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Int. J. Man-Machine Studies (1984) 21, 203-212 

A display editor with random access 
and continuous control 

JOHN M. HAMMER 

Center for Man—Machine Systems Research, Georgia Institute of Technology, 
Atlanta, Georgia 30332, U.S.A. 

(Received 3 June 1983, and in revised forM 12 October 1983) 

An analysis of human information-processing during editor positioning led to a text 
editor with two significant features: continuous control and random access to text. 
Continuous control is a feature that allows the user to control the editor while it 
executes a positioning command. It will be shown that such a style of interaction 
eliminates difficult design decisions and leads to new methods of positioning an editor 
which are also less sensitive to human error. Random access to the text file means that 
the editor can be positioned to any point in the file in a constant time. The advantage 
of random access is that it is noticeably faster than the sequential access used by most 
editors. The implementation of continuous control and random access is discussed. 

Introduction 

An editor that is more quickly positioned by users is described. Two features are 
responsible. The first is continuous control, where the user can control the editor while 
it executes a positioning command. The second feature is random access to text in 
which the editor can be positioned in constant time to any page in the file. 

This article contains five parts. The first briefly describes the environment in which 
the editor was used. The second part describes the editing task for which this editor 
was designed. Positioning an editor and our view of human information-processing 
during editing are described. The third part reviews previous literature with special 
emphasis on editors designed with a particular view to humans. The fourth and fifth 
parts describe continuous control and random access to the text. 

The editor ran on a DECsystem-10 using advanced CRT displays capable of cursor 
positioning and insert/delete line operations. The most common transmission speeds 
were 2400 and 9600 baud. The DECsystem-10 is a 36-bit wide, medium size mainframe 
used primarily for timesharing. It is found primarily in universities and research centers. 

The roughly two dozen users of the editor were primarily computer engineers and 
artificial intelligence researchers who made sophisticated use of the computer. Several 
secretaries, who edited for several hours a day, were also users. The files edited were 
typically 1000 or more lines. Many of the users became interested in the editor through 
other users. The view of editing and the human factors view of editing were not, 
however, a result of observing these users. Instead, the author simply attempted to 
design a better editor for personal use. 

TERMINOLOGY 

The phrase positioning an editor will be used (for economy of space) for moving 
the editor's internal screen cursor from one point to another point in the text file. 
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The term module will be used to refer to procedures and subroutines in programs and to 
chapters, sections, etc., in text files. 

The editing task 

The user was assumed to be a programmer familiar with the program or document 
being edited. Positioning, the only aspect of editing to be discussed here, was assumed 
to be either local—such as changes within the same module—or global, which could 
be to another module located anywhere in the file. Further, the user was assumed to 
desire locality in the effects of most editor commands. Thus, most commands could 
affect only the current module. The editor was designed for files that consisted of a 
number of modules. It was not designed to edit data files or databases, although it 
could be used for this task. 

HUMAN INFORMATION-PROCESSING 

The editor was designed to facilitate human information-processing during editor 
positioning. Many kinds of human information-processing abilities are used during 
text editing—visual perception, planning, memory retrieval, motor control, etc. In this 
section the abilities that are assumed to be used during editor positioning are presented. 
Although plausible, their existence is based only on informal observation, not controlled 
experiments. Furthermore, these abilities are assumed to be important factors in human 
performance while editing. 

The first assumption is that the human must estimate the distance between two points 
in a file (i.e. the current location and the desired location) except when the distance 
is very small. Rather than requiring estimation, the editor displayed text continuously 
to the user. When the desired line was under the screen cursor, the user stopped the 
editor. 

The second assumption is that a human may know the text around the desired 
location (thus, editor commands that search for text), but that the text between the 
current and desired location will not be considered when the search key is formulated. 
Thus, the search key might be longer or shorter than needed (choosing an optimal key 
requires examination of all text between the current and desired location). As will be 
seen later, the editor is designed to accommodate the tendency for too short and too 
long keys. 

The third assumption is that humans make errors while positioning an editor. A 
natural and sometimes-used accommodation is a command to undo the effects of the 
previous command. While such a command was available in this editor, the approach 
taken was to minimize the negative impact of errors. 

The fourth assumption deals with human memory-retrieval during global editor 
positioning. The human is assumed to be able to retrieve easily the name of the module 
to which the editor is to move. Thus, in moving long distances, modules are more 
convenient mnemonics than relative or absolute page and line numbers. 

DESIGN PHILOSOPHY 

The assumptions about human information-processing lead to two design philosophies. 
The first, which is novel, is that the user remains in control while the editor is executing 
a positioning command. This means that the user may make certain modifications to 
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a command during its execution or stop the command prematurely to execute another 
command. To remain in control, the user must receive continuous feedback on what 
the editor is doing. Yet, under certain situations, the user must be able to limit the 
amount of feedback because the intermediate editor actions are not needed. Finally, 
the editor must be kept close to the user. The editor cannot be controlled if it has a 
dozen lines in the output buffer to the terminal, for any action the user types will take 
effect a dozen lines ahead of what the terminal is displaying. 

The second design philosophy is that the text file be viewed as a collection of 
modules. Local editor positioning was assumed to remain within one module, which 
was assumed to be stored on one page of text. Thus, most positioning commands 
would not move the editor away from the current page. The contents of a page, no 
matter how large, were stored entirely in main memory. Access to other pages was 
primarily through a global search and by page name. Associated with every page was 
a list of zero or more names that were used to retrieve that page. All pages were stored 
in a random access disk file for fast access that was independent of the editor's current 
position. While random access pages accessed by name is not novel (Samuel, 1977), 
it has not been described in the archival literature. 

Literature 

Surveys describing editing and major editors are Meyrowitz & van Dam (1982a, b), 
respectively. A review of relatively recent research on the human–computer interface 
aspects of editing is Embley & Nagy (1981). The implementation of display editors is 
discussed in Finseth (1980). 

The remainder of this section will discuss editors that were designed for a specific 
view to human information-processing. Also explored will be the implications of a 
view for the editor. 

The Xerox Star (Smith et aL, 1982) was designed to have a concrete and simple 
interface. It is concrete because all entities---objects and actions—are represented by 
screen icons. Either can be selected by a mouse, a pointing device. Finally, the screen 
icons display all available aspects of the Star. There are no hidden mechanisms. 

The simplicity of the Star interface is in its command interface. The same universal 
command set is consistently used to manipulate all entities—text, file, messages, icons 
themselves, etc. The interface is also intended to be modeless. Thus, any action can 
be taken in any situation. 

EMACS (Stallman, 1981) was designed to be extensible and self-documenting. While 
no models of human information-processing are explicitly stated, there are some 
implicit assumptions. First, the users are assumed to be computer scientists. Second, 
these experts will need to customize the editor for a variety of tasks. Finally, the editor 
design is best done by these experts instead of by a designer who cannot anticipate 
all the needs of and improvements by the experts. 

The consequence of these assumptions is that EMACS contains two parts: a display-
text management package plus an editor programming language. Expert users can and 
do modify the editor program. Stallman considers distributed editor modification to 
be a success. Many of the features of the default EMACS editor program were developed 
by users. 
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Ed (Kernighan & Plauger, 1981) is the editor distributed with UNIX. Ed, like UNIX, 
was designed to be concise and powerful. It achieves these ends by a clever combination 
of a small set of primitives. Thus, it is held to be human-engineered (for computer 
scientists). Unfortunately, its terse straightforward design has recognized problems 
(Norman, 1981). Because Ed is intended to receive commands from another process 
through a one-directional pipe (as well as from a keyboard) it provides virtually no 
feedback. Consequently, a user has difficulty determining the editor's mode. Second, 
Ed's straightforward design will cause it to do exactly what the user requests, whether 
dangerous or not. 

The UNIX developers are correct in stating that a simple interface should be a 
contribution to good human-engineering. However, Norman is correct in showing that 
the simplicity is not apparent to the casual user, and that the simple absence of feedback 
is a drawback even for experts. 

Continuous control 

Continuous control is described in two sections. The first describes the implementation 
of various control features. From understanding the implementation one can gain some 
idea of the editor's capabilities. The second section describes the advantages that arise 
from these and other capabilities. In particular, we will explain how the editor supports 
the previously described forms of human information-processing. 

EXECUTION OF A COMMAND 

Virtually every positioning command was executed in a central routine which is 
described as follows. The routine had four arguments. 

1. UNITS—the size (character, word, line, or page) and the number of units to be 
crossed before stopping the positioning. 

2. KEY—an (optional) text string to search for. 
3. SCROLL—a boolean that determined if the screen cursor was maintained on the 

same line as the internal cursor. If true, the user saw where the editor was while it 
moved. If false, the editor moved—without changing the display—to the new, final 
location and then updated the display. 

4. QUERY—a boolean that determined if the keyboard was queried during execution 
of a command. 

The code was as follows: 
repeat 

move I UNIT; 
optionally search for KEY; 
if 	SCROLL 
then SCROLL_DISPLAY; 
if 	QUERY 
then 	QUERY_KEYBOARD; 

until moved over requested number of UNITS 
or 	found KEY 
or 	command issued 
or 	moved to end of text; 
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if 	not SCROLL 
then FIX_SCREEN; 

In a commonly used local search command, a search KEY would be specified, the 
UNITS specified as an infinite number of lines contained on this current page, and 
SCROLL and QUERY would be true. In executing this command, the routine would 
move down one line and check for occurrence of the search key. If found, a flag would 
be set to terminate the loop. Otherwise, the screen would be scrolled (if necessary) to 
keep the current line displayed on the screen, and the keyboard queries. This process 
continued until finished (e.g. key found in text or no more text lines) or until the user 
typed something at the keyboard. 

The actions taken by SCROLL_SCREEN, QUERY_KEYBOARD, and 
FIX_SCREEN will be discussed next. The other code sections are fairly typical of an 
editor and will not be discussed. 

SCROLL_SCREEN kept the user informed of the editor's current position. If the 
editor was positioned to a line that preceded or followed the top line or bottom line 
on the screen, respectively, then the screen was scrolled. The routine then always 
positioned the screen cursor to the editor's current internal cursor. 

QUERY_KEYBOARD could take several actions. Already mentioned have been 
stopping execution of a command and executing another command. A space character 
simply stopped execution and was itself discarded. The space was chosen because it 
should be fast; the terminal space bar is large and directly under the thumbs at almost 

all times. A control character (all commands began with control characters) also stopped 
execution ; when control returned from this routine to the top level, this control character 
was read as a command, which would most likely result in another call to the central 
routine. 

QUERY_KEYBOARD also allowed two modifications during the execution of the 
current command. The first modification was to change SCROLL to false, which caused 
the display to cease being scrolled. This modification is useful when the user decides 
not to watch what text the editor passes over. For example, the local search command 
(described above) displays all the text it passes over. The user can, however, shut off 
this feedback for the duration of one command. Control-0 was chosen to be this 
command since this key serves the same purpose outside the editor. 

The second modification (under QUERY_KEYBOARD) was to control the length 
of the output buffer. Its length controlled how far ahead the editor was of the screen. 
If it was too large, the editor could easily be 10 or 20 lines ahead of the display, with 
these same lines being in the output buffer waiting to be transmitted to the terminal. 
If the length was too small, the terminal could not be driven at its rated speed due to 
timesharing. The buffer length could be varied dynamically by the user to respond to 
differences in the system load and the baud rate. The digits 0-9 were used for this 
function. 

FIX_SCREEN's purpose was to insure that the line at which the editor was internally 
positioned was also displayed on the screen. It would be called if the screen were 
known to need adjustment to display the current line. It recognized three cases. First, 
if the current line was on the screen, it did nothing. Second, if the current line was 
just off the top or the bottom of the screen, it was scrolled. Finally, if the current line 
was far off the screen, the best that could be done was to erase the screen and display 
the current line and its neighbors. 
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This redisplay began by first displaying the current line (presumably, the most 
important) in the center of the screen. Following that, lines above and below the current 
line were alternatively added until the screen was full. In cases where the current line 
was the first or last line of a page, the redisplay started at the top or bottom of the 
screen, respectively, and filled toward the other boundary (thus, providing immediate 
feedback about being at either end of the page). This redisplay process also included 
calls to QUERY_KEYBOARD thus allowing: (1) the redisplay output to be stopped 
to execute another command; (2) the output to be stopped; and (3) the buffer length 
to be controlled. 

Although the lines are displayed in an unusual and what may seem to be a distracting 
order, it is consistent, even desirable for continuous control. Showing the current editor 
position first is showing the most important line first. Thus, the order lines are displayed 
is better for continuous control. 

ADVANTAGES OF CONTINUOUS CONTROL 

The advantages of continuous control are the elimination of certain difficult design 
decisions, better support for some methods that humans use to position editors, 
tolerance for human error, and synergism of editing features. 

The first advantage is to eliminate certain static design decisions that are better made 
dynamically by the human while editing. An example of this is scanning for a particular 
line of text by scrolling the display. Most editors have commands to move the editor 
position forward or backward N lines. This command is often used when scanning 
for text. N often can be omitted, in which case it defaults to some value, say 16. Of 
course, N = 16 is practically always suboptimal (unless exactly 16 lines were required). 
Further, typing a value for N is extra effort. 

With continuous control, the user need only indicate the direction the editor is to 
move. The editor then continuously scrolls the display in that direction. When the 
desired line appears at the cursor, it can be stopped by command. This mode of 
interaction better supports the user's scanning than do traditional editors. Of course, 
the user is unlikely to be able to stop the editor exactly on the desired location. 
Commands to move one line can be used to achieve final positioning. 

The second advantage is the feedback provided by commands, especially search 
commands, as they execute. For example, the local search command (stays on the 
current page) displays every line it crosses over as it looks for the key. The search can 
be stopped if something of interest is noticed or the command is found to be in error. 
Displaying the intervening text could be a disadvantage if the feedback level itself 
were not controlled. Fortunately, it is controlled. Finally, the control of command and 
feedback is dynamic—it is not chosen when the command is initially entered but rather 
as results of the command are seen. Certainly, it is better to take action after partial 
results are displayed rather than try to predict those results before the command is 
issued. 

A third advantage lies in a pair of commands that repeat the previous search and 
return the editor to its previous position. The command to repeat the previous search 
is most useful when the original search key was either intentionally or unintentionally 
made too short. This one keystroke command (which for speed was keyed by striking 
the control key and space bar) is often a fast way to reach the desired location 
with a short string. In fact, this command is able to keep the editor continuously 
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moving towards the desired location, and thus is used to control the editor 
continuously. 

In fact, the repeat search key is often used too quickly, causing the editor to move 
past the desired position. To its aid comes the one keystroke command which returns 
the editor to the previous position. Since reverting is so easy, the user is allowed to 
be sloppy in using the repeat search command. Thus, these two commands demonstrate 
a tolerance for human error. 

The design has other aspects that make it tolerant of human error. If a search string 
is chosen erroneously (nothing in the file matches), the user will receive feedback about 
the large amount of text the editor is crossing over. The volume of this feedback may 
tip off the user that the search is not working, and it may be stopped. If the user 
visually scans text in the wrong direction, the editor can be turned around very quickly. 

Editor feature synergy is demonstrated by FIX_SCREEN, the repeat search, and 
the revert position commands. Suppose that a global search is issued for each instance 
of a routine call and that repeat search will be used to find successive instances. Each 
instance will be displayed by erasing the screen and filling from the center outwards. 
This output can be terminated by a new command as soon as the user determines that 
this instance is not the one required. Repeat search and revert position will complement 
each other as previously described. Each of these features is individually powerful, 
but they become more powerful when used in conjunction. To see this, consider the 
absence of each feature one at a time. If the display output could not be stopped early 
by command, a single keystroke repeat search command is much less effective, for the 
user must still wait for the output to finish before the next instance is displayed. If a 
search can be repeated only by issuing a new command of two or more keystrokes, 
the user is unlikely to be able to get the command off before the screen is filled anyway. 
Finally, if the revert position command was unavailable, the user would (as explained 
earlier) have to be more careful when issuing repeat search commands. 

INCREMENTAL SEARCH 

Incremental search is a form of search in which entering one additional character of 
the search key causes the editor to position immediately to the next instance of the 
just-lengthened key. Ordinary searches, in contrast, wait until the entire key is specified 
before any positioning is done. Incremental searching was, to the best of the author's 
knowledge, first implemented in EMACS (Stallman, 1981). Its aims are consistent with 
allowing the user to control the editor during positioning by giving feedback. 

While other editor features described in this article were successful, incremental 
search did not operate as expected. It appears that updating the screen after each 
character had a negative effect on human attention, for the eye was drawn to the screen. 
Perhaps other methods of screen updating that limit the amount of feedback (a window 
of three lines or a bit-mapped display) might make this positioning method more usable. 

RELATED FEATURES IN OTHER EDITORS 

Continuous control may appear to be similar to command canceling and incremental 
redisplay, both of which have been implemented in other editors. This section shows 
the difference between them. 

Meyrowitz & van Dam (1982a, Section 3.4.1.3) discuss command canceling, or 
stopping a command that has gone awry. Canceling is often implemented with a 
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software interrupt that cleans up and jumps to the command level. In contrast, a 
continuous control editor interacts with the user during command execution. This 
interaction is motivated by our own view of human information-processing. For 
example, feedback is necessary for control; our editor provides it and even allows 
control of feedback itself. Some of the commands of a continuous control editor can 
be designed so that they must be stopped. 

Incremental redisplay delays updating the screen while the user continues to enter 
commands. By delaying feedback, it reduces transmission bandwidth if a number of 
changes are made to some text. It is an excellent idea if the terminal is not served by 
a high transmission speed. Because it is based on delayed feedback, it takes a somewhat 
different approach from continuous control, which provides full feedback. 

Random access text 

The editor, as stated earlier, imposed a structure on the file. It was to be a sequence 
of pages, where each page was assumed to contain one procedure or several related 
procedures. Pages were stored in a random access file. Although this practice is not 
new (Samuel, 1977), it has not been described in the archival literature. It is described 
here. 

Because the user was assumed to want most commands to have only local effect, 
most positioning commands would not leave the current page. The farthest a scroll or 
local search would move was the first or last line on a page. All local commands 

scrolled the text so that the user could see what was happening (of course, the user 
could discontinue this output). If the file was split into pages as assumed, the amount 
of scrolling output (feedback) would be reasonable. Of course, some commands did 
cross page boundaries, and they did not scroll the screen. The global search did, 
however, display the first line of every page it entered, thus indicating progress (the 
computer is actually serving the user) and feedback on the distance being covered. To 
the same goal, the routine that read in pages also simultaneously loaded the screen. 
Thus, the first lines of a page were displayed before the last lines were entirely read 
in. This practice violates modular program design, which would have separated page 
access from display, and would have the page entirely read in before the first line was 
displayed. The advantages to the user of an immediate display outweighed the problems 
of increased program complexity. 

Random access to text pages offers two advantages. First, random access gives 
noticeably faster response to retrieval of text that is far from the current location. For 
example, the SOS editor on the VAX 11/780 requires roughly 0.07 s/disk block (real 
time) to move to another point in a file. Of this time, 0.03 s/block is due to the seek 
and transfer rate of the disk alone. For files of 100 blocks, these times become quite 
noticeable.t 

The second advantage of random access is having labels or tags which point to 
certain locations in the file. The tag allows positioning by name rather than by page 
and line number. It is also superior to global search because of speed and the uniqueness 
of tags. Tags can be implemented at very little additional cost since the variable-sized 
pages must be indexed. 

t Real time response was measured on a lightly loaded system. The disk transfer and seek rates are 
2 µs/byte and 38 ms average, respectively. The SOS butler size is 10,000 bytes; a block is 512 bytes. 
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The only disadvantages to random access text are (I) a rare delay for expanding the 
file to accommodate a just-enlarged page and (2) the wasted space due to blocking, 
which leaves empty space for expansion at the end of each record. These two factors 
trade off against each other. Allocation in smaller units reduces waste but increases 
the frequency of expansion. For reasonable allocation sizes, random access text will 
on the average far outperform sequential access. 

Conclusion 

An editor with random access to text and user continuous control over positioning 
has been described. Its design was based on assumptions about human information-
processing during text editing. The editor's special features make it faster, less error 
sensitive, and more natural for editor tasks. 

This preparation of this article was supported by the National Science Foundation under 
Grant No. IST-79-1647 and Grant No. IST-82-17440. 
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Appendix: Implementation of the indext 

This index implemented for random access was required, first of all, to describe pages 
so that they might be randomly accessed. Second, the index was required to map 
names—text strings—onto pages. Third, the entire file was to be readable by compilers 
without a conversion step to and from a special editor format. Thus, the index, stored 
at the front of the file it described, was to be interpreted as a comment by compilers. 
Also, pages were required to be physically stored in the logical order they appeared 
to the user. 

A BNF description of the index page is (for an Algol program): 

(index page) 
	

= (first line)(page) +(last line) 
(first line) 
	

= (comment char)COMMENT(CRLF) 

t Based on Samuel (1977). 
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(page) 
(comment char) 
(name) 
(start) 
(end) 
(last line) 

= (comment char)(start)(end)(name)*(CRLF) 

= (token)I(token)((number)) 
= disk block number 
= disk block number 
= (comment char); (CRLF) 

The index was maintained as a comment by (first line), (last line), and (comment 
char). The editor would examine the file extension to determine what type of file it 
was (FORTRAN, LISP, Pascal, etc.) and determine what values should be assigned 
to these meta-symbols. Each page in the file was described by a (page) in the index. 
The first and last disk blocks of the page were given by (start) and (end), respectively. 
The (name), if present, allowed that page to be accessed by a character string name 
rather than by page number.t If the (name) contained a parenthesized number, the 
editor would search down the page for that name. The (name) could be edited by a 
special mode in the editor. 

Retrieving a page was a matter of reading the disk blocks belonging to the page into 
primary memory. Writing a page simply put the buffer contents back into the page's 
disk blocks, while zero filling the unused disk block(s). If editing expanded the page 
so that it would not fit in its allocated disk space, the file was first expanded by moving 
pages in a file and then adjusting the index to make it agree with the file. 

Other processors—compilers and text editors—can read the specially formatted file 
without difficulty. As mentioned earlier, the index page is a comment. The unused 
portions of disk blocks contained zeroes, which in ASCII are NUL characters. By 
convention, NUL is ignored on input by all programs. Files produced by other programs 
are converted to the special format by the editor. The special format is indicated by 
a NUL as the first character in the file. No other program would produce a NUL as 
a first character. 

t Any unambiguous abbreviation of a (name) would work. 
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INTRODUCTION 
This article examines some actual and recommended practices for design of 

experiments in human factors of computer programming. The first practice 
examined is the actual level of power in the statistical tests conducted on 
controlled experiments. Power is defined as the probability of accepting the 
alternative hypothesis (that a difference exists) when it is true. Power 
depends on the number of subjects, the squared difference in means relative to 
subject variance (termed effect size), and the commonly reported significance 
level, usually p=.05. Because programmer variance is usually considered to be 
relatively high, statistical power was hypothesized to be relatively low in 
this literature. This hypothesis was tested by calculating the power of tests 
in the published literature and comparing the average power to recommended 
levels and to other similar studies. 

The second experimental  practice examined was methods for controlling 
programmer variance. Basically, this was an examination of the literature for 
tests (e.g., grade point average, months of experience) that correlated with 
programmer performance. If good tests can be found, they can be used to make 
experiments more sensitive by accounting for the predicted performance in the 
experimental design. 

POWER OF STATISTICAL TESTS IN THE LITERATURE 
Power has been defined as the probability of accepting the alternative 

hypothesis of a difference due to treatments, given that this hypothesis is 
true. In general, statistical testing involves establishing two mutually 
exclusive hypotheses. The first is the null hypothesis (HO) of no difference 
due to changes in the independent variable. The second is the alternative 
hypothesis (H1) that this difference does exist. There are Type I and Type II 
errors which correspond to HO and H1, respectively. The probability of a Type 
I error (Type II error) is that of accepting HO (H1) when it is false. 
Reported for virtually every statistical test is the probability of Type I 
error, or significance level (e.g., "p<.05"). Power, which is virtually 
always omitted, is 1 minus the probability of Type II error. 

Power is important both before and after an experiment. 	Before an 
experiment, power can be used to plan rationally the number of subjects to be 
used. The experimenter must select a significance level (usually, p=.05), a 
minimal power level (power=.80 is recommended (Cohen, 1977)), and an effect 
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size. 	From power tables, the appropriate number of subjects can 	be 
determined. The most difficult selection is effect size, since it requires 
the experimenter to predict the cell means and the variance before the 
experiment is run. In this study, observed effect sizes are calculated and 
tabulated along with power. Knowledge of these observed values should be an 
aid to future experimental planning. Prediction can be based, at least 
partially, on past observation. 

Power is also important after an experiment, especially for interpreting 
effects that lack significance. Many researchers are reluctant to accept the 
null hypothesis in this situation. In fact, a calculation of power reveals 
what should be done. 	If, for effects of interest, power is high, the null 
hypothesis might well be accepted. 	High power simply indicates that the 
posited effect size of interest would have been detected if it existed. If, 
on the other hand, power is low, judgment should be suspended until an 
experiment is run (or the existing one replicated) with more subjects or other 
precision-increasing refinements. 

Literature Reviewed  
Articles from journal articles and conference proceedings on human factors 

in computer programming were selected for power analysis. Technical reports 
and theses were not examined. This admittedly biases the results somewhat, 
since unpublished experimentation, especially that never committed to paper, 
is often suspected to have low power. 

The literature of controlled experiments on software complexity was, 
notwithstanding the above, also omitted from the study. The reason is the 
fundamental difference in the goal of this area for explaining variance in 
human performance. Human factors experiments attempt to show that an 
experimental factor has a significant effect on human performance. As will be 
shown later, such a factor might typically account for 10 to 40% of the 
variance. Software complexity, on the other hand, tries to predict human 
performance as completely as possible. It typically can account for 60 to 80% 
of the variance. 

Rules for Power Analysis  
The rules for power analysis were as follows: 
1. Only tests significant at p.K.05 were examined even though other 

marginally significant results were reported. This practice further 
biases the observed power in an upward direction. Further, power was 
computed using p=.05 even if a lower p was stated. Only two-sided 
testing was used, even if the author(s) used one-sided tests. 

2. Only ANOVA F-ratios, t tests, and correlation coefficients (r) were 
examined. 	Chi-square, 	binomial, and nonparametric tests were 
ignored. No tests on differences in means (Duncan, Newman-Keuls) 
were examined. 

3 In ANOVAs, the significance of the overall mean and all interactions 
were ignored. The latter were ignored because interactions are not 
typically sought in most designs, are difficult to interpret in the 
framework of this study, and often could not be studied due to lack 
of information. 

4. A maximum of 10 tests per experiment were analyzed for power. If an 
article reported more than one experiment, it could have up to 10 
tests included for each experiment. This was done to avoid a bias in 
favor of experiments with many tests. The first ten tests presented 
were analyzed. 
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5. Sufficient information had to be present to do the power calculations 
(F-test: 	cell size, means; 	t-test: cell size; r: cell size). 
For F tests, the mean square error often had to be estimated from the 
expected value formula for F. 

6. The test must have been on some aspect of human performance that was 
measured under controlled experimental conditions. 	Regressions 
between two variables, 	neither of which represented human 
performance, were ignored. 

All F and t test measures of effect size were converted to the square root of 
percent variance explained to allow comparison with r (Cohen, 1977). 

Results  
The total number of tests that were power analyzed was 122. 	The power 

averaged .83; 	its standard deviation was .19. Only 36% of the tests had 
power less than the recommended value of .80. The effect size, expressed in 
terms of the square root of the percentage of variance explained, averaged 
.44; its standard deviation was .14. The effect size data were roughly 
normally distributed, though skewed slightly to the right. Using Cohen's 
terminology of small (r=.10), medium (r=.25), and large (r=.50) effects, 67% 
of the effects are medium up to large, and 28% are large (Cohen, 1977). Using 
recommended medium effect size in pre-experimental power analysis would appear 
to be quite conservative, since less than 5% of the effects are less than 
medium. 

Similar power analyses of other published literature have been done. 
Comparison of this study with others is difficult because we calculated effect 
sizes whereas others assumed various sizes and then determined the power. 
When an effect size of r=.50 was assumed (the closest value to our observed 
r=.44), the following were observed: 
Study 	 Average Power 	Tests with power<.80  
Chase and Chase, 1976 	 .86 	 28% 
Brewer, 1972 	 .78 	 29% 
Katzer and Sodt, 1973 	 .79 	 46% 
It should not be assumed that actual effect sizes in these other areas are as 
large as r=.50. 

Conclusion 
The power of tests in human factors literature on computer programming is 

as high as that in other areas where power analytic studies have been done. 
The original hypothesis of low power is incorrect. Ideally, experimenters 
would begin to incorporate a power analysis into their research planning. The 
distribution of (significant) observed effect sizes, as given above, should 
assist this planning. 

VARIANCE CONTROL 
Individual differences in programmer performance are a major problem in 

designing experiments. The ratio of best to worst performance for a group of 
programmers is often claimed to be 10:1 or 20:1 (Grant and Sackman, 1967) 
(Curtis, 1980) (Dickey, 1981) (Curtis, 1981). This difference is much larger 
than the 1.5:1 and 4:1 found for experts and intermediate level users, 
respectively, in a text editing task (Card et al., 1983). It should be noted 
that these large differences have been observed primarily on debugging times. 
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If tests were available to predict these differences to some degree, the 
predictions could be accounted for in the experimental design. The experiment 
would then become more sensitive, i.e., better able to detect true effect 
differences or to use fewer subjects. The appropriate designs which account 
for tests (termed concomitant variables) are randomized block designs and 
analysis of covariance (ANOCVA). The former uses the concomitant variable to 
group subjects into relatively homogeneous blocks. Each subject in the block 
is then randomly assigned to a treatment. ANOCVA performs a regression on 
concomitant variable simultaneously with an analysis of variance on the 
independent and dependent variables. ANOCVA is, however, not likely to be 
useful for two reasons (Keppel, 1973). First, ANOCVA requires many 
assumptions be true for it to be valid. Second, it is superior to randomized 
blocks designs only when the concomitant variable is correlated r>.60 with 
programmer performance. Since this is unlikely, randomized block designs 
would be preferred. 

The results reported here are based on an examination of the same 
literature used in the power study. Basically, I looked at regression studies 
and experiments which had already attempted to account for programmer 
differences. Space limitations preclude the inclusion of a table which would 
allow direction examination of the correlations. 

For professional programmers, months of programming experience has been 
found to be a fair predictor for program reading and writing performance. 
Correlations of .50 were found between the logs of experience and program 
writing plus debugging time (Chrysler, 1978). Correlations of .45 and .78 
were found between experience and program comprehension scores (Moher and 
Schneider, 1981). They also found a multiple correlation of .62 between 
experience plus number of computer science courses and program writing time. 
Their high correlations must not be viewed too enthusiastically, for they 
purposefully sought out very diverse groups of subjects. Higher correlations 
are expected under such situations (Montgomery and Peck, 1982). 

For professional programmers, there does not appear to be any good 
predictor for debugging tasks. No significant correlations were found between 
experience and debugging time in (Grant and Sackman, 1967). Experience was 
not found significant on tasks of program comprehension, modification, or 
debugging in (Sheppard et al., 1979). This result is counter to the above 
findings of Chrysler and Moher and Schneider. They did find the number of 
known programming languages and the number of familiar FORTRAN concepts to be 
correlated with debugging performance for professionals with less than 3 years 
experience. This result did not hold for more experienced professionals. 

For advanced computer science students, a number of highly predictive 
measures appear to be available. In (Moher and Schneider, 1981), multiple 
correlations of .66 to .74 were found between program comprehension and 
writing tasks and the regressors: 	number of computer science courses, 
computer science grade point, and years of programming. 	The advantage of 
these three regressors is that they are relatively independent. 

For beginning programmers, many regressors were tried in (Barfield et al., 
1983), (Lucas and Kaplan, 1974), (Mayer, 1975),  and (Shneiderman, 1977). From 
the standpoint of having large correlation coefficients and appearing in more 
than one study, the best regressors would appear to be SAT-Math scores, 
college course grade(s) either in the introductory programming course or in 
calculus or chemistry, and years of experience programming. Given that many 
beginning students today will have personal computer experience, it should be 
included in any attempt to predict performance. 
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For both professional and student programmers, a pretest is a possible 
choice for a concomitant variable. If the experimental task is program 
comprehension, one or more initial program comprehension pretests (the same 
test(s) for all subjects) could be used as a concomitant variable. 
Correlations between 3 modification task scores ranged from .31 to .60 and 
between 3 modification scores and recall scores ranged from .39 to .49 
(Shneiderman, 1977). Correlations between scores on reading and writing tasks 
varied from .63 to .69. One disadvantage of pretesting is additional 
resources invested in it. This may be especially so if multiple pretests must 
be given to determine a stable level of performance. 

An alternative to any use of concomitant variables is repeated measures, in 
which a subject is run under every experimental condition in the experiment. 
The subject serves in effect as his or her own control. While this approach 
may at first seem to be ideal, problems can and do arise. Consult (Poulton, 
1982) and (Greenwald, 1976) for details. 

Conclusion  
Methods have been discussed for reducing programmer variance through the 

use of a concomitant variable for randomized blocking. Using these results, 
it should be possible to increase substantially the precision of experiments 
on computer programming. Very little effort is required to sort subjects into 
relatively homogeneous blocks prior to random assignment to experimental 
conditions. 	Given the wide range of research from which these conclusions 
have been drawn, they should be regarded cautiously. 	The potentially large 
returns certainly merit investigation. 

SUMMARY 
This study has examined the literature on human factors in computer 

programming to study two aspects of programmer variance. The first was to 
determine if the reportedly large differences in programmers caused 
statistical tests to be of low power and effects small relative to noise. 
This appears to be untrue. The second aspect studied was methods for 
controlling for large programmer variance in experimental designs. A number 
of promising concomitant variables were identified for randomized blocking, 
which should be able to increase the precision of experiments in this area. 
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INTRODUCTION 
This article examines some actual and recommended practices for design 

of experiments in human factors of computer programming. The first 
practice examined is the actual level of power in the statistical tests 
conducted on controlled experiments. Power is defined as the probability 
of accepting the alternative hypothesis (that a difference exists) when it 
is true. Power depends on the number of subjects, the squared difference 
in means relative to subject variance (termed effect size), and the 
commonly reported significance level, usually p=.05. Because programmer 
variance is usually considered to be relatively high, statistical power 
was hypothesized to be relatively low in this literature. This hypothesis 
was tested by calculating the power of tests in the published literature 
and comparing the average power to recommended levels and to other similar 
studies. 

The second experimental practice examined was methods for controlling 
programmer variance. Basically, this was an examination of the literature 
for tests (e.g., grade point average, months of experience) that 
correlated with programmer performance. If good tests can be found, they 
can be used to make experiments more sensitive by accounting for the 
predicted performance in the experimental design. 

POWER OF STATISTICAL TESTS IN THE LITERATURE 
Power has been defined as the probability of accepting the alternative 

hypothesis of a difference due to treatments, given that this hypothesis 
is true. In general, statistical testing involves establishing two 
mutually exclusive hypotheses. The first is the null hypothesis (HO) of 
no difference due to changes in the independent variable. The second is 
the alternative hypothesis (H1) that this difference does exist. There 
are Type I and Type II errors which correspond to HO and H1, respectively. 
The probability of a Type I error (Type II error) is that of accepting HO 
(H1) when it is false. Reported for virtually every statistical test is 
the probability of Type I error, or significance level (e.g., "p<.05"). 
Power which is virtually always omitted, is 1 minus the probability of 

I Type II error. 
Power is important both before and after an experiment. 	Before an 

experiment, power can be used to plan rationally the number of subjects to 
be used. The experimenter must select a significance level (usually, 
p=.05), a minimal power level (power=.80 is recommended (Cohen, 1977)), 
and an effect size. From power tables, the appropriate number of subjects 
can be determined. The most difficult selection is effect size, since it 
requires the experimenter to predict the cell means and the variance 
before the experiment is run. In this study, observed effect sizes are 
calculated and tabulated along with power. Knowledge of these observed 
values should be an aid to future experimental planning. Prediction can 
be based, at least partially, on past observation. 

Power is also important after an experiment, 	especially for 
interpreting effects that lack significance. 	Many researchers are 
reluctant to accept the null hypothesis in this situation. 	In fact, a 
calculation of power reveals what should be done. If, for effects of 
interest, power is high, the null hypothesis might well be accepted. High 
power simply indicates that the posited effect size of interest would have 
been detected if it existed. If, on the other hand, power is low, 
judgment should be suspended until an experiment is run (or the existing 
one replicated) with more subjects or other precision-increasing 
refinements. 

Literature Reviewed 
Articles from journal articles and conference proceedings on human 

factors in computer programming were selected for power analysis. 
Technical reports and theses were not examined. This admittedly biases 
the results somewhat, since unpublished experimentation, especially that 
never committed to paper, is often suspected to have low power. 

The literature of controlled experiments on software complexity was, 
notwithstanding the above, also omitted from the study. The reason is the 
fundamental difference in the goal of this area for explaining variance in 
human performance. 	Human factors experiments attempt to show that an 
experimental factor has a significant effect on human performance. 	As 



will be shown later, such a factor might typically account for 10 to 40% 
of the variance. Software complexity, on the other hand, tries to predict 
human performance as completely as possible. It typically can account for 
60 to 80% of the variance. 

Rules for Power Analysis 
The rules for power analysis were as follows: 
1. Only tests significant at p1.05 were examined even though other 

marginally significant results were reported. 	This practice 
further biases the observed power in an upward direction. 
Further, power was computed using p=.05 even if a lower p was 
stated. Only two-sided testing was used, even if the author(s) 
used one-sided tests. 

2. Only ANOVA F-ratios, t tests, and correlation coefficients (r) 
were examined. 	Chi-square, binomial, and nonparametric tests 
were ignored. 	No tests on differences in means 	(Duncan, 
Newman-Keuls) were examined. 

3. In ANOVAs, the significance of the overall mean and all 
interactions were ignored. 	The latter were ignored because 
interactions are not typically sought in most designs, are 
difficult to interpret in the framework of this study, and often 
could not be studied due to lack of information. 

4. A maximum of 10 tests per experiment were analyzed for power. If 
an article reported more than one experiment, it could have up to 
10 tests included for each experiment. This was done to avoid a 
bias in favor of experiments with many tests. The first ten 
tests presented were analyzed. 

5. Sufficient information had to be present to do the power 
calculations (F-test: cell size, means; t-test: cell size; r: 
cell size). For F tests, the mean square error often had to be 
estimated from the expected value formula for F. 

6. The test must have been on some aspect of human performance that 
was 	measured under controlled experimental 	conditions. 
Regressions between two variables, neither of which represented 
human performance, were ignored. 

All F and t test measures of effect size were converted to the square root 
of percent variance explained to allow comparison with r (Cohen, 1977). 

Reseal is 	 - 
The total number of tests that were power analyzed was 122. The power 

averaged .83; its standard deviation was .19. Only 36% of the tests had 
power less than the recommended value of .80. The effect size, expressed 
in terms of the square root of the percentage of variance explained, 
averaged .44; its standard deviation was .14. The effect size data were 
roughly normally distributed, though skewed slightly to the right. Using 
Cohen's terminology of small (r=.10), medium (r=.25), and large (r=.50) 
effects, 67% of the effects are medium up to large, and 28% are large 
(Cohen, 1977). Using recommended medium effect size in pre-experimental 
power analysis would appear to be quite conservative, since less than 5% 
of the effects are less than medium. 

Similar power analyses of other published literature have been done. 
Comparison of this study with others is difficult because we calculated 
effect sizes whereas others assumed various sizes and then determined the 
power. When an effect size of r=.50 was assumed (the closest value to our 
observed r=.44), the following were observed: 
Study 	 Average Power 	Tests with power<.80  
Chase and Chase, 1976 	.86 	 28% 
Brewer, 1972 	 .78 	 29% 
Katzer and Sodt, 1973 	.79 	 46% 
It should not be assumed that actual effect sizes in these other areas are 
as large as r=.50. 

Conclusion  
The power of tests in human factors literature on computer programming 

is as high as that in other areas where power analytic studies have been 
done. The original hypothesis of low power is incorrect. Ideally, 
experimenters would begin to incorporate a power analysis into their 
research planning. The distribution of (significant) observed effect 
sizes, as given above, should assist this planning. 

VARIANCE CONTROL 
Individual differences in programmer performance are a major problem in 

designing experiments. The ratio of best to worst performance for a group 
of programmers is often claimed to be 10:1 or 20:1 (Grant and Sackman, 
1967) (Curtis, 1980) (Dickey, 1981) (Curtis, 1981). This difference is 
much larger than the 1.5:1 and 4:1 found for experts and intermediate 
level users, respectively, in a text editing task (Card et al., 1983). It 
should be noted that these large differences have been observed primarily 
on debugging times. 



If tests were available to predict these differences to some degree, 
the predictions could be accounted for in the experimental design. The 
experiment would then become more sensitive, i.e., better able to detect 
true effect differences or to use fewer subjects. The appropriate designs 
which account for tests (termed concomitant variables) are randomized 
block designs and analysis of covariance (ANOCVA). The former uses the 
concomitant variable to group subjects into relatively homogeneous blocks. 
Each subject in the block is then randomly assigned to a treatment. 
ANOCVA performs a regression on concomitant variable simultaneously with 
an analysis of variance on the independent and dependent variables. 
ANOCVA is, however, not likely to be useful for two reasons (Keppel, 
1973). First, ANOCVA requires many assumptions be true for it to be 
valid. Second, it is superior to randomized blocks designs only when the 
concomitant variable is correlated r>.60 with programmer performance. 
Since this is unlikely, randomized block designs would be preferred. 

The results reported here are based on an examination of the same 
literature used in the power study. Basically, I looked at regression 
studies and experiments which had already attempted to account for 
programmer differences. Space limitations preclude the inclusion of a 
table which would allow direction examination of the correlations. 

For professional programmers, months of programming experience has been 
found to be a fair predictor for program reading and writing performance. 
Correlations of .50 were found between the logs of experience and program 
writing plus debugging time (Chrysler, 1978). Correlations of .45 and .78 
were found between experience and program comprehension scores (Moher and 
Schneider, 1981). They also found a multiple correlation of .62 between 
experience plus number of computer science courses and program writing 
time. 	Their high correlations must not be viewed too enthusiastically, 
for they purposefully sought out very diverse groups of subjects. 	Higher 
correlations are expected under such situations (Montgomery and Peck, 
1982). 

For professional programmers, there does not appear to be any good 
predictor for debugging tasks. No significant correlations were found 
between experience and debugging time in (Grant and Sackman, 1967). 
Experience was not found significant on tasks of program comprehension, 
modification, or debugging in (Sheppard et al., 1979). This result is 
counter to the above findings of Chrysler and Moher and Schneider. They 
did find the number of known programming languages and the number of 
familiar FORTRAN concepts to be correlated with debugging performance for 
professionals with less than 3 years experience. This result did not hold 
for more experienced professionals. 

For advanced computer science students, a number of highly predictive 
measures appear to be available. In (Moher and Schneider, 19b1), multiple 
correlations of .66 to .74 were found between program comprehension and 
writing tacks and the regressors: number of computer science courses, 
computer science grade point, and years of programming. The advantage of 
these three regressors is that they are relatively independent. 

-For beginning programmers, many regressors were tried in (Barfield et 
al., 1983), (Lucas and Kaplan, 1974), (Mayer, 1975), and (Shneiderman, 
1977). From the standpoint of having large correlation coefficients and 
appearing in more than one study, the best regressors would appear to be 
SAT-Math scores, college course grade(s) either in the introductory 
programming course or in calculus or chemistry, and years of experience 

t programming. Given that many beginning students today will have personal 
computer experience, it should be included in any attempt to predict 
performance. 

For both professional and student programmers, a pretest is a possible 
choice for a concomitant variable. If the experimental task is program 
comprehension, one or more initial program comprehension pretests (the 
same test(s) for all subjects) could be used as a concomitant variable. 
Correlations between 3 modification task scores ranged from .31 to .60 and 
between 3 modification scores and recall scores ranged from .39 to .49 
(Shneiderman, 1977). Correlations between scores on reading and writing 
tasks varied from .63 to .69. 	One disadvantage of pretesting is 
additional resources invested in it. 	This may be especially so if 
multiple pretests must be given to determine a stable level of 
performance. 

An alternative to any use of concomitant variables is repeated 
measures, in which a subject is run under every experimental condition in 
the experiment. The subject serves in effect as his or her own control. 
While this approach may at first seem to be ideal, problems can and do 
arise. Consult (Poulton, 1982) and (Greenwald, 1976) for details. 

Conclusion 
Methods have been discussed for reducing programmer variance through 

the use of a concomitant variable for randomized blocking. Using these 
results, it should be possible to increase substantially the precision of 
experiments on computer programming. Very little effort is required to 
sort subjects into relatively homogeneous blocks prior to random 
assignment to experimental conditions. Given the wide range of research 
from which these conclusions have been drawn. they should be regarded 



SUMMARY 
This study has examined the literature on human factors in computer 

programming to study two aspects of programmer variance. The first was to 
determine if the reportedly large differences in programmers caused 
statistical tests to be of low power and effects small relative to noise. 
This appears to be untrue. The second aspect studied was methods for 
controlling for large programmer variance in experimental designs. A 
number of promising concomitant variables were identified for randomized 
blocking, which should be able to increase the precision of experiments in 
this area. 
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Significance Testing of Rules in Rule-Based Models 
of Human Problem Solving 

C. MICHAEL LEWIS AND JOHN M. HAMMER 

Abstract—Rule-based models of human problem solving have typically 
not been tested for statistical significance. Three methods of testing rules 
—analysis of variance, randomization, and contingency tables—are pre-
sented. Advantages and disadvantages of the methods are also described. 

INTRODUCTION 

Many researchers have used rule-based systems to model hu-
man problem solving [1], [3], [6], [7], [11], [12]. Typically, the 
rule-based system has a large number of rules, each of which has 
several free variables that were adjusted during the modeling 
process. For the most part, significance testing of these rules has 
not been much of a consideration. It should be. It is certainly 
possible to describe N data perfectly with N rules using a trivial 
model that simply reproduces the data. While there is no evi-
dence that this has happened in any of the research reported to 
date. there is a certain danger of overfitting a rule-based model. 

In this article we present three methods for testing the statisti-
cal significance of rules and other components of rule-based 
models. Throughout this article we shall assume that the per-
centage of behavior matched (e.g., commands) is the performance 
measure of interest. Two of the testing approaches, however, are 
not limited to this measure. They may be used to study any 
performance measure, though it may well be possible for a rule to 
produce a statistically significant effect on one performance 
measure but not another. The remainder of this article contains a 
section on notation, three sections on testing by analysis of 
variance, randomization, and contingency tables, respectively, 
and two concluding sections on applicability of the various tests 
and validity of these models. 

NOTATION 

A rule-based system consists of three toiliponents. The first is 
a set of rules of the form IF condition THEN action. The meaning 
of the rule is that if condition is true, then action could be taken. 
For example, the following rules describe behavior at a traffic-
light-controlled intersection: 

IF 
	

in intersection 	 THEN proceed 
IF 	yellow and arrival at intersection 

before the light turns red 
	

THEN proceed 
IF 
	yellow and arrival at intersection 

after light turns red 
	

THEN stop 
IF 
	green 	 THEN proceed 

IF 
	red 
	

THEN stop 
IF 
	red and right turn 	 THEN proceed 
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If this model can successfully match human behavior, then the 
rules form a model of the human. Often, the rules are interpreted 
as a model of the human's knowledge. Intuitively, the better the 
model matches human behavior, the better the model. 

The rules can be transformed easily into a computer program 
as follows. First, control statements are added that cause the 
program to examine the rules repeatedly and execute those whose 
conditions are true. Second, in order to compare model and 
subject actions, an input statement is added before the first rule. 
This statement reads the state vector (e.g., the lights, the traffic, 
short term memory) that was available to the human when his or 
her decision was made. The program looks something like this the 
following: 

WHILE TRUE DO BEGIN 

READ(STATE); 

IF 	(in intersection) 
	

THEN proceed 
ELSEIF (yellow) AND (predict arrival at 

intersection before light turns red) THEN proceed 
ELSEIF (yellow) AND (predict arrival at 

intersection after light turns red) 
	

THEN stop 
ELSEIF (green) 
	

THEN proceed 
ELSEIF (red) AND (right turn) 

	
THEN proceed 

ELSEIF (red) 
	

THEN Stop 

END: 

The second component of a rule-based system is a conflict 
resolution strategy. It selects the rule to execute when multiple 
conditions are true. In the above example, a rank-order resolution 
strategy was shown. It simply uses the first rule that matches. The 
ranking of rules can then be interpreted as a subject's strategy. 
Some other conflict resolution strategies include random selec-
tion, meta-knowledge, and backtracking. A random selection 
strategy simply picks at random one of the many matching rules. 
A meta-knowledge strategy has a higher level rule-based system 
that chooses which rule to execute. A backtracking strategy will, 
if necessary, try all possible matches. It should also be noted that 
it may be possible to write the rule conditions so that there is 
always exactly one rule that matches. 

The third component of a rule-based system is the input and 
internal variables. The input variables correspond to external 
data. The internal variables correspond to human short-term 
memory, which may be changed by the action part of rules. Both 
internal and input variables are examined by the condition part 
of rules. 

Evaluation of Models 

When comparing subject and model performance, the model is 
usually run open-loop without any knowledge of subject actions. 
In other words, the model can simply be treated as another 
subject. When comparing subject and model behavior, the model 
is usually run closed-loop as follows. The model has as input the 
same state vector the subject saw. The model chooses an action, 
and then it is recorded whether the subject and model agree. 
Then the subject's action is used to control the system, and the 
process repeats. The reason for always following the subject's 
action is as follows. If the subject and model action differed and 
both were used, then the state vectors would be unequal after 
applying these actions. The model and the subject would then be 
working on different problems, and a comparison of their actions 
would make little sense. 

The following sections on testing rule-based models will specify 
ways in which the model will be modified and then run. The 
typical modifications are to delete or modify one or more rules. 
Running a model, perhaps in a modified form, means to compare 
its overt behavior, (e.g., commands) to a subject's and determine 
the percentage in agreement. 

0018-9472/86/0100-0154$01.00 P1986 IEEE 
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ANALYSIS OF VARIANCE 

The analysis-of-variance approach is the simplest of the three 
approaches for testing rule significance. To use it. each rule in the 
model is equated with an independent variable. The meaning of 
the variable is that at its high level, the rule is in. the model, and 
at its low level, the rule is deleted from the model. The rule-based 
model is then run 2' times (for each subject), which corresponds 
to a run with each possible subset of rules present. It must make 
sense for the model to do nothing, or else the model must he 
augmented before testing with a special nondeletable rule that 
applies when no other rule applies. The resulting data can then be 
analyzed as an N-way factorial. 

To economize on model runs, fractional factorial designs should 
be used. The full factorial design, proposed above, will estimate 
the effects of many high-order interactions that cannot occur. In 
fact, the interpretation of an interaction is that the corresponding 
rules interact. An example would be two rules, the first of which 
stores some value in a temporary variable and the second of 
which uses the temporary variable. Such rule interaction is com-
mon, but rarely do many rules interact. An inspection of the 
rule-based model will reveal what interactions could occur. It 
should be possible to create experimental designs which test only 
the desired interactions. 

The testing of condition components of rules is also possible. 
In this case the reduction in error attributable to the greater 
specificity provided by the additional condition can be evaluated. 
Suppose, for example, that a significance test of each of the 
conjunctive conditions of a rule is desired. For example 

IF condition, AND condition 2  AND condition 3  THEN 

Proceeding as before, three independent variables might be 
equated. one with each of the three conditions. A three -way 
ANOVA could be run to test each of the three clauses. It would 
most likely be necessary to estimate the value of the response at 
the point where all three conditions have been deleted from the 
rule. Obviously, this process could be extended to cover all of the 
conditions for all of the rules in the model. 

The testing of groups of rules as a whole is also possible. To do 
this, an independent variable is equated with several rules, not 
just one as was done initially. The experimental interpretation is 
that the entire set of rules is either present or absent from the 
model during an experimental run. This pooling of rules corre-
sponds to a supersaturated experimental design and may be the 
only economical means of testing models with many rules. One 
logical choice for pooled rules would be interacting rules. Another 
choice would be the modeler's organization of rules into groups 
(e.g., S-rules and T-rules [6]). 

Analysis of variance makes several assumptions, one of which 
is that error residuals are normally distributed. Moderate depar-
tures from this assumption do not produce large deviations in 
calculated and actual significance levels. If the normality assump-
tion is known or seriously thought to be incorrect, an approxi-
mate technique [4] may be used. Simply, the data are replaced 
with their ranks, and the remainder of the analysis of variance 
calculations remain unchanged. The significance levels produced 
by this method are reported to be nearly equal on normally 
distributed data to that produced by the standard F-test. The 
rank transformation is more robust with respect to the distribu-
tion of the data, though it is not a distribution-free test. Finally, 
the hypothesis being tested here is whether the presence of a rule 
(or some other similar entity) explains a significant amount of 
variance in the subjects' performance. This significance is inde-
pendent of the significance of other rules (or other entities) but 
may be dependent on the conflict resolution strategy. It is im-
portant to note the hypothesis because the next section tests 
somewhat different ones. 

RANDOMIZATION 

The second approach to testing a rule involves forming a 
randomization distribution by randomly permuting a rule. Sup-
pose a particular rule is under test. Its action can be replaced by  

a random action (e.g., a random number generator that chooses 
commands according to a priori frequencies). The model, with a 
single modified rule, can be run many times. Its matching perfor-
mances can be considered a randomization distribution. The 
model in its unaltered form can then be run, and its resulting 
performance be referred to the randomization distribution. If its 
matching were higher than 95 percent of the randomly generated 
values, the null hypothesis could be rejected at the five-percent 
level (one-sided). The null hypothesis would be that a random 
action would be as suitable as the proposed action in the rule 
under test. The empirically determined significance level is partial 
in that it is potentially dependent on all the other rules being 
present in the model as well as conflict resolution strategy. 

The condition part of a rule can be tested by a very similar 
method. There is a minor difficulty in that a random number 
generator in the condition part of a rule does not appear to make 
sense. A solution would seem to be to create various mutant 
conditions by randomly selecting condition clauses from other 
rules in the model. The null hypothesis being tested here is that 
random conditions are as suitable as the proposed condition in 
the rule under test. The significance level attained is partial just 
as the one obtained in testing actions. 

An entire rank-order conflict resolution strategy may also be. 
tested by randomization. Basically, a randomization distribution 
of performances can be obtained by running all possible rank 
orderings (or a Monte Carlo sample) of rules. The performance of 
the model with the original rank ordering can be referred to this 
distribution as above. The significance level obtained is depen-
dent on the rules. 

CONTINGENCY TABLES 

Contingency tables are used to analyze nominal data. If the 
following is a rule-based model: 

IF condition, THEN action, 
IF conditiOn 2  THEN action , 

• 

IF condition„ THEN action,,. 

Then a contingency table may be set up as follows: 

action, action , 	• • • action„ 

condition, 

condition, 

condition„ 
NOT (condition, OR... 
OR condition„) 

The last row in the table covers the conditions that are not 
covered by any rules. The observed data fill the table in the 
obvious way: for a given state vector and subject action, the 
unique condition which holds is determined, and the cell under 
the subject's action is incremented. A model that matched the 
data perfectly would have all zero entries off the diagonal. 

Certain restrictions must be met to employ contingency tables. 

1) Conditions must be mutually exclusive (2 rules cannot fire 
at the same time). 

2) Actions must be overt. 
3) Each action must be unique (2 rules cannot issue the same 

action). 

These restrictions may be met in a variety of ways. Mutual 
exclusivity will be satisfied by any model containing conflict 
resolution, rank-ordering, or disjoint rule provisions. The unique 
action requirement may be accommodated by phrasing composite 
rules in which constituent rules prescribing the same action are 
joined by disjunction. 



action, 	 action„ 

X2 = 1 

X2 = 2 

X2 = 1 

X2 = 2 

Delete 

Delete 
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The performance of the rules in matching the data can be 
evaluated with a chi-square or similar tests. The hypothesis is 
tested whether conditions and actions are independent. i.e.. 
whether there is a significant difference between the proportions 
given the rules and the overall proportions. As a consequence, 
rules containing infrequently used actions receive more latitude 
using these tests than they do under a simple percentage of 
commands matched measure. 

Testing a set of rules is also possible as follows. The null 
hypothesis is that there is no relationship between the action and 
the conditions aside from the relationship that is already de-
scribed by the existing rules. Consider the test for the rule: 

X1 -= 1 

X1 = 2 

Two statistics are computed. The first is a maximum likelihood 
estimate of chi-square (G 2 ) for the complete table. The second is 
a test of quasi-independence pj for a reduced table in which cells 
corresponding to rule(s) under test are excluded. This corre-
sponds in the preceding table to one cell per row for conditions 
covered by the rule(s). If the original G 2  is significant and the 
quasi-independent one is not, this implies that the rules capture 
the dependency of the actions on the conditions. While attractive 
in directly referencing observables, this method requires large 
samples with replications of observed combinations of variables. 
(Unobserved combinations are treated as structural zeros.) 

Other Statistics 

A nonparametric analog to the coefficient of determination R 2 
 is Th  [8], which may be used to determine the percentage of 

variance explained in the actions by a rule or rule set. Thus 

1 

To, 	 1 

= table entry in row, , column, 

x +,=Ex,, 

N = total number of observations. 

Individual rules, the disjunction of rules issuing a particular 
action, or the complete rule set consolidated into disjunctions by 
action can be evaluated in this way. If uncovered observations are 
excluded, r,, may be interpreted as the extent to which actions 
covered by the rule are explained. If all observations are present, 
a N + 1st category should be formed following the distribution 
of the uncovered actions. This Th  is interpretable as the extent to 
which rules explain all the actions. 

Values of Th are asymptotically related to x 2 , allowing signifi-
cance testing. Thus 

(N — 1)(I — 1)r,,. 

This statistic tests the hypothesis that r,, = 0, corresponding to 
the premise that there is no relation between conditions and the 
actions prescribed by the rule(s). 

A similar statistic proportional reduction in error (PRE) [2] 
measures the reduction in error achieved by predicting actions 
based on the rules rather than assigning the modal action under  

all rules and is given by 

E p,„1-P+., 

	

PRE — 	I 
 

1 — P 4.„, 

where 

	

P,„, 	max(P, i ) 

P = max(P.i) 

Pei = Nu/N. 

As demonstrated by this potpourri of procedures, a unified 
technique for testing rule significance based on multinomial 
sampling is yet to be developed. PRE answers the pragmatic 
question of gains in prediction. The quasi-independence proce-
dure provides its complement by testing for unmodeled con-
sistencies. Rules can be simultaneously tested in a contingency 
table but their contributions to rule set performance will remain 
unknown. 7., allows both significance testing and estimation of 
effects but cannot evaluate rule set performance without pooling 
rules by action. 

APPLICABILITY OF VARIOUS TESTING METHODS 

For testing the degree to which a model's behavior matches a 
subject's, all three methods will work. A contingency table is 
clearly the best, however, since it requires the minimum in 
computation. Randomization is clearly the worst technique be-
cause of the large amount of computation and the partial signifi-
cance levels it produces. A fractional factorial ANOVA is clearly 
superior to randomization on both of these points. ANOVA and 
randomization can both be used to test rules that modify internal, 
unobservable states. Contingency tables cannot. 

For testing overall performance measures, (e.g., time to solu-
tion, total errors) only randomization and ANOVA are suitable, 
with ANOVA preferred. Ordinarily, much more emphasis is 
placed on behavior than on performance, since behavior is much 
more difficult to model. There are situations in which testing 
hypotheses about both performance and behavior is desirable. 
One might want to show that a certain set of rules will affect 
behavior but not performance. For example, Morris and Rouse 
[10] have observed that theoretical training given process control 
operators often fails to change their performance. It would be 
interesting to test this concept analytically in a rule-based system. 
For example, a group of rules might be identified as the intended 
consequences of theoretical training. The model might be run 
with and without these rules, using ANOVA to evaluate perfor-
mance measures and contingency tables to evaluate behavioral 
differences. 

The randomization method can be used on two hypotheses. 
The first, and more important, is to test the significance of a rank 
ordering of rules. This would seem to be the only way to test this 
type of resolution strategy. The second use is to test the hypothe-
sis that part of a rule performs no better than random. This test 
would seem to be of little use, since ANOVA can test nearly the 
same hypothesis. 

VALIDITY 

The previous methods arc generally devoted to evaluation of 
rule performance and do not address the issue of rule validity. 
Just as a high R 2  does not imply that all terms of its regression 
equation are significant, a high r,, does not vouchsafe for the 
future predictiveness of its rules. This distinction becomes im-
portant in the identification phase of rule-based modeling. Unlike 
identification based on parameter estimation, the identification 
of rules requires a search of the space of possible rules. An 
inductive pattern matcher must consider a large number of 
potential rules. In evaluating identification it becomes necessary 
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Fig. 1. Block diagram for rule induction with an example output from each 

block. 

to account for the probability of finding rules of comparable 
quality by chance. To answer this question the structure of the 
event space (observed combinations of condition variables), dis-
tribution of actions, and extent of search (set of possible rules) 
must be considered simultaneously. 

Filbert and Christensen [5] refer to this problem as contrived-
ness: "... the tendency of a search procedure to uncover ap-
parent patterns where none exist." They suggest a randomization 
test for measuring the extent to which a search procedure un-
covers contrived rules. The data consist of many pairs of state 
vectors with subject responses. The state vectors are left undis-
turbed, but the responses are randomly permuted. The resultant 
permuted data has reasonable state vectors paired with random 
responses. Contrivedness is the degree to which the search proce-
dure can make sense of this random data. When many permuted 
data sets are searched, the search procedure results from a 
randomization distribution against which the results from the 
original, unpermuted data can be referred. While the previously 
mentioned randomization test will give an idea of how opportu-
nistic the search procedure is, it does not say how to refine the 
search procedure so as to avoid contriving rules. 

CONCLUSION 

This article has identified several ways of testing a rule-based 
model of human problem solving. The amount of testing seems to 
be on a par with the size of the model. Left unresolved for the 
most part was the problem of contrivedness of automatic rule 
identification. It seems fitting to close with the description of an 
interesting and difficult question in identification of rules. As 
stated earlier, many cognitive models have been built using 
rule-based models. Sometimes these models are built when the 
investigator has access to the subject's thinking. This is always 
the case in developing a rule-based expert system. Other investi-
gators, particularily those running experiments with humans, may 
have only the data (i.e., commands) to examine. 

An important theoretical question is the limits to identification 
of rules from data that contain response errors. While there has 
been work in machine learning, it does not seem that anyone has 
examined this question [9]. It does seem important, because it 
bears on our ability to construct models. This problem also seems 
to be very difficult to solve formally. Hence, a preliminary 
investigation could be done via simulation, as shown in Fig. 1. 
Basically, the approach is to generate some rules and some 
random stimuli, apply the rules, add noise, and try to identify the 
rules from the noisy data. 

The following would seem to affect identification: 

1) the amount of data and its coverage of the stimuli domain, 
2) size and number of rules, 
3) the number of times a rule fires, and 
4) the level of noise. 

It might also be interesting to investigate the addition of oracle 
variables in rule identification. An oracle variable is an extra 
variable (beyond the original stimulus vector) that provides infor-
mation that ordinarily is not available. The first oracle variable 
might be a single bit to tell whether the response was in error. 
Another set of oracle variables would identify which rule fired. 
Yet another set of oracle variables could identify the variables 
that are part of the rule that fired. While these oracle variables 
may appear to be practically giving the solution to the identifica-
tion program, they do not. These variables would be treated the 
same as any of the real stimulus variables. The identification 
program would have to infer the meaning of these variables in 
order to make use of them. 

While it does appear theoretically interesting to determine how 
much oracle variables can add, there are important practical 
benefits as well. Oracle bits could approximate the hunches of a 
human investigator. For example, the investigator may suspect 
certain data to be in error, a certain rule to have fired, or that 
only certain variables could be influencing the operator's decision 
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(from a verbal protocol). These hunches are a second order 
human-machine system: the investigator's attempt to identify 
(with a program) the rules of the human in the first-order 
human—machine system. 
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submitted for publication. 

Lewis, C.M. and Hammer, J.M., Significanst testing of rule-based 
models, to appear in IEEE Trans. Systems, Man, and Cyberentics, 
1986. 

Hammer, J.M., Inference of rule-based models: A research prospectus 
(a concept paper to interest funding agencies). 

As an overview, a concern for methodology has been the primary 

focus during the period covered. Along this line has been 

1. reexamination of the statistical validity of a seminal work in 
human-computer interaction, 

2. the development of several methods of testing rule-based models 
of cognition, 

.3. a novel way of looking at the problem of identifying rules, which 
is interesting both as computation-and cognition. 

An Equal Education and Employment Opportunity Institution 	 A Unit of the University System of Georgia 



The first article, ("Significance testing of the keystroke-level 

model"), is a reexamination of Card, Moran, and Newell's keystroke-level 

model. Their approach to predicting the time for a task is to break it 

into subtasks, determine the time for each type of subtasks, and then add 

the appropriate number of subtask times. This approach is basically a 

linear model; the most common way of testing such a model is to use 

multiple linear regression, which the original authors did not use. The 

attached article describes multiple linear regression testing of the 

model, which gives greater ability to test hypotheses about the model. 

The conclusions the authors originally drew do not appear to be as strong 

under this more powerful form of testing. 

The second article, ("Significance testing of rules in rule-based 

models of human problem solving"), describes three methods for testing 

rule-based models of human problem solving. Many researchers have built 

such models that fit the data overall. There has not been any testing on 

individual rules to determine if each contributes to model fit. As the 

article shows, testing is very straightforward, for it uses conventional 

statistical methods (i.e., ANOVA and fractional factorials, 

randomization, and Chi-square). 

The most interesting part of the second article (appears in the 

conclusion) is the concept of rule identification. This is developed 

more fully in the third paper ("Inference of rule-based models"). 

Although significance testing can show that a given rule is statistically 

significant, it cannot show that the given rule is identical or close to 

one used by the observed process. A model containing rules equal that of 

an observed process would be more scientifically interesting than a model 

whose rules were only statistically significant in mimicing the process 



behavior. The approach of rule identification gives rise to three 

problems, one in computational theory and two in cognitive science. The 

computational question is first, how to identify a rule-based model that 

uses a finite amount of unobservable memory. In addition, it is important 

to determine the distance between the estimated rules and the process 

rules. This distance likely depends on a large number of factors such as 

the amount of data, the amount of memory in the process, the noise, etc. 

The first cognitive question is the use of the above algorithm to 

identify an expert's method of performaing an interactive task. The second 

cognitive question is how to modify the algorithm to make it identify rules 

as humans do. More specifically, what cognitively plausible limitations 

can be placed on the inference algorithm so that its inferences are similar 

to those of a novice user. The user's task is to use some interactive 

device and to form a mental model of its behavior. The inference method 

would observe the same data as did the human and would form a rule-based 

model of the interactive device. The human's rules and the inference 

method's rules would then be compared. An overall goal of this research 

would be to study mental models in a more objective way. 

To conclude, there is a validity theme running throughout this work. 

It begins in statistics and ends in identification and cognition. I am 

quite excited by the ideas contained in the third article. I hope you 

find them interesting. 

J 	Hammer' -- 
sistant Professor 



INFERENCE OF RULE-BASED MODELS: 
A RESEARCH PROSPECTUS 

John M. Hammer 
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ABSTRACT 

This proposed research is concerned with using an inductive rule 

inferencer to identify and model a human who is operating or learning a complex 

interface. It is proposed first to modify an existing induction program 

[Michalski 1980] so that it can infer rules using variables beyond those 

provided as input to it. These hidden variables correspond either to human 

short-term memory or a mode in a complex interface. The second part of the 

proposed research would use the rule inferencer to build a rule-based model of 

an expert who is using a complex interface. Specifically, the model would 

predict how the expert chooses an editing method. The third part of the 

proposed research would use the rule inferencer as a model of how a novice user 

builds a rule-based mental model of a complex interface. The rules produced by 

the inferencer, which would also be attempting to build a rule-based mental 

model of the interface, would be viewed as optimum. These optimum rules would 

be compared to the user's rules in order to detect systematic biases. These 

systematic biases would be used to modify the inductive identifier to make its 

rules more like the user's. A suitably modified inductive inferencer could 

then be considered to be a cognitive model of human learning. 



INTRODUCTION 

Given a set of data, how might the mechanism producing that data be 

determined? One of the most frequently used mechanisms in modeling human 

problem solving is the rule-based model (e.g., [Anderson 1983], [Newell and 

Simon 1972], and [Rouse 1980]). Many rule-based models have been built, but 

there has been little consideration of using an inductive rule inferencer to 

construct these models. The potential benefits of using an inferencer include 

speed, problem size, objectivity, and testability. As for speed and size, an 

inductive rule inferencer can probably analyze a large data set faster than a 

human. An important advantage of an inference method is its objectivity. 

While results can be tailored to some extent by limits on inputs and the form 

of allowed inferences, the results are repeatable. It should be possible to 

test the inference method to determine if it is capable of structure recovery. 

The remainder of this section contains a description of the domain to be 

studied and a description of the inductive inference problem. The remaining 

sections of the paper are on: 

- the inductive inferencer and the changes needed to make it usable on 
the problems in the proposed research. 

- how the inferencer will be used to study the expert's choice of 
method. 

- how the inferencer will be used to model the novice's acquisition of a 
mental model. 

- the relationship of the proposed research to that of Ohlsson and 
Langley, VanLehn, and Tatsuoka. 

- a conclusion. 

A Description of the Domain Being Considered  

There are three general characteristics of domains to which this 

methodology could be applied. The first is that the system be essentially 
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discrete. A discrete system has discrete inputs, states, and outputs. In 

contrast, the topic of most work in mental models is on analog systems: 

motion, heat, and electricity, [Gentner and Stevens 1983]. A second 

characteristic, which is implied by the first, is that there is a rule-based 

description of the system. This means only that the system behavior can be 

described by a rule-based system, which is theoretically equivalent to whatever 

means are used to implement the system. Third, the discrete inputs may be 
• 

relatively large in number. The implications for induction of this are 

discussed later in this section. 

Any system that has these characteristics could be used as the domain to 

test the inference methods. Some examples are interactive computing, operating 

a complex, discrete device such as a telecommunication system, or fault 

diagnosis of a complex system. 

The domain proposed is interactive computing, specifically text editing. 

Both experts and novices will be studied. The expert task is choosing from a 

large number of commands available that could accomplish the expert's goal 

[Hammer and Rouse 1982]. For example, suppose the goal of positioning the 

editor to another point in the text. Some possible methods include using a 

search string, scrolling the display and looking for the target, counting the 

relative distance to the target, pointing with a mouse, etc. Within each of 

these methods there may be sub-methods that represent different strategies 

(e.g., different search strings). The choice of positioning method may depend 

on display variables, previous methods used, and characteristics of the text. 

The research goal would be to infer a rule-based model of the expert's choice 

of method. Furthermore, the inferencer would be constrained to produce rules 

that were cognitively plausible, a topic developed further in a later section. 
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The inferencer will also be used to study the way a novice understands a 

text editor. By understand, we mean finding out if the user knows what the 

editor will do in response to a specific sequence of keystrokes (e.g., ESCAPE A 

RETURN). We shall not be concerned with whether the user can use the 

knowledge, even though this is an important question. The research goal would 

be to modify the inferencer (in cognitively plausible ways) to produce rules 

that are similar to the novice's. 

A Description of the Inference Problem  

The phenomena to be modeled is described formally as follows. There is a 

chronological sequence of data. Each datum contains an input (stimulus) and 

response. The input is a vector of discrete variables. The response is a 

single discrete variable. 

<I 	I12 ,..., I 	R1> 
11' 12" 1N' 1 

• 

• 
• 

<Imi , Im2 ,..., ImN , Rm> 

The inference problem is to build a rule-based model that would produce the 

sequence of responses from the sequence of inputs. It is often the case that a 

rule of the model depends only on some subset of the input variables. 

Furthermore, a rule may depend on unobservable memory variables. These memory 

variables may be changed by other rules in the model. 

The formal view of the problem is applied to modeling the expert's choice 

as follows. The inputs are the variables displayed to the expert. The 

response is the expert's chosen method or command. The unobservable memory 

variable is the expert's goal. The problem is to build a rule-based model that 
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predicts the expert's responses from knowledge of the inputs. Note that the 

rules will make explicit how the unobservable variables are used and changed. 

The formal view of the problem applied to novice learning is as follows. 

The input vector corresponds to the values displayed to the novice plus the 

input command entered by the novice. The response is the response of the 

interface to the command. The unobservable memory variables correspond to the 

modes and settings of the interface that are not displayed to the user. The 

inference problem of the novice is to identify a rule-based model of the 

interface. The research problem is to modify a computer-based inferencer so 

that its inferences are similar to that of the novice. 

THE INDUCTIVE RULE INFERENCER 

The motivations for using an inductive rule identifier include speed, 

size, objectivity, and testability. The latter two are important 

considerations from a methodological point of view. The use of a rigorous 

inference method would tend to remove subjectivity from the construction of 

rule-based models. For the most part, rule-based models have been built by 

humans using subjective inference from verbal protocols or the raw 

input-response data described earlier. While using subjective methods does not 

mean that its results are incorrect, an objective method is preferable. An 

additional advantage of an objective, computer-based method is that it would be 

usable in intelligent CAI courseware. 

Testability is an additional advantage of an objective rule inferencer. 

Its ability to identify rules may be measured. In the section on identifying 

expert's rules and in Appendix A, a plan for testing structure recovery is 
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outlined. This plan, summarized briefly, would determine the extent to which 

the inferred rules would approximate the actual rules. 

Inferencer Requirements  

Three major requirements are made of an inferencer to be used in this 

research. First, it must be capable of identifying rules using few of the 

input variables when many potential variables are available. The reason for 

this is that realistic interfaces have a large number of variables, of which 

only a small number are important at any one time. A second requirement is to 

infer the use of memory. As described earlier, memory is a part of both 

interfaces and expert human operators. A third requirement is either that the 

inferred rules be in a cognitively plausible form or that the inference process 

be cognitively plausible. The specifics of this are deferred until the 

sections on expert and novice research. For the most part, the changes 

required by cognitive plausibility to the inferencer are relatively minor. 

Michalski [1980,1983] has developed INDUCE, a practical algorithm for 

identifying input-output relationships from data. This algorithm can find 

rules involving few variables even when there are many input variables from 

which to choose. It cannot infer missing variables (e.g., the use of short 

term memory). 	Thus, it would have to be modified to do so. The remainder of 

this section degcribes how that would be done. 

Modifications to INDUCE  

The basis for adding an observable variable to a model is a choice between 

two models. One way of choosing between two models would be to select the one 

whose structure is closer to a known, a priori structure. One alternative when 

there is no known, a priori structure ( ' e.g., no known memory limit) is to 

select the simpler model. The remainder of this section describes how the 
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current version of INDUCE would respond to data that depended on unobservable 

variables. It will also be obvious how to take advantage of this. 

Suppose that INDUCE is attempting to identify a rule-based process that 

depends on one unobservable memory that may contain any one of a finite set of 

symbols. Since this unobservable is unavailable to INDUCE, it will search the 

input space for other variables whose random variables just happen to explain 

the data. Thus, the inferred rules will be the conjunction of an excessive 

number of clauses. Each rule explains only a relatively small number of the 

observed data. On the other hand, if the unknown variables were known to 

INDUCE, there would be fewer rules, each of which would cover more of the data. 

Thus, successful identification of unobservable variables will result in a 

simpler model. 

To estimate the unobservable variable, the following process would be 

used. First, produce an inferenced rule set from observable-only data. This 

rule set would have the characteristics described above. Then, form an 

augmented set of data by the following clustering process. Label each datum 

with the rule(s) that cover that datum. Find the median distance from a given 

rule to every other rule in the data, where the distance between two data is 

the time or number of chronological steps between them. The result of this 

will be a matrix of inter-rule distances. Cluster analysis can then be used to 

group the rules. Finally, each datum is augmented with one additional nominal 

variable: the cluster that covered that datum. The cluster, which is based on 

chronological proximity, is assumed to correspond to an operator's goal. The 

resultant augmented data is reanalyzed with INDUCE. 

Note that the number of clusters is a free parameter in the above 

procedure. It would be varied to produce the maximum simplification of the 

model. 
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EVALUATION ON EXPERTS 

The first use of the inferencer will be to build a rule-based model of an 

expert who is using a text editor. As stated earlier, the editing task to be 

modeled is the choice of method. The issues that are relevant to this research 

are the nature of cognitively plausible rules and the structure recovery and 

significance testing. 

Cognitively Plausible Rules  

The basis for cognitively plausible rules comes from our understanding of 

skilled performance. The following are usually held characteristic of an 

expert. 

1. The expert can recognize patterns in the input. 

2. Small differences in the input are recognized and taken advantage of 
to produce superior performance. 

3. Backtracking and problem solving do not occur (at least for the tasks 
considered here). 

4. A decision may be based on a large number of inputs, which have been 
organized into patterns to reduce memory load. The number of 
patterns used in a decision, however, is probably small. The patterns 
are not known a priori, unfortunately. 

5. While there is pattern recognition in the expert, there are some cues 
that the expert would not use because they would take too long to 
calculate. For example, an exact distance is a cognitively 
implausible cue, though an estimated distance is not. 

6. The activation of a previously used method may remain high enough to 
cause it to be reused. 

The leap from the basis to the limits on rule form is somewhat tenuous. 

Following are the limits and their justification (if necessary). 

1. A rule may depend on a goal, which is an unobservable memory variable. 

2. A rule may use only a limited number of inputs. The limit is larger 
for an expert than a novice. 

3. If the input is represented at a higher level than the raw input, then 
the patterns must be cognitively plausible to compute. Basically, 
this is a question of how to represent the input to the inferencer. 



8 

Ideally, we would like to infer a representation level, but it is not 
clear how to do this. 

4. The rule may use only simple pattern matching. There is no 
backtracking. 

5. The rule may depend on the previous action. 

Additionally, a rank-ordered conflict resolution strategy will be used. This 

is mostly a result of how the inferencer produces output. It would not be easy 

to change this. Finally, it would be desirable to be able to input hunches 

that certain decisions depended on certain variables. The sources of these 

hunches could be verbal protocols or eye tracker data. The only modification 

to INDUCE would be to bias it in favor of certain variables. 

Significance Testing/Structure Recovery  

Appendix A describes a significance testing/structure recovery problem in 

rule-based system identification. The problem is that after a set of rules has 

been identified, either by a human or by a program, it is still unknown how 

close the estimated rules are to the actual rules. The appendix describes an 

ambitious program for testing the effects of a wide variety of factors on the 

success of rule identification. To reduce the scope of that program, the 

following local testing is proposed. Suppose as a part of the research 

previously outlined that a three rule system is identified from 67 data, where 

each datum has an input vector of length fifteen. Then, the ability of the 

rule inferencer to identify rules would be tested under exactly those 

conditions. Several hundred simulations would be run with 67 data, each with 

input of width fifteen. The known, a priori rule sets would consist of two, 

three, and four rules. The rules used would be both similar and dissimilar to 

those originally identified, to determine if the inferencer was sensitive to 

such changes. This procedure would give a local measure of the capabilities of 

the rule inferencer. 
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INDUCTIVE RULE INFERENCE AS A MODEL OF RULE-BASED MENTAL MODEL FORMATION 

This section proposes modeling the human who is learning a new, complex 

interface as an inductive inferencer. Viewed generally, this is clearly what 

the human is doing: attempting to ascertain the general operation of the 

interface from the specifics of a sequence of situations. A case could easily 

be made that inference is the human's preferred way of learning. Humans seem 

to prefer examples to explanatory text in documentation, at least for initial 

learning. 

In this problem we want to concentrate on how the human forms a mental 

model. Our definition of mental model is the ability to predict the operation 

of the interface. Specifically, this means describing or displaying the 

interface to the user, telling the user what the next command is, and asking if 

the user knows what the response will be. Of course, there are other 

definitions of mental model. This is not to say that ours is right or wrong, 

only that it is the one used here. Furthermore, it may be that the user has 

internalized the operation of the interface (to the extent that the above 

questions can be answered) but still cannot use the internalization. This 

problem is not considered here. 

The role of the inductive rule inferencer would be to serve as a model of 

the human. The inferencer would have access to the same data as the human. By 

using the inferencer, we expect to find systematic differences between its 

rules and the human's. These differences are due to differences in the 

inference methods of the inferencer and the human. Inititally, the inferencer 

would not serve as a suitable theory of how the human infers a mental model. 

We intend to incorporate the systematic biases into the inferencer to make it a 

suitable model of rule-based mental model formation. The biased inferencer 

would then produce the same kind of rules as would humans. The remainder of 
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this section describes the kinds of cognitively plausible biases that might be 

incorporated into the inferencer. 

Cognitive Bias in Induction  

A number of cognitive biases in inference are presented and justified 

here. Some of them will clearly occur and some are merely plausible. In other 

cases there may be support for inference limits for certain kinds of 

constructs, but it may not be clear what form the limits take. 

The first bias would be to limit the data available to the inferencer. 

INDUCE normally uses all of the data to infer rules. A plausible cognitive 

limit would be to use only the K most recent data, where K is relatively small. 

This limit would be consistent with what humans could retain in memory. 

A second bias would be to limit the number of input variables in the data. 

For example, the input might contain ten variables. The induction process 

might be constrained to use only four of these; the others are ignored. While 

this kind of limit is almost certainly present in humans, it is difficult to 

model unless the four variables are known. It may be possible to use the 

display salience of the variables to choose the limited set that are attended 

to. 

A third bias would be to expect rules to depend on surface variables 

rather than complex patterns built up out of surface variables. This is simply 

the complement to the expert's ability to use patterns. 

A fourth bias is to expect rules to use only a small number of variables 

(three or four). This limit would be lower than that of the expert. 

A fifth bias has to do with unobservable variables. Unfortunately, it is 

difficult to say what form this bias might take, although it seems certain that 

humans will have difficulty with this kind of inference. Of course, 
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discovering this phenomena or incorporating it into the model does not explain 

i t. 

To conclude, most of the inference limits proposed here are fairly simple: 

there is a limited ability to make use of the data. Our intent is first to 

gain more precision in describing these biases or, alternatively, to discover 

new ones. Following that, the biases are to be incorporated into the 

inferencer to form a cognitively plausible model of inference. 

RELATED WORK 

Ohlsson and Langley [1985], VanLehn [1983], and Tatsuoka [1985a,b,c] have 

conducted related research in the use of inductive or statistical inference in 

identifying models of arithmetic subtraction errors. The remainder of this 

section first briefly discusses their research and then discusses the 

differences between theirs and ours. 

Ohlsson and Langley [1985] have studied automated diagnosis of subtraction 

bugs. Their program DPF searches for a sequence of intermediate states (a 

path) between the initial problem formation and the given student solution, 

which may be correct or incorrect. The search is best-first, where best is 

determined by an evaluation function. This evaluation function is intended to 

take cognitive plausibilty into account. For example, it will not compute 

intermediate results that are never used, nor will it compute intermediate 

results twice. Its heuristics include minimizing memory due to the number of 

intermediate results, satisfying previously established goals and in the 

preferred order, achieving maximum satisfied subgoals per step, and minimizing 

the length and number of errors of the inferred path. 

VanLehn [1983] has built a program that learns how to subtract from seeing 

worked examples. The program is given a sequence of ten lessons, each of which 
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teaches a different facet of subtraction (e.g., borrow, borrow from zero, 

etc.). The inductive part of the model constructs program that correctly solve 

the examples. Some of these programs contain systematic bugs, which are the 

result of improper, though plausible inference. 

The execution of the programs produces buggy subtraction. The bugs 

exhibited by the program at various lesson points are collected into a large 

set. This set and the set of systematic bugs produced by students exposed to 

similar lessons are compared. 

Tatsuoka and her colleagues [1985a,b,c] have developed statistical 

clustering techniques for classifying errors according to known bugs. 

Basically, there are a set of features to classify a problem worked 

incorrectly. This is input to a cluster analysis, which groups a number of 

solutions by these features. If a student sometimes uses a buggy rule, then 

there will be a cluster of responses that can be traced back to that rule. The 

advantage of this statistical approach is that it is insensitive to 

nondeterministic bugs. 

Relationship of Proposed to Existing Research  

The strongest connection between the two are the concepts of cognitive 

plausibility. These limits are used in the justification for limitation on 

search and induction in VanLehn's and Ohlsson and Langley's work. On the other 

hand, subtraction bugs seem to be limited to subtraction. Repair Theory [Brown 

and VanLehn 1980] describes how a buggy procedure might be modified to run when 

it does not quite fit the problem. It is not clear what there is to be 

repaired when the novice is forming a mental model. There may be an 

opportunity for repairs when the user recalls how the interface works. If the 

recall provides only a partial answer, repairs may be made to fill in the 

unknown. If the repairs are similar to Repair Theory, then it may be that the 
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mental model has a knowledge representation like a procedure. If the repairs 

are different, then there is evidence for a separate representation for mental 

models. 

The weakest connection between the proposed and existing research has to 

do with the problem domain. The following table summarizes the differences 

between subtraction and human-computer interaction. 

Attribute 

 

Subtraction 

 

Human-Computer Interaction 

Previous research 

Problem 
characteristics 

Much-bug libraries 

Highly positional 
Small number of inputs 
One correct solution 

method 
No feedback on errors 
Solution unknown to 

student 

Very little-exploratory 
research-problem space 
uncertain. 

Somewhat positional 
Large number of inputs 
Several solution methods 

Partial feedback on errors 
Text solution known to user 

User 
	

Problems disappear 
	Problems remain 

with maturation 

Memory 
	 Use of memory is 
	Identification of memory 

closely related to 	use is more removed from 
the problem 	 problem and more difficult 

Data 
	 Temporally sparse 	Temporally dense 

Finally, there is a small but important difference in the research 

question. The existing research is concerned with bugs in a procedure. The 

proposed research is concerned with novice understanding of the underlying 

model. If the proposed research were to be done on subtraction, the question 

would be whether the novice understood the positional number system. 
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CONCLUSION 

The proposed research has three noteworthy features. First, it 

investigates human interaction with a complex interface, an area that is 

generally recognized to be of considerable importance. Second, it uses an 

objective methodology — inductive rule inference — to study both expert and 

novice behavior. Third, the models built a cognitively plausible, not just ad 

hoc mechanisms for data explanation. 

The plan is to use a 36 month period as shown below: 

months 	 description  
6-9 	 modifications to INDUCE 
12 	 model of an expert 
12-15 	 model of a novice 

The estimated annual budget for this project is $110,000. 
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APPENDIX A 

A THEORETICAL INVESTIGATION INTO RULE IDENTIFICATION  

To study the problem of rule identification, a theoretical investigation 

is proposed, which is summarized in Figure 1. A simple version of the process 

is described here. It begins with a known set of rules. Input data ' (stimuli) 

are then generated, and the rules are executed on the data to produce output 

(responses). A few of these stimuli-response pairs are randomly chosen to be 

errors; their responses are permuted. This noisy data is then given to a 

rule induction program, which attempts to generate rules from data. Note that 

this program has access only to the stimulus-response pairs, not to the 

original rules. The output of the induction program is a set of estimated 

rules. The original and estimated rules are then compared. Ideally, the two 

sets of rules should be identical. 

Table 1 lists a number of factors that would seem to affect rule 

identification. For example, the amount of data has an effect on all inference 

procedures. For this particular problem, the ratio of the number of data to 

the number of rules may be more useful. Another example is the complexity of 

the rules, both in their specificity and in their use of short-term memory. 

Obviously, any rule that depends on short-term memory (a hidden mechanism) is 

inherently more difficult to identify. 

In principle, it might be possible to prove theorems on the effects on 

identification by various factors shown in Table 1. In practice, these proofs 

seem to be very difficult. Therefore, simulation will be used to examine 

1 Throughout this prospectus the data are assumed to come from a human who is 
operating (or repairing) a complex system (e.g., a computer, a communication 
system, a malfunctioning engine). The stimuli are the variables that are 
perceivable on the human-machine interface. The responses are the actions or 
commands issued by the human. 
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Figure 1. Diagram of the rule identification problem 
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Table 1. Factors that potentially affect rule identification. 

Data 

1. The amount of data. 

2. The distribution of data in the input space. If the input is viewed 

as occurring in a multi-dimensional space, the degree to which the 

space is covered uniformly (or alternatively clustered in some areas) 

would seem to affect it. 

3. Correlation in the data. If two input variables are correlated, then 

there naturally should be difficulty deciding which one a rule should 

use. 

Noise 

1. The level of noise in the data. 

2. The structure of noise. Errors could occur for multiple reasons: 

a. random 

b. systematic - an incorrect rule is chosen for execution 

1. cue missed (attention failed) 

2. cue change missed (change expectation failed) 

3. rule preconditions nearly match 

4. rule had previously been chosen and had retained some 

activity 

Rules 

1. The number of rules. 

2. The complexity of rules. The number of variables and the number of 

clauses. 

3. The number of times a rule fires. A rule with very specific 

preconditions may be difficult to identify, especially if the noise 

were relatively strong. 

4. The use of memory. 

17 
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effects of these factors. The effects of the factors would be described in 

terms of effects on confidence intervals. 

Confidence intervals require a measure of distance between two rules. A 

distance may be calculated as follows. Two rules may be compared if and only 

if their right hand sides (i.e., the actions) are equal; otherwise, the rules 

are incomparable. The distance between two rules is then the difference 

between the two boolean functions in their left hand sides. Each of these two 

functions can be expressed as a set of minterms according to the laws of 

boolean algebra. The absolute distance between these two sets is the number of 

minterms that they do not have in common. The relative distance is the 

absolute distance divided by the total number of terms. 

The distance between two sets of rules would be considered to be the sum 

of the distances between individual rules that are paired under some between-

set matching. If it is not obvious how to match the rules, then the minimal 

distance could be defined as the minimum across all possible matchings. 

Important Theoretical Issues Related to this Study  

There are several important theoretical issues that might be resolved by 

the methodology to be developed. First, suppose a rule-based model can be made 

to match much of the action-by-action data of a human, who is assumed to be 

following a set of rules. Does a high degree of action-by-action matching 

imply the model's rules are equal to the human's? The simulation evaluation 

would tell us the conditions under which this is true. 

The second question is whether rule-based models are appropriate models of 

human problem solving. This issue occasionally receives intense debate. If a 

rule inferencer which produces optimum rule sets is not too successful at 

matching behavior, the appropriateness of this type of model would be in 
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question. Currently, we do not know the answer to this because the degree of 

match can be controlled by the investigator's willingness to add additional 

rules to the model. Adding rules will improve the degree of match but brings 

the danger of an overfit model [Lewis and Hammer 1985]. 

The final question involves inference of a model of human error. Suppose 

that the human's rules are complete and correct. A human error, then, could be 

regarded as a failure in the control mechanism (or conflict resolution) that 

selects a rule for execution. Many mechanisms have been suggested (see [Norman 

1981,1983] for examples). It would be interesting to attempt to distinguish 

inductively the various error mechanisms that were operating on a known set of 

rules. This is inference of the control mechanism which presumably could be 

approached in the same manner as inference of rules. 
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APPENDIX B 

RELATED RESEARCH 

Described below are two areas of research that are funded by NASA-Ames 

Research Center. Dr. Everett Palmer is the grant monitor. Both of these are 

supervised by Dr. Hammer. There is, of course, other research in the Center. 

Aiding the Operator During Novel Fault Diagnosis  

Human operators are often present in complex systems to diagnose novel 

failures. Unfortunately, specific training and written procedures are 

impossible for a novel failure because it cannot be foreseen. The research 

problem is to design a computer aid to assist the operator in diagnosing the 

failure [Yoon and Hammer 1985]. 

The aid contains two components: a qualitative model and a decision-

making bias recognizes. The qualitative model has a component level 

representation of the device. This representation describes both the correct 

mode of operation as well as several known incorrect modes of operation. The 

operator's task is to determine the mode of operation of each component in the 

device. This assignment of modes must both explain the failure symptoms and be 

consistent. A consistent assignment obeys every constraint that a component 

imposes on its neighbors. To a certain extent, the qualitative model is able 

to solve this mode assignment problem, although the computation is 

combinatorially explosive. Note that if a component fails in a mode not 

described by the qualitative model, the operator will be able to extend the 

model by adding a new description. 

The decision making bias recognizers observe the operator's actions on the 

interface. If a bias is detected (e.g., anchoring on an initial hypothesized 

failure), the operator is alerted or warned about the problem. 

The evaluation plan is to build a model of the Orbital Refueling System, a 
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shuttle payload for refueling orbiting satellites. This system is larger and 

more complex than systems described by existing qualitative models. 

Engineering students will then diagnose failures both with and without the 

aid. 

Using F=ma to Predict Aircraft Manuevering Errors  

One approach to building an error monitoring system is to code an expert 

system to watch for out-of-tolerance situations. The approach taken here is 

different. To predict manuevering, deep knowledge is used. This knowledge is 

the aerodynamic equations of motion (represented symbolically), which represent 

the forces acting on the aircraft. The problem that is repetitively solved is 

to determine if a constraint will be violated in the near future by a 

particular control action the pilot might take. If not, other constraints and 

other controls are considered. 

If a problem could occur at a particular time, then this knowledge 

represents a plan for avoiding constraint violation. In particular, this plan 

solves a very sticky problem of when automation should take control from the 

pilot. As time begins to run out, the pilot is warned about constraint 

violation. At the last possible instant, automation takes over if the pilot 

has not already solved the problem. 

This approach using deep knowledge would seem to be more generable, 

reliable, and verifiable than an ad hoc expert system. 
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SIGNIFICANCE TESTING OF THE KEYSTROKE—LEVEL MODEL 
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ABSTRACT 

The Keystroke—Level Model [Card et al., 1980b] predicts the time for an 

expert user to complete a task using an interactive computer system. To use 

the model, the task is expressed as a sequence of subtasks such as keystrokes, 

mental delays, mouse pointing. The predicted task execution time is the sum 

of the subtask times. 

While the overall model fits the data well, the contributions of the 

various subtasks to the model have not been tested for significance. In this 

article, we show how to do this as well as test the significance of the rules 

for placing mental delays. We also examine the data of Allen and Scerbo 

[1983], who among others found that the Keystroke—Level Model under—predicts 

task times. 
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INTRODUCTION 

The use of linear models to predict task time for human-computer interac-

tion is discussed here. In the first part, the Keystroke-Level Model [Card et 

al., 1980b] is presented and reviewed. Its components are then tested using 

linear regression. The results show, first, that it is simple to build and 

test these models. Second, simplifications and alternate interpretations of 

the Keystroke-Level Model are discussed. The second part of the paper exam-

ines the data of Allen and Scerbo [1983]. They as well as Roberts and Moran 

[1983] and Gould and Alfaro [1984] found the model under-predicted task times. 

A linear regression model is used to examine their data. Regression will 

allow us to determine the maximum to which a given linear model will fit the 

data. 

LITERATURE REVIEW 

The Keystroke-Level Model predicts the time for an expert to complete a 

routine task using an interactive computer system. To predict the time, the 

system designer must express the task as a sequence of elementary operators. 

The total execution time is 

T
k
*N

k 
+ 
Tp*Np 

+ 
Th*Nh + (T

Nd
*Nd + TLd*Ld)  + Tm  *N m  + Tr 

where the symbols are defined in Table 1. The N's for overt actions come from 

counting the number of operators necessary to do the task in an optimal 

manner. The T's for these actions were estimated from from other sources of 

data -- typing tests, pilot experiments, etc. For the mental operator, Nm  is 

estimated by applying a set of five rules (shown below). T
m was estimated by 

regression. The model was able to explain 95% of the variance in average task 

times. From these results, Card et al. argue that the Keystroke-Level Model 
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is suitable for use in system design. 

Tests  of the Kevatroke-Level Model 

Roberts and Moran [1983] tested a set of benchmarks for evaluating edi-

tors. One of their performance measures was the time for an expert to com-

plete a sequence of editing tasks. On the eight different editors tested, 

they found the Keystroke-Level Model to under-predict consistently the average 

time. The under-prediction, they claim, was from the subjects' using longer, 

more conservative methods than those of the model. Only relative differences 

in model predictions of approximately 25% or more were reliable predictors of 

real differences. 

Allen and Scerbo [1983] repeated the above benchmark on the ED text edi-

tor. When using the optimal methods assumed by the Keystroke-Level Model, the 

prediction was 61% of the actual time. When subjects' actual methods were 

used, the predictions increased to 77% of the actual time. Based on these 

observations, they argue first that methods need to be predicted because of 

the improvement in accuracy. Second, they argue that more accurate parameter 

values alone will not improve accuracy. Instead, a more explicitly cognitive 

model is needed to predict the variety of cognitive delays that occur. 

Gould and Alfaro [1984] conducted an experiment on text editing using a 

display editor, a simulated handwriting recognition system, and a simulated 

voice recognition system. They noted that the Keystroke-Level Model predic-

tions were 33% to 50% of the time required for editing. They attribute the 

under-prediction to a difference in experimental conditions. For example, 

Card et al. conducted their experiments while placing a heavy emphasis on 

speed. The other studies reported above were conducted under more naturalis- 
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tic settings. 

STUDY ONE 

Card et al. used regression to estimate the value of T
m. Because the 

model is a linear combination of terms, linear regression can be used to esti-

mate simultaneously all the T's and test the significance of each term. 

Before explaining these results, a brief review of regression is given. 

Regression  

Regression is a method for building models from data. For example, sup-

pose a model is desired of the following form: 

Tout = T0  + T1*N1 + T2*N 2 + ... + Tn*Nn 

Tout istheoutput(responsOmultheN.
1  are inputs (regressors), all of which 

are given to the regression program. The program will estimate the T i 's that 

cause the model to best fit the data. 	Furthermore, the regression program 

will provide the significance of each T i , the probability that the T i  is dif- 

ferent from zero. If it is not significant, then the corresponding term T.*N. 
1 1 

can be dropped from the model. (The remaining coefficients must then be rees-

timated to make the new model fit the data). This is justified because an 

insignificant term does not contribute to the predictive or descriptive power 

of the model. 

The usual performance measures for a regression model are the coefficient 

. of determination R
2 
and the error mean square MSE. R2 is usually described as 

the fraction of variance explained. It is the amount of squared deviation of 

the response that can be attributed to variation in the regressors. All other 

things constant, a higher R
2 
is better. MS

E is a measure of the squared dis- 
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tance between the model's predicted response and the observed response. 

Before accepting a regression model, diagnostic tests should be performed 

to insure that it is not unduly influenced by a few data. The following were 

performed. The first test was for an outlier in the regressor space. Any 

datum that was an outlier (more than three standard deviations out) in the 

Mahalanobis distribution was removed. The second test was for data that 

exerted an undue influence on the coefficients. A datum with a Cook's dis-

tance > 1 was removed. In addition, diagnostic plots of residuals were exam-

ined. 

Advantages  and Disadvantages  of RegreAaiqn 

Most of the advantages have already been mentioned: significance testing 

of terms, alternate model examination, tests for fit and outliers. A major 

advantage of regression is that it gives a lower bound on the model error, 

MSE . 	This is because the coefficients are chosen to minimize the error 

between the predicted and actual response. Any other set of coefficients 

(say, one that makes more physical sense or is closer to a priori estimates of 

the coefficients) will have a larger error. Note that regression eliminates 

bias. 

Both bias and error are important in the Keystroke-Level Model. 	Regres- 

sion can be used only to study the latter. The importance of error from a 

practical standpoint can be seen in the following example. We would be 

pleased with a model that had estimates one-half of actual and a relative 

error (after rescaling) of 1%. A model with an underestimate of 1% and a 

relative error of 50% would be far less satisfactory. 
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The disadvantages of regression are potential traps that can befall the 

analyst who does not conduct tests of the model. The first is the danger of 

an overfit model. The coefficients are determined from the data, which may 

cause the model to look better than it is. This difficulty may be overcome by 

using many more data than free variables (regressors). The second danger is 

that the estimated coefficients may not be close to our a priori estimates of 

them. For example, many of these estimates of T k  in the results below are 

larger than the measured typing rate.* There are several possible explanations 

for this. The first is that the difference is due to a mild form of overfit-

ting. This in particular can be misleading, because the regression model will 

not predict new observations any better than a model that had not been over-

fit. A second explanation might be that the regression estimate is better. 

It might seem reasonable that the typing rate during editing is slower than 

that of a typing test. 

A third danger is that the regression model may be based on correlation, 

not causality. 	For example, Kendall and Yule [1950] observed a strong rela- 

tionship (R
2 
= .98) between the number of mental defectives per 10,000 popula-

tion and the number of radio receiver licenses issued in the U.K. for the 

years 1924-1937. This relationship is nonsensical. What is really happening 

is that detection of mental competency and the cost of electronics are chang-

ing with time. The danger of correlation is avoided by using regressors that 

are certainly direct influences on the response. 

A final danger is that the regression model may be controlled by only a 

few of the many data. An example of this would be an outlier in the regressor 

*Rather than looking at the point estimate of the coefficient, one might 
examine some confidence interval about the estimate to see if it contains the 
a priori value. 
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space. It would inflate R 2
, thus making the model look better than it is. 

Data with undue influence were removed as described earlier by examining 

Mahalanobis' and Cook's distances. 

Regression Testing  g rhq 0;iginal Keystroke-Level  Model 

The original Keystroke-Level Model was tested with linear regression 

using the original 32 data from Table 9 of [Card et al., 1980b, p404]. The 32 

tasks are four editing tasks, each done with three different text editors, 

five graphics editing tasks, each done with three different graphics editors, 

and five executive tasks, each done with a different executive program. For 

each task, the data are the observed task time (response) and the regressors 

the time for K, P, H, M, D, and R. It should be noted that the observed task 

time is the average of between 9 and 38 observations from a number of sub-

jects. There are almost 900 observations behind the 32 task times. 

In addition to testing the basic model, the seven different programs were 

entered as indicator variable regressors. There were three indicator vari-

ables for the three text editors, three for the three graphics editors, and 

one variable for the collection of executive programs. The indicator variable 

can show if the model is sensitive to the interactive system used. 

The number of deleted M's were also entered into the regression. The 

Keystroke-Level Model has five rules, based on assumed user chunking behavior, 

which determine where M's should appear in the model. The rules are as fol-

lows. 

0. Insert an M before every K that is not part of an argument string. 
Insert an M before every P that selects a command. 

An indicator variable is a regressor that can take a value of either zero 
or one. 
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1. If an operator following an M is fully anticipated in the operator 
preceding the M, delete the M. 

2. If a string of MK's belong to a cognitive unit (e.g., a command 
name), delete all M's but the first. 

3. If a K is a redundant terminator (e.g., the terminator of a command 
immediately following the terminator of its argument), delete the M 
before the K. 

4. If a K terminates a constant string (e.g., a command name), then 
delete the M before the K. Keep the M before a variable string (e.g., 
an argument string). 

Rule 0 was applied to determine the initial set of M operators. 	(The tasks 

are described in [Card et al., 1983].) Rules 1 through 4 were then applied to 

each task and the number of M operators deleted by each rule for each task was 

tabulated. The following expression is being added to the model for testing 

T *N + T *N + T *N + T *N m1 m1 
	m2 m2 	

m3  m3 	
m4 m4 

Nm. is the number of M operators deleted by rule i. Tm. is the time for an M 
1 	 1 

operator deleted by rule i. If the model is correct, the M 1  through M4  terms 

will not be statistically significant. 

Because of the physical interpretation of the operators, a problem con-

taining zero K, P, H, D, M, and R should take zero time to execute. Hence, 

the intercept was forced to•be zero. It should be noted that an intercept 

might be a suitable interpretation of average acquisition time, if that time 

had been included in the response. This interpretation depends on the assump-

tion that the intercept is a constant independent of problem size. It should 

also be noted that allowing an intercept would not have substantially changed 
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the results reported here. 

Model Criteria 

The selection of the "best" regression model is partially a subjective 

matter and also dependent on the future use of the model [Montgomery and Peck, 

1982] [Draper and Smith, 1981]. The potential uses of a model are data 

description, prediction, control, and parameter estimation. Since prediction 

is tne purpose of the Keystroke—Level Model, the following criteria were used 

to select the best model. 

1. Each term in the model must be statistically significant. 

2. The MSE should be minimized. 

Results 

The BMDP9R statistical program, all possible subsets regression, was run 

using the terms for K, P, H, D, M, R, and the seven indicator terms. (The 

deleted mental operator analysis appears later.) Some of the better models are 

shown in Table 2. All models are fit to the same data. Equation four contains 

the same terms as the original Keystroke—Level Model, though all coefficients 

were determined by regreSsion. Some of these models explain more variance 

than the original model; none of them is much better than another. 

The regression results can be interpreted as follows. 	First, the H 

operator, part of the original model, does not account for any variance. This 

is easily explained in that an H nearly always accompanies a P or a D. Thus, 

once P and D are in the model, the addition of H explains nothing. Second, 

the Executive term, as originally suggested by Card et al., is significant; 

Executive tasks take about 5 seconds less than would otherwise be predicted. 
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None of the editor indicator terms is significant. 	This suggests that the 

moael predicts well for editors, and that new values for T
m 

and T
k are needed 

when Executive tasks are modeled. 

The M operator is significant in the full model. There is a practical 

problem in that the unique variance explained by any of the operators is low 

when other operators are in the model (see Table 3). Since M does not explain 

much variance, it could be dropped from model 2 (giving model 5). There is a 

theoretical consideration that allows weakly significant terms to be dropped 

from a regression model, which was first observed by Box and Wetz [1973] (see 

also [Suich and Derringer, 1977]). They observed that statistical signifi-

cance was insufficient for prediction. To be useful, the calculated F—ratio 

for the regression needs to exceed the critical (p=.05) value by a multiple of 

4 or 5 at the least. Ellerton [1978] has observed that the same is true of 

partial F—tests (such as those on a single coefficient). This explains why 

dropping M would not affect prediction accuracy. 

If the Executive task data is removed and the regression repeated, M may 

also be dropped for this reason, as its F(1,22)=9.18 is less than four times 

the critical value, 4.30. This practice may be useful with M, since it is 

much more difficult to count the number of M's in a task. This is primarily 

due to the need to consider the rules for placing M's. This is not necessary 

with physically observable actions. It should also be noted that the contri-

bution of the D operator is also weakly significant. This may be due to it 
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being used only in 3 of the 32 tasks. 

Luling the Deletion  gale! 

As described earlier, the number of deleted M operators was tabulated and 

entered as terms. Due to the high correlation between M1 through M4 and the 

original terms, a two step procedure was used. First, all significant terms 

(i.e., K, P, D, R, M, and Executive) were forced into the model. Then, M 1 

 through M4  were tested to see if any of them explained additional significant 

variance. 

Nuir"e1143 werenotsignificant;theirestimatesz_,Tm  , and Tm 
3 ml 	2 

were very close to zero. Only M4  was significant (Tm  = 1.87, F=7.62). This 
4 

would suggest that rule four deletes an M that might better be left in the 

model. This tends to confirm the observation that users sometimes pause after 

committing themselves to a course of action [Allen and Scerbo, 1983]. An 

alternative explanation is that M 4's are correlated with something else that 

is increasing the execution time. 

This result is related to an interesting, more general problem known as 

the statistical significance of rule-based models. A rule-based model is a 

set of situation-action pairs that can be used to model human behavior, typi-

cally problem solving [Card et al., 1980a] [Rouse et al., 1980] [Hunt and 

Rouse, 1984] [Newell and Simon, 1972] [Anderson, 1983]. An open question is 

how to test the statistical significance of these rules. Testing should be 

done because there is a danger of an overfit model. For example, a rule-based 

model with as many rules as data points is clearly overfit. For some signifi- 



cance testing solutions to this problem, see [Lewis and Hammer, 1985]. 

Summary 

A regression model fit to the original data demonstrated the following. 

For the original Keystroke-Level Model, the operators K, P, D, M, and R are 

significant. The H operator is not. Executive systems were significantly 

overestimated, but there were no differences between editors. The M and D 

operators, while significant, do not add to the predictive power of the model. 

Of the four rules for deleting M operators, three appear to be correct but one 

appears to delete a delay that might exist. 
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STUDY TWO 

The second part of this article uses the data from [Allen and Scerbo, 

1983] to test some further hypotheses. The data came from an experiment that 

they conducted. Six users experienced with the ED text editor did 62 tasks 

from Roberts' benchmark [Roberts 1979]. Each task consisted of two subtasks: 

search and edit. During the search subtask, the editor was positioned to the 

line that was to be changed. During the edit subtask, the line was changed. 

Sometimes, a search did not occur because the editor was already positioned at 

or near the next change. For each subtask, they predicted the number of M and 

K operators that should occur. After collecting the data, they also identi-

fied the actual number of M and K operators used by each subject for each sub-

task. 

The data used in this article were as follows. The search and edit sub-

task times were combined. The overall, error-free time, less the acquisition 

time, was used as the dependent variable. For some data sets, the error time 

was included in the response. The independent variables, or regressors, were 

either the predicted (rule-based) number of M and K or the observed (method-

restricted) number of M and K. 

The questions studied are presented on separate sections below. 	In 

brief, these questions are as follows. The first is the degree to which a 

linear model will fit this new set of data. The second question is whether an 

improved fit is obtained by using the method-restricted rather than rule-based 

number of operators. The third question is the effects on fit of including 

tasks with errors. The fourth question is on the fit of a linear model on 
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individual performance in comparison to group performance. 

Lineaz Model  Ell 

The first question examined was the relative error in a linear model fit 

to these data. As noted earlier, the Keystroke-Level Model has under-

predicted times on all uses of the model except on the data from which it was 

created. If regression is used to re-estimate all of the coefficients, this 

bias will disappear. What will remain, however, is the MS E  error term. 	This 

term, when divided by the average task time, can be regarded as a relative 

error. 

The regression model is shown on line 1 of Table 4. The relative error 

is 38%, which is larger than the 22% observed by Card et al. It is not possi-

ble to compare these two relative errors with each other or with a regression 

on predicted and observed times from Roberts and Moran [1983]. The reasons 

for this are as follows. Card et al. had up to ten replications of a given 

task for each of four subjects. Up to forty data were averaged and then used 

for model building. Averaging reduces the noise and between-subject variance 

and hence the relative error. Allen and Scerbo had six subjects perform each 

task once and could only average across subjects. Roberts and Moran's rela-

tive error is not comparable because it is based on a long sequence of tasks, 

not on single tasks. The effects of averaging data are discussed in a later 

section. 

A related question is the reasonableness of the estimated values for T
m 

and Tk . 	While both appear reasonable, the value for T k  of .26 is different 

from the typing test keying rate of .19 seconds/keystroke. The actual value 
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is well withing a 95% confidence interval of the estimated value (.26 t .18). 

Linear Model  Eit with Observed  gngalat gagata 

The second question is what effect using method-restricted predictions 

has on the linear model fit. The results above are from rule-based predic-

tions, which are predictions of the minimum M and K needed to do a task. It 

is also possible to make predictions from what a subject actually did 

(method-restricted predictions). Thus, it is an important question as to how 

much improvement there is with method-restricted predictions. Linear models 

are less attractive if method-restricted predictions are substantially better. 

To test this, the observed, or method-restricted number of M and K were 

regressed against the time. The results are shown in line 3 of Table 4. 

There is no improvement. The explanation for this is simple. The observed M 

and K are strongly correlated with the predicted (see Table 4, lines 4 and 5). 

Lineal Madel,  Eit with Errgr, Time  IngluAgA 

Question 3 was on the effects of including error time in the time to be 

predicted. This is important because errors do occur, and it might be desir-

able to compensate for them in overall predictions. On the other hand, if 

including errors causes large decreases in accuracy, removing errors may be 

worth the effort. Line 6 in Table 4 shows that including errors has only a 

moaest impact on the relative error. 

Model  Eig 	Individual users 

If a linear model approach is valid, it should be as suitable a model of 

individuals as it is of data averaged across individuals. To test this, six 

models were constructed of the six individual users. The regressors used were 
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the observed number of keystrokes and mental operators. Only tasks with no 

error time were used. The results were shown in Table 5. As can be seen, the 

linear model does not fit individuals as well as it does the average (Table 4, 

line 3). There are two reasons why averaged data is fit better than indivi-

dual data. The first is that individual differences are removed. If this 

were the dominant phenomenon, it could be claimed that a linear model 

describes task aspects but not individual aspects of performance. The second 

phenomenon that occurs in averaged data is the reduction in random noise. 

Since there is no replication of tasks by the same subject in Allen and 

Scerbo's data, it is not possible to determine which of these phenomena dom-

inates. 

To investigate the sources of variance more fully, the individual perfor-

mance data of the three text editors POET, SOS, and BRAVO on four tasks each 

was examined. These data are the individual replications before averaging 

from the experiment of Card et al. A random effects one-way ANOVA was used to 

compare between- and within-subjects variance. Within-subjects variance 

corresponds to noise (assuming there is no learning). Between-subjects 

difference corresponds to individual differences. The results are shown in 

Table 6. Nine of the twelve between-subjects differences are significant. 

Typing speed differences were not taken into account in this analysis, and 

they may be an important factor, especially in longer problems like T4. These 

results suggest that the Keystroke-Level Model may take advantage of the 
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averaging of both subject differences and noise. 

CONCLUSION 

Multiple linear regression has been used to evaluate the significance and 

power of individual terms of the Keystroke-Level Model. It would also seem 

appropriate to have used this method to develop the original model on the ori- 

ginal, unaveraged data. 	Though the same model would result, R 2 would have 

been lower due to the presence of noise variance. It would also have been 

possible to test subject factors to account for individual differences. 

Replicated data also suggest a lack of fit test. This test compares the vari-

ance of the average to predicted value against the variance due to replication 

(noise and individual differences). The lack of fit test should not be signi-

ficant for the regression model to be accepted. For the original Keystroke-

Level Model, the lack of fit is significant (F(31,854)=3.2, p<.001). Removing 

the Executive tasks does not change this (F(26,700)=2.7, p<.001). When the 

lack of fit test is significant, the conclusion is that one or more terms are 

missing from the model. 

Also demonstrated was the ability to build easily models of phenomena not 

previously examined. For example, including error time and tasks with non-

prescribed methods was relatively easy for the data of Allen and Scerbo. It 

would also be possible to model data without a priori estimates of coeffi-

cients. Both of these practices could save analysts considerable time in 

model building. It would also be possible to investigate other kinds of 

delays, such as time delays before or after a command, delimiter, or keys-

troke, without making a detailed examination of the data. 
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Further improvement in the Keystroke-Level Model would seem to require a 

more exact way of predicting how the user deviates from the optimal sequence 

(would remove under-prediction) or predictions of mental operations that are 

not highly correlated with overt physical actions (would reduce relative error 

under a regression testing procedure). Both of these improvements would seem 

to be difficult undertakings. It would be relatively easy to describe the 

suboptimalities, and relatively difficult to predict when they do and do not 

occur. 

There is an alternative design approach that uses a description of a 

suboptimality. This approach is to design the suboptimality out of the sys-

tem. By this it is meant that the interface does not require the user to take 

an action that is often done suboptimally. Consider the following extended 

example. Suppose the user wants to position the editor down to a line in the 

file. This line may or may not be on the display, but assume it is 25 lines 

away. The user does not know this distance exactly and chooses to have the 

next 20 lines displayed. This request is then repeated. Time is wasted while 

15 lines are needlessly displayed. 

It would seem to be difficult to predict the number of lines requested 

(e.g., 20), unless the user's habits dictated a request for 20 lines or the 

available command always displayed 20. If neither of these were true, a more 

precise model would require as a component a model of the user's understanding 

of the text and the distances within it. 

To design a command to support this kind of positioning is difficult. 

Any fixed decision (e.g., offer a single keystroke command to display 20 

lines) will not work well in every situation. Any command requiring as an 

argument the number of lines to display will be much slower to type. Neither 
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eliminates the user's suboptimality of not knowing the precise distance to the 

desired line. 

To design the user's suboptimality out of the system is to offer commands 

that allow the user to edit optimally without perfect knowledge of the text. 

For this example, the command could simply start the display scrolling down-

ward. When the editor reached the desired spot, the user could strike a key 

to stop it. Under this arrangement, single keystroke commands could be used, 

large amounts of excess text need not be displayed (which would cause the user 

to wait), the display runs at the maximum viewable speed, difficult design 

decisions (which are not globally optimum anyway) are avoided, and the user 

does not need to know how far away the desired line is. 

While this example makes use of conventional terminal displays rather 

than bit-mapped workstation displays, the same general approach applies to 

much of human-computer interaction. For further information on how this 

approach was applied throughout an editor design, see [Hammer, 1984]. 
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Symbol Meaning 

Tk 	time per keystroke 

N
k 	number of keystrokes 

Th 	time for moving hand to mouse from keyboard or vice versa 

N
h 	number of homes 

time for pointing with a mouse 

N
P 

number of pointings 

N
d 	

number of lines drawn 

Ld 	
length of lines drawn 

T
N, 	constant time to draw a line 

T
L  u 
	time to draw a line that is proportional to length „ 

T
m
u 	time for a mental delay 

N
m 	

number of mental delays 

T
r 	response time for computer 

Table 1. Symbols for the Keystroke-Level Model. 
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Model K P H D R M Exec. MSE R
2 

1 1.52 .92 1.25 .87 .92 .68 -4.85 2.20 .979 
32.49 50.84 .85 14.44 34.22 10.43 7.29 

2 1.54 .94 .85 .92 .67 -4.97 2.20 .979 
33.64 55.35 14.06 34.69 10.37 7.73 

3 1.13 .95 .92 .69 .95 2.45 .972 
20.98 46.92 13.40 21.81 21.25 

4 1.12 .94 1.50 .94 .69 .95 2.45 .973 
20.61 42.90 1.00 13.84 22.00 21.25 

5 2.33 1.00 .63 .87 -7.70 2.58 .970 
437.23 49.84 6.35 23.23 17.72 

6 2.33 1.13 .85 -7.55 2.78 .963 
367.87 59.44 18.58 14.36 

Table 2. Models, term significance, and performance measures. 

The table is interpreted as follows. Each row is 
a model as determined by BMDP9R. If an entry 
contains numbers, then the operator at the top of 
the column is a term in the model. For example, 
in model two, K, P, D, R, M, and Executive are in 
the model but H is not. The two numbers are the 
coefficient (top) and the F-test value (bottom). 
The F value becomes significant (p=.05) at about 
F=4. The coefficient is expressed relative to 
the time used in the original model. For exam-
ple, if the coefficient of P is .92, then the 
time for a P is .92 times the time for a P in the 
original model, which was 1.1 seconds. Also 
shown in the rightmost two columns are the error 

mean square and R
2

. 
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Contribution to 

Operator 	 R
2 

K .028 
P .046 
D .012 
R 	 .029 
M 	 .009 

Executive 	.006 

Table 3. Unique contribution to R 2 
by terms in model two. 
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No. Model R
2 

MS
E 

Average 

Task 

Relative 

Error Units 

1 2.10Mr+.26Kr .91 6.24 16.6 38% seconds 
2 Keystroke—Level .97 2.44 11.3 22% seconds 
3 1.30Mm+.26Km .91 6.21 16.6 37% seconds 
4 Km=1.31Kr .95 6.26 25.2 25% keystrokes 
5 Mm=1.21Mr .98 1.12 6.9 16% mental operators 
6 2.92Mr+.24Kr .88 8.98 20.9 43% seconds 

Table 4. Models of Allen and Scerbo's data. 

Km (Mm) denotes the method—restricted number of 
keystrokes (mental operators). Kr (Mr) denotes 
the rule—based number of keystrokes (mental 
operators). 
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User Model R
2 

MSE 

Average 
Time 

Relative 
Error 

1 1.111+.08g .76 5.0 7.7 65% 
2 2.5M+.13g .81 10.7 19.3 55% 
3 2.4M-.03g .86 7.1 12.7 56% 
4 .88M+.51K .80 8.6 15.2 57% 
5 2.8M-.06g .69 11.8 15.0 79% 
6 .03M+.56K .92 4.4 12.3 36% 

Table 5. Models of Individual Users. 

Underlined terms are not significant. 
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Editor Task F—ratio Significance 

POET Ti F(3,27) 1.85 ns 
T2 F(3,19) 12.56 p<.001 
T3 F(3,21) 20.54 p<.001 
T4 F(3,16) 40.33 p<.001 

SOS Ti F(3,27) 4.12 p<.05 
T2 F(3,28) 5.08 p<.01 
T3 F(3,33) 16.43 p<.001 
T4 F(3,13) 25.44 p<.001 

BRAVO Ti F(3,28) 3.58 p<.05 
T2 F(3,28) 1.64 ns 
T3 F(3,34) 2.08 ns 
T4 F(3,29) 3.94 p<.05 

Table 6. Significance of between— to within—subjects differences. 

27 



SIGNIFICANCE TESTING OF RULES IN RULE-BASED MODELS 

OF HUMAN PROBLEM SOLVING 

C. Michael Lewis 

John M. Hammer 

Center for Man-Machine Systems Research 

Georgia Institute of Technology 

Atlanta, Georgia 30332 

A 



INTRODUCTION 

Many researchers have used rule-based systems to model human problem 

solving [1,3,6,7,11,12]. Typically, the rule-based system has a large 

number of rules, each of which has several free variables that were 

adjusted during the modeling process. For the most part, significance 

testing of these rules has not been much of a consideration. It should 

be. It is certainly possible to describe N data perfectly with N rules 

using a trivial model that simply reproduces the data. While there is no 

evidence that this has happened in any of the research reported to date, 

there is a certain danger of overfitting a rule-based model. 

In this article we present three methods of testing the statistical 

significance of rules and other components of rule -based models. 

Throughout this article we shall assume that the percentage of behavior 

matched (e.g., commands) is the performance measure of interest. Two of 

the testing approaches, however, are not limited to this measure. They 

may be used to study any performance measure, though it may well be 

possible for a rule to produce a statistically significant effect on one 

performance measure but not another. The remainder of this article 

contains a section on notation, three sections on testing by analysis of 

variance, randomization, and contingency tables, respectively, and two 

concluding sections on applicability of the various tests and validity of 

these models. 



NOTATION 

A rule-based system consists of three components. The first is a 

set of rules of the form IF condition THEN action. The meaning of the 

rule is that if condition is true, then action could be taken. For 

example, the following rules describe behavior at a traffic light-

controlled intersection: 

IF In intersection 	 THEN proceed 

IF Yellow and arrival at intersection 

before the light turns red 	THEN proceed 

IF Yellow and arrival at intersection 

after light turns red 	 THEN stop 

IF Green 	 THEN proceed 

IF Red 	 THEN stop 

IF Red and right turn 	 THEN proceed 

Figure 1. Rules for traffic lights. 

If the above model can successfully match human behavior, then the rules 

form a model of the human. Often, the rules are interpreted as a model 

of the human's knowledge. Intuitively, the better the model matches 

human behavior, the better the model, all other things equal. 

The rules can be transformed easily into a computer program as 

follows. First, control statements are added that cause the program to 

examine the rules repeatedly and execute those whose conditions are true. 

Second, in order to compare model and subject actions, an input statement 

is added before the first rule. This statement reads the state vector 



(e.g., the lights, the traffic, short term memory) that was available to 

the human when his or her decision was made. The program looks something 

like this: 

WHILE TRUE DO BEGIN 

READ(STATE); 

IF 	(in intersection) 	 THEN proceed 

ELSEIF (Yellow) AND (predict arrival at 

intersection before light turns red) 	THEN proceed 

ELSEIF (Yellow) AND (predict arrival at 

intersection after light turns red) 	THEN stop 

ELSEIF (Green) 	 THEN proceed 

ELSEIF (Red) AND (right turn) 	 THEN proceed 

ELSEIF (Red) 	 THEN stop 

END; 

Figure 2. Rules in a program. 

The second component of a rule-based system is a conflict resolution 

strategy. It selects the rule to execute when multiple conditions are 

true. In the above example, a rank-order resolution strategy was shown. 

It simply uses the first rule that matches. The ranking of rules can 

then be interpreted as a subject's strategy. Some other conflict 

resolution strategies include random selection, meta-knowledge, and 

backtracking. A random selection strategy simply picks at random one of 

the many matching rules. A meta-knowledge strategy has a higher-level 

rule-based system that chooses which rule to execute. A backtracking 

strategy will, if necessary, try all possible matches. It should also be 



noted that it may be possible to write the rule conditions so that there 

is always exactly one rule that matches. 

The third component of a rule-based system is the input and internal 

variables. The input variables correspond to external data. The 

internal variables correspond to human short-term memory, which may be 

changed by the action part of rules. Both internal and input variables 

are examined by the condition part of rules. 

Evaluation of Models 

When comparing subject and model performance, the model is usually 

run open-loop without any knowledge on subject actions. In other words, 

the model can simply be treated as another subject. When comparing 

subject and model behavior, the model is usually run closed-loop as 

follows. The model has as input the same state vector the subject saw. 

The model chooses an action, and then it is recorded whether the subject 

and model agree. Then, the subject's action is used to control the 

system, and the process repeats. The reason for always following the 

subject's action is as follows. If the subject and model action differed 

and both were used, then the state vectors would be unequal after 

applying these actions. The model and the subject would then be working 

on different problems, and a comparison of their actions would make 

little sense. 

The following sections on testing rule-based models will specify 

ways in which the model will be modified and then run. The typical 

modifications are to delete or modify one or more rules. Running a 

model, perhaps in a modified form, means to compare its overt behavior, 

(e.g., commands) to a subject's and determine the percentage in 

agreement. 



ANALYSIS OF VARIANCE 

The analysis of variance approach is the simplest of the three 

approaches for testing rule significance. To use it, each rule in the 

model is equated with an independent variable. The meaning of the 

variable is that at its high level, the rule is in the model, and at its 

low level, the rule is deleted from the model. The rule-based model is 

then run 2
N times (for each subject), which corresponds to a run with 

each possible subset of rules present. It must make sense for the model 

to do nothing, or else the model must be augmented before testing with a 

special, nondeletable rule that applies when no other rule applies. The 

resulting data can then be analyzed as an N-way factorial. 

To economize on model runs, fractional factorial designs should be 

used. The full factorial design, proposed above, will estimate the 

effects of many high order interactions that cannot occur. In fact, the 

interpretation of an interaction is that the corresponding rules 

interact. An example would be two rules, the first of which stores some 

value in a temporary variable and the second of which uses the temporary 

variable. Such rule interaction is common, but rarely do many rules 

interact. An inspection of the rule-based model will reveal what 

interactions could occur. It should be possible to create experimental 

designs which test only the desired interactions. 

The testing of condition components of rules is also possible. In 

this case the reduction in error attributable to the greater specificity 

provided by the additional condition can be evaluated. Suppose, for 

example, that a significance test of each of the conjunctive conditions 

of a rule is desired. For example, 



IF condition
1 
 AND condition

2 
AND condition

3 
THEN 

Proceeding as before, three independent variables might be equated, one 

with each of the three conditions. A three-way ANOVA could be run to 

test each of the three clauses. It would most likely be necessary to 

estimate the value of the response at the point where all three 

conditions have been deleted from the rule. Obviously, this process 

could be extended to cover all of the conditions for all of the rules in 

the model. 

The testing of groups of rules as a whole is also possible. To do 

this, an independent variable is equated with several rules, not just one 

as was done initially. The experimental interpretation is that the 

entire set of rules is either present or absent from the model during an 

experimental run. This pooling of rules corresponds to a supersaturated 

experimental design, and may be the only economical means of testing 

models with many rules. One logical choice for pooled rules would be 

interacting rules. Another choice would be the modeler's organization of 

rules into groups (e.g., S-rules and T-rules [6]). 

Analysis of variance makes several assumptions, one of which is that 

error residuals are normally distributed. Moderate departures from this 

assumption do not produce large deviations in calculated and actual 

significance levels. If the normality assumption is known or seriously 

thought to be incorrect, an approximate technique [4] may be used. 

Simply, the data are replaced with their ranks, and the remainder of the 

analysis of variance calculations remain unchanged. The significance 

levels produced by this method are reported to be nearly equal on 

normally distributed data to that produced by the standard F-test. The 



rank transformation is more robust with respect to the distribution of 

the data, though it is not a distribution-free test. Finally, the 

hypothesis being tested here is whether the presence of a rule (or some 

other similar entity) explains a significant amount of variance in the 

subjects' performance. This significance is independent of the 

significance of other rules (or other entities) but may be dependent on 

the conflict resolution strategy. It is important to note the hypothesis 

because the next section tests somewhat different ones. 



RANDOMIZATION 

The second approach to testing a rule involves forming a 

randomization distribution by randomly permuting a rule. Suppose a 

particular rule is under test. Its action can be replaced by a random 

action (e.g., a random number generator that chooses commands according 

to a priori frequencies). The model, with a single modified rule, can be 

run many times. Its matching performances can be considered a 

randomization distribution. The model in its unaltered form can then be 

run, and its resulting performance be referred to the randomization 

distribution. If its matching were higher than 95% of the randomly 

generated values, the null hypothesis could be rejected at the 5% level 

(one-sided). The null hypothesis would be that a random action would be 

as suitable as the proposed action in the rule under test. The 

empirically determined significance level is partial in that it is 

potentially dependent on all the other rules being present in the model 

as well as conflict resolution strategy. 

The condition part of a rule can be tested by a very similar method. 

There is a minor difficulty in that a random number generator in the 

condition part of a rule does not appear to make sense. A solution would 

seem to be to create various mutant conditions by randomly selecting 

condition clauses from other rules in the model. The null hypothesis 

being tested here is that random conditions are as suitable as the 

proposed condition in the rule under test. The significance level 

attained is partial just as the one obtained in testing actions. 

An entire rank order conflict resolution strategy may also be tested 

by randomization. Basically, a randomization distribution of 

performances can be obtained by running all possible rank orderings (or a 



Monte Carlo sample) of rules. The performance of the model with the 

original rank ordering can be referred to this distribution as above. 

The significance level obtained is dependent on the rules. 



CONTINGENCY TABLES 

Contingency tables are used to analyze nominal data. If the 

following is a rule-based model: 

IF condition 1 
 THEN action 

IF condition2 THEN action 2 

• 
• 

IF condition THENTHEN action  

then, a contingency table may be set up as follows: 

action
1 

action
2 

 

actions 

 

condition )  

condition 2 

• 

• 

conditions 

NOT (condition, OR...OR 
conditions ) 

• • • 

Figure 3. A contingency table for rules. 

The last row in the table covers the conditions that are not covered by 

any rules. The observed data fill the table in the obvious way: for a 

given state vector and subject action, the unique condition which holds 

is determined, and the cell under the subject's action is incremented. A 

model that matched the data perfectly would have all zero entries off the 

diagonal. 



Certain restrictions must be met to employ contingency tables: 

1. Conditions must be mutually exclusive (2 rules cannot fire at 

the same time) 

2. Actions must be overt 

3. Each action must be unique (2 rules cannot issue the same 

action) 

These restrictions may be met in a variety of ways. Mutual 

exclusivity will be satisfied by any model containing conflict 

resolution, rank-ordering, or disjoint rule provisions. The unique 

action requirement may be accommodated by phrasing composite rules in 

which constituent rules prescribing the same action are joined by 

disjunction. 

The performance of the rules in matching the data can be evaluated 

with a chi-square or similar tests. The hypothesis is tested whether 

conditions and actions are independent, i.e., whether there is a 

significant difference between the proportions given the rules and the 

overall proportions. As a consequence, rules containing infrequently 

used actions receive more latitude using these tests than they do under a 

simple percentage of commands matched measure. 

Testing a set of rules is also possible as follows. The null 

hypothesis is that there is no relationship between the action and the 

conditions aside from the relationship that is already described by the 

existing rules. Consider the test for the rule: 



IF (x 1  = 1 or x
1 
 = 2) and (x

2 
= 1) THEN action 

1 	 1 

Action 1 

 

Actionn  

 

1 

X2 = 

X2 = 

1 

2 

Delete 

2 

X2 = 

X2 = 

1 

2 

Delete 

Figure 4. Table for testing a set of rules. 

Two statistics are computed. The first is a maximum likelihood estimate 

of chi-square, (G
2
) for the complete table. The second is a test of 

quasi-independence [2] for a reduced table in which cells corresponding 

to rule(s) under test are excluded. This corresponds in a table such as 

figure 4 to one cell per row for conditions covered by the rule(s). If 

the original G
2 
 is significant and the quasi-independent one is not, this 

implies that the rules capture the dependency of the actions on the 

conditions. While attractive in directly referencing observables, this 

method requires large samples with replications of observed combinations 

of variables. (Unobserved combinations are treated as structural 

zeros.) 

Other Statistics 

A nonparametric analogue to the coefficient of determination R
2 

is 

T
b 

[8] which may be used to determine the percentage of variance 

explained in the actions by a rule or rule set. 

X1 = 

X 1 = 



E 	E X.
2  
. - -

1 
E 
 2 

X1 
	

ij 	N N. ij 
1 i+ j 	 1  

T b  = 	 1 
N - Ts/  E X. 

= table entry 	j Xij 	 i 
Xi+  = E X . 

J 
X+j 	3 1 

= E X.. 
. 1 

N = total number of observations 

Individual rules, the disjunction of rules issuing a particular action, 

or the complete rule set consolidated into disjunctions by action can be 

evaluated in this way. If uncovered observations are excluded, Tb 
may be 

interpreted as the extent to which actions covered by the rule are 

explained. If all observations are present, a N+lst category should be 

formed following the distribution of the uncovered actions. This T
b 

is 

interpretable as the extent to which rules explain all the actions. 

Values of T
b 
are asymptotically related to x

2 
allowing significance 

testing. 

2 
X(I-1)(J-1) = (N-1)(I-1)T b 

This statistic tests the hypothesis that T b  = 0, corresponding to the 

premise that there is no relation between conditions and the actions 

prescribed by the rule(s). 

A similar statistic, PRE (proportional reduction in error) [2] 

measures the reduction in error achieved by predicting actions based on 

the rules rather than assigning the modal action under all rules. 



PRE - 

E P. 	P im 	+m 
1 

1 - P 
+m 

where 

P
im = 	 j max (Pi .) j  
P+m = mlx (P+  .) 

P
ij 

= N
ij

/ N 

As demonstrated by this potpourri of procedures, a unified technique 

for testing rule significance based on multinomial sampling is yet to be 

developed. PRE answers the pragmatic question of gains in prediction. 

The quasi-independence procedure provides its complement by testing for 

unmodeled consistencies. Rules can be simultaneously tested in a 

contingency table but their contributions to rule set performance will 

remain unknown. T b allows both significance testing and estimation of 

effects but cannot evaluate rule set performance without pooling rules by 

action. 



APPLICABILITY OF VARIOUS TESTING METHODS 

For testing the degree to which a model's behavior matches a 

subject's, all three methods will work. A contingency table is clearly 

the best, however, since it requires the minimum in computation. 

Randomization is clearly the worst technique because of the large amount 

of computation and the partial significance levels it produces. A 

fractional factorial ANOVA is clearly superior to randomization on both 

of these points. ANOVA and randomization can both be used to test rules 

that modify internal, unobservable states. Contingency tables cannot. 

For testing overall performance measures, (e.g., time to solution, 

total errors) only randomization and. ANOVA are suitable, with ANOVA 

preferred. Ordinarily, much more emphasis is placed on behavior than on 

performance, since behavior is much more difficult to model. There are 

situations in which testing hypotheses about both performance and 

behavior is desirable. One might want to show that a certain set of 

rules will affect behavior but not performance. For example, Morris and 

Rouse [101 have observed that theoretical training given process control 

operators often fails to change their performance. It would be 

interesting to test this concept analytically in a rule-based system. 

For example, a group of rules might be identified as the intended 

consequences of theoretical training. The model might be run with and 

without these rules, using ANOVA to evaluate performance measures and 

contingency tables to evaluate behavioral differences. 

The randomization method can be used on two hypotheses. The first, 

and more important, is to test the significance of a rank ordering of 

rules. This would seem to be the only way to test this type of 

resolution strategy. The second use is to test the hypothesis that part 

of a rule performs no better than random. This test would seem to be of 

little use, since ANOVA can test nearly the same hypothesis. 



VALIDITY 

The previous methods are generally devoted to evaluation of rule 

performance and do not address the issue of rule validity. Just as a 

high R
2 does not imply that all terms of its regression equation are 

significant, a high T b  does not vouchsafe for the future predictiveness 

of its rules. This distinction becomes important in the identification 

phase of rule-based modeling. Unlike identification based on parameter 

estimation, the identification of rules requires a search of the space of 

possible rules. An inductive pattern matcher must consider a large 

number of potential rules. In evaluating identification it becomes 

necessary to account for the probability of finding rules of comparable 

quality by chance. To answer this question the structure of the event 

space (observed combinations of condition variables), distribution of 

actions, and extent of search (set of possible rules) must be considered 

simultaneously. 

Eilbert and Christensen [5] refer to this problem as contrivedness, 

...the tendency of a search procedure to uncover apparent patterns where 

none exist." They suggest a randomization test for measuring the extent 

to which a search procedure uncovers contrived rules. The data consist 

of many pairs of state vectors with subject responses. The state vectors 

are left undisturbed, but the responses are randomly permuted. The 

resultant permuted data has reasonable state vectors paired with random 

responses. Contrivedness is the degree to which the search procedure can 

make sense of this random data. When many permuted data sets are 

searched, the search procedure results form a randomization distribution 

against which the results from the original, unpermuted data can be 

referred. While the previously mentioned randomization test will give an 



idea of how opportunistic the search procedure is, it does not say how to 

refine the search procedure so as to avoid contriving rules. 



CONCLUSIONS 

This article has identified several ways of testing a rule-based 

model of human-problem solving. The amount of testing seems to be on a 

par with the size of the model. Left unresolved for the most part was 

the problem of contrivedness of automatic rule identification. It seems 

fitting to close with the description of an interesting and difficult 

question in identification of rules. As stated earlier, many cognitive 

models have been built using rule-based models. Sometimes these models 

are built when the investigator has access to the subject's thinking. 

This is always the case in developing a rule-based expert system. Other 

investigators, particularily those running experiments with humans, may 

have only the data (i.e., commands) to examine. 

An important theoretical question is the limits to identification of 

rules from data that contain response errors. While there has been work 

in machine learning, it does not seem that anyone has examined this 

question [9]. It does seem important, because it bears on our ability to 

construct models. This problem also seems to be very difficult to solve 

formally. Hence, a preliminary investigation could be done via 

simulation, as shown in Figure 5. Basically, the approach is to generate 

some rules and some random stimuli, apply the rules, add noise, and try 

to identify the rules from the noisy data. 

The following would seem to affect identification: 

1. the amount of data and its coverage of the stimuli domain 

2. size and number of rules 

3. the number of times a rule fires 

4. the level of noise 



generate 
rules 

# rules 
size of 
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X = (010000) 
X = (100011) 

XI  & X2  + 1 	X = (110010) generate # data 
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apply rules to 
S giving [S,R] 

[(010000),0] 
[(100011),0] 
[(110010),1] 
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[(010000),1] 
[ (100011),0 ] 
[(110010),1] 

rule induction 
program 

X2 + 1 

compare 
rules 

r, which is the 
error rate 

Figure 5. Block diagram for rule induction. 
An example output from each block is shown. 



It might also be interesting to investigate the addition of oracle 

variables in rule identification. An oracle variable is an extra 

variable (beyond the original stimulus vector) that provides information 

that ordinarily is not available. The first oracle variable might be a 

single bit to tell whether the response was in error. Another set of 

oracle variables would identify which rule fired. Yet another set of 

oracle variables could identify the variables that are part of the rule 

that fired. While these oracle variables may appear to be practically 

giving the solution to the identification program, they do not. These 

variables would be treated the same as any of the real stimulus 

variables. The identification program would have to infer the meaning of 

these variables in order to make use of them. 

While it does appear theoretically interesting to determine how much 

oracle variables can add, there are important practical benefits as well. 

Oracle bits could approximate the hunches of a human investigator. For 

example, the investigator may suspect certain data to be in error, a 

certain rule to have fired, or that only certain variables could be 

influencing the operator's decision (from a verbal protocol). These 

hunches are a second order human-machine system: the investigator's 

attempt to identify (with a program) the rules of the human in the 

first-order human-machine system. 
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CHAPTER I 

INTRODUCTION 

The introduction of the word processor into computing and writing 

environments has changed the way man transposes his thoughts into the 

written text. The "word processor" allows the freedom to write more 

efficiently and to easily rethink and alter the ideas with a visual 

reference (e.g., either with a printed copy or the CRT display). 

The primary environment for this thesis is the text editor. 	In 

this environment, the human frequently desires to change some part of 

the existing text. During this task the text editor becomes an 

indispensable tool, particularly in large files in which the desired 

text is not visible until the editor is positioned close to the text to 

be altered. There are several methods used to locate text in a large 

file (e.g., line-feed methods, screen by screen visual scanning, use of 

search commands). 

Possibly the most efficient method of locating text is by the 

editor search command, or pattern scanning. The subject of this thesis 

is text searching behavior. Most modern editors search text by taking a 

character string, or sequence of letters, numbers, etc., as its 

argument. When invoked, it will position the cursor at the first 

character of the first occurrence of the specified character string in 

1 
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the text file. The first occurrence of the string may not be the 

desired location, resulting in a search failure. The human will then 

have to reissue the command to look for the next occurrence, which can 

be time consuming. The efficient search, therefore, relies on the 

human's knowledge of the text content and searching strategy to quickly 

and accurately locate the text of interest. 

Text searching within a text editor is a small part of document 

preparation. However, modeling of such a process is justified: Typing 

and document preparation comprise several billions of dollars of the 

nations gross national product. By the same token, computer programs 

are written and maintained using the same text editors as those used in 

document preparation. 	Often the maintainer or editor of a large 

production software system is not the original programmer. 	Since the 

editor of a document is typically not the writer, it can be seen how the 

use of text editors can greatly enhance speed and efficiency of 

producing both documents and computer programs. By understanding the 

cognitive and probabilistic processes that underly text editing 

behavior, methods and tools can be developed to improve the text editing 

environment. 

This thesis addresses the issue of how humans select the length of 

a search string in text editing tasks, particularly while editing 

computer program code. Editing computer programs introduces more 

complexity into the searching tasks due to the different syntactical 

nature of the text and the expanded character set used in programming. 
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As the length of the given search string increases, accuracy and 

keying costs increase. For the purpose of this research, it is assumed 

that a human will increase the search string length until the desired 

probability of success (e.g., finding the desired location on the first 

try) exceeds some threshold. A model is proposed that represents the 

human's estimated probability of search success in terms of a predefined 

threshold of information-theoretic bits. An increase in search string 

length is related to the value of the threshold. The probability of 

finding the desired text is modeled as a two-state Markov process. A 

more detailed explanation of the model is contained in Chapter 3. 



CHAPTER II 

A REVIEW OF THE LITERATURE 

The literature pertinent to search string selection involves models 

of text and models of human text processing performance. Models of text 

are especially interesting from the digital computing viewpoint, since 

most text processing is now performed on the computer word processor. 

These models can be deterministic or probabilistic. Text processing 

studies typically analyze human performance within a specific context, 

in order to identify the underlying cognitive structures and processes 

responsible for the observed behavior. 

The literature reviewed in this chapter will be used to identify 

the variables most pertinent to human performance modeling in text 

editing. Probabilistic models are given considerable attention in this 

review; the model developed in this thesis is probabilistically—based. 

Time and rule—based models of the human in text editing are also 

discussed, supplying important variables to the model. Finally, the 

issues of text familiarity and probabilistic knowledge are examined. It 

is important to note that there are two sets of variables used in this 

study. One set is the variables pertinent to the development of a search 

string selection model. These will be incorporated into the computer 

model. The second set is manipulated as independent factors in an 

empirical study. 

4 
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Types. 	models 

Analysis of human text creation behavior has influenced two major 

types of models: mathematical models of text and models of the human 

information processor. 

Mathematical models have used statistics 	and conditional 

probabilities to predict the occurrences of letters and/or words in text 

environments. For example, an information theoretic model related to 

the entropy and redundancy of the English language was developed by 

Shannon (1951). Zipf (1949) has empirically shown that word usage 

frequency is directly related to word length and can be modeled in terms 

of probability. Ehrlich, Damon, and Cooper (1983) have demonstrated the 

utility of word frequency—based strategies in text editing. 

In contrast, performance modeling is a technique used to model 

human information processing performance in text editing. Models of the 

human can be either time—based or rule—based in nature. Model accuracy 

is determined by comparing model and human performance. Time—based 

models estimate the amount of time required to execute a particular 

editing task (e.g., the length of time to complete the insertion of a 

word in a line of text). The research of Card, Moran, and Newell 

(1983a) focuses on operations conducted during human computer 

interaction. A common application of such a model would be used to 

estimate human performance within a newly developed editor, in lieu of 

actual experimentation. 
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Rule—based models of human text editing behavior describe the 

human's strategies in specific situations. For example, Card, Moran, 

and Newell (1983b) modeled selection of search methods when the distance 

to desired text varied from one to several lines of text. 

Only a few accurate models of the human information processor in 

text editing tasks exist and these models vary in content. 

Reviewed here are model types from two perspectives: those that 

model text itself and those that model human performance within the 

editing context. Although the nature of the models are quite different, 

important variables to the model of search string selection are 

extracted from both model types and incorporated into the thesis model. 

Additionally, the model variables extracted from the literature are also 

analyzed in a validation experiment. 

Mathematical lizirla I= 

Mathematical models of text generation from letters, words, or 

phrases have been developed using stochastic process models and 

information theory (Shannon, 1951; Edmundsen, 1955; Barnard, 1955; Cover 

and King, 1978; Markov, 1913). For some of these models (e.g., Markov, 

Shannon), the underlying assumption is that text can be looked upon as 

the result of a stochastic process whose successive outcomes are 

constrained by semantics, reflected in the given probability 

distributions. 
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For example, the Markov chain (Markov, 1913) was developed to 

analyze the sequential organization of letters in terms of a stochastic 

process. The discrete process of sequential letter dependencies is 

described as state transitions, or the discrete Markov process. The 

general case can be described as: There exist a finite number of 

possible "states" of a system: S1 , Sp..., Su. In addition there is a 

set of transition probabilities; p i(j) the probability that if the 

system is in state S i  it will next go to state S i . This theory is 

applied such that a letter is produced for each transition from one 

state to another. The states correspond to the "residue of influence" 

from the preceding letters. When state dependencies increase, the 

residue of influence increases by an associated conditional probability. 

One especially relevant theory based on the Markov chain is 

Shannon : s (1951) information theory analysis. Shannon's theory is based 

on the generation of text by providing successive approximations to 

English using Markov chains of higher and higher order. The Shannon 

study is the mathematical basis of this thesis. 

Shannon proposed that a method of estimating the entropy and 

redundancy of a language (e.g., the English language) could be 

constructed from the knowledge of the statistics possessed by those who 

speak the language. Information Theory provided a consistent 

mathematical basis for investigations into encoded information 

transmitted over various media. With the introduction of digital 

computers to mass communication networks, a great deal of interest was 

expressed in digital encoding methodologies; Shannon's work was 
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dedicated to finding a suitable, economical way to encode the symbols of 

a language in this format. 

Shannon's theory on the redundancy of a language is based on the 

relative entropy of that set of symbols. Entropy measures how much 

average information (i.e., reduction in uncertainty) is produced by each 

letter of a text in a printed language. If this language is then 

translated into bits, the entropy (H) of the language is the average 

number of bits per letter of the original language. The redundancy, on 

the other hand, measures the amount of potential loss of information in 

the language due to its syntactical structure and frequency statistics. 

For example, in English there is a strong tendency for "t" to be 

followed by "h", reducing the average information transmitted by each 

letter. 

The general concept was that humans can be presented only partial 

information, and based on the accumulated knowledge of the statistics of 

the language used (e.g., syntactic and phonetic conventions), inferences 

can be made pertaining to the entire content of the information. For 

example, if shown the letters "roo", a human has some reasonable idea of 

the letter that immediately follows the second "o" (e.g., t, k, f, m, 

etc.). This inference structure could then be employed to allow for 

more economical data transmission. Conceptually stated, the knowledge 

possessed about a certain set of symbols in a constrained environment 

(e.g., a printed language) influences the human's decisions about the 

content and arrangement of these symbols. 
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The basic method for calculating the relative 	entropy and 

redundancy of a language is described as a series of approximations F 0 , 

F1 , F2 ,..., Fn  that account for successive statistics of the language 

and approach H as a limit (Markov chains). These approximations are made 

by using a successively conditional probability involving one more 

letter of preceding text. For example, a probability would be 

calculated for the number of times the letter "d" followed the trigram 

"wor", then a probability would be calculated for the number of times 

the letter "s" followed the 4-gram "word", etc. In Shannon's case, the 

approximations were made using an empirical estimator. 

Fn , or "N-gram entropy" is commonly defined as the entropy 

calculation per letter for the Nth letter (based on conditional 

probabilities through (N-1) letters), where: 
n 
E p(b.,j) 
i=o 	1  

Z P(bi ,j) 
i=o 

Where b. is a block of (N-1) letters, and: 

j is the Nth letter, 

p(b i ,j) is the probability of the Nth letter, j, 
with conditional probability dependency on the contents 

of b.. 
1 

The probability p(b i ,j), or the probability of the N-gram (e.g., the 

number of times the letter string "abcd" (a "4-gram") occurs in a 

printed language) is determined empirically from the probabilities of 

the letter N-gram. The N-gram is estimated by extrapolation, or in 

F
n 

_ 

log2 pbi( j) 	(1) 

log2 p(b i ,j) + E p( b i) log p(bi) 
i=o 

Shannon's case, by estimation. The quantity p b  (j) is also determined 
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empirically by extrapolating the conditional probability of the letter j 

after the preceding letter block b i  for the language of interest. 

Shannon conducted a single subject study to test his theory. 	The 

subject was given a sequence of N letters from incomplete passages in a 

story, and probability tables for two and three letter combinations 

(known as digram and trigram tables, respectively). Shannon asked him to 

estimate the next letters in the story. If the subject guessed 

correctly, he was informed of the success. If the subject guessed 

incorrectly, he was prompted to guess until correct. This process was 

repeated until the passage was complete. 

Of a total of 129 letters to be guessed, 89 (692) were guessed 

correctly. Functionally, N was increased as the subject correctly 

guessed the next letters of the passage. The errors in prediction were 

most likely at the beginnings of words and syllables. Shannon explained 

that generally, good prediction would require no more than N letters of 

preceding text, and N could be small (e.g., 4 or 5 letters). 

In another experiment, Shannon changed the experimental stimuli to 

one hundred samples of English text selected at random, each 15 letters 

in length. The subject was required to guess the text, letter by 

letter, for each sample as described in the previous experiment. In 

other words, one hundred samples were obtained with N varying from 0 to 

14 preceding letters. 

Shannon found that prediction gradually improved with increasing 

knowledge of past guesses, similar to the results of the first 

experiment. Shannon also calculated the relative number of bits of 
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information associated with a next letter in a sequence of letters (that 

will form a word) in terms of the letter's position in the string. 

Figure 2-1 depicts this relationship. 

The above graph indicates a functional asymptote in the curve 

beyond five previously known letters. A significant conclusion can be 

drawn from this graph. It appears that the human acquires a fixed 

amount of information about the actual text after N becomes equal to, or 

greater than five or six characters in a string. This conclusion was 

exploited in the model developed in this thesis. 

Cover and King (1978) extended Shannon's experimental findings for 

guessing the next letter in a sequence. They asked subjects to place 

successive bets (of real currency) on next letters in a sequence of 

letters forming words. The authors used the same basic experiment as 
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Shannon; the subjects guessed the next possible letter until they 

guessed correctly. Additionally, Cover and ring gave subjects letter 

digram and trigram probability tables to aid with probability 

estimation. Betting was included in the experiment to induce subjects 

to concentrate on accurate character estimation with a reward of even 

money given for a correct guess. Subjects were allowed to read as much 

of the passage as they desired up to the specified passage to 

familiarize themselves with the writer's style. Results showed that 

subjects were quite skilled in estimating next characters. This 

supports Shannon's claim that statistical knowledge of a language can be 

used to guess letters in a syntactically structured sequence. 

Results of other language entropy studies (Barnard, 1955) indicate 

that Shannon's results can be extended to other languages. In Barnard's 

study, comparative figures for word—letter entropies were calculated for 

French, German, and Spanish. Barnard discovered that average word 

length bears directly on the letter entropy values for a given language. 

For example, all of the languages analyzed in Barnard's study reflected 

the same letter entropies as English, except for German. The average 

word length in German is longer than the others, primarily due to the 

fact that German words are a combination of other words to describe a 

complex concept. With the above results in mind, it can be extrapolated 

that similar languages (in syntax, etc.) would reflect similar entropy 

values. 
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sufficiently large to enable a more accurate modeling of a printed 

language in the form of zero-memory sources with words as symbols. 

This correction effectively decreases the entropy per word estimate 

for all "English-like" languages to approximately 2.1 bits, instead of 

the original 2.62 bits per letter calculated by Shannon. Also, the 

bits/letter entropy is decreased to 2.1 bits vs. the original Shannon 

calculation of 3.3 bits. The correction must be considered to have had 

effect on the shape of Figure 2-1. This correction was also considered 

in the model construction. 

Ellis and Hitchcock (1986) have produced Zipf functions for the 

UNIX operating system command language. These functions reflect the same 

results as the original analysis of English, further illuminating the 

flexibility of the lay for printed language. 

yord Frequency  "med Bdititur §trolregies  

As previously shown, statistical knowledge of text can have a 

distinct effect on the subjects ability to fill in missing information. 

The use of word frequencies for developing a suitable text editing 

strategy was studied by Ehrlich, Damon, and Cooper (1983). Their study, 

which is the most closely related research to this thesis, analyzed the 

effects of knowledge on search strategy within a text editing task. 

Four graduate students involved in preparing at least one large 

scale document (e.g., a master's thesis) served as subjects for the 

experiments. Working under the hypothesis that the subject's knowledge 
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of the text content and structure would affect search string selection 

strategy, they recorded subjective estimates of word frequencies in the 

subject:s text file. Words were categorized according to type (e.g., 

nouns, verbs, etc.) and then the subject was asked to estimate how many 

times the subject thought the words occurred in the file. 

Although the case studies produced varying profiles of word 

frequency, they do provide a consistent overall result. All of the 

subjects could estimate the frequency of occurrence of words, no matter 

what type, to within +/- 2 occurrences of the lexical root. 

Additionally, subjects appeared to be biased toward lower estimates for 

words or word roots occurring more than ten times in the manuscript. 

These results indicate the subject's familiarity with the text had 

a large bearing on the ability to estimate word frequencies until the 

frequency exceeds ten occurrences. Also, it seemed that the words most 

associated with frequency misjudgement also reflected "conceptually-

based confusions." By this they meant that the conceptual encoding of 

the manuscripe• topic, ideas, and main points by the subject were 

organizationally inaccurate. An example of this concept is editing a 

portion of a manuscript to convey a different main idea from what it 

previously had represented. 

The authors concluded that the knowledge of the manuscript can 

assist the writer attempting to locate information during text editing. 

Use of this knowledge, however, must be tempered by an understanding of 

its limitations, namely, that surface details (e .g., actual syntactic 

and sentence structure) are not readily available. They also found that 
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low frequency (1 or 2 occurrences) words or labels have a much higher 

probability of being properly placed in position in the manuscript's 

hierarchy of ideas. 

Models al Human performance  in Iglu Editinv. 

Rule—based and temporal models of human performance behavior in a 

text editing environment have also been developed (Card, Moran, and 

Newell, 1983, 1983b; Kintsch and van Dijk, 1978). The models analyzed in 

this section provide an alternate method of modeling the text 

environment and human behavior in the text environment. 

A model of computer user behavior, called the Keystroke Level Model 

(KLM) was developed as a design tool for estimating task execution times 

within different operating environments. The model's primary purpose is 

to supply the system designer with an estimated time required to 

accomplish a given task with a particular interactive computer system. 

This model was tested within several text editing environments. The 

basic experiment consisted of several subjects editing manuscripts on 

different text editors. The authors developed a task execution model 

for specific editing tasks based on subtask time estimators. The total 

time to execute a task was the sum of the subtask execution times 

comprising the overall task. Mean subtask execution times were 

empirically determined for the following: 

K -- execute a keystroke 
P -- point to an object with a mouse 
H -- home hand on keyboard or mouse 



17 

D draw a line (with mouse) 
• -- think about next action (mental time estimator) 
R -- response time 

where: 

Texecute m TR 	Te Te TM+ TR 

The T execute estimator is the sum of all the subtask times. 

An experimental model developed using the KLM involved a search 

task. Subjects had to locate text, then edit a section or paragraph of 

the text. Using the editor "POET," the only editor similar to the one 

used in this thesis, the following subtask model was developed. The 

subtask representation for the search procedure is given in Figure 2-2. 

The searching task described by Figure 2-2 can be interpreted as 

follows. The user thinks about how to initiate a search command (M), 

then issues the editor command to initialize the search by keystroking 

(K) the symbol ("). Then 7 characters are entered that represent the 

search string (7R[string]). The search string is terminated (") and a 

request is given to print the desired line (/). An edit command is then 

issued to begin editing the text. From this model, the user's 

Indicate search string 	--> 
Type search string 	--> 
Terminate search string --> 
Print line 	 --> 
Issue edit command 	--> 

MK["] 
7K[string] 
MK["] 
KU] 
M 2K[e <CR>] 

Figure 2-2 
	

Text searching procedure 
using the POET text editor. 
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keystrokes and time for execute a text search are determined. 

The model overtly describes how the task is accomplished; however, 

it has no provisions for estimating mental operations involved in the 

task except for the M operator. A time estimate for the M operator was 

determined for the search task model by subtracting the overt actions in 

a subtask from the subtask execution time containing the M operator. 

This estimator is sufficient for task execution time approximations, but 

appeared more coarse-grained than that required for 	the mental 

operations pertinent to this thesis. 	For example, how the subject 

generated the search string is not specified. 

More importantly, the model does not say anything significant about 

the actual cognitive effort or strategy involved in generating a 

searching strategy and issuing an accurate search string. Additionally, 

the search string issued was not analyzed or recorded. The model does, 

however, represent the time -- including the search string selection 

process-- involved in text searching. 

A rule-based model of human-computer interaction in various tasks 

was also developed by Card, Moran, and Newell (1983b). The GOMS model 

(for Goals-Operators-Methods-Selection) was developed to predict human 

computer interaction sequences through the analysis of intended goals 

during the task. 

The GOMS model breaks a task into subtasks by supplying: 

A set of Goals, 
A set of Operators used to achieve the goal, 
A set of Methods used to achieve goals, 
A set of Selection rules for choosing among 
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competing methods for goals. 

Using the above constructs, subgoaling was used to decompose the overall 

search-replace task to a finer grained level. The part of the model 

concerned with editor positioning is: 

Goal: Locate-line 
[Use-LF-method] 
[Use-QS-method] 

The strategies identified for locating specific text in the file 

were: the query-search method (QS-method) and the line-feed (LF-method) 

method. The human issues a search command with fixed length (5 

characters) character strings to locate text using the query-search 

method. The line-feed method is used primarily for locating text to 

edit when the text is close to the present location. 

A typical rule example for a subject could be represented as: 

IF the distance to the next modification is less than 
or equal to 3 cm., THEN use the LF-method. 
ELSE use the QS-method. 

Rules similar to the example are used by the model to predict human 

behavior based on the task requirements (e.g., the number of lines to 

the target text). 

Card, Moran, and Newell demonstrated a subject's selection of 

search methods systematically on features of the task environment. The 

most important characteristic of the environment is the distance (in 

number of lines of text) between the current line and desired line of 

text. All subjects used the LF-method when the text was close enough. 

Close enough was defined differently for different subjects. In their 

experiment, the threshold generally differed depending on the type of 
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terminal used (e.g., a teletype was used in one condition; the subject 

switched to QS-method sooner due to slow response time of the terminal). 

Once the threshold could be established for a particular subject, 

modeling of the behavior was consistent over all subjects. 

Subjects reported that the QS-method (search) appeared to be more 

difficult than the line-feed method, which was reflected in the slightly 

longer times to generate search strings vs. line-feeding. In general, 

the QS-method was preferred over the LF-method in experimental settings 

when the desired text was off-screen. 

Although GOMS provides a f iner-grained analysis of the strategy 

chosen to search for text based on distance than the KLM, it nonetheless 

provides no insight to the Actual ,  processes used by the human in the 

course of generating the search strategy and search token. GOMS 

predicts (with some accuracy) when a human chooses to search for text; 

it gives no indication of how many characters should be used or how a 

strategy will develop for text searching. Additionally, the subjects 

were instructed to limit their search strings to 5 characters, in spite 

of the distance to be traversed to the target text or the frequency of 

string occurrence in the file being edited. In the study, a search 

string of 5 characters was sufficient to position the editor at the 

desired location on the first try. In a less constrained text editing 

environment, however, 5 character search string limits would result in a 

higher rate of search failures. Also, the GOMS model was developed 

primarily for environments containing only a small amount of text over 

short distances. 
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Hammer and Rouse (1982) developed a model of the human as a 

constrained optimal editor. In their paper, investigations were 

conducted into the procedures and strategies used during intraline text 

editing. There were two phases to the study. The first modeled optimal 

keystroke solutions for intraline editing problems using several editor 

command sets. Optimal keystroke solutions were then compared with those 

generated by human subjects on the same editing problems. The second 

incorporated those factors determined to affect suboptimal human 

performance into a constrained model of optimal keystroke solutions. 

Several text editors were modeled. 

The modeling of intraline editing keystroke solutions is as 

follows. The editing solution to the problem is determined with a 

typical problem characterized below. The user must alter the line of 

text "John and Mary" to be "John or Mary". To execute the task the user 

must: a.) reuse "John ", b.) delete "and", c.) insert "or", d.) reuse 

" Mary". Once the execution sequence is determined, the model takes the 

two lines of text (original and altered) and attempts to make the 

altered out of the original using all known editing commands from the 

particular editor of interest. 

Subject performance was compared with optimal solutions produced by 

the model. It was found that the subjects were often suboptimal in 

their editing sequences due to: a.) limited knowledge of the possible 

editing commands available, b.) use of extra keystrokes to execute the 

same task, or c.) the use of estimation when the counting of characters 

was necessary (e.g., issuing an approximate number of characters to move 
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instead of actually precounting the characters to move). 

The second part of the Hammer and Rouse (1982) study constrained 

the model to resemble more accurately subject performance within the 

specified editing tasks. Constraints imposed on the model were those 

found to be pertinent to user editing performance from the first phase 

of the study. Individually computed command sets for each subject in 

the experiment were input to the model to simulate a subjects limited 

knowledge of available commands. Also, the model was constrained to 

estimate large distances in a way consistent with observations. 

Descriptive categories were also input to the model to describe 

keystrokes in excess of the constrained optimal solution. Several 

categories were identified, from open-loop cursor positioning to human 

error. However, only the command selection category is of interest to 

this thesis. It was found that subjects often conducted text searches 

under asearch string too long" situation, where the search string is 

longer than necessary to do the desired positioning. 

It was found that the model was able to describe or predict 90 

percent of all keystrokes. The Hammer and Rouse (1982) model was 

concerned only with intraline editing; however, subjects' tendency 

toward suboptimality in text searches indicates a consistent underlying 

mechanism in selecting search string lengths. 

A study that bears mention in the context of the present research 

is a model of text comprehension developed by Kintsch and van Dijk 

(1978). They have shown that language users can provide missing links 

in a word sequence based on their contextual knowledge of the facts 



2 3 

within the text. The facts can allow humans to make inferences based on 

the fuzzy probabilistic relationships between the frequency of words and 

the text context. 

Kintsch and van Dijk modeled this relationship using a 

propositional notation scheme to reflect these context effects within 

the text. The idea behind the propositional notation is to represent 

the meaning of text with a structured list of propositions. 

Propositions are composed of concepts. Basically, a concept is 

represented as a decomposition of an idea into the operators and actions 

producing the idea. For example, the sentence: "The professor decided 

to do an experiment" would yield the proposition: (do, professor, 

experiment). Propositions are ordered in the text base according to the 

way in which they are expressed in the text. This representation scheme 

allows the experimenter to convert the entire gist of a story into a 

format easily input to a computer. 

Although the discussion of the model of text comprehension did not 

include operational characteristics or code, Kintsch and van Dijk 

described the basic input/output mechanisms of the model. The model 

takes three inputs: The first is S, the short—term memory capacity. The 

short term memory has been shown to be affected by reading skill; good 

readers are capable of holding more text in short—term memory that poor 

readers. The second input is N, the number of text propositions 

accepted per mental processing cycle. To justify this input, the 

authors theorize that the reader's knowledge of the text affects the 

meaning derived from the text. Unfamiliar material would have to be 
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processed in smaller chunks than familiar material, and N should be 

directly related to familiarity (e.g., N increases with knowledge of the 

text). The final input to the model is P, the reproduction probability 

of a particular proposition. The probability P is called the 

reproduction probability because it combines both storage and retrieval 

information. Under the same comprehension conditions, "the value of P 

may vary depending on whether the subjects task is recall or 

summation." (Kintach and van Dijk, 1978) A proposition is reproduced 

with probability P each time it has participated in a processing cycle. 

Basically, if a proposition is selected N-1 times to be included in the 

short-term memory, S, it has N chances of being stored in long-term 

memory. More specifically, the reproduction probability is 1 - (1-p) N . 

This probability is similar to the Markov process discussed earlier. 

The authors also indicated P was directly related to familiarity. 

It was found by Kintsch and van Dijk that the reader's 

comprehension of printed text varied significantly with familiarity of 

the experimental text. This finding was consistent whether the text was 

familiar to the subject prior to the experiment or the familiarity was 

increased artificially by having the subjects re-read the material and 

interpret the meaning of certain propositions. Although certain words 

were not remembered after a period of up to three months, the extent of 

the "gist", or general idea of the text was remembered according to 

level of familiarity with the material before the actual test. Model 

results confirmed this finding, indicating familiarity as an important 

quantity to text processing. According to the representation for P, the 
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familiarity induced by inclusion of a proposition in long-term memory 

also increases the reproduction probability of the proposition. 

Important,  Variables la Current  Aculalc h 

To properly model the human in an experimental text searching task, 

insight must be gained into the human mental processes contributing to 

search string selection. 

The method chosen for the model of search string selection 

presented in this thesis is based on the mathematical models of text, 

specifically Shannon's information theory. The rule-based, temporal, 

and cognitive models reviewed provide additional variables identified 

that affect search string selection. 

Based on the literature, four variables will be considered within 

an information theoretic model of search string selection: 

1.) The bits of information per character, or B c , in a text file will be 

calculated for each experimental environment. B c  will be utilized in 

numerically determining a character's contribution to the total 

information theoretic bits for the search string. 

2.) The text environment content and the humans level of familiarity 

(structural and propositional) with the text will also be considered. 

This factor is derived from the Kintsch and van Dijk study. Familiarity 

also be included in the empirical study. 

3.) The users estimate of search success based on knowledge of file 
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contents will also be considered. Inclusion of this variable is 

consistent with Ehrlich, Damon, and Cooper (1983). Consistent with this 

study, knowledge of particular file contents will be analyzed with the 

variable Problem Type. 

4.) The character distance from current to desired cursor location in 

the text editor will also be considered. The variable distance is 

transformed into distance information cues within the empirical study. 

This variable is supplied by the COME model research of Card, Moran, and 

Newell (1983b). 

Other factors influencing the human's ability to locate strings in 

a file may consist of knowledge of text structure (e.g., a particular 

programming language structure), text editing experience, and general 

knowledge of the language syntax. These qualitative factors will also 

be considered during model evaluation. In the following chapter, the 

model is developed from the variables of interest. 



CHAPTER III 

A MODEL OF THE HUMAN SEARCH STRING SELECTION PROCESS 

This thesis studied human search string selection with respect to 

the human=s knowledge of the language in the file being edited. The 

literature review suggested variables that may affect the process of 

search string selection. These variables were incorporated into the 

model and were manipulated in the Chapter 4 validation experiment to 

verify the predictive accuracy of the model. 

The present chapter is divided into two sections: model design and 

model implementation. The level of implementation detail increases as 

the chapter progresses. 

Model jntroductioa  

The literature discussed in Chapter 2 indicated a humans 

statistical knowledge of a printed language has a significant effect on 

the ability to predict the next character in a sequence. Additionally, 

the humae-s memory of specific groups of characters previously used 

(e.g., words) has been shown to effect the strategy used in locating 

specific text in a text editing environment. Preliminary results of a 

27 
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study conducted by Hammer (1984) indicate that the human does indeed 

possess significant knowledge of programming and syntactical structure, 

as well as character relationships within programming environments. 

If the theories reviewed here are universal, then statistical 

modeling of human knowledge of a programming language should reflect the 

same basic constructs as with natural languages. Based on the 

literature and experimentation, a computer model simulating human 

statistical estimation of text within an editing environment was 

developed. 

Model Overvipw 

The model developed for the thesis (written in LISP, see Appendix 

A), chooses search string lengths for search problems simulating human 

performance in a probabilistic text searching task. 

The model's task is to choose the length of the search string such 

that the probability of reaching the desired point exceeds a user—chosen 

threshold. Generally, the models probability of success increases with 

search string length. If the model does possess perfect knowledge of 

the text, an optimal (shortest) string exists which will cause the 

editor's search to move to the desired point on the first attempt. The 

model does not possess perfect knowledge; instead, it adopts a 

probabilistic view of the text. In each search problem, the model 

chooses a search string with a sufficient number of information 

theoretic bits to cross the distance to the desired point in the file. 
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Modeling human search string selection behavior is accomplished in 

distinct stages. First, the threshold number of bits for each problem is 

calculated as follows. The editors search process is modeled as a 

two-state Markov process: the failure state is absorbing (F) and 

corresponds to the search failing. The success state (S) is the initial 

state. 	It possesses a low probability P1  transition to the failure 

state and a high probability transition (1 -P1 ) to itself. 

The Markov process is used to estimate P
1 as follows: After a 

number of transitions equal to the distance from the current to the 

desired point, the probability of being in the absorbing state is (1 - 

the humans desired probability of success, or P s) . Essentially, the 

Markov process models the small probability P 1  of finding the search key 

at every point in the text between the current and desired point. The 

occurrence of the search key before the desired point corresponds to the 

P1  probability, or search failure. Once in the absorbing state, the 

 

P1 

 

1 - P 
1 

Figure 3-1 	Two state Markov Process. 
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probability of the search failing is 1. 

The Markov process emulates the editors search process 

probabilistically. When the search command is issued, the editor 

initiates a character by character matching process between the search 

key and the text being edited. The process will continue until either: 

a.) the search key is found before the desired distance is traversed, 

b.) the editor reaches the end of the file, or c.) the editor reaches 

the character distance indicated. In either condition a.) or condition 

b.), the search is viewed as a failure. Condition c.) denotes search 

success, or the traversal of the desired character distance where the 

desired search key is known to reside. As long as the matching process 

does not find a pattern match for the search key before the desired 

distance, the Markov process continues to loop onto the success state 

(S) and the search continues. Should the editor match the search key 

before the indicated character distance, the Markov process traverses 

the P1 arc to the failure state (F). Once the Markov process reaches 

the failure state, F, it does not exit F, and the search fails. 

The inputs to this section of the model are the number of 

transitions D (for distance) and the overall probability of success P s . 

The output is the single step probability P I . PI  is then converted to 

the threshold number of bits, H—m  . HD  p can be interpreted as the ,r 8  , 8  

number of bits required to cross over the necessary distance to the 

desired point. 
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Once the number of threshold bits is determined, the model selects 

the shortest search string with bits greater than or equal to the 

required threshold. The total bits in the search string are equal to 

the sum of the bits for each character (e.g., ma","b", etc.), multiplied 

by a scaling factor. This factor is based on the position of each 

character in the search string. 

The scaling factor was suggested by Shannoe.s (1951) observations 

that the bits per character associated with the next character in a 

sequence, given N preceding characters, is a function of the position in 

the string. The scaling factor is applied such that after the first 

character in the search string, it is expected that each additional 

character contributes a decreasing amount of bits to the search string 

bits total. 

Or, 	
H(c,i) = H(c) * S( i) 

where, 

H(c,i) = bits for character c in the ith position 
H(c) 	= bits for a character 

= H (the number of occurrences of character c / 
the total characters in the file) 

and, 

S(i) 	= the scaling factor, such that: 
S(1) 7= 1 and, 
S(K) = regression estimator for K = 2 
S(K+1) = S(K) for K > some N, 

N —= 5,6 
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Analysis 	Hada Components 

The model description has provided an overview of the concepts and 

techniques incorporated into the model. The sections under the present 

topic describe the model components in greater detail. 

&Islel lama 

The model receives four inputs: 

1. The potential search string, from which 
the model selects a substring, 

2. The character distance from the beginning 
of the file to the desired position, 

3. The individual character frequencies from the 
file being searched, 

4. An array of scaling factors. 

The potential search string consists of characters remaining on the 

text line following the desired cursor position. 

Individual character frequencies are calculated as number of 

occurrences divided by the total number of characters in the file. 

The scaling factors are a series of values that reduce bits of 

information contributed in each position as the search string length is 

extended. For example, the number of bits contributed to the search 

string by the first character is a product of the first scaling factor 

and the bits value associated with the chosen character (e.g., the 

probability of the character in the file converted to a bit value (H)). 

The second character of the search string is the product of the second 
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scaling factor and its bit value, and so on. 

Wiz/W22 2f. S22.1jag. Factors  

Initially, it was intended the bits of information versus character 

position graph from Shannorr.s (1951) study of the English language would 

provide adequate scaling factors for the model. However, estimators to 

the Shannon curve and mathematical approximations of the curve yielded 

incorrect results during pilot studies. Two reasons contributing to 

model failure were identified. 

A reexamination of the pertinent studies in the literature review 

(e.g., Yavuz, 1974) and empirical analysis using the Shannon curves 

revealed that the bits of information associated with the early (e.g., 

second character, third character, etc.) characters in the selected 

search string were too high for the search string model. As a result, 

model search strings were consistently too short. Additionally, the 

text used in the original studies was based on a natural language. This 

thesis uses a programming language character set which expands the 

character set considerably. Therefore, an estimator for the scaling 

factors was required. 

The original Shannon curve plotted H(c,i), or bits per character, 

versus position in the character string. The Shannon curve shape was 

used as a model for the search string scaling factor values. Beginning 

with S(1) 	1, a series of scaling factors (i.e., S 2 , S3 ,... ) were 

determined that would reflect the Shannon curve with an asymptote at the 
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fifth or sixth character position. The asymptote was approximated 

according to the asymptote identified in Shannon :a original analysis of 

the English language. 

The appropriate scaling factors were determined through regression 

analysis according to the equation: 

n 

ED, Ps  = S(1)*Sc[1] 	S2*Bc[2] 	"' 	S5 L  lc 
i-5 

where: 

H 	= number of bits required to travel D,P s 	 the distance to the desired position 

S i  = scaling factor for ith position 

B = bits value for the particular character 
a,..,n1 = position of character in search string 
n = length of string 

The two-stage Markov process was employed to calculate the transition 

probability (P 1 ) for each searching problem. P 1  was then converted to 

Hp . p and used as the response variable in the regression analysis. 
, 8  

Character frequency values for the first five characters in each 

potential string were converted to bits (B c) and used as regressors. 

The two sides of the equation were assumed equal according to the 

definition of HD  . The threshold value must be enough to traverse the u
s 

necessary distance D to reach the desired point in the file. 	The 
n 

equation term, E B c  represents the bits of information contributed to 
i- 5 

the search string beyond four characters. Only the first five values 

had to be estimated, since S(5) = S(5+i) for all i >= 0 . Basically, 

all Bc for i ) 5 are summed and multiplied by the S
5  estimator. In 

each series of scaling factors, the first position (S i  ) is always 1 
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since the first character of the string contributed the entire B c  value 

to the search string. Therefore, only four coefficients need be 

estimated by regression. 

Linear regressions were run on the two files used in the validation 

experiment using the MINITAB Statistical Package. Regression results and 

calculated coefficients are found in Table 3-1. The variables are named 

Bc[21  through Bc [ 5 1 to denote position in the scaling factor array. The 

regression was run with no intercept in the equation. 

Regression results for familiar file: 

The regression equation is: 

= 0.131 Bc [ 2 ] + 0.249 Bc E 3 ] + 0.149 Bc [ 4 ] + 0.162 Bc [ 5 ] RP,Ds 

PREDICTOR 

No constant 

COEF STDEV T-RATIO 

c[2]  
0.1313 0.1798 0.73 

B
c131 0.2487 0.1356 1.83 

Bc[4] 
0.1495 0.1490 1.00 

RcI51 
0.16228 0.08718 1.86 

standard deviation = 1.264 

SOURCE DT SS MS 

Regression 4 758.39 189.60 

Error 46 73.44 1.60 

Total 50 831.84 

Table 3-1 	Scaling Factor Regression Results. 

[2,...,5] denotes position in string. 



36 

Regression results for the unfamiliar file: 

The regression equation is: 

HP,Da - 0.086 Bc [2] + 0.427 Ec [ 3 ] + 0.267 Sc ud - 0.084 Bc [ 5 ] 

PREDICTOR COEF STDEV T-RATIO 

No constant 

Bc[2] 0.0864 0.1471 0.59 

Bc[3] 0.4270 0.1627 2.62 

Bdill 0.2670 0.1399 1.91 

Bc[5] -0.0838 0.1376 -0.61 

standard deviation - 1.264 

SOURCE DF SS MS 

Regression 4 882.72 220.68 

Error 46 73.44 1.60 

Total 50 956.16 

Table 3-1 	Scaling Factor Regression Results 

(continued) 
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A discussion of the regression results 	is 	required. 	All 

coefficients were considered valid until two successive values were 

non—significant. In the familiar file regression, this value was at 6; 

the value was 4 for the unfamiliar environment. At this point, it was 

assumed that the curve had reached its asymptote. The coefficient at the 

asymptotic position was used to fill out remaining positions in the 

array. In terms of the t—test, regression coefficients were included, 

provided they are significant. 	The B2  regressor was always non- 

significant. However, there is an explanation for this observation. 

Limited information is added to the character string by the second 

character. This is reflected in the observation that a 2—gram, or a 

sequential probability of 2 characters, does not generally possess much 

information. With the addition of a third character, the information 

level increases significantly. 	As a result of this reasoning, the B2  

regressor was included in the scaling coefficients. 

During the simulation, the total bit value of a character in the 

search string, H(c,i), was calculated according to equation (1) using 

the character frequency and the ith scaling factor. If the search 

string chosen by the model was longer than 5 characters, the bits for 

the additional characters were added to the bits of the fifth regressor. 
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In this chapter, a model of human search string selection was 

developed around the user-defined bits threshold, H, p 	for a search HD 
2 

string based on the user'spredefined probability of success, 12 9 , 	All 

variables of interest to search string selection identified in the 

literature review were included. A series of character position 

coefficients for S(i) within a programming language was estimated 

through linear regression, modeled after the H(c,i) curve suggested by 

Shannon (1951). 



CHAPTER IV 

AN EMPIRICAL STUDY OF SEARCH STRING SELECTION 

An empirical study was conducted to evaluate the effects of text 

familiarity, distance information, and problem type on user search 

string selection behavior. In addition to the performance data 

collected, search strings issued by subjects were used to evaluate model 

performance, which is described in Chapter 5. 

Introduction  

Two separate experiments were conducted in this validation study. 

The first was a text searching experiment within a text editing 

environment. The second experiment was an on-line string frequency 

estimation task designed to elicit frequency estimates of particular 

character strings in each file. This data was used as a general 

estimate of a subject's knowledge of the file contents. 

The chapter begins with 	identification, 	description, 	and 

justification of the variables used in the searching experiment. 

Experimental and statistical design is reviewed next, and then the 

actual experimental procedure is discussed. Following the results and 
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discussion of the searching experiment, the estimation experiment is 

reviewed in a similar manner. 

Text Searc ing Experiment 

Independent Larishlea. 

Based on current literature and experimenter hypotheses about human 

text searching behavior, variables were selected for the text searching 

experiment. Each variable is discussed in a subsection. The 

operational definition, rationale for inclusion, and types of stimuli 

within each variable range are included in each description. 

familiarity.  (F) — Familiarity is operationally defined as whether 

the subject had experience with the contents of the file being searched. 

Following Kintsch and van Dijk (1978), the subject should have 

approximate knowledge of the frequency of characters and location of 

particular strings within the file. This familiarity with the text file 

should have a plausible effect on search string selection. 

Two FORTRAN 77 source code files were used: one was the file that 

subjects had studied before the second experimental session (familiar 

environment); the second was a similar (in structure and length) FORTRAN 

77 file that subjects had never seen before (unfamiliar environment). 

All subjects studied the same familiar program text. The training method 



41 

used to induce studying is described later. 

Familiarity is the major variable of interest in this experiment. 

The user=s success rate, as defined by the number of target strings 

found on the first searching attempt, should be greater in the familiar 

condition than the unfamiliar condition. The higher success rate is 

primarily due to level of familiarity with the text. 

Distance Information. (D) - After Card, Moran, and Newell (1983), 

distance information cues about the searching target location were 

supplied to subjects in two forms: (1) the page number of the printed 

text that the target (desired text to be located) could be found, and 

(2) the line number, measured from the top of the file, on which the 

target could be found. Distance to the desired editor position would 

seem to be an obvious influence on string selection since the 

intervening text between the current cursor location and the target 

decreases the probability of locating the target. Distance was also one 

of the inputs to the model, further identifying it as an important 

factor in this experiment. 

Problem Type. (T) - Problem type is defined as either familiar or 

unfamiliar targets to be located by the user. Ehrlich, Damon, and 

Cooper have established that a users knowledge of word frequencies (or 

character strings) in a file is very accurate as long as the frequency 

did not exceed 10. 

In the experiment, subjects searched for two types of targets. The 

basic content of the target was either: familiar (e.g., a subroutine 
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name, language keyword, etc.); or unfamiliar (e.g., variable name, 

parameter of a subroutine, etc.). The subject was expected to recognize 

when a target was familiar. This recognition should also have 

influenced the search string length. 

Targets were evenly distributed in each text file to ensure target 

stimuli equivalence. Basically, three distance ranges were used: from 

100 to 9000 characters, from 9500 to 20,000 characters, and 20,000 to 

30,000 characters. Both text files contained approximately 31,000 

characters. The stimuli, equally divided among the three distance 

ranges, were also equally distributed (as closely as possible) within 

the distance ranges (+/- 50 characters). Targets were also matched 

according to character distance, uniqueness of the character strings, 

and number of each type in each familiarity file. There were 30 

problems of each type in each file. 

Dependent Variables  

successes.  - The number of successes was used as the dependent 

variable in the experiment. This variable is defined as the number of 

searching problems solved on the first searching attempt (i.e., the 

desired target was found on the first search) within a particular 

combination of the independent variables. 

Search Strings.  - The actual search strings issued by the subjects 

were also recorded. The average string length for each problem was used 
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as input to the search string selection model. The search string data 

was not used in the present experiment. 

Aloaking. F ac tors,  

The variables subject and presentation order of familiarity files 

were used as blocking factors in the experiment. 

Statistical Dgaign 

A split-plot factorial statistical design was used 	in the 

experimental analysis. 	This particular design was selected for its 

ability to isolate all variables of interest. 

Plots were split over the distance information (D) condition. 	The 

split-plot design is divided over the levels of familiarity; a subjects 

initial exposure was assumed to increase statistical knowledge of text 

contained in the file. If this were so, a within-subjects design would 

increase learning about the string frequencies and content of the files 

and therefore bias the number of successes in searching problems. 

The factors familiarity (F), distance information (D), problem type 

(T), presentation order (0), and subjects (S) were considered according 

to Figure 4-1. Distance information (D) is a between subjects variable, 

the remaining variables are within-subjects with presentation order (0) 

counterbalanced in the design. 
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The linear model in Figure 4-1 contains only those variables and 

interactions important to the analysis. In the experimental design, 

order (0) and all interactions involving 0 are excluded from the model. 

Initially, it was desired that presentation order effects should be 

considered. Because presentation order was balanced within plots (see 

Figure 4-1), presentation order was aliased with Distance information 

(D). In the experiment, it was assumed that D and 0 would both give a 

positive effect to the ANOVA from both unfamiliar to familiar condition 

and from distance information not given to distance information given 

conditions. A one-way ANOVA using only 0 in the linear model revealed 

that the presentation order effect was not significant. Since D and 0 

were aliased in the design and both were expected positive effects, the 

non-significance of the ANOVA indicated that the experimental design was 

adequate to accurately analyze the data. The presentation order (0) 

variable was therefore deleted from the model to make all other effects 

of interest estimable by the least squares method. 

Also omitted from the model were interactions FT ij , FTS ijuk) , and 

FTDS ijkl(k) 3.j The FT. interaction was not expected because, as given in 

the Problem Type (T) description, problems were matched according to 

distance, content, and distribution within each level of familiarity. 

FTSijl(k) and FTDS ijkl(k) were omitted because individual subject 

differences were not of interest to this study. 

Random subject effects nullify standard F-statistic assumptions. 

Due to this condition, approximate F-statistics were formulated for 

experimental effects according to Satterthwaite"s method for 
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Approximating F-statistics (from Montgomery, 1984). When exact tests do 

not exist, Satterthvaite has demonstrated a technique for calculating an 

approximate F-statistic using linear combinations of mean squares to 

isolate the mean square of interest. The technique used to calculate the 

approximate F-statistics for all conditions were performed according to 

the procedure outlined in Appendix B. Also in Appendix B are the actual 

equations used to calculate the F-statistics. 

$ubjects  

Sixteen junior and senior undergraduate students (mean age 	21.2 

years) from an introductory Industrial and Systems Engineering Man-

Machine Systems course at the Georgia Institute of Technology served as 

subjects for the experiment. Subjects were required to have a working 

knowledge of FORTRAN 77 (i.e., at least one formal course and 1 year of 

programming experience with the language) and a general familiarity with 

computer text editors and various editor commands (e.g., search commands 

and cursor control keys). Subjects received class credit for experiment 

participation. 

Training  

There were three experimental sessions. The first session was an 

initial briefing to become familiar with the task and instructions to be 

followed during individual study; the second was an individual learning 

session where the subjects became familiar with the experimental 
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material; and the third was the actual on-line text editing session. 

All instructions, questionnaires, and training materials are contained 

in Appendix C. 

Subjects were given a printed copy of an approximately 1000 line 

FORTRAN 77 program, along with a one page questionnaire (see Appendix 

C). During the second experimental session subjects answered various 

questions about the program content and functionality. For example, 

they were asked to identify various aspects of the program, such as the 

particular functions called in a subroutine, the order that function 

code appeared in the printed source code, etc. 

Additionally, subjects were asked to do walk-throughs of code 

sections to instill structural as well as functional knowledge of the 

source. There was an oral review of the questionnaire immediately prior 

to the on-line editing session (session two) to ensure that the subject 

had understood the questions. 

procedure  

The sixteen subjects were randomly assigned to one of two groups: 

Target distance information given, where target distance information was 

given for searching stimuli, or target distance information not given, 

where target distance information was provided for searching stimuli. 

This condition held for the entire experiment for the particular 

subject. Experimental sessions were conducted on an individual basis 
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and ran approximately 2.3 hours in length. 

The question sheet was reviewed with the subject before the 

searching task began to ensure that the learning session was effective. 

In particular, questions pertaining to structural and functional 

knowledge of the familiar condition file were asked. Seventy-five 

percent correct answers on the oral examination was considered adequate 

for the subjects to continue with the experiment. If the subject did not 

attain this, an additional learning session was 	provided with 

experimenter help available. 	Only one subject did not attain the 

desired score on the first test. An additional learning session enabled 

the subject to pass the oral review and continue with the experiment. 

The subject was then seated at a computer 	terminal. 	An 

experimental text editor with only three editing commands: home (return 

to the top of the file), search (search for the indicated string), and 

Control-Z (quit the editor) was used to search the files. The editor 

had a keystroke monitor which recorded keystrokes in serial order and 

cursor movement during editing. 

After final instructions were given, subjects were given sixty hard 

copy sheets (thirty of each Problem Type in random order) from one of 

the familiarity conditions. On each stimulus page, containing a full 

page of program text, a character in a text string was highlighted with 

a yellow marker. The highlighted character was the target for the 

problem. The first ten problems were declared practice and not scored. 

Subjects were instructed to find the highlighted text on each 

stimulus page by issuing a search beginning with the highlighted 
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character and adding characters after it until they subjectively judged 

the string unique. A unique search string was defined in the 

instructions to be a string of sufficient length to enable the editor to 

locate it on the first try. If the search was a success, they were to 

home the cursor (i.e., return the cursor to the top of the file) and go 

on to the next problem. If the initial search failed, they were 

instructed to home the cursor and try once more. The second searching 

attempt was used to identify typographical errors. For example, should 

the first search fail due to a typographical error, and the subject 

entered the second search string with the typing error corrected, it was 

scored as a success. This study was concerned with text searching 

behavior, not typing accuracy. The process was repeated for all sixty 

problems. A short break was given (approximately 10 minutes), then the 

editor was initialized with the remaining condition (familiar or 

unfamiliar) and the previous process was repeated. 

After subjects were run on both conditions, a abort debriefing 

questionnaire was given to solicit subjective information about the 

experiment. 

Data from the experiment was analyzed with SAS statistical software 

procedure GM using a split—plot, factorial analysis scheme over all 

variables. The analysis was conducted using the linear model given in 
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Figure 4-1. 

Table 4-1 shows the mean performance results for the text searching 

experiment. The table reflects subject means over a condition. A 

significant difference was found due to levels of familiarity using 

Duncan:s Multiple Range test. Distance information levels did not 

exhibit a significant performance difference. 

The ANOVA results are given in Table 4-2. Familiarity had a marked 

effect on a subject's ability to locate specific text on the first 

attempt (F(1,14) gg 14.36, p < 0.0026). Distance information had no 

effect on subject performance (F(1,14) = 0.0625, p < 0.9371). 

Additionally, Problem Type had no effect on performance (F(1,14) = 1.92, 

p < 0.1880). No significant interactions between factors were observed. 

Discussion 

Performance within levels of familiarity (F), the only significant 

factor, varied according to the experimental hypothesis: Subjects 

Variable 	 Mean # correct responses 
(25 possible responses) 

Familiar 
	

21.88 
Unfamiliar 
	

19.75 
Distance Information 
	

20.84 
Distance Information N 
	

20.78 

	

Table 4-1 
	

Mean Number of Correct Responses By 
Problem Type Within Familiarity and 
Distance Information Condition 
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Source DF Sum of Squares F Pr > F 

Familiarity 1 72.25 12.31 0.0035 
Distance 1 0.0625 0.01 0.9371 

Information 
Problem Type 1 10.53 1.92 0.1880 
Subject 14 135.69 155.07 0.0629 
Problem Type x 1 0.25 0.05 0.8344 

Distance Inf. 
Familiarity x 2 16.31 1.95 0.1796 

Problem Type x 
Distance Inf. 

Table 4-2 	ANOVA Results. 

located ten percent more target strings on the first attempt in the 

familiar environment vs. the unfamiliar environment. 

The distance cues supplied to the subjects in the distance 

information given condition did not have any significant effect on 

searching performance. There are three possible reasons for this 

result. Either the distance information cues were: (1) not perceived by 

the subjects when searching, (2) the subjects already knew the relative 

distance to cover, indicating that the cues provided no additional 

information, or (3) distance information is not really used in search 

string selection. If humans are sensitive to distance information when 

formulating search strategies, they do not rely on the specific 

quantities given in the experiment. 

It was expected that distance information would have a positive 

effect on searching performance, particularly in the form of a distance 

information x familiarity interaction. Subjects had knowledge of the 
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intervening text between cursor origin and desired cursor location in 

the familiar environment. In the unfamiliar environment, however, 

estimation of search string length was dependent on the amount of 

intervening text based on knowledge of the language, syntax, etc. 

The quantity of distance (in characters) was obviously not reflected by 

the distance cues given in the experiment. It appears that a more 

distinct indicator of character distance should have been used, perhaps 

a table of conditional probabilities of character N—grams (after 

Shannon, 1951). 

Comments solicited from subjects revealed that they recognized 

frequent text strings and increased search string length accordingly. 

Also, it appeared that subjects sought closure for strings that spelled 

out words. For example, even though the entire word was not necessary 

to locate the target on the first searching attempt, subjects tended to 

finish the entire word (e.g., "putstring", instead of uputst"). 

Upon reevaluation of the stimuli, it appeared that there was not a 

qualitative difference between the two problem types. Originally, it 

was expected that users of a well known programming language would 

identify language keywords as occurring more often in a large program 

text. Subjects reported no information that would indicate the 

sensitivity to keywords. Instead, frequently occurring strings were 

recognized according to perceived number of reinforcing occurrences. 

Individual subject difference data were not analyzed. 
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In summary, a human's level of familiarity with a file being edited 

does indeed affect searching performance. Based on the results of this 

experiment, the other factors considered (distance information, problem 

type, and order) do not influence searching performance. These results, 

along with search strings given by subjects in the searching experiment 

will be analyzed against model performance in Chapter 5. 

A Reanalysis  Rf .h€ Data 

Although subjects' success rate remained consistent over variant 

target character distances, the non-significant effect found for 

distance information in the ANOVA was questioned. Referring to previous 

discussion, if distance information was not utilized in subjects• search 

string length strategies, then string lengths should not vary according 

to character distance in the search problem. It would be reasonable to 

assume therefore, that if subjects'. search success rate remains 

consistent over variant distances, search string length should increase 

with distance. 

With the above heuristic in mind, the search experiment data was 

reanalyzed using search string lengths (i.e., in characters) as the 

dependent variable. The reanalysis revealed a significant effect for 

distance information in addition to the familiarity effect (familiarity: 

F(1,14) = 24.33, p < 0.0002; distance information: F(1,14) = 20.33, p < 

0.0005). No other significant effects were identified in the 

reanalysis. 
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It can therefore be concluded that distance information was 

utilized by subjects in determining the length of the search string. 

Distance information did not affect overall success rate. However, it 

did affect search string length selection because string lengths were 

increased monotonically with increasing character distances. 

Frequency Estimation Uperiment  

An on-line text string frequency estimation task was given 

immediately after the text searching task. This task was designed to 

allow the experimenter to compile subjective frequency estimates of 

specific text strings in the files (after Ehrlich, Damon, and Cooper). 

The hypothesis in this experiment pertained to a subjects knowledge of 

text content. Even though learning occurred in the unfamiliar 

environment, the subjects' knowledge of character string frequencies in 

the file would afford better performance in the familiar environment. 

lukierria. 

The same subjects were used in this experiment. 

procedure 
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A C-program was used to present lines of text from each file (one 

file at a time). A stimulus presentation rate of 4 seconds was chosen 

to limit subjects'. responses to recognition memory for each text string. 

During this task, part of the text presented on the screen was 

highlighted in reverse video. Subjects were asked to estimate how many 

times they thought the highlighted text appeared in the file, then enter 

an integer estimate at the keyboard. Results were averaged over 

subjects and the mean estimate was regressed against the actual 

frequency value for both levels of familiarity using SAS statistical 

software procedure REG. The subject mean was used as regressor since 

estimation accuracy for the average subject was desired. 

Estimation Usk Amaral. 

Results from the estimation task are shown in Table 4-3. 

Preliminary analysis of the R-squared (adj.) values indicated that 

subjects were much better at estimating the number of occurrences of a 

particular string in the familiar condition. A correlation analysis of 

Familiarity F-value Prob R2  (adj.) 

Familiar 44.58 p < 0.0001 0.425 
Unfamiliar 12.10 p < 0.001 0.160 

Table 4-3 	Regression results of estimation task. 
by familiarity type 
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actual versus estimated string frequencies was conducted using the 

bivariate normal population correlation analysis technique given by 

Ostle (1963). The results of this analysis showed that the hypothesis 

that the two correlations were equal could not be rejected. 

In Ehrlich, Damon, and Cooper (1983) it was shown that subjects 

were insensitive to word occurrence frequencies above 10 occurrences. 

Considering that some of the experimental stimuli occurred over 30 

times, a non-linear relationship between actual and estimated number of 

string occurrences was suspected. The mean subject estimate was 

therefore normalized using a percent error estimator and the regression 

analysis was rerun. Although the R-squared (adj.) values increased for 

both levels of familiarity (II-squared (familiar) 1. .645, R-squared 

(unfamiliar) ■ .463), recalculation of the bivariate normal population 

correlation analysis technique (Ostle, 1963) again indicated that the 

null hypothesis could not be rejected. 

Discussion  

Given the correlation analysis results, it cannot be concluded that 

subjects possessed a higher level of string frequency knowledge about 

the familiar file. However, a trend is indicated in that direction. 

Upon reanalysis of the data collected in this experiment, sample size 

and number of problems appeared to contribute to the non-significance of 

the correlation differences. Further research is needed with larger 

samples to discern this quantity. 
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One interesting result was noted during comparison of actual 

frequency of occurrence and subjecte. estimated frequency of occurrence 

of a text string. Except for a few outliers, subjects: estimates did 

not exceed 20 even though some of the more common strings occurred in 

excess of 60 times in a file. This result suggests a bias toward low 

frequency estimation possibly due to anchoring effects in the estimation 

process. 



CHAPTER V 

COMPARATIVE ANALYSIS OF MODEL VERSUS HUMAN PERFORMANCE 

jntroduction  

A comparative performance analysis between the search string 

selection model developed in Chapter 3 and the empirical study of 

Chapter 4 is described in this chapter. The same search problems from 

the empirical study were used in the model validation runs. The search 

string selection model was run within both levels of familiarity. 

Search strings issued by subjects in the text searching experiment were 

then compared to the search strings selected by the model on various 

dimensions. 

Performance was compared in terms of: (1) The number of search 

successes for the model and subjects in both levels of familiarity, and 

(2) Search string lengths used by the model and mean string length 

issued by the subjects. 

58 
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Overall text searching performance was analyzed based on percentage 

of search successes by level of familiarity. It was found that the 

search string selection model performance was similar to mean subject 

performance within both levels of familiarity. 

Model performance was equal to mean subject performance in the 

familiar condition. Both the model and subjects (average) exhibited an 

86% success rate (based on 50 searching problems). The model failed on 

3 (of 7) of the same problems as the subject mean. 

The unfamiliar editing condition had even more interesting results. 

The model exhibited a 74% success rate, while subject mean was 80%. The 

13 model failures encompassed 10 of the same failures as the subject 

mean. 

A chi—squared analysis was conducted on the performance results. 

The chi—squared hypothesis: Hu . 

"O .  
successes versus failures are 

independent for the average subject versus model performance" was 

rejected 	in both cases (familiar condition: chi—square = 12.58, 

unfamiliar condition: chi—squared = 35.58, where chi—square 
.0001 

10.8). 	The chi—squared test results indicate that the model tended to 

exhibit the same behavior as the average subject on the same 

experimental problems. 

Model performance within the familiar condition was always better 

than the unfamiliar condition, further supporting the experimental 

hypothesis espoused in the empirical study: greater knowledge of the 

text content and structure will aid in text searching performance. 
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search lulu& Length Comparison 

Search string lengths for the model and the mean string length for 

subjects were analyzed by search problem. Results of this analysis 

showed that although the number of successes were equivalent in the 

performance analysis, the search string lengths chosen by the model did 

not correspond to those chosen by subjects. 

Search string data was plotted for search problems on which both 

the model and subject mean string lengths were successful. Subject mean 

string lengths were used to estimate the average subject response; data 

are plotted by familiarity condition. Figure 5 -1 shows the mean subject 

search string lengths versus model search string lengths. The 
m- 
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Mean Subject vs. Model Search String Lengths. 
Search Successes Under Familiar Condition. 
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correlation between mean subject length and model length was 0.23. 

The unfamiliar condition data yielded better results, as shown in 

Figure 5-2. Correlation of model search string lengths and mean subject 

search string length was 0.54. 

Discussion  

The model of human search string selection reflects overall human 

performance in both familiar and unfamiliar programming language text 

environments. Model adequacy based on number of search successes is 

quite acceptable as shown in the overall performance analysis. 

Figure 5-2 
	

Mean Subject vs. Model Search String Lengths 
for Successful Searches Under Unfamiliar Condi-
tion. 
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Upon finer-grained analysis, however, it was discovered the model 

did not correspond to Actual  human performance on individual searching 

problems. This can be attributed to the algorithm used in determining 

the information-theoretic bits threshold for a searching problem. The 

two-state Markov process, described in Chapter 3, used an estimate of 

the overall desired probability of success, not an individual 

probability based on the particular problem of interest. 

An interesting trend was noticed in Figures 5-1 and 5-2. In Figure 

5-1, note that the model tended to issue longer search strings than the 

subject mean, even though a shorter search string would suffice. 

Conversely, the search strings issued by the model in the unfamiliar 

condition (Figure 5-2) were shorter than the mean subject search string 

on the same problem. 

A possible explanation for this observed trend is based on 

information theory. The search string selection model used B c , or bits 

per character c in the file being searched, as the bits value used to 

determine the search string length. Although adequate for the observed 

overall searching success ratio, Bc  gives the model no increased 

knowledge of the file's structure or function in the familiar condition. 

There was no input to the model reflecting this increased knowledge. 

The shorter search strings issued by subjects in the familiar 

condition indicates that an additional input to subject search strategy 

may be present. 	This input may be similar to the M x , or text 

transition, matrix of the alternate model given in Chapter 6. It is 

hypothesized that the search string selection model algorithm combined 
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with the text transition matrix scheme of the Chapter 6 model would 

yield higher correlation values. In order to do this, B c would be 

calculated based on the transition probability from the previously known 

characters in the string to the character of interest. The level of N 

in MN  would vary over level of familiarity, thus providing the string 

selection model with varying knowledge of the text. 



CHAPTER VI 

AN ALTERNATE MODEL OF SEARCH STRING SELECTION 

Background .411 Alte rnat e  Model 

During the thesis research, an alternate model was developed 

simulating the entire search string selection process within the editing 

environment. Instead of simulating only the human's probabilistic 

search process, this model simulates the editor searching through the 

editing environment. The humans knowledge of the text is represented 

by varying levels of transition matricies. 

The level of transition is defined as the number of previously 

known characters (from Shannon, 1951) in the model. The probability of 

a particular transition entry in the matrix is the probability of a 

specific character occurring after a character string of length equal to 

level of transition. At transition level 3, for example, there are 

several possible characters (e.g., "t", "m", "f", etc.) following the 

character string ".roo". The transition probability of the character "m" 

occurring after the string '!roo" is equal to the number of occurrences 

of the character "m" after "roo" divided by the total number of 

occurrences of the level 3 transition string "roo". 

64 
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This model uses the same theoretical basis as the model described 

in Chapter 3, but was not successful. It was abandoned during the 

thesis research because: 

1.) Model runs required too much computer time and, 

2.) The model still had not converged on a 
reasonable solution by the time it had 
been abandoned. 

Basically, modeling of individual searching problems had reached level 

11, and convergence acceleration predicted a transition matrix of level 

20 or higher to solve it. At level 11, each searching problem required 

approximately 83 minutes to solve a problem for one hundred iterations. 

Multiplied by 50 problems in each of two searching environments, model 

execution time exceeded 2.8 days per environment. This execution time 

made the model prohibitive for this type analysis. 

The alternate model is functionally described in this chapter. 

Following the model description and implementation sections, a 

comparison between the two models is conducted. 

Alternate, tiodel Overviev  

In the model, the probability estimate of search failure is modeled 

as a function P of three variables: the search string S, the distance D 

to the desired position, and the text transition matrix M N. A transition 

matrix entry contains the probability that a given N—character sequence 

is immediately followed by another character in the file being edited 

(see Shannon, 1951). As N increases, the matrix contains an increasing 
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amount of the file's structure. Further, at some value of N, the matrix 

MN  uniquely reproduces the file. 

Using the transition matrix, the 	simulation 	estimates 	the 

probability of a given string occurring at least once in D transitions. 

The accuracy of the probability estimate increases as N increases. This 

is due to the larger number of previously known characters. The same 

increase will cause the model to produce search strings of decreasing 

length if the other variables P s  (i.e., the user's desired probability 

of success) and D are held constant. The user's understanding of the 

text is modeled by the value of N. This value causes the model to issue 

search strings with lengths closest to those of the user. Conservative 

behavior (e.g., issuing a search string much longer than necessary to be 

unique) should be reflected in a smaller value of N. Thus, the model 

minimizes ISI, or the length of the search strings issued, subject to 

the constraint: 

P s  <,• P(S,D,N) 

where: 

Ps = Desired probability of success, 

S = search string, 

D = distance in characters. 

MN  = text transition matrix 

and the model is fit to the user by choosing the best value of N. 	The 

goal of this model was to show that different values of N resulted from 

different experimental conditions. 
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halal Implementation 

Search string data was gathered empirically. 	The search strings 

were recorded along with the distance (in terms of the number of 

characters) to the desired point in the file as a human conducted 

predetermined search tasks. Once the search string data was collected, 

a data file consisting of all character transitions in the file being 

edited was constructed. There was one data file for each level of N (see 

previous section). 

When all of the necessary data was available, the model was run 

with both the search string data file and the transition natricies (one 

for each value of N) of the file being edited. MN  was used to simulate 

the text between the current and desired position. A random number 

generator was used to make choices when the transitions were not 

deterministic. The matrix was then searched repeatedly for the search 

key. The output of the searching processes was the number of times the 

key was found in each creation of the intervening text. When the 

predetermined number of runs was complete, the result was converted to 

P 
	

If P s  was lower than the desired probability, then N or ISM is 

adjusted to fit the user more exactly. 

Analysis jl Components 
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The computer program, herein known as "SPOCK", receives input from 

two data files. One file contains the search strings given to the text 

editor by the human to locate specific text. Along with the search 

string, character distances traversed by the cursor from beginning point 

in the file to the first matching character pattern in the file are also 

supplied to SPOCK. 

Text File Transition Matrix ZI2AALI 	The second data file 

supplied to SPOCK is the text character transition matrix. 	The 

transition matrix, in the form of a data structure, allows SPOCK to 

possesses complete knowledge of the contents of the file. This 

knowledge is known as "familiarity". 

To produce the second data file, the text to be edited is run 

through a LISP program which constructs the MN  matrix. For example, at 

a level of N 6, the string "abcde" is noted by the LISP program to 

occur 15 times in the file. This string is followed by the character 

"f" 10 times, and the character "g" 5 times. The LISP program compiles 

these relationships in the entire file in a format that can be read by 

SPOCK when it simulates the editing environment. By using these 

relationships at varying levels of /I, SPOCK can probabilistically step 

through the file to search for the indicated segment of text. Then the 

program can be assumed to have complete statistical knowledge at the 

level of N for the character transition probabilities in the file. 
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Computer 	af Tit Iditinct Zuvironment  

The computer model, or "SPOCK", was written in the "C" programming 

language and follows Shannon's (1951) theory of conditional 

probabilities of letter frequencies. The human's implicit statistical 

knowledge of a language was modeled for predictive purposes and encoded 

in the program'B data structure. Level of "knowledge", or N, was varied 

with the degree of in—depth understanding of the text being edited. For 

example, a higher level of familiarity with the text is reflected in a 

higher level of N in the simulation. 

SPOCK simulated the text editor searching through the given text. 

The model received the human input, text file transition matrix, and 

character distance from current cursor position to desired position. 

The simulation process is described below. SPOCK."4 source code is 

included in Appendix D. 

II= $lat/Lull= SA1  

SPOCK utilizes both environmental and human inputs to simulate the 

editing environment. In this section, the model is described in more 

detail. 

Before SPOCK receives search string input, it establishes a 

simulated text editing environment. The first task is forming the data 

structure containing the desired text transition matrix based on the 

level of N. When working with large transition matrices, access to the 
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proper next transition string may be time consuming. A large hash table 

data structure is implemented. The hashing index is calculated from the 

decimal product of the previously known letters in the structure. 

Hashing is important to the model. Without an efficient indexing 

system to locate transitions, the time to run a simulation would be 

inordinately long. 	For example, the Mn  matrix is large (3,000 

transitions) at level 3; the matrix increases to approximately 12,000 

entries at level 8. 

The second input is a known current cursor starting point. This 

input is a character string of length N preceding the cursor starting 

position. 

Once the editing environment is formed, the humans search string 

information is input to SPOOK with the corresponding character distance 

from the top of the file. Each string is treated as one problem to 

solve in serial order. 

Finally, given probabilistic knowledge of the text, distance 

information, a starting point (where the cursor is presently located in 

the file), and the search string selected in the experimental editing 

task, SPOOK will calculate the number of times the string was found in 

the simulated environment. Each problem is evaluated by SPOOK and a 

probability estimate (i.e., number of times found divided by the total 

number of simulation runs) is calculated based on the level of N, the 

search string length, and the character distance to traverse to the 

target string (problem). 



71 

&del Comparison 

Although implemented first, this model did not attain high 

predictive performance compared with human and the former (Chapter 3) 

model's performance within the experimental editing environments. In 

the introduction to this chapter, the results of high transition level 

(level 11) simulations indicated individual solutions to problems were 

not converging. Given the high computation time for each problem, this 

model was abandoned in favor of a more suitable model. 

An extensive comparison and contrast study was not conducted. 

However, a few significant results from the experimental validation 

study indicated a threshold model was more appropriate for modeling 

human search string selection behavior. 

There were three basic motivations that led to the design and 

implementation of the search string selection model described in Chapter 

3. First, there was a definite increase in probability of searching 

success within a distance D with an increase in N during the initial 

simulations with experimental data. The simulation process, as 

described in the chapter introduction and above, became computationally 

prohibitive above N n 10 (10 character strings in MN). This observation 

indicated that the humaes statistical knowledge was more in-depth, 

possibly to N s 20 or higher. This trend also indicated that the 

simulation did not contain enough environmental information to model the 

text searching process accurately. As a result, a smaller, more 
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constrained model was desired. 

Second, simulation of individual searching problems showed the 

highest level of N in one particular searching problem was not always 

the best approximation of the human's overall searching success level. 

Since SPOCK used only one level of N for all problems during the 

simulation, a requirement for the smaller model was the ability to vary 

the level of knowledge within the model during simulation. 

Third, analysis of low frequency strings (e.g., those text strings 

occurring less than three times in the text file) in experimental 

problems demonstrated that the sum of information bits in a low 

frequency string often equaled or exceeded the longer, less unique 

strings in other problems. 

As a result of the three reasons given above, the search string 

selection model described in Chapter 3 was developed. It models the 

human search string generation process based on bits of information 

contained in both the text being searched and the statistical process 

conducted by the human while searching. 



CHAPTER VII 

CONCLUSIONS 

In this thesis, the issue of how a user selects a search string in 

a text editing environment was analyzed. The problem space was 

constrained to editing of production sized software source code in which 

the user's task typically, is to locate a specific occurrence of a 

character string. 

Empirical Study 

Two experiments were conducted to determine effects of 	the 

important variables identified in literature review. 	The first 

experiment involved text searching problems. 	Subjects were given 

specific character strings to locate in two FORTRAN 77 source code 

files: one they had studied extensively to acquire structural and 

organizational knowledge of the program ...11 content (familiar condition), 

the second they had never seen before (unfamiliar condition). Both 

files were equivalent in length and code complexity. 

73 
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A split—plot experimental design was utilized in the experiment. 

The experimental group was supplied with distance information cues. 

These cues were designed to give some indication of the character 

distance between the current cursor position (the beginning of the file) 

and the desired cursor position. Two types of search problems were 

given: language keywords (e.g., SUBROUTINE), and variables (e.g., local 

variables defined by the programmer). 

It was found that familiarity was the only experimental variable 

affecting search performance. Subjects found 10% more search targets on 

the first attempt in the familiar condition versus the unfamiliar 

condition. Distance cues were apparently either: a.) not used by 

subjects, b.) ineffectual because subjects already knew the relative 

distance to traverse, or c.) irrelevant to search string selection. 

A reanalysis of the data using search string lengths as the 

dependent variable revealed a significant effect for distance 

information in addition to the familiarity effect. It was concluded 

that since subjects: hit rate remained consistent over variant target 

character distances; distance information was utilized by subjects to 

determine the length of the issued search string. 

The second experiment was a character string frequency estimation 

task. This experiment was designed to provide an estimate of the 

subjects' knowledge of specific strings. Subjects were presented with 

lines of code where part of the line was highlighted in reverse video 

(one file at a time). Subjects were requested to estimate how many 

times the highlighted string occurred in the indicated file. 
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The mean subject frequency estimate for each estimation problem was 

regressed against the actual string frequency value. Although a trend 

was indicated towards more accurate estimation in the familiar 

environment, hypothesis testing revealed that the correlation 

coefficients were not statistically different. A reanalysis of the data 

with mean subject estimates normalized by a percent error estimator also 

yielded non-significant results. 

&dela 

Two models were developed to study the text searching process. 

Both were based on Shannon's (1951) results which state that the human 

has implicit statistical knowledge of a familiar language (e.g., 

structural, syntactic, and semantic knowledge). 

The unsuccessful model described in Chapter 6 attempted to simulate 

the editor searching through text using subject inputs. It was 

abandoned due to prohibitive run-time and non-converging solutions for a 

majority of the searching problems. No data were analyzed from the 

Chapter 6 model. 

The model of human search string selection described in Chapter 3 

used information-theoretic bits as a string length decision threshold. 

The user-.:s searching performance was modeled in terms of the number of 

bits required to move the cursor from the current position to the 

desired position. It was hypothesized that the user would utilize the 

statistical knowledge of the programming language in determining the 
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optimal length of a search string based on four inputs: the character 

distance to traverse, a potential string of characters to choose from, 

the desired probability of search success, and the information-theoretic 

bits per character associated with a character from the file being 

edited. 

A two-state Markov process was used to determine the user's 

probability of search failure. It simulated the editor searching 

through the text character by character with a small probability of 

finding the search key at every point in the text between current and 

desired cursor position. 

Model runs conducted with data from the empirical study showed the 

model predicted human performance accurately. Also, the model's search 

successes and failures correspond well to those of the average subject. 

The model's search string lengths correlate significantly, but not 

strongly, with those of the average subject. There is much room for 

improvement in the model in this regard. 

Conclusions  Ala Suggestions  ism Future  Research 

Given the constrained environment of this thesis, the search string 

model performance corresponded well with human performance. The model 

of human search string selection was adequate for this thesis research. 

The model, however, had no means for including text familiarity in its 

search string length selection. In Chapter 5, a proposed improvement 

was to employ N-gram transitions to estimate the bits for additional 
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characters. If implemented, the value of N could represent familiarity 

in terms of previously known characters. 

The model, although tested in a constrained environment, can be 

useful in research and practical applications. For example, the 

straightforward information—theoretic basis can provide a statistical 

model of textual knowledge within a larger model of human information 

processing. The textual knowledge component of the model would provide 

a parsimonious approach to the complex processes involved with text 

searching behavior. 

A more general model of editor searching can be built from the 

foundation provided by the model described in the thesis. Recall that 

the experimental paradigm was rigid in that the user was forced to 

search using a specified string. Only the length could be chosen. A 

more realistic paradigm would be to allow the user to search for any 

string in the vicinity of the desired position, and subsequently issue a 

second search to position the editor exactly. 

The interesting question in this paradigm is how does the user 

choose the first, approximate location search string. The user might be 

imagined to scan the text centered around the desired position for 

potential targets, using frequency or semantic salience as the 

criterion. The model developed in this thesis could be used to model 

how the user chooses one of the alternatives generated by scanning. 

Research aimed at understanding the human information processes 

involved with text editing, particularly editor positioning, fall into 

two categories: intraline positioning, and interline positioning. The 
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Hammer and Rouse (1982) study is an example of intraline positioning 

research; this thesis is an example of interline positioning research. 

Several methods exist for locating text (e.g., search commands, screen 

by screen search, etc.). By investigating the methods of positioning 

available and the categories of positioning, insight into the human 

information processes responsible for these behaviors will continue to 

be refined. 



APPENDIX A 

SOURCE CODE FOR SEARCH STRING SELECTION MODEL 

;This model represents a search string selection model based 
; on four inputs: 

a potential string of characters to choose from 
a probability threshold that triggers the character 

selection process to cease 
an array of character frequencies from the file 

being searched 
the character distance to traverse 

Written by: Rob Andes 
Date: 	24 MAR 87 

(DEFUN CHOOSE-SEARCH-STRING (potential-string 
prob-threshold 
*char-freq-array* 
distance) 

(let ( (work-string nil) 
(string-prob 1.0) 
(bits-per-char 

*char-freq-array*) 
achar 
(dist (read-from-string distance)) 

(setf *aref-overflow* nil) 
(do ( (inx 1 (1+ inx)) ) 

( (OR (< (find-in-distance string-prob dist) 
prob-threshold) 

(equal *aref-overflow* T) 

(if (< (1- inx) (1- (length potential-string))) 
(progn 

(setq achar 
(aref potential-string (1- inx))) 

(format t "achar - 7d-X" achar) 
(setq string-prob 

(* string-prob 
(shannon-prob achar bits-per-char inx) 

)) 
(setq work-string 

(append work-string '(,achar)) 
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) ;end progn 
;ELSE 
(setf *aref-overflov* T) 

) ;end if 
) ;end do 

(if (equal *aref-overflow* NIL) 
(progn 

(format t "search string chosen = ") 
(dolist (char work-string) 

(format t " -A" (convert-to-char char)) 
) 
(terpri 
(coerce work-string 'string) 

) ;end progn 
;ELSE 
"string aref overflow" 
) ;end if 

) ;end let 
) ;end function 

(DEFUN RUN-STRINGS (char-file dist-file out-file) 
(let ( (strings (make-array 53)) 

(distances (make-array 53)) 
predicted-string 

(read-char-freq "jetchar.dat") ;char freq array 
(setf *string-ptr* (open char-file :direction :input)) 

;fill strings 
(do ( (line (read-line *string-ptr* nil 'EOF) 

(read-line *string-ptr* nil 'EOF)) 
(i 0 (1+ 0) 

( (or (equal line "EOF") (equal line 'EOF)) ) 

(setf (aref strings i) line) 
) ;end do 
(close *string-ptr*) 

;fill distances 
(sea *dist-ptr* (open dist-file :direction :input)) 
(do ( (line (read-line *dist-ptr* nil "EOF) 

(read-line *dist-ptr* nil 'EOF)) 
(i 0 (1+ i)) 

( (or (equal line "EOF") (equal line 'EOF)) ) 
(setf (aref distances i) line) 
) 
(close *dist-ptr*) 

;open output file 
(setf *output-ptr* (open out-file :direction :output)) 

;run the model for each string 
;string probf char-freq dist 

(dotimes (i (length strings)) 
(setq predicted-string 
(choose-search-string 



(aref strings i) .210 character-frequency (aref distances i)) 

; 
	

(format t "predicted-string 1. 7S -1" predicted-string) 
	 81 

(format *output-ptr* 
" -S -S -D-Z" (aref strings i) 

predicted-string (length predicted-string)) 
) ;end dotimes 

) ;end let 
(close *output-ptr*) 

) ;end function 

;char-file dist-file out-file 
...(run-strings "jetstim.dat" "jetdist.dat" "jetfir.out") 
n(setf char-file "c:\\gcliap\\strings.dat") 

(DEFUN SHANNON-PROB (achar prob-of-char inx) 
(let ( 
;(shannon-scale "11.0 .131 .249 .149 .162)) ; ned regression 
(shannon-scale "(1.0 .086 .427 .267 .267)) ; jet regression 
scale-factor 

(if 	inx (length shannon-scale)) 
(setq scale-factor 

(first (last shannon-scale))) 
;ELSE 

(setq scale-factor 
(nth (1- inx) shannon-scale)) 
) ;end if 

(expt 2.0 (- (* scale-factor (aref prob-of-char achar)))) 
) ;end let 

) ;end shannon-prob 

(DEFUN FIND-IN-DISTANCE (prob distance) 
(do ( (tm prob) 
( 0 (1+ i)) 

( ( > i distance) tm) 
(setq tm (+ tm (* (- 1.0 tm) prob))) 

) ;end do 
) ;end find-in-distance 

".(find-in-distance .00525 394) 

;looking for .875 familiar 
;looking for .790 unfamiliar 

(DEFUN CALCULATE-CHAR-FREQ (file) 
(let ( (data-file (open file)) 
(charcount 0) 

(sea character-frequency (make-array 127)) 
(dotimes (i 127) 

(setf (aref character-frequency i) '0) 
) ;initialize array 



(do ( (c (readc data-file) (readc data-file)) ) 
( (equal c :E0F) ) 

(setf (aref character-frequency c) 
(1+ (aref character-frequency c)) 

(setf charcount (1+ charcount)) 
) ;end incrementing loop 

(setf total 0) 
(dotimes (i 127) 

(if (equal (aref character-frequency i) 0) 
;THEN 

(setf (aref character-frequency i) 0) 
;ELSE 

(progn 
(setf char-prob 

(/ (aref character-frequency i) charcount)) 
(setf total 

(+ total char-prob)) 
(setf (aref character-frequency i) 

(coerce 
(log 
(/ 1 (/ (aref character-frequency i) charcount)) 
2.0) ',short-float) 

) ;end setf 
) ;end progn 

) ;end if 
) ;end dotimes 

(format t "total character probability .• -WI" total) 

	

; 	(dotimes (i (length character-frequency)) 
(format t " -a -d 
(convert-to-char i) (aref character-frequency 0)) 

(close data-file) 
character-frequency ;return array 
) ;end let 

) ;end calculate-cha-r-freq 
f-(calculate-char-freq "c:\\rca1\thesis\\ned.f") 

(DEFUN PRODUCE-REGRESSION-DATA 
(freqfile datfile outfile probfile level) 

(let ( (bits-per-char 
(read-char-freq freqfile)) 

(Ex-data 
(create-hx-array probfile)) 

(null-val 0) 

(setq *input* (open datfile :direction :input)) 
(setq *output* (open outfile :direction :output)) 

(do ( (line (read-line *input* nil 'EOF) 
(read-line *input* nil '.E0F)) 

(i 0 (1+ i)) 

( (or (equal line "EOF") (equal line '.E0F)) ) 

	

;; 	(pprint line) 
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(format *output* "7D " 
(aref Hx-data i) ) 

; print Y to regr file 
(dotimes (j level) 

(if 	j (length line)) 
(format *output* " -D " 

;ELSE 
(format *output* " -D " 

(aref bits-per-char (aref line j))) 
) ;end if 

) ;do every character in line 
(terpri *output*) ;add newline 

) ;end do 
(close *input*) 
(close *output*) 

*output* ;for now let's look at the data file 
) ;end let 

) ;end produce-regression-data 

:(produce-regression-data 
"c:\\rob\\thesis\\jetchar.dat" "c:\\rob\\thesis\\jetstim.dat" 
"c:\\rob\\thesis\\jet5.reg" "c:\\rob\\thesis\\jetprob.dat" 5) 

(DEFUN CREATE-H%-ARRAY (prob-file) 
(let ( (data-ptr (open prob-file)) 
(H%-array 

(make-array 50)) 

(dotimes (i 50) 
(setf (aref Hx-array i) '0) 

) ;initialize array 

(do ( (line (read-line data-ptr nil .EOF) 
(read-line data-ptr nil 'EOF)) 

(i 0 (1+ i)) 

( (or (equal line "HOF") (equal line 'EOF)) ) 

(setf (aref Hx-array i) 
(coerce 

(convert-to-bits 
(read-from-string line)) 

"short-float) 

) ;end do 
(close data-ptr) 

(dotimes (i 50) 
(format t "Array entry -d " i ) 
(format t " -d 	(aref Hx-array 	) 

) ;print array 
Hx-array 	;return array 
) ;end let 

) ;end create-hx-array 

"(create-hx-array "c:\\rob\\thesis\\jetprob.dat") 
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;utilities to read strings from files 
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.****************************************** 

(DEFUN SAVE-CHAR-FREQ (char-array dest-file) 
(sea data-file (open dest-file :direction :output)) 
(dotimes (i (length char-array)) 

(format data-file " -D-2" 
(aref char-array i) 

) 

(close data-file) 
) 

"(save-char-freq character-frequency "c:\\rca\\thesis\\test.dat") 

(DEFUN READ-CHAR-FREQ (origin-file) 
(setf data-file (open origin-file :direction :input)) 
(sea character-frequency (make-array 127)) 
(do ( (line (read-line data-file nil 'EOF) 

(read-line data-file nil 'EOF)) 
( i 0 (1+ j)) 

) 
( (or (equal line "EOF") (equal line 'EOF)) ) 

(setf (aref character-frequency i) 
(read-from-string line) 

); 
) ;end do 

character-frequency ;return the array 
) 

'(read-char-freq "c:\\rob\\thesis\\jetchar.dat") 

(DEFUN READC (stream) 
(read-char stream nil 'EOF) 

) ;end readc 

(DEFUN CONVERT-TO-CHAR (int) 
(read-from-string (format nil " -C" int)) 

) 

(DEFUN CONVERT-TO-CHAR (char-code) 
(setf *dummy-char* " ") 
(setf (aref *dummy-char* 0) char-code) 
*dummy-char* 

) 

(DEFUN CONVERT-TO-BITS (value) 
(coerce 

(log 
(/ 1 value) 2) ',short-float) 

) 



(DEFUN CHAR-TO-INT (char) 
(aref char 0) 
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"*********************** 
;; LISP library routines* 
"*********************** 

;; taylor - define a macro for a Taylor Series approximation 
;; 
(defmacro old-taylor (first-n last-n first-term next-term) 

((n ,first-n) 
(term ,first-term ,next-term) 
(sum term (+ sum term))) 

((or (< (abs term) ld-8) (> n ,last-n)) sum))) 

;; taylor - define a macro for a Taylor Series approximation 
;; The macro computes two terms at a time to 
;; avoid alternating term signs. 
;; 
(defmacro taylor (first-n last-n first-term next-term) 

:"(do* 
((n ,first-n) 
(term ,first-term ,next-term) 
(pair 1.0d0) 	 ; don't trip end condition 
(sum 0.0d0)) 

((or (< (abs pair) 1d-10) (> n ,last-n)) sum) 
(setq pair (+ term (setq term ,next-term))) 
(incf sum pair))) 

;; In - returns the natural logarithm of number 
;; 
(defun In (number) 

(unless (plus? number) 	 ; error check 
(error "log: argument must be positive")) 

(let* ((y (/ (- number 1.0d0) (+ number 1.0d0))) 
(s (* y y)) 

y)) 	 ; term without coefficient 
(* 2.0d0 (taylor 1 400 y (/ (setq z (* z a)) (incf n 2)))))) 

"On 1.0) 
;; exp - returns e raised to the power number, 
;; where e is the base 
;; 	of the natural logarithms 
;; 
(defun exp (number) 
(cond 

((minusp number) (/ 1.0d0 (expl (- number)))) 
((zerop number) 1.0d0) 
(t (expl number)))) 

(defun expl (number) 
(taylor 0 2000 1.0d0 (/ (* term number) (incf n)))) 

;; expt - returns base-number raised to the power power-number 



;; 
(defun expt (base-number power-number) 

(if (integerp power-number) 
(iexpt base-number power-number) 

(exp (* power-number (ln base-number))))) 

;; iexpt - returns base-number raised to an 
;; integer power (internal) 
;; 
(defun iexpt (base-number ipower-number) 

(cond 
((plusp ipower-number) 

(do ((result base-number (* result base-number)) 
(n (1- ipower-number) (1- n))) 

((zerop n) result))) 
((zerop ipower-number) 

(coerce 1 (type-of base-number))) 
(t 

(/ 1 (iexpt base-number (- ipower-number)))))) 

;; log - returns the logarithm of number in the 
;; base base (default is e) 
;; 
(defun log (number &optional base) 

(if base (1 (ln number) (ln base)) (ln number))) 

86 



APPENDIX B 

CALCULATION OF APPROXIMATE F -STATISTICS 

When exact F-statistics cannot be calculated due to random effects 

in the linear model, Montgomery (1984) has suggested approximations 

using linear combinations of the expected means squares to isolate the 

desired quadratic effect of a factor. This allows the experimenter to 

estimate the F-statistic of interest. 

SAS GLM statistical software provides the mean square estimators 

for an ANOVA with random effects. Approximate F-statistics were 

calculated for all effects in the text search experiment. The random 

effects were all related to the subject variable (S). Other variables 

in the linear model included: familiarity (F), distance (D), and problem 

type (T). 

The SAS GLM output and method used to calculate the statistics are 

reviewed below. After the output, the approximate F-statistic equations 

are developed. 

F-statistics given in Table 4-1 were calculated using the following 

SAS output: 

SOURCE 	 EXPECTED MEAN SQUARE 

F 	 VAR(ERROR) + 2*VAR(S(D)*F) + Q(F,D*F,D*F*T) 
D 	 VAR( ERROR) + 2*VA2(T*S(D)) + 2*VAR(S(D)*F) + 

4*VAE(S(D)) + Q(D,F*D,D*T,D*F*T) 
S(D) 	 VAR(ERROR) + 2*VAR(S(D)*I) + 2*VAR(S(D)*F) + 
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4*VAR( S( D)) 
vAl( ERROR) + 2*VAR( S( D)*T) + T,D*T,D*F*T) 
VAR( ERROR) + 2*VAR( D)*F) + Q( D*F ,D*F*T) 
VAR( ERROR) + 2*VAR( D)*F) 
VAR( ERROR) + 2*VAR( S( D)*T) + Q( D*T ,D*F*T) 
VAR( ERROR) + Q( D*F*T) 
WAS UNESTIMABLE 

oximate F—statistics were formulated such that the linear 

of the two mean square estimators isolated the Q(COND) term 

r of interest. Once these combinations were determined, 

ice are approximated by: 

/ FS( D) 

▪ var( error) +2var( F*S( D) ) 4-0!( F ,F*D,FTD) / 

var( error) +2var( F*S( D)) 

T / TS( D) 

var( error) +2var( T*S( D))+Q( T,T*D,F*T*D) / 

var( error) +2var(-T*S( D)) 

D/ S( D) 

var( error) +2var( T*S( D) ) +2 var( F*S( D))44var( D)) + 

Q( D,F*D,T*D,F*T*D) 	/ 

var( error) +2var( T*S( D) )+2var( F*S( D))+4var( D)) 

▪ S( D) / D 

▪ var( error) +2var( T*S( D) )+2var( F*S( D))+4var( S(D)) / 

var( error) +2var( T*S( D) ) +2var( F*S( D) ) 44var( D) ) + 

D,F*D,T*D,F*T*D) 



Problem Type 
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x Distance var( error) +2var( T*S( D))+Q( T,'T*D,FarT*D) / 

var( error) +2var( T*S( D)) +2var( F*S( D)) +4var( S( D)) + 

Q(D,F*D,T*D,F*T*D ) 

 

The numerical results are given in Table 4-1 



APPENDIX C 

VALIDATION EXPERIMENT INSTRUCTIONS AND FORMS 

EXTRA CREDIT FOR EXPERIMENT PARTICIPATION 

Experiment - Analysis of Human Behavior in Text Editing 

Principal Experimenter- Rob Andes, Center for Man-Machine 

Systems Research, X3080 or X4318 

Brief Description 

The research will analyze human text editing behavior 

in a constrained environment. Participants will become fam-

iliar with some code and will then conduct editing exer-

cises. There will be two sessions: the first will be a 

group meeting ( -1.5 hr.), the second will be on an indivi-

dual basis and will include some on-line editing (72 hr.). 
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CLASS CREDIT 

Class credit will be awarded for participating in this 

experiment. See your instructor for actual point values. 

Participant Requirements 

Participants should have experience with a FORTRAN 

dialogue and some programming experience (freshman FORTRAN 

is ok). "Experience" is defined as the ability to understand 

FORTRAN code that is already written, there is no program-

ming involved in this experiment. Also, the participant 

should have experience with computer-based text editors, and 

the associated features (e.g.- insert commands, search com-

mands). 

Date and Time 

The initial session will be held in one of the IC lec-

ture roams contingent on participant's schedules. Schedul-

ing of the second session will be arranged individually. 

INSTRUCTIONS 

Please fill out the enclosed data sheet completely. If 

you have questions, use the specified space and I will get 

back to you. Do not ask your professor, he doesn't know. 
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Also, please enclose a copy of your class schedule so that I 

can schedule around everyone. 
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PARTICIPANT DATA SHEET 

Name: 	  

Class: 	 PO Box: 	 

Phone No. (very important for scheduling):  •  

Number of years experience with FORTRAN (estimate): 	 

Number of years experience with text editors: 	 

Other computer skills (explain): 	  

93 

Questions or Remarks: 	  



REMEMBER TO ENCLOSE A COPY OF YOUR CLASS SCHEDULE!!! 

• PLEASE RETURN THIS FORM BY OCTOBER 20th SO THAT WE MAY GET 

THE EXPERIMENT STARTED WITH YOU IN IT!!! 
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SUBJECT BRIEFING ON EXPERIMENT AND TASK OVERVIEW 

In this experiment I am going to examine how a person conducts a 

text search for particular text in a text editor. There are 4 tasks 

that you will perform during the course of the experiment. These tasks 

will be done in order over <2> sessions, with a questionnaire given 

at the completion of the entire experiment. 

	

The first session, 	this one, 	is the initial briefing 	and 

learning 	session. In the second session, you will get some hands- 

on-terminal 	exposure and do some text editing (in particular, 

some searching exercises). Any questions so far? Okay, let'.0 begin. 

As you will notice, I am handing out a hard copy of a 

program. This program, called ned (short for "new editor"), is a FORTRAN 

77 based text editor designed to run on a vax 11-780. Row about 

scanning some of the contents now. 

Okay, now comes the next part of the experiment that 

requires you to know FORTRAN. Although you don't have to write any 

code, I am going to ask you to learn how the code works (e.g.-how 

subroutines function, the calling sequence of functions, where 

specific variables occur). For example, you will be asked to read 

over, 	learn the basic operation of the program and be responsible 

for its content (don'A worry, 	the program is not difficult to 

understand). Basically, I want you to attain a level of familiarity 

with the code. such as if YOU wrote it (but not totally). To do 

this, I'.11 give you a questionnaire (not too horrible yet, is it?), 

to fill out before you come in for the second session to allow for a 
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little learning by doing:-). 

Most of the work done in this experiment is done on your own. 

By filling out the questionnaire, you will have to pay attention 

to things that I feel are important to your understanding of 

the program and its function. Should you have any questions, you 

can either call me at the Computer Coordinators Office (x-3080), 

or come by to talk. I would like to stress the fact that mental effort 

will be the major component in understanding the program, however. 

After r.ve given you some time to look over the code and answer 

the questionnaire, we=ll set up a time for the second and final 

session. This session will involve some text editing on a terminal with 

some hard copies to help your memory. In addition to the text editing, 

I'412 going to ask you some particular things about 	the program text 

online, 	so it would be a very good idea to pay attention to the stuff 

that r!.in going to ask you to learn. There is one issue which needs to 

be addressed before we go any further with the experiment. The editor 

that you will be using has online data collection capabilities and 

keystroke monitors to aid the modeling effort. Your extra credit 

points are awarded on the contingency that you know the program. It is 

of 	utmost importance to the success of the experiment that you learn 

the concepts and quantities that you are asked to learn. Now, 	should 

you choose not to learn the program (look Ifai not asking very 

difficult questions) it will be reflected in your extra credit. NO 

play, No pay, basically. 
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When all the "hands—on" tasks are completed I'll then ask you to 

complete a short questionnaire on your bakground. THEN, I'll tell you 

what all of this is about (thought r.d never get around to that, huh?). 

Do you have any questions before we begin? OK, lets go. 
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EXPERIMENT QUESTIONNAIRE 

jnstructions:  Please use separate sheets for answers to the 

questions. Put your name and second session date and time at the top of 

your answer sheets. There are 32 questions, please answer all of them 

to the best of your understanding of the program. Please do not consult 

anyone but me about questions or problems. I can be reached at 894-3080, 

894-4318, or 874-7110. 

general Ouestions  

1. What routines use the variable "BUFC" ? 

2. What routines use the variable "LOGGING" ? 

3. Where is LOGGING defined? 

4. What routines use the variable "SCRBOTY" ? 

5. What routines use the variable "STAT" ? 

6. What is a global input? 

7. What are the global inputs to subroutine "CLEARSCREEN"? 

8. Which function code appears first in the file, "PUNTSCREEN" 

or "FIXSCREEN"? 

9. On what pages of the program can the previous functions 

be found? 

11. What does an "INCLUDE" statement do? 

12. How many times does the variable "LETTERDIGIT" appear 

in the program? 

13. What is UNITTYPE? 

14. What does UNITTYPE do? 



15. How many times is "LOADUSER" used? 

16. What routines call "KEYBOARD"? 

17. What will happen if a CTRLN is input to ned? 

18. How many subroutines are commented out? 

19. How many times is "PUTSTR" called by "FIXSCREEN"? 

20. What does "TEXTX,TEXTY" signify? 

21. What is QUERYF"? 

True sax False 

22. Subroutine "SETHOME" is called by subroutine "INITIALIZE" 

23. The variable "CTRLZ" exits the editor. 

24. There are 6 functions contained in ned.f. 

25. There are 20 subroutines in ned.f 

26. The variable "MYTEXTX" occurs a total of 10 times in 

the program. 

Liitor  function alultiank. 

27. Generally describe how the ned editor functions (simulate the 

computer). 

28. Name the function that receives keyboard input and conducts 

first processing. 

29. Briefly describe how the function, named above, processes 

input. 

30. How many times is subroutine "GETCOMMAND" called? 

31. Describe the function of "B INDEX". 

32. What function does "SCAN" perform? 
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INSTRUCTIONS FOR TEXT EDITING TASK 

In this experiment, you will be asked to do several text editing 

tasks on two separate files: one will be the file that I've asked you to 

learn, the other will be a file that you've never seen before. 

Although ned is a powerful editor, several of the commands and 

features have been disabled for this experiment. During the course of 

the experiment, you will only be allowed to use three of the ned 

functions: ".search"("./"), "home"("home" key), and End (Cntrl-Z). 

Backspace ("<-") will also be enabled so that you may correct your 

spelling, etc. Using two commands, home and search, you will locate 

indicated segments of text. Please only use "Z at the end of the data 

file (I".11 tell you when). The experiment procedure follows... 

In this experiment, you will use your knowledge to locate certain 

sections of text in a file (e.g.- the program nye asked you to learn) 

using a search command sequence. Efficiency is the key in this 

experiment: I want you to use all the available information to find the 

desired text by issuing only one search command per test problem (two at 

most). 

Each character string to be located is highlighted in yellow on a 

hard copy page. To find the desired location, do the following: Issue a 

"/" to ned; that will enable the search command. Beginning at the 

highlighted letter for each problem, type in a number of characters of 

the sequence that you feel would be unique enough to fix the cursor at 

the highlighted character on the first try (ned fixes the cursor at the 
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first character of the string given in the search command). A point to 

remember about searching strategy: The longer the search string given to 

ned (e.g.- number of characters in the line to be located), the greater 

the chance of finding the text on the first try. GIVE EXAMPLE. If you 

make a mistake, you may use the backspace key to erase characters. 

Also, please check your search string before hitting the return key so 

that typos voe.t hurt your performance. 

On the table in front of you are 2 items: a stack of hard copy 

sheets from the program to edit and the computer terminal. Once nve 

initialized ned and created a data file for you, please follow these 

instructions. If you have any questions, ask them after we read through 

them once: 
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Editing Experiment Instructions 

[a] The text character to be located is highlighted in yellow (one per 

page). Please do them in order. Remember to begin the search string 

with the highlighted character. 

lb] Please try not to spend more than approximately 15 seconds/problem. 

lc] After you have reset the editor to the top of the file (using the 

HOME command), use the search command to locate the indicated text. 

Your strategy should be such that the character string that you 

give to the editor will position the cursor at the highlighted 

letter on the issuance of the first search command. Remember, an 

efficient strategy will allow you to issue a string that is short 

but unique; this will help you to find the string on the first 

try. 

[d] If you have located the indicated string on the first try, you will 

notice a on the far right of the indicated line. THAT'S 

ITU!. Reset the cursor position to the top of the file and go on 

to the next character string to locate. 

le] If you didn't find it on the first try, reset the cursor to the top 

of the file and try again. This time, be more careful to issue a 

string that is more exact (unique) so that the editor will be able 

to find the particular place you are looking for. 

al Continue this process until you reach the end of the stack of hard 

copies. Then call for assistance. 
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ALWAYS REMEMBER TO RESET THE CURSOR TO THE TOP AFTER EACH PROBLEM 

III IF YOU FORGET, SEND A BOGUS SEARCH STRING AND THEN RESET. BOTX: IL 

there aLe tast occurrences  ag. the lasing. ma Ihe jinei  make alma that the 

cursor is positioned on the right instance of the string. You can check 

this by comparing the hardcopy to the screen. If yoe.re unsure, ask. 

NOTES:  

1. ALWAYS remember to reset the cursor to the top of the file after 

every  search attempt using the "HOME" command. 

2. USE all of the information given on the hardcopy for each string to 

be located (e.g.-- if a page number is given, consider this information 

in the context of the text string you are looking for. Also, if a line 

number is given at the top of the page, this number will represent the 

relative line number of the highlighted text). 

3. There are only 3 commands -- HOMWHOME"), SEARCH("/"), and 

QUIT(Ctrl—Z). 

4. Use backspace to correct command line errors. 

5. ONLY retry each problem ONCE, if you fail the second time, go on to 

the next problem. (no big deal). 

6. All letter input is translated to upper case. 

7. USE your knowledge of the program you've learned (e.g.— ned.f) to 

locate the text you've seen before by considering where the text is in 

the file. 
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8. TRY not to take longer than 15 seconds per problem! 

9. If you need help, ASK!!! Remember, you are very important to the 

success of this experiment. 

10. Any observations you make during the experiment that you think I 

should know tell me after the experimental session. By the way, 0 and 0 

are different characters to ned. A capital 0 has squared corners. 

Thank You. 

Rob. 
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INSTRUCTIONS FOR ESTIMATION TASK 

This task is short and simple, it will test your memory for certain 

word (character sequence) frequencies in the program source code files 

that you have been editing (from last task). I will activate the program 

for you, and set up a data file. You will then be prompted to do the 

following: The computer will present you with a series of sentences (or 

sentence fragments) from both the program If.ve asked you to learn and an 

unknown program text (one program at a time). Based on your relative 

knowledge of the given sentence, estimate the number of times that you 

have seen the highlighted text in the indicated program. Each sentence 

will be presented by the computer for only <4> seconds, so don't think 

about it too long. Just give your best estimate. 

ll] ".Hit any key to begin" This will begin the program. 

[2] If you entered a wrong number before 4 seconds is up, you can use 

the backspace key to correct your mistakes. 

[3] If you have not seen the text before, give your best estimate of 

how many times you think the string occurs in a program of the same 

size as the one I've asked you to learn. 

l4] Once all of the text lines from one program have been displayed, 

the program will switch input programs and prompt you to "Hit any 

key to begin" again. Once you hit a key, the process described 

above will be repeated with the other program that yoeve edited in 

the editing task. 
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REMEMBER: the sentences will only be displayed for a short period 

of time. ANSWER QUICKLY!!! 

REMEMBER: You MUST hit RETURN at the end of your data input for the 

program to record your answer!! 

When the computer signals the end of the task (e.g.— TEE END.), 

youf.re finished! Please let me know. I should be in the next room. 

Thanks!! 



APPENDIX D 

SOURCE CODE FOR ALTERNATE MODEL 

/************* 

* C -source code for SPOCK, the model simulating the entire * 
* editing environment. 	Written: Spring 1986 
** 	kleirkirk**********************1Hkink************-irkirk********/ 

#include <etdio.h> 
#include <ctype.h> 
#include <math.h> 
#include <assert.h> 

#define TABLESIZE 16383 
#define FALSE 0 
#define TRUE 1 
#define ARRSZ 50 
#define MAXCHAR 50 

struct namestruc 	/* holds the N-gram */ 
char namei16]; 
struct namestruc *across; 
struct charstruc *down; 
long freq; 
); 

struct charstruc ( 
char c; 
struct charstruc *next; 
long cfreq; 
long charused; 
); 

/* size hash table */ 
static struct namestruc *hashtable[TABLESIZE]; 

struct namestruc *lookup(); 
struct namestruc *addname(); 
struct charstruc *addchar(); 
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long ourrand(); 



long simulate(),hash(); 
int mysend(); 

int 	LEVEL; 
char 	buffer[ARRSZ]; 
int 	keylen,bufferlen; 
char 	key[ARRSZ],begstr[ARRSZ],nubegstr[ARRSZ]; 
int 	found s runs; 
long 	seedx; 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 
int p,dist,i; 
char name[ARESZ],inbuf[25],c; 
long freq,unistruc; 
FILE *fp,*fpd; 
struct namestruc *zorch; 

unistruc ■ 0; 
if(argc < 3)( 

printf("Usage- spock <inputdata> <LEVEL> <#runs> <datafile>0); 
exit(-1); 
); 

if((fp = fopen(argv[1], "r")) == NULL) { 
printf("Cant open input file.0); 
exit (-1); 
); 

sscangargv[2],"%d", &LEVEL); 
sscanf(argv[3],"U",&runs); 

while(Ifeof(fp)) { 
readstruct(fp,name,&c,&freq); 
if((zorch=lookup(name))== NULL) { 

unistruc++; 
addname(name,c,freq); 
} 

else { 
addchar(zorch,c,freq); 

); 
printf("number of unique namestrucs = L10, unistruc); 
printf("input file = %80,argv[1]); 

printf("LEVEL=UO,LEVEL); 
printf("runs=L30,runs); 
if((tpd = fopen(argv[4], "r")) ==. NULL) { 

printf("Cant open data file.0); 
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exit (-1); 
); 

fgets(inbuf,MAXCEAR,fpd); 
inbuf[strlen(inbuf)-1] 
strcpy(begstr,inbuf); 
printf("beginning string =250,&begstr[0]); 
for( i=0;i < LEVEL;i++) 

strcpy(ignubegstr[iip&begstr[i]); 
fgets(inbuf,MAXCHAR,fpd); 
inbuf[strlen(inbuf)-1] = 
sscanf(inbuf,"%d",&seedx); 
prina("random seed = U0,seedx); 

for( ;;) 
found = 0; 
fgets( inbuf,MAXCHAR,fpd); 
inbuf[strlen(inbuf)-1] = 	".; 
sscanf(inbuf,"%d", &dist); 
if(feof(fpd)) break; 
printf("distance = UO,dist); 
fgets( inbuf,MAXCHAR,fpd); 
inbuf[strlen(inbuf)-1] =' 
strcpy(key,inbuf); 
printf("key =180,&key[0]); 

for(p=1; p <= runs; p++) { 
if(simulate(nubegstr,key,dist)) 

found++; 

outfile(); 
}; 

readstruct(input,name,c,freq) 
char 	name[], *c; 
FILE 	*input; 
long 	*freq; 

long 	temp; 
int 	nameinx; 

nameinx = 0; 
do 

fscanf(input,"%ld ",&temp); 
name[nameinx++]= temp; 

while 	(temp 1= 0); 
fscanf(input,"%ld ",&temp); 

- temp; 
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f scanf( input ,"X ld 0 ,Eitemp) ; 
*freq IN temp; 
) 

struct namestruc *lookup( name) 
char *name; 
{ 
struct namestruc *inx; 

for ( inx gs hashtable [ hash( name)) ; inx 1- NULL; inx i• inx->across) 
if ( strcmp( name, inx->name) a  0) 

return( inx) ; 
return( NULL) ; 
} 

long hash( name) 
char *name; 
{ 
long tabval ; 
int i; 
int len; 

/* for( i = 0 ; nameL ii ; i++) { 
tabval 4... ( int)name I ii * ( int) name[ i] ; 

) 
if( tabval < 0) 

tabval -tabval; 
return( tabval X TABLESIZE); *1 

len as strlen( name); 
fort tabval AR  ( int)name[0 ] X TABLESIZE, 11E1; i < len; ++i) { 

tabval mg ( tabval * ( int)name[ i]) X TABLESIZE; 
) 

return( tabval) ; 
) 

struct namestruc *addname( name, c , tf req) 
char *name, c; 
long tfreq; 
{ 
struct namestruc *ptr; 
char *malloc( ) ; 
int tabval; 

ptr .. ( struct namestruc *) malloc( sizeof( *ptr)) ; 
if ( ptr 1.1. NULL) 
return (NULL) ; 
if ( ( a trcpy( ptr- >dame, name) ) =mg NULL) 

return( NULL) ; 

tabval all hash( ptr->name) ; 
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ptr->across • hashtable[tabval]; 
ptr-Mown • NULL; 
addchar(ptr,c,tfreq); 
hashtable[tabval] • ptr; 
return(ptr); 

struct charatruc *addchar(nptr,newc,cfreq) 
struct namestruc *nptr; 
char non; 
long cfreq; 
{ 

char *malloc(); 
struct charatruc *cptr; 

cptr • (struct charatruc *) malloc(aizeof(*cptr)); 
cptr->next • nptr->down; 
nptr->down • cptr; 
cptr->c • newc; 
cptr->cfreq • cfreq; 
/* cptr->charused • 0; /* initialize counter to zero *1 
nptr->freq +• cptr->cfreq; 
return( cptr) ; 
} 

long simulate(startstr,inkey,num) 
char startstrIAERSZJ, inkey[ARRSZ]; 
int num; 
{ 

struct charatruc *chptr; 
struct namestruc *nm; 
char worker[ARRSZ]; 
long pick; 
int i,z; 
long iter; 

bufferlen=0; 
for(z=0; inkey[z] l• 	++z) 

keylen • z; 
for(i=0; i < ARM; ++i) 

buffer[i] • : 

strcpy(worker,startstr); 
worker[LEVEL] • S 
for(iter • 1; iter <• num; iter++) { 

if((nm • lookup(vorker)) •• NULL)( 
printf( m string with no successor •ae,worker); 
return(0); 	/* simulate EOF */ 
) 

/*pick • (ourrand(&seedz) Z nm->freq) + 1; */ 
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pick - ((ourrand(6seedx) / 2147483648.0) * um->freq + 1.0); 
chptr - mm->dovn; 
vhile((pick -m chptr->cfreq) > 0) { 

chptr - chptr->next; 
} 

strcpy(6workert0h6vorker[1]); 
vorker[LEVEL-1] - chptr->c; 
chptr->charused++; /* increment character counter */ 

if(mysend(chptr->c)) { 
I * 	printf("key found at iter - ZdO,iter); /**/ 

return(iter); 

) 
return(0); 

mysend(c) 
char c; 
{ 

if 	(bufferlen < keylen) 
buffer[bufferlen++] ■ c; 

else 
strcpy(6buffer[0],&buffer[1]); 
buffer keylen - 1] - c; 
) 

if(bufferlen >m keylen) 
return((latremp(key,buffer))); 

else return(FALSE); 
} 

long ourrand(IX) 
long *1X; 
{ 

long kl; 

kl - (*IX) / 127773; 
*IX - 16807 * ( *IX - kl * 127773) - kl * 2836; 
if (*IX < 0) *IX m *IX + 2147483647; 
return (*IX); 

outfile() 
{ 

printf("0 found the string Lit %d times out of Zd 0, 
6key[0],found,runs); 

fflush(stdout); 
} 
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This section of the final report is an overview of the four 

articles included as the substance of the report. These articles 

are: 

Hammer, J.M., A display editor with random access and 

continuous control, International Journal of Man-Machine 

Studies, Vol. 21, 1984a. 

Hammer, J.M., Statistical methodology in the literature on 

human factors in computer programming, in Human-Computer  

Interaction,  G. Salvendy and M. Oshima, eds., Elsevier 

Publishing Co., 1984b. 

Lewis, C.M. and Hammer, J.M., Significance testing of rules 

in rule-based models of human problem solving, IEEE 

Transactions on Systems, Man, and Cybernetics,  16(1), 1986. 

Andes, R.C., Jr., An Information-Theoretic Model of Human 

Search String Selection in Text Editing, M.S. Thesis, Center 

for Man-Machine Systems Research, School of Industrial and 

Systems Engineering, Georgia Institute of Technology, 

Atlanta, Georgia, 1987. 

[Hammer 1984a] is a report on an editor designed to keep the 

user in continuous control of the positioning process. This work 

was begun out of frustration with a primitive display editor 

which could produce so much display output that it could lag the 

user's commands by a second or more, even at then high baud 

rates. While the description of this editor may make it at first 

appear similar to many others of its era, it did in fact take 
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advantage of or make allowances for many aspects of human 

performance that many display editors still do not accommodate 

today. 

[Hammer 1984b] is the result of an experimental failure, 

which lead to an exploration of how experiments should be 

conducted with human subjects. One uncertainty in this new field 

was the degree of variability in human subjects. Since there 

were a number of articles on human performance in computer 

programming, this field was selected for an examination of 

successful and unsuccessful practices. Many researchers in this 

field had claimed that programming ability differed widely 

between individuals. The statistical results in the literature 

at that time do not support that claim. Instead, most of the 

results were found to be as large (in terms of variance 

explained) as were found in the "harder" areas of psychology 

(such as traditional experimental psychology and human factors 

psychology). 

[Lewis and Hammer 1986] describes several methods for 

statistical significance testing of rule-based models. A typical 

evaluation of a production rule model of human problem solving 

was to point out the percentage agreement between model and 

subject actions. This article describes three methods (ANOVA, 

chi-square, and randomization tests) that can evaluate the 

significance of each rule. The conclusion of the article 

describes a problem which remains an research interest of both 

authors: identification of a rule-based model of cognition from 
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data. Significance testing, even as described in the article, 

does not guarantee identification. The article describes a 

paradigm through which this question could be studied. 

[Andes 1987], a thesis directed by the principal 

investigator, describes a model of how the human chooses a search 

string to move an editor to a desired location. The model posits 

two processes. First, the human must estimate the number of bits 

of information in the text between the current and desired editor 

position. Second, the human must choose a search string with at 

least this many bits. The model was able to predict human 

success and failure with at least 90% accuracy. 
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