p b (j) is also determined

1 0

empirically by extrapolating the conditional probability of the letter j

after the preceding letter block b i for the language of interest.

Shannon conducted a single subject study to test his theory. 	The

subject was given a sequence of N letters from incomplete passages in a

story, and probability tables for two and three letter combinations

(known as digram and trigram tables, respectively). Shannon asked him to

estimate the next letters in the story. If the subject guessed

correctly, he was informed of the success. If the subject guessed

incorrectly, he was prompted to guess until correct. This process was

repeated until the passage was complete.

Of a total of 129 letters to be guessed, 89 (692) were guessed

correctly. Functionally, N was increased as the subject correctly

guessed the next letters of the passage. The errors in prediction were

most likely at the beginnings of words and syllables. Shannon explained

that generally, good prediction would require no more than N letters of

preceding text, and N could be small (e.g., 4 or 5 letters).

In another experiment, Shannon changed the experimental stimuli to

one hundred samples of English text selected at random, each 15 letters

in length. The subject was required to guess the text, letter by

letter, for each sample as described in the previous experiment. In

other words, one hundred samples were obtained with N varying from 0 to

14 preceding letters.

Shannon found that prediction gradually improved with increasing

knowledge of past guesses, similar to the results of the first

experiment. Shannon also calculated the relative number of bits of

11

information associated with a next letter in a sequence of letters (that

will form a word) in terms of the letter's position in the string.

Figure 2-1 depicts this relationship.

The above graph indicates a functional asymptote in the curve

beyond five previously known letters. A significant conclusion can be

drawn from this graph. It appears that the human acquires a fixed

amount of information about the actual text after N becomes equal to, or

greater than five or six characters in a string. This conclusion was

exploited in the model developed in this thesis.

Cover and King (1978) extended Shannon's experimental findings for

guessing the next letter in a sequence. They asked subjects to place

successive bets (of real currency) on next letters in a sequence of

letters forming words. The authors used the same basic experiment as

....

,
NI -UPPER BOUND L. i) 	1

.01121.111ktbftm■-
lilt]lir.

.

I 	1
. 	1 	\ \ 	1

t
r 	r 	•

4' 	I 	I
LOWER BOUND- d 	4 1_

I ?

0
	

2
	

3
	

4
	

5
	

6 	7 	8 	9 	10 	11 	12 13 	14 	LS
	

100
NUMBER OF LE'TERS

Figure 2-1 	Upper and Lower Bounds for the Entropy of En-
glish (from Shannon, 1951).

4

3

0

12

Shannon; the subjects guessed the next possible letter until they

guessed correctly. Additionally, Cover and ring gave subjects letter

digram and trigram probability tables to aid with probability

estimation. Betting was included in the experiment to induce subjects

to concentrate on accurate character estimation with a reward of even

money given for a correct guess. Subjects were allowed to read as much

of the passage as they desired up to the specified passage to

familiarize themselves with the writer's style. Results showed that

subjects were quite skilled in estimating next characters. This

supports Shannon's claim that statistical knowledge of a language can be

used to guess letters in a syntactically structured sequence.

Results of other language entropy studies (Barnard, 1955) indicate

that Shannon's results can be extended to other languages. In Barnard's

study, comparative figures for word—letter entropies were calculated for

French, German, and Spanish. Barnard discovered that average word

length bears directly on the letter entropy values for a given language.

For example, all of the languages analyzed in Barnard's study reflected

the same letter entropies as English, except for German. The average

word length in German is longer than the others, primarily due to the

fact that German words are a combination of other words to describe a

complex concept. With the above results in mind, it can be extrapolated

that similar languages (in syntax, etc.) would reflect similar entropy

values.

14

sufficiently large to enable a more accurate modeling of a printed

language in the form of zero-memory sources with words as symbols.

This correction effectively decreases the entropy per word estimate

for all "English-like" languages to approximately 2.1 bits, instead of

the original 2.62 bits per letter calculated by Shannon. Also, the

bits/letter entropy is decreased to 2.1 bits vs. the original Shannon

calculation of 3.3 bits. The correction must be considered to have had

effect on the shape of Figure 2-1. This correction was also considered

in the model construction.

Ellis and Hitchcock (1986) have produced Zipf functions for the

UNIX operating system command language. These functions reflect the same

results as the original analysis of English, further illuminating the

flexibility of the lay for printed language.

yord Frequency "med Bdititur §trolregies

As previously shown, statistical knowledge of text can have a

distinct effect on the subjects ability to fill in missing information.

The use of word frequencies for developing a suitable text editing

strategy was studied by Ehrlich, Damon, and Cooper (1983). Their study,

which is the most closely related research to this thesis, analyzed the

effects of knowledge on search strategy within a text editing task.

Four graduate students involved in preparing at least one large

scale document (e.g., a master's thesis) served as subjects for the

experiments. Working under the hypothesis that the subject's knowledge

15

of the text content and structure would affect search string selection

strategy, they recorded subjective estimates of word frequencies in the

subject:s text file. Words were categorized according to type (e.g.,

nouns, verbs, etc.) and then the subject was asked to estimate how many

times the subject thought the words occurred in the file.

Although the case studies produced varying profiles of word

frequency, they do provide a consistent overall result. All of the

subjects could estimate the frequency of occurrence of words, no matter

what type, to within +/- 2 occurrences of the lexical root.

Additionally, subjects appeared to be biased toward lower estimates for

words or word roots occurring more than ten times in the manuscript.

These results indicate the subject's familiarity with the text had

a large bearing on the ability to estimate word frequencies until the

frequency exceeds ten occurrences. Also, it seemed that the words most

associated with frequency misjudgement also reflected "conceptually-

based confusions." By this they meant that the conceptual encoding of

the manuscripe• topic, ideas, and main points by the subject were

organizationally inaccurate. An example of this concept is editing a

portion of a manuscript to convey a different main idea from what it

previously had represented.

The authors concluded that the knowledge of the manuscript can

assist the writer attempting to locate information during text editing.

Use of this knowledge, however, must be tempered by an understanding of

its limitations, namely, that surface details (e .g., actual syntactic

and sentence structure) are not readily available. They also found that

16

low frequency (1 or 2 occurrences) words or labels have a much higher

probability of being properly placed in position in the manuscript's

hierarchy of ideas.

Models al Human performance in Iglu Editinv.

Rule—based and temporal models of human performance behavior in a

text editing environment have also been developed (Card, Moran, and

Newell, 1983, 1983b; Kintsch and van Dijk, 1978). The models analyzed in

this section provide an alternate method of modeling the text

environment and human behavior in the text environment.

A model of computer user behavior, called the Keystroke Level Model

(KLM) was developed as a design tool for estimating task execution times

within different operating environments. The model's primary purpose is

to supply the system designer with an estimated time required to

accomplish a given task with a particular interactive computer system.

This model was tested within several text editing environments. The

basic experiment consisted of several subjects editing manuscripts on

different text editors. The authors developed a task execution model

for specific editing tasks based on subtask time estimators. The total

time to execute a task was the sum of the subtask execution times

comprising the overall task. Mean subtask execution times were

empirically determined for the following:

K -- execute a keystroke
P -- point to an object with a mouse
H -- home hand on keyboard or mouse

17

D draw a line (with mouse)
• -- think about next action (mental time estimator)
R -- response time

where:

Texecute m TR 	Te Te TM+ TR

The T execute estimator is the sum of all the subtask times.

An experimental model developed using the KLM involved a search

task. Subjects had to locate text, then edit a section or paragraph of

the text. Using the editor "POET," the only editor similar to the one

used in this thesis, the following subtask model was developed. The

subtask representation for the search procedure is given in Figure 2-2.

The searching task described by Figure 2-2 can be interpreted as

follows. The user thinks about how to initiate a search command (M),

then issues the editor command to initialize the search by keystroking

(K) the symbol ("). Then 7 characters are entered that represent the

search string (7R[string]). The search string is terminated (") and a

request is given to print the desired line (/). An edit command is then

issued to begin editing the text. From this model, the user's

Indicate search string 	-->
Type search string 	-->
Terminate search string -->
Print line 	 -->
Issue edit command 	-->

MK["]
7K[string]
MK["]
KU]
M 2K[e <CR>]

Figure 2-2
	

Text searching procedure
using the POET text editor.

18

keystrokes and time for execute a text search are determined.

The model overtly describes how the task is accomplished; however,

it has no provisions for estimating mental operations involved in the

task except for the M operator. A time estimate for the M operator was

determined for the search task model by subtracting the overt actions in

a subtask from the subtask execution time containing the M operator.

This estimator is sufficient for task execution time approximations, but

appeared more coarse-grained than that required for 	the mental

operations pertinent to this thesis. 	For example, how the subject

generated the search string is not specified.

More importantly, the model does not say anything significant about

the actual cognitive effort or strategy involved in generating a

searching strategy and issuing an accurate search string. Additionally,

the search string issued was not analyzed or recorded. The model does,

however, represent the time -- including the search string selection

process-- involved in text searching.

A rule-based model of human-computer interaction in various tasks

was also developed by Card, Moran, and Newell (1983b). The GOMS model

(for Goals-Operators-Methods-Selection) was developed to predict human

computer interaction sequences through the analysis of intended goals

during the task.

The GOMS model breaks a task into subtasks by supplying:

A set of Goals,
A set of Operators used to achieve the goal,
A set of Methods used to achieve goals,
A set of Selection rules for choosing among

19

competing methods for goals.

Using the above constructs, subgoaling was used to decompose the overall

search-replace task to a finer grained level. The part of the model

concerned with editor positioning is:

Goal: Locate-line
[Use-LF-method]
[Use-QS-method]

The strategies identified for locating specific text in the file

were: the query-search method (QS-method) and the line-feed (LF-method)

method. The human issues a search command with fixed length (5

characters) character strings to locate text using the query-search

method. The line-feed method is used primarily for locating text to

edit when the text is close to the present location.

A typical rule example for a subject could be represented as:

IF the distance to the next modification is less than
or equal to 3 cm., THEN use the LF-method.
ELSE use the QS-method.

Rules similar to the example are used by the model to predict human

behavior based on the task requirements (e.g., the number of lines to

the target text).

Card, Moran, and Newell demonstrated a subject's selection of

search methods systematically on features of the task environment. The

most important characteristic of the environment is the distance (in

number of lines of text) between the current line and desired line of

text. All subjects used the LF-method when the text was close enough.

Close enough was defined differently for different subjects. In their

experiment, the threshold generally differed depending on the type of

20

terminal used (e.g., a teletype was used in one condition; the subject

switched to QS-method sooner due to slow response time of the terminal).

Once the threshold could be established for a particular subject,

modeling of the behavior was consistent over all subjects.

Subjects reported that the QS-method (search) appeared to be more

difficult than the line-feed method, which was reflected in the slightly

longer times to generate search strings vs. line-feeding. In general,

the QS-method was preferred over the LF-method in experimental settings

when the desired text was off-screen.

Although GOMS provides a f iner-grained analysis of the strategy

chosen to search for text based on distance than the KLM, it nonetheless

provides no insight to the Actual , processes used by the human in the

course of generating the search strategy and search token. GOMS

predicts (with some accuracy) when a human chooses to search for text;

it gives no indication of how many characters should be used or how a

strategy will develop for text searching. Additionally, the subjects

were instructed to limit their search strings to 5 characters, in spite

of the distance to be traversed to the target text or the frequency of

string occurrence in the file being edited. In the study, a search

string of 5 characters was sufficient to position the editor at the

desired location on the first try. In a less constrained text editing

environment, however, 5 character search string limits would result in a

higher rate of search failures. Also, the GOMS model was developed

primarily for environments containing only a small amount of text over

short distances.

21

Hammer and Rouse (1982) developed a model of the human as a

constrained optimal editor. In their paper, investigations were

conducted into the procedures and strategies used during intraline text

editing. There were two phases to the study. The first modeled optimal

keystroke solutions for intraline editing problems using several editor

command sets. Optimal keystroke solutions were then compared with those

generated by human subjects on the same editing problems. The second

incorporated those factors determined to affect suboptimal human

performance into a constrained model of optimal keystroke solutions.

Several text editors were modeled.

The modeling of intraline editing keystroke solutions is as

follows. The editing solution to the problem is determined with a

typical problem characterized below. The user must alter the line of

text "John and Mary" to be "John or Mary". To execute the task the user

must: a.) reuse "John ", b.) delete "and", c.) insert "or", d.) reuse

" Mary". Once the execution sequence is determined, the model takes the

two lines of text (original and altered) and attempts to make the

altered out of the original using all known editing commands from the

particular editor of interest.

Subject performance was compared with optimal solutions produced by

the model. It was found that the subjects were often suboptimal in

their editing sequences due to: a.) limited knowledge of the possible

editing commands available, b.) use of extra keystrokes to execute the

same task, or c.) the use of estimation when the counting of characters

was necessary (e.g., issuing an approximate number of characters to move

22

instead of actually precounting the characters to move).

The second part of the Hammer and Rouse (1982) study constrained

the model to resemble more accurately subject performance within the

specified editing tasks. Constraints imposed on the model were those

found to be pertinent to user editing performance from the first phase

of the study. Individually computed command sets for each subject in

the experiment were input to the model to simulate a subjects limited

knowledge of available commands. Also, the model was constrained to

estimate large distances in a way consistent with observations.

Descriptive categories were also input to the model to describe

keystrokes in excess of the constrained optimal solution. Several

categories were identified, from open-loop cursor positioning to human

error. However, only the command selection category is of interest to

this thesis. It was found that subjects often conducted text searches

under asearch string too long" situation, where the search string is

longer than necessary to do the desired positioning.

It was found that the model was able to describe or predict 90

percent of all keystrokes. The Hammer and Rouse (1982) model was

concerned only with intraline editing; however, subjects' tendency

toward suboptimality in text searches indicates a consistent underlying

mechanism in selecting search string lengths.

A study that bears mention in the context of the present research

is a model of text comprehension developed by Kintsch and van Dijk

(1978). They have shown that language users can provide missing links

in a word sequence based on their contextual knowledge of the facts

2 3

within the text. The facts can allow humans to make inferences based on

the fuzzy probabilistic relationships between the frequency of words and

the text context.

Kintsch and van Dijk modeled this relationship using a

propositional notation scheme to reflect these context effects within

the text. The idea behind the propositional notation is to represent

the meaning of text with a structured list of propositions.

Propositions are composed of concepts. Basically, a concept is

represented as a decomposition of an idea into the operators and actions

producing the idea. For example, the sentence: "The professor decided

to do an experiment" would yield the proposition: (do, professor,

experiment). Propositions are ordered in the text base according to the

way in which they are expressed in the text. This representation scheme

allows the experimenter to convert the entire gist of a story into a

format easily input to a computer.

Although the discussion of the model of text comprehension did not

include operational characteristics or code, Kintsch and van Dijk

described the basic input/output mechanisms of the model. The model

takes three inputs: The first is S, the short—term memory capacity. The

short term memory has been shown to be affected by reading skill; good

readers are capable of holding more text in short—term memory that poor

readers. The second input is N, the number of text propositions

accepted per mental processing cycle. To justify this input, the

authors theorize that the reader's knowledge of the text affects the

meaning derived from the text. Unfamiliar material would have to be

24

processed in smaller chunks than familiar material, and N should be

directly related to familiarity (e.g., N increases with knowledge of the

text). The final input to the model is P, the reproduction probability

of a particular proposition. The probability P is called the

reproduction probability because it combines both storage and retrieval

information. Under the same comprehension conditions, "the value of P

may vary depending on whether the subjects task is recall or

summation." (Kintach and van Dijk, 1978) A proposition is reproduced

with probability P each time it has participated in a processing cycle.

Basically, if a proposition is selected N-1 times to be included in the

short-term memory, S, it has N chances of being stored in long-term

memory. More specifically, the reproduction probability is 1 - (1-p) N .

This probability is similar to the Markov process discussed earlier.

The authors also indicated P was directly related to familiarity.

It was found by Kintsch and van Dijk that the reader's

comprehension of printed text varied significantly with familiarity of

the experimental text. This finding was consistent whether the text was

familiar to the subject prior to the experiment or the familiarity was

increased artificially by having the subjects re-read the material and

interpret the meaning of certain propositions. Although certain words

were not remembered after a period of up to three months, the extent of

the "gist", or general idea of the text was remembered according to

level of familiarity with the material before the actual test. Model

results confirmed this finding, indicating familiarity as an important

quantity to text processing. According to the representation for P, the

25

familiarity induced by inclusion of a proposition in long-term memory

also increases the reproduction probability of the proposition.

Important, Variables la Current Aculalc h

To properly model the human in an experimental text searching task,

insight must be gained into the human mental processes contributing to

search string selection.

The method chosen for the model of search string selection

presented in this thesis is based on the mathematical models of text,

specifically Shannon's information theory. The rule-based, temporal,

and cognitive models reviewed provide additional variables identified

that affect search string selection.

Based on the literature, four variables will be considered within

an information theoretic model of search string selection:

1.) The bits of information per character, or B c , in a text file will be

calculated for each experimental environment. B c will be utilized in

numerically determining a character's contribution to the total

information theoretic bits for the search string.

2.) The text environment content and the humans level of familiarity

(structural and propositional) with the text will also be considered.

This factor is derived from the Kintsch and van Dijk study. Familiarity

also be included in the empirical study.

3.) The users estimate of search success based on knowledge of file

26

contents will also be considered. Inclusion of this variable is

consistent with Ehrlich, Damon, and Cooper (1983). Consistent with this

study, knowledge of particular file contents will be analyzed with the

variable Problem Type.

4.) The character distance from current to desired cursor location in

the text editor will also be considered. The variable distance is

transformed into distance information cues within the empirical study.

This variable is supplied by the COME model research of Card, Moran, and

Newell (1983b).

Other factors influencing the human's ability to locate strings in

a file may consist of knowledge of text structure (e.g., a particular

programming language structure), text editing experience, and general

knowledge of the language syntax. These qualitative factors will also

be considered during model evaluation. In the following chapter, the

model is developed from the variables of interest.

CHAPTER III

A MODEL OF THE HUMAN SEARCH STRING SELECTION PROCESS

This thesis studied human search string selection with respect to

the human=s knowledge of the language in the file being edited. The

literature review suggested variables that may affect the process of

search string selection. These variables were incorporated into the

model and were manipulated in the Chapter 4 validation experiment to

verify the predictive accuracy of the model.

The present chapter is divided into two sections: model design and

model implementation. The level of implementation detail increases as

the chapter progresses.

Model jntroductioa

The literature discussed in Chapter 2 indicated a humans

statistical knowledge of a printed language has a significant effect on

the ability to predict the next character in a sequence. Additionally,

the humae-s memory of specific groups of characters previously used

(e.g., words) has been shown to effect the strategy used in locating

specific text in a text editing environment. Preliminary results of a

27

28

study conducted by Hammer (1984) indicate that the human does indeed

possess significant knowledge of programming and syntactical structure,

as well as character relationships within programming environments.

If the theories reviewed here are universal, then statistical

modeling of human knowledge of a programming language should reflect the

same basic constructs as with natural languages. Based on the

literature and experimentation, a computer model simulating human

statistical estimation of text within an editing environment was

developed.

Model Overvipw

The model developed for the thesis (written in LISP, see Appendix

A), chooses search string lengths for search problems simulating human

performance in a probabilistic text searching task.

The model's task is to choose the length of the search string such

that the probability of reaching the desired point exceeds a user—chosen

threshold. Generally, the models probability of success increases with

search string length. If the model does possess perfect knowledge of

the text, an optimal (shortest) string exists which will cause the

editor's search to move to the desired point on the first attempt. The

model does not possess perfect knowledge; instead, it adopts a

probabilistic view of the text. In each search problem, the model

chooses a search string with a sufficient number of information

theoretic bits to cross the distance to the desired point in the file.

29

M291111111121AUSalitiall

Modeling human search string selection behavior is accomplished in

distinct stages. First, the threshold number of bits for each problem is

calculated as follows. The editors search process is modeled as a

two-state Markov process: the failure state is absorbing (F) and

corresponds to the search failing. The success state (S) is the initial

state. 	It possesses a low probability P1 transition to the failure

state and a high probability transition (1 -P1) to itself.

The Markov process is used to estimate P
1 as follows: After a

number of transitions equal to the distance from the current to the

desired point, the probability of being in the absorbing state is (1 -

the humans desired probability of success, or P s) . Essentially, the

Markov process models the small probability P 1 of finding the search key

at every point in the text between the current and desired point. The

occurrence of the search key before the desired point corresponds to the

P1 probability, or search failure. Once in the absorbing state, the

P1

1 - P
1

Figure 3-1 	Two state Markov Process.

30

probability of the search failing is 1.

The Markov process emulates the editors search process

probabilistically. When the search command is issued, the editor

initiates a character by character matching process between the search

key and the text being edited. The process will continue until either:

a.) the search key is found before the desired distance is traversed,

b.) the editor reaches the end of the file, or c.) the editor reaches

the character distance indicated. In either condition a.) or condition

b.), the search is viewed as a failure. Condition c.) denotes search

success, or the traversal of the desired character distance where the

desired search key is known to reside. As long as the matching process

does not find a pattern match for the search key before the desired

distance, the Markov process continues to loop onto the success state

(S) and the search continues. Should the editor match the search key

before the indicated character distance, the Markov process traverses

the P1 arc to the failure state (F). Once the Markov process reaches

the failure state, F, it does not exit F, and the search fails.

The inputs to this section of the model are the number of

transitions D (for distance) and the overall probability of success P s .

The output is the single step probability P I . PI is then converted to

the threshold number of bits, H—m . HD p can be interpreted as the ,r 8 , 8

number of bits required to cross over the necessary distance to the

desired point.

31

Once the number of threshold bits is determined, the model selects

the shortest search string with bits greater than or equal to the

required threshold. The total bits in the search string are equal to

the sum of the bits for each character (e.g., ma","b", etc.), multiplied

by a scaling factor. This factor is based on the position of each

character in the search string.

The scaling factor was suggested by Shannoe.s (1951) observations

that the bits per character associated with the next character in a

sequence, given N preceding characters, is a function of the position in

the string. The scaling factor is applied such that after the first

character in the search string, it is expected that each additional

character contributes a decreasing amount of bits to the search string

bits total.

Or, 	
H(c,i) = H(c) * S(i)

where,

H(c,i) = bits for character c in the ith position
H(c) 	= bits for a character

= H (the number of occurrences of character c /
the total characters in the file)

and,

S(i) 	= the scaling factor, such that:
S(1) 7= 1 and,
S(K) = regression estimator for K = 2
S(K+1) = S(K) for K > some N,

N —= 5,6

32

Analysis 	Hada Components

The model description has provided an overview of the concepts and

techniques incorporated into the model. The sections under the present

topic describe the model components in greater detail.

&Islel lama

The model receives four inputs:

1. The potential search string, from which
the model selects a substring,

2. The character distance from the beginning
of the file to the desired position,

3. The individual character frequencies from the
file being searched,

4. An array of scaling factors.

The potential search string consists of characters remaining on the

text line following the desired cursor position.

Individual character frequencies are calculated as number of

occurrences divided by the total number of characters in the file.

The scaling factors are a series of values that reduce bits of

information contributed in each position as the search string length is

extended. For example, the number of bits contributed to the search

string by the first character is a product of the first scaling factor

and the bits value associated with the chosen character (e.g., the

probability of the character in the file converted to a bit value (H)).

The second character of the search string is the product of the second

33

scaling factor and its bit value, and so on.

Wiz/W22 2f. S22.1jag. Factors

Initially, it was intended the bits of information versus character

position graph from Shannorr.s (1951) study of the English language would

provide adequate scaling factors for the model. However, estimators to

the Shannon curve and mathematical approximations of the curve yielded

incorrect results during pilot studies. Two reasons contributing to

model failure were identified.

A reexamination of the pertinent studies in the literature review

(e.g., Yavuz, 1974) and empirical analysis using the Shannon curves

revealed that the bits of information associated with the early (e.g.,

second character, third character, etc.) characters in the selected

search string were too high for the search string model. As a result,

model search strings were consistently too short. Additionally, the

text used in the original studies was based on a natural language. This

thesis uses a programming language character set which expands the

character set considerably. Therefore, an estimator for the scaling

factors was required.

The original Shannon curve plotted H(c,i), or bits per character,

versus position in the character string. The Shannon curve shape was

used as a model for the search string scaling factor values. Beginning

with S(1) 	1, a series of scaling factors (i.e., S 2 , S3 ,...) were

determined that would reflect the Shannon curve with an asymptote at the

34

fifth or sixth character position. The asymptote was approximated

according to the asymptote identified in Shannon :a original analysis of

the English language.

The appropriate scaling factors were determined through regression

analysis according to the equation:

n

ED, Ps = S(1)*Sc[1] 	S2*Bc[2] 	"' 	S5 L lc
i-5

where:

H 	= number of bits required to travel D,P s 	 the distance to the desired position

S i = scaling factor for ith position

B = bits value for the particular character
a,..,n1 = position of character in search string
n = length of string

The two-stage Markov process was employed to calculate the transition

probability (P 1) for each searching problem. P 1 was then converted to

Hp . p and used as the response variable in the regression analysis.
, 8

Character frequency values for the first five characters in each

potential string were converted to bits (B c) and used as regressors.

The two sides of the equation were assumed equal according to the

definition of HD . The threshold value must be enough to traverse the u
s

necessary distance D to reach the desired point in the file. 	The
n

equation term, E B c represents the bits of information contributed to
i- 5

the search string beyond four characters. Only the first five values

had to be estimated, since S(5) = S(5+i) for all i >= 0 . Basically,

all Bc for i) 5 are summed and multiplied by the S
5 estimator. In

each series of scaling factors, the first position (S i) is always 1

35

since the first character of the string contributed the entire B c value

to the search string. Therefore, only four coefficients need be

estimated by regression.

Linear regressions were run on the two files used in the validation

experiment using the MINITAB Statistical Package. Regression results and

calculated coefficients are found in Table 3-1. The variables are named

Bc[21 through Bc [5 1 to denote position in the scaling factor array. The

regression was run with no intercept in the equation.

Regression results for familiar file:

The regression equation is:

= 0.131 Bc [2] + 0.249 Bc E 3] + 0.149 Bc [4] + 0.162 Bc [5] RP,Ds

PREDICTOR

No constant

COEF STDEV T-RATIO

c[2]
0.1313 0.1798 0.73

B
c131 0.2487 0.1356 1.83

Bc[4]
0.1495 0.1490 1.00

RcI51
0.16228 0.08718 1.86

standard deviation = 1.264

SOURCE DT SS MS

Regression 4 758.39 189.60

Error 46 73.44 1.60

Total 50 831.84

Table 3-1 	Scaling Factor Regression Results.

[2,...,5] denotes position in string.

36

Regression results for the unfamiliar file:

The regression equation is:

HP,Da - 0.086 Bc [2] + 0.427 Ec [3] + 0.267 Sc ud - 0.084 Bc [5]

PREDICTOR COEF STDEV T-RATIO

No constant

Bc[2] 0.0864 0.1471 0.59

Bc[3] 0.4270 0.1627 2.62

Bdill 0.2670 0.1399 1.91

Bc[5] -0.0838 0.1376 -0.61

standard deviation - 1.264

SOURCE DF SS MS

Regression 4 882.72 220.68

Error 46 73.44 1.60

Total 50 956.16

Table 3-1 	Scaling Factor Regression Results

(continued)

37

A discussion of the regression results 	is 	required. 	All

coefficients were considered valid until two successive values were

non—significant. In the familiar file regression, this value was at 6;

the value was 4 for the unfamiliar environment. At this point, it was

assumed that the curve had reached its asymptote. The coefficient at the

asymptotic position was used to fill out remaining positions in the

array. In terms of the t—test, regression coefficients were included,

provided they are significant. 	The B2 regressor was always non-

significant. However, there is an explanation for this observation.

Limited information is added to the character string by the second

character. This is reflected in the observation that a 2—gram, or a

sequential probability of 2 characters, does not generally possess much

information. With the addition of a third character, the information

level increases significantly. 	As a result of this reasoning, the B2

regressor was included in the scaling coefficients.

During the simulation, the total bit value of a character in the

search string, H(c,i), was calculated according to equation (1) using

the character frequency and the ith scaling factor. If the search

string chosen by the model was longer than 5 characters, the bits for

the additional characters were added to the bits of the fifth regressor.

38

In this chapter, a model of human search string selection was

developed around the user-defined bits threshold, H, p 	for a search HD
2

string based on the user'spredefined probability of success, 12 9 , 	All

variables of interest to search string selection identified in the

literature review were included. A series of character position

coefficients for S(i) within a programming language was estimated

through linear regression, modeled after the H(c,i) curve suggested by

Shannon (1951).

CHAPTER IV

AN EMPIRICAL STUDY OF SEARCH STRING SELECTION

An empirical study was conducted to evaluate the effects of text

familiarity, distance information, and problem type on user search

string selection behavior. In addition to the performance data

collected, search strings issued by subjects were used to evaluate model

performance, which is described in Chapter 5.

Introduction

Two separate experiments were conducted in this validation study.

The first was a text searching experiment within a text editing

environment. The second experiment was an on-line string frequency

estimation task designed to elicit frequency estimates of particular

character strings in each file. This data was used as a general

estimate of a subject's knowledge of the file contents.

The chapter begins with 	identification, 	description, 	and

justification of the variables used in the searching experiment.

Experimental and statistical design is reviewed next, and then the

actual experimental procedure is discussed. Following the results and

39

40

discussion of the searching experiment, the estimation experiment is

reviewed in a similar manner.

Text Searc ing Experiment

Independent Larishlea.

Based on current literature and experimenter hypotheses about human

text searching behavior, variables were selected for the text searching

experiment. Each variable is discussed in a subsection. The

operational definition, rationale for inclusion, and types of stimuli

within each variable range are included in each description.

familiarity. (F) — Familiarity is operationally defined as whether

the subject had experience with the contents of the file being searched.

Following Kintsch and van Dijk (1978), the subject should have

approximate knowledge of the frequency of characters and location of

particular strings within the file. This familiarity with the text file

should have a plausible effect on search string selection.

Two FORTRAN 77 source code files were used: one was the file that

subjects had studied before the second experimental session (familiar

environment); the second was a similar (in structure and length) FORTRAN

77 file that subjects had never seen before (unfamiliar environment).

All subjects studied the same familiar program text. The training method

41

used to induce studying is described later.

Familiarity is the major variable of interest in this experiment.

The user=s success rate, as defined by the number of target strings

found on the first searching attempt, should be greater in the familiar

condition than the unfamiliar condition. The higher success rate is

primarily due to level of familiarity with the text.

Distance Information. (D) - After Card, Moran, and Newell (1983),

distance information cues about the searching target location were

supplied to subjects in two forms: (1) the page number of the printed

text that the target (desired text to be located) could be found, and

(2) the line number, measured from the top of the file, on which the

target could be found. Distance to the desired editor position would

seem to be an obvious influence on string selection since the

intervening text between the current cursor location and the target

decreases the probability of locating the target. Distance was also one

of the inputs to the model, further identifying it as an important

factor in this experiment.

Problem Type. (T) - Problem type is defined as either familiar or

unfamiliar targets to be located by the user. Ehrlich, Damon, and

Cooper have established that a users knowledge of word frequencies (or

character strings) in a file is very accurate as long as the frequency

did not exceed 10.

In the experiment, subjects searched for two types of targets. The

basic content of the target was either: familiar (e.g., a subroutine

42

name, language keyword, etc.); or unfamiliar (e.g., variable name,

parameter of a subroutine, etc.). The subject was expected to recognize

when a target was familiar. This recognition should also have

influenced the search string length.

Targets were evenly distributed in each text file to ensure target

stimuli equivalence. Basically, three distance ranges were used: from

100 to 9000 characters, from 9500 to 20,000 characters, and 20,000 to

30,000 characters. Both text files contained approximately 31,000

characters. The stimuli, equally divided among the three distance

ranges, were also equally distributed (as closely as possible) within

the distance ranges (+/- 50 characters). Targets were also matched

according to character distance, uniqueness of the character strings,

and number of each type in each familiarity file. There were 30

problems of each type in each file.

Dependent Variables

successes. - The number of successes was used as the dependent

variable in the experiment. This variable is defined as the number of

searching problems solved on the first searching attempt (i.e., the

desired target was found on the first search) within a particular

combination of the independent variables.

Search Strings. - The actual search strings issued by the subjects

were also recorded. The average string length for each problem was used

43

as input to the search string selection model. The search string data

was not used in the present experiment.

Aloaking. F ac tors,

The variables subject and presentation order of familiarity files

were used as blocking factors in the experiment.

Statistical Dgaign

A split-plot factorial statistical design was used 	in the

experimental analysis. 	This particular design was selected for its

ability to isolate all variables of interest.

Plots were split over the distance information (D) condition. 	The

split-plot design is divided over the levels of familiarity; a subjects

initial exposure was assumed to increase statistical knowledge of text

contained in the file. If this were so, a within-subjects design would

increase learning about the string frequencies and content of the files

and therefore bias the number of successes in searching problems.

The factors familiarity (F), distance information (D), problem type

(T), presentation order (0), and subjects (S) were considered according

to Figure 4-1. Distance information (D) is a between subjects variable,

the remaining variables are within-subjects with presentation order (0)

counterbalanced in the design.

44

The linear model in Figure 4-1 contains only those variables and

interactions important to the analysis. In the experimental design,

order (0) and all interactions involving 0 are excluded from the model.

Initially, it was desired that presentation order effects should be

considered. Because presentation order was balanced within plots (see

Figure 4-1), presentation order was aliased with Distance information

(D). In the experiment, it was assumed that D and 0 would both give a

positive effect to the ANOVA from both unfamiliar to familiar condition

and from distance information not given to distance information given

conditions. A one-way ANOVA using only 0 in the linear model revealed

that the presentation order effect was not significant. Since D and 0

were aliased in the design and both were expected positive effects, the

non-significance of the ANOVA indicated that the experimental design was

adequate to accurately analyze the data. The presentation order (0)

variable was therefore deleted from the model to make all other effects

of interest estimable by the least squares method.

Also omitted from the model were interactions FT ij , FTS ijuk) , and

FTDS ijkl(k) 3.j The FT. interaction was not expected because, as given in

the Problem Type (T) description, problems were matched according to

distance, content, and distribution within each level of familiarity.

FTSijl(k) and FTDS ijkl(k) were omitted because individual subject

differences were not of interest to this study.

Random subject effects nullify standard F-statistic assumptions.

Due to this condition, approximate F-statistics were formulated for

experimental effects according to Satterthwaite"s method for

(D)

DI
ST

A
N

C
E

 IN
FO

 N

DI
ST

A
NC

E
IN

FO
_ Y

FAMILIAR

45

UNFAMILIAR 	(F)

ORDER 2 ORDER I ORDER 2 (0)

(T) NAME VAR NAME VAR NAME VAR
X X

X X X

X

X X X X

X X
X X X X

X X

X X X

X X X X
X X

X X X X

X X

X X X X

X X

X X X X

X

EXPERIMENTAL DESIGN

X = DATA COLLECTED IN CELL

= DATA NOT COLLECTED IN CELL

Linear Model:

Y ijki =u + Fi + Ti + Dk + 	(k) + FDik + FSii (k) + TSjk + TDjk + FTDij k + E

where:
F 	familiarity level (i a 1,2)
T la problem type (j 	1,2)
D 	distance_info level (k 	1,2)
S is subject (1 	1,2 16)
0 	presentation order (omitted from linear model)

ORDER 1

S i

S2

S3

S4

Ss
SO

Si

S.

Se
SIO

S 11

S 12

S
S 14

S ie

S

NAME VAR

z
X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 4-1 — Experimental Design and Linear Model

46

Approximating F-statistics (from Montgomery, 1984). When exact tests do

not exist, Satterthvaite has demonstrated a technique for calculating an

approximate F-statistic using linear combinations of mean squares to

isolate the mean square of interest. The technique used to calculate the

approximate F-statistics for all conditions were performed according to

the procedure outlined in Appendix B. Also in Appendix B are the actual

equations used to calculate the F-statistics.

$ubjects

Sixteen junior and senior undergraduate students (mean age 	21.2

years) from an introductory Industrial and Systems Engineering Man-

Machine Systems course at the Georgia Institute of Technology served as

subjects for the experiment. Subjects were required to have a working

knowledge of FORTRAN 77 (i.e., at least one formal course and 1 year of

programming experience with the language) and a general familiarity with

computer text editors and various editor commands (e.g., search commands

and cursor control keys). Subjects received class credit for experiment

participation.

Training

There were three experimental sessions. The first session was an

initial briefing to become familiar with the task and instructions to be

followed during individual study; the second was an individual learning

session where the subjects became familiar with the experimental

47

material; and the third was the actual on-line text editing session.

All instructions, questionnaires, and training materials are contained

in Appendix C.

Subjects were given a printed copy of an approximately 1000 line

FORTRAN 77 program, along with a one page questionnaire (see Appendix

C). During the second experimental session subjects answered various

questions about the program content and functionality. For example,

they were asked to identify various aspects of the program, such as the

particular functions called in a subroutine, the order that function

code appeared in the printed source code, etc.

Additionally, subjects were asked to do walk-throughs of code

sections to instill structural as well as functional knowledge of the

source. There was an oral review of the questionnaire immediately prior

to the on-line editing session (session two) to ensure that the subject

had understood the questions.

procedure

The sixteen subjects were randomly assigned to one of two groups:

Target distance information given, where target distance information was

given for searching stimuli, or target distance information not given,

where target distance information was provided for searching stimuli.

This condition held for the entire experiment for the particular

subject. Experimental sessions were conducted on an individual basis

48

and ran approximately 2.3 hours in length.

The question sheet was reviewed with the subject before the

searching task began to ensure that the learning session was effective.

In particular, questions pertaining to structural and functional

knowledge of the familiar condition file were asked. Seventy-five

percent correct answers on the oral examination was considered adequate

for the subjects to continue with the experiment. If the subject did not

attain this, an additional learning session was 	provided with

experimenter help available. 	Only one subject did not attain the

desired score on the first test. An additional learning session enabled

the subject to pass the oral review and continue with the experiment.

The subject was then seated at a computer 	terminal. 	An

experimental text editor with only three editing commands: home (return

to the top of the file), search (search for the indicated string), and

Control-Z (quit the editor) was used to search the files. The editor

had a keystroke monitor which recorded keystrokes in serial order and

cursor movement during editing.

After final instructions were given, subjects were given sixty hard

copy sheets (thirty of each Problem Type in random order) from one of

the familiarity conditions. On each stimulus page, containing a full

page of program text, a character in a text string was highlighted with

a yellow marker. The highlighted character was the target for the

problem. The first ten problems were declared practice and not scored.

Subjects were instructed to find the highlighted text on each

stimulus page by issuing a search beginning with the highlighted

49

character and adding characters after it until they subjectively judged

the string unique. A unique search string was defined in the

instructions to be a string of sufficient length to enable the editor to

locate it on the first try. If the search was a success, they were to

home the cursor (i.e., return the cursor to the top of the file) and go

on to the next problem. If the initial search failed, they were

instructed to home the cursor and try once more. The second searching

attempt was used to identify typographical errors. For example, should

the first search fail due to a typographical error, and the subject

entered the second search string with the typing error corrected, it was

scored as a success. This study was concerned with text searching

behavior, not typing accuracy. The process was repeated for all sixty

problems. A short break was given (approximately 10 minutes), then the

editor was initialized with the remaining condition (familiar or

unfamiliar) and the previous process was repeated.

After subjects were run on both conditions, a abort debriefing

questionnaire was given to solicit subjective information about the

experiment.

Data from the experiment was analyzed with SAS statistical software

procedure GM using a split—plot, factorial analysis scheme over all

variables. The analysis was conducted using the linear model given in

50

Figure 4-1.

Table 4-1 shows the mean performance results for the text searching

experiment. The table reflects subject means over a condition. A

significant difference was found due to levels of familiarity using

Duncan:s Multiple Range test. Distance information levels did not

exhibit a significant performance difference.

The ANOVA results are given in Table 4-2. Familiarity had a marked

effect on a subject's ability to locate specific text on the first

attempt (F(1,14) gg 14.36, p < 0.0026). Distance information had no

effect on subject performance (F(1,14) = 0.0625, p < 0.9371).

Additionally, Problem Type had no effect on performance (F(1,14) = 1.92,

p < 0.1880). No significant interactions between factors were observed.

Discussion

Performance within levels of familiarity (F), the only significant

factor, varied according to the experimental hypothesis: Subjects

Variable 	 Mean # correct responses
(25 possible responses)

Familiar
	

21.88
Unfamiliar
	

19.75
Distance Information
	

20.84
Distance Information N
	

20.78

	

Table 4-1
	

Mean Number of Correct Responses By
Problem Type Within Familiarity and
Distance Information Condition

51

Source DF Sum of Squares F Pr > F

Familiarity 1 72.25 12.31 0.0035
Distance 1 0.0625 0.01 0.9371

Information
Problem Type 1 10.53 1.92 0.1880
Subject 14 135.69 155.07 0.0629
Problem Type x 1 0.25 0.05 0.8344

Distance Inf.
Familiarity x 2 16.31 1.95 0.1796

Problem Type x
Distance Inf.

Table 4-2 	ANOVA Results.

located ten percent more target strings on the first attempt in the

familiar environment vs. the unfamiliar environment.

The distance cues supplied to the subjects in the distance

information given condition did not have any significant effect on

searching performance. There are three possible reasons for this

result. Either the distance information cues were: (1) not perceived by

the subjects when searching, (2) the subjects already knew the relative

distance to cover, indicating that the cues provided no additional

information, or (3) distance information is not really used in search

string selection. If humans are sensitive to distance information when

formulating search strategies, they do not rely on the specific

quantities given in the experiment.

It was expected that distance information would have a positive

effect on searching performance, particularly in the form of a distance

information x familiarity interaction. Subjects had knowledge of the

52

intervening text between cursor origin and desired cursor location in

the familiar environment. In the unfamiliar environment, however,

estimation of search string length was dependent on the amount of

intervening text based on knowledge of the language, syntax, etc.

The quantity of distance (in characters) was obviously not reflected by

the distance cues given in the experiment. It appears that a more

distinct indicator of character distance should have been used, perhaps

a table of conditional probabilities of character N—grams (after

Shannon, 1951).

Comments solicited from subjects revealed that they recognized

frequent text strings and increased search string length accordingly.

Also, it appeared that subjects sought closure for strings that spelled

out words. For example, even though the entire word was not necessary

to locate the target on the first searching attempt, subjects tended to

finish the entire word (e.g., "putstring", instead of uputst").

Upon reevaluation of the stimuli, it appeared that there was not a

qualitative difference between the two problem types. Originally, it

was expected that users of a well known programming language would

identify language keywords as occurring more often in a large program

text. Subjects reported no information that would indicate the

sensitivity to keywords. Instead, frequently occurring strings were

recognized according to perceived number of reinforcing occurrences.

Individual subject difference data were not analyzed.

53

In summary, a human's level of familiarity with a file being edited

does indeed affect searching performance. Based on the results of this

experiment, the other factors considered (distance information, problem

type, and order) do not influence searching performance. These results,

along with search strings given by subjects in the searching experiment

will be analyzed against model performance in Chapter 5.

A Reanalysis Rf .h€ Data

Although subjects' success rate remained consistent over variant

target character distances, the non-significant effect found for

distance information in the ANOVA was questioned. Referring to previous

discussion, if distance information was not utilized in subjects• search

string length strategies, then string lengths should not vary according

to character distance in the search problem. It would be reasonable to

assume therefore, that if subjects'. search success rate remains

consistent over variant distances, search string length should increase

with distance.

With the above heuristic in mind, the search experiment data was

reanalyzed using search string lengths (i.e., in characters) as the

dependent variable. The reanalysis revealed a significant effect for

distance information in addition to the familiarity effect (familiarity:

F(1,14) = 24.33, p < 0.0002; distance information: F(1,14) = 20.33, p <

0.0005). No other significant effects were identified in the

reanalysis.

54

It can therefore be concluded that distance information was

utilized by subjects in determining the length of the search string.

Distance information did not affect overall success rate. However, it

did affect search string length selection because string lengths were

increased monotonically with increasing character distances.

Frequency Estimation Uperiment

An on-line text string frequency estimation task was given

immediately after the text searching task. This task was designed to

allow the experimenter to compile subjective frequency estimates of

specific text strings in the files (after Ehrlich, Damon, and Cooper).

The hypothesis in this experiment pertained to a subjects knowledge of

text content. Even though learning occurred in the unfamiliar

environment, the subjects' knowledge of character string frequencies in

the file would afford better performance in the familiar environment.

lukierria.

The same subjects were used in this experiment.

procedure

55

A C-program was used to present lines of text from each file (one

file at a time). A stimulus presentation rate of 4 seconds was chosen

to limit subjects'. responses to recognition memory for each text string.

During this task, part of the text presented on the screen was

highlighted in reverse video. Subjects were asked to estimate how many

times they thought the highlighted text appeared in the file, then enter

an integer estimate at the keyboard. Results were averaged over

subjects and the mean estimate was regressed against the actual

frequency value for both levels of familiarity using SAS statistical

software procedure REG. The subject mean was used as regressor since

estimation accuracy for the average subject was desired.

Estimation Usk Amaral.

Results from the estimation task are shown in Table 4-3.

Preliminary analysis of the R-squared (adj.) values indicated that

subjects were much better at estimating the number of occurrences of a

particular string in the familiar condition. A correlation analysis of

Familiarity F-value Prob R2 (adj.)

Familiar 44.58 p < 0.0001 0.425
Unfamiliar 12.10 p < 0.001 0.160

Table 4-3 	Regression results of estimation task.
by familiarity type

56

actual versus estimated string frequencies was conducted using the

bivariate normal population correlation analysis technique given by

Ostle (1963). The results of this analysis showed that the hypothesis

that the two correlations were equal could not be rejected.

In Ehrlich, Damon, and Cooper (1983) it was shown that subjects

were insensitive to word occurrence frequencies above 10 occurrences.

Considering that some of the experimental stimuli occurred over 30

times, a non-linear relationship between actual and estimated number of

string occurrences was suspected. The mean subject estimate was

therefore normalized using a percent error estimator and the regression

analysis was rerun. Although the R-squared (adj.) values increased for

both levels of familiarity (II-squared (familiar) 1. .645, R-squared

(unfamiliar) ■ .463), recalculation of the bivariate normal population

correlation analysis technique (Ostle, 1963) again indicated that the

null hypothesis could not be rejected.

Discussion

Given the correlation analysis results, it cannot be concluded that

subjects possessed a higher level of string frequency knowledge about

the familiar file. However, a trend is indicated in that direction.

Upon reanalysis of the data collected in this experiment, sample size

and number of problems appeared to contribute to the non-significance of

the correlation differences. Further research is needed with larger

samples to discern this quantity.

57

One interesting result was noted during comparison of actual

frequency of occurrence and subjecte. estimated frequency of occurrence

of a text string. Except for a few outliers, subjects: estimates did

not exceed 20 even though some of the more common strings occurred in

excess of 60 times in a file. This result suggests a bias toward low

frequency estimation possibly due to anchoring effects in the estimation

process.

CHAPTER V

COMPARATIVE ANALYSIS OF MODEL VERSUS HUMAN PERFORMANCE

jntroduction

A comparative performance analysis between the search string

selection model developed in Chapter 3 and the empirical study of

Chapter 4 is described in this chapter. The same search problems from

the empirical study were used in the model validation runs. The search

string selection model was run within both levels of familiarity.

Search strings issued by subjects in the text searching experiment were

then compared to the search strings selected by the model on various

dimensions.

Performance was compared in terms of: (1) The number of search

successes for the model and subjects in both levels of familiarity, and

(2) Search string lengths used by the model and mean string length

issued by the subjects.

58

59

Overall text searching performance was analyzed based on percentage

of search successes by level of familiarity. It was found that the

search string selection model performance was similar to mean subject

performance within both levels of familiarity.

Model performance was equal to mean subject performance in the

familiar condition. Both the model and subjects (average) exhibited an

86% success rate (based on 50 searching problems). The model failed on

3 (of 7) of the same problems as the subject mean.

The unfamiliar editing condition had even more interesting results.

The model exhibited a 74% success rate, while subject mean was 80%. The

13 model failures encompassed 10 of the same failures as the subject

mean.

A chi—squared analysis was conducted on the performance results.

The chi—squared hypothesis: Hu .

"O .
successes versus failures are

independent for the average subject versus model performance" was

rejected 	in both cases (familiar condition: chi—square = 12.58,

unfamiliar condition: chi—squared = 35.58, where chi—square
.0001

10.8). 	The chi—squared test results indicate that the model tended to

exhibit the same behavior as the average subject on the same

experimental problems.

Model performance within the familiar condition was always better

than the unfamiliar condition, further supporting the experimental

hypothesis espoused in the empirical study: greater knowledge of the

text content and structure will aid in text searching performance.

60

search lulu& Length Comparison

Search string lengths for the model and the mean string length for

subjects were analyzed by search problem. Results of this analysis

showed that although the number of successes were equivalent in the

performance analysis, the search string lengths chosen by the model did

not correspond to those chosen by subjects.

Search string data was plotted for search problems on which both

the model and subject mean string lengths were successful. Subject mean

string lengths were used to estimate the average subject response; data

are plotted by familiarity condition. Figure 5 -1 shows the mean subject

search string lengths versus model search string lengths. The
m-

18-

16-

14-

12-

model 10-

•

8-

6-

4-

2-

0 I I 4 4
4 	6 8 10 12

i
14

I
16

4
18

4
20

subject mean

Figure 5-1
	

Mean Subject vs. Model Search String Lengths.
Search Successes Under Familiar Condition.

11

10 	 •

a
model

9 	10 	11 	12 	13 	14

subject mean

61

correlation between mean subject length and model length was 0.23.

The unfamiliar condition data yielded better results, as shown in

Figure 5-2. Correlation of model search string lengths and mean subject

search string length was 0.54.

Discussion

The model of human search string selection reflects overall human

performance in both familiar and unfamiliar programming language text

environments. Model adequacy based on number of search successes is

quite acceptable as shown in the overall performance analysis.

Figure 5-2
	

Mean Subject vs. Model Search String Lengths
for Successful Searches Under Unfamiliar Condi-
tion.

62

Upon finer-grained analysis, however, it was discovered the model

did not correspond to Actual human performance on individual searching

problems. This can be attributed to the algorithm used in determining

the information-theoretic bits threshold for a searching problem. The

two-state Markov process, described in Chapter 3, used an estimate of

the overall desired probability of success, not an individual

probability based on the particular problem of interest.

An interesting trend was noticed in Figures 5-1 and 5-2. In Figure

5-1, note that the model tended to issue longer search strings than the

subject mean, even though a shorter search string would suffice.

Conversely, the search strings issued by the model in the unfamiliar

condition (Figure 5-2) were shorter than the mean subject search string

on the same problem.

A possible explanation for this observed trend is based on

information theory. The search string selection model used B c , or bits

per character c in the file being searched, as the bits value used to

determine the search string length. Although adequate for the observed

overall searching success ratio, Bc gives the model no increased

knowledge of the file's structure or function in the familiar condition.

There was no input to the model reflecting this increased knowledge.

The shorter search strings issued by subjects in the familiar

condition indicates that an additional input to subject search strategy

may be present. 	This input may be similar to the M x , or text

transition, matrix of the alternate model given in Chapter 6. It is

hypothesized that the search string selection model algorithm combined

63

with the text transition matrix scheme of the Chapter 6 model would

yield higher correlation values. In order to do this, B c would be

calculated based on the transition probability from the previously known

characters in the string to the character of interest. The level of N

in MN would vary over level of familiarity, thus providing the string

selection model with varying knowledge of the text.

CHAPTER VI

AN ALTERNATE MODEL OF SEARCH STRING SELECTION

Background .411 Alte rnat e Model

During the thesis research, an alternate model was developed

simulating the entire search string selection process within the editing

environment. Instead of simulating only the human's probabilistic

search process, this model simulates the editor searching through the

editing environment. The humans knowledge of the text is represented

by varying levels of transition matricies.

The level of transition is defined as the number of previously

known characters (from Shannon, 1951) in the model. The probability of

a particular transition entry in the matrix is the probability of a

specific character occurring after a character string of length equal to

level of transition. At transition level 3, for example, there are

several possible characters (e.g., "t", "m", "f", etc.) following the

character string ".roo". The transition probability of the character "m"

occurring after the string '!roo" is equal to the number of occurrences

of the character "m" after "roo" divided by the total number of

occurrences of the level 3 transition string "roo".

64

65

This model uses the same theoretical basis as the model described

in Chapter 3, but was not successful. It was abandoned during the

thesis research because:

1.) Model runs required too much computer time and,

2.) The model still had not converged on a
reasonable solution by the time it had
been abandoned.

Basically, modeling of individual searching problems had reached level

11, and convergence acceleration predicted a transition matrix of level

20 or higher to solve it. At level 11, each searching problem required

approximately 83 minutes to solve a problem for one hundred iterations.

Multiplied by 50 problems in each of two searching environments, model

execution time exceeded 2.8 days per environment. This execution time

made the model prohibitive for this type analysis.

The alternate model is functionally described in this chapter.

Following the model description and implementation sections, a

comparison between the two models is conducted.

Alternate, tiodel Overviev

In the model, the probability estimate of search failure is modeled

as a function P of three variables: the search string S, the distance D

to the desired position, and the text transition matrix M N. A transition

matrix entry contains the probability that a given N—character sequence

is immediately followed by another character in the file being edited

(see Shannon, 1951). As N increases, the matrix contains an increasing

66

amount of the file's structure. Further, at some value of N, the matrix

MN uniquely reproduces the file.

Using the transition matrix, the 	simulation 	estimates 	the

probability of a given string occurring at least once in D transitions.

The accuracy of the probability estimate increases as N increases. This

is due to the larger number of previously known characters. The same

increase will cause the model to produce search strings of decreasing

length if the other variables P s (i.e., the user's desired probability

of success) and D are held constant. The user's understanding of the

text is modeled by the value of N. This value causes the model to issue

search strings with lengths closest to those of the user. Conservative

behavior (e.g., issuing a search string much longer than necessary to be

unique) should be reflected in a smaller value of N. Thus, the model

minimizes ISI, or the length of the search strings issued, subject to

the constraint:

P s <,• P(S,D,N)

where:

Ps = Desired probability of success,

S = search string,

D = distance in characters.

MN = text transition matrix

and the model is fit to the user by choosing the best value of N. 	The

goal of this model was to show that different values of N resulted from

different experimental conditions.

67

halal Implementation

Search string data was gathered empirically. 	The search strings

were recorded along with the distance (in terms of the number of

characters) to the desired point in the file as a human conducted

predetermined search tasks. Once the search string data was collected,

a data file consisting of all character transitions in the file being

edited was constructed. There was one data file for each level of N (see

previous section).

When all of the necessary data was available, the model was run

with both the search string data file and the transition natricies (one

for each value of N) of the file being edited. MN was used to simulate

the text between the current and desired position. A random number

generator was used to make choices when the transitions were not

deterministic. The matrix was then searched repeatedly for the search

key. The output of the searching processes was the number of times the

key was found in each creation of the intervening text. When the

predetermined number of runs was complete, the result was converted to

P
	

If P s was lower than the desired probability, then N or ISM is

adjusted to fit the user more exactly.

Analysis jl Components

68

The computer program, herein known as "SPOCK", receives input from

two data files. One file contains the search strings given to the text

editor by the human to locate specific text. Along with the search

string, character distances traversed by the cursor from beginning point

in the file to the first matching character pattern in the file are also

supplied to SPOCK.

Text File Transition Matrix ZI2AALI 	The second data file

supplied to SPOCK is the text character transition matrix. 	The

transition matrix, in the form of a data structure, allows SPOCK to

possesses complete knowledge of the contents of the file. This

knowledge is known as "familiarity".

To produce the second data file, the text to be edited is run

through a LISP program which constructs the MN matrix. For example, at

a level of N 6, the string "abcde" is noted by the LISP program to

occur 15 times in the file. This string is followed by the character

"f" 10 times, and the character "g" 5 times. The LISP program compiles

these relationships in the entire file in a format that can be read by

SPOCK when it simulates the editing environment. By using these

relationships at varying levels of /I, SPOCK can probabilistically step

through the file to search for the indicated segment of text. Then the

program can be assumed to have complete statistical knowledge at the

level of N for the character transition probabilities in the file.

69

Computer 	af Tit Iditinct Zuvironment

The computer model, or "SPOCK", was written in the "C" programming

language and follows Shannon's (1951) theory of conditional

probabilities of letter frequencies. The human's implicit statistical

knowledge of a language was modeled for predictive purposes and encoded

in the program'B data structure. Level of "knowledge", or N, was varied

with the degree of in—depth understanding of the text being edited. For

example, a higher level of familiarity with the text is reflected in a

higher level of N in the simulation.

SPOCK simulated the text editor searching through the given text.

The model received the human input, text file transition matrix, and

character distance from current cursor position to desired position.

The simulation process is described below. SPOCK."4 source code is

included in Appendix D.

II= $lat/Lull= SA1

SPOCK utilizes both environmental and human inputs to simulate the

editing environment. In this section, the model is described in more

detail.

Before SPOCK receives search string input, it establishes a

simulated text editing environment. The first task is forming the data

structure containing the desired text transition matrix based on the

level of N. When working with large transition matrices, access to the

70

proper next transition string may be time consuming. A large hash table

data structure is implemented. The hashing index is calculated from the

decimal product of the previously known letters in the structure.

Hashing is important to the model. Without an efficient indexing

system to locate transitions, the time to run a simulation would be

inordinately long. 	For example, the Mn matrix is large (3,000

transitions) at level 3; the matrix increases to approximately 12,000

entries at level 8.

The second input is a known current cursor starting point. This

input is a character string of length N preceding the cursor starting

position.

Once the editing environment is formed, the humans search string

information is input to SPOOK with the corresponding character distance

from the top of the file. Each string is treated as one problem to

solve in serial order.

Finally, given probabilistic knowledge of the text, distance

information, a starting point (where the cursor is presently located in

the file), and the search string selected in the experimental editing

task, SPOOK will calculate the number of times the string was found in

the simulated environment. Each problem is evaluated by SPOOK and a

probability estimate (i.e., number of times found divided by the total

number of simulation runs) is calculated based on the level of N, the

search string length, and the character distance to traverse to the

target string (problem).

71

&del Comparison

Although implemented first, this model did not attain high

predictive performance compared with human and the former (Chapter 3)

model's performance within the experimental editing environments. In

the introduction to this chapter, the results of high transition level

(level 11) simulations indicated individual solutions to problems were

not converging. Given the high computation time for each problem, this

model was abandoned in favor of a more suitable model.

An extensive comparison and contrast study was not conducted.

However, a few significant results from the experimental validation

study indicated a threshold model was more appropriate for modeling

human search string selection behavior.

There were three basic motivations that led to the design and

implementation of the search string selection model described in Chapter

3. First, there was a definite increase in probability of searching

success within a distance D with an increase in N during the initial

simulations with experimental data. The simulation process, as

described in the chapter introduction and above, became computationally

prohibitive above N n 10 (10 character strings in MN). This observation

indicated that the humaes statistical knowledge was more in-depth,

possibly to N s 20 or higher. This trend also indicated that the

simulation did not contain enough environmental information to model the

text searching process accurately. As a result, a smaller, more

72

constrained model was desired.

Second, simulation of individual searching problems showed the

highest level of N in one particular searching problem was not always

the best approximation of the human's overall searching success level.

Since SPOCK used only one level of N for all problems during the

simulation, a requirement for the smaller model was the ability to vary

the level of knowledge within the model during simulation.

Third, analysis of low frequency strings (e.g., those text strings

occurring less than three times in the text file) in experimental

problems demonstrated that the sum of information bits in a low

frequency string often equaled or exceeded the longer, less unique

strings in other problems.

As a result of the three reasons given above, the search string

selection model described in Chapter 3 was developed. It models the

human search string generation process based on bits of information

contained in both the text being searched and the statistical process

conducted by the human while searching.

CHAPTER VII

CONCLUSIONS

In this thesis, the issue of how a user selects a search string in

a text editing environment was analyzed. The problem space was

constrained to editing of production sized software source code in which

the user's task typically, is to locate a specific occurrence of a

character string.

Empirical Study

Two experiments were conducted to determine effects of 	the

important variables identified in literature review. 	The first

experiment involved text searching problems. 	Subjects were given

specific character strings to locate in two FORTRAN 77 source code

files: one they had studied extensively to acquire structural and

organizational knowledge of the program ...11 content (familiar condition),

the second they had never seen before (unfamiliar condition). Both

files were equivalent in length and code complexity.

73

74

A split—plot experimental design was utilized in the experiment.

The experimental group was supplied with distance information cues.

These cues were designed to give some indication of the character

distance between the current cursor position (the beginning of the file)

and the desired cursor position. Two types of search problems were

given: language keywords (e.g., SUBROUTINE), and variables (e.g., local

variables defined by the programmer).

It was found that familiarity was the only experimental variable

affecting search performance. Subjects found 10% more search targets on

the first attempt in the familiar condition versus the unfamiliar

condition. Distance cues were apparently either: a.) not used by

subjects, b.) ineffectual because subjects already knew the relative

distance to traverse, or c.) irrelevant to search string selection.

A reanalysis of the data using search string lengths as the

dependent variable revealed a significant effect for distance

information in addition to the familiarity effect. It was concluded

that since subjects: hit rate remained consistent over variant target

character distances; distance information was utilized by subjects to

determine the length of the issued search string.

The second experiment was a character string frequency estimation

task. This experiment was designed to provide an estimate of the

subjects' knowledge of specific strings. Subjects were presented with

lines of code where part of the line was highlighted in reverse video

(one file at a time). Subjects were requested to estimate how many

times the highlighted string occurred in the indicated file.

75

The mean subject frequency estimate for each estimation problem was

regressed against the actual string frequency value. Although a trend

was indicated towards more accurate estimation in the familiar

environment, hypothesis testing revealed that the correlation

coefficients were not statistically different. A reanalysis of the data

with mean subject estimates normalized by a percent error estimator also

yielded non-significant results.

&dela

Two models were developed to study the text searching process.

Both were based on Shannon's (1951) results which state that the human

has implicit statistical knowledge of a familiar language (e.g.,

structural, syntactic, and semantic knowledge).

The unsuccessful model described in Chapter 6 attempted to simulate

the editor searching through text using subject inputs. It was

abandoned due to prohibitive run-time and non-converging solutions for a

majority of the searching problems. No data were analyzed from the

Chapter 6 model.

The model of human search string selection described in Chapter 3

used information-theoretic bits as a string length decision threshold.

The user-.:s searching performance was modeled in terms of the number of

bits required to move the cursor from the current position to the

desired position. It was hypothesized that the user would utilize the

statistical knowledge of the programming language in determining the

76

optimal length of a search string based on four inputs: the character

distance to traverse, a potential string of characters to choose from,

the desired probability of search success, and the information-theoretic

bits per character associated with a character from the file being

edited.

A two-state Markov process was used to determine the user's

probability of search failure. It simulated the editor searching

through the text character by character with a small probability of

finding the search key at every point in the text between current and

desired cursor position.

Model runs conducted with data from the empirical study showed the

model predicted human performance accurately. Also, the model's search

successes and failures correspond well to those of the average subject.

The model's search string lengths correlate significantly, but not

strongly, with those of the average subject. There is much room for

improvement in the model in this regard.

Conclusions Ala Suggestions ism Future Research

Given the constrained environment of this thesis, the search string

model performance corresponded well with human performance. The model

of human search string selection was adequate for this thesis research.

The model, however, had no means for including text familiarity in its

search string length selection. In Chapter 5, a proposed improvement

was to employ N-gram transitions to estimate the bits for additional

77

characters. If implemented, the value of N could represent familiarity

in terms of previously known characters.

The model, although tested in a constrained environment, can be

useful in research and practical applications. For example, the

straightforward information—theoretic basis can provide a statistical

model of textual knowledge within a larger model of human information

processing. The textual knowledge component of the model would provide

a parsimonious approach to the complex processes involved with text

searching behavior.

A more general model of editor searching can be built from the

foundation provided by the model described in the thesis. Recall that

the experimental paradigm was rigid in that the user was forced to

search using a specified string. Only the length could be chosen. A

more realistic paradigm would be to allow the user to search for any

string in the vicinity of the desired position, and subsequently issue a

second search to position the editor exactly.

The interesting question in this paradigm is how does the user

choose the first, approximate location search string. The user might be

imagined to scan the text centered around the desired position for

potential targets, using frequency or semantic salience as the

criterion. The model developed in this thesis could be used to model

how the user chooses one of the alternatives generated by scanning.

Research aimed at understanding the human information processes

involved with text editing, particularly editor positioning, fall into

two categories: intraline positioning, and interline positioning. The

78

Hammer and Rouse (1982) study is an example of intraline positioning

research; this thesis is an example of interline positioning research.

Several methods exist for locating text (e.g., search commands, screen

by screen search, etc.). By investigating the methods of positioning

available and the categories of positioning, insight into the human

information processes responsible for these behaviors will continue to

be refined.

APPENDIX A

SOURCE CODE FOR SEARCH STRING SELECTION MODEL

;This model represents a search string selection model based
; on four inputs:

a potential string of characters to choose from
a probability threshold that triggers the character

selection process to cease
an array of character frequencies from the file

being searched
the character distance to traverse

Written by: Rob Andes
Date: 	24 MAR 87

(DEFUN CHOOSE-SEARCH-STRING (potential-string
prob-threshold
char-freq-array
distance)

(let ((work-string nil)
(string-prob 1.0)
(bits-per-char

char-freq-array)
achar
(dist (read-from-string distance))

(setf *aref-overflow* nil)
(do ((inx 1 (1+ inx)))

((OR (< (find-in-distance string-prob dist)
prob-threshold)

(equal *aref-overflow* T)

(if (< (1- inx) (1- (length potential-string)))
(progn

(setq achar
(aref potential-string (1- inx)))

(format t "achar - 7d-X" achar)
(setq string-prob

(* string-prob
(shannon-prob achar bits-per-char inx)

))
(setq work-string

(append work-string '(,achar))

79

) ;end progn
;ELSE
(setf *aref-overflov* T)

) ;end if
) ;end do

(if (equal *aref-overflow* NIL)
(progn

(format t "search string chosen = ")
(dolist (char work-string)

(format t " -A" (convert-to-char char))
)
(terpri
(coerce work-string 'string)

) ;end progn
;ELSE
"string aref overflow"
) ;end if

) ;end let
) ;end function

(DEFUN RUN-STRINGS (char-file dist-file out-file)
(let ((strings (make-array 53))

(distances (make-array 53))
predicted-string

(read-char-freq "jetchar.dat") ;char freq array
(setf *string-ptr* (open char-file :direction :input))

;fill strings
(do ((line (read-line *string-ptr* nil 'EOF)

(read-line *string-ptr* nil 'EOF))
(i 0 (1+ 0)

((or (equal line "EOF") (equal line 'EOF)))

(setf (aref strings i) line)
) ;end do
(close *string-ptr*)

;fill distances
(sea *dist-ptr* (open dist-file :direction :input))
(do ((line (read-line *dist-ptr* nil "EOF)

(read-line *dist-ptr* nil 'EOF))
(i 0 (1+ i))

((or (equal line "EOF") (equal line 'EOF)))
(setf (aref distances i) line)
)
(close *dist-ptr*)

;open output file
(setf *output-ptr* (open out-file :direction :output))

;run the model for each string
;string probf char-freq dist

(dotimes (i (length strings))
(setq predicted-string
(choose-search-string

(aref strings i) .210 character-frequency (aref distances i))

;
	

(format t "predicted-string 1. 7S -1" predicted-string)
	 81

(format *output-ptr*
" -S -S -D-Z" (aref strings i)

predicted-string (length predicted-string))
) ;end dotimes

) ;end let
(close *output-ptr*)

) ;end function

;char-file dist-file out-file
...(run-strings "jetstim.dat" "jetdist.dat" "jetfir.out")
n(setf char-file "c:\\gcliap\\strings.dat")

(DEFUN SHANNON-PROB (achar prob-of-char inx)
(let (
;(shannon-scale "11.0 .131 .249 .149 .162)) ; ned regression
(shannon-scale "(1.0 .086 .427 .267 .267)) ; jet regression
scale-factor

(if 	inx (length shannon-scale))
(setq scale-factor

(first (last shannon-scale)))
;ELSE

(setq scale-factor
(nth (1- inx) shannon-scale))
) ;end if

(expt 2.0 (- (* scale-factor (aref prob-of-char achar))))
) ;end let

) ;end shannon-prob

(DEFUN FIND-IN-DISTANCE (prob distance)
(do ((tm prob)
(0 (1+ i))

((> i distance) tm)
(setq tm (+ tm (* (- 1.0 tm) prob)))

) ;end do
) ;end find-in-distance

".(find-in-distance .00525 394)

;looking for .875 familiar
;looking for .790 unfamiliar

(DEFUN CALCULATE-CHAR-FREQ (file)
(let ((data-file (open file))
(charcount 0)

(sea character-frequency (make-array 127))
(dotimes (i 127)

(setf (aref character-frequency i) '0)
) ;initialize array

(do ((c (readc data-file) (readc data-file)))
((equal c :E0F))

(setf (aref character-frequency c)
(1+ (aref character-frequency c))

(setf charcount (1+ charcount))
) ;end incrementing loop

(setf total 0)
(dotimes (i 127)

(if (equal (aref character-frequency i) 0)
;THEN

(setf (aref character-frequency i) 0)
;ELSE

(progn
(setf char-prob

(/ (aref character-frequency i) charcount))
(setf total

(+ total char-prob))
(setf (aref character-frequency i)

(coerce
(log
(/ 1 (/ (aref character-frequency i) charcount))
2.0) ',short-float)

) ;end setf
) ;end progn

) ;end if
) ;end dotimes

(format t "total character probability .• -WI" total)

	

; 	(dotimes (i (length character-frequency))
(format t " -a -d
(convert-to-char i) (aref character-frequency 0))

(close data-file)
character-frequency ;return array
) ;end let

) ;end calculate-cha-r-freq
f-(calculate-char-freq "c:\\rca1\thesis\\ned.f")

(DEFUN PRODUCE-REGRESSION-DATA
(freqfile datfile outfile probfile level)

(let ((bits-per-char
(read-char-freq freqfile))

(Ex-data
(create-hx-array probfile))

(null-val 0)

(setq *input* (open datfile :direction :input))
(setq *output* (open outfile :direction :output))

(do ((line (read-line *input* nil 'EOF)
(read-line *input* nil '.E0F))

(i 0 (1+ i))

((or (equal line "EOF") (equal line '.E0F)))

	

;; 	(pprint line)

82

(format *output* "7D "
(aref Hx-data i))

; print Y to regr file
(dotimes (j level)

(if 	j (length line))
(format *output* " -D "

;ELSE
(format *output* " -D "

(aref bits-per-char (aref line j)))
) ;end if

) ;do every character in line
(terpri *output*) ;add newline

) ;end do
(close *input*)
(close *output*)

output ;for now let's look at the data file
) ;end let

) ;end produce-regression-data

:(produce-regression-data
"c:\\rob\\thesis\\jetchar.dat" "c:\\rob\\thesis\\jetstim.dat"
"c:\\rob\\thesis\\jet5.reg" "c:\\rob\\thesis\\jetprob.dat" 5)

(DEFUN CREATE-H%-ARRAY (prob-file)
(let ((data-ptr (open prob-file))
(H%-array

(make-array 50))

(dotimes (i 50)
(setf (aref Hx-array i) '0)

) ;initialize array

(do ((line (read-line data-ptr nil .EOF)
(read-line data-ptr nil 'EOF))

(i 0 (1+ i))

((or (equal line "HOF") (equal line 'EOF)))

(setf (aref Hx-array i)
(coerce

(convert-to-bits
(read-from-string line))

"short-float)

) ;end do
(close data-ptr)

(dotimes (i 50)
(format t "Array entry -d " i)
(format t " -d 	(aref Hx-array)

) ;print array
Hx-array 	;return array
) ;end let

) ;end create-hx-array

"(create-hx-array "c:\\rob\\thesis\\jetprob.dat")

irk********************************irkk
;utilities to read strings from files
	 84

.**

(DEFUN SAVE-CHAR-FREQ (char-array dest-file)
(sea data-file (open dest-file :direction :output))
(dotimes (i (length char-array))

(format data-file " -D-2"
(aref char-array i)

)

(close data-file)
)

"(save-char-freq character-frequency "c:\\rca\\thesis\\test.dat")

(DEFUN READ-CHAR-FREQ (origin-file)
(setf data-file (open origin-file :direction :input))
(sea character-frequency (make-array 127))
(do ((line (read-line data-file nil 'EOF)

(read-line data-file nil 'EOF))
(i 0 (1+ j))

)
((or (equal line "EOF") (equal line 'EOF)))

(setf (aref character-frequency i)
(read-from-string line)

);
) ;end do

character-frequency ;return the array
)

'(read-char-freq "c:\\rob\\thesis\\jetchar.dat")

(DEFUN READC (stream)
(read-char stream nil 'EOF)

) ;end readc

(DEFUN CONVERT-TO-CHAR (int)
(read-from-string (format nil " -C" int))

)

(DEFUN CONVERT-TO-CHAR (char-code)
(setf *dummy-char* " ")
(setf (aref *dummy-char* 0) char-code)
dummy-char

)

(DEFUN CONVERT-TO-BITS (value)
(coerce

(log
(/ 1 value) 2) ',short-float)

)

(DEFUN CHAR-TO-INT (char)
(aref char 0)
	

85

"***********************
;; LISP library routines*
"***********************

;; taylor - define a macro for a Taylor Series approximation
;;
(defmacro old-taylor (first-n last-n first-term next-term)

((n ,first-n)
(term ,first-term ,next-term)
(sum term (+ sum term)))

((or (< (abs term) ld-8) (> n ,last-n)) sum)))

;; taylor - define a macro for a Taylor Series approximation
;; The macro computes two terms at a time to
;; avoid alternating term signs.
;;
(defmacro taylor (first-n last-n first-term next-term)

:"(do*
((n ,first-n)
(term ,first-term ,next-term)
(pair 1.0d0) 	 ; don't trip end condition
(sum 0.0d0))

((or (< (abs pair) 1d-10) (> n ,last-n)) sum)
(setq pair (+ term (setq term ,next-term)))
(incf sum pair)))

;; In - returns the natural logarithm of number
;;
(defun In (number)

(unless (plus? number) 	 ; error check
(error "log: argument must be positive"))

(let* ((y (/ (- number 1.0d0) (+ number 1.0d0)))
(s (* y y))

y)) 	 ; term without coefficient
(* 2.0d0 (taylor 1 400 y (/ (setq z (* z a)) (incf n 2))))))

"On 1.0)
;; exp - returns e raised to the power number,
;; where e is the base
;; 	of the natural logarithms
;;
(defun exp (number)
(cond

((minusp number) (/ 1.0d0 (expl (- number))))
((zerop number) 1.0d0)
(t (expl number))))

(defun expl (number)
(taylor 0 2000 1.0d0 (/ (* term number) (incf n))))

;; expt - returns base-number raised to the power power-number

;;
(defun expt (base-number power-number)

(if (integerp power-number)
(iexpt base-number power-number)

(exp (* power-number (ln base-number)))))

;; iexpt - returns base-number raised to an
;; integer power (internal)
;;
(defun iexpt (base-number ipower-number)

(cond
((plusp ipower-number)

(do ((result base-number (* result base-number))
(n (1- ipower-number) (1- n)))

((zerop n) result)))
((zerop ipower-number)

(coerce 1 (type-of base-number)))
(t

(/ 1 (iexpt base-number (- ipower-number))))))

;; log - returns the logarithm of number in the
;; base base (default is e)
;;
(defun log (number &optional base)

(if base (1 (ln number) (ln base)) (ln number)))

86

APPENDIX B

CALCULATION OF APPROXIMATE F -STATISTICS

When exact F-statistics cannot be calculated due to random effects

in the linear model, Montgomery (1984) has suggested approximations

using linear combinations of the expected means squares to isolate the

desired quadratic effect of a factor. This allows the experimenter to

estimate the F-statistic of interest.

SAS GLM statistical software provides the mean square estimators

for an ANOVA with random effects. Approximate F-statistics were

calculated for all effects in the text search experiment. The random

effects were all related to the subject variable (S). Other variables

in the linear model included: familiarity (F), distance (D), and problem

type (T).

The SAS GLM output and method used to calculate the statistics are

reviewed below. After the output, the approximate F-statistic equations

are developed.

F-statistics given in Table 4-1 were calculated using the following

SAS output:

SOURCE 	 EXPECTED MEAN SQUARE

F 	 VAR(ERROR) + 2*VAR(S(D)*F) + Q(F,D*F,D*F*T)
D 	 VAR(ERROR) + 2*VA2(T*S(D)) + 2*VAR(S(D)*F) +

4*VAE(S(D)) + Q(D,F*D,D*T,D*F*T)
S(D) 	 VAR(ERROR) + 2*VAR(S(D)*I) + 2*VAR(S(D)*F) +

87

88

4*VAR(S(D))
vAl(ERROR) + 2*VAR(S(D)*T) + T,D*T,D*F*T)
VAR(ERROR) + 2*VAR(D)*F) + Q(D*F ,D*F*T)
VAR(ERROR) + 2*VAR(D)*F)
VAR(ERROR) + 2*VAR(S(D)*T) + Q(D*T ,D*F*T)
VAR(ERROR) + Q(D*F*T)
WAS UNESTIMABLE

oximate F—statistics were formulated such that the linear

of the two mean square estimators isolated the Q(COND) term

r of interest. Once these combinations were determined,

ice are approximated by:

/ FS(D)

▪ var(error) +2var(F*S(D)) 4-0!(F ,F*D,FTD) /

var(error) +2var(F*S(D))

T / TS(D)

var(error) +2var(T*S(D))+Q(T,T*D,F*T*D) /

var(error) +2var(-T*S(D))

D/ S(D)

var(error) +2var(T*S(D)) +2 var(F*S(D))44var(D)) +

Q(D,F*D,T*D,F*T*D) 	/

var(error) +2var(T*S(D))+2var(F*S(D))+4var(D))

▪ S(D) / D

▪ var(error) +2var(T*S(D))+2var(F*S(D))+4var(S(D)) /

var(error) +2var(T*S(D)) +2var(F*S(D)) 44var(D)) +

D,F*D,T*D,F*T*D)

Problem Type

89

x Distance var(error) +2var(T*S(D))+Q(T,'T*D,FarT*D) /

var(error) +2var(T*S(D)) +2var(F*S(D)) +4var(S(D)) +

Q(D,F*D,T*D,F*T*D)

The numerical results are given in Table 4-1

APPENDIX C

VALIDATION EXPERIMENT INSTRUCTIONS AND FORMS

EXTRA CREDIT FOR EXPERIMENT PARTICIPATION

Experiment - Analysis of Human Behavior in Text Editing

Principal Experimenter- Rob Andes, Center for Man-Machine

Systems Research, X3080 or X4318

Brief Description

The research will analyze human text editing behavior

in a constrained environment. Participants will become fam-

iliar with some code and will then conduct editing exer-

cises. There will be two sessions: the first will be a

group meeting (-1.5 hr.), the second will be on an indivi-

dual basis and will include some on-line editing (72 hr.).

90

CLASS CREDIT

Class credit will be awarded for participating in this

experiment. See your instructor for actual point values.

Participant Requirements

Participants should have experience with a FORTRAN

dialogue and some programming experience (freshman FORTRAN

is ok). "Experience" is defined as the ability to understand

FORTRAN code that is already written, there is no program-

ming involved in this experiment. Also, the participant

should have experience with computer-based text editors, and

the associated features (e.g.- insert commands, search com-

mands).

Date and Time

The initial session will be held in one of the IC lec-

ture roams contingent on participant's schedules. Schedul-

ing of the second session will be arranged individually.

INSTRUCTIONS

Please fill out the enclosed data sheet completely. If

you have questions, use the specified space and I will get

back to you. Do not ask your professor, he doesn't know.

91

Also, please enclose a copy of your class schedule so that I

can schedule around everyone.

92

PARTICIPANT DATA SHEET

Name: 	

Class: 	 PO Box: 	

Phone No. (very important for scheduling): •

Number of years experience with FORTRAN (estimate): 	

Number of years experience with text editors: 	

Other computer skills (explain): 	

93

Questions or Remarks: 	

REMEMBER TO ENCLOSE A COPY OF YOUR CLASS SCHEDULE!!!

• PLEASE RETURN THIS FORM BY OCTOBER 20th SO THAT WE MAY GET

THE EXPERIMENT STARTED WITH YOU IN IT!!!

94

95

SUBJECT BRIEFING ON EXPERIMENT AND TASK OVERVIEW

In this experiment I am going to examine how a person conducts a

text search for particular text in a text editor. There are 4 tasks

that you will perform during the course of the experiment. These tasks

will be done in order over <2> sessions, with a questionnaire given

at the completion of the entire experiment.

	

The first session, 	this one, 	is the initial briefing 	and

learning 	session. In the second session, you will get some hands-

on-terminal 	exposure and do some text editing (in particular,

some searching exercises). Any questions so far? Okay, let'.0 begin.

As you will notice, I am handing out a hard copy of a

program. This program, called ned (short for "new editor"), is a FORTRAN

77 based text editor designed to run on a vax 11-780. Row about

scanning some of the contents now.

Okay, now comes the next part of the experiment that

requires you to know FORTRAN. Although you don't have to write any

code, I am going to ask you to learn how the code works (e.g.-how

subroutines function, the calling sequence of functions, where

specific variables occur). For example, you will be asked to read

over, 	learn the basic operation of the program and be responsible

for its content (don'A worry, 	the program is not difficult to

understand). Basically, I want you to attain a level of familiarity

with the code. such as if YOU wrote it (but not totally). To do

this, I'.11 give you a questionnaire (not too horrible yet, is it?),

to fill out before you come in for the second session to allow for a

96

little learning by doing:-).

Most of the work done in this experiment is done on your own.

By filling out the questionnaire, you will have to pay attention

to things that I feel are important to your understanding of

the program and its function. Should you have any questions, you

can either call me at the Computer Coordinators Office (x-3080),

or come by to talk. I would like to stress the fact that mental effort

will be the major component in understanding the program, however.

After r.ve given you some time to look over the code and answer

the questionnaire, we=ll set up a time for the second and final

session. This session will involve some text editing on a terminal with

some hard copies to help your memory. In addition to the text editing,

I'412 going to ask you some particular things about 	the program text

online, 	so it would be a very good idea to pay attention to the stuff

that r!.in going to ask you to learn. There is one issue which needs to

be addressed before we go any further with the experiment. The editor

that you will be using has online data collection capabilities and

keystroke monitors to aid the modeling effort. Your extra credit

points are awarded on the contingency that you know the program. It is

of 	utmost importance to the success of the experiment that you learn

the concepts and quantities that you are asked to learn. Now, 	should

you choose not to learn the program (look Ifai not asking very

difficult questions) it will be reflected in your extra credit. NO

play, No pay, basically.

97

When all the "hands—on" tasks are completed I'll then ask you to

complete a short questionnaire on your bakground. THEN, I'll tell you

what all of this is about (thought r.d never get around to that, huh?).

Do you have any questions before we begin? OK, lets go.

98

EXPERIMENT QUESTIONNAIRE

jnstructions: Please use separate sheets for answers to the

questions. Put your name and second session date and time at the top of

your answer sheets. There are 32 questions, please answer all of them

to the best of your understanding of the program. Please do not consult

anyone but me about questions or problems. I can be reached at 894-3080,

894-4318, or 874-7110.

general Ouestions

1. What routines use the variable "BUFC" ?

2. What routines use the variable "LOGGING" ?

3. Where is LOGGING defined?

4. What routines use the variable "SCRBOTY" ?

5. What routines use the variable "STAT" ?

6. What is a global input?

7. What are the global inputs to subroutine "CLEARSCREEN"?

8. Which function code appears first in the file, "PUNTSCREEN"

or "FIXSCREEN"?

9. On what pages of the program can the previous functions

be found?

11. What does an "INCLUDE" statement do?

12. How many times does the variable "LETTERDIGIT" appear

in the program?

13. What is UNITTYPE?

14. What does UNITTYPE do?

15. How many times is "LOADUSER" used?

16. What routines call "KEYBOARD"?

17. What will happen if a CTRLN is input to ned?

18. How many subroutines are commented out?

19. How many times is "PUTSTR" called by "FIXSCREEN"?

20. What does "TEXTX,TEXTY" signify?

21. What is QUERYF"?

True sax False

22. Subroutine "SETHOME" is called by subroutine "INITIALIZE"

23. The variable "CTRLZ" exits the editor.

24. There are 6 functions contained in ned.f.

25. There are 20 subroutines in ned.f

26. The variable "MYTEXTX" occurs a total of 10 times in

the program.

Liitor function alultiank.

27. Generally describe how the ned editor functions (simulate the

computer).

28. Name the function that receives keyboard input and conducts

first processing.

29. Briefly describe how the function, named above, processes

input.

30. How many times is subroutine "GETCOMMAND" called?

31. Describe the function of "B INDEX".

32. What function does "SCAN" perform?

99

100

INSTRUCTIONS FOR TEXT EDITING TASK

In this experiment, you will be asked to do several text editing

tasks on two separate files: one will be the file that I've asked you to

learn, the other will be a file that you've never seen before.

Although ned is a powerful editor, several of the commands and

features have been disabled for this experiment. During the course of

the experiment, you will only be allowed to use three of the ned

functions: ".search"("./"), "home"("home" key), and End (Cntrl-Z).

Backspace ("<-") will also be enabled so that you may correct your

spelling, etc. Using two commands, home and search, you will locate

indicated segments of text. Please only use "Z at the end of the data

file (I".11 tell you when). The experiment procedure follows...

In this experiment, you will use your knowledge to locate certain

sections of text in a file (e.g.- the program nye asked you to learn)

using a search command sequence. Efficiency is the key in this

experiment: I want you to use all the available information to find the

desired text by issuing only one search command per test problem (two at

most).

Each character string to be located is highlighted in yellow on a

hard copy page. To find the desired location, do the following: Issue a

"/" to ned; that will enable the search command. Beginning at the

highlighted letter for each problem, type in a number of characters of

the sequence that you feel would be unique enough to fix the cursor at

the highlighted character on the first try (ned fixes the cursor at the

101

first character of the string given in the search command). A point to

remember about searching strategy: The longer the search string given to

ned (e.g.- number of characters in the line to be located), the greater

the chance of finding the text on the first try. GIVE EXAMPLE. If you

make a mistake, you may use the backspace key to erase characters.

Also, please check your search string before hitting the return key so

that typos voe.t hurt your performance.

On the table in front of you are 2 items: a stack of hard copy

sheets from the program to edit and the computer terminal. Once nve

initialized ned and created a data file for you, please follow these

instructions. If you have any questions, ask them after we read through

them once:

102

Editing Experiment Instructions

[a] The text character to be located is highlighted in yellow (one per

page). Please do them in order. Remember to begin the search string

with the highlighted character.

lb] Please try not to spend more than approximately 15 seconds/problem.

lc] After you have reset the editor to the top of the file (using the

HOME command), use the search command to locate the indicated text.

Your strategy should be such that the character string that you

give to the editor will position the cursor at the highlighted

letter on the issuance of the first search command. Remember, an

efficient strategy will allow you to issue a string that is short

but unique; this will help you to find the string on the first

try.

[d] If you have located the indicated string on the first try, you will

notice a on the far right of the indicated line. THAT'S

ITU!. Reset the cursor position to the top of the file and go on

to the next character string to locate.

le] If you didn't find it on the first try, reset the cursor to the top

of the file and try again. This time, be more careful to issue a

string that is more exact (unique) so that the editor will be able

to find the particular place you are looking for.

al Continue this process until you reach the end of the stack of hard

copies. Then call for assistance.

103

ALWAYS REMEMBER TO RESET THE CURSOR TO THE TOP AFTER EACH PROBLEM

III IF YOU FORGET, SEND A BOGUS SEARCH STRING AND THEN RESET. BOTX: IL

there aLe tast occurrences ag. the lasing. ma Ihe jinei make alma that the

cursor is positioned on the right instance of the string. You can check

this by comparing the hardcopy to the screen. If yoe.re unsure, ask.

NOTES:

1. ALWAYS remember to reset the cursor to the top of the file after

every search attempt using the "HOME" command.

2. USE all of the information given on the hardcopy for each string to

be located (e.g.-- if a page number is given, consider this information

in the context of the text string you are looking for. Also, if a line

number is given at the top of the page, this number will represent the

relative line number of the highlighted text).

3. There are only 3 commands -- HOMWHOME"), SEARCH("/"), and

QUIT(Ctrl—Z).

4. Use backspace to correct command line errors.

5. ONLY retry each problem ONCE, if you fail the second time, go on to

the next problem. (no big deal).

6. All letter input is translated to upper case.

7. USE your knowledge of the program you've learned (e.g.— ned.f) to

locate the text you've seen before by considering where the text is in

the file.

104

8. TRY not to take longer than 15 seconds per problem!

9. If you need help, ASK!!! Remember, you are very important to the

success of this experiment.

10. Any observations you make during the experiment that you think I

should know tell me after the experimental session. By the way, 0 and 0

are different characters to ned. A capital 0 has squared corners.

Thank You.

Rob.

105

INSTRUCTIONS FOR ESTIMATION TASK

This task is short and simple, it will test your memory for certain

word (character sequence) frequencies in the program source code files

that you have been editing (from last task). I will activate the program

for you, and set up a data file. You will then be prompted to do the

following: The computer will present you with a series of sentences (or

sentence fragments) from both the program If.ve asked you to learn and an

unknown program text (one program at a time). Based on your relative

knowledge of the given sentence, estimate the number of times that you

have seen the highlighted text in the indicated program. Each sentence

will be presented by the computer for only <4> seconds, so don't think

about it too long. Just give your best estimate.

ll] ".Hit any key to begin" This will begin the program.

[2] If you entered a wrong number before 4 seconds is up, you can use

the backspace key to correct your mistakes.

[3] If you have not seen the text before, give your best estimate of

how many times you think the string occurs in a program of the same

size as the one I've asked you to learn.

l4] Once all of the text lines from one program have been displayed,

the program will switch input programs and prompt you to "Hit any

key to begin" again. Once you hit a key, the process described

above will be repeated with the other program that yoeve edited in

the editing task.

106

REMEMBER: the sentences will only be displayed for a short period

of time. ANSWER QUICKLY!!!

REMEMBER: You MUST hit RETURN at the end of your data input for the

program to record your answer!!

When the computer signals the end of the task (e.g.— TEE END.),

youf.re finished! Please let me know. I should be in the next room.

Thanks!!

APPENDIX D

SOURCE CODE FOR ALTERNATE MODEL

/*************

* C -source code for SPOCK, the model simulating the entire *
* editing environment. 	Written: Spring 1986
** 	kleirkirk**********************1Hkink************-irkirk********/

#include <etdio.h>
#include <ctype.h>
#include <math.h>
#include <assert.h>

#define TABLESIZE 16383
#define FALSE 0
#define TRUE 1
#define ARRSZ 50
#define MAXCHAR 50

struct namestruc 	/* holds the N-gram */
char namei16];
struct namestruc *across;
struct charstruc *down;
long freq;
);

struct charstruc (
char c;
struct charstruc *next;
long cfreq;
long charused;
);

/* size hash table */
static struct namestruc *hashtable[TABLESIZE];

struct namestruc *lookup();
struct namestruc *addname();
struct charstruc *addchar();

107

long ourrand();

long simulate(),hash();
int mysend();

int 	LEVEL;
char 	buffer[ARRSZ];
int 	keylen,bufferlen;
char 	key[ARRSZ],begstr[ARRSZ],nubegstr[ARRSZ];
int 	found s runs;
long 	seedx;

main(argc,argv)
int argc;
char *argv[];
{
int p,dist,i;
char name[ARESZ],inbuf[25],c;
long freq,unistruc;
FILE *fp,*fpd;
struct namestruc *zorch;

unistruc ■ 0;
if(argc < 3)(

printf("Usage- spock <inputdata> <LEVEL> <#runs> <datafile>0);
exit(-1);
);

if((fp = fopen(argv[1], "r")) == NULL) {
printf("Cant open input file.0);
exit (-1);
);

sscangargv[2],"%d", &LEVEL);
sscanf(argv[3],"U",&runs);

while(Ifeof(fp)) {
readstruct(fp,name,&c,&freq);
if((zorch=lookup(name))== NULL) {

unistruc++;
addname(name,c,freq);
}

else {
addchar(zorch,c,freq);

);
printf("number of unique namestrucs = L10, unistruc);
printf("input file = %80,argv[1]);

printf("LEVEL=UO,LEVEL);
printf("runs=L30,runs);
if((tpd = fopen(argv[4], "r")) ==. NULL) {

printf("Cant open data file.0);

108

exit (-1);
);

fgets(inbuf,MAXCEAR,fpd);
inbuf[strlen(inbuf)-1]
strcpy(begstr,inbuf);
printf("beginning string =250,&begstr[0]);
for(i=0;i < LEVEL;i++)

strcpy(ignubegstr[iip&begstr[i]);
fgets(inbuf,MAXCHAR,fpd);
inbuf[strlen(inbuf)-1] =
sscanf(inbuf,"%d",&seedx);
prina("random seed = U0,seedx);

for(;;)
found = 0;
fgets(inbuf,MAXCHAR,fpd);
inbuf[strlen(inbuf)-1] = 	".;
sscanf(inbuf,"%d", &dist);
if(feof(fpd)) break;
printf("distance = UO,dist);
fgets(inbuf,MAXCHAR,fpd);
inbuf[strlen(inbuf)-1] ='
strcpy(key,inbuf);
printf("key =180,&key[0]);

for(p=1; p <= runs; p++) {
if(simulate(nubegstr,key,dist))

found++;

outfile();
};

readstruct(input,name,c,freq)
char 	name[], *c;
FILE 	*input;
long 	*freq;

long 	temp;
int 	nameinx;

nameinx = 0;
do

fscanf(input,"%ld ",&temp);
name[nameinx++]= temp;

while 	(temp 1= 0);
fscanf(input,"%ld ",&temp);

- temp;

109

f scanf(input ,"X ld 0 ,Eitemp) ;
*freq IN temp;
)

struct namestruc *lookup(name)
char *name;
{
struct namestruc *inx;

for (inx gs hashtable [hash(name)) ; inx 1- NULL; inx i• inx->across)
if (strcmp(name, inx->name) a 0)

return(inx) ;
return(NULL) ;
}

long hash(name)
char *name;
{
long tabval ;
int i;
int len;

/* for(i = 0 ; nameL ii ; i++) {
tabval 4... (int)name I ii * (int) name[i] ;

)
if(tabval < 0)

tabval -tabval;
return(tabval X TABLESIZE); *1

len as strlen(name);
fort tabval AR (int)name[0] X TABLESIZE, 11E1; i < len; ++i) {

tabval mg (tabval * (int)name[i]) X TABLESIZE;
)

return(tabval) ;
)

struct namestruc *addname(name, c , tf req)
char *name, c;
long tfreq;
{
struct namestruc *ptr;
char *malloc() ;
int tabval;

ptr .. (struct namestruc *) malloc(sizeof(*ptr)) ;
if (ptr 1.1. NULL)
return (NULL) ;
if ((a trcpy(ptr- >dame, name)) =mg NULL)

return(NULL) ;

tabval all hash(ptr->name) ;

110

111

ptr->across • hashtable[tabval];
ptr-Mown • NULL;
addchar(ptr,c,tfreq);
hashtable[tabval] • ptr;
return(ptr);

struct charatruc *addchar(nptr,newc,cfreq)
struct namestruc *nptr;
char non;
long cfreq;
{

char *malloc();
struct charatruc *cptr;

cptr • (struct charatruc *) malloc(aizeof(*cptr));
cptr->next • nptr->down;
nptr->down • cptr;
cptr->c • newc;
cptr->cfreq • cfreq;
/* cptr->charused • 0; /* initialize counter to zero *1
nptr->freq +• cptr->cfreq;
return(cptr) ;
}

long simulate(startstr,inkey,num)
char startstrIAERSZJ, inkey[ARRSZ];
int num;
{

struct charatruc *chptr;
struct namestruc *nm;
char worker[ARRSZ];
long pick;
int i,z;
long iter;

bufferlen=0;
for(z=0; inkey[z] l• 	++z)

keylen • z;
for(i=0; i < ARM; ++i)

buffer[i] • :

strcpy(worker,startstr);
worker[LEVEL] • S
for(iter • 1; iter <• num; iter++) {

if((nm • lookup(vorker)) •• NULL)(
printf(m string with no successor •ae,worker);
return(0); 	/* simulate EOF */
)

/*pick • (ourrand(&seedz) Z nm->freq) + 1; */

112

pick - ((ourrand(6seedx) / 2147483648.0) * um->freq + 1.0);
chptr - mm->dovn;
vhile((pick -m chptr->cfreq) > 0) {

chptr - chptr->next;
}

strcpy(6workert0h6vorker[1]);
vorker[LEVEL-1] - chptr->c;
chptr->charused++; /* increment character counter */

if(mysend(chptr->c)) {
I * 	printf("key found at iter - ZdO,iter); /**/

return(iter);

)
return(0);

mysend(c)
char c;
{

if 	(bufferlen < keylen)
buffer[bufferlen++] ■ c;

else
strcpy(6buffer[0],&buffer[1]);
buffer keylen - 1] - c;
)

if(bufferlen >m keylen)
return((latremp(key,buffer)));

else return(FALSE);
}

long ourrand(IX)
long *1X;
{

long kl;

kl - (*IX) / 127773;
*IX - 16807 * (*IX - kl * 127773) - kl * 2836;
if (*IX < 0) *IX m *IX + 2147483647;
return (*IX);

outfile()
{

printf("0 found the string Lit %d times out of Zd 0,
6key[0],found,runs);

fflush(stdout);
}

REFERENCES

Barnard III, G.A. "Statistical Calculation of Word Entropies for Four
Western Languages", IRE Transactions - Information Theory,
1955, pp. 49-53.

Card, S.K. "Visual Search of Computer Command Menus", in Attention And
performance X: Control uf. Lancruaim Processes. Hillsdale, NJ:
Erlbaum Associates (eds- Bouma, H., and Bouwhuis, D.C.),
1982, pp. 97-108.

Card, S.K., Moran, T.P., and Newell, A. "The GOMS Model of Manuscript
Editing", in The rsvcholnpy RL Eu2=-Computer Interface,
Hillsdale, NJ:Lawrence Erlbaum Associates, 1983, pp. 13 9-
189.

Card, S.K., Moran, T.P., and Newell, A. "The Keystroke Level Model", in
The. Psychology Qj Human—Computer .Interfaces Hillsdale,
NJ:Lawrence Erlbaum Associates, 1983, pp. 259-297.

Cover, T.M., and King, R.C. "A Convergent Gambling Estimate of the
Entropy of English", IEEE Transactions gu Information
Theory, Vol IT-24 (4), July 1978, pp. 413-421.

Edmundson, H.P. "Mathematical Models of Text", Symposium on Empirical
Foundations-Information and Software Science, Atlanta, GA,
Fall, 1982.

Edwards, A.L. EauleximentalkeligajahusacasigigAlEgaggzah, NY: Harper
& Row, Publishers, 1985.

Ehrlich, S.F., Damon, K., and Cooper, W.E. "Knowledge of Word Frequency
as an Aid for Text Editing", in Cognitive Aspects uf Skilled
Iypewritinv., NY:Springer-Verlag, Inc., 1983, pp. 283-304.

Hammer, J.M. Unpublished Working Paper, Spring, 1984.

Hammer, J.M., and Rouse, N.B. "The Human as a Constrained Optimal
Editor", in IEEE Transactions gu Systems, Man ,

cybernetics, Vol. PIC -12 (6), November/December, 1982.

Mace, A.E. Dimple 	Determination, NY:Reinhold Pub. Co., 1964.

Markov, A.A. "Essai (rune recherche statistique sur le text du roman
Evengi Onegin", lull. Anat. Imner. &I., St. Petersburg,
1913.

113

114

McClelland, JO., and Rumelhart, D.E. "An Interactive Activation Model
of Context Effects in Letter Perception: Part 1. An Account
of Basic Findings", Psychological Review, September, 1981,
Vol 88(5), pp. 375-408.

Montgomery, D.C. DAJii&A End Analysis a. Uperiments, New York, NY: John
Wiley and Sons, 1984.

Ostle, B. Statistics j Research, Ames, IA: The Iowa State University
Press, 1963.

Shannon, C.E. "Prediction and Entropy of Printed English", Spll Systems
Technical . Journal, 1951, Vol 30, pp. 50-65.

Yavuz, D. "Zipr:s Law and Entropy", JIM Transactions &IL Infarmalisui
Theory, September, 1974, p. 650.

Zipf, G.R. Human Behavior Ana the Principle kt. Lemt Effort. Reading,
MA: Addison-Wesley, 1949.

•

NATIONAL SCIENCE FOUNDATION 	 FINAL PROJECT REPORT
Washington. D.C. 20550 	 NSF FORM 9$A

PLEASE READ INSTRUCTIONS ON REVERSE BEFORE COMPLETING

PART I—PROJECT IDENTIFICATION INFORMATION

1. Institution and Address

Georgia Tech Research Corporation
Atlanta, GA 	30332

2. NSF Program 3. NSF Award Number

IST-8217440
4. Award Period

From 1/15/83 	To 6/30/86

5. Cumulative Award Amount

$74,506
6. Project Title

. 	"Models of •Human Performance Using Text Editors (Information Science)"

PART II — SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE)

The results of this research increase our understanding of human-computer
interaction and of experimentation with human subjects who are doing complex

tasks. 	The human-computer interaction results include first, observations
on the use of a text editor that kept the user in continuous control of
the positioning process and second, experiments and models of user selection
of search string keys during editor positioning. 	The results on experimentation
include a study of the power of statistical tests from experiments on
computer programming and a way of testing the significance of production
rule models of human problem solving.

-2.

PART Ill—TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES)

•
ITEM (Check appropriate blocks) NONE

I

ATTACHED PREVIOUSLY
FURNISHED

SEPARATELY
E p 4TIC:ABLFYUZI 	iE

PROGRAM

Check (...-) Approx. Date
a. Abstracts of Theses A ...
b. Publication Citations

c. Data on Scientific Collaborators

d. Information on Inventions

e 	Technical Description of Project and Results 	-' --i;I: , :e.t.,-..,. • 	
X 4.. 	*..! i• -

I 	Other (specify)

	

— •• 	' 	. 	• '

2. Principal Investigator/Project Director Name(Typed) 	3. Principal investigator/Project Director Signature

John M. Hammer 	 r
1._

4 	Date

/-L5--
NSF F orm 98A I 1-87i Suo•seOes An Previous Editions

Fpm 	 06.11) No 3149 ce'S t

F- 	

PART IV - SUMMARY DATA ON PROJECT PERSONNEL

NSF Division

The data requested below will be used to develop a statistical profile on the
grants. The Information on this part is solicited under the authority of the National

- 1950, as amended. All Information provided will be treated as confidential and
with the provisions of the Privacy Act of 1974. NSF requires that a single copy
Final Project Report (NSF Form 98A); however, submission of the requested
Is not a precondition of future awards. If you do not wish to submit this Information,

personnel supported through NSF
Science Foundation Act of

will be safeguarded in accordance
of this part be submitted with each
Information Is not mandatory and

please check this box 0

Please enter the numbers of Individuals supported under this NSF grant.
Do not enter information for individuals working less than 40 hours in any calendar year.

'U.S. Citizens/
Permanent Visa

Pl's/PD's
Post-

doctorals
Graduate
Students

Under-
graduates

Precollege
Teachers Others

Male Fern. Male Fern. Male Fern. Male Fern. Male Fern. Male Fern.

American Indian or
Alaskan Native 	

Asian or Pacific
Islander 	

Black, Not of Hispanic
Origin 	

Hispanic 	

White, Not of Hispanic
Origin 	 I

Total U.S. Citizens 	 1 I I

Non U.S. Citizens 	

Total U.S. & Non- U.S. .. 1 I I

Number of individuals
who have a handicap
that limits a major
life activity.

Use the category that best describes person's ethnic/racial status. (If more than one category applies, use the
one category that most closely reflects the person's recognition in the community.)

AMERICAN INDIAN OR ALASKAN NATIVE: A person having origins in any of the original peoples of North America, and who maintains
cultural identification through tribal affiliation or community recognition.

ASIAN OR PACIFIC ISLANDER: A person having origins In any of the original peoples of the Far East. Southeast Asia, the Indian
subcontinent. or the Pacific Islands. This area includes, for example, China, India, Japan, Korea, the Philippine islands and Samoa.

BLACK, NOT OF HISPANIC ORIGIN: A person having origins In any of the black racial groups of Africa.

HISPANIC: A person of Mexican, Puerto Rican, Cuban, Central or South American or other Spanish culture or origin, regardless of race.

WHITE, NOT OF HISPANIC ORIGIN: A person having origins in any of the original peoples of Europe, North Africa or the Middle East.

THIS PART WILL BE PHYSICALLY SEPARATED FROM THE FINAL PROJECT REPORT AND USED AS A COM-
PUTER SOURCE DOCUMENT. DO NOT DUPLICATE IT ON THE REVERSE OF ANY OTHER PART OF THE
FINAL REPORT.

NSF F or rri NIA (1471;36962

FINAL REPORT

NSF GRANT IST-82-17440

John M. Hammer

Principal Investigator

November 1987

1

2

This section of the final report is an overview of the four

articles included as the substance of the report. These articles

are:

Hammer, J.M., A display editor with random access and

continuous control, International Journal of Man-Machine

Studies, Vol. 21, 1984a.

Hammer, J.M., Statistical methodology in the literature on

human factors in computer programming, in Human-Computer

Interaction, G. Salvendy and M. Oshima, eds., Elsevier

Publishing Co., 1984b.

Lewis, C.M. and Hammer, J.M., Significance testing of rules

in rule-based models of human problem solving, IEEE

Transactions on Systems, Man, and Cybernetics, 16(1), 1986.

Andes, R.C., Jr., An Information-Theoretic Model of Human

Search String Selection in Text Editing, M.S. Thesis, Center

for Man-Machine Systems Research, School of Industrial and

Systems Engineering, Georgia Institute of Technology,

Atlanta, Georgia, 1987.

[Hammer 1984a] is a report on an editor designed to keep the

user in continuous control of the positioning process. This work

was begun out of frustration with a primitive display editor

which could produce so much display output that it could lag the

user's commands by a second or more, even at then high baud

rates. While the description of this editor may make it at first

appear similar to many others of its era, it did in fact take

3

advantage of or make allowances for many aspects of human

performance that many display editors still do not accommodate

today.

[Hammer 1984b] is the result of an experimental failure,

which lead to an exploration of how experiments should be

conducted with human subjects. One uncertainty in this new field

was the degree of variability in human subjects. Since there

were a number of articles on human performance in computer

programming, this field was selected for an examination of

successful and unsuccessful practices. Many researchers in this

field had claimed that programming ability differed widely

between individuals. The statistical results in the literature

at that time do not support that claim. Instead, most of the

results were found to be as large (in terms of variance

explained) as were found in the "harder" areas of psychology

(such as traditional experimental psychology and human factors

psychology).

[Lewis and Hammer 1986] describes several methods for

statistical significance testing of rule-based models. A typical

evaluation of a production rule model of human problem solving

was to point out the percentage agreement between model and

subject actions. This article describes three methods (ANOVA,

chi-square, and randomization tests) that can evaluate the

significance of each rule. The conclusion of the article

describes a problem which remains an research interest of both

authors: identification of a rule-based model of cognition from

4

data. Significance testing, even as described in the article,

does not guarantee identification. The article describes a

paradigm through which this question could be studied.

[Andes 1987], a thesis directed by the principal

investigator, describes a model of how the human chooses a search

string to move an editor to a desired location. The model posits

two processes. First, the human must estimate the number of bits

of information in the text between the current and desired editor

position. Second, the human must choose a search string with at

least this many bits. The model was able to predict human

success and failure with at least 90% accuracy.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230

