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SUMMARY

Optogenetics is a set of technologies that enable optically triggered gain or loss

of function in genetically specified populations of cells. Optogenetic methods have

revolutionized experimental neuroscience by allowing precise excitation or inhibition

of firing in specified neuronal populations embedded within complex, heterogeneous

tissue. Although optogenetic tools have greatly improved our ability manipulate neu-

ral activity, they do not offer control of neural firing in the face of ongoing changes

in network activity, plasticity, or sensory input. In this thesis, I develop a feedback

control technology that automatically adjusts optical stimulation in real-time to pre-

cisely control network activity levels. I describe hardware and software tools, modes

of optogenetic stimulation, and control algorithms required to achieve robust neural

control over timescales ranging from seconds to days. I then demonstrate the scien-

tific utility of these technologies in several experimental contexts. First, I investigate

the role of connectivity in shaping the network encoding process using continuously-

varying optical stimulation. I show that synaptic connectivity linearizes the neuronal

response, verifying previous theoretical predictions. Next, I use long-term optogenetic

feedback control to show that reductions in excitatory neurotransmission directly trig-

ger homeostatic increases in synaptic strength. This result opposes a large body of

literature on the subject and has significant implications for memory formation and

maintenance. The technology presented in this thesis greatly enhances the precision

with which optical stimulation can control neural activity, and allows causally related

variables within neural circuits to be studied independently.

xvi



CHAPTER I

INTRODUCTION

Innumerable distinct mechanisms give rise the brain’s multiplex functionality. These

mechanisms act over time scales ranging from single action potentials to long-term

memories, and spatial scales ranging from individual dendritic spines to connections

between brain regions. The chemical, morphological, electrical, and genetic processes

required for neural function coexist and interact, resulting in tangled webs of cause

and effect. This complexity makes the brain a very difficult system to approach scien-

tifically because the experimental perturbation of one variable inevitably affects many

others. Therefore, despite tremendous progress in genetics, microbiology, microelec-

tronics, data acquisition, and computer processing, neuroscientists still possesses only

a rudimentary understanding of how the brain develops and operates. Further, the

existing knowledge set is diverse, and has yet to be stitched into a cohesive set of

principles that adequately describe the most interesting aspects of brain function -

information processing, learning, and memory.

Rather than dealing with neural complexity on nature’s terms, our lab has chosen

to investigate simplified systems that capture some of the brain’s essential features.

We study cultured cortical networks which are grown on beds of microelectrodes. The

utility of this approach is evidenced by previous successes in other fields of science,

most notably in physics. By performing careful measurements on a cleverly devised,

simplified system, fundamental principles can be derived that are accurate in a much

broader context. Analogously, we believe that many important aspects of neural

function exist in cultured networks and that the study of these reduced preparations

may inform the development of fundamental principles that apply to the intact brain.
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1.1 A minimal in-vitro model to study neural connectivity,
signal-transduction, and stability

When supplied with an appropriate mixture of nutrients and a protein bed to grow

upon, dissociated neurons and glial cells will form a densely connected, highly-active

signaling network. Primary neuronal cultures offer unmatched experimental access

for imaging, neural stimulation, genetic manipulation, and pharmacology (Fig. 1).

For instance, cultured cortical networks can be maintained on top of microelectrode

arrays (MEAs), which are embedded in the culturing surface. This allows the continu-

ous, non-invasive, electrical readout of spatio-temporal activity patterns produced by

the network as it develops (Jimbo et al., 1999; Potter and DeMarse, 2001; Wagenaar

et al., 2006c; Minerbi et al., 2009; Gal et al., 2010; Hales et al., 2012) (Fig. 1(c)). Be-

cause of their experimental accessibility, cultured cortical networks have often served

as a testing ground for new genetic and electrophysiology tools (Hamill et al., 1981;

Fiscella et al., 2012; Robinson et al., 2012; Bakkum et al., 2013) and as a general-

ized model for neuronal plasticity (Bi and Poo, 1998; Turrigiano et al., 1998; Bakkum

et al., 2008b). Our lab has previously developed hardware and software tools to better

exploit the experimental advantages afforded by cultured cortical networks (Wage-

naar and Potter, 2002, 2004; Rolston et al., 2009a), and we have used these tools to

make insights into learning and plasticity at the network level (Madhavan et al., 2007;

Bakkum et al., 2008a,b; Chao et al., 2008), spontaneous network dynamics (Wagenaar

et al., 2006b,c; Rolston et al., 2007), and to control aberrant network dynamics using

electrical stimulation (Wagenaar et al., 2005). Other labs have also leveraged cultured

cortical networks and MEA technology to study long-term modulations in neural ex-

citability over extended timescales (Gal et al., 2010), homeostatic plasticity (Minerbi

et al., 2009), and rhythmic motor activity (Darbon et al., 2002). Additionally, re-

searchers have produced new MEAs with improved spatial resolution (Bakkum et al.,

2013; Müller et al., 2013; Fiscella et al., 2012) and signal-to-noise ratios approaching
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those of intracellular recordings (Robinson et al., 2012) .

Because MEAs offer many simultaneous measurements of spiking activity, they

are especially well suited for rapid, accurate estimation of the population firing rate.

The population firing rate within a functional region is the most robust correlate of

sensory and motor information in the brain. It can be used to decode the direction of

arm movements (Georgopoulos et al., 1988), the perception of visual motion (Stein-

metz et al., 1987), and an animal’s physical location within an environment (Brown

et al., 1998). Obtaining robust control of the firing rate of precisely defined neural

populations will allow more straightforward investigations of causal links between

neural activity and sensation or behavior. Further, improved control over activity in

neural tissue involved in sensory or motor processing will enable improved sensory

and motor prosthetic devices. Finally, technologies that allow precise, external con-

trol over population firing levels will confer the ability to experimentally decouple

firing activity from potentially related system variables. For instance, spiking and

neurotransmission, which are highly interdependent processes, could be decoupled if

direct experimental control of firing was achieved. This would allow the independent

roles of neural firing to be parsed out from a complex web of other related processes.

The feasibility of firing rate control hinges on the functionality of three components

that are common to every control system:

1. The plant: The system to be controlled.

2. The sensor: A device used to measure some aspect of the the plant’s state(s).

3. The actuator: A device used to affect the plant’s state(s).

Given their accessibility and built-in electrophysiological readout, cultured cortical

networks (the plant) grown on microelectrode arrays (the sensor) offer an ideal start-

ing point for the development of technologies aimed at precisely controlling neural

activity. It has been shown previously that multisite electrical micro-stimulation can
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Figure 1: MEAs offer superb experimental access. (a) An MEA is held by a researcher. Sixty
electrical leads, which emanate from mirco-electrodes embedded at the culturing well’s center, cast shad-
ows onto the researcher’s hand (photo courtesy of Dr. Steve M. Potter). (b) Cultured networks on MEAs
allow excellent molecular, genetic, and optical access. Left, An overlaid confocal photomicrograph shows
cell bodies with immunoreactivity against neuronal nuclear protein (NeuN; blue) and Ca2+/calmodulin-
dependent protein kinase IIα (CaMKllα; green) which is preferentially expressed in excitatory neurons.
Red fluorescence indicates the expression of the fluorescent protein mCherry, which in this case is driven
by a CaMKllα promoter. The mCherry construct was transduced using a bath-delivered adeno-associated
viral vector. ‘e’ denotes electrode locations. Scalebar, 100 µm. Right, A box plot quantifies the ex-
pression efficiency and specificity of mCherry in NeuN-expressing cells (putative neurons). Data from
3 cultures over 12 regions of interest. (c) MEAs allow excellent electrophysiology access. One month
of simultaneous, continuous multi-site electrical recordings was performed on 6 sister cultures using an
MEA with 6 integrated culturing/recording chambers. The colormaps show detected firing activity on
each electrode in three of these cultures over their first 29 days in vitro. Two of these cultures were
chronically stimulated with spatially random 2 or 20 Hz aggregate-rate electrical pulses for the duration
of their development. Bin size, 1 minute. ‘M’ denotes the occurrence of a medium exchange.
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serve as a powerful actuator of cultured network firing activity (Wagenaar et al., 2005;

Newman et al., 2013; Wallach et al., 2011), and can be used for successful control of

population firing. However, recent genetic approaches offer powerful alternatives for

neural actuation.

1.2 Optogenetics - controlling neurons with photons

In spite of our lab’s progress using spatiotemporal electrical stimulation for control-

ling neural activity (Wagenaar et al., 2005; Wagenaar, 2006; Newman et al., 2013),

the control of genetically-defined neural populations relies on a fundamental change

in stimulation technology. ‘Optogenetics’ encompasses a set of techniques that permit

the expression of microbial opsins in genetically-specified cell populations, including

mammalian neuron subtypes (Boyden et al., 2005; Zhang et al., 2006; Mattis et al.,

2011; Yizhar et al., 2011a) (Fig. 2). These proteins allow electophysiological manip-

ulation of neurons using light. The advent of optogenetics has filled a long standing

technology gap in cellular-resolution electrophysiology. The use of electrical stimula-

tion techniques to perturb neural activity, starting with experiments performed circa

1771 by Luigi Aloisio Galvani, long precedes the introduction of technologies for read-

ing bioelectric signals. However, there have only been incremental improvements in

electrical stimulation techniques during the past ∼200 years. Meanwhile, methods for

electrical or optical readout of neural activity have far surpassed electrical stimulation

technologies in terms of resolution and bandwidth.

Optogenetic techniques have provided a transformative step away from electrical

micro-stimulation (Wagenaar et al., 2004), or optical uncaging of neuro-active sub-

stances (Nerbonne et al., 1984), for controlling the activity of neural circuits. This is

due to several key characteristics of optogenetic tools. First, the expression of opto-

genetic proteins can be targeted to genetically-defined populations of cells using pro-

moter sequences. This enables communication with specific neuronal sub-populations
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Figure 2: Optogenetic tools for perturbing neural activity. Left to right: Non-specific light-
gated cation channels, such as channelrhodopsin-2 (ChR2), can be used to depolarize the resting mem-
brane. Light-powered chloride pumps, such as enhanced halorhopsin3.0 (eNpHR3.0), pump chloride into
the cell, causing a drop in membrane potential, which quiets neural activity. Light-powered proton pumps,
such as archaerhodopsin-T (ArchT), pump protons out of the cell, causing a drop in membrane potential
that can completely silence spiking activity. Engineered G-protein-coupled opsins, ‘optoXRs’, can be used
to optically manipulate various receptor-initiated intracellular biochemical signaling cascades, which can
affect cellular excitability and developmental processes. Hundreds of opsin variants, each conferring some
specialization in function, are currently in active laboratory use.

whilst using optical signals that are spatially homogeneous. Therefore, the specificity

of neuronal stimulation is no longer contingent on precisely controlling the spatial

characteristics of chemical gradients or electrical fields, both of which are difficult to

govern within the complex, non-homogeneous structure of neural tissue.

Second, interference between electrical recording and optical stimulation is negli-

gible when a few precautions are respected. Therefore, sensitive electrical recordings

can be conducted simultaneous to optical stimulation without incurring artifacts on

recording lines. This is not the case for electrical stimulation, since the voltages and

currents required to produce a neural response are many orders of magnitude larger

than those used to detect neural activity (Wagenaar and Potter, 2002). In the same

vein, the excitation spectra of different opsin types occupy relatively narrow regions

of the UV through IR electromagnetic spectrum. This implies that different opsin

types, supporting unique functions, can be activated independently within the same

experimental preparation (Chow et al., 2010).

Third, the optogenetic tool-set is expanding. The first optogenetic tools required

the coexpression of three Drosophila-derived genes, including an opsin, arrestin-2

6



as a regulatory element, and the α G-protein subunit. The opsin then needed to

be functionalized via a covalent bond with exogenous retinal. When activated it

produced slow, imprecise current waveforms, but was able to grossly modulate spiking

activity (Zemelman et al., 2002). Secondary tools derived from Shaker K+ channels

improved the temporal characteristics of firing control, but conferred abnormal resting

conductances and still required exogenous co-factors (Banghart et al., 2004). The first

truly practical optogenetic tool was channelrhodopsin-2 (Boyden et al., 2005) (ChR2;

Fig 2) which facilitated millisecond-timescale photocurrents to precisely drive spiking

using a single-component ion channel, required no co-factors, and had no apparent

effect on normal physiology (although, see Miyashita et al. 2013, which shows that

long-term, in-vivo expression of ChR2 can induce irregular axon morphology and

targeting).

Following the introduction of ChR2 to neuroscience, the natural diversity of the

micobial family of opsin genes (Chow et al., 2010; Zhang et al., 2011), and their

amenability to genetic manipulation, has provided a diverse set of optogenetic ac-

tuators for achieving specific effects on neural activity. New light-sensitive proteins,

obtained through genetic screens of different microbial species (Chow et al., 2010) or

site-directed mutagenesis of existing constructs (Gunaydin et al., 2010), are contin-

uously being identified (Zhang et al., 2011; Mattis et al., 2011; Yizhar et al., 2011a;

Zhao et al., 2008; Berndt et al., 2011). These proteins offer increasingly specialized

functionality in order to optimize some feature of their dynamics or specificity. Par-

ticularly useful examples of this trend include inward chloride (Gradinaru et al., 2008)

and outward proton (Chow et al., 2010) pumps that can be used to suppress neuronal

activity (Fig. 2). Such activity reductions cannot be robustly achieved using electrical

techniques, and are slow and imprecise using pharmacological methods. Additionally,

there are ultra-fast channels, whose kinetics keep pace with the rapid dynamics of

fast-spiking interneurons (Gradinaru et al., 2010; Lin et al., 2009). Bi-stable channels,
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which support photocurrents long after the optical stimulator is turned off, have also

been produced (Yizhar et al., 2011b). Further, opsins can be used to activate intra-

cellular biosignaling cascades (Airan et al., 2009), and provide direct modulation of

synaptic activity (Lin et al., 2013; Volgraf et al., 2006). Finally, recent developments

in optical sensing technologies, for example to monitor millisecond time-scale gluta-

matatergic neurotransmission (Marvin et al., 2013), and intracellular calcium sensors

designed to occupy excitation spectra that do not overlap with that of ChR2 (Aker-

boom et al., 2013), promise future avenues for all-optical investigations of neural

circuit function.

Because of its advantages over electrical and chemical stimulation techniques,

optogenetics opens the door to many new methodologies that offer vastly improved

control over activity in complex neural circuitry. As a result, optogenetic techniques

have been widely adopted in studies that require control of neural activity. However,

in an engineering context, the concept of control involves a critical element, feedback,

which is currently missing from most labs that use optogenetic stimulation methods.

1.3 Optogenetic feedback - an opportunity for neural con-
trol

Together, optogenetic stimulation and artifact-free electrical recordings can be used

as an actuator and sensor within a feedback loop to control neural activity. Feed-

back is used in many fields of science and engineering to stabilize system variables,

linearize input/output relationships, and provide real-time compensation for external

perturbations. In neuroscience, feedback has been used most widely in the context

of the voltage clamp, which relies on a proportional gain circuit to linearize the re-

lationship between a command potential and the transmembrane potential (Cole,

1949; Marmont, 1949; Hamill et al., 1981). More recently, a diverse set of specialized

techniques that employ feedback have emerged for studying adaptation in neuronal
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micro-circuits (Ahrens et al., 2012), using electrical stimulation to control spike la-

tency (Wallach et al., 2011) and firing levels (Wagenaar et al., 2005; Newman et al.,

2013), improving brain-computer interfaces (Velliste et al., 2008), inducing motor

plasticity (Jackson et al., 2006a), and improving motor rehabilitation (Moritz et al.,

2008). Additionally, real-time optogenetic stimulation has been used to engage motor

patterns in freely moving Caenorhabditis elegans (Stirman et al., 2011; Leifer et al.,

2011) and introduce artificial sensory information into somatosensory cortex during

active whisking in mice (O’Connor et al., 2013). Further, real-time feedback has

recently proven useful for on-demand optogenetic seizure suppression. Closed-loop

activation of halorhodopsin expressed in excitatory principal cells (Paz et al., 2012),

or channelrhodopsin expressed in inhibitory interneurons (Krook-Magnuson et al.,

2013; Armstrong et al., 2013), was capable of suppressing epileptic activity upon the

detection of a seizure event in vivo.

Previous closed-loop optogenetic methods provide examples of how optogenetic

stimulation can be improved by feedback within specific experimental contexts. How-

ever, the closed-loop strategies used by these studies do not continuously update

stimuli based on ongoing neural activation and do not use neural firing as a readout

to drive feedback. Given the importance of firing levels in the basic function of all

neural circuits, we reasoned that using closed-loop optogenetic feedback to control

firing activity presented a great opportunity. My thesis work focuses on the creation

and demonstration of tools and techniques that allow successful closed-loop optical

control of network activity in vitro and in vivo. I have successfully generalized these

tools for use in a variety of experimental contexts, and used them to advance our

understanding of neural coding at the network level and homeostatic plasticity.

1.4 Thesis Organization

The rest of the dissertation is organized as follows:
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Chapter 2, Hardware and Software for real-time network electrophysiology, dis-

cusses the motivation, design philosophy, and performance characteristics of the open-

source NeuroRighter electrophysiology platform. NeuroRighter was created by John

Rolston in 2009 (Rolston et al., 2009b). My contributions to the project include an

overhaul of NeuroRighter’s real-time subsystem, the addition of processing compo-

nents for filtering and spike sorting, and the creation of a programming interface for

‘plugin’ modules that specify custom closed-loop algorithms and experiments.

The majority of studies that employ optogenetic stimulation to modulate neural

activity use pulses of light. In Chapter 3, Delivery of continuously-varying stimuli

using channelrhodopsin-2, I collaborate with Tatjana Tchumatchenko to investigate

the capabilities of several ChR2 variants for conveying time-varying input signals.

We show that, in comparison with pulsed stimuli, continuously-varying photocurrents

better mimic natural synaptic input and increase the bandwidth over which stimuli

can be used to drive neural activity.

In Chapter 4, Effects of connectivity on signal transduction in recurrent corti-

cal networks, I investigate the ability of continuously-varying optical stimulation to

elicit precise spiking patterns at the network level. I demonstrate how continuously-

varying optical stimuli can be used in conjunction with pharmacological manipu-

lation of synaptic activity to study the effects of recurrent connectivity on signal

transduction in dissociated cortical networks. I show that, in agreement with theo-

retical predictions, recurrent connectivity linearizes the network’s population spiking

response. Also, I show that excitatory connectivity increases cell-to-cell firing corre-

lations, which leads to a reduction of information present in the spiking response due

to an increase in coding redundancy. In addition to these scientific results, Chapters 3

and 4 indicate that continuously-varying optical stimulation can serve as a powerful

actuator of neural activity during closed-loop control.

Chapter 5, Optogenetic feedback control of neuronal firing, details the motivation,
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design specification, and performance of a real-time optogenetic feedback technology

to control neural activation. The system is capable of controlling neural activity

over time-scales ranging from seconds to days. I demonstrate how optical feedback

control can be used to decouple spiking and neurotransmission in order to study their

independent roles in the induction of homeostatic changes in network excitability.

Finally, in collaboration with Daniel Millard and Garrett Stanley, I demonstrate that

optogenetic feedback can be used to control firing activity in somatosensory thalamus

of anesthetized rats. We find that this firing is statistically similar to that of awake

animals, and that feedback control can compensate for impinging vibrissal sensory

input in real-time.

In Chapter 6, Direct induction of synaptic scaling by reduced AMPA receptor acti-

vation, working in collaboration with Ming-fai Fong and Dr. Pete Wenner of Emory

University, I show that techniques presented in Chapter 5 can be used to disentangle

the causal roles of spiking and neurotransmission during the induction of upward scal-

ing of synaptic strength. Our team finds, in opposition to a large body of literature,

that decreases in glutamaterigic neurotransmission, and not network firing, triggers

the induction of upward scaling. Our results specify a new role for synaptic scaling

in the context of memory formation and maintenance.

In Chapter 7, I conclude the thesis by discussing the implications for the tech-

nologies and results produced during my thesis work, and explore future directions

for their usage and improvement.

Following the main text, I include three appendices that cover software and hard-

ware design and usage. Appendix A, NeuroRighter usage and examples, provides

detailed usage information and example code for the NeuroRighter electrophysiology

system. Often, labs using inexpensive lasers for optogenetic stimulation are con-

strained to pulse-based stimuli because of low-performance control circuitry and the

highly nonlinear characteristics of laser light sources. In Appendix B, Cyclops: an
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ultra-precise, fast LED driver, I describe a low-cost, high-power LED driver that uses

optical feedback to deliver extremely repeatable optical stimulus waveforms over a

wide bandwidth. In Appendix C, A servo-controlled Peltier heater/cooler for regulat-

ing culture temperature, I describe a Peltier-based thermal regulator used to precisely

maintain culture temperature during long-term recordings.

All hardware and software produced during the course this thesis work is cov-

ered by open access licenses (either the GPL3.0 or the Creative Commons BY-SA).

Therefore all hardware designs and software code repositories are publicly available

for download. Links to these web resources are provided in the thesis text and ap-

pendices where appropriate.

Portions of this thesis have been published previously. Chapters based upon pub-

lished work are presented here with permission from the relevant publisher and in-

clude a citation at the start of the chapter. These chapters are unchanged from their

original form with the exception of minor typographic and stylistic modifications.
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CHAPTER II

HARDWARE AND SOFTWARE FOR REAL-TIME

NETWORK ELECTROPHYSIOLOGY*

Single neuron feedback control techniques, such as voltage clamp and dy-
namic clamp, have enabled numerous advances in our understanding of
ion channels, electrochemical signaling, and neural dynamics. Although
commercially available multichannel recording and stimulation systems
are commonly used for studying neural processing at the network level,
they provide little native support for real-time feedback. We developed
the open-source NeuroRighter multichannel electrophysiology hardware
and software platform for closed-loop multichannel control with a focus
on accessibility and low cost. NeuroRighter allows 64 channels of stim-
ulation and recording for around US $10,000, along with the ability to
integrate with other software and hardware. Here, we present substan-
tial enhancements to the NeuroRighter platform, including a redesigned
desktop application, a new stimulation subsystem allowing arbitrary stim-
ulation patterns, low-latency data servers for accessing data streams, and a
new application programming interface (API) for creating closed-loop pro-
tocols that can be inserted into NeuroRighter as plugin programs. This
greatly simplifies the design of sophisticated real-time experiments with-
out sacrificing the power and speed of a compiled programming language.
Here we present a detailed description of NeuroRighter as a stand alone ap-
plication, its plugin API, and an extensive set of case studies that highlight
the system’s abilities for conducting closed-loop, multichannel interfacing
experiments.

* Newman, J.P., Zeller-Townson, R, Fong, M.-f., Desai, S.A., Gross, R.E., Potter, S.M. Closed-

loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform.

Front. Neural Circuits 6:98, 2013. c© 2013 Newman, Zeller-Townson, Fong, Arcot Desai, Gross

and Potter. This is an open-access article distributed under the terms of the Creative Commons

Attribution License.
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2.1 Introduction

Multielectrode neural interfacing systems, such as planar electrode arrays, silicon

probes, and microwire arrays are commonly used to record spatially-distributed neural

activity in vitro and in vivo. Advances in nanoscale fabrication techniques have

continued to push channel counts and electrode resolution (Fiscella et al., 2012; Du

et al., 2011; Robinson et al., 2012), allowing for increasingly detailed measurements

of network activity states. Because multi-electrode neural interfaces provide many

parallel measurements, they can be used to rapidly estimate ensemble features of

network activity (e.g. the population firing rate or network level synchronization).

This makes them well suited for real-time applications.

However, most commercial software interfaces for controlling multichannel hard-

ware lack flexible support for real-time, bi-directional communication with neural

tissue. Additionally, commercial software is often hard to integrate into complex

multicomponent experimental configurations. As a result, multichannel hardware has

not been incorporated into closed-loop interfacing schemes to the degree of single cell

recording systems, such as voltage and dynamic clamp (Marmont, 1949; Cole, 1949;

Hamill et al., 1981; Prinz et al., 2004; Kispersky et al., 2011; Arsiero et al., 2007).

There are some exceptions to this trend (Jackson et al., 2006b; Zanos et al., 2011; Azin

and Guggenmos, 2011). These systems are typically limited to low channel counts

and/or low recording resolution in order to achieve embedded real-time performance

at the recording site using a microcontroller or DSP. This approach has clear advan-

tages for experiments on freely moving animals, but is limited in terms of input and

output bandwidth, processing power to enable complex experimental protocols, and

ease of programming. Neuroscience research would benefit from a multichannel acqui-

sition platform that (1) enables bi-directional interaction with neuronal networks, (2)

is practical for everyday use, (3) is straightforwardly extensible for complex closed-

loop protocols, (4) works with a variety multi-electrode interfaces, (5) provides large
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channel counts and high recording resolution, and (6) is low cost. This type of system

would be particularly applicable to three areas of neuroscience research:

• Feedback Control of Network Variables: Neuronal networks are complex

systems with many recurrently interacting components. This often results in

ambiguity in cause and effect relationships between network variables (Turri-

giano, 2011b; Rich and Wenner, 2007). Feedback control can be used to parse

variables of neural activation that are causally linked (Cole, 1949). Feedback

control of network-level variables (e.g., population firing rate, neuronal syn-

chronization, or neurotransmission levels) can potentially clarify their causal

relationships (Wagenaar et al., 2005; Wallach et al., 2011).

• Artificial Embodiment: Dissociated neural cultures, slice preparations, and

anaesthetized or paralyzed animals allow stable electrophysiological access but

cannot engage in natural behaviors with their environment. By artificially em-

bodying reduced neuronal preparations using a virtual environment or a robot,

experimental access is maintained while neural tissue is engaged in complex

behaviors (Potter, 2001; Reger et al., 2000; DeMarse et al., 2001; Ahrens et al.,

2012).

• Clinical Applications: Responsive (Morrell, 2011) or predictive (Mormann

et al., 2007) application of neural therapies have the potential to improve the

efficacy and safety of treatments that are currently used in open-loop. Examples

include brain stimulation and local drug perfusion techniques that are used to

treat movement disorders, clinical depression, chronic pain, and epilepsy. Ad-

ditionally, electrical stimuli delivered to one region of motor cortex in response

to spiking activity in another motor area has been shown to facilitate a func-

tional reorganization of motor output, indicating a potential role for activity-

dependent stimulation in rehabilitation therapy (Jackson et al., 2006a).
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Here, we present substantial improvements to NeuroRighter, an open-source, mul-

tichannel neural interfacing platform which we designed specifically to enable bi-

directional, real-time communication with neuronal networks (Rolston et al., 2009a,

2010). In the first half of the paper, we provide a description of NeuroRighter’s ca-

pabilities, including an application programming interface (API) that facilitates the

creation of custom real-time experiment protocols. In the second half of the paper, we

demonstrate these features with a variety of case studies. Each case-study highlights

a different aspect of NeuroRighter’s abilities in the areas of network level feedback

control, artificial embodiment, and closed loop control of aberrant activity states in

freely moving animals.

2.2 Experimental methods

2.2.1 Tissue culture

Our culturing methods are described and demonstrated elsewhere (Hales et al., 2010)

and here we provide a brief overview. MEAs (59 electrode + common ground, 200 uM

electrode spacing, 30 um electrode diameter, titanium-nitride conductor, with silicon

nitride insulation) were obtained from Multichannel Systems (Reutlingen, Germany).

MEAs were sterilized using 70% ethanol and exposure to UV light, and coated with

polyethyleneimine and laminin to promote surface hydrophilicity and cell adhesion,

respectively. All dissections were carried out in accordance with the National Re-

search Council’s Guide for the care and use of laboratory animals using a protocol

approved by the Georgia Tech IACUC. Whole neocortex was isolated from E18 rats

under sterile conditions and stored in Hibernate-E medium (Invitrogen, Carlsbad,

California, USA) for up to two hours before plating. The cortical tissue was digested

in a solution containing 20 U·ml−1 papain (Sigma-aldrich, St. Louis, Missouri, USA)

in a culturing medium described in (Hales et al., 2010; Potter and DeMarse, 2001)

without antibiotics or antimycotics. Cells were dissociated mechanically using 3-10
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trituration passes through a 1 mL conical pipette tip. The cell suspension was diluted

to 2500 cells/µL in culturing medium. Cells were centrifuged and strained to remove

small and large debris. Fifty thousand cells in a 20 uL drop were plated onto a 2 mm

diameter area on precoated MEAs, which results in ∼16000 cells/mm2 on the cultur-

ing surface (Wagenaar et al., 2006c). The culturing well of each MEA was sealed with

either a fluorinated ethylene-propylene (FEP) (Potter and DeMarse, 2001) or molded

polydimethylsiloxane (Blau et al., 2009) membrane to prevent infection and changes

in osmolarity due to evaporation (fig.3). After a 30 minute adhesion period, culturing

wells were flooded with 1 mL culturing medium, adapted from (Jimbo et al., 1999),

but without antibiotics. 0.75 mL of fresh culturing medium was exchanged every 3

days.

2.2.2 In-vitro MEA electrophysiology

All experiments and culture storage were carried out in an incubator regulated to

35◦C, 5% CO2, 65% relative humidity, which is safe for MEA recording and stimula-

tion electronics. Electrode voltages were amplified 1200X and bandpass filtered be-

tween 10 Hz and 10 kHz using a 60 channel analog amplifier (MEA1060-Up; Fig. 3(c)).

Because the amplifier dissipated heat during operation, culture temperature was pre-

cisely controlled to 35◦C using a servo-control Peltier device (Appendix C). All MEA

recording and stimulation were performed using the NeuroRighter multichannel elec-

trophysiology platform1. Within NeuroRighter, amplified electrode voltages were

digitally filtered using a 3rd order Butterworth design with a passband of 300 to

5000 Hz. Spike events were detected as events exceeding 5 times VRMS noise on a

given channel. Spike waveforms were collected as 2 millisecond snippets about the

peak voltage inflection following a threshold crossing and validated by the slope of

the waveform. A 1 millisecond detector pause following the peak of each waveform

1https://sites.google.com/site/neurorighter/
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during which no spiking events can be detected was enforced (Fig. 55). Spike wave-

forms were sorted according to the methods described in section A.3.2 and outliers

were rejected using a p-value of 0.005.

Multichannel stimulation was delivered using the NeuroRighter stimulus genera-

tion boards along with 4 stimulation multiplexing boards to route electrical pulses to

any of the 59 recording electrodes (Wagenaar and Potter, 2004). Stimulation multi-

plexer boards are shown in figure 3(c).

For experiments involving perfusion of d(-)-2-amino-5-phosphonopentanoic acid

(AP5), 50 µM dilution of AP5 in culturing medium was used. NeuroRighter trig-

gered perfusion of the AP5 solution to the culture through a custom, gas-permeable

perfusion cap via a kdScientific (Holliston, MA, USA) model 780262 syringe pump

running at 1 mL/minute for 5 minutes (Fig. 3). AP5 was washed from the culture

in the same way, using 10 mL of normal culturing medium at 1 mL/minute. The

perfusion cap and attached FEP membrane were autoclaved prior to use.

2.2.3 Animal surgery, recordings, and multielectrode stimulation

All animal procedures were conducted in accordance with the National Institutes

of Health Guide for the Care and Use of Laboratory Animals and approved by the

Emory University Institutional Animal Care and Use Committee. A 300-gram male

Sprague-Dawley rat was anaesthetized with 1.5-3% inhaled isoflurane. A craniectomy

was made over the right dorsal hippocampus. Seven 69 nL injections of tetanus toxin

(concentration 50 ng/µL) were made into the right dorsal hippocampus at coordinates

-3.3 AP, - 3.2 ML and -3.1 DV over 4 minutes. A microelectrode array (MEA) with

16 electrodes (each electrode with 33 µm diameter; Tucker-Davis Technologies) was

implanted with 8 electrodes targeted at the CA1 and 8 electrodes targeted at the CA3

cell layers (Fig. 11(b)). The microelectrode array had a row separation of 1 mm and

the electrodes within each row were separated by 175 µm. 5 smaller craniectomies
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Figure 3: Gas permeable perfusion system for bath application of drugs during multi-
channel recording and stimulation, in-vitro. (a) Drawing of perfusion cap design. The cap is
machined from Teflon and fits tightly over the planar MEA’s culturing well. The groove at the top of the
cap holds a sheet of gas-permeable, water- and contaminant-impermeable FEP in place over the culturing
well using an o-ring. FEP allows gas exchange between the incubator’s regulated atmosphere and the
culturing well, while preventing contamination and evaporation, which can lead to harmful changes in
osmolarity and pH (Potter and DeMarse, 2001). Two perfusion ports allow input and output of culturing
medium via a syringe pump. (b) Three dimensional rendering of the cap showing needle-less septa in-
terfacing with the cap using Luer taper connectors. This allows the removal of input and output tubing
without exposing the culturing well to outside air. (c) Photograph of a functioning perfusion lid, inte-
grated with an MEA1060-Up amplifier (black) and stimulus multiplexing boards (brown with multicolored
ribbon cables) (Wagenaar and Potter, 2004). This lid was designed and fabricated by Ted French while
working as an undergraduate research assistant.
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were made for skull screws. The reference for microelectrode electrode array recording

was tied to the skull screw over the cerebellum and the ground was tied to the

remaining skull screws. Single unit recording performed during the implantation

process guided the final positioning of the microelectrode array. Dental acrylic was

used to seal the craniectomy and secure the MEA. The rat was allowed to rest for 6

days before electrical recording and stimulation experiments began.

2.3 The NeuroRighter multichannel electrophysiology plat-
form

NeuroRighter is an open-source, low-cost multichannel electrophysiology system de-

signed for bi-directional neural interfacing (Rolston et al., 2009a, 2010). A complete

system, including all necessary electronics and a host computer, can be assembled

for less than $10,000 USD. The NeuroRighter software is free. Extensive documen-

tation on the construction and usage of a NeuroRighter system is available online

at: https://sites.google.com/site/neurorighter/. NeuroRighter’s source code,

the API reference, and demonstration closed-loop protocol code, are available from the

NeuroRighter code repository: http://code.google.com/p/neurorighter/. Ques-

tions on NeuroRighter assembly and usage can be submitted to the NeuroRighter-

Users forum: http://groups.google.com/group/neurorighter-users. Tutorials

on API usage are provided in Appendix A.

2.3.1 Hardware

Here we provide a summary of NeuroRighter’s hardware building blocks. Hardware

components can be used with neural interfaces designed for applications both in vivo

and in vitro. Printed circuit board (PCB) performance specifications are provided

in (Rolston et al., 2009a) and layouts are available online. A complete NeuroRighter

system meets or exceeds the performance of commercial alternatives in terms of noise

levels, stimulation channel count, stimulation recovery times, and flexibility (Rolston
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et al., 2009a). NeuroRighter’s PCBs are designed to be modular: electrode interfacing

and stimulation PCBs have identical footprints and use vertical headers to route power

between boards. This allows interfacing PCBs to be stacked on top of one another for

increased channel counts and the use of a single DC power supply (or set of batteries)

for all hardware.

ADC/DAC boards. NeuroRighter uses National Instruments (NI; National

Instruments Corp, Austin, TX) data acquisition hardware driven with NI’s hardware

control library, DAQmx. NI PCI-6259, PCIe-6259, PCIe-6353, and PCIe-6363 16-bit,

1 Msample/sec data acquisition cards are currently supported. Each card supports 32

analog inputs (AI), 4 analog outputs (AO), and 48 I/O-configurable digital channels.

NI SCB-68 screw-terminal connector boxes are used to interface each data acquisition

card with external hardware. Up to 3 cards can be used in a single NeuroRighter

system to meet channel count requirements.

Multichannel amplifier interfacing boards. NeuroRighter provides two types

of PCB to interface the NI data acquisition cards with multi-electrode amplifier sys-

tems. For in-vivo applications, a 16 channel filter module provides 1.6X signal buffer-

ing, anti-aliasing filtering (-3 dB point at 8.8 KHz), DC offset subtraction (-3 dB

point at 1 Hz), and regulated power to the headstage. Up to four of these modules

can be stacked together in order to meet channel count requirements. For in-vitro ap-

plications, a 68 channel conversion board provides power and signal routing for planar

electrode array amplifier systems, e.g. Multichannel Systems’ 60 channel amplifiers

(Multichannel Systems, Reutlingen, Germany), which have a manufacturer settable

passband. Both boards interface with the SCB-68 connector boxes using 34-channel

ribbon cables, wired as signal/ground pairs to reduce capacitive crosstalk between

adjacent lines during stimulation.

Electrical micro-stimulation hardware. NeuroRighter includes all-channel

(up to 64 electrodes) stimulation capabilities for both in-vivo and in-vitro systems.
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This system is based upon the circuits presented in (Wagenaar and Potter, 2004;

Wagenaar et al., 2004) and includes two separate PCBs: (1) a voltage- or current-

controlled signal generation PCB, and (2) a signal multiplexing and isolation PCB

to select different electrodes for stimulation and isolate recording electrodes from

stimulation cables between stimulus pulses.

(1) Signal generation board. The signal generation PCB is identical for all appli-

cations. This board provides both voltage controlled or constant current stimulation

modes. It stacks into the amplifier interfacing board(s) and therefore does not re-

quire an additional power source. Aside from stimulus generation, this PCB can be

used to perform electrode impedance measurements, which are useful for diagnosing

the health of micro-electrodes and their insulated leads, and for electroplating (Desai

et al., 2010). Only one signal generation PCB is required for up to 64 electrodes.

(2) Signal multiplexing boards. Stimulus multiplexing and isolation occurs at PCBs

that piggyback directly on electrode pre-amplifiers. These PCBs are located close

to the initial stages of electrode amplification so that the recording amplifier can be

isolated from long electrical leads, which reduces capacitive pickup. Because recording

amplifiers (e.g. headstages in vivo or multichannel amplifiers in vitro) come in many

shapes and sizes, the design of the multiplexer PCBs is application dependent. For in-

vivo applications, we have designed multiplexer systems that use an 18-pin Omnetics

Nano connector, which interfaces with headstages from Triangle Biosystems (Durham,

NC), Tucker-Davis Technologies (Alachua, FL), and Neurolinc Corporation (New

York, NY), among others (Rolston et al., 2009a). This board employs a single 1-of-16

multiplexer. For in vitro applications, four separate multiplexing modules, each of

which houses two 1-of-8 multiplexers, plug directly into exposed 0.1” pitch sockets

of a 60 channel Multichannel Systems amplifier (Wagenaar and Potter, 2004). The

creation of custom multiplexer boards or adapters for other systems is straightforward

due to the simplicity of these PCBs (they generally consist of a single multiplexer
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integrated circuit).

Generic I/O. NeuroRighter provides 4 analog output channels and 32 bits of

programmable digital I/O for controlling or recording digital signals from laboratory

equipment. An auxiliary set of up to 32 analog input channels and 32 bits of digital

I/O can also be used. Channel counts of generic I/O in a NeuroRighter system

depend on the number of data acquisition cards in the user’s system, and the amount

of analog input channels reserved for the electrodes.

NeuroRighter’s hardware serves as an adaptable interface between multi-electrode

sensors and data acquisition cards for recording and microstimulation. There are

many other options for routing signals to and from the acquisition cards. Therefore,

except for the acquisition cards themselves, the hardware we present here is not

required to make use of NeuroRighter’s software.

2.3.2 Software

The NeuroRighter software application was written in C] (pronounced “C-Sharp”).

C] is a modern, general purpose, object-oriented programming language. The soft-

ware is free and its source code is maintained on a publicly accessible repository2.

For standard installations, NeuroRighter is distributed as an installation package for

32- or 64-bit Windows operating systems (Microsoft Corp., Redmond, WA). NeuroR-

ighter installations contain two software components:

1. A stand-alone multichannel recording and stimulation application. This in-

cludes a graphical user interface (GUI) for data visualization, hardware con-

figuration, data filtering, spike detection and sorting, all-channel stimulation,

stimulus artifact rejection, and data recording (section 2.3.2.1).

2. An application programming interface (API) that allows NeuroRighter to be

2http://code.google.com/p/neurorighter/
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used as a real-time hardware interface and data server for user-coded protocols

(section 2.3.2.2).

2.3.2.1 The NeuroRighter application

As a stand-alone application, NeuroRighter can be used for high-quality multichannel

recordings (16-bit resolution, 31 kSamples/sec/channel) and all-channel stimulation

protocols. NeuroRighter’s graphical interface is organized into tabbed pages, each of

which encapsulates a particular group of functions or visualization tools (Figure 4).

In the following section, we discuss the main functional aspects of the stand-alone

NeuroRighter application.

Main interface. The main NeuroRighter interface (Figure 4(c)) is an access

point for all of the application’s functionality. It faciltates user manipulation of

hardware settings, online filter settings, data visualization windows, stimulation tools,

and other features, which are discussed below. Additionally, some recording settings

can be manipulated within the main interface itself:

Online acquisition settings. Many filter settings can be adjusted during data

collection. This allows the user to fine tune acquisition settings while gaining visual

feedback of the effect on incoming data streams. Bandpass, spike detection, and spike

sorting parameters can be adjusted during a recording.

Data visualization. Data visualization tools in NeuroRighter use the Microsoft

XNA game development framework. This ensures that online visualization does not

consume CPU cycles by offloading plotting routines to a supported graphics card.

Visualization tools are provided for single unit activity, local field potentials (LFP),

multiunit activity (MUA), electroencephalograph (EEG) traces, and auxiliary analog

input streams. Additionally, overlay plots are used to display sorted spike waveforms

for each channel (Figure 4(c)).
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Figure 4: Portions of NeuroRighter’s graphical user interface. (a) The hardware settings
interface. (b) The spike detection filter and spike sorting interface. (c) The main application window.
Sorted spike waveforms recorded from a 59-channel, planar electrode array are shown on the spike
visualization tab of the main GUI. The position of each waveform corresponds to the position of the
recording electrode on which it was detected.
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File saving. Data streams selected by the user are written to disk with a unique file

extension that designates their type. These binary files can be read with MATLAB

functions included with NeuroRighter installations.

Hardware configuration. Correctly specifying mixed digital and analog signal

routing, clock synchronization, and trigger synchronization on a multi-board data

acquisition system can be complicated. NeuroRighter simplifies this process using

a graphical hardware settings interface (Figure 4(a)). Here, the user specifies the

types of signals carried by the NI acquisition cards in his or her system, amplifier

gain settings, auxiliary input and output channels, options for electrode impedance

measurement, signal referencing, and real-time data streaming options. Upon closing

the settings dialogue, NeuroRighter performs the required signal routing and clock

synchronization. All NI cards are synchronized to a single clock oscillator using an

NI real-time system integration bus (RTSI, Figure 6).

Time series filtering. Incoming data from the A/D converters are passed

through a cascade of digital filters to produce different neural data streams. First,

channel voltages are passed through several linear filters to extract frequency bands

for single-unit activity (' 200-5000 Hz) and LFP (' 1-500 Hz). MUA, which reflects

the firing rate of neurons within the vicinity of the recording electrode, is extracted

by rectifying and then low pass filtering the single-unit activity data stream (Supèr

and Roelfsema, 2005).

In addition to traditional filtering methods, NeuroRighter provides several special-

ized filtering options. Common-mode noise sources such as AC mains pickup or move-

ment artifacts in freely moving animals can corrupt neural recordings. NeuroRighter

allows the mean or median of all recording electrodes (with appropriate scaling) to be

subtracted from individual electrode voltage streams to combat common mode inter-

ference (Rolston et al., 2009b). This is an effective method for reducing non-periodic

common-mode interference, such as movement artifacts, where template subtraction
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Table 1: Overview of NeuroRighter’s input and output streams. Each stream is accessed
using a dedicated server that includes functions for reading from, or writing to, its data buffer.

Input Source Server (DataSrv.*) Buffer Type Max. Channel Count
Raw Electrodes RawElectrodeSrv Circular double[ ][ ] 64
SALPA Filter SalpaSrv Circular double[ ][ ] 64
Spike-Band Filter SpikeBandSrv Circular double[ ][ ] 64
Spike Filter SpikeSrv List<SpikeEvent> 64 or No. units
LFP Filter LFPSrv Circular double[ ][ ] 64
EEG Filter EEGSrv Circular double[ ][ ] 64
MUA Filter MUASrv Circular double[ ][ ] 64
Electrical Stimuli ElecStimuliSrv List<SpikeEvent> 64
Auxiliary Analog AuxAnalogSrv Circular double[ ][ ] 32
Auxiliary Digital AuxDigitalSrv List<DigitalEvent> 32 bits

Output Source Server (StimSrv.*) Buffer Type Max. Channel Count
Electrical Stimuli StimOut List<StimulusEvent> 64
Analog Output AnalogOut List<AnalogEvent> 4
Digital Output DigitalOut List<DigitalEvent> 32 bits

methods are inappropriate. Finally, NeuroRighter includes an implementation of the

SALPA filter (Wagenaar and Potter, 2002), which subtracts locally fit cubic splines

from electrode traces following the application of a stimulus pulse. This removes the

capacitive artifacts from non-saturated recording channels and allows online action

potential detection within 2 milliseconds after a stimulus pulse.

Sampling rates for different data streams can be set independently. Filter settings

(pass-band and filter order) can be modified during data acquisition (Figure 4(c)).

Raw data, as well as the result of each filtering stage, yield separate data streams

(table 1).

Spike filtering. Spike filtering in NeuroRighter is a three-step process: (1) de-

tection, (2) validation, and (3) sorting. NeuroRighter detects spikes using a threshold

criterion that compares individual voltage samples to the estimated RMS voltage on

the corresponding electrode. Upon threshold crossing, a peak-aligned voltage ‘snip-

pet’ is extracted from the raw voltage stream. Each snippet is validated using a series

of ad-hoc criteria based upon waveform slope, width, and peak-to-peak amplitude.

Finally, spikes can be sorted online using an automated Gaussian mixture modeling

algorithm. Details of the spike detection and sorting algorithms used by NeuroRighter
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are provided in Chapter A, Section A.3.

The spike detection/sorting configuration is controlled through a child GUI (Fig-

ure 4(b)). All relevant spike detection, validation, and sorting parameters are un-

der user control and are manipulated using the spike detection GUI. Because spike-

detection settings are changed using a secondary GUI, the effects of parameter changes

can be simultaneously monitored on the visualization tabs in the main interface while

data collection occurs. A complete list of these parameters is shown in table 9. Spike

filters, including trained spike sorters, can be saved and reused.

Stimulation. NeuroRighter provides several options for delivering complex stim-

ulus patterns to neural tissue either manually through the NeuroRighter application

or using scripted protocols. Simple, periodic stimulation protocols, consisting of sin-

gle or double phase, square, current- or voltage-controlled pulses on any electrode,

can be performed directly from the main GUI. Stimuli can be triggered ‘on demand’

in response to a mouse click or by using hardware timed, periodic sequence of triggers.

Scripted protocols can be used to deliver complex, potentially non-periodic stim-

ulus patterns and to access general purpose analog and digital output lines. Neu-

rorighter uses a double-buffered output engine, called StimSrv (table 2), to produce

arbitrary, hardware-timed stimulation, analog-output, or digtial output signals (ta-

ble 1, bottom). StimSrv can be accessed on-the-fly using NeuroRighter’s API (sec-

tion 2.3.2.2) or with user-written scripts. The schemeatic in Fig. 5(A) demonstrates

how StimSrv delivers uninterrupted output. First, a block of the NI cards’ memory

is reserved and divided into two sections, each of which comprises a single output

buffer. At a given instant, one buffer is reserved for sample generation and one is

available for writing. When the all samples in the read buffer are exhausted, the

buffers switch roles, allowing seamless delivery of constantly varying output signals.

This allows the delivery of complex, aperiodic stimulation patterns and the orches-

tration of experimental apparatuses using analog and digital output lines. All output
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is clock-sychronized to input data streams, allowing a-priori specification of stimulus

delivery times, relative to the start of the experiment, with single-sample precision.

Stimulation scripts can be created with a set of MATLAB functions that are included

with NeuroRighter installations (see Chapter A, Section A.1).

Figure. 5(B) demonstrates the use of a scripted stimulation protocol to deliver

spatio-temporal patterns of electrical stimuli. One-second trials of spatially uniform,

and temporally Poissonian random stimulus pulses were delivered to a dissociated

cortical network. Each trial consisted of either a new, random stimulus realization or

a single repeated realization. Each type of stimulus sequence was interleaved with no

delay between adjacent trials. Figure. 5(B.ii) shows stimulus raster plots for 100 trials

of each stimulus type, with a grey-scale indicating the stimulus trial. For repeated

stimuli, individual trials cannot be seen since the recording and stimulation subsys-

tems are clock-synchronized and every repeated stimulus sequence occupies the same

set of samples relative to the start of a trial. Figure. 5(B.i) shows spiking patterns in

response to random and repeated stimuli for 4 units, across trials. The delivery of re-

peated stimuli to the network results in extremely reproducible spiking patterns, and

non-repeated, random stimuli probe the variability of population spiking response.

This type of stimulus protocol is commonly used to estimate the mutual information

between a stimulation process and the population spiking response (Strong et al.,

1998; Yu et al., 2010).

2.3.2.2 NeuroRighter’s application programming interface

NeuroRighter installations include an API that facilitates the creation of real-time

protocols. The API comprises a set of tools for interacting with NeuroRighter’s

input and output streams. Protocols written using the API are externally compiled

libraries that can ‘plug in’ to the NeuroRighter application in order to impart real-

time and closed-loop functionality. The software packages included with the API are
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Figure 5: NeuroRighter’s StimSrv subsystem. (a) To deliver complex, non-periodic stimuli,
NeuroRighter uses a double-buffering system. This allows samples to be generated and written to the NI
cards’ analog and digital outputs simultaneously. At a given instant, one buffer is reserved for reading
(pink) and one from writing (grey). When the all samples in the read buffer are generated, the buffers
swich roles, allowing seamless delivery of constantly varying stimulus patterns and generic analog and
digital signals. When using StimSrv for closed-loop protocols, the loop() function is called at the
instant of a buffer switch. (b) Example open-loop stimulus protocol using StimSrv. 100, 1 second
Poisson sequences of electrical stimuli and a single repeated sequence, were delivered to a dissociated
cortical network (bi-phasic, voltage controlled, ±0.75 volts, 800 µs period). Top plots show stimulus
rasters with grey scale indicating the trial. For repeated stimuli, stimulus points are overlaid since stimulus
delivery is clock-synchronized with the acquisition subsystem. Rastergrams of 4 units are shown below
each stimulus raster across trials. Example waveforms for each of the 4 units are shown to the right.
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Table 2: Packages included with NeuroRighter’s Plugin API.

Package Component Description
Server DataSrv Contains input servers objects (Table 1, top)

StimSrv Contains output servers objects (Table 1, bottom)
DataTypes MultiChannelBuffer Circular buffer for time series data

SpikeEvent Spike event type (time, channel, waveform, unit)
DigitalEvent Digital event type (time, 32-bit port state)
StimulusEvent Stimulus event type (time, channel, waveform)
AuxEvent Auxiliary voltage event (time, channel, voltage)

NeuroRighterTask NRTask Abstract class for real-time NeuroRighter interfacing
Log Logger Debugging real-time protocols

shown in table 2. Each package contains a different set of tools for interacting with

NeuroRighter’s data streams. Here we discuss the contents and usage of each of these

tools. Additionally, a detailed API reference is available online3.

NeuroRighterTask. User-defined protocols employ the NeuroRighter applica-

tion as a real-time data server. These protocols are inherited from a base compo-

nent called NRTask, which belongs to the NeuroRighterTask package. Closed-loop

protocols created with the plugin API are derived from NRTask (see supplmentary

section A.2 for details). Three functions included in NRTask can then be accessed to

impart real-time functionality.

1. NRTask.Setup(): This function is called when the base NRTask component is

instantiated. It allows one-time setup operations to take place, such as the

declaration of variables, allocation of internal buffers, file streaming setup, GUI

initialization, etc.

2. NRTask.Loop(): This function is executed periodically by a hardware-timed

clock. Execution periods of 1 to 150 milliseconds are allowed and can be set

from the Hardware Settings GUI in the main application (Figure 4(a)). To

achieve closed-loop functionality, code within the Loop function should access

other components of the API, most importantly components from the Server

3https://potterlab.gatech.edu/main/neurorighter-api-ref/
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and DataTypes packages (table 2). These packages provide access to incoming

neural data streams and output buffers and can be used to form a bidirectional

interface with neural tissue. Output can be sent from within the Loop function

using the StimSrv package (table 2) or through natively supported communica-

tion interfaces such as TCP/IP ports, serial ports, or USB communication.

3. NRTask.Cleanup(): This function is called a single time when the protocol is

stopped from the NeuroRighter GUI. It allows the deconstruction of GUIs, the

closure of file streams that may have been created during the execution of the

plugin, and other cleanup routines.

Listing 1(a) provides pseudocode for a real-time plugin that responds to a spike

produced by a particular detected unit. All real-time protocols written using the API

will follow the structure of this code skeleton, regardless of their complexity. First,

the user references the required packages from the API. Next, the plugin is desig-

nated to be a child of NRTask, which provides the protocol with automatic access to

NeuroRighter’s data servers. Finally, the Setup(), Loop() and Cleanup() functions

are overridden to impart real-time functionality. After it is compiled (either using

Visual Studio or Mono4), the plugin can be executed through NeuroRighter’s GUI.

Plugin protocols executed through NeuroRighter operate on a high-priority thread

to decrease closed-loop response latency. The diagram shown in Fig. 6 shows the

interaction between a plugin created using the API, the NeuroRighter executable,

and hardware. Functional examples of plugin protocols are provided in Appendix A,

Section A.4.1.

Server. Components derived from NRTask have automatic access to NeuroR-

ighter’s input and output servers, which belong to the Server package. There are two

banks of data servers: (1) DataSrv, which can be used to read NeuroRighter’s input

4http://www.mono-project.com/Main_Page
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A

/// StimSrv-based plugin

using NeuroRighter.NeuroRighterTask;

using NeuroRighter.DataTypes;

using NeuroRighter.DatSrv;

using NeuroRighter.StimSrv;

namespace Example

{

public class MyTask : NRTask

{

// Called once at plugin start

protected override void Setup(){

}

// Called by output buffer

protected override void Loop(){

data = NRDataSrv.SpikeSrv.Read();

if (myUnit member of data)

{

NRStimSrv.Write();

}

}

// Called upon plugin termination

protected override void Cleanup(){

}

}

}

B

/// NewData-based plugin

using NeuroRighter.NeuroRighterTask;

using NeuroRighter.DataTypes;

using NeuroRighter.DatSrv;

namespace Example

{

public class MyTask : NRTask

{

// Called once at plugin start

protected override void Setup(){

SpikeSrv.NewData +=

NewData_Handler();

}

// Called on NewData event

private void NewData_Handler(){

if(myUnit member of data)

{

NI Card sends output;

}

}

// Called upon plugin termination

protected override void Cleanup(){

}

}

}

Listing 1: Code structure for two types of real-time plugin implemented with the API. (a) Pseudocode
for a StimSrv-based real-time plugin. (b) Pseudocode for real-time plugin triggered by NewData events.
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streams (table 1, top) and (2) StimSrv, which can be used to write to output streams

(table 1, bottom). DataSrv and StimSrv objects encapsulate isolated data servers,

each of which handles a particular data stream. Each server includes methods for

reading the hardware clock, reading and writing to its own data buffer, and accessing

stream meta data. Because input and output servers are simultaneously accessible

from within a user-defined NRTask, sending output signals (e.g., stimuli) contingent

on recorded input is straightforward. The user can select which data streams are sent

to DataSrv or available for writing on StimSrv using the Hardware Settings GUI

(Fig. 4(a)).

A final important feature of each data server within DataSrv is a NewData event.

A NewData event is fired for a given stream each time it receives new data for the

A/D card or a digital filter. Functions within a plugin can subscribe to these events

so that feedback processing only occurs when new data is acquired. This reduces

computational overhead and the latency of the closed loop response. Plugins that use

NewData events to generate feedback are not required to include a NRTask.Loop()

function or to use StimSrv to send output signals. Instead, standard calls to the

National Instruement driver library (DAQmx) can be used to access the NI cards’

directly. Alternatively, output can be generated using natively supported external

communication protocols (USB, TCP/IP, UDP, serial, etc.). Listing 1(b) provides

pseudocode for a real-time protocol analogous to listing 1(a), but using the NewData

event to trigger a response. This type of plugin provides a lower response latencies

but is less capable of producing complex, precisely timed output signals. A functional

example of a NewData-based plugin is provided in Chapter A, Section A.4.2.

DataTypes. NeuroRighter’s input and output servers operate on high-level data

types that encapsulate different forms of multichannel input and output data. These

include multichannel buffers for continuous data streams (such as raw electrode volt-

ages or LFP recordings) and discrete event types (such a detected spikes or stimulation
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Figure 6: Conceptual schematic of NeuroRighter’s hardware and software elements.
NeuroRighter serves as a high-level interface between hardware and custom user-written protocols (pink
box). NeuroRighter simplifies hardware level programming by using datatypes and methods that are
specialized for multichannel neural recording and stimulation. This facilitates the creation of low-latency,
closed-loop protocols. Neural signals and secondary data streams are fed into the the NI cards’ analog
and digital inputs where they are digitized and stored temporarily in on-board memory. NeuroRighter
periodically transfers data from the acquisition cards’ FIFO memory to RAM using direct memory access.
Data is then pushed to NeuroRighter’s DataSrv server object. DataSrv serves data to NeuroRighter’s
visualization tools, filtering algorithms, and externally compiled plugins. The plugin API provides functions
for safe interaction with DataSrv so that custom operations can be performed on incoming data streams.
User-written plugins can interact with any of the computer’s native communication ports, or write data
back to StimSrv in order to control external hardware as a function of recorded neural signals.

events). Extensive documentation on each of these data types is provided in the API

reference.

Log. The Log package provides accesses to a data logging tool that operates

within the NeuroRighter executable, but can be invoked from a user protocol. This

tool can be used to write information to a log file using a separate, low-priority thread.

This is useful in the development of real-time protocols because core NeuroRighter

operations (such as the timing of hardware reads, writes, and other triggers) are

logged to this file as well, providing context for messages written from the plugin.

2.4 Case studies

NeuroRighter’s abilities for orchestrating closed-loop experiments are best demon-

strated through example. Here we present five case studies in which protocols created

with the API were used to measure NeuroRighter’s closed-loop reaction time, clamp

network firing levels in dissociated cultured cortical networks, react to seizures in
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freely moving animals with multi-electrode electrical stimulation, and control robots

serving as artificial embodiments. The plugin code used in these case studies is avail-

able for download on NeuroRighter’s code repository. 5. Additionally, we provide all

code used in the reaction-time case study in Appendix A.

2.4.1 Low latency control of real-time hardware

Rapid response times are critical for maintaining a tight feedback loop in which

features of incoming data streams (e.g. spikes, EEG, temperature, or animal motion)

are used to trigger or adjust the delivery of stimuli. To benchmark the response

speed of protocols written using the API, we wrote a protocol that generated output

signals in response to recorded action potentials. We picked two sorted units from a

dissociated neural culture to serve as triggers for hardware activation. When either

one of these units fired, it triggered the output of a digital word encoding the identity

of the detect unit. These signals serve as a generic stand-in for a stimulation pattern

or any other hardware control signal that might be used in a feedback control scheme.

Output signals were then recorded using NeuroRighter’s digital input port. The delay

between action potential detection and signal generation could then be measured

using the same sample clock. A diagram of the experimental protocol is shown in

figure 7(a). We wrote protocols to test three hardware options for generating the

required digital output:

1. StimSrv: Buffered manipulation of the NI cards using NeuroRighter’s native

stimulation server (Fig. 5 and listing 1(a)).

2. NewData: Unbuffered manipulation of the NI cards whenever new data enters

NeuroRighter’s spike server (listing 1(b)).

5http://code.google.com/p/neurorighter/source/browse/NR-ClosedLoop-Examples/
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3. Arduino: An Arduino ATmega2560-based microcontroller board6 communi-

cating via serial port (RS-232).

The response latency, calculated from the time of an action potential peak to

the corresponding change in the digital port was calculated for each hardware option

(Figure 7). Mean response latencies were 46.9 ± 3.1 milliseconds for StimSrv, 7.1

± 1.5 milliseconds for NewData, and 9.2 ± 1.3 milliseconds for the Arduino board.

Latencies where measured while NeuroRighter performed bandpass filtering, spike

detection, spike sorting, data streaming, and data saving for 64 electrode inputs, each

sampled at 25 kHz. Experiments were conducted on a desktop computer using an

Intel Core i7 processor (Santa Clara, California, U.S.A.) and running 64-bit Windows

Vista.

The differences in reaction latency for different hardware options are a result of

both the method used to communicate with the hardware and the how the input

sent from NeuroRighter is interpreted and transformed into a physical output signal.

The differences in response times for NewData and Arduino are largely attributable

to the different communication protocols and command interpretation by the client

device. For instance the Arduino used a RS232 serial interface where as NewData

communicates with the NI cards via PCIe. StimSrv’s long latency in comparison to

other options is a result of its double buffering system, which requires a relatively long

time period between updates to the NI D/A’s output buffer. While StimSrv is slow

in comparison to the NewData and microcontroller options, it provides an interface

that is easier to use and allows the uninterrupted delivery of arbitrary complex singal

outputs. On the other hand, the Arduino and NewData methods can only respond

by generating finite-sample or periodic control signals. We have found that StimSrv

is fast enough for most of our closed-loop requirements. For this reason, we used

6http://www.arduino.cc/
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Figure 7: Estimated loop times for bi-directional communication using different hard-
ware configurations. (a) Schematic of experiment used to test reaction delays for different real-time
hardware options. Spikes detected and sorted from 59-channel planar electrode array were passed to the
real-time plugin. The plugin determined if a spike originated from one of two units of interest. In the case
that a spike was produced by one of the two units, the plugin triggered the generation of an 8-bit digital
word from StimSrv, Daniel Wagenaars real-time all channel stimulator (Wagenaar and Potter, 2004),
or an Arduino board, which was recorded though NeuroRighter’s digital input port. (b) Normalized
histogram of time delays from spikes produced by the two units of interest (action potential waveforms
are shown in pink and grey and occur at 0 milliseconds) to the recorded digital signals produced by the
plugin to encode the units (01000111 or 01010100). Delay histograms are shown for each unit (pink and
grey) and the three different hardware options. N is the number of spikes recorded for each hardware
option.

StimSrv to generate physical outputs for the remainder of the case studies. However,

as demonstrated above, the API’s modularity allows the use of faster hardware options

with little change in coding complexity.

2.4.2 Multichannel electrical population firing clamp

The population firing rate is a building block of the neural code. The ability to

precisely control population firing in the face of experimental perturbations can be

used to understand its role in network function (Chapters 5 and 6). To demonstrate

NeuroRighter’s ability to control network firing rate, we implemented the feedback

controller presented in (Wagenaar et al., 2005) to control the firing activity in disso-

ciated cortical cultures grown on 59-channel micro-electrode arrays. This algorithm

adjusts the stimulation amplitude of voltage controlled, biphasic pulses on 10 elec-

trodes to desynchronize population firing and force the network firing rate to track
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target values. The control law is given by

vk[t+ ∆T ] = vk[t]− αvk[t]
(
〈fu[t]〉
f ∗

− 1

)
, (1)

where vk is the stimulation voltage on electrode k, 〈fu[t]〉 is the average firing rate

across sorted units detected with the 59 electrode array extending over a 2 second

window into the past, f ∗ is the target firing rate, ∆T is the update period of the

feedback loop (as defined within NeuroRighter’s Hardware Settings GUI), and α

defines the time constant of the feedback controller as

τFB = ∆T/α. (2)

We used ∆T = 10 milliseconds and α = 0.002 so that τFB = 5 seconds. Electrodes

were stimulated at a 10 Hz aggregate frequency (1 Hz per electrode for 10 electrodes)

in a random, repeating sequence. Additionally, individual electrode voltages were

multiplied by a tuning factor that was inversely proportional to the number of spikes

that occurred within 30 milliseconds following a stimulus pulse on that electrode, as

described in (Wagenaar et al., 2005). This factor equalizes each electrode’s ability to

evoke a spiking response, and is critical for achieving the desynchronizing effect of

the controller on population activity.

We used the controller to clamp network firing at target rates for 5 minute epochs.

These results are shown in Figure 8. The controller was able to follow target rates

within the range of f ∗ = 1.5 to 4.5 Hz/Unit.

The monotonically increasing relationship between the mean stimulation voltage,

〈vk[t]〉, and target firing rate f ∗ (Figure 8(d)) might indicate that knowledge of the

stimulation voltage versus firing rate relationship is sufficient to design an open loop

controller capable of holding network firing rates. To test this, we clamped firing at

f ∗ = 3.0 Hz/Unit over 10 minute epochs for 15 trials. Five minutes into each 10

minute protocol, we stopped updating stimulation voltages on the ten stimulating

electrodes, but continued multi-electrode stimulation in open-loop mode (Figure 9).
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Figure 8: NeuroRighter can be used to clamp population firing rates in vitro using closed-
loop electrical stimulation.(a) Schematic of the multielectrode population firing clamp.
(b) Step tracking performance is shown for a range of target firing rates, f∗ (dotted lines). The average
neuronal firing rate across detected units, 〈fu[t]〉 (colored lines), is shown for each step in f∗. Tacking
failures are colored grey.(c) Time averaged neuronal firing rate for the last 2.5 minutes of each 5 minute
protocol are compared to the reference signal, f∗. The dotted line is identity. (d) The mean control
voltage across the stimulating electrodes over the final 2.5 minutes of each step protocol is plotted as a
function of the target firing rate, f∗.
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Figure 9: Closed-loop stimulation is required to robustly clamp population firing. (Top)
The average neuronal firing rate over 1 minute periods across 15 trials. Halfway through a multichan-
nel population clamp protocol, real-time voltage updates stop and microstimulation is applied in open
loop. Error bars are ±standard deviation. (Bottom) The mean electrode stimulation voltage across 10
stimulating electrodes, for each of the 15 trials.

Although the desired mean firing rate was achieved fairly consistently, the open-loop

control scheme could not react to the rapid changes in excitability that are typical of

cultured cortical networks (Wagenaar et al., 2006c). This variability is reflected in the

large range of control signals required to track the target rate over the first 5 minutes

of each trial . As a result, the RMS error of 〈fu[t]〉 about f ∗ increased by a factor of

5.1 for open-loop compared to closed-loop epochs. The variance of firing during open-

loop stimulation is comparable to that of spontaneous (non-evoked) firing behavior

that was recorded before the controller was switched on (Figure 9, top).

2.4.3 Long term electrical population firing clamp with synaptic decou-
pling

2.4.3.1 Experiment 1

In-vitro neural preparations allow continuous experimental access to neural tissue over

very long time scales (Potter and DeMarse, 2001), and therefor serve as important

models for understanding slowly occurring developmental processes (Turrigiano et al.,

1998; Minerbi et al., 2009; Gal et al., 2010). To demonstrate that NeuroRighter is

capable of stable closed-loop neural interfacing over long time scales, we used the

multi-electrode feedback controller used in section 2.4.2 for 6-hour epochs. This

protocol started with a 1 hour recording of spontaneous activity. Then, the controller
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was engaged to clamp population firing to f ∗ = 3.0 Hz/Unit for 6 hours. Following

the clamping protocol, spontaneous network activity was recorded for an additional

hour.

Figure 10(a) shows the resulting multichannel stimulation signal (Figure 10(a.i)),

neuronal firing rate in relation to f ∗ (Figure 10(a.ii)), individual unit firing rates

(Figure 10(a.iii)), and zoomed rastergrams before, during and after multi-electrode

stimulation was applied (Figure 10(a.iv)). The controller achieved the f ∗ = 3.0

Hz/Unit tracking over the duration of the 6-hour protocol. Additionally, network

activity was desynchronized through most of the control epoch, but occasionally the

controller allowed bursts of synchronized network activity (Wagenaar et al., 2006c).

2.4.3.2 Experiment 2

Spiking and neurotransmission have a strong reciprocal influence on one another, mak-

ing their individual effects on network development difficult to quantify (Turrigiano,

2011b). For instance, N-methyl-D-aspartate (NMDA)-ergic neurotransmission plays

a large role in sustained network recruitment (Nakanishi and Kukita, 1998). For this

reason, long term changes in the state of in-vitro networks following the application

synaptic blockers (e.g., changes in firing rate, spiking patterns, or synaptic-strength)

is difficult to attribute directly to effects on neurotransmission because of secondary,

confounding effects on network activity levels. However, the closed-loop population

clamp provides a solution to this problem. A firing rate controller has the potential to

compensate for changes in network excitability induced by the application of a drug,

removing its confounding effect on network activity.

To test this, we used the multichannel population clamp during the bath applica-

tion of d(-)-2-amino-5- phosphonopentanoic acid (AP5), a competitive antagonist of

NMDA receptors. This protocol proceeded identically to Experiment 1 except that

at 1-hour following the start of closed-loop stimulation, NeuroRighter triggered the
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Figure 10: Long term electrical population firing clamp. (a) (i) The mean stimulation voltage
(black) and individual electrode stimulation voltages (grey) over the course of the 6-hour clamping
protocol. (ii) The neuronal firing rate (black) compared to the target rate (red line). (iii) Individual unit
firing rates, sorted in order of increasing rate during the 1 hour period prior to the start of closed-loop
control. (iv) Zoomed rastergrams showing short time scale network spiking before, during, and after
the controller was engaged. (b) Same as (A) except that AP5 was added 1 hour after the start of
the closed-loop controller and removed 4 hours later. This is indicated by the arrows at the top of the
figure. (c) Average pair-wise correlation functions between units for experiments with and without AP5
application (red and black lines, respectively). Cross-correlations were created from spiking data during
spontaneous activity before the closed-loop controller was engaged, (ii) half-way through the closed
loop-control period, and (iii) during spontaneous network activity following closed-loop control. The
data used to create the correlation functions is centered about locations used to create the rastergrams
shown in (A.iv) and (B.iv). To create the correlation functions, unit firing rates were calculated using 10
millisecond time bins.
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perfusion of 50 µm AP5 into the culturing medium using a syringe pump and a cus-

tom, gas-permeable perfusion lid (Potter and DeMarse, 2001) (Figure 3). Four hours

after AP5 was applied, NeuroRighter triggered the pump a second time to perform a

series of washes with normal culturing medium that removed AP5 from the bath.

Time-series results of this protocol are shown in figure 10(b). The contents of

these plots are analogous to figure 10(a) but have arrows to indicate when AP5 was

added to, and removed from, the culturing chamber. The controller was able to

successfully compensate for changes in network excitability caused by the addition

of AP5. Changes in network dynamics were reflected in the control signal, which

became smoother in the presence of the AP5 (Figure 10(b.i)).

2.4.3.3 Comparing Experiments 1 and 2

Figure 10(c) shows the average, pairwise firing rate correlation functions (Tchu-

matchenko et al., 2010) for 30 randomly selected units from experiment 1 (black

lines) and experiment 2 (red lines). Figure 10 (c.i) and (c.iii) show the correlation

functions of spontaneous network activity before and after the the controller was en-

gaged, respectively. Figure 10 (c.ii) shows correlation functions for epochs during the

clamping phase (which included the AP5 treatment for experiment 2). The period-

icity of this correlation function follows the 10 Hz aggregate stimulation frequency

during the clamping period.

Intriguingly, although the pairwise spiking correlations for experiments 1 and 2

were very similar for epochs of spontaneous activity before and during multichan-

nel stimulation (Figure 10 (c.i) and (c.ii)), they were remarkably different once the

stimulator was turned off (Figure 10(c.iii)). When AP5 was not present during the

clamping phase (experiment 1), the firing correlation between units appeared to be

enhanced following multichannel stimulation. In contrast, pairwise correlations were
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almost non-existant following the a population clamp in which AP5 was present (ex-

periment 2). Because the firing statistics (firing rate and correlation structure) during

the 6-hour clamping period were nearly identical for the both experiments 1 and 2,

this effect on the correlation structure of network activity can not be due to effects on

firing activity, but required blocking NMDAergic transmission. Without the closed-

loop controller in place, AP5 would have affected network activity levels, obfuscating

the mechanism of AP5’s effect.

This case study demonstrates the ability of the closed-loop controller to quickly

adapt to drug-induced changes in network excitability, to decouple network variables

that are normally causally intertwined, and to operate robustly over many hours.

Additionally, this case study demonstrates NeuroRighter’s ability control peripheral

equipment aside from electrical stimulators.

2.4.4 Real-time seizure intervention in freely moving rats

Aside from in-vitro recording hardware, NeuroRighter can interface with many dif-

ferent types of neural probes, including those designed to record from and stimulate

freely moving animals. To demonstrate this, we performed electrical microstimulation

in response to paroxysmal activity of hippocampal recordings taken from a rat with

induced temporal lobe epilepsy. Many studies have shown potentially therapeutic

effects of electrical stimulation on epileptic brain tissue, which could serve as an al-

ternative to pharmacological or surgical treatment methods. For instance, electrical

stimulation triggered by characteristic field potential abnormalities can potentially

abrogate seizures and lead to a decreased frequency of behavioral symptoms (Nelson

et al., 2011; Mormann et al., 2007; Morrell, 2011).

We used the plugin API to create a closed-loop protocol that could detect tem-

poral lobe seizures in freely moving rats and react with multi-electrode stimulation

(Figure 11(a)). This control scheme is similar to that of the NeuroPace responsive
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neurostimulation (RNS) system (Sun et al., 2008) (NeuroPace Inc. Moutain View,

CA, USA), with the exception that we used multi-micro-electrode stimulation instead

of driving a single macroelectrode.

Rats were rendered epileptic using focal injections of tetanus toxin into the right

dorsal hippocampus (Hawkins and Mellanby, 1987). LFPs were recorded from CA1

and CA3 regions of the hippocampus using a chronically implanted 16 channel mi-

crowire array (Tucker Davis Technologies, Alachua, FL) (Figure 11(b)). The mi-

crowire array consisted of two rows of electrodes, with 8 electrodes per row. Multi-

electrode stimulation was triggered in response to detected seizures while the rat

moved around its cage. To accomplish this, a ‘line length’ measure on each LFP

channel, which has been shown to be effective for threshold-based seizure detection,

was calculated online (Esteller et al., 2001). A line length increment for a single LFP

channel is defined as as absolute difference between successive samples of the LFP,

lk[t] = |xk[t]− xk[t− Ts]| (3)

where xk[t] is the LFP value on the kth channel at time t, and Ts is the LFP sampling

period of 500 µsec. lk[t] was passed through a first order averaging filter,

L
τfilt
k [t+ Ts] = lk[t] + exp

(
−Ts
τfilt

)
· (Lτfiltk [t]− lk[t]) (4)

where τfilt is the filter time constant. For each recording channel, we calculated

L
τfilt
k [t + Ts] using two values of τfilt, 1 and 60 seconds, which resulted in short and

long time averages that could be compared to detect rapidly occurring trends in lk[t].

Specifically, seizures were defined as events for which the criterion

L1sec
k [t] > 2 · L60sec

k [t] (5)

was met on at least 4 of the 16 recordings channels. Upon seizure detection, 10 ran-

domly chosen electrodes were stimulated sequentially at 45 Hz (aggregate frequency)

for 10 seconds using biphasic, 1 volt, 400 µs per phase, square waves. Figure 11(c,d)
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Figure 11: Closed-loop seizure intervention in a freely moving rat. (a) Schematic of the
closed-loop seizure intervention protocol. A 16-channel microwire array, with two rows of 8 electrodes,
was used to record LFP signals in the CA1 and CA3 regions of the hippocampus of a epileptic rat.
Paroxysmal activity in CA1 triggered the application of multichannel electrical stimulation through the
recording electrodes via a stimulation multiplexing board (green). (b) Implantation sites of the microwire
array. Top view shows the electrode penetration sites (black dots) in the right-dorsal hippocampus. The
red line indicates position of the coronal view shown below. (c) A 12 second epoch of hippocampal
LFPs during a seizure event. Electrodes 1-8 were located in CA1 and 9-16 in CA3. The line length
measures, averaged across channels, are shown below the LFP traces. Seizure detection occurs at 0
seconds. (d) Same as (c) except with closed-loop stimulation engaged. Electrical stimulation was
applied on electrode 1 along with nine other electrodes (not shown). Red dots indicate stimulation times
for e01 and stimulation artifacts appear on the LFP trace. e05-e07 and e11 were not used for stimulus
application.
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shows seizure events without and with closed-loop stimulation engaged. During stimu-

lus application, Lαk [t] values were frozen to prevent stimulation artifacts from affecting

the line length averages.

There was no easily discernible effect of microsimulation on seizure duration or

intensity during this pilot experiment. However, this proof of concept demonstrates

the API’s utility in experiments conducted on freely moving animals to modulate

aberrant neural activity states. These features are useful for testing stimulation

algorithms that do not just react to a seizure occurrence, but predict oncoming seizures

ahead of time in order to apply a preventative action, which has proven a difficult

goal to achieve (Mormann et al., 2007).

2.4.5 Silent Barrage and robotic embodiment

The complexity of neural systems often necessitates intricate experimental protocols

for proper investigation. To meet this requirement, the plugin API can be used to

integrate NeuroRighter with complicated configurations of external hardware and

software. Working in collaboration with the SymbioticA group at the University

of Western Australia, we used NeuroRighter for intercontinental neural control of a

robotic system. This project was part of an art-science collaboration called Silent

Barrage7 (Zeller-Townson et al., 2011), in which a dissociated cortical culture in

our lab in Atlanta was embodied with a remote array of robotic drawing machines

situated in an interactive art gallery. This system is an extension of the MEART

project (Bakkum et al., 2007).

Figure 12(a) shows an illustration of the Silent Barrage system. Using the plugin

API, a protocol was written to communicate between NeuroRighter and a custom web

server running on the same computer. The web server in turn communicated with a

client computer controlling a robotic body consisting of 32 independent robots. Each

7http://silentbarrage.com/
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robot had a rotating actuator capable of climbing up and down a vertical column

(Figure 12(c)). Columns were arranged in a grid that reflected the electrode layout of

the MEA (Figure 12(a,b)). The height of each rotating actuator at a given moment

was determined by the instantaneous firing rate detected on two adjacent electrodes

from the 59 channel MEA. As the actuators traveled up and down, they periodically

marked their positions on the vertical poles using an ink pen. Over time, this resulted

in a visual record of spatiotemportal activity of the culture inscribed on each column

(Figure 12(c)).

Silent Barrage was exhibited in the United States (New York), Spain (Madrid),

Brazil (Sao Paolo), Ireland (Dublin), and China (Bejing). Visitors to the exhibi-

tions were encouraged to mingle amongst the the robotic embodiment and they were

observed using overhead cameras (Figure 12(a,b)). The resulting video feed was pro-

cessed on site to extract features of audience movement (Horn and Schunck, 1981) and

these data were streamed back to NeuroRighter’s web server in Atlanta. Audience

movement measures were then used to adjust stimulation patterns delivered through

NeuroRighter’s all-channel stimulator. The relationship between incoming video data

and electrical stimulation varied from exhibit to exhibit, from simple single-electrode

rate coding schemes to more complex multi-electrode schemes where artificial neural

networks were used to deliver certain stimulus pattern based upon learned features

of incoming video data. Electrical stimulation modulated the activity state of the

culture’s firing patterns, thus closing the loop around the dissociated culture, robotic

body, and audience members separated by thousands of kilometers. While on exhibit

in the National Art Museum of China, Silent Barrage was perhaps the Earth’s largest

behaving ‘organism’.
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Figure 12: The Silent Barrage robotic embodiment. (a) Illustration of the Silent Barrage
‘organism’ during its exhibition at the National Art Museum of China (NAMOC), in Bejing. Spatial
patterns of action potentials recorded from a dissociated cortical culture are used to drive the robotic body.
A video stream of visitors to the exhibition are interpreted by NeuroRighter’s plugin protocol and used to
control multichannel electrical stimulation though the MEA, closing the loop around audience members,
robotic system, and neural tissue over thousands of kilometers. (b) Audience members viewing the
exhibition at NAMOC. Simultaneously, NeuroRighter translated the overhead video feed to stimulation
patterns delivered to the culture and then translated resulting neuronal activity patterns to robotic
actuation at the exhibit. (c) Photograph of an individual robot and the traces it produced during the
NAMOC exhibition.
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2.5 Discussion

Closed-loop electrophysiology systems are powerful tools for neuroscience research

because they can be used to parse recurrent systems into independently manipulable

components. Voltage clamp techniques use feedback control to separate membrane

potential from the recurrent influence of voltage-dependent ionic conductances (Mar-

mont, 1949). Seminal experiments using voltage clamp have fostered our understand-

ing of ion channels, neuronal excitability, and synaptic transmission. More recently,

dynamic clamp has been used to deliver artificial transmembrane or synaptic con-

ductances into living neurons (Prinz et al., 2004; Kispersky et al., 2011). Using these

approaches, feedback control transforms dynamic features of individual neurons into

controlled experimental variables. Similarly, closed-loop multichannel systems like

NeuroRighter can transform features of neural networks into controlled experimental

variables (Arsiero et al., 2007). NeuroRighter is a powerful tool for controlling net-

work variables, improving upon currently available systems in terms of cost, usability,

accessibility, extensibility, and hardware standardization (Ahrens et al., 2012; Stirman

et al., 2011; Wallach et al., 2011; Wagenaar et al., 2006a). We have demonstrated

NeuroRighter’s power in conducting basic and translational neuroscience research

through a variety of case studies.

Altered gene expression, synaptic input, or environmental conditions can induce

changes in spiking activity, which in turn trigger activity-dependent processes. Be-

cause of this, it becomes difficult to distinguish the role these factors play in shaping

network dynamics and neural plasticity independent of firing rate. Closed-loop mul-

tichannel feedback systems provide an opportunity to render the population firing

rate a controlled experimental variable and enable study of cellular and network pro-

cesses as a function of a defined activity state. We used Neurorighter to clamp the

firing rate of a living neural network to user-defined setpoints over both short and

long timescales (Sections 2.4.2, 2.4.3). Further, we were able to control population
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firing rate during prolonged application of the NMDA receptor antagonist, AP5 (Sec-

tions 2.4.3). Our controller compensated for the loss of NMDA-mediated excitation

and maintained network spiking at the target firing rate. Therefore, the effects of

AP5 could be deduced through comparison with a control culture that underwent an

identical clamping protocol but with intact synaptic transmission. In most studies

that use long-term drug application, the individual roles of spiking and excitatory

neurotransmission on plasticity are ambiguous (Turrigiano, 2011b; Rich and Wenner,

2007). By using a real-time multichannel feedback system, we have begun to unravel

the independent effects of spiking and NMDAergic transmission on network behavior.

This approach could also be used to more directly study the effects of altered genetic

or environmental factors on network activity.

In addition to better controlled experimental variables, real-time feedback can

be used to improve the relevance of experiments using reduced neural preparations

in studies of behavior. Implicit to animal behavior is the interplay between motor

output and sensory perception (e.g., head movement affects the visual input stream

and vice-versa). While reduced neural preparations or immobilized animals provide

excellent experimental accessibility, their major weakness is that they do not preserve

a functional sensory-motor loop. We have demonstrated that Neurorighter is well-

equipped for performing closed-loop experiments that restore the sensory-motor loop

by interfacing living neural networks with artificial bodies (Section 2.4.5). The advan-

tages of this approach over traditional open-loop techniques are twofold. First, neural

systems can engage in ‘motor’ behaviors without sacrificing delicate optical (Ahrens

et al., 2012) or electrophysiological (Harvey et al., 2009) access due to actual motion.

Secondly, the experimenter has complete control over the mapping between a recorded

neural signal and its resulting ‘motor’ effect (Ahrens et al., 2012; DeMarse et al.,

2001). For example, Ahrens and colleagues recently examined optomotor adaptation

in paralysed larval zebrafish by embedding them in a virtual environment (Ahrens

52



et al., 2012). Visual stimuli in the virtual environment provided a perception of mo-

tion, and induced fictive motor-nerve activity. Recorded motor-nerve activity was

used to drive motion of the virtual environment. Changes in sensory-motor feed-

back gain could be achieved by adjusting the efficacy by which fictive motor patterns

propelled the fish through its virtual world. All the while, full brain activity was

recorded through single-cell resolution imaging, which would be nearly impossible to

achieve in a freely moving animal. This study highlights how closed-loop interfaces

between artificial bodies or environments and a living neural system allow excellent

experimental access during behaviors requiring an intact sensory-motor loop.

Aside from basic research, closed-loop multichannel electrophysiology has possible

medical applications. Predictive application of drugs or electrical stimulation has the

potential to increase the efficacy and safety of treatments for various neurological dis-

orders (Rosin et al., 2011; Mormann et al., 2007) and improve neural rehabilitation

procedures (Jackson et al., 2006a). For example, a reliable seizure prediction algo-

rithm would open the possibility for targeted interventions that abort seizures before

they occur. Mormann and colleagues provide an extensive comparison of different

methods for seizure prediction (Mormann et al., 2007). Unfortunately, the clinical

applicability of these algorithms remains quite pessimistic and future studies will re-

quire a high-throughput validation system to test robustness of seizure prediction

algorithms under a variety of circumstances. We have demonstrated that NeuroR-

ighter can be used for this purpose (Section 2.4.4). The stimulation algorithm we used

is very similar to a method called responsive neurostimulation (RNS, NeuroPace Inc.

Mountain View, CA, USA) that recently showed very promising results in a large,

double-blind pivotal clinical study (Morrell, 2011). This form of closed-loop seizure

modulation is not truly predictive as it was triggered on the occurrence of ‘unequiv-

ocal seizure onset’ (Litt and Echauz, 2002). However, the API provides a means for

easy reconfiguration in order to test alternative, predictive methods to abort seizures
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before they begin, using multichannel electrical stimulation or the local application of

an anti-convulsive drug. Additionally, a plugin could be reconfigured for closed-loop

modulation of other pathological neuronal activities or to facilitate motor rehabilita-

tion (Jackson et al., 2006a).

Tools that enable closed-loop interaction with neural tissue at the network level

have great potential to advance experimental neuroscience. Historically, open-source

projects have been extremely good at adapting equipment and code designed for a sin-

gular purpose to other uses. For this reason, we envision a large role for open-source

software and open-access hardware communities in the development of technologies

for closed-loop eletrophysiology systems. Rapid improvements in microprocessor per-

formance, embedded computer systems, on-chip multichannel signal processing, and

A/D conversion technology must be matched by projects that can expose their power-

ful features for researchers with little or no background in embedded systems or com-

puter science. NeuroRighter is one of several open-source hardware/software projects

that are enabling more labs to carry out sophisticated electrophysiology with less

money and more experimental flexibility8.

8www.danielwagenaar.net/res/software/meabench; http://code.google.com/p/arte-ephys/;

http://open-ephys.com/; http://www.backyardbrains.com/Home.aspx
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CHAPTER III

DELIVERY OF CONTINUOUSLY-VARYING STIMULI

USING CHANNELRHODOPSIN-2*

To study sensory processing, stimuli are delivered to the sensory organs
of animals and evoked neural activity is recorded downstream. However,
noise and uncontrolled modulatory input can interfere with repeatable
delivery of sensory stimuli to higher brain regions. Here we show how
channelrhodopsin-2 (ChR2) can be used to deliver continuous, subthresh-
old, time-varying currents to neurons at any point along the sensory-motor
pathway. To do this, we first deduce the frequency response function
of ChR2 using a Markov model of channel kinetics. We then confirm
ChR2’s frequency response characteristics using continuously-varying op-
tical stimulation of neurons that express one of three ChR2 variants. We
find that wild-type ChR2 and the E123T/H134R mutant (‘CheTA’) can
pass continuously-varying subthreshold stimuli with frequencies up to ∼70
Hz. Additionally, we find that wild-type ChR2 exhibits a strong resonance
at ∼6-10 Hz. Together, these results indicate that ChR2-derived optoge-
netic tools are useful for delivering highly repeatable artificial stimuli that
mimic in-vivo synaptic bombardment.

*Tchumatchenko, T.†, Newman, J.P.†, Fong, M.-f., Potter, S.M. Delivery of continuously-varying

stimuli using ChR2. Front. Neural Circuits, 7:194, 2013. † Equal contributions; co-first authors.

c© 2013 Tchumatchenko, Newman, Fong, and Potter. This is an open-access article distributed

under the terms of the Creative Commons Attribution License. Contributions: J.P.N, T.T., and

S.M.P. designed all experiments. J.P.N. and M.F. carried out all experiments. J.P.N. designed and

built all custom equipment and performed all data analysis. T.T. derived the frequency response

function of ChR2. J.P.N and T.T. wrote the paper. All authors edited the paper.
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3.1 Introduction

The network response to continuously-varying stimuli is at the core of cognitive

and sensory processing. To understand how neuronal networks encode and pro-

cess continuously-varying input, a sensory organ is presented with a precisely-defined

stimulus and evoked spiking activity is recorded from a corresponding brain region.

The power of this technique for deducing network encoding properties has been

demonstrated in numerous preparations, including the retina, (Warland et al., 1997;

Chichilnisky, 2001), antennal and mechanosensory systems of insects (Geffen et al.,

2009; Warland et al., 1992), and somatosenory, auditory, and visual systems of mam-

mals (Arabzadeh et al., 2003; Kayser et al., 2010; Lesica et al., 2007). However, as

stimuli delivered to sensory organs propagate to higher brain areas, intrinsic noise

and modulatory input from secondary brain regions can interfere with controlled in-

put signals. For studies concerning the function of neural circuits that are several

synapses removed from sensory input, the direct introduction of continuously-varying

currents to a neural population may provide a more straightforward way to deduce

circuit response dynamics.

Optogenetic methods allow precise control of spike times using brief light pulses to

excite light-gated ion channels and pumps, such as channelrhodopsin-2 (ChR2) (Boy-

den et al., 2005; Mattis et al., 2011; Gunaydin et al., 2010). Pulsed optical stimula-

tion using ChR2 dictates a spiking response that is tightly locked to each stimulus

by briefly overriding neuronal dynamics. This stands in contrast to the highly vari-

able, subthreshold currents recorded from cortical neurons during natural sensory

processing in vivo (Destexhe et al., 2003). We hypothesized that using relatively low

intensity, continuously modulated optical stimuli to excite ChR2 might allow con-

ductance fluctuations that mimic in-vivo-like synaptic bombardment and leave the

decision of when and how often to spike to individual cells (Mainen and Sejnowski,

1995; Tchumatchenko et al., 2011). Surprisingly, while the response properties of
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microbial opsins to optical pulses have been studied extensively (Mattis et al., 2011),

little is known about their ability to relay fluctuating light signals.

In order for ChR2 to be useful for delivering continuously-varying currents, it must

allow (1) sufficient bandwidth to mimic synaptic communication and (2) repeatable

current waveforms to be delivered across trials. Here, we address these requirements

theoretically and experimentally. We find that wild-type ChR2 (ChR2) (Boyden

et al., 2005) supports significant photocurrents up to 69 Hz, the H134R mutant

(ChR2R) (Nagel et al., 2005) up to 37 Hz, and E123T/H134R mutant (ChR2A; also

known as ‘ChETA’) (Gunaydin et al., 2010) up to 73 Hz, and show that evoked cur-

rent waveforms are extremely repeatable across trials. Using the model, we find that

the bandwidth over which ChR2R and ChR2 can convey time-varying stimuli is re-

duced with increasing membrane potential but that ChR2A’s passband is unaffected.

Finally, we show that wild type ChR2 supports a strong resonance with a natural

frequency around 10 Hz. This resonance is present, but significantly attenuated, in

the H134R and E123T/H134R mutants.

3.2 Results

3.2.1 ChR2’s frequency response

In this study, we sought a general description of ChR2’s dynamics that captured

the ability of both ChR2 and its engineered variants to convey continuously-varying

stimuli. To do this, we determined the frequency response function of a population

of channels expressed by a single cell, FChR2(ω), using a three-state Markov model of

ChR2’s channel kinetics (Fig. 13(a)) Nagel et al. (2003). The rate equations governing

the model’s state transitions are

Ȯ(t) = εφ(t)C(t)− ΓdO(t) (6)

Ḋ(t) = ΓdO(t)− ΓrD(t) (7)

C(t) = 1−O(t)−D(t), (8)
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Figure 13: ChR2’s amplitude response function. (a) Illustration of the three-state Markov
channel model described by Eqs. 6-8. The transition rates between open, O, desensitized, D, and
closed, C, states are εφ(t), Γr, and Γd, respectively. (b) Amplitude response functions FChR2(2πf)
for the model are shown for three ChR2 variants using different mean illumination intensities (0.15
through 0.6 mW·mm−2) and parameters in Table 3. (c) Voltage dependence of ChR2’s amplitude
response function. ChR2 and ChR2R both have a voltage-dependent desensitization rate, Γd(v), which
results in decreased bandwidth as the membrane potential increases. ChR2A does not have a voltage
dependent desensitization rate and therefore has a stable bandwidth across membrane potentials. (d)
Predicted amplitude response of each ChR2 variant compared to the estimated amplitude response derived
from evoked currents recorded from neurons during continuously-varying photostimulation with a mean
illumination intensity of 0.35 mW·mm−2. Error bars are ±1 STD.

where the state variables O, D, and C are the probabilities of a channel being open,

desensitized, or closed, respectively. Γd and Γr are the rates of channel desensitization

and recovery. ε is the quantum efficiency of ChR2 and φ(t) is the instantaneous

photon flux (light intensity) impinging on a single channel. φ(t) can be modulated

by changing the light intensity of a stimulating light source as a function of time.

The conductance of ChR2 across the cell membrane is proportional to the num-

ber of channels that occupy the open state. Therefore, FChR2(ω) can be thought

of as a frequency- and phase-dependent transition rate from the channels’ closed to

open state in response to a continuously-varying stimulus. Since individual channels

switch between states discretely, FChR2(ω) describes the transformation of arbitrary

optical waveforms to intracellular current under the assumption that a large number

of channels are present in the cell’s membrane. FChR2(ω) is given by

FChR2(ω) =
C0(jω + Γr)

−ω2 + jω(Γr + εφ0 + Γd) + εφ0Γr + εφ0Γd + ΓrΓd
.. (9)

A detailed derivation of FChR2(ω) can be found in the Methods section.

The amplitude response function, |FChR2(ω)| (Eqs. 9 and 24), is the component
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Table 3: Markov model parameters for each ChR2 variant. Values were obtained from fitting
the amplitude of the frequency response function (Eq. 9) to the empirically derived response function.

Variant εφ0 (s−1) Γd (s−1) Γr (s−1)
ChR2 6.51 236.35 3.60
ChR2R 1.16 126.74 8.38
ChR2A 0.96 254.63 5.57

of FChR2(ω) that indicates the frequency-dependent gain of the channel population

in response to fluctuating light signals. The predicted amplitude response functions

for ChR2, |FChR2(ω)|, ChR2R, |FChR2R(ω)|, and ChR2A,|FChR2A(ω)|, are shown in

Fig. 13(b) for different mean illumination intensities. Model parameters were obtained

for each ChR2 variant by fitting the predicted amplitude response function in Eq. 24

to the experimental estimate (Table 3; Methods Section ‘Delivering time varying

currents using ChR2’).

|FChR2(ω)| has a high frequency cutoff (width at half maximum) of 69 Hz. It

should be noted that this cutoff value is defined relative to ChR2’s peak conductance,

and not in terms of absolute photocurrents. For this reason, it is still possible to use

ChR2 to deliver physiologically significant photocurrents at stimulation frequencies

exceeding 69 Hz. The shape of |FChR2(ω)| indicates that ChR2 exhibits a significant

resonance with a natural frequency around 6-10 Hz. This feature explains the large

peak to steady-state (DC) ratio of ChR2-mediated photocurrents in response to pulsed

stimuli Gunaydin et al. (2010); Mattis et al. (2011).

In agreement with previous characterizations, ChR2R is significantly slower than

ChR2 and |FChR2R(ω)| has a cutoff frequency at 37 Hz Mattis et al. (2011). While

ChR2R supports a resonance in the 3-4 Hz range, its effect is significantly reduced

compared to ChR2. The bandwidth of ChR2A was similar to that of ChR2 with

a high frequency cutoff of 73 Hz. |FChR2A(ω)| displayed a moderate resonance that

peaked at 3-5 Hz depending on the mean light intensity of the stimulation waveform.
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3.2.2 Voltage dependence of channel kinetics

For some ChR2 variants, channel kinetics are dependent on the membrane potential.

The off time of ChR2- and ChR2R-evoked currents grow with increasing membrane

potentials Mattis et al. (2011). Additionally, the time-to-peak conductance for ChR2

increases approximately linearly with membrane potential Mattis et al. (2011); Berndt

et al. (2011). ChR2A does not have voltage dependent kinetics Mattis et al. (2011);

Berndt et al. (2011). Therefore, for the ChR2 and ChR2R variants, the transition

rates Γr and Γd in the Markov model, Eqs.6-8, both could be voltage dependent.

To understand how voltage-dependent kinetics affect the bandwidth of each ChR2

variant, we derived the transient response of our model to a delta pulse of magnitude

φ0 and to a downward step to zero from initial intensity φ0. The response to a delta

light pulse, (‘on-dynamics’) is given by

Oon(t) = εφ0 exp(−Γdt)θ(t) (10)

where θ(t) is the Heaviside theta function. The response to a downward step (‘off-

dynamics’) is given by

Ooff(t) = exp(−Γdt)θ(t)
Γrεφ0

ΓdΓr + Γdεφ0 + Γrεφ0

. (11)

The long time dynamics of both Oon and Ooff are dominated by Γd when using bio-

physically relevant parameters. Therefore, to capture the effect of voltage on channel

kinetics, we assumed a linear relationship between the voltage and Γd according to

Γd(v) = Γd(1 − 0.0056(v + 70 mV)) Mattis et al. (2011). We then recalculated

the amplitude response function at membrane potentials ranging from -80 to 0 mV

(Fig. 13(c)). Increases in membrane potential affected the high-frequency cutoff for

the ChR2 and ChR2R and had a large effect on channel bandwidth. As the membrane

voltage increased from -80 to 0 mV, the bandwidth of the amplitude response function

decreased by 37% for both variants (Fig. 13(c), inset). In contrast, ChR2A’s constant
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bandwidth across voltages makes it well suited for introducing continuously-varying

conductances into cells that are not voltage-clamped.

3.2.3 Robustness of the frequency response function

The linear time-invariant frequency response function has the greatest predictive

power for stimuli with low peak-to-peak amplitudes. To test the robustness of the

frequency response function when using larger amplitude inputs, we compared it with

the complete response arising from time-varying light amplitude. Sinusoidal inputs

with mean intensity of φ0 = 0.35 mW·mm−2 and different amplitudes δφ were used

to drive the linear time-invariant frequency response (Eq. 9) according to

O(t) = O0 + εδφFChR2(ω) exp(jωt) (12)

The complete response dynamics of the Markov model were obtained by inserting the

offset and amplitude parameters, φ0 and δφ, into the sinusoidal drive (Eq. 13) and

numerically integrating the corresponding differential equations (Eqs. 6-8) to obtain

O(t).

The response predicted by FChR2(ω) and complete solutions will match when

|iω + εφ0| � εδφ. This condition guarantees that terms proportional to exp(jωt)

dominate over higher order terms in the derivation of the FChR2(ω) response function

(Eqs. 18, 19). This condition is fulfilled when δφ � φ0 or for frequencies ω � εφ0.

We compared simulated and time-invariant solutions to Eqs. 6- 8 and found that the

frequency response function provided a good approximation of the complete dynam-

ics, even for relatively large stimulus amplitudes and low stimulus frequencies, where

deviations between the linear time-invariant response and complete model dynam-

ics are largest (5 Hz input; Fig. 14).The deviation between FChR2(ω) and complete

dynamics was negligible for higher stimulus frequencies (20 Hz input; Fig. 15).
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Figure 14: Time-invariant versus complete ChR2 responses to 5 Hz stimuli. The time-
invariant FChR2(ω) approximation (solid lines) and the complete dynamics (dashed lines) of O(t) are
shown in response to 5 Hz sinusoidal stimuli for ChR2 (left), ChR2R (right, top) and ChR2A (right,
bottom). Gray shades represent different sinusoidal amplitudes normalized to the mean stimulus intensity,
δφ/φ0 = 0.1, 0.3, and 0.7.

Figure 15: Time-invariant versus complete model dynamics for different ChR2 variants
for 20 Hz stimuli. The time-invariant approximation (solid lines) and the complete linear response
(dashed lines) of O(t) are shown in response to 20 Hz sinusoidal stimuli for ChR2 (left), ChR2R (right,
top) and ChR2A (right, bottom). Gray shades represent different sinusoidal amplitudes normalized to
the mean stimulus intensity, δφ/φ0 = 0.1, 0.3, and 0.7.
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3.2.4 Delivering continuously-varying currents using ChR2

To verify FChR2(ω) experimentally, cultured cortical cells expressing either ChR2,

ChR2R, or ChR2A were stimulated with spatially uniform blue light (465 nm at

peak intensity) using a light emitting diode (LED), while somatic photocurrents were

recorded using whole-cell patch clamp (Methods). To ensure that optical stimuli

tracked intended stimulus waveforms, we developed a custom LED driver that used

optical feedback to compensate for the static non-linearities and temperature depen-

dence associated with the LED light source (Fig. 16(a-c); Methods; Appendix B).

To gain an initial confirmation of each variant’s ability to relay continuously-

varying photocurrents, we stimulated cells with swept frequency cosine (‘chirp’) stim-

uli (Fig. 16(d); Methods). Chirp inputs allow time and frequency characteristics of

each variant to be read directly from the photocurrent time-series. Each variant dis-

played a characteristic decay in evoked current amplitude with increasing frequency,

consistent with the model prediction. Additionally, the slightly increased midband

amplitude of ChR2-evoked photocurrents provided indications of a bandpass effect.

Because the full dynamics of ChR2 are time-variant, the estimated frequency re-

sponse (Eq. 27; Methods) will vary depending on the stimulus choice. Our goal was to

use ChR2 to deliver stimuli that mimic in vivo-like synaptic bombardment. Therefore,

we used optical stimuli consisting of 10-second realizations of a filtered Gaussian noise

signal (time constant: τs = 50 ms, mean±standard deviation: µs = 0.4 ± σs = 0.08

mW·mm−2; Methods). We chose stimuli with these parameters because they evoked

membrane voltage waveforms with similar amplitude and frequency characteristics

to those obtained from in vivo recordings of sensory cortical neurons in the high-

conductance state (Fig. 17) (Destexhe et al., 2003).

We measured the empirical frequency response function to the Gaussian noise

stimulus, F̂ChR2(ω), of cells expressing ChR2 (n = 9 cells), ChR2R (n = 4 cells), or
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Figure 16: Delivery of continuously-varying stimuli to neurons using ChR2. Delivery
of continuously-varying stimuli to neurons using ChR2. (a) Simplified schematic of the
LED driver in optical feedback mode. The circuit uses an amplified photodiode to compensate for the
non-linearities and temperature dependence of the LED, allowing arbitrary waveforms to be delivered
to cells. (b) A one millisecond LED pulse, VPD (black), versus the reference voltage, VREF (gray).
The current sourced to the LED is shown in the lower plot. Scale bars, 1 mW·mm−2 (top) and 250
mA (bottom). Insets show the zoomed step onset with corresponding 5 µs scale bars. (c) A computer
generated Gaussian stimulus (gray) signal and the recorded light waveform (black).. The lines overlap
almost perfectly, making the reference voltage (gray) difficult to see. An inset shows a zoomed portion
of the sequence. Scale bars, 0.05 mW·mm−2 and 500 µs. An amplitude histogram of the sequence, with
a best-fit Gaussian distribution, is shown to the right. (d) Responses to frequency chirp stimuli for each
ChR2 variant tested. The top plot shows the stimulus waveform (black) along with the instantaneous
frequency profile (gray) and bottom plots show evoked current waveforms. Scale bars, 100 pA.
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Figure 17: Example membrane voltages during Gaussian photostimulation. (Left) Evoked
voltage fluctuations obtained from current-clamp recordings performed during time-varying photo-
stimulation are shown for each ChR2 variant used in this study. Each trace is the average of 10
stimulus-response pairs to a repeated Ornstein-Uhlenbeck stimulus waveform. A voltage histogram is
shown to the right of each trace. (Right) Power spectral density estimates for the voltage response.
Compare this figure to box 1 in (Destexhe et al., 2003).
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Figure 18: Empirical amplitude response functions of wtChR2 and engineered variants
derived from chirp stimuli.

ChR2A (n = 6 cells) (Methods; Eq. 26-29). We then compared the empirical ampli-

tude responses for each variant, |F̂ChR2(ω)|, with their theoretical counterparts. We

observed good agreement between the empirically derived and predicted amplitude

response functions, although some differences exist (Fig. 13(d)). For instance, both

|F̂ChR2R(ω)| and |F̂ChR2(ω)| have small downward deviations from the predicted re-

sponse at ∼5 Hz, which is more pronounced for ChR2. Additionally, the predicted

frequency response tends to slightly overestimate the measured gain at frequencies

above 100 Hz. Because stimuli were spatially homogeneous and applied over the

extent of the dentritic arbor, the lower-than-predicted response to high frequency

stimuli may result from passive dendritic filtering of evoked currents.

To examine how the choice of stimulus waveform might change the channels’

response properties, we recalculated the amplitude response function using photocur-

rents recorded in response to chirp stimuli (Fig. 18). Since chirp stimuli are sinusoidal,

they result in a U-shaped amplitude distribution that emphasizes extreme stimulus

amplitudes (0.05 and 0.65 mW·mm−2; Fig. 19). Because of large sinusoidal amplitude

relative to the steady state light level (δφ/φ0 ≈ 1) and the overabundance of extreme
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Figure 19: Light power distributions for chirp and Ornstein-Uhlenbeck stimuli.

values, chirp stimuli were less capable of meeting the condition |(iω + εφ0)| � εδφ,

which ensures agreement between the response predicted by FChR2(ω) and complete

model solutions. Consequently, the amplitude response function estimated from chirp

inputs deviates from the analytical amplitude response (Eq. 24). As predicted using

the model, these deviations primarily affect low frequencies f ≤ 5Hz and are most

prominent in wild-type ChR2 (see Section 3.2.3; Fig. 14).

Despite these imperfections, both our theoretical and our empirical results indicate

that all three channel types are capable of transmitting fluctuating current stimuli

to populations of cells in a physiologically relevant frequency range (up to ∼100 Hz).

Furthermore, because the model provides a tractable description of channel dynamics,

it serves as a useful tool for predicting the bandwidth and resonance of new channels

based on measurable physiological parameters.

3.2.5 Reliability of continuously-varying ChR2-evoked currents

In order for continuously-varying photostimulation to be useful in experimental set-

tings, evoked current waveforms must be highly repeatable. Therefore, we measured

the reliability of photocurrent waveforms across trials. As expected, evoked pho-

tocurrents looked like smoothed versions of the stimulus signal due to the low-pass

effect of ChR2’s amplitude response function (Fig. 20). Evoked current waveforms
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were remarkably stable across trials. There there was no systematic change in the

amplitude of evoked currents during repeated applications of a stimulus waveform

(Fig. 20(a,c)).

We next examined the distribution of evoked current amplitudes across cells

(Fig. 20(f)). The average standard deviation of photocurrents evoked by ChR2 was

26.7 pA. ChR2R and ChR2A delivered only slightly larger current fluctuations than

ChR2, with a mean standard deviations of 32.0 pA and 31.4 pA, respectively. The

similarity in evoked current amplitudes between ChR2 and the engineered variants is

likely due to ChR2’s resonance, which makes the channel most sensitive to fluctuating

stimuli with power in the 10 Hz range, as opposed to steady state inputs.

Finally, to determine the reliability of evoked currents across cells, we calculated

the normalized cross-correlation function, cs,Ii , between the light power density, s(t)

and photocurrents Ii(t) for each cell, i, and across cells, cIi,Ij . For ChR2, the median

peak value of cIi,Ij was 0.96, indicating strong correlations between evoked currents

in different cells (Fig. 20(d)). The median peak value of cs,Ii was 0.92, indicating

strong correlations between evoked currents and the stimulus waveform (Fig. 20(e)).

Additionally, the similarity in shape between cIi,Ij and the autocorrelation of the stim-

ulation process, cs,s, indicates that temporal features of the stimulus were accurately

converted into photocurrents, as predicted by the passband of the frequency response

function (Fig 13(e)).
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Figure 20: Reliability of continuously-varying neuronal photostimulation. (a) Intracellular
currents from a single cell during Gaussian stimuli. The top trace is a portion of a 10 second Gaussian
stimulus sequence. The bottom three traces show the intracellular currents recorded during different
presentations of the same stimulus waveform. Scale bars, 200 pA and 200 ms. Scale bars apply to all
time series traces in the figure. (b) The same stimulus waveform used in (a), and the corresponding
evoked responses from different cells. (c) The standard deviation of the photocurrent induced on the
first trial of stimulation versus on the last trial. The dotted line is identity. Points near the identity line
indicate that there was little or no decrease in stimulus efficacy across trials. The filled dot corresponds
to the cell in (a). (d) Normalized cross-correlation functions of photocurrents between neurons (gray) or
autocorrelation function of photocurrents within the same neuron (black). The inset shows a histogram of
peak correlation coefficients. (e) Normalized cross-correlation function between the stimulation process
s(t) and recorded photocurrents. The gray line is the autocorrelation function of the stimulation process.
The inset shows a histogram of peak correlation coefficients. Unless otherwise noted, data in this figure
were obtained from cells expressing ChR2.
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3.3 Discussion

Optogenetic methods offer genetic specificity, elimination of electrical recording ar-

tifacts, and increasingly specialized functionality (Mattis et al., 2011; Berndt et al.,

2011). Because of these advantages, optogenetic methods are often used for direct ma-

nipulation of neuronal subpopulations in order to understand their function (Cardin

et al., 2009; Sohal et al., 2009). Typically, pulsed optical stimuli are used to elicit

neural responses. However, for studies that seek to understand information transmis-

sion in neural circuits, continuously modulated photocurrents that mimic synaptic

bombardment offer several advantages over pulsed stimuli. Continuously modulated

photocurrents provide highly controlled subthreshold inputs, while leaving the the

decision of when and how often to spike to individual neurons. Therefore, the spikes

recorded from the network response to such continuously modulated photocurrents

carry the signatures of innate spike generation mechanisms as well as those of interneu-

ronal connectivity and thereby offer the possibility of revealing underlying network

encoding strategies.

Previous studies of ChR2’s response function have provided mixed results for un-

derstanding the channel’s ability to relay time-varying input. A preliminary abstract

on the ChIEF (Lin et al., 2009) variant’s response dynamics in HEK cells described

a low-pass rather than a band-pass response (Neef et al., 2011). On the other hand,

characterizations of numerous ChR2 variants have focused on step or pulse stim-

uli (Mattis et al., 2011; Gunaydin et al., 2010). To the best of our knowledge, this

study is the first to both theoretically and experimentally derive the ChR2 channel’s

linear and complete response function in three ChR2 variants.

In this study, we demonstrated the ability of ChR2 to evoke continuously modu-

lated photocurrents in neurons in response to continuously modulated light signals.

We used a three-state Markov model (Nagel et al., 2003) to derive an analytical

frequency response function for ChR2 variants (Eq. 9). We confirmed these model
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predictions experimentally and have shown that the model is sufficient to capture

dynamical properties of ChR2 in neurons within a physiologically relevant frequency

range. Additionally, we found that the passband of ChR2, ChR2R and ChR2A are

broad enough to support photocurrents that mimic the noisy synaptic input received

by neurons in the high conductance state, in vivo (Destexhe et al., 2003) (Fig. 17).

Aside from channel bandwidth, we found that temporal characteristics of continuously-

varying photocurrents were highly repeatable across trials and cells. This contrasted

with the amplitude distributions of the light-evoked currents across cells, which were

highly variable (Fig. 20(c)). The variability of photocurrent amplitudes results from

nonhomogeneous expression levels across cells. Potentially, this variability in channel

expression could be used to simulate natural sources of noise in neural circuits such

as variability in the number of incoming projections (Abbott and Dayan, 2001), vari-

able spiking thresholds (Azouz and Gray, 2000), and sodium channel noise (Jacobson

et al., 2005).

Continuously-varying optical stimuli allow subthreshold conductance modulations

that can be spatially and genetically targeted. The spatially uniform optical stimuli

used in our study produced highly correlated photocurrents across cells (Fig. 20(d)).

These temporally locked photocurrents mimic the highly correlated state of subthresh-

old thalamic drive to sensory cortical neurons that share a receptive field (Lampl

et al., 1999; Roy and Alloway, 2001; Okun and Lampl, 2008). However, the incorpo-

ration of spatial light modulation would open the door to more complex experimental

questions. For instance, spatial modulation of continuously-varying stimuli would al-

low control over the degree of synchronization between subthreshold currents across

cells (Reutsky-Gefen et al., 2013). Additionally, spatial light modulation could be

used to isolate continuously-varying input to particular regions of individual neu-

rons (Grossman et al., 2010). For instance, by targeting the soma and axon-hillock,

any low-pass effect resulting from the integrative properties of the dendritic arbor
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might be avoided. Conversely, targeting dendrites might provide more biophysically

realistic input compared to stimuli covering the entire cell. However, even without

spatial control of stimuli, we have shown that spatially homogeneous stimuli pro-

vide a wide bandwidth to deliver complex stimulus waveforms to populations of cells.

Additionally, spatially homogeneous continuously-varying stimulation has the added

benefit that it can be readily incorporated into existing experimental setups that use

multi-mode optical fiber to deliver light in vivo.

Finally, we showed that ChR2’s frequency response function supports a resonance.

The degree of resonance is dependent on the values of free model parameters, which

change for different ChR2 variants and stimulus signals. This finding is especially

relevant for studies that use ChR2 to examine the frequency-dependence of neural

circuitry (Cardin et al., 2009), since it is important to separate the intrinsic dynamics

of ChR2 from those that belong to the network under study. We found the most

pronounced resonance for ChR2 with a natural frequency of ∼6-10 Hz. ChR2 was

cloned from the green algae Chlamydomonas reinhardtii. Interestingly, the algae’s

phototaxic flagellar movement is tuned to the resonant frequency band of ChR2 (Josef

et al., 2006), indicating a potential behavioral significance of ChR2’s bandpass effect

for algae in their natural environment.

ChR2’s amplitude response function indicates that the sum of channel recov-

ery and desensitization transition rates determines its frequency cut-off. Therefore,

opsins with faster transition rates will allow a broader passband for time-varying

inputs. As new optogenetic tools are discovered and existing ones improved, their

increased bandwidth may eventually offer an artificial, optical neural communica-

tion channel that actually exceeds the bandwidth of natural sensory organs. This

would have tremendous implications for how neural computation and processing are

studied and for the advancement of brain-machine interfaces. For the purposes of

continuously-varying photostimulation with existing tools, we found that the ChR2A
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variant offered the widest dynamic range, did not display voltage-dependent channel

kinetics, and exhibited only a mild resonance. This makes it a good choice for deliver-

ing continuously-varying stimuli to populations of cells embedded within functioning

neural circuits.

ChR2 was derived from microbes that use it for optical sensation in natural en-

vironments. It is therefore not surprising that the channel is excellent at conveying

continuously-varying input signals. Using channelrhodopsins as a means for deliver-

ing repeatable, continuously-varying stimuli to genetically defined populations of cells

will be a powerful method for probing the dynamics of neural circuits and modulating

their activity to provide artificial sensation.

3.4 Experimental methods

3.4.1 ChR2 expression system

Cell culture was performed as described in Chapter 2, Section 2.2.1. AAV2-CaMKllα-

ChR2-mCherry at 4·1012 c.f.u.·ml−1 was produced by the Kaplitt lab (Cornell Univer-

sity) using plasmid DNA for CaMKIIα::ChR2-mCherry obtained from the K. Deis-

seroth (Standford University). AAV2-CaMKllα::hChR2(H134R)-mCherry at 4·1012

c.f.u.·ml−1 was produced by the University of North Carolina at Chapel Hill Vec-

tor Core. AAV9-CaMKllα::hChR2(E123A/H134R)-eYFP at 4·1012 c.f.u.·ml−1 was

produced by the University of Pennsylvania Vector Core. At 1 to 5 days in vitro

(DIV), viral aliquots were diluted to 1·1012 c.f.u.·ml−1 using culturing medium. 1 µL

of diluted viral solution was added to 1 mL culturing medium for a final infection

concentration of 1·109 c.f.u.·ml−1. Cultures were then incubated for 3 days before

the culturing medium was exchanged. The fluorescent signal of the reporter pro-

tein was monitored for several days post infection to ensure channel expression. All

experiments were carried out at 3 to 4 weeks in vitro.
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3.4.2 Intracellular recordings

Whole-cell voltage-clamp recordings were conducted on pyramidal neurons expressing

the mCherry (ChR2R and ChR2) or eYFP (ChR2A) reporter protein. Recordings were

performed in a continuous perfusion of artificial cerebrospinal fluid (aSCF) bubbled

with 95% O2 and 5% CO2 to maintain a pH of 7.4. The aSCF solution contained

(in mM) 126 NaCl, 3 KCl, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, 1.5 MgSO4 and 25 D-

glucose. The temperature of the extracellular medium was regulated to 35 ◦C using

an inline heater (Warner Instruments, Hamden, CT). 1.5 mm outer diameter, 1.1

mm inner diameter borosilicate glass capilaries (Sutter Instruments, Novato, CA)

were pulled into patch pipettes and filled with a solution containing (in mM) 100

K-gluconate, 30 KCl, 3 ATP, 2 MgSO4, 0.5 ethylene glycol tetraacetic acid and 10

HEPES adjusted to pH 7.4 using 0.1 M KOH. Filled pipettes had resistances of

4-8 MΩ. Voltage clamp recordings were performed using HEKA EPC8 amplifier

and PatchMaster control software in whole-cell mode. Cells were held at -70 mV

and membrane current measurements were amplified and low-pass filtered at 3 kHz

before being digitized at 20 kHz and streamed to disk. Access resistance and seal

resistance were monitored between stimulation protocols. Current clamp recordings

were performed in ‘fast’ mode using the same filter setting as voltage clamp. All

experiments were performed in the presence of 40 µM 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX), 50 µM (2R)-amino-5-phosphonovaleric acid (AP5), 20 µM bicuculline

in order to block most synaptic transmission. Whole-cell recordings were analyzed

offline in MATLAB (The MathWorks, Natick, MA).

3.4.3 Optical stimulation

A 10-watt (electrical power) light emitting diode (LED) was used for optical stim-

ulation, with peak emission wavelength of 465 nm and ∼20 nm full width at half
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maximum intensity (LZ4-00B200, LEDEngin, San Jose, CA). To deliver optical stim-

uli to cultured neurons, the LED was focused into the epi-illumination port of an

E600FN upright microscope (Nikon Corporation, Tokyo, Japan) and passed through

a 40X objective lens. The light power produced by LEDs is affected by their temper-

ature. Additionally, the relationship between forward diode current and irradiance is

a static non-linearity. To compensate for these factors and deliver distortion-free op-

tical stimuli, we designed a precision current source with integrated optical-feedback

to drive our LED (Fig. 16(a)). This circuit measures the instantaneous optical power

produced by the LED using an amplified photodiode. It then adjusts the current

sourced to the LED such that the optical power measurement matches a reference

voltage supplied by a digital to analog converter (DAC; LIH 1600, HEKA Electronik,

Lambrecht/Pfalz, Germany). The circuit can precisely modulate the LED brightness

over a bandwidth of 50 kHz (Appendix B). A full design specification for the device

is available in Appendix B.

3.4.4 Derivation of ChR2’s frequency response

The differential equations governing the Markov model, (Eqs. 6-8), are nonhomoge-

neous with continuously-varying coefficients. For this reason, the frequency response

function does not provide a full description of the model’s dynamics. However, it

serves as a useful simplification for describing ChR2’s bandpass characteristics within

local regions of optical intensity (Fig. 13(b)). The full time-variant dynamics are

not analytically solvable and required numerical simulations of response trajectories

(Figs. 14 and 15).

ChR2’s frequency response function, FChR2(ω), can be obtained by considering

the channels’ response to a small sinusoidal light signal with a constant light level φ0,

φ(t) = φ0 + δφ exp(jωt), (13)

where ω = 2πf and f is the frequency of the sinusoid in Hz and j =
√
−1. The first
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order response dynamics of the open and closed probabilities can then be described

by a constant offset and periodic component,

O(t) = O0 + δO exp(jωt) (14)

D(t) = D0 + δD exp(jωt). (15)

Within a local region of optical intensities, φ0 ± δφ, changes in the open state, δO,

or the desensitized state, δD, are proportional to changes in optical input, εδφ. The

proportionality factors for the open and desensitized states are the frequency response

functions FChR2(ω) and GChR2(ω), respectively,

δO = εδφFChR2(ω) (16)

δD = εδφGChR2(ω). (17)

Differentiating equations 14 and 15 and inserting the result into Eqs. 6 and 7 leads

to

jωδO exp(jωt) = [εφ0(1−O0 −D0)] +
[
εδφ(1−O0 −D0) (18)

+ εφ0(δO − δD)− ΓdδO
]

exp(jωt) +O(2)

jωδD exp(jωt) = [ΓdO0 − ΓrD0] + [ΓdδO − ΓrδD] exp(jωt). (19)

By dropping all but the first-order terms of Eqs. 18 and 19 (meaning those terms

proportional to exp(jωt)), and removing the common factor exp(jωt), changes in the

open and desensitized states due to changes in light power are given by

jωδO = εδφ(1−O0 −D0) + (εφ0 − Γd)δO − εφ0δD (20)

jωδD = ΓdδO − ΓrδD, (21)

where (1−O0−D0) = C0 is the steady-state probability of the channel being closed.

Performing the necessary algebra to solve for δO results in

δO = εδφ

[
C0(jω + Γr)

−ω2 + jω(Γr + εφ0 + Γd) + εφ0Γr + εφ0Γd + ΓrΓd

]
. (22)
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Finally, referencing Eq. 16, ChR2’s frequency response function for a local region of

light intensities is calculated by dividing the left hand side of Eq. 22 by εδφ,

FChR2(ω) =
δO

εδφ
=

C0(jω + Γr)

−ω2 + jω(Γr + εφ0 + Γd) + εφ0Γr + εφ0Γd + ΓrΓd
(23)

and the amplitude response is then given by

|FChR2| =
C0

√
ω2 + Γ2

r√
(−ω2 + εφ0Γr + εφ0Γd + ΓrΓd)2 + (ω(Γr + εφ0 + Γd))2

. (24)

In the high frequency limit, Eq. 23 reduces to C0(jω)
−ω2+jω(Γr+εφ0+Γd)

∝ C0

jω/(Γr+εφ0+Γd)+1
.

3.4.5 Experimental verification of frequency response functions

To estimate the frequency response of ChR2, F̂ChR2(ω), we delivered optical stimuli,

s(t), consisting of T=10 second realizations of a Gaussian (Ornstein-Uhlenbeck) noise

process while recording evoked intracellular currents, Ii(t), within a single cell, i. s(t)

was generated according to

s(tn+1) = µs + s(tn) exp(−dt/τs) + σsξ(tn)
√

1− exp(−2dt/τs), (25)

where s(t1) = 0 mW·mm−2, µs ' 0.35 mW·mm−2, and σs ' 0.08 mW·mm−2 are the

initial condition, mean, and standard deviation of the process, respectively. τs = 50

ms is the correlation time of s(t), dt = 40 µs is the DAC update period, and ξ(tn)

is a random variable drawn from the standard normal distribution. Each cell was

exposed to a single, repeated realization of s(t) for k = 10 trials. The first 500 ms of

each trial was ignored to remove the non-stationary effects of the stimulator turning

on. The recorded intracellular currents were averaged across trials,

〈Ii〉 =
1

10

10∑
k=1

Ii,k(t) (26)

to remove trial-to-trial noise. We then calculated the empirical frequency response

function for each cell,

F̂ChR2,i(ω) =
Ss〈Ii〉
Sss

, (27)
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where Sss is the power spectrum of s(t) and Ss〈Ii〉 is the cross spectrum of 〈Ii〉 and s(t).

Sss and Ss〈Ii〉 are defined as the Fourier transforms of the corresponding correlation

function,

css(τ) =

∫ T

−T
s(t)s(t+ τ) dτ (28)

cs〈Ii〉(τ) =

∫ T

−T
s(t)I(t+ τ) dτ. (29)

Finally, we averaged F̂ChR2,i(ω) across cells to obtain the empirical frequency response

for each construct, F̂ChR2(ω). To improve our estimate of the power spectra, we fol-

lowed the procedure introduced in Higgs and Spain (2009) and used a frequency

dependent window, equivalent to a Gaussian bandpass filter with standard deviation

of σ = 2π/ω in the frequency domain. Spectra were evaluated at discrete increments,

ωn = 2π10n, n = 0.1, 0.2, ..., 3 . Model parameters were obtained for each ChR2 vari-

ant by fitting the predicted frequency response function in Eq. 24 to the experimental

estimate, Eq. 27.

In addition to Gaussian stimuli, we used cosine frequency sweeps (‘chirps’) con-

sisting of T = 20 second sinusoidal sweeps of constant amplitude as and exponentially

increasing frequency from f0 = 0.1 to fT = 1000 Hz. They were defined as

s(t) = as cos(2πf(t)) + a0 (30)

where

f(t) = f0(fT/f0)
t
T (31)

and as ' 0.3 mW·mm−2 and a0 ' 0.35 mW·mm−2. The empirical frequency response

was then estimated directly from the intracellular current recordings according to

F̂ chirp
ChR2,i(ω) =

F〈Ii〉
F〈s〉

, (32)

where F denotes the Fourier transform.
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CHAPTER IV

EFFECTS OF CONNECTIVITY ON SIGNAL

TRANSDUCTION IN RECURRENT CORTICAL

NETWORKS

Network function emerges from the collective activity of populations of
neurons coordinated by synaptic interactions. Here we directly investi-
gate the role of synaptic connectivity on population encoding of time-
varying stimuli in randomly connected networks of cortical neurons. Us-
ing continuously-varying optogenetic stimulation, we deliver stimuli that
mimic the afferent sensory drive to a genetically defined input layer of
excitatory neurons, while monitoring the network spiking response using
a microelectrode array. We then investigate how defined changes in con-
nectivity, due to selective blockade of excitatory and inhibitory synaptic
receptors, affects the population spiking response. We find that pairwise
neuronal response correlations are increased by excitatory connectivity,
but that inhibitory connectivity actively decorrelates neuronal firing. Ad-
ditionally, we find that excitatory connectivity decreases spike-timing pre-
cision and information rates of the individual unit and pairwise spiking
response, but linearizes individual units’ encoding dynamics.

4.1 Introduction

How are the encoding properties of neural circuits affected by connectivity? Network

architecture is thought to play an important role in population coding in many dif-

ferent sensory systems. In the retina, lateral connectivity has long been hypothesized

to decorrelate the strong, potentially redundant spatial correlations present in nat-

ural visual stimuli, allowing retinal ganglion cells to transmit information with high

efficiency (Barlow, 1961). In the somatosensory and visual pathways, thalamic projec-

tions account for only a small fraction of synapses to sensory cortical circuits (da Costa

and Martin, 2011), and are relatively weak (Bruno and Sakmann, 2006) (although,
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these inputs are highly convergent so they exert a post-synaptic effect larger than

their low numbers and strengths might suggest). The majority of synaptic connec-

tions to cells in these areas originate locally (Sáez and Friedlander, 2009), resulting

in highly recurrent cortico-cortical circuitry that is thought to play a role in sensory

transduction and processing (Martin, 2002; Sharon and Grinvald, 2002).

Are the effects of connectivity on encoding sensitive to architectural nuance, or

are there emergent effects of connectivity on encoding that persist even in randomly

connected networks? Computational studies indicate that randomly connected net-

works can exhibit low-pass or resonant dynamics in response to time-varying stimuli

depending on the statistics of network connectivity (Ledoux and Brunel, 2011). Sim-

ilarly, computational studies of balanced networks, where excitatory synaptic inputs

are roughly canceled by inhibition, indicate that recurrent synaptic drive acts as a

strong negative feedback, which can linearize the population response despite the

highly nonlinear properties of constituent neurons (van Vreeswijk and Sompolinsky,

1996, 1998; Douglas et al., 1995). Perhaps the most robust effect of connectivity is on

the strength of stimulus-induced activity correlations. The clearest work concerning

the roles of activity correlations on population encoding comes from experimental

work performed in the retina. Based on the multi-cell response to continuous opti-

cal stimuli, it has been demonstrated that the evoked responses of retinal ganglion

cells to naturalistic stimuli are highly correlated across cells (Warland et al., 1997;

Puchalla et al., 2005) and that structure within the multi-neuron response is largely

accounted for by pairwise firing correlations (Schneidman et al., 2006). However it

has also been shown that this hight correlated response provides is decorrelated, both

temporally and spatially compared to the stimulus input (Pitkow and Meister, 2012)

and that decoders that incorporate activity correlations produce improved stimulus

reconstructions compared to those that do not (Pillow et al., 2008). The progress

made in understanding population encoding properties of the retina is a result of its
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amenability to multi-electrode recordings and built-in sensory transduction machin-

ery (Warland et al., 1997; Field et al., 2010; Puchalla et al., 2005).

We have developed a new experimental technique that translates the advantages

of the retinal preparation to cultured cortical networks, which support a compar-

atively recurrent and random connectivity structure (Nakanishi and Kukita, 1998)

and are composed of a simpler set of neuronal subtypes. In Chapter 3, I showed

how continuous time-varying optical stimulation could be used to deliver arbitrary

time-varying stimuli to isolated cells. Here, we use this technique to provide continu-

ously modulated, temporally-precise, and extremely repeatable subthreshold stimulus

waveforms to a genetically specified ‘input layer’ composed of excitatory pyramidal

cells while the full network spiking response is monitored with a microelectrode array

(MEA). This experimental configuration closely resembles computer models of corti-

cal networks that assume random connectivity and external driving input to a subset

of cells (Brunel, 2000; Vogels et al., 2005; Vogels and Abbott, 2009; van Vreeswijk

and Sompolinsky, 1996, 1998; Douglas et al., 1995; Izhikevich et al., 2004; Izhikevich,

2006), but is composed of real neurons.

Using this system, we measure the response properties of networks that receive

identical stimuli before and after we have manipulated connectivity using selective

synaptic blockade. We demonstrate that time-varying optical stimuli evoke extremely

repeatable population spiking responses. We find that, in line with previous theo-

retical predictions, recurrent connectivity linearizes the network’s population spiking

response. However, we also find that connectivity also reduces spike timing precision

compared to disconnected network states, and that changes in spike timing precision

are dictated by the non-linear portion of the neuronal response process. Further,

we show that in the absence of synaptic connectivity, spike trains become less cor-

related but the relative timing precision across pairs of cells increases. Finally, we

find that recurrent excitatory input reduces information rates and increases encoding
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redundancy. Taken together, these results indicate that linearization of the network

response and resultant changes in spike timing precision and pairwise activity corre-

lations may not depend critically on the structural nuances of cortical connectivity,

but can emerge in networks with random connectivity.

4.2 Experimental Methods

4.2.1 Viral transduction

Cell culture was performed as described in Chapter 2, Section 2.2.1. AAV2-CaMKllα-

hChR2(H134R)-mCherry with a genomic titer of 3·1012 c.f.u.·ml−1 was produced by

the University of North Carolina at Chapel Hill Vector Core. At 1 to 5 days in vitro

(DIV), viral aliquots were diluted to 2·1012 c.f.u.·ml−1 using conditioned culturing

medium from sister cultures. 4 µL of this diluted viral solution was added to 1 mL

culturing medium for a final infection concentration of 8·109 c.f.u.·ml−1. Infected

cultures were incubated for 3 days before the culturing medium was exchanged. The

fluorescent signal of the mCherry reporter protein was monitored in 3 sister cultures

over the days post infection to ensure robust expression (Fig. 31). All experiments

were carried out on cultures at 3 to 4 weeks in vitro.

To ensure the genetic specificity of the calmodulin-dependent protein kinase IIα

(CaMKllα) promotor, and therefore the pyramidal-specific information channel to

the recurrent network, immuncytochemistry was performed against Neuronal Nu-

clear protein (NeuN) and CaMKIIα in cultures expressing ChR2(H134R)-mCherry.

A DAPI stain was used to identify cell bodies. We fixed, stained, and imaged 2 sis-

ter cultures at 26 DIV (25 days post transfection) using a Zeiss LSM 510 microscope

(Carl Zeiss AG, Oberkochen, Germany). We then counted instances of co-localization

of DAPI, NeuN, CaMKllα and mCherry in 12 distinct regions of interest (7 in one
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culture, 5 in the other) using the cell counter plugin1 for ImageJ2. 79.0±1.5% of

neuronal somata (identified by expression of NeuN) also expressed CaMKllKα. Of

the CaMKllα-expressing somata, 65.9±2.0% expressed the mCherry reporter pro-

tein. 12.6±3.9% of somata that showed no sign of CaMKllα-expression also expressed

mCherry (Fig. 1(b)).

4.2.2 Multielectrode recordings

Microelectrode array recordings were conducted using the open-source NeuroRighter

multichannel electrophysiology platform (Chapter 2) (Rolston et al., 2009a; New-

man et al., 2013). Neurorighter was used to control multichannel data acquisition,

perform online processing, generate stimulus signals, and stream data to disk. Micro-

electrode voltages were amplified and bandpass filtered between 1 Hz and 5 kHz using

a 60 channel analog amplifier (MEA 1060, Multichannel Systems, Reutlingen, Ger-

many). Because the amplifier can exceed 37 ◦C during long experiments, it requires

active cooling to maintain the culture’s health. Therefore, during all experiments, the

temperature of the culture was regulated to 35 ◦C using a servo-controlled solid state

Peltier heater/cooler mounted below the recording amplifier (Fig. 33(a); Appendix C).

Amplified electrode voltages were digitized using two synchronized PCIe-6259 mul-

tichannel data acquisition cards (National Instruments, Austin, Texas) and then read

by NeuroRighter for digital processing. Amplified electrode voltages were digitally

filtered using a 3rd-order Butterworth filter with a passband of 300 to 5000 Hz. Ac-

tion potentials were detected using a threshold of 6×VRMS and sorted online using an

automated classification algorithm (Newman et al., 2013) (Appendix A, Section A.3).

For each culture, the spike sorter was trained based on evoked responses to a small

set of stimulus trials, which used the same stimulus parameters as were used during

experiments, but in the absence of drugs. The sorter was not retrained thereafter

1http://rsbweb.nih.gov/ij/plugins/cell-counter.html
2http://rsbweb.nih.gov/ij/
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so that the same units could be tracked across experimental conditions. Follow-

ing sorting, spikes were saved to disk. Using a third PCIe-6259 card, NeuroRighter

collected auxiliary analog signals from the amplified photodiode (Section 4.2.4) and

digital signals encoding the start and end of stimulation epochs. The recording clocks

of all acquisition cards were synchronized using a real-time system integration bus

(National Instruments).

4.2.3 Pharmacology

We investigated three network connectivity states which were defined by the combi-

nation of synaptic blockers present in the bath. Synaptic blockers were applied in the

same order for all cultures.

• Drug-free network (‘DF’): 100 uL of culturing medium was extracted and

reapplied to the culture.

• Excitatory block (‘EB’): 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 20

µM final concentration) and D(-)-2-amino-5-phosphonopentanoic acid (AP5, 50

µM final concentration) was added to the culture.

• ‘Complete Block’ (‘CB’) : CNQX and AP5 remained in bath. Bicuculline

was added to the bath to achieve a final concentration of 20 µM .

Each culturing well contained 1.5 mL of culturing medium. To administer excita-

tory synaptic blockers, 100 µL of culturing medium was extracted from the culture

well and mixed with 3 µL of 10 mM CNQX and 3 µL of 25 mM AP5 in an 0.5 mL

centrifuge tube. This mixture was then pipetted back into to the culturing medium.

After the experiments with CNQX/AP5 combination had finished, 100 µL of cultur-

ing medium was extracted and mixed with 3 µL of 10 mM bicuculline. Every time a

drug was added, fifteen minutes were provided prior to optical stimulus application,

so the blockers could thoroughly diffuse through the culture well and mechanical and

84



temperature fluctuations could dissipate. Network connectivity states are referred to

in the results using the acronyms presented above: DF, EB, and CB.

4.2.4 Optical stimulation

ChR2 requires relatively strong incident light intensity to generate physiologically

useful photocurrents (compared to, for example, retinal studies relying on the ac-

tivation of photoreceptors). Additionally, the light source must be modulated over

a wide frequency range in order to characterize the full ChR2 frequency response

(Chapter 3). High-power light emitting diodes (LEDs) can supply the required opti-

cal power and can be modulated over a wide bandwidth. Additionally, they provide a

smooth, monotonic conversion of forward current to light intensity, which allows their

intensity to be modified smoothly (unlike highly non-linear sources, such as lasers).

For these reasons, a 10-watt light emitting diode was used for optical stimulation

(LZ4-00B200, LEDEngin, San Jose, EB). This LED has a peak emission wavelength

of 465 nm with ∼20 nm full width at half maximum.

NeuroRighter’s 16-bit digital-to-analog converters (DACs) were used to generate

control voltages to drive fluctuations in optical power. The relationship between

an LED’s forward current and the resulting irradiance is approximately logarithmic,

which acts as a static nonlinear transformation on time-varying currents driving the

LED. Additionally, LED irradiance is inversely related to the diode junction temper-

ature, which increases as the LED operates. For these reasons, simply controlling the

current through the LED is not sufficient to ensure that the emitted light power pre-

cisely follows the control signals generated by the DAC (Wagenaar, 2012). Therefore,

we constructed an optical feedback circuit to drive our LED (Appendix B). Briefly,

a PDA36 amplified photodiode (Thorlabs, Newton, NJ) was used to measure scat-

tered light from the LED. These measurements of instantaneous light power were

then passed to a custom, feedback-assisted N-MOSFET current driver. The circuit
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compared the measure of instantaneous light power to the reference signal produced

by the DAC to ensure that the LED’s brightness followed the DAC stimulus signal.

Finally, to ensure that unstimulated groups of cells could not act as an uncontrolled

noise source during repeated application of the same waveform, we needed to deliver

spatially homogeneous optical stimuli. A custom light delivery system was used to

homogenize and concentrate LED light onto the plane of the culture. The delivery

system was housed inside of an incubator, allowing long-term experimental access

(Fig. 33(a)). The LED stimulator consisted of 4 independently addressable LEDs

butt-coupled to a 4-to-1 Schott randomized fiber bundle (Schott, Elmsford, NY). To

ensure that the light at the culture was spatially uniform, the bundle terminated in

a Köhler illumination train beneath the MEA’s Peltier temperature regulator. The

spatial power distribution at the MEA surface was imaged to ensure illumination

uniformity using a BC106-VIS CCD-based beam profiler (Thorlabs) and is shown in

Fig. 32(b).

4.2.5 Experimental protocols and sample sizes

Optical stimuli consisted of spatially uniform, filtered Gaussian (Ornstein-Uhlenbeck)

noise defined by

s(t+ dt) = µs + s(t) exp(−dt/τs) + σsξ(t)
√

1− exp(−2dt/τs). (33)

where s(0) = 0 mW·mm−2, µs ' 0.35 mW·mm−2, σs ' 0.08 mW·mm−2, τs = 50 ms,

dt = 1 ms is the DAC update period, and ξ(t) is a random value drawn from the

standard normal distribution. K trials of two stimulus subtypes were administered

during each drug condition (Section 4.2.3). During ‘repeated’ stimulus trials (srep
k ),

the same realization of s was applied for every stimulus trial so that srep
1 = srep

2 =

· · · = srep
K . An example of the network spiking response to repeated stimuli is shown

in Fig. 23. During ‘unique’ stimulus trials (suni
k ), a new realization of s was applied

during each trial so that suni
1 6= suni

2 6= · · · 6= suni
K . Unique and repeated stimuli were
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Table 4: Summary of experiments. ‘Preserved units’ refers to units that were identifiable in all drug
conditions. Additional units, that appeared in some drug conditions but not others, were used to calculate
general firing statistics (Figs. 24, 23) but were not used for further analysis.

Culture Repeats Uniques # Trials
(K)

Trial
length

(T; sec)

Intact
(DF)

Inhib.
intact
(EB)

Decoup.
(CB)

Pre-
served
units

Tommy-20709 x - 50 30 x - - 13
Venus-20708 x - 50 30 x x - 7
Xeko-20709 x x 50 30 x x x 10
Zeno-00358 x x 100 30 x x x 2
Fatty-I5372 x x 50 30 x - - 36
Fatty-I5369 x x 60 10 x x x 7
Wingnut-22567 x x 70 10 x x x 26
Hamhock-22467 x x 70 10 x x x 15

Totals 8 6 500 - 8 6 5 116

interleaved, one after another, with no gaps between adjacent trials. Exactly the

same stimulus protocol (the same repeated realization and the same set of unique

realizations) were used during different drug conditions for a single culture. A new

set of realizations was created for each of the 8 cultures tested. Table 4 provides a

summary of experimental parameters and sample sizes for each of the cultures used in

this study. Aside from drug conditions, experimental parameters included the length

of the stimulus realization, number of trials, and whether or not unique stimuli were

administered varied across experiments.

4.2.6 Data processing

Following data collection, recordings were imported into MATLAB version 2012b

(Natick, MA) using scripts included with the NeuroRighter package. Offline analysis

was carried out using my open-source SqueakySpk MATLAB package for multichannel

single-unit data processing3 and custom scripts. Sorted units that had ambiguous

spike shapes (e.g. multi-modal spikes due to the misclassification of two obviously

different waveforms as a single unit or a lack of any clear waveform) were removed

from further analysis.

3http://code.google.com/p/squeakyspk/
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4.2.7 Statistics

All statistical analysis was performed using MATLAB. Hypothesis tests involved mul-

tiple comparisons across three drug conditions: DF, EB, and CB (Methods Sec-

tion 4.2.3; Table 4). Our procedure for performing multiple comparisons of sample

distributions proceeded as follows. First, we used a Lilliefors test (α=0.05) to deter-

mine whether each data set followed a normal distribution. For cases in which the

null hypothesis of normality was rejected for one or more sample distribution(s), we

log-transformed each data set to stabilize the sample variance (except for the results

in Table 5, since the information-theoretic calculations used in this study require

the raw Fourier coefficients to be Gaussian). We the re-performed the Lilliefors test

to see if the transformed data could be considered approximately Gaussian. If the

non-transformed or transformed data could be considered Gaussian, we the performed

one-way ANOVA. If the data were detectably non-Gaussian, we used a Kruskal-Wallis

test. In either case, we then performed a post-hoc multiple comparisons test using

the Bonferroni correction to control the familywise error rate to determine which

pairs were significantly different. Significance thresholds were always set at P >0.05

(n.s), P <0.05 (ˆ), P < 0.01 (*), P < 0.001 (**), P < 0.0001 (***), P < 10−5 (%),

P < 10−6 (&), and P < 10−7 (#) for the entire family of comparisons. All data

in bar-charts are shown as mean±s.e.m. Some analyses required data that had not

been collected for certain cultures (Table 4). For instance, information spectra (Sec-

tion 4.4.5) could only be computed from response to networks exposed to both unique

and repeated stimuli, but some networks were only exposed to repeated stimuli. This

resulted in different sample sizes depending on the measurements being compared.
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4.3 Mathematical Methods

4.3.1 The peristimulus time histogram

Our procedure for producing the peristimulus time-histogram for unit j (PSTHj(t))

in response to K repeated stimulus trials of length T is as follows. First, the time

of occurrence of each spike produced by unit j was taken relative to the start of the

corresponding stimulus trial. Spike times, ti, were then down-sampled at 1 kHz to

form a raw response to stimulus sk,

rj,k(t) =

nk
spk∑
i=1

δ(t− ti), (34)

where nkspk are the number of spikes produced by unit j on the kth stimulus trial, ti

are spike times, and δ is the Dirac delta function. If we denote the set of repeated

stimulus trials as Krep, the raw response density is given by

rj(t) =
1

K

∑
k∈Krep

rj,k(t). (35)

The raw population response density, rpop(t), was defined analogously using spikes

from all units simultaneously. Using the raw population response density, we obtained

an optimal-bandwidth Gaussian smoothing kernel, ϕ(τ ;w), where the bandwidth

parameter w denotes one standard deviation (Shimazaki and Shinomoto, 2010). w

was constrained between 1 and 10 ms for our analyses. This kernel-based smoothing

method provides a firing rate estimate with a minimized mean integrated squared

error compared to an unknown underlying rate. This method also better preserves

rapid transitions between high and low firing levels than ad-hoc smoothing or binning

methods. The PSTH for each unit was given by

PSTHj(t) =

∫ T

0

rj(t− τ)ϕ(τ)dτ. (36)

and the population PSTH was given by

PSTHpop(t) =

∫ T

0

rpop(t− τ)ϕ(τ)dτ. (37)

Note that the same smoothing kernel is used in both operations.
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4.3.2 Linear-nonlinear modeling of the neuronal and population responses

We characterized the neuronal and population response to repeated stimuli using a

linear-nonlinear (LN) model (Chichilnisky, 2001; Ostojic and Brunel, 2011; Geffen

et al., 2009). Using an LN model, the stimulus sequence, s(t), which consisted of

a series of photodiode measurements taken from the optical stimulator (Methods

Section 4.2.4), is convolved with a linear filter, h(τ), resulting in a ‘filtered stimulus’

signal, g(t). g(t) is then passed through a static, rectifying nonlinearity, F , to produce

an estimate of the PSTH,

P̂STH(t) = F

[∫ T

0

s(t− τ)h(τ)dτ

]
. (38)

The LN model is useful because it breaks the neuronal response into linear and

nonlinear components, each of which has a intuitive link to physiological features of

neurons. The linear component of the model corresponds to the subthreshold, RC-

circuit characteristics of the cell membrane and the static nonlinearity represents the

neuron’s rectifying spiking threshold. The model can be fit to the PSTH of individual

cells, PSTHj(t), or to the population response, PSTHpop(t). The procedure for fitting

each type of response is identical. Therefore, in the following paragraphs, we refer to

the generic single unit or population response as the ‘PSTH’.

Fitting F and h involves minimizing the difference between the predicted and

measured PSTH. To do this, we followed a procedure from (Chichilnisky, 2001) that

we modified to account for the temporal correlations in our stimulus signal (Paninski,

2003). Let ~si be a row vector defined by the mean-subtracted stimulus waveform

preceding the ith time bin for 250 ms. Let S be a matrix whose ith row is ~si. When the

stimulus distribution is elliptically symmetric, the whitened spike triggered average

(STA) provides an unbiased estimate of a neuron’s or population’s linear receptive

field (Sharpee et al., 2004). Since our stimuli are Gaussian, they satisfy the symmetry

90



requirement, so we calculated the STA according to

STA = T

〈nspk〉
K

(
STS + ξI

)−1
STPSTH (39)

where 〈nspk〉K is the average number of spikes per trial, I is the identity matrix and

STS is the stimulus covariance matrix, which is required to divide out correlations in

the stimulus distribution (i.e. ‘whiten’ it). ξ = 10 is a regularization parameter for the

inversion of the stimulus covariance matrix since this operation amplifies noise along

stimulus dimensions with low variance (i.e. those which result in division by ∼0). To

make the linear response comparable across cells and populations, we normalized by

the variance of the STA to produce the linear filter,

h =
STA

var(STA)
. (40)

h is then convolved with the stimulus time series to produce the filtered stimulus,

g(t) =

∫ T

0

s(t− τ)h(τ)dτ. (41)

Finally, nonlinear regression is performed to fit a rectifying nonlinearity of the form

F = ln(1 + exp(αg(t)− θ)) (42)

to data on the scatter graph produced by plotting g(t) against the measured PSTH. α

defines the steepness or ‘gain’ of the rectifying function and θ defines the ‘threshold’

after which g(t). The gain determines how much changes in the filtered stimulus value

will affect changes in firing level. The threshold determines the critical value of the

filtered stimulus that maps to non-zero firing rates (Fig. 26(b)).

4.3.3 Precision and correlation measures

We calculated the auto- and cross-correlation functions for and between PSTHs, re-

spectively, using standard methods (Abbott and Dayan, 2001). Cross-correlation

functions were only produced for pairs of units from the same culture. To measure
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the temporal precision of the neuronal response to repeated stimuli, the center bin

was removed (Abbott and Dayan, 2001) and the central peak ±8 ms was fit with

a Gaussian function using nonlinear regression. The width of the fitted Gaussian

function provides a measure of trial-to-trial jitter in the neuronal response under the

assumption that this jitter is uncorrelated across trials and repeated spike events are

well separated in time. Therefore, the response precision, τR, was defined as the stan-

dard deviation of the resulting Gaussian fit to the PSTH autocorrelation function for

each unit.

We performed an identical procedure on unit-to-unit PSTH cross-correlation func-

tions with the exception that the Gaussian fit was centered at the peak of the cor-

relation function instead of τ = 0, to produce the PSTH cross-precision, τ i,jR . To

understand the meaning of τ i,jR , consider that the PSTH cross-correlation is defined

as

Ci,j(τ) = E [PSTHi(t)PSTHj(t+ τ)] , (43)

where E is the expectation operator. Recalling Eq. 35 and discounting the effects of

smoothing,

PSTHj(t) '
1

K

K∑
k∈Krep

rj,k(t). (44)

Therefore Eq. 43 can be rewritten as

Ci,j '
1

K2

K∑
ki∈Krep

K∑
kj∈Krep

E
[
ri,ki(t)rj,kj(t+ τ)

]
. (45)

Therefore, during the calculation of the PSTH cross-correlation function, the response

of a unit j is compared with the response of unit i that occurred on all other trials

of the repeated stimulus. This is equivalent to the ‘shuffled’ spike correlation. If

two units consistently fire within a short window of one another, and do so at the

same time relative to the stimulus each trial, then the width of the cross-correlation

function, τ i,jR , will be narrow indicating precise co-activation across trials.
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To measure the correlation strength between units’ firing patterns, ρR, we normal-

ized the cross-correlation functions such that their peaks were equivalent to Pearson’s

product-moment correlation coefficient,

ρR = peak

[
Ci,j
σiσj

]
. (46)

4.3.4 Information in the Fourier domain

A number of model-based (Warland et al., 1997; Pillow et al., 2008) and direct (Strong

et al., 1998; Borst and Theunissen, 1999; Magri et al., 2009) methods are available

to estimate the information content of spike trains. Each method has advantages

and disadvantages. Direct methods, which estimate entropy values by measuring the

probabilities of all possible binary spike combinations (or ‘words’) using a pre-defined

time bin, require very large data sets to be useful for large populations of neurons. The

problem gets worse if the temporal arrangement of action potentials within individual

spike trains are considered (Strong et al., 1998). Model-based approaches circumvent

the ‘curse of dimensionality’ by representing the spiking activity using a model with

a small number of variables and parameters (Warland et al., 1997; Pillow et al., 2008;

McFarland et al., 2013; Truccolo et al., 2005). However these methods can miss

features of the encoding or decoding processes, and generally produce conservative

bounds on information content.

A recently introduced method (Yu et al., 2010; Crumiller et al., 2011) offers a new

avenue for estimating the information content of multiple, correlated, stationary spike

trains. This method takes advantage of two mathematical observations to efficiently

estimate entropy and information measures for large populations of cells. First, mu-

tual information measures are not dependent on the coordinate system used to repre-

sent the process under study (Shannon, 1948; Warland et al., 1997). This means that

the neural response can be projected into any orthogonal basis in which information

calculations are convenient, and those results will carry over to the time domain. To
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be clear, entropy measures are dependent on the coordinate system, but differences

between entropies (information measures) are not (Shannon and Weaver, 1949, Ch.

4). The second observation is that the Fourier coefficients of a stationary process are

asymptotically Gaussian. This theorem states that if a data sequence of length T

is produced by a stationary random process with temporal correlation τc � T , its

Fourier coefficients, u(n) are complex random variables drawn from independent mul-

tivariate Gaussian distributions (Grenander and Rosenblatt, 1957) (Brillinger, 1981,

pg. 94). In this case, the entropy of a single Fourier coefficient, can be calculated

analytically

H(n) =
1

2
log2(2πeVar{u(n)}), (47)

where the Var{u(n)} is the variance of the nth Fourier coefficient, and is estimated

from the data (Crumiller et al., 2011; Yu et al., 2010). Since the Fourier coefficients are

independent random variables, H(n) forms an entropy spectrum, with each frequency

component contributing independently to the complete entropy of the process. En-

tropy contributions of individual coefficients can simply be added to obtain the total

entropy of the process.

The conditions required to arrive at these results translate into two assumptions

concerning the nature of our data.

• Assumption 1: Stimulus-response pairs, each of which produces a sample spike

train from which to obtain Fourier coefficients, are very long in comparison with

the correlation time of the spiking process.

• Assumption 2: The Fourier coefficients computed across trials are Gaussian

and independent across frequencies for all cells.

In the following paragraphs, we provide evidence for the validity of these assumptions

and describe the details of the method.
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To be concrete, our goal is to calculate the mutual information between a univari-

ate stimulation process, s, and the population spiking response, r. A single stimula-

tion trial, sk, consisted of a T = 30 s realization of Ornstein-Uhlenbeck (OU) noise

with a time constant of 50 ms. K trials of two stimulus subtypes were administered

during each drug condition (Table 4; Section 4.2.3), resulting in a total of 2 × K

stimulus trials per drug condition, with K trials of repeated stimuli and K trials of

unique stimuli (Section 4.2.5).

If the spiking response is noise-free, stationary, and has a finite temporal corre-

lation then application of a repeated stimulus input will result in precisely the same

network response for each trial. In reality, the network is not noise-free and the trial-

to-trial variability of the response to identical stimuli can be used to quantify the

randomness in the response that is not meaningful for encoding the stimulus. The

measure of this randomness is called the conditional or ‘noise’ entropy H[r|s] (Strong

et al., 1998). Conversely, by applying unique stimuli, the full repertoire of neuronal

response patterns can be sampled in order to form an estimate of the total response

entropy, H[r]. The total response entropy quantifies the randomness of the neural

response due both to noise and stimulus-evoked activity patterns. The mutual infor-

mation between the stimulus process, s, and the network response process, r, is the

amount of the total response entropy that is not due to noise

I[r, s] = H[r]−H[r|s]. (48)

In order for this definition to be meaningful, we must explicitly define the network

response, r. For the following analysis, the response on trial k for unit j is given by

Eq. 34. The response to the first 5 trials of both unique and repeated stimuli were

discarded to allow the network’s firing rate to adapt (Fig. 25; Section 4.4.1). Following

previous work (Yu et al., 2010; Crumiller et al., 2011), rj,k(t) was transformed into a

set of Fourier coefficients, u
(fn)
j,k , each of which belongs to a complex sinusoidal basis
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function, φfn(t), of frequency fn

u
(fn)
j,k =

∫ T

0

rj,k(t)φfn(t)dt. (49)

If our assumptions concerning the stationarity and finite correlation time of the neural

response are correct, then u
(fn)
j,k form a set of independent Gaussian random variables,

each of which is sampled K − 5 times for each stimulus subtype. Fig. 21 shows the

quantile-quantile plots for the real components of 100 randomly chosen coefficients

from 5 cells. Each line compares the quantiles of a coefficient obtained from a partic-

ular component frequency against the corresponding quantile of the standard normal

distribution. The fact that these points generally fall on a straight line indicates

that the Fourier coefficients are drawn from a re-scaled standard-normal distribution.

Because these plots cover each drug condition for both unique and repeated stim-

uli, the Gaussianity of the coefficients appears to be robust across the connectivity

states. Additionally, we tested the null hypothesis that the sample Fourier coefficients

originated from a Gaussian distribution using the Lilliefors test, across experimen-

tal conditions. The results are summarized in Table 5. For the great majority of

coefficients, the null hypothesis could not be rejected at the α = 0.05 significance

level.

Next, we calculated the Pearson product-moment correlation coefficient matrix

for the real part of the first 250 Fourier coefficients for 5 cells, across drug conditions,

for both unique and repeated stimuli (Fig. 22(a)). Fig. 22(b) shows the off-diagonal

elements of these correlation matrices across units. For a multivariate Gaussian dis-

tribution, the pairwise independence of variables is equivalent to a zero correlation.

Therefore, the histograms of off-diagonal correlation entries should be tightly cen-

tered around a zero correlation value. A t-test can be used to determine whether the

statistical fluctuations in the observed correlations between different Fourier coeffi-

cients are significantly different than the null hypothesis ρo = 0 (Feller, 1968). The
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Figure 21: Quantile-quantile plots of Fourier-information coefficients against the stan-
dard normal. For each drug condition (Section 4.2.3) and for each stimulation process (repeated or
unique stimuli), the quantiles of 45 samples (one per stimulus trial) of 100 randomly chosen Fourier
coefficients are plotted against the quantiles of the standard normal distribution for 5 units. The majority
of these data points fall on a straight lines that pass close to the origin. This indicates the generating
distribution of each Fourier coefficient is similar in shape to a re-scaled standard normal distribution.
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Table 5: Percent (%) of sample coefficients for which Ho: the coefficient was drawn from a distribution
belonging to the Normal family, could not be rejected at the α = 0.05 significance level. Values were
obtained using a Lilliefors test on all Fourier coefficients where fn < 100 Hz.

Unique Stimuli Repeated Stimuli

Intact
(DF)

Inhib.
(EB)

Decoup.
(CB)

Intact
(DF)

Inhib.
(EB)

Decoup.
(CB)

Mean

Unit 01 95.27 94.46 95.30 94.83 94.43 94.36 94.77
Unit 02 88.93 95.27 95.07 86.50 95.30 95.17 92.71
Unit 03 94.26 94.76 95.10 94.36 95.27 95.43 94.86
Unit 04 94.26 94.40 94.50 94.96 95.27 94.66 94.67
Unit 05 80.99 95.10 94.70 83.76 94.46 94.46 90.58
Unit 06 94.96 94.36 94.66 94.93 95.17 95.20 94.88
Unit 07 89.66 94.36 94.76 86.26 93.90 94.76 92.28
Unit 08 94.26 94.76 95.23 94.26 94.76 95.17 94.74
Unit 09 92.80 94.60 94.73 93.63 94.80 94.23 94.13
Unit 10 93.33 94.96 94.83 94.33 95.37 94.10 94.49

Mean 91.87 94.70 94.89 91.78 94.87 94.75

two-sided t-statistic is

t =
ρ(u(fn1), u(fn2))

√
K − 2√

1− ρ(u(fn1), u(fn2))
2
, (50)

where ρ(u(fn1), u(fn2)) is the sample correlation coefficient between two different Fourier

coefficients, n1 6= n2, from a single unit. This test statistic is from a t-distribution

with K − 2 = 43 degrees of freedom. We computed t for ∼4.5 million randomly

chosen off-diagonal correlations across 10 cells for both unique and repeated stimuli,

and for all drug conditions. The results of these tests are summarized in Table 6.

For the great majority of coefficient pairs, across experimental conditions, the null

hypothesis could not be rejected at the α = 0.05 significance level.

After confirming the Gaussianity and independence of Fourier coefficients, we

could proceed to calculate entropy spectra, H
(fn)
j . For a single spike train

H
(fn)
j =

1

2
log2(2πeVar{u(fn)

j }). (51)

When u
(fn)
j are derived from unit j’s responses to repeated stimuli, Eq. 51 results in

the noise entropy spectrum, H
(fn)
j [r|s]. When u

(fn)
j are derived from unit j’s responses

to unique stimuli, Eq. 51 results in the total entropy spectrum, H
(fn)
j [r]. Using the

noise and total entropy spectra, the definition of mutual information in Eq. 48 can
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Figure 22: Lack of correlations between Fourier-information coefficients. (a) The sample
correlation coefficient matrices for the first 250 Fourier coefficients are shown for each drug condition
and for each stimulation protocol. Each coefficient is estimated from 45 samples. Although there
are some deviations, the values of the off-diagonal elements are generally low, indicating a lack of
correlation between Fourier coefficients derived from different frequencies. (b) Histogram of all off-
diagonal coefficients for every cell from a particular culture. The dominant value of the off-diagonal
correlation coefficient is zero and there are no off-diagonal entries with absolute values above 0.5. The
mean of each distribution (found by first linearizing entries via a Fisher transform, taking the mean,
and then performing an inverse Fisher transform) is zero to 4 significant digits for each distribution.
Combined with the evidence that the Fourier coefficients are Gaussian random variables (Fig. 21), their
lack of correlation implies the statistical independence, as well.
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Table 6: Percent (%) of sample coefficients for which Ho: the correlation coefficient between u(fn1)

and u(fn2) where n1 6= n2 is 0, could not be rejected at the α = 0.05 significance level. Values were
obtained using a t-test for all pairs of Fourier coefficients where fn < 100 Hz. See text for details.

Unique Stimuli Repeated Stimuli

Intact
(DF)

Inhib.
(EB)

Decoup.
(CB)

Intact
(DF)

Inhib.
(EB)

Decoup.
(CB)

Mean

Unit 01 97.31 97.44 97.46 96.79 97.10 97.07 97.20
Unit 02 95.80 97.46 97.47 95.58 97.30 97.05 96.78
Unit 03 97.39 97.41 97.40 97.21 97.02 97.15 97.26
Unit 04 97.29 97.40 97.44 97.01 97.01 96.90 97.17
Unit 05 94.25 97.42 97.23 94.68 96.89 96.86 96.22
Unit 06 97.36 96.80 97.29 97.31 96.59 96.79 97.02
Unit 07 95.85 97.23 97.43 95.21 95.57 96.64 96.32
Unit 08 96.87 97.31 97.45 97.00 96.55 97.15 97.06
Unit 09 96.10 97.31 97.32 95.94 96.94 96.62 96.70
Unit 10 96.74 97.43 97.28 96.19 96.57 96.44 96.78

Mean 96.50 97.32 97.38 96.29 96.75 96.87

be made a function of individual frequency components according to

I
(fn)
j [r, s] = H

(fn)
j [r]−H(fn)

j [r|s]. (52)

Because the Fourier coefficients form a set of independent variables, the total and noise

entropies of the spiking process are sums over individual frequency contributions

Hj[r] = Hj,total =
∞∑
n=1

H
(fn)
j [r], Hj[r|s] = Hj,noise =

∞∑
n=1

H
(fn)
j [r|s], (53)

and the total information in the spiking response of unit j, Ij, is calculated using

Eq. 48. To generalize these calculations to populations of J units, Eq. 51 is rewritten

as

H
(fn)
J =

1

2

∑
j∈J

log2(2πeλ
(fn)
j ), (54)

where λ
(fn)
j are the principle components of the covariance matrix of Fourier coeffi-

cients u
(fn)
j across units at a particular frequency value. After using Eq. 54, calcula-

tions proceed identically from Eq. 52, but with the ‘j’ subscript replaced by ‘J ’.

I
(fn)
j [r, s] = H

(fn)
J [r]−H(fn)

J [r|s]. (55)

All entropy and information measures presented here are normalized by time (i.e.

they are rates).
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Finally, we define the fractional redundancy of the network response, R. R quanti-

fies the degree to which the responses of units encode the same information concerning

the stimulus input. The fractional redundancy spectrum is defined as

R
(fn)
i,j [r, s] =

I
(fn)
i [r, s] + I

(fn)
j [r, s]− I(fn)

i,j [r, s]

Ii,j[r, s]
, (56)

and the total fractional redundancy is equal to

Ri,j =
∑
fn

R
(fn)
i,j [r, s]. (57)

4.4 Results

4.4.1 The population spiking response to continuously-varying optoge-
netic stimulation

We previously showed that continuously-varying optogenetic stimulation can be used

to deliver highly repeatable subthreshold current waveforms to individual neurons

(Chapter 3) (Tchumatchenko et al., 2013). Using the proper parameters, this type

of stimulation can drive subthreshold voltage fluctuations in cultured neurons that

mimic the temporal and amplitude characteristics of those obtained from in-vivo patch

clamp recordings (Destexhe et al., 2003). Using time-varying photostimulation, we

delivered subthreshold stimuli to excitatory neurons embedded within dissociated cor-

tical networks while systematically manipulating network connectivity using selective

synaptic blockers (Fig. 23).

Approximately one week after the development of functional synapses, dissociated

cortical networks begin to engage in highly synchronized bouts of population firing

activity, called ‘network bursts’ (Wagenaar et al., 2006c). The variability of firing dis-

played by individual units during spontaneous bursting activity can be summarized

using the coefficient of variation of the interspike interval (ISI) distribution (CVISI),

which is defined as the standard deviation of the ISI histogram derived from a partic-

ular unit divided by its sample mean, CVISI=σISI/µISI (Abbott and Dayan, 2001).
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Figure 23: Network response to time-varying optical stimuli. Each panel of the figure sum-
marizes (a) spontaneous activity in the intact network, (b) evoked activity in the intact network, (c)
evoked activity with inhibitory transmission intact and excitatory transmission blocked, and (d) evoked
activity in the synaptically decoupled network. Each main panel contains three subpanels, i, ii, and
iii. (i) A schematic depicting the network configuration and 4-second set of various time-series data
collected during repeated stimulus application. The stimulus waveform, 15 trials for firing rasters for 6
units, and the population PSTH are shown. (ii) The firing rate (FR) distribution, and (iii) µISI versus
σISI for each unit. An offset from the identity line (dashed) indicates a deviation from CVISI = 1 (note
log scale).
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Figure 24: Continuously-varying photostimulation rearranges spike times but does not
affect firing rates. (a) Box and whisker plot summaries of the distribution of evoked firing levels for
individual units during spontaneous activity during the DF state, and evoked activity in the DF, EB, and
CB states. Center-lines denote medians. Whiskers denote the 25th percentile - 1.5 × the interquartile
range (IQR) and the 75th percentile + 1.5 ×IQR, respectively. Red crosses denote outliers. Indentations
provide comparison intervals. Median firing rates were: during spontaneous activity in DF 0.64 Hz,
during evoked activity in DF 0.70 Hz, EB 0.51 Hz, and CB 0.72 Hz. (b) Same as (a) for the CVISI.
Dotted line indicates Poisson firing statistics. The median CVISIs were: during spontaneous activity in
DF 1.59, during evoked activity in DF 0.97, EB 0.89, and CB 1.04. Sample sizes, nNoStim. = 308 units (8
cultures), nDF = 273 units (8 cultures), nEB = 159 units (6 cultures), and nCB = 175 units (5 cultures).
Significance thresholds, P > 0.05 (n.s.), P < 0.01 (*), and P < 0.0001 (***).

The CVISI is a dimensionless measure of ISI irregularity that can be compared directly

to in-vivo data. For instance, regular spiking cells in V1 and area MT with reason-

ably low firing rates (i.e. those in which firing is not regularized by the refractory

period) have CVISI '1, indicating irregular, Poisson-like spiking statistics (Softky

and Koch, 1992, 1993). Since bursting activity produces an extreme degree of vari-

ability in the ISI distribution - very small ISIs occur during a burst and very large

ISIs occur between bursts - we observed a median CVISI during spontaneous activity

that was considerably elevated (Figs. 23, 24(b)) compared to values obtained from

sensory cortical cells �in-vivo, where CVISI '1 (Softky and Koch, 1992, 1993).

To examine the most basic effects of connectivity on evoked network firing dy-

namics, we repeatedly delivered a single randomly-fluctuating optical waveform to

dissociated cortical networks while monitoring the evoked spiking response using
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MEAs (Sections 4.2.4, 4.2.2, 4.2.5). We refer to this protocol as ‘repeated stimu-

lation’, srep
k , in which the same Gaussian waveform s was applied for K trials such

that srep
1 = srep

2 = · · · = srep
K . We then compared spontaneous and evoked firing rates

and irregularity for individual units, across drug conditions.

When repeated optical stimuli were applied to the network, spiking patterns of

individual units contained firing events that were tightly locked to the repeated stim-

ulus waveform across trials (Fig. 23(b,i)). Although spiking was entrained by the

optical stimulus, the unit firing rate distribution was not affected by optical stimuli

(Figs. 23, 24(a)). However, the median CVISI during optical stimulation was signifi-

cantly reduced compared to that obtained from spontaneous activity, and was similar

to values typically obtained from cortical sensory cells responding to external stim-

uli (Softky and Koch, 1992, 1993) (Figs. 23, 24(b)). The lack of change in the firing

rate combined with a significant change in CVISI indicates that although photostimu-

lation strongly influenced the temporal characteristics of action potential generation,

it did not impose extra spikes. Instead, it rearranged the timing of spikes that would

have occurred in the absence of stimulation such that they were entrained to the stim-

ulus signal. Because continuously-varying optical stimuli do not temporally override

ongoing network dynamics in the way that pulsed electrical or optical stimuli do, their

influence on spike generation coexists with other activity variables that influence the

subthreshold voltage dynamics of cells within the network, such as ongoing synaptic

signaling.

To examine the effect of synaptic connectivity on evoked spiking patterns, we

replayed optical stimuli to the networks after we had altered network connectivity

using bath application of two combinations of synaptic blockers. In the first condi-

tion, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-

D-aspartic (NMDA) receptors were blocked using bath applied CNQX and AP5,

respectively. In this state, the main forms of excitatory synaptic drive are eliminated
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from the network (verified by the absence of post-synaptic currents during whole-cell

voltage clamp recordings of individual neurons, data not shown). In the second con-

dition, both excitatory and γ-aminobutyric acid-A (GABAA) receptors were blocked

by the co-application of CNQX, AP5, and bicuculline (Section 4.2.3). In this state,

virtually all synaptic activity is removed (verified through voltage clamp recordings of

individual neurons, data not shown). We refer to the fully connected, drug free state

as ‘DF’, the excitatory transmission blocked state as ‘EB’, and the fully disconnected,

complete block state as ‘CB’.

Although spontaneous firing levels fell to nearly zero in both EB and CB states

(Fig. 25(b)), the evoked EB and CB firing rates were not significantly different com-

pared to spontaneous or evoked levels in the DF state (Fig. 24(a)). In the EB state,

the median CVISI dropped by a small, but significant, amount compared to that of

evoked DF activity. During CB, the median CVISI returned to the same level as

observed during the evoked DF state, approximately 1.0 (Fig. 24(b)). These results

indicate that even during large changes in connectivity that greatly affect spontaneous

activity levels, continuously-varying photostimulation imposes irregular spike trains

that return each unit’s firing to pre-drug levels. One feature of network activity that

was significantly affected by connectivity was the amount of time it took the network

firing rate to adapt to the stimulus onset. We found that networks in the DF state

took a significantly longer time to adapt to time-varying stimuli than those in the

CB state (Fig. 25(a,c)). This indicates that the presence of synaptic connectivity

slows adaptation to time-varying stimuli. In the connected network (DF state), it

took 10-30 seconds for firing rate adaptation to occur. Upon the removal of synaptic

transmission (CB state), firing consistently fell to a steady-state within ∼10 seconds

of stimulus onset (Fig. 25(a,c)).
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Figure 25: Population firing levels and rate adaptation to continuously-varying photo-
stimulation. (a) Population firing rate profiles for a single culture during the onset of continuously-
varying optical stimulation in DF (top), EB (middle), and CB (bottom) connectivity states. Stimulation
begins at 300 sec. Interleaved grey/white bars indicate repeated and unique stimuli, each of which
is a 30-second Gaussian waveform (Section 4.2.5). Firing rate adaptation was fit with an exponential
function, which is shown in the top plot. Bin size, 10 sec. (b) Pre-stimulus spontaneous activity levels
(top), evoked activity levels (middle), and post-stimulus spontaneous activity levels (bottom) for each
culture in each drug condition. (c) Peak firing rate (top), time constant (middle), and steady-state firing
rate (bottom) parameters for the exponential fit to the population firing rate during stimulus onset. See
equation in (a, top). Significance thresholds, P > 0.05 (n.s.), P < 0.05 (ˆ), P < 0.01 (*).
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4.4.2 Linear and nonlinear contributions of connectivity on the spiking
response

Measurements of firing rates, ISI variability, and firing adaptation allow us to make

quantitative comparisons to in-vivo spiking activity, but they do not provide a com-

plete description of how changes in synaptic connectivity affect the population spiking

response. When compared to the DF state, the EB and CB states seem to incur qual-

itative changes in the temporal characteristics of evoked responses that are plainly

visible in spike times of each unit’s response (Fig. 23). These qualitative changes

appear to affect spiking in isolated units as well as the coordination between unit

responses.

To characterize the role of network connectivity in the temporal characteristics of

the spiking response, we fit a linear-nonlinear cascade (LN) model to unit responses

for each synaptic configuration. An LN model is a phenomenological description of

the transformation from a time-varying stimulus to the PSTH . It consists of a linear

receptive field (RF) followed by a static, rectifying nonlinearity (Fig. 26(a)). To

estimate the RF of each unit, we used a technique modified from (Chichilnisky, 2001)

that corrects for the temporal correlations present in our stimulus (Section 4.3.2).

The stimulus was then convolved with the RF of each neuron to produce a ‘filtered

stimulus’, which was compared to the measured PSTH in order to fit the static NL

for each unit. Fig. 26(c) displays 800 ms sections of filtered stimuli along with the

measured and LN-generated PSTHs for a typical unit. We performed an identical

fitting procedure for the population PSTH (Section 4.3.1; Fig. 26(c)).

After fitting LN models to the unit and population responses, we measured three

parameters of the RF and NL for each unit and population tested: the full width

at half maximum of the RF, the ‘threshold’ (θ in Eq. 42) of the NL, and the ‘gain’

(α in Eq. 42) of the NL (Fig. 42(b)). We found that connectivity had significant

effects on nonlinear components of the response for individual units, but that linear

107



s(t)

PSTH
PSTH

d

c

ba

Increasing θ Increasing αh[∙] F[∙]

200

0

40

0

0

Temporal width

0

20

40

60

−5
0
5

10
15

Gain 
(α)

0

20

40

0

20

40

Temporal 
width 

0

5

10

15

0

20

40

Threshold 
(θ)

g(t)

Drug-free CNQX/AP5 Blocktail

Fi
lte

re
d

st
im

ul
us

U
ni

t
P

S
TH

(H
z)

P
op

.
P

S
TH

(H
z)

Drug-free Excit. block Complete block

***** n.s.n.s. *** n.s.

e

Single unit Population (26 units)

PSTHj

 ____
PSTHj

Gain 
(α)

Temporal 
width (ms)

Threshold 
(θ)

2.0 2.82.62.42.2 2.0 2.82.62.42.2 2.0 2.82.62.42.2
Time (sec) Time (sec) Time (sec)

Stimulus

PSTHpop

 ____
PSTHpop

n.s. n.s. n.s.

(m
s)

(H
z)

(m
s)

(H
z)

Linear RF Rectifying NL

Figure 26: Synaptic connectivity linearizes the neuronal response to time-varying input.
(a) A linear-nonlinear cascade is used to model the neuronal response. A temporal sequence of light
intensities is passed through a linear filter (RF; normalized to unit variance) to produce the filtered
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each unit. (b) Changes in the LN model across units and drug conditions are quantified by measuring
the temporal width of each units’ receptive field, the ‘threshold’ parameter θ and the ‘gain’ parameter
α. (c) Time-series traces of the stimulus input, the filtered stimulus (solid) and threshold (dashed), and
the true (black) and estimated PSTH for both a single unit (yellow) and the average population response
(blue) across drug conditions. (d) Measures of the linear and nonlinear response properties for individual
units. The mean temporal width was: DF 34.6±1.2 s, EB 35.2±1.3 s, CB 34.5±1.5 s. The mean gain
(α) was: DF 2.9±0.4, EB 11.6±2.3, CB 8.1±1.0. The mean threshold (θ) was: DF 21.9±1.7 Hz, EB
36.1±3.8 Hz, CB 37.4±2.4 Hz. Error bars denote s.e.m. (e) Same as (d) for population response fits.
Sample sizes, nDF = 116 units (8 cultures), nEB = 67 units (6 cultures), and nCB = 60 units (5 cultures).
Significance thresholds, P > 0.05 (n.s.), P < 0.01 (*), P < 0.001 (**), and P < 0.0001 (***).
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response properties were not affected. The RF width was the same in the DF, EB,

and CB states (Fig. 26(d)). However, during the EB and CB states, the NL threshold

increased 400% amd 280%, respectively, compared to the DF state. Additionally, the

NL gain during EB and CB was increased by 65% and 72%, respectively, compared

to the DF condition (Fig. 26(d)). The preservation of the linear response across

connectivity conditions might be attributed to the spatially uniform stimulus input,

which was applied to the entirety of the dendtric arbor. Because of this, the passive

filtering properties of the dendrite may have dominated the linear response of each

cell, irrespective of connectivity.

Increases in the firing threshold, θ, for units in the presence of excitatory synaptic

blockade is perhaps unsurprising. For instance, this might occur if excitatory input

provided a steady-state conductance that was roughly proportional to network activ-

ity levels but was not temporally correlated to the stimulus input. On the other hand,

if synaptic activity was temporally related to the stimulation process, there should

be effects on the linear response across connectivity conditions. However, we saw no

evidence of this. Instead, the threshold parameter was highest in the EB condition,

when excitatory transmission was removed but inhibitory transmission was left in-

tact. This effect was lessened somewhat during the CB condition, but the threshold

remained elevated due to the absence of any synaptic drive. However increased NL

thresholds were accompanied by corresponding increases in the NL gain. This meant

that although the threshold was harder to reach in the EB and CB conditions, more

spikes were generated when it was crossed. This may account for the fact that average

firing rates were unchanged across connectivity conditions. Perhaps most interesting,

were the relatively low threshold and gain parameters encountered in the DF state.

This meant that a greater portion of the filtered stimulus (the linear response) was

transformed into a firing rate compared to the EB and CB states, and that the tem-

poral features of the filtered stimulus were less distorted because the NL was shallow.
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These results show that the presence of synaptic connectivity linearizes the network

response to time-varying stimuli. This finding is consistent with several long-standing

theories of recurrent cortical circuit dynamics (van Vreeswijk and Sompolinsky, 1996,

1998; Douglas et al., 1995). However, those studies focused on the linearization of the

population response. Here, we found that the response of individual units is linearized

by connectivity.

To quantify the effects of altered connectivity on the dynamics of the population

response, we fit the NL model to the population PSTHpop (Eq. 37; Fig. 26(c)). In-

terestingly, there were no significant differences in the RF or NL parameters across

connectivity states. This suggests that the processes of averaging the response across

units nullifies changes to the NL response of individual units (Fig. 26(e)). However,

averaging is only one possible operation for producing a population response (Abbott

and Dayan, 1999). An infinite number of alternative functions might better take

advantage of changes in higher order statistics of the response, such as the relative

firing precision and correlations between units, could be used in order to faithfully

transmit a sensory message. For this reason, we continue our analyses by focusing on

the response properties of individual units and their interactions, without assuming

that averaging is required to produce the population response.

4.4.3 Effects of connectivity on firing precision and temporal decorrela-
tion

Next, we characterized how neuronal firing precision and inter-neuronal coordination

were affected by changes in network connectivity. We started by quantifying the trial-

to-trial temporal precision of individual units’ responses to repeated optical stimuli.

Under the assumption that spikes produced by individual units are relatively well

separated, the width of each unit’s PSTH autocorrelation provides a measure of the

temporal jitter between repeated stimulus trials (Desbordes et al., 2008). To deter-

mine the width of the PSTH autocorrelation, we fit the central peak with a Gaussian
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function, and defined the PSTH precision to be the standard deviation of the fitted

Gaussian function (τR, Fig. 27(a); Section 4.3.1).

There was a substantial increase in firing precision after the removal of synaptic

connectivity. The mean value of τR dropped from 7.7 ms in the DF state to 5.6 and

6.3 ms in EB and CB conditions, respectively, indicating a reduction in trial-to-trial

firing jitter (Fig. 27(c, left)). This suggests that synaptic input, especially excitatory

input, acts in part as background noise that jitters spike timing. A prominent feature

of the time series traces produced by the LN model is a striking difference between

the correlation time-scale of the filtered stimulus and that of the measured PSTH

(Fig. 26(c)). The RF of each unit can be thought of as feature selector that emphasizes

stimulus characteristics that tend to drive firing. The filtered stimulus therefore

provides a base time course that be compared to that of the full response. As in

ref. (Butts et al., 2007), we defined the ‘relative precision’ as the precision of the

PSTH divided by the filtered stimulus precision,τFS, which was defined analogously

to τR using gj(t) rather than the PSTHj (Eq. 41; Section 4.3.3). Fig. 27(b, left) shows

the PSTH and filtered stimulus autocorrelation functions in all drug conditions for

a single unit. The PSTH was considerably more precise than the filtered stimulus

across units and connectivity states (Fig. 27(b, right)). Conversely, there was no

significant difference in the precision of the filtered stimuli across connectivity states

(Fig. 27(c, middle)). This agrees with our previous results showing a lack of change

in the linear response properties of units despite changes in connectivity (Fig. 26(d)).

The relative precision was high (greater than 4) across all synaptic configurations,

indicating that the units’ responses were precise and sparse relative to the stimuli

they encoded. The mean relative precision was significantly enhanced by the removal

of synapses (Fig. 27(c, right)). Together, these observations suggest that changes

in the nonlinear component of a unit’s response, acting independently of the linear
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nCB = 60 units (5 cultures). Significance thresholds, P > 0.05 (n.s.), P < 0.01 (*), and P < 0.0001
(***).
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RF, are capable of affecting a unit’s temporal firing precision via increases in the fir-

ing threshold and response gain. Further, the reduction in the temporal width of the

PSTH autocorrelation compared to that of the filtered stimulus implies that nonlinear

rectification temporally decorrelates the stimulus signal in all configurations, partic-

ularly in the EB and CB network states. This suggests that synaptically decoupled

networks may be more efficient encoders of time-varying stimuli, since messages car-

ried by individual units are less related to one another than in the DF state (however,

see Table 7).

4.4.4 Connectivity and pairwise response correlations

The above results quantify the isolated response properties of individual units during

different connectivity states. However, it is likely that changes in synaptic connectiv-

ity also lead to changes in interneuronal coordination which have not been captured

by our analysis to this point. To quantify how synaptic connectivity affected neu-

ronal coordination, we calculated the cross-correlation function between the PSTHs

of units from the same network. We started by computing the correlation coefficient

between each pair of units recorded from the same network, ρR (Eq. 46; Fig. 28(a)).

To deduce whether changes in neuronal correlations were the result of alterations

to the linear or nonlinear properties of each unit’s response, we then calculated the

cross-correlation function between units’ filtered stimuli, ρFS, for comparison to the

full response correlation ρR. Finally, we calculated the standard deviation of a peak-

centered Gaussian fit to the cross-correlation function, τ i,jR , which provides a measure

of repeatable temporal coordination of two units over trials (Fig. 28(b); Section 4.4.3).

PSTH correlation coefficients, ρR, exhibited significant changes to due to alter-

ations in network connectivity (Fig. 28(a)). The mean correlation coefficient between

unit PSTHs was highest in the DF state and dropped significantly during excita-

tory synaptic blockade. Correlation levels recovered somewhat during full synaptic
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Figure 28: Connectivity increases response correlations but decreases the precision of
pairwise neural coordination. (a) Left, example normalized PSTH cross-correlation functions from
a single pair of units across drug conditions. Middle, scatter plots compare ρR for units in the DF
condition against the EB or CB conditions. Scatter plot symbols identify the culture that each unit
was derived from. Right, ρFS (empty bars) and ρR (filled bars) distributions are compared across drug
conditions. The mean value of ρFS dropped by a small, but significant amount in the EB condition
compared to the DF and CB conditions. The mean ρFS was for DF 0.92±0.0032, EB 0.91±0.0032, and
CB 0.94±0.0019. Mean values of ρR were markedly decreased compared those of ρFS , and were signifi-
cantly different across all connectivity states. The mean ρR was for DF 0.52±0.0044, EB 0.37±0.0041,
and CB 0.48±0.0041. Error bars denote s.e.m. (b) Left, example PSTH cross-correlation functions
(dashed) and Gaussian fits (solid) for a pair of units across drug conditions. The standard deviation of
the Gaussian fits (τ i,jR ) provides a measure of the coordinated timing precision of two neurons across

trials. Middle, scatter plots compare τ i,jR for units in the DF condition against the EB or CB conditions.

Scatter plot symbols identify the culture that each unit was derived from. Right, τ i,jR distributions are

compared across drug conditions. The mean τ i,jR was for DF 14.5±0.19 ms, EB 9.4±0.12 ms, and CB
10.7±0.12 ms. Error bars denote s.e.m. Sample sizes, nDF = 1226 combinations (8 cultures), nEB =
518 combinations (6 cultures), and nCB = 497 combinations (5 cultures). Significance thresholds, P >
0.05 (n.s.), P < 10−5 (%), and P < 10−7 (#).
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blockade, although they remained significantly reduced compared to DF (Fig. 28(a,

right)). Interestingly, although the correlation between the linear responses of units,

ρFS, changed significantly across drug conditions, its value was consistently high and

the changes in the mean value of ρFS were small compared to the shifts seen in ρR

due to changes in connectivity.

Our measurement of correlation includes contributions from the spatial and tem-

poral characteristics of the stimulus input (signal correlations) and those arising from

shared connectivity (noise correlations) (Averbeck et al., 2006). Both types of corre-

lation are important for neural encoding and decoding in several sensory and motor

systems (Abbott and Dayan, 1999; Ecker et al., 2011; Salinas and Sejnowski, 2001).

Under the assumption that the CB condition provided complete blockade of synap-

tic connectivity (although, see Hales et al. 2012), we can make several observations

about the correlation coefficients presented in Fig. 28(b). First, the mean correlation

coefficient in the CB state, ρR,CB = 0.48, represents the ‘isolated signal correlation’

for our system. This is because the correlated variability of each unit’s trial-to-trial

response, which relies on synaptic communication, should be completely removed.

Second, the fact that ρR,EB = 0.38 is less than ρR,CB suggests that inhibition ac-

tively decorrelates neuronal activity in our preparation. Third, there is a large drop in

correlations when comparing those derived from the linear response to the full PSTH

(Fig. 28(a, right)). Due to their spatial uniformity, stimuli are perfectly correlated

across cells, and this is reflected by nearly perfect correlations in optically-evoked in-

tracellular currents during continuously-varying stimulation (Tchumatchenko et al.,

2013). This extreme correlation is captured in the linear responses of cells, but drops

considerably in the full response (Fig. 28(a, right)). This indicates that nonlinear

processing decorrelates the stimulus input. The degree of decorrelation depends on

network connectivity. Nonlinear processing removed 44% of correlations in the linear

response in the DF state, 59% in the EB state, and 49% in the CB state.
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In addition to the changes in strengths of the correlations, we also detected sig-

nificant alterations in the temporal coordination of units across trials in different

connectivity states. The mean temporal width of the PSTH, τ i,jR , cross-correlation

function showed a substantial decrease in EB and CB states compared to the DF

state (Fig. 28(b)). Reductions in τ i,jR indicate that units within networks lacking

excitatory synaptic connections were more likely to produce action potentials at the

same time points relative to the stimulus waveform during each trial. Combined with

the correlation coefficient results, this indicates that units in the fully connected DF

state were more likely to produce spikes synchronously but those synchronous spiking

events had more temporal variability relative to the stimulus input across trials com-

pared to the EB and CB connectivities. In other words, units in the DF state were

more likely to co-produce an imprecise response to the stimulus input, suggesting a

detrimental effect on information transmission compared to the EB and CB states.

4.4.5 Effects of connectivity on information transmission

We next accessed how changes in synaptic connectivity influenced network encod-

ing properties by calculating the mutual information between the spiking response

and the stimulation process. To do this, we applied a secondary type of input,

‘unique stimuli’, which were interleaved with repeated stimulus trials (Fig. 25(a);

Section 4.2.5). During unique stimuli, a new realization of the same Gaussian ran-

dom process used to produce the repeated stimulus, s, was applied for each trial such

that suni
1 6= suni

2 6= · · · 6= suni
K .

Repeated and unique stimuli reveal different features of the population response

that can be used to estimate their mutual information (Strong et al., 1998). If neural

encoding of the stimulus is noise-free and has a finite correlation time, then each

repeated stimulus presentation will result in precisely the same network response. In

reality, the encoding process is noisy and introduces trial-to-trial variability in the
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response to repeated applications of the same stimulus. The effects of this noise are

quite apparent in the jitter of spike timing across trials (Fig. 23). The extent of

this jitter is quantified by the conditional (or ‘noise’) entropy, Hnoise (Eq. 53) which

measures the variability of the network response that is not useful for encoding the

stimulus. On the other hand, by applying a different stimulus realization for each

trial (unique stimuli), the full repertoire of neuronal response patterns can be sampled,

and the total variability of neuronal response can be quantified by the total entropy

Htotal (Eq. 53). Htotal measures the variability of the population response that results

from noise as well as the repertoire of activity patterns that contain information

about the stimulus. Therefore, the difference between Htotal and Hnoise is the mutual

information between the stimulus and response

I = Htotal −Hnoise. (58)

If the length of each stimulus trial is much longer than the correlation time of the

spiking response, then Htotal and Hnoise can be conveniently estimated in the Fourier

domain and represented as density spectra across frequencies (Yu et al., 2010; Cru-

miller et al., 2011) . This technique can be applied to the response of individual units

or the ensemble response. For the latter case, the method takes into account reduc-

tions in total and noise entropy due to correlations between units’ responses (Eq. 54;

Section 4.3.4).

We first quantified how connectivity affected information transmission in the iso-

lated unit response to time-varying optical stimuli (Fig. 29). Fig. 29(a, left) shows

the total and noise entropy spectra for a single unit in each synaptic configuration.

For this particular unit, the total entropy was greater than the noise entropy in the

∼0-90 Hz frequency band, indicating that stimulus information content within the

unit’s spiking response was limited to this range. For frequencies greater than ∼90

Hz, the total entropy converged to the noise entropy, indicating a lack of information

content. The area between these two curves is the mutual information between the
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stimulus and response (Fig. 29(b, left).

We found that each unit’s response harbored stimulus information within the 0-90

Hz band across connectivity states (Fig. 29(a, middle)). However, we did not detect

a systematic effect of connectivity on the entropy rates, Hj,total or Hj,noise (Fig. 29(a,

right)). Unlike entropy rates, information rates of individual units were greatly af-

fected by network connectivity (Fig. 29(b, middle)). We found that decreased synap-

tic connectivity significantly increased information rates in single units. The mean

information rate of units doubled from ∼12 bits/sec in the DF state to ∼24 bits/sec

(200% of DF) in the EB state, and then further increased to ∼27 bits/sec (225% of

DF) in the CB state (Fig. 29(b, right).

Changes in information rates for single unit responses reflect increased temporal

precision in disconnected compared to connected network states (Butts et al., 2007)

(Fig. 27). However, altered connectivity strongly affects the pairwise coordination

of unit responses (Fig. 28), which suggests that the information rate of the joint

response may not match the trends seen in isolated unit responses. Because activity

between units is correlated, simply adding each unit’s information content to arrive

at a pairwise information rate is not a valid procedure. Interactions between units

must be taken into consideration. For instance, if two neurons have a one-to-one

mapping between their respective responses to a common stimulus signal, then no

more information is gained from examining one spike train compared to both. On the

other hand, correlations between unit responses can serve as a source of information

that improves stimulus encoding (Schneidman et al., 2003) (Table 7). The method

we employ to calculate information rates is sensitive to all correlations between units’

responses that can be directly sampled, and therefore is appropriate for evaluating

the information content of the pairwise response (Yu et al., 2010) (Section 4.3.4).

To explore the joint encoding properties of neurons during different states of con-

nectivity, we calculated the information content between paired unit responses and
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Table 7: Example of synergistic pairwise encoding. The table displays the joint and marginal
probability distributions for outputs produced by a pair of toy neurons. Each neuron produces an output,
r1 and r2, that can take values 0 or 1 in response to a single stimulus input, s. s takes values s1 and
s2 with equal probability. The information contained in the isolated unit responses is Ir1;s = Ir2;s = 0
bits, but the information content of the joint response, ~r = [r1, r2], is I~r;s = 0.3963 bits. Values

were calculated from the definition of mutual information, I(r, s) =
∑

r,s p(r, s) log2

(
p(r,s)

p(r)p(s)

)
. The

fractional redundancy is therefore R = (0 − 0.3963)/0.3963 = −1.0. This is due to the correlated
pairwise response to s1 resulting from p(r1,2 = y|r2,1 = y, s = s1) = 1.

p(r̃, s) ~r = [r1, r2]

[0,0] [0,1] [1,0] [1,1] p(s)

s1 0.25 0 0 0.25 0.5
s2 0.125 0.125 0.125 0.125 0.5

p(~r) 0.375 0.125 0.125 0.375

p(r1, s),p(r2, s)

r1 r2
0 1 0 1 p(s)

s1 0.25 0.25 0.25 0.25 0.5
s2 0.25 0.25 0.25 0.25 0.5

p(r) 0.5 0.5 0.5 0.5

the stimulus input, Ii,j, in each drug condition (Eq. 55 with J = {i, j}). Fig. 30(a,

left) shows the cumulative information spectra for a pair of units across each drug

condition (dotted lines). We found that reductions in connectivity greatly improved

pairwise stimulus encoding (Fig. 30(a, middle)). Mean information rates increased

from 22 bits/sec in the DF case to 49 bits/sec (220% of DF) and 57 bits/sec (260%

of DF) in the EB and CB cases, respectively. We found that pairwise information

levels were almost always less than the sum of the information content of constituent

units, indicating a redundant encoding process across all drug conditions. Addition-

ally, increases in the pairwise information rate due to decreased connectivity were

more extreme than occurred in the case of isolated unit responses (Fig. 29(b)). This

suggests that the pairwise response of units in the DF state are more likely to provide

redundant information than pairwise responses in the EB or CB states.

The redundancy of the pairwise response quantifies the degree to which each unit

provides an independent message about the stimulation process. The redundancy is
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Figure 30: Connectivity causes over-representation of the stimulation process. (a) Left,
cumulative summed (solid lines) and pairwise (dashed lines) information spectra across drug conditions
for a single pair of units. The height of the shaded area between the two lines is the redundancy at
a particular frequency. Middle, scatter plots compare Ii,j for populations in the DF condition against
EB or CB conditions. Symbols identify the culture that the population was derived from. Right, Ii,j
distribution for each population across connectivity states. The mean Ii,j was for DF 22.0±0.4 bits/sec,
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the units in (a, left). Middle, scatter plots compare R for populations in the DF condition against EB or
CB conditions. Right, R distribution across connectivity states. The mean R was for DF 0.054±0.0057,
EB 0.020±0.0013, and CB 0.028±0.0013 bits/sec. Sample sizes: nDF = 1127 pairs (6 cultures), nEB

= 497 pairs (5 cultures), and nCB = 497 pairs (5 cultures). Significance thresholds, P > 0.05 (n.s.),
P < 0.05 (ˆ), P < 10−6 (&), P < 10−7 (#).
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defined as the the summed information rate of each unit minus their joint informa-

tion. Because individual units had very different information rates, we calculated

the fractional redundancy (R, Eq. 57), which is normalized by the joint information

between two units (Schneidman et al., 2003). R = 1 indicates that all of information

contained in pairwise response is available within the response of a single member of

the pair. R = 0 indicates that each unit conveys a statistically independent message

about the stimulation process. R < 0 indicates that the correlated activity in the

population response conveys information not present when the single units are con-

sidered in isolation (i.e. the encoding process is ‘synergistic’; Table 7) (Schneidman

et al., 2003).

We found that unit pairs in the DF network tended to over-represent the stimulus

input, providing significantly more redundant information in their pairwise response

compared to units in the disconnected states (Fig. 30(b, left)). These results indi-

cate that increased correlations between neurons in the DF state (Fig. 28) provided

no synergistic effect on the encoding process (on average) as has been seen in other

preparations (Brenner et al., 2000). Interestingly, the redundancy values measured

from our networks in the DF state are similar to those of retinal ganglion cells sharing

a receptive field (Puchalla et al., 2005). This suggests that the structure of connectiv-

ity may not matter in the context of response redundancy. Finally, we found that the

CB state produced a more redundant response than the EB state (Fig. 30(b, left)).

Inhibitory connectivity also actively decorrelates the pairwise response compared to

the uncoupled network (Fig. 28(a, left)) in our preparation. Together, these results

indicate that the response decorrelation incurred through intact inhibitory connectiv-

ity results in a more efficient encoding process compared to the decoupled network,

even though raw information rates are highest in the CB case.

122



4.5 Discussion

The majority of studies investigating the encoding properties of neural circuits exam-

ine how the statistics of sensory stimuli (for instance, visual or auditory stimuli with

a ‘natural’ correlation structure (Lesica et al., 2007; Butts et al., 2007; Kayser et al.,

2010; Rieke et al., 1995)) affect how sensory messages are transformed by cells and

pathways. Here, we took a different approach. We sought to relate gross aspects of

network connectivity, rather than the statistics of stimulus input, to resultant neural

encoding properties. We previously demonstrated that Gaussian continuously-varying

optogenetic stimulation produces in vivo-like subthreshold voltage fluctuations in in-

dividual neurons (Tchumatchenko et al., 2013) (Chapter 3). We used this technique

to deliver stimuli to excitatory neurons embedded in randomly connected networks of

cortical cells while systematically altering network connectivity using selective synap-

tic receptor blockade. We therefore could directly investigate how well-defined al-

terations in network connectivity affected the encoding of identical stimuli. Our

approach revealed several interesting roles of connectivity in neural encoding, espe-

cially in regard to nonlinear aspects of time-varying signal transduction, that do not

appear to rely on specific connectivity architecture.

Our analysis began with the most basic characteristic of the neural response: the

firing rate. Surprisingly, we found no difference between the average firing rate of

units during spontaneous activity in the DF condition and evoked activity across

connectivity conditions (Fig. 24). This occurred in spite of the fact that individual

units’ responses were tightly locked to the driving stimulus. This indicates that in-

stead of adding additional spikes to ongoing activity, time-varying optical stimulation

rearranges the timing of spikes that would have occurred in the absence of stimula-

tion. Changes in connectivity had no effect on the average rate of spikes produced

during stimulation. This hints at the existence of short-term homeostatic processes
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that can quickly adapt to large perturbations in connectivity such that evoked fir-

ing is maintained at a ‘desired’ level. Additionally, we found that the irregularity of

evoked spike trains was similar to that of spike trains from sensory cortical cells in

vivo (Softky and Koch, 1993, 1992).

Although evoked firing rates and spiking irregularity did not change across con-

nectivity states, the temporal characteristics of the evoked response were greatly

affected. The removal of excitatory connectivity increased the severity of the non-

linear response properties of individual units (i.e. the static nonlineary more closely

resembled a Heaviside function when excitatory connectivity was removed). Stated

differently, this shows that the presence of excitatory synaptic transmission makes

each unit’s spiking response more closely resemble a linear transformation of the stim-

ulus process. Previous studies have predicted that strong recurrent connectivity may

linearize the population-averaged response to time-varying stimuli (van Vreeswijk and

Sompolinsky, 1998, 1996). However, we found no significant difference in the sever-

ity of the nonlinear features of the population-averaged response across connectivity

states (Fig. 26(e)). Interestingly, we did find that the response of individual units was

linearized by connectivity (Fig. 26(d)).

The precision of evoked spike trains across trials (the jitter referenced to the

stimulation process) was also affected by changes in connectivity. We found that both

the precision of individual unit spike timing and the precision of temporal coordination

between units were increased by the removal of excitatory connectivity. These changes

in spiking precision could be explained by modification of units’ nonlinear response

properties. Further, we found that nonlinear processing temporally decorrelated the

neural response across drug conditions, and that this effect was especially pronounced

when excitatory connectivity was removed. This corresponded to identified changes

in the characteristics of nonlinear processing: an increase in both the threshold and

gain of the nonlinearity, which was most pronounced in the EB connectivity condition
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(Fig. 26). These results are in strong agreement with a recent study investigating

the effects of nonlinear processing on stimulus-decorrelation in retinal ganglion cells

(RGCs) (Pitkow and Meister, 2012). In that study, an LN model was used to show

that the linear interaction, which represented lateral connectivity, could account for

only a small fraction of the effects on temporal and spatial stimulus decorrelation,

and that most of the decorrelation effect was derived from the nonlinearity of each

RGC. However, our results differ from this study in terms of the physiological locus of

nonlinear processing. We found that nonlinear processing was altered by changes in

synaptic connectivity, which is assumed to be represented by the linear components

of most LN models.

Models of sensory neurons, especially RGCs or visual thalamic cells, typically cap-

ture the effects of connectivity by adding linear terms to represent synaptic interaction

and refractoriness. However, our results demonstrate that changes in connectivity pri-

marily affect nonlinear features of the spiking response, and leave linear processing

unaltered. These changes in nonlinear characteristics cannot be captured by addi-

tional stages of linear stimulus filtering or by the addition of linear filtering terms for

synaptic or refractory effects (Truccolo et al., 2005; Pillow et al., 2008). Recently,

McFarland et al. produced a model, dubbed the nonlinear input model (NIM), which

implements the stimulus processing as an arbitrary number of separate, potentially

nonlinear, transformations on the stimulus input (McFarland et al., 2013). These

input pathways are capable of representing nonlinear processing resulting from con-

nectivity. An intuitive example is ON-OFF retinal ganglion cells, which respond to

both increases and decreases in stimulus contrast, and thus need two forms of nonlin-

ear rectification (one sensitive to ON stimulus dimensions and the other to OFF) for

accurate response prediction (McFarland et al., 2013). Because connectivity affects

the nonlinear response characteristics of cells in our preparation, the emphasis that

the NIM places on nonlinear processing prior to spike generation seems to be justified.
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Incidentally, for data presented here, we have good knowledge of both the stimuli de-

livered to our networks and their true connectivity state. Therefore, the data set

produced by this study may serve as a validation set for generalized point-process

models and the NIM, which seek to infer connectivity (or more generally, ‘upstream’

transformations) based upon the spiking response of cells to a common stimulation

process.

The effects of connectivity on unit response properties translate to effects on

information transmission. Stimulus information contained in unit responses more

than doubled when synaptic interaction was removed from the network. Increased

information rates due to the reductions in synaptic connectivity might be loosely

related to the data-processing theorem, which states that transformations on a signal

can, at best, preserve information in the signal (Shannon, 1948). Therefore, one might

guess that the removal of synapses amounts to the removal of a significant noise source,

and the fidelity of the response of the disconnected network was improved since this

noise was no longer present. Indeed, the highest information rates in single units and

the paired response were produced by the disconnected network, even though the

pairwise response precision of the disconnected network was slightly lower than that

of the EB network state.

However, this interpretation is complicated when the pairwise response is consid-

ered. Under these circumstances there is increased redundancy in the response of

the disconnected network compared to when only excitatory transmission is blocked.

This means that although on average there is more information contained in the pair-

wise response of cells in the disconnected network, the pairwise response represents

less of the total information available in the individual responses of constituent units

compared to when inhibition is left intact. The minimal redundancy of the EB state

appears to result from the decorrelating effects of inhibition on the pairwise response
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(Fig. 28), especially since pairwise correlations capture the dominant form of interac-

tion even between large numbers of units in cultured cortical networks (Schneidman

et al., 2006).

Based upon these results, one might conclude that since synapses reduce infor-

mation transmission, they impede network function. This would be true if the only

function of neural circuits was to faithfully transmit sensory messages. However, this

is not the case. Information measures do not consider the meaning or ‘importance’ of

stimulus messages. To do this, one must examine the neural response from the per-

spective of neural decoding: the production of some behavioral output based upon the

neural response. Our analysis of neural encoding was free of assumptions concerning

the relative importance of various stimuli or spiking patterns, but simply analyzed

the potential utility of the neural response. On the other hand, a valid decoding

procedure can result from an infinite number of possible transformations on neural

activity. Optimal decoding is also difficult to define since the performance of a de-

coder is dependent on an error measure between a ‘correct’ transformation of sensory

stimuli and the achieved motor output (Schneidman et al., 2003). Note that this

definition is distinct from other interpretations of decoding, which define decoding as

the estimation of the conditional probability distribution p(s|r), to make the problem

of optimal decoding more tractable.

It is especially hard for us to guess the functional role of changes in network

encoding properties because cultured networks are not integrated into a behaving

system, so decoding is not a concept that holds any meaning. Other studies have

integrated cultured cortical networks into robotic animal bodies, capable of executing

simple behaviors by decoding ongoing neural activity (DeMarse et al., 2001; Chao

et al., 2008). In this case, it could be that the linearizion of the neural response

and increased redundancy in the intact network act to highlight salient features of

stimulus input, resulting in improved behavioral performance. Indeed, this seems

127



to be the case for populations of retinal ganglion cells, which are highly redundant

encoders of natural visual scenes (Puchalla et al., 2005) but whose correlations can

be used to improve stimulus reconstruction (Pillow et al., 2008).

Finally, in our analysis we treat the encoding process as a stationary transforma-

tion on stimulus inputs to produce a response. However, the widely accepted function

of synapses is to allow changes in the input/output relationship of a network such that

its response properties can be updated through learning. Synapses provide networks

with a large set of free parameters, and therefore a wide set of potential dynam-

ics that can be accessed to make the neural response useful for behavior. Without

synapses the repertoire of potential behavioral outputs would decrease drastically. To

summarize all of the above points, the existence of synapses may reduce information

transmission, but they are required to make information transmission useful to an

organism.

In this study, we used continuously-varying optogenetic stimulation to create a

wide-bandwidth, genetically specified communication channel with a genetically de-

fined input layer of excitatory cells embedded within randomly connected networks

of cortical neurons. This configuration mimics the structure of large scale computer

models of cortical networks (Brunel, 2000; Vogels et al., 2005; Vogels and Abbott,

2009; van Vreeswijk and Sompolinsky, 1996, 1998; Douglas et al., 1995; Izhikevich

et al., 2004; Izhikevich, 2006), offering similar levels of access to spiking patterns of

constituent cells, but using living neurons. This approach is applicable to a much more

general set of experimental circumstances than we have described in this study, and

can be improved with the incorporation of new technologies for neural recording. For

instance, continuously-varying photostimulation can be combined with high-density

microelectrode arrays, which allow spiking activity to be recorded from virtually every

neuron in a dissociated cortical network or retinal preparation (Fiscella et al., 2012;

Bakkum et al., 2013). This would provide a complete measurement of the population
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spiking response in order to verify the results obtained from incomplete populations,

like those presented here.

Our technique allows for direct interrogation of neural circuits with extremely

repeatable stimuli that mimic natural synaptic input. This provides a means for

more straightforward investigations of the isolated response properties of sensory

circuits. Additionally, time-varying optical stimuli allows for precise manipulation of

spiking patterns in brain structures several synapses removed from a sensory organ.

This highlights its potential use in the development of improved sensory prosthetic

devices. We envision that future instantiations of this technique will extend its ability

to control firing patterns of particular neural populations by incorporating spatial

light-modulation and real-time feedback (Chapter 5).
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CHAPTER V

OPTOGENETIC FEEDBACK CONTROL OF NEURONAL

FIRING

Optogenetic tools allow genetically-specified neural activation and silenc-
ing, and facilitate artifact-free electrical readout of evoked neural activity.
The ability to electrically measure, and optically modulate, spiking activity
forms the basis of a feedback loop that can be used to control neural acti-
vation. Here we present a feedback control technology that automatically
adjusts optical stimulation in real-time to precisely control spiking activity.
We characterize the system’s ability to control neural activity in dissoci-
ated cortical networks, over timescales ranging from seconds to days, and
in vibrissal somatosensory thalamus of rats during whisker stimulation.
We demonstrate how the system can be used to decouple neuronal firing
levels from ongoing changes to network excitability due either to 24-hour
periods of glutamatergic neurotransmission blockade or impinging vibrissal
sensory drive. This technology greatly enhances the precision with which
optical stimulation can control neural activity, and allows causally related
variables of circuit activation to be studied independently.

5.1 Introduction

The population firing rate is the most robust correlate of sensory and motor informa-

tion in the brain. It can be used to decode the direction of arm movements (Geor-

gopoulos et al., 1988), the perception of visual motion (Steinmetz et al., 1987), and

an animal’s physical location within an environment (Brown et al., 1998). Because

of this, precise control of neuronal firing levels in targeted brain regions would pro-

vide a powerful approach for dissecting neural circuit function and would advance the

development of sensory prostheses.
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Optogenetic approaches are used to provide genetically specified, millisecond time-

scale, spike timing control in single neurons (Mattis et al., 2011), and gross modula-

tion of population firing levels (Yizhar et al., 2011a), during simultaneous, artifact-

free electrical recording. The ability to simultaneously perturb and measure neural

activity encapsulates the basic elements of a feedback loop, which can be exploited

to control neural activation. Precisely controlling the firing level of a specified neu-

ronal population in the face of ongoing modulatory input, changes in cognitive state,

changes in sensory drive, and/or neuronal adaptation would improve our ability to

infer its causal relationship with information transmission and behavior. Further, the

ability to control population firing in spite of behaviorally-, pharmacologically-, or

genetically-induced changes in network excitability would allow the direct effects of

these perturbations on circuit plasticity to be disentangled from those due to changes

in activity levels.

Feedback is used in many situations to linearize input/output relationships, de-

couple causally-related system variables, and provide control over system variables.

This has been exemplified in single-cell electrophysiology by the voltage clamp, which

uses a feedback circuit to control the cellular membrane potential. More recently, a

diverse set of specialized techniques that employ feedback control have emerged for

studying adaptation in neuronal micro-circuits (Ahrens et al., 2012), using electrical

stimulation to control spike latency (Wallach et al., 2011) and firing levels (Wage-

naar et al., 2005; Newman et al., 2013), improving brain-computer interfaces (Velliste

et al., 2008), inducing motor plasticity (Jackson et al., 2006a), and improving motor

rehabilitation (Moritz et al., 2008). Real-time optogenetic stimulation has recently

been used to control motor behavior in Caenorhabditis elegans (Stirman et al., 2011;

Leifer et al., 2011) and introduce fictive sensory information into somatosensory cor-

tex during active whisking in mice (O’Connor et al., 2013). Additionally, closed-loop

activation of halorhodopsin expressed in excitatory principal cells (Paz et al., 2012),
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or channelrhodopsin expressed in inhibitory interneurons (Krook-Magnuson et al.,

2013), has proven capable of real-time seizure intervention in vivo. However, these

studies did not update stimuli based on ongoing neural activation, which is necessary

for true real-time control of neural activity. We sought a technology that could pre-

cisely specify neural activity levels over a wide dynamic range, and that was general

enough to be applied across experimental preparations and time scales.

Here we describe a general framework for using multi-modal, closed-loop optoge-

netic stimulation to control population firing activity in vitro and in vivo. Using this

method, microelectrodes are used to sample extracellular, single-unit spiking activity.

Electrode voltages are then streamed to a real-time electophysiology platform, which

detects and sorts action potentials at low latency and computes the instantaneous

firing rate (Chapter 2). The firing rate is compared to a target, and stimulation pa-

rameters are updated such that the error between the target and the measured firing

level is minimized. Using dissociated cortical networks grown on microelectrode ar-

rays, we show that optogenetic feedback provides precise, rapidly-settling control of

network firing levels. We then extend this method to control mean network activity

levels over many hours. We demonstrate the utility of long term activity control in

vitro by locking network firing to pre-drug levels during 24-hour blockade of excitatory

synaptic transmission. In doing so, we decoupled the effects of reduced glutamatergic

neurotransmission on changes in network excitability from secondary effects due to

changes in network firing levels to show their unique roles in homeostatic increases

in network excitability. Finally, we show how optogenetic feedback control can be

used to control firing activity in vibrissal somatosensory thalamus of rats over a wide

dynamic range. We demonstrate how the system can be used to decouple background

firing levels from fluctuating levels of vibrissal sensory drive without corrupting the

fine-scale temporal structure of whisker-evoked spike trains.
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5.2 Methods

5.2.1 In-vitro methods

5.2.1.1 Viral transfections

Cell culture was performed as described in Chapter 2, Section 2.2.1. Concentrated

aliquots of AAV2-CaMKllKα-hChR2(H134R)-mCherry and AAV2-CaMKllKα-eN-

pHR3.0-eYFP were produced by the University of Carolina Chapel Hill Vector Core.

When cultures reached 1 to 5 days in vitro (DIV), viral aliquots were diluted to 1·1012

c.f.u.·ml−1 and 1 µL was added to 1 mL culturing medium. Infected cultures were

incubated for 3 days with the viral solution before a the culturing medium was ex-

changed. The fluorescent signal of the mCherry reporter protein was monitored in

3 sister cultures over the days post infection using an LSM510 confocal microscope

(Carl Zeiss AG, Oberkochen, Germany). Identical laser power and imaging settings

were used for each imaging session. The fluorescent signal increased monotonically

before plateauing at ∼3 weeks in vitro (Fig. 31(a,b)). Additionally, the functional

reactivity of the cultures to 465 nm centered and 590 nm centered optical stimuli

was probed in the weeks following infection (Fig. 31(c)). The ability of ChR2R and

eNpHR3.0 to affect network firing levels mirrored the expression time course of the

marker proteins. All experiments were carried out on cultures that were 3 to 4 weeks

old.

5.2.1.2 Multichannel electrophysiology

Microelectrode voltages were amplified and bandpass filtered between 1 Hz and 5 kHz

using a 60 channel MEA60 analog amplifier (Multichannel Systems, Reutlingen, Ger-

many). When stored in a 35 ◦C incubator, the temperature of the amplifier exceeded

37 ◦C. Therefore, the the culture was regulated to 35 ◦C using a servo-controlled

(Modular One Technology, Parker, TX) solid state Peltier heater/cooler mounted be-

low the recording amplifier (Fig. 33(a); Appendix C). Analog signals were digitized
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Figure 31: Expression time course of AAV2-CaMKIIα-ChR2(H134R)-mCherry. (a)
Phase-contrast and confocal imaging of a single region of interest (ROI), containing 4 microelectrodes,
performed over the first 26 days in vitro (DIV). Cultures were transduced at 1 DIV. (b) To quantify
the expression time course, three or four ROIs were imaged in three cultures over the first 26 DIV.
For each ROI and DIV, the integrated intensity of 600-690 nm light through the emission filter was
calculated and then normalized by the maximal integrated intensity over the 26 day imaging period
(black dots). A sigmoid of the form a

1+exp(bx+c) was fit to the resulting data using nonlinear regression

(r2=0.98; MATLAB curve-fit toolbox). The half maximal expression point occurred at ∼12 DIV. (c)
The time-course of ChR2R function was measured by recording the evoked network spiking response
in three networks over the first 16 DIV. Each experiment applied 140 trains of 30 second stimulation
periods, each consisting of a random combination of pulse frequency (1, 5, 10, 20, 30, 40, and 50
Hz), pulse width (0.1, 0.5, 1.0, and 5.0 ms), and 465 nm LED intensity (0.2, 0.4, 0.6, 0.8, and 1.0
Amps). Stimulus bouts were separated by 30 seconds and were applied in random order. Colored lines
show the average neuronal firing rate, across all three networks, at a set value for particular stimulation
parameters. For example, the average network firing rate, 〈f [t]〉, for a stimulus frequency of 20 Hz is

〈f [t]〉 = 〈[Firing Rate(Stim. Freq,Pulse Width, ILED)|Stim. Freq = 20Hz]〉

where 〈·〉 indicates the average over time and units. The legend indicates the number of units
used to produce each line for each DIV. The monotonicity of these functions across development (except
for large values of pulse frequency) indicate the achievable evoked firing levels at different developmental
points and the usefulness of each of the three stimulus parameters for constructing an effective control
input.
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and processed by the NeuroRighter multichannel electrophysiology platform (Rolston

et al., 2009a; Newman et al., 2013). Amplified electrode voltages were digitally filtered

using a 3rd order Butterworth filter with a passband of 300 to 5000 Hz. Extracel-

lular action potentials were detected using a voltage threshold of 5 times the RMS

noise on each electrode. A spike classifier was trained for each channel by collecting

a set of spike waveforms, projecting them into their first two principal components,

and fitting a mixture of K Gaussians to the resulting 2D sample distribution using

expectation maximization. K was deduced automatically using a minimum descrip-

tion length cost function. Following training, spikes were then classified online with

a maximal latency of ∼5 ms. The details of NeuroRighter’s spike detection/sorting

algorithms are presented in Appendix A.

5.2.1.3 Optical stimulator

To deliver optical stimuli, we used a custom N-channel enhancement mode MOS-

FET current source to drive a single blue LED (LZ4-00B200, LEDEngin, San Jose,

CA) and 3 amber LEDs wired in series (LZ4-00A100, LEDEngin). LEDs were butt-

coupled to a 4-to-1 randomized fiber bundle (Schott AG, Mainz, Germany), which

then fed light into the Köhler illumination train mounted beneath the MEA am-

plifier (Fig. 32 and Fig. 33(a)). We confirmed the spatial homogeneity of of light

at the culturing surface using a BC106-VIS CCD-based beam profiler (Thorlabs,

Newton, NJ; Fig. 32(b)). The static current/irradiance relationship for each LED

set used in our configuration is shown in Fig. 32(a). The rise time of pulses was

∼10 µs to source 500 mA to an LED. A full design specification is available online

(https://potterlab.gatech.edu/main/newman/wiki).

5.2.1.4 Functional expression

To characterize the ability of ChR2R to increase population activity, we scanned

three parameters of ChR2R excitation in open-loop: 0.1-5 ms pulse width, 1-40

135



Figure 32: Optical characteristics of in-vitro stimulator. (a) Optical power density at the
culture as a function of forward diode current for a single 465 nm LED and three 590 nm LEDs wired in
series. (b) Colormap indicating the uniform spatial light intensity profile projected onto the MEA surface
using a Köhler illuminator (Fig. 33), along with cross sectional intensity profiles through the horizontal
and vertical center of the illuminated region (dotted white lines). The MEA image is superimposed on
the profile to provide an indication of scale.

Hz stimulation frequency, and 0.1-1.5 Amps through a 465±11 nm FWHM LED,

which corresponds to 1.6-13.4 mW·mm−2 at the culturing surface in our configura-

tion (Fig. 32(a)). We found that all three parameters provided smooth, positive,

monotonic relationship with the average population firing rate at any point approx-

imately 1 week after viral transduction, and that the functional ability of ChR2R

co-varied with its expression time-course (Fig. 31(a)). Therefore, we used a single

control variable, called UC, to simultaneously modulate the pulse-width, stimulation

frequency, and optical power of 465 nm stimulation (see stimulus definitions below).

To characterize the ability of eNpHR3.0 to decrease population firing, we delivered

30 second long stimulus pulses ranging from 0 to 1 Amp to three 590±10 nm FWHM

LEDs wired in series, throughout development. These LED currents corresponded

to ∼1.3-10.8 mW·mm−2 in our configuration (Fig. 32(a)). We observed a negative,

monotonic relationship between the optical power of the LED and population firing

throughout development. Therefore, we defined a control input UeNpHR as the forward

diode current of the 590 nm LED (Fig. 31(b); see stimulus definitions below).
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5.2.1.5 Feedback controllers

Feedback controllers were implemented using the NeuroRighter plug-in interface,

which grants on-the-fly access to NeuroRighter’s data streams to user written plug-in

code (Newman et al., 2013) (Chapter 2). Every dt = 10 ms, the average network

firing rate, f [t] was calculated using action potentials produced by sorted units and

passed through a first-order averaging filter

f [t] = αr[t] + (1− α)f [t− dt] (59)

where

α =
2

τ/(2 · dt) + 1
(60)

defines a τ = 2.5 second time constant and r[t] = no. spikes/no. units/dt is the

instantaneous firing rate during the 10 ms bin, averaged across all detected units.

The firing rate was then compared to a desired firing rate, f ∗, and the error between

the two

ef [t] = f ∗ − f [t] (61)

was used to generate stimulus signals using either a proportional integral (PI) or

on-off control scheme. The PI controller was defined in a recursive form as

u[t] = u[t− 1] +K

(
ef [t]− ef [t− 1] +

Ts
Ti
ef [t]

)
(62)

where K = 0.1 is the proportional gain, Ti = 1 s is the integral time constant, and

Ts = 0.01 s is the period of the control loop. u[t] was then transformed into stimulus

input signals according to

UC = u[t] + ∆1 (63)

UH = −u[t] + ∆2. (64)
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∆1,2 = 0.25 determine the degree of overlap in ChR2R (channelrhodopsin) and eN-

pHR3.0 (halorhodopsin) activation, respectively. UC was transformed into pulses of

blue light according to

Pulse freq. 465 nm = 10UC + 10 (Hz) (65)

Pulse width 465 nm = 5UC (ms) (66)

LED current 465 nm = 1.5UC (Amps). (67)

UH was transformed into continuously modulated yellow light according to

LED current 590 nm = UH (Amps). (68)

UC and UH were bounded between 0 and 1 to prevent integral windup and unrea-

sonably high stimulation intensities. Twenty seconds prior to the start of each 60-

second control epoch a 10-second train of UC = 1.0 stimuli were applied, which we

found increased control stability by preventing oscillations at the start of the control

epoch (Fig. 37). This conditioning stimulus train is referred to as a ‘pre-pulse’ in

Figs. 38 and 37.

The on-off controller was defined for the blue LED as

If [t] =
t∑

k=0

ef [k] (69)

Stim[t] =

 Apply 5 ms pulse if If [t] > 0

Off Otherwise
(70)

1.5 A was delivered to the LED during each pulse and a maximal stimulation fre-

quency of 10 Hz was enforced.
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5.2.2 In-vivo methods

5.2.2.1 Experimental preparation

All procedures were approved by the Georgia Institute of Technology Institutional

Animal Care and Use Committee and followed guidelines established by the Na-

tional Institutes of Health. Female sprague-dawley rats (250-300g) underwent an ini-

tial survival surgery, during which the viral vector (AAV2-CaMKIIa-hChR2(H134R)-

mCherry, UNC Viral Vector Core, Chapel Hill, NC) was delivered to the left thalamus

using stereotactic coordinates: 2-4 mm posterior to bregma, 2.5-3.5 mm lateral to mid-

line, 4.5-5.5 mm below cortical surface. The injection was delivered at 0.2uL/min for

5min for a total of 1uL. The animals were allowed to recover for 3-4 weeks, providing

time for the ChR2R expression to reach functional levels.

In a second acute surgery, the rodents were initially anesthetized with 4% isoflu-

rane before intraperitoneal injection of sodium pentobarbital (50mg/kg weight) for

long term anesthesia. Following the initial bolus, sodium pentobarbital was adminis-

tered intravenously through the tail vein. Throughout the experiment, measurements

of the heart rate, respiratory rate, and response to toe pinch stimuli were used to mon-

itor and titrate the depth of anesthesia, and the body temperature was maintained at

37C by a servo-controlled heating blanket (FHC, Bowdoinham, ME). Animals were

mounted in a stereotactic frame and a craniotomy was performed over the left parietal

cortex to allow access to the ventral postero-medial (VPm) region of the thalamus

(coordinates: 2-4 mm posterior to bregma, 2.5-3.5 mm lateral to midline, 4.5-5.5 mm

below cortical surface).

5.2.2.2 Electrophysiology

The ‘optrode’ consisted of a multimode optical fiber (105um core diameter, 125um

coating diameter, 0.22 NA, Thorlabs, Newton, NJ) and two quartz coated platinum-

tungsten microelectrodes (80um diameter, Thomas Recording, Giessen, Germany).
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The microelectrodes were pulled and ground to an impedance of 1-2 MΩ at 1kHz.

The optical fiber was also ground to a fine point, producing a spherical, rather than

conical, pattern of light delivery. The optrode was advanced to the ventral posterio-

medial (VPm) region of the thalamus using a precision microdrive (Knopf Instru-

ments, Tujunga, CA). Single and multi-unit activity were band-pass filtered between

300 and 5000 Hz and digitzed at 24.414 kHz using an RZ2 multi-channel bioacqui-

sition system (Tucker Davis Technologies, Alachua, FL). The principal vibrissa was

determined by manually deflecting individual whiskers and observing the multi-unit

activity.

5.2.2.3 Whisker stimulation

Whiskers were trimmed at approximately 12 mm from the face, and were inserted into

a glass pipette fixed to the end of a calibrated multi-layered piezoelectric bimorph

bending actuator (range of motion, 1 mm; bandwidth, 200 Hz; Physik Instrumente

(PI), Auburn, MA) positioned 10 mm from the vibrissa pad. Vibrissae were always

deflected in the rostral-caudal plane. Punctate deflections consisted of exponential

rising and falling phases (99% rise time, 5 ms; 99% fall time, 5 ms), with angular

deflection velocities of 133, 262, or 522 deg·s−1.

5.2.2.4 Closed-loop optical stimulation

A model LRS-0473-PFM diode-pumped solid-state laser (Laserglow Technologies,

Toronto, Canada) was used to deliver blue (473 nm) light to the VPm thalamus

and stimulate the ChR2R-expressing cells. The laser allows analog modulation up

to 10 kHz for the delivery of a continuously varying light intensity as determined by

the closed-loop the controller. The controller was implemented on the Tucker-Davis

RZ2’s digital signal processors using the RPvdsEx graphical programming language.

The PI control loop was equivalent to Eqs. (59)-(62) with the exception that τ = 5
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s. The PI control output, u[t], was converted into a 0-10 volt laser control signal

ULaser = 10u[t] (71)

which was monotonically, but nonlinearly, related to the continuous-wave laser power

(Fig. 43). The maximum light power density delivered during the experiments was

∼150 mW·mm−2, but typically only 1-10 mW·mm−2 was needed to drive neural

activity in ChR2R expressing neurons (Fig. 43).

5.3 Results

5.3.1 Development of a closed-loop, in-vitro optical stimulation system

Effective feedback control of spiking activity requires the ability to both sense and

modulate neuronal firing levels. The first of these requirements is fulfilled using

extracellular electrophysiological methods both in vitro and in vivo. To address the

second requirement, optogenetic methods offer a powerful means to activate and

suppress neuronal firing (Boyden et al., 2005; Han and Boyden, 2007). Previous

studies have described stimulation patterns, expression systems, and opsin types for

evoking or silencing activity in neurons (Mattis et al., 2011; Zhang et al., 2011; Yizhar

et al., 2011a; Chow et al., 2010). However, these studies have focused on the ability

of microbial opsins to precisely elicit or cancel spikes rather than their ability to

smoothly modulate firing levels.

To characterize the range of evoked firing levels that could be reliably achieved

using multimodal optical stimulation, we developed a system to sense and optically

modulate network activity in dissociated cortical networks, in real-time (Fig. 33(a)).

The open-access NeuroRighter electrophysiology platform was used to record and

process electrical activity from a 59-channel, substrate-embedded microelectrode ar-

ray (MEA) (Newman et al., 2013). To stimulate the networks, NeuroRighter drove a

multicolor LED bank that was concentrated onto the cell layer using a custom Köhler

illuminator (Fig. 32). Channelrhodopsin-2(H134R) (ChR2R) (Nagel et al., 2005) and
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halorhdopsin-3.0 (eNpHR3.0) (Gradinaru et al., 2008) were expressed in excitatory

cells using a CaMKllα promoter (Section 5.2). We used confocal microscopy to mon-

itor expression of marker protein levels throughout development (Fig. 31(a-b)).

To characterize the functional expression of ChR2R, we performed stimulus pa-

rameter sweeps throughout development using a blue LED (465±11 nm FWHM;

Fig. 31(c)). We found that increases in stimulus frequency, pulse-width, and LED

current could be used to increase evoked activity levels(Fig. 31(b)). Therefore we

defined a ChR2R stimulation variable, UC, that simultaneously modulated all three

parameters of pulsed blue light (Section 5.2). A second control variable used to acti-

vate eNpHR3.0, UH, was defined as the current supplied to the amber LED (590±10

nm FWHM) during continuous operation. To characterize these control signals, 50

random values of UC and UH were applied to two networks for randomly interleaved,

60-second stimulus epochs. Evoked population firing rates were positively corre-

lated with UC and negatively correlated UH (Fig. 33(b)). The efficacies of UH and

UC for increasing or decreasing firing levels saturated near their half-maximal val-

ues (UH = 0.60 to UC = 0.54 corresponding to 0.03 to 13.51 Hz/unit, respectively).

The monotonic relationship between UC and UH compared to network firing levels

indicated their applicability to closed-loop control.

To test the robustness of UC and UH during altered network excitability, we

repeated the 60-second stimulation protocols in the presence of 20 µM 6-cyano-

7-nitroquinoxaline-2,3-dione (CNQX), 50 µM (2R)-amino-5-phosphonovaleric acid

(AP5), or 20 µM bicuculline. These drugs blocked AMPAergic, NMDAergic, and

GABAergic neurotransmission, respectively. CNQX and AP5 both caused marked

reductions in spontaneous firing levels (-74.2% and -66.6%, respectively). Bicuculine

increased network activity compared to the pre-drug condition by 357%. Each drug

affected signal propagation within the networks as evidenced by systematic changes

in the peri-stimulus time histogram (probe stimulus: 10 Hz, 1 ms pulse width, 5
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Figure 33: Optogenetic modulation of network activity in vitro. (a) Multichannel recording,
processing, and stimulation system. A 60-channel amplifier detects extracellular electrical activity pro-
duced by cells close to electrodes (white outline). Neurons express ChR2R-mCherry (red) and eNpHR3.0
under the CaMKllα promoter (green: immunoreactivity for CaMKllα; scalebar: 20 µm). Electrode volt-
ages are processed in real-time and can be used to update an LED stimulator feeding a Köhler illuminator
below the MEA. The dotted box indicates the boundary of the culturing incubator. (b) Time-averaged
firing rates of two cultures (4 and #) in response to 60 second applications of randomly valued UC and
UH during different forms of synaptic blockade. Black horizontal bars indicate the spontaneous firing
level of each culture and blue and yellow symbols indicate the mean firing level at the corresponding value
of UC and UH, respectively. (c) PSTH of individual units (grey scale) and the unit-averaged PTSH in
response to 1 millisecond 5 mW·mm−2 blue light pulses for each drug condition. Scale bars, 50 Hz/unit.
(d) Raster plots for 87 detected units during 60 second applications of UC and UH. The firing rate
evoked by stimulation using a particular value of UC and UH decays over the course of the protocol.
(e) The trial-averaged firing rate profiles for the stimulus levels presented in (d) across drug conditions.
Black horizontal lines indicate the 60 second stimulation period. Colors correspond to the drug conditions
above each panel in (b). Dotted lines indicate spontaneous firing levels. Note the log scale.
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mW·mm−2; 200 stimuli per histogram; Fig. 33(c)). In spite of changes in network

excitability, for CNQX- and AP5-treated networks the dynamic range of the con-

trol signal was similar to the pre-drug condition (0.04 to 13.97 Hz/unit for CNQX,

and 0.07 to 13.37 Hz/unit for AP5; Fig. 33(b)). Bicuculline greatly reduced the dy-

namic range of evoked network activity indicating a loss of reliable open-loop activity

modulation (0.01 to 6.66 Hz/unit; Fig. 33(b)).

Although time-averaged firing levels were positively correlated with UC and neg-

atively correlated with UH (Fig. 33(b)), stimuli lost effectiveness throughout each

60-second trial (Fig. 33(d,e)). This effect was consistent across drug conditions and

matches previous characterizations of multiunit activity during extended periods of

optical stimulation in vivo (Anikeeva et al., 2012). The decreasing efficacy of network

activation using ChR2R is likely due to network adaptation, rather than changes in

ChR2R-mediated photocurrents (Mattis et al., 2011) (Chapter 3). The deceasing

efficacy of firing suppression using eNpHR3.0 is likely due to increases in network ex-

citability from intracellular Cl− accumulation (Raimondo et al., 2012) and decreases

in outward photocurrents due to pump desensitization during prolonged light appli-

cation (Mattis et al., 2011). In both cases, activity adaptation to optical stimuli

is difficult to predict and compensate for a-priori. We therefore hypothesized that

feedback control could be used to adjust stimuli in real-time to compensate for fluc-

tuations in neuronal excitability, network activity, and opsin dynamics.

5.3.2 Proportional-integral control of network firing

To demonstrate the basic functionality of optogenetic feedback control, we devised

a simple proportional-integral (PI) controller to hold network activity in dissociated

cortical networks at various target levels. The PI algorithm updated UC and UH in

real-time in order to minimize the difference between the measured network firing rate

and a target level (Section 5.2). For each network tested, we presented the controller
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Figure 34: PI optical feedback allows precise control of network firing levels over one-
minute epochs. (a) (top) Network firing rate during different trials (colors). Target firing levels
(black lines) ranged from 0 to 10 Hz and were applied in random order. (bottom) Control signals, UC

and UH, required during closed-loop control. For this network, the controller saturated while attempting
to clamp network firing at 10 Hz/unit, resulting in a control failure (grey trace). (b) (Left axis, colors):
Time-averaged firing rates for seven different networks during PI control . The dotted line is identity.
The spontaneous firing rates of each network are indicated by black arrows. (Right axis, black markers):
Mean absolute error between the measured and target firing for each network as a function of the target
rate. Control failure occurred for each point that lay above the red line (average absolute error > 0.25
Hz/unit). (c) Time- and culture-averaged control signals versus target firing rates. The shaded areas
indicate the minimum and maximum value across networks. All temporal averages in this figure were
taken over the final 30 seconds of the control epoch.

with one-minute long, randomly ordered target rates from 0-10 Hz/unit (Fig. 34(a)).

Twenty seconds prior to the start of each control epoch, a 10 second train of 1 Hz, 5

ms pulse width, full optical power (∼13 mW·mm−2; Fig. 32) conditioning stimuli were

applied using the blue LED (Referred to as ‘pre-pulse in Figs. 37 and 38; Section 5.2).

We quantified the accuracy of firing rate control by calculating the mean absolute

error between the target and measured firing level for each target rate (Fig. 34(b)).

A trial was considered successful if the average absolute tracking error over the final

30 seconds of the control epoch was less than 0.25 Hz/unit (red bar in Fig. 34(b)).

Successful tracking was achieved in the majority of trials (7 cultures, 71/77 trials).

The tracking error tended to increase with target rate, and occasionally the stimulator

saturated at its maximal intensity before the trial was complete (e.g., the 10 Hz/unit

target in Fig. 34(a)). The settling time of the measured firing rate at the target
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Figure 35: PI settling time. (a) The settling time was defined as the time-point at which the
smoothed firing rate (grey line; LOWESS with a 2.5 second smoothing window and a tri-cube weight
function) entered and stayed within the the boundaries defined by the target rate ± 0.25 Hz/unit (dotted
red lines). (b) The settling time did not show a strong relationship with the target firing rate and was
highly variable across cultures (7 cultures, colors).

value varied across preparations and was not correlated with the target rate (mean

7.83±1.74 sec; Fig. 35).

The amplitudes of the control signals required during successful control trials were

highly variable across networks, even for the same target rate (Fig. 34(c); Fig. 45).

This variability reflects heterogeneous network characteristics such as varying levels

of intrinsic excitability, opsin expression efficiency, synaptic connectivity, glial subnet-

work activity levels, and developmental processes (Wagenaar et al., 2006c). The large

variability of control signals required to achieve similar target rates underscores the

importance of feedback to achieve precise control of network activity across prepa-

rations. Additionally, it indicates that open-loop stimulation with fixed parameters

would not be capable of eliciting repeatable firing levels across networks.

Because a wide dynamic range in evoked network activity levels could be main-

tained during glutamatergic synaptic blockade (Fig. 33(a)), we hypothesized that

closed-loop control in a pharmacologically altered network would be possible as well.

To test this, we used the PI controller to clamp network firing levels to targets between
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0 and 10 Hz/unit in the presence of 20 µM CNQX or 50 µM AP5 (Fig. 36(a)). For

both drugs, controller performance was equivalent to the drug-free case and control

failure was isolated to high target rates (9-10 Hz/unit) when the stimulator saturated

(Fig. 36(b-e)). We also tested closed-loop control in the presence of 20 µM bicuculline

but found that reliable PI control was not possible (Fig. 36). This is likely due to

the strongly destabilizing effects of bicuculline on intrinsic network dynamics which

overpower optical input and cause the controller to oscillate (Fig. 37).

To demonstrate control robustness over extended trial periods, the PI controller

was used to track a set of randomly selected, 5-minute long target firing levels which

switched without downtime (Fig. 38). Only a single pre-pulse train was applied

(Fig. 38(c)). During each 5-minute segment at a particular target value, rapid changes

in the control signal made second-to-second adjustments, while slower changes oc-

curred over minutes. These longer time scale changes in the control signal were

especially prevalent for target rates far above spontaneous firing levels (Fig. 38(c)).

This likely reflects short-term synaptic depression and changes in cellular excitability

that accrue over each 5-minute control epoch.

Using open-loop stimulation, non-stationary opsin and network dynamics would

limit the precision of optical stimulation for controlling neuronal firing levels across

trials and preparations. By using real-time feedback to automatically compensate

for second-to-second changes in stimulus efficacy, we were able to control population

spiking activity over a wide dynamic range.
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Figure 36: PI control of firing levels during synaptic blockade. (a) Network firing rate for
different trials (colors) in the presence of various competitive neurotransmitter receptor antagonists (# no
drug,4 20 µM CNQX, � 50 µM AP5,5 20 µM bicuculline). Trials were presented in a random sequence
that was repeated across drug conditions. (b) Time-averaged network firing rates during PI control, for
each drug tested. Spontaneous firing rates of the network during each pharmacological condition are
represented by black symbols to the left of the ordinate axis. (c) Mean absolute error between the
measured and target firing for each pharmacological condition as a function of the target rate. Control
failure occurred for each point above the red line (average absolute error > 0.25 Hz/unit). CNQX
destabilized the network somewhat, likely though the removal of recurrent inhibition, and resulted in a
control failure for the 2 Hz/unit target. AP5 reduced the dynamic range of evoked activity and slowed
the rise time of the population response, which is apparent during control onset in (a). Bicuculline
strongly destabilized network activity and resulted in control failure for all but two target rates: 0 and 2
Hz/unit. In the presence of bicuculline, average network firing levels could not be pushed higher than ∼2
Hz/unit. Interestingly, the only successful non-zero target rate was the one closest to the spontaneous
network firing rate in the presence of bicuculline. (d) Time-averaged control signals and (e) settling
times (Fig. 35) versus target rate for each pharmacological condition. All temporal averages in this figure
were taken over the final 30 seconds of the control epoch.
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Figure 37: Parameter choice during closed-loop stimulation affects closed-loop stability.
(a) Firing rate histogram for individual units, encoded by the grey scale the right. The PI controller was
engaged at time zero using K = 0.1 and Ti = 1.0 s. After 1 minute, the proportional gain was increased
to 1.0. At 2 minutes, it was reset to 0.1. (b) Average firing rate of the network during the clamp. The
floating trace shows a zoomed portion of the firing rate during the transition in proportional gain. An
increase in oscillations around the set-point occurs as a result. Vertical and horizontal scale bars represent
1 Hz/unit and 2 s, respectively. (c) Control signals designated by the PI controller. The pre-pulse can be
seen before the closed loop system is engaged (Section 5.2). Following the increase in proportional gain,
oscillations around the target rate are amplified indicating a decrease in closed-loop stability. The floating
trace shows a zoomed portion of the control signals during transition in proportional gain. Vertical and
horizontal scale bars represent UC,H = 0.5 and 2 s, respectively. (d-f) Same as (a-c) except that the
integral time constant, Ti, was changed instead of the proportional gain.

Figure 38: PI feedback control to track a changing target rate (a) Firing rate of detected
units. Each row displays the firing rate of a particular unit, encoded by the grey-scale to the right (1
second bins). (b) The average firing rate of the network (black) and the target firing rate (red) and the
error signal during different control periods. The pre-control firing rate is indicated by a dotted line. (c)
Optical control signals delivered by the PI controller during the control epoch.
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5.3.3 Long-term on-off control of average firing rates

In-vitro preparations offer stable electrophysiological access over long time periods.

To exploit this experimental stability, we developed a second controller to clamp

average network firing at elevated levels for many hours. This controller consisted of

a simple on-off algorithm: when the integral error between the target firing rate and

the measured firing rate crossed zero, the controller applied a 5 millisecond blue light

pulse (Section 5.2).

We tested the functionality of on-off control over 12-hour epochs for target rates

of 0.75, 1, 2, 3, 4, 5, and, 6 Hz/unit in a single culture (Fig. 39). Each 12-hour control

period was flanked by recordings of spontaneous firing activity to identify potential

persistent effects of long-term firing rate elevation. The on-off controller was capable

of clamping target rates up to 5 Hz/unit for the duration of the 12 hour protocol but

failed at the 6 Hz/unit target at ∼7 hours (Fig. 39(a-b)).

Due to their long duration, these experiments took place over the course of approx-

imately 3 weeks, during which spontaneous network activity levels displayed consider-

able variations (∼0.7-2.5 Hz/unit; Fig. 40(a)). Because of this, the difference between

spontaneous firing levels and the target firing rate was not solely dependent on the

target firing level. We found that the mean stimulation level required during each

control epoch was better correlated to the difference between the target rate and

spontaneous firing levels prior to closed loop control than to the target level alone

(Fig. 40(b)). This indicates that the long-term changes in network excitability are

reflected in the control signals (Fig. 39(c,d); Fig. 40(a)) and demonstrates that closed-

loop optical stimulation can be used to study developmental changes in excitability

that occur over the course of weeks. Interestingly, prolonged increases in network

firing did not induce a homeostatic decrease in network firing during the post-control

period (Fig. 40(c)).

The on-off and PI control schemes have unique advantages and disadvantages that
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make them applicable to different experimental contexts. While the on-off controller

provides long-term stability, the periodic stimuli used by the PI controller provide a

relatively long minimal update time for the control loop (Section 5.3.2). Therefore,

the PI controller is better suited to provide rapid response times. However, the peri-

odic stimuli delivered by the PI controller are imposed on spiking correlations between

units, resulting in a highly periodic firing structure (Fig. 39(e)). This contrasts the

aperiodic, synchronized bouts of firing that are a common feature of developing neu-

ral circuits including those in the retina, hippocampus, spinal-cord, and dissociated

cortical cultures (Wagenaar et al., 2006c; O’Donovan et al., 1998; Feller, 1999). The

on-off controller was better able to preserve spontaneous activity correlations for low

stimulation frequencies (Fig. 39(e)). For target rates that required higher stimulation

rates, a periodic correlation structure reemerged.

151



Figure 39: On-off feedback control of population firing rate over 12-hour epochs. (a)
Firing rates of detected units during 12-hour control periods are represented using the grey-scale to the
right. At time 0, the on-off controller was engaged and the average network rate was clamped firing to
the target rate indicated to the left of each chart. The day and hour of each protocol, relative to the first
experiment, is shown to the right. Units are sorted by their mean firing rate during the 3-hour period
prior to closed-loop control. (b) The network firing rate during each control epoch (5 minute bins). The
color map corresponds to the target rates shown in (a). (c) Closed-loop stimulation frequency over the
course of the 12-hour clamp. For a target rate of 6 Hz/unit, the controller saturated at the maximal
frequency of 10 Hz at around 7 hours into the control epoch, and target tracking failed as a result. (d)
Time- and unit-averaged firing rates (colors, left axis) and control signal (black, right axis) across each
12-hour clamping period. The dotted line is identity. (e) The average cross-correlation function between
30 randomly selected units during on-off or PI control are plotted for each target rate. The correlation
function for spontaneous activity is shown in black. When low stimulation frequencies were required,
the unimodal correlation structure of spontaneous activity was preserved using on-off control. All data
presented in this figure were obtained from a single culture over the course of 2 weeks.
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Figure 40: Characteristics of on-off control over weeks in vitro. (a) Spontaneous, pre-
stimulation firing rates over the course of experiments. Spontaneous excitability changes smoothly across
the ∼20 days during which 12-hour firing rate control experiments were conducted. (b) The average
stimulation frequency required to achieve firing rate control is plotted against the target rate (#) and
the the difference between the target rate the pre-stimulation spontaneous firing level ( ). The linear fit
is improved when the spontaneous excitability is taken into account, indicating that network excitability
reliably influences the intensity of stimulation required to achieve firing rate control. (c) The spontaneous
firing rate before each 12-hour protocol versus the spontaneous firing rate following each protocol exhibits
a strong linear relationship (black line) that is insignificantly different from identity (dashed line). This
indicates the absence of a homeostatic decrease in network activity as a result of chronically elevated
firing levels in the absence of pharmacological agents.
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5.3.4 Decoupling network spiking activity and glutamatergic neurotrans-
mission, in vitro

To demonstrate the scientific utility of optogenetic feedback control, we first used it

to decouple neuronal activity states from pharamacological activity perturbations in

vitro, and then to lock firing during sensory input perturbations in vivo. These exper-

iments were carried out in collaboration with Ming-fai Fong. Many in-vitro studies

have used chronic application of glutamatergic neurotransmission blockers or sodium

channel blockers to reduce network activity levels, and induce homeostatic increases

in network excitability (Turrigiano et al., 1998). Because both types of pharamco-

logical perturbation suppress firing, it has been difficult to parse the individual roles

of neurotransmission and spiking for triggering homeostatic up-regulation of synaptic

strength.

To address this, we treated networks with glutamatergic receptor antagonists

(CNQX or AP5) while using the on-off controller to clamp network activity at pre-

drug levels over 24-hour periods (Section 5.2). Bath application of 20 µM CNQX

caused a marked reduction in network spiking activity compared to the pre-drug

period (two cultures, -89.5 and -66.1%). Using on-off control, spiking activity was

returned to the pre-drug levels for the duration of the 24-hour stimulation period in

both cultures (mean stimulation frequency 0.72 and 0.19 Hz ;Fig 41(a-d)). Following

closed-loop stimulation, but while CNQX was still in the bath, network firing levels

again dropped compared to the pre-drug condition (-59.7 and -79.6 %), indicating

that the drug had not been metabolized over the 24 hour stimulation period. Follow-

ing washes with culturing medium, the firing rate was elevated compared to pre-drug

firing levels (+186.4 and +121.1%, evaluated over 6 hours following drug removal).

Fig. 41(e) summarizes the relative spiking activity levels during each of the five epochs

of the experiment for the two cultures tested.

Like CNQX, bath application of 50 µM AP5 caused strong suppression of network
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Figure 41: Decoupling spiking and neurotransmission using on-off feedback control. (a)
Summary of unit spiking activity over the course of the protocol. Rastergrams (top) show zoomed portions
of spiking activity taken from discrete epochs during the experiment. Blue bars indicate stimulus times.
Horizontal scale bar, 1 s. (bottom) Firing rate histogram for the duration of the 33-hour recording for
each unit, using 5-minute bins. Firing levels are indicated by the grey-scale to the right. CNQX was
added at time 0 and removed 24 hours and 10 minutes later. Closed loop stimulation began 5 minutes
after CNQX addition and lasted 24 hours. Colored boxes indicate the location of the zoomed rastergrams.
(b) The average unit firing rate using 1-second bins and (c) 5-minute bins. The red line indicates the
target rate. (d) Closed-loop stimulation frequency. (e) Time- and unit-averaged firing rates for each
epoch, normalized to the pre-drug firing level. (f) The average unit-unit cross-correlation function for
each epoch (50 units). (g-k) Same as (a-f) but using AP5 to perturb network activity instead of CNQX.
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activity compared to pre-drug firing levels (two cultures, -87.4 and -85.7 %). On-off

control was able to clamp firing to pre-drug levels for the duration of the 24-period

(mean stimulation frequency 0.21 and 0.71 Hz). Following closed-loop stimulation,

but while AP5 was still in the bath, the firing rates dropped suggesting the maintained

efficacy of AP5 (-73.5 and -80.4 %). Following medium exchanges to remove AP5 from

the bath, the firing levels in each network were dramatically elevated compared to

pre-drug levels (+257 and +373 %).

On-off control reliably compensated for the effects of CNQX or AP5 on network

activity. The average closed-loop stimulation effort required to compensate for both

forms of glutamatergic blockade were low compared to those required to maintain

chronic elevations in network activity (Fig. 39(d)). For on-off control in the presence

of CNQX, pre-drug network activity correlations were largely maintained during the

control period (Fig. 41(f)). For AP5 treated networks, network activity correlations

maintained a unimodal shape during the control epoch, but dropped off more quickly

for longer temporal lags. This is likely due to NMDA’s role in signal propagation in

dissociated cortical networks (Nakanishi and Kukita, 1998). Perhaps most interest-

ingly, both drugs caused marked increases in network activity levels after they were

removed even though average firing levels were clamped to pre-drug levels during

drug treatment. This suggests that chronic reductions in glutamatergic transmission

directly increase network excitability (Chapter 6).

5.3.5 Control of single unit activity during fluctuating sensory drive, in
vivo

In collaboration with Daniel Millard and Garrett Stanley, we next evaluated the func-

tionality of optogenetic feedback control in the intact rodent brain. The rat vibrissal

pathway is a widely studied model of sensory information transduction due to its well

defined feed-forward anatomy. Classically, sensory perturbations are applied to the

vibrissae of anesthetized rats or mice while spiking patterns are recorded downstream,
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in thalamus or cortex. Drugs commonly used for anesthesia have profound effects on

evoked and background firing (Simons et al., 1992), receptive field properties (Fried-

berg et al., 1999), and subthreshold voltage statistics (Constantinople and Bruno,

2011) in the vibrissal pathway, which likely influences its encoding properties.

We used optogenetic feedback to control background firing in single units of the

thalamic ventral posteromedial nucleus (VPm) in anesthetized rats during vibrissa

stimuli. An optrode consisting of a 125 µm diameter fiber-optic bonded to a tungsten

microelectrode was used to perform single-unit, extracellular recordings of thalamo-

cortical unit (TCUs). Spiking sequences were used to estimate a firing rate, which

was fed into a PI controller in order to update the continuous-wave power of a 473

nm diode-pumped solid-state (DPSS) laser coupled to the fiber-optic (Fig. 42(a);

Section 5.2).

We used the controller to clamp firing rates in TCUs at increasing target levels

for 30-second epochs until control failure (Fig. 42(b)). In all cases, we were able

to clamp TCU firing at target rates higher than the cell’s spontaneous firing levels

(3 TCUs). The range of achievable target firing rates was variable across cells (e.g

1-8 Hz vs. 1-30 Hz; Fig. 42(c)). The nonlinear input/output relationship of our

DPSS laser meant that the effective range of optical intensities resided in a narrow

band of the full scale control input accepted by the laser (Fig. 43). Additionally, the

nonlinear relationship between the target firing level and the average optical power

indicates that small changes in light intensity map to a wide range of evoked firing

levels (Fig. 42(d)). Both of these observations suggest that open-loop calibration of

laser power to achieve a specific target level would be very difficult.

In the awake animal, spontaneous and evoked sensory thalamic spike trains tend

to be highly irregular (Poggio and Viernstein, 1964). We examined spike train ir-

regularity across target rates by calculating the coefficient of variation of the ISI

distribution (CVISI) for each TCU. Across target rates, we found a CVISI close to 1,
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Figure 42: Firing rate control of isolated units, in vivo. (a) Single unit extracellular recordings
were performed in thalamic VPm and used to update the optical power of a stimulating DPSS laser. The
primary vibrissa was deflected along the rostral-caudal plane using a computer-controlled piezoelectric
bending actuator to provide sensory perturbations during closed-loop control. A representative TCU
waveform is shown. Shaded region is ± standard deviation. Vertical and horizontal scale bars represent
100 µV and 1 ms, respectively. (b) Single-trial closed-loop firing rate control in the absence of sensory
input. Traces show the target firing rate (red), measured firing rate (black), and light power (blue).
Inset spike trains are shown for each target rate. Vertical scale bars, 10 Hz (black) and 10 mW·mm−2

(blue). Horizontal scale bar, 10 s. (c) Measured versus target firing rates for 3 TCUs. Data points
are color coded by the target rate. Black symbols at left represent the spontaneous firing rate of each
TCU. (d) Average laser power required for each target rate. (e) Mean versus standard deviation of
the inter-spike interval distribution for each target rate and cell. The coefficient of variation of the
interspike interval, CVISI, is calculated for each cell. The identity line (dotted) line indicates Poisson
spiking statistics. (f) Real-time control during external sensory drive. The firing rate of a single TCU cell
(grey lines: single trials; black lines, average) was clamped at 20 Hz (red line) for 45-seconds (32 trials).
During 24 of the trials (bottom plots), a 15-second train of 10 Hz deflections was applied to the primary
vibrissa, requiring the controller to compensate for afferent drive. The bottom traces display whisker
stimulus waveform, raster plots, and the average control signal for 2-second windows during the start
and stop of vibrissa stimulation. Vertical scale bars, 0.25 degrees (vibrissa position) and 2 mW·mm−2

(optical power). Horizontal scale bar, 250 ms. (g) The average number of spikes evoked by each whisker
deflection compared to the average control signal over the 3 seconds following stimulus onset (errorbars:
± 1 SEM). (h) The average firing rate and average control signal during each phase of a control epoch
(errorbars: ± 1 SEM; significant differences, based on paired t-tests, are marked by asterisks, p< 0.05)
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Figure 43: Laser power is a steep nonlinear function of control voltage. The light power
density at the fiber tip is plotted as a function of the input voltage generated by the PI controller
(Eq. 71) along with a best-fit sigmoid function of the form a

1+exp(bx+c) (left axis; black). Control voltage

histograms are shown for each of the three thalamocortical units from Fig. 42(b-e) (right axis; grey).
The full range of laser intensities was not used during closed loop control. Control signals were instead
concentrated at the bottom of the laser activation curve.

indicating an irregular, Poisson-like spiking process (Fig. 42(d); Fig. 44(a)). This sug-

gests that optogenetic feedback control can be used to mimic awake spiking statistics

in anesthetized animals.

We hypothesized that the controller could maintain a set firing level even during

fluctuating sensory drive. To test this, we used the controller to lock the firing rate of

a TCU at 20 Hz while periodic sensory stimuli of varying intensity were delivered to

the primary vibrissa (defined as the whisker that best drove activity in the recorded

TCU; Section 5.2) using a piezoelectric bending actuator (10 Hz, 133-522 deg·s−1,

Fig. 42(a)). During stimulation epochs, vibrissa deflections reliably evoked stimulus-

locked trains of action potentials and caused the controller to automatically reduce

laser power to accommodate this increased sensory drive ( Fig. 42(f-h)). Although

the temporal pattern of spiking was locked to vibrissa deflections (Fig. 44), the mean

firing level was maintained at the 20 Hz target rate during stimulus episodes (24

trials, Fig. 42(h)). We found that the fine-scale temporal correlation between the

control input and evoked firing during stimulation was negligible in comparison to the

effect of vibrissa position (Fig. 44(b)). This is important because precise temporal

spiking patterns carry information in the vibrissal sensory pathway (Wang et al.,

2010; Bruno, 2011). Therefore, closed-loop control of continuous optical power is a
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Figure 44: Whisker stimuli and closed-loop optical stimulation act at distinct time scales.
(a) As shown in Fig. 42(c), the spiking patterns of isolated units in the absence of vibrissa but during
closed-loop firing rate control were irregular, with Poisson-like firing statistics. This results in an inter-
spike interval distribution (pink) that is well approximated by a Gamma distribution, which encapsulates
an exponential decay for longer intervals and an initial refractory period (pink line: best fit Gamma
distribution). In contrast, the periodic ISI distribution during closed-loop control and vibrissa stimuli
is phase-locked to the 100 ms period of vibrissa deflections. (b) Normalized cross correlation between
the optical input and firing rate compared to that between the vibrissa position and firing rate (bin size
0.4096 ms). The peak correlation between vibrissa position and neural firing rate occurs at a negative
lag, suggesting a causal relationship. The peak correlation between optical power and neural firing rate
occurs at a positive lag, suggesting that the laser power reacts to changes in neural firing. The different
widths of the correlation functions indicate that closed loop control and vibrissa stimuli act over relatively
long and short time scales, respectively. All data presented in this figure were derived from the same unit,
whose spiking was locked at an average firing rate of 20 Hz. This indicates that although the controller
determined the baseline firing level of the cell, it was not imposing specific spike times. Instead, temporal
firing patterns were imposed on top of closed-loop rate control using sensory stimulation.
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Figure 45: A wide range of optical power was required during closed loop stimulation.
Optical power density at 465±11 nm FWHM (left plot) and 590±10 nm FWHM (right plot) temporally
averaged over 1-minute (in-vitro PI controller, Fig. 34), 12-hour (in-vitro on-off controller, Fig. 39),
24-hour (in-vitro on-off controller with CNQX and AP5, Fig. 41 of main text), or 30 second (in-vivo PI
controller; Fig. 42(b-e)) control epochs versus the corresponding target firing rate. Lines connect data
points derived from the same culture (in-vitro data) or units (in-vivo data). Only successful trials are
shown. The required light intensity during closed loop control varied widely and depended on the target
rate, the control algorithm, the type of neural preparation being controlled, and variability in cell-to-cell
and culture-to-culture excitability within preparation types. This highlights the ability of closed-loop
control to compensate for the imposed variability across experimental preparations and the intrinsic
variability of neural circuits, in order to achieve a target activity level.

means to modulate baseline excitability without distorting the fine-scale temporal

structure of sensory-evoked spike trains. This stands in contrast to most optogenetic

stimulation methods, which use pulses of light to impose spike times on cells and

neural populations, overriding the temporal statistics of sensory evoked spike trains.

5.4 Discussion

Optogenetic feedback can be used to precisely control neuronal firing levels during

perturbations that strongly affect network excitability, across time scales ranging

from seconds to days, both in vitro and in vivo. Using this new approach, insights

can be made into neural control of motor action, sensory encoding and adaptation,

activity homeostasis, and even memory formation. This is especially relevant given
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the recent focus on the dynamic nature of neural coding, and the need for stimulation

technologies capable of controlling highly non-stationary neural circuitry (Stanley,

2013).

The control algorithms and apparatuses used in this study are simple and straight-

forward. We expect that they will be tailored to allow robust control in specific

experimental contexts. For instance, the incorporation of spatial light modulation

would allow optical inputs to be steered towards the spike initiation zones of individ-

ual cells in order to minimize light exposure (Fig. 45) and abnormal conductances.

Additionally, with more sophisticated control algorithms, for instance those incorpo-

rating models of feed-forward neural dynamics, optogenetic feedback could be used

to compensate for destabilizing pharmacological perturbations such as those that dis-

rupt inhibitory synaptic transmission. Further, optogenetic feedback might be used

to control experimental measurements more complex than firing levels. For exam-

ple, closed-loop optical stimulation has been proposed to control measurements of

coherence and phase in oscillatory network activity (Witt et al., 2013). Addition-

ally, optical stimulation could be made contingent on specific behavioral outputs or

complex spatiotemproal activity patterns associated with specific behaviors, in vivo.

With improved real-time control hardware and algorithms, we expect that optoge-

netic feedback control will be incorporated into a multitude of experimental contexts

requiring precise control of neuronal activity. Eventually, it may also be incorporated

into clinical devices for sensory and motor prostheses, and closed-loop neuromodula-

tion therapies.
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CHAPTER VI

DIRECT INDUCTION OF SYNAPTIC SCALING BY

REDUCED AMPA-RECEPTOR ACTIVATION*

Activity deprivation in developing neural circuits triggers compensatory
mechanisms in order to maintain appropriate activity levels, which are
collectively referred to as homeostatic plasticity. The most widely studied
form of homeostatic plasticity is synaptic scaling, which adjusts the weight
of synapses connecting to a cell by a global, multiplicative factor in inverse
relation to activity within the cell. Synaptic scaling is thought to provide
a means to stabilize neural firing without disrupting the relative strengths
of synapses, thus maintaining network stability without disturbing mem-
ory engram-bearing synapses. Here we use optogenetic feedback control
to show that synaptic scaling is induced by decreased AMPA-receptor ac-
tivation even when firing rates remain normal. This indicates that the role
of synaptic scaling is not to control neuronal spiking levels, but to regu-
late the amount of afferent excitatory input to the cell. Our findings have
significant implications for the role of synaptic scaling in the simultaneous
maintenance of circuit stability and memory engrams.

6.1 Introduction

During learning and development, rapid changes in network structure can cause neural

circuits to become unstable. Mathematical models predict that, in isolation, compet-

itive Hebbian modification of synapses causes their weights to increase until satu-

rating at some maximal value (Miller and MacKay, 1994; von der Malsburg, 1973).

The unstable tendencies of neural circuitry appear to be the cost of its malleability,

and necessitate negative feedback mechanisms so that normal activity levels can be

*Contributions: M.F., J.P.N., and P.W. designed all experiments. M.F. performed all experiments.

J.P.N. created software and hardware for, and helped perform, experiments involving closed-loop

optical stimulation. M.F. performed all data analysis and made the figures.

163



maintained during structural modification (Abbott and Nelson, 2000). Homeostatic

plasticity encompasses a set of mechanisms that tune circuit excitability in inverse

proportion to deviations from an activity setpoint, such that activity is maintained

within functional bounds (Turrigiano and Nelson, 2004; Marder and Goaillard, 2006).

These compensatory processes are thought to be especially important for tuning sen-

sory cortical circuits during development (Desai et al., 2002; Wilhelm and Wenner,

2008) and following injury (Fröhlich et al., 2008; Topolnik et al., 2003; Nita et al.,

2006). Homeostatic plasticity mechanisms exert a stabilizing effect either by regulat-

ing ion-channel expression to affect neuronal excitability (Marder and Goaillard, 2006;

Turrigiano et al., 1994) or by modulating the strength of excitatory synapses (Turri-

giano et al., 1998; Song et al., 2000). The best studied form of homeostatic plasticity is

synaptic scaling, a phenomenon in which the distribution of single-vesicle (miniature)

post-synaptic currents received by a neuron is collectively shifted to higher (upscal-

ing) or lower (downscaling) values by a multiplicative factor (Turrigiano et al., 1998).

This shift occurs in inverse relation to the degree of neural activity over an extended

time period, and therefore exerts negative feedback to tame runaway excitability.

Although synaptic scaling has proven to be a ubiquitous feature of developing

neuronal networks, in vitro (Turrigiano et al., 1998; Stellwagen and Malenka, 2006;

Burrone et al., 2002) and in vivo (Desai et al., 2002; Wilhelm and Wenner, 2008; Deeg

and Aizenman, 2011), the precise mechanism by which neurons or neural circuits sense

and adjust their own activity levels is hotly debated (Turrigiano, 2011b; Goold and

Nicoll, 2010; Burrone et al., 2002; Deeg and Aizenman, 2011; Wilhelm and Wenner,

2008; Stellwagen and Malenka, 2006; Ibata et al., 2008; Leslie et al., 2001; Sutton

et al., 2006; Bé̈ıque et al., 2011; Hou et al., 2008). Amid this debate, there are some

agreements. For example, it has been demonstrated conclusively that upscaling can

be induced either via the application of (1) drugs that completely abolish spiking

activity (e.g. tetrodotoxin, a voltage-gated sodium channel blocker) or (2) drugs
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that diminish excitatory neurotransmission (e.g. CNQX, a competitive antagonist of

AMPA receptors) (Turrigiano et al., 1998). However, the tight coupling between the

effects of these two drugs on spiking and neurotransmission has made it difficult to

determine which feature of network activity is measured to produce synaptic scaling.

To be concrete, consider the archetypal experimental protocol for inducing synap-

tic scaling in a primary neural culture: long-term (∼24 hour) application of either

CNQX or TTX (Turrigiano et al., 1998). Using CNQX, AMPAergic excitatory drive

is removed from the network, lowering firing activity, and provoking upscaling of

synaptic strength. However, the precise form of activity reduction that leads to a

scaling response is ambiguous. Are cells sensing a reduction in firing due to a loss

of excitatory synaptic drive or directly sensing a reduction in excitatory transmission

due to blockade of AMPAergic synapses? It is difficult to tell because AMPAergic

blockade dramatically affects spiking levels. Conversely, the removal of spiking activ-

ity using TTX results in the same problem since spike-evoked neurotransmission is

halted.

To study the individual contributions of spiking activity and AMPAergic neuro-

transmission levels to the upscaling process, these two forms of network activity must

be independently manipulated. In Chapter 5, we demonstrated how optogenetic

feedback control could be used to decouple average network spiking activity from the

effects of selective excitatory synaptic blockade over 24-hour epochs. We found that

spontaneous network firing levels, recorded after the drug had been removed, were

elevated even though network spiking activity was maintained at pre-drug levels for

the duration of the CNQX treatment. Therefore, the increases in network excitability

that caused this elevated firing could not have been triggered by homeostatic com-

pensation in response to decreased firing levels because firing was held at pre-drug

levels throughout the treatment period. This result is at odds with the most widely
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used models of homeostatic plasticity, which state that the regulation of intrinsic ex-

citability and synaptic strength are based upon post-synaptic firing levels (Turrigiano,

2011a; Marder and Goaillard, 2006; Ibata et al., 2008).

I worked in collaboration with Ming-fai Fong and Pete Wenner of Emory Univer-

sity to parse the independent roles of spiking and AMPAergic neurotransmission in

the induction of synaptic upscaing. We show that reduced AMPAergic transmission

can directly induce upscaling of synaptic strength, and that the upscaling process is

independent of post-synaptic activity. To do this, we use optogenetic feedback control

to restore population firing during 24-hour bath applications of CNQX. We then per-

form intracellular recordings of miniature excitatory post-synaptic current (mEPSC)

amplitude to evaluate resultant changes in synaptic strength. We find that upscal-

ing occurs in cultures treated with CNQX even when spiking activity is restored to

pre-CNQX levels for the duration of the drug treatment. Further, the degree of scal-

ing induced in these networks is identical to that of CNQX-treated, sister-matched

cultures where spiking is left uncontrolled. These data provide strong evidence that

upscaling results directly from decreases in AMPAergic neurotransmission rather than

changes in spiking activity. This suggests that the function of upscaling is to maintain

synaptic strength, rather than to homeostatically regulate neuronal spiking, as has

been widely promoted in the literature (Turrigiano, 2011b; Ibata et al., 2008; Leslie

et al., 2001). I discuss the consequences of this finding on several established theories

of learning.

6.2 Methods

6.2.1 Viral transduction

Cell culture was performed as described in Chapter 2, Section 2.2.1. AAV9-hSynapsin-

ChR2(H134R)-eYFP was produced by the University of Pennsylvania Vector Core.

The genomic titer was 1×1013 c.f.u.·mL−1. 0.5 µL of the virus solution was added
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to 1 mL growth medium at 1 DIV during the first medium exchange. Expression of

the eYFP reporter protein was verified using a confocal microscope (Zeiss LSM 700;

Fig. 46(b)).

6.2.2 MEA recordings

MEA recordings were performed in standard growth medium in the cell culture incu-

bator using the Neurorighter acquisition system (Newman et al., 2013) (Chapter 2).

Voltages recorded through microelectrodes were amplified and bandpass filtered from

1 Hz to 5 kHz using a 60-channel analog amplifier (Multichannel Systems, MEA60-

Up) and digitized at 25 kHz using the Neurorighter acquisition system. Voltage

recordings were then digitally filtered with a 3rd order Butterworth bandpass filter

at 200-3000Hz, and action potentials were detected at a threshold of ±5 times the

root mean square noise of each channel (see Appendix A).

6.2.3 Closed-loop optical stimulation

To deliver optical stimuli, a custom N-channel enhancement mode MOSFET current

source was used to drive an LED (465±11 nm FWHM; LEDEngin). The LED was

butt-coupled to a randomized fiber bundle (Schott, Mainz, Germany) which fed light

to a Köhler illumination train mounted beneath the MEA amplifier. To control firing

activity, we used an ‘on-off’ control algorithm (Chapter 5, Section 5.3.3). The target

firing level was set to the average MEA-wide spike detection rate over the 3 hour

period prior to drug application. The network firing rate was evaluated every 10

ms, and a stimulus was delivered if the integrated error signal between the target

and measured firing rate became positive (Fig. 46). Each stimulus pulse resulted in

uniformly distributed, 10.1 mW·mm2 light in the plane of the culture and lasted for

10 ms. The rise and fall times of each LED pulse were ∼10 µs (see Appendix B).

Detailed methods concerning closed-loop optical control of neuronal firing can be

found in Chapter 5.
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Figure 46: On-off control of network firing restores normal spiking in the presence of
CNQX. (a) Schematic of the firing-rate control system. Network-wide activity levels are sampled by a
59-electrode MEA, digitized, and sent to a real-time processor. The processor calculates the instantaneous
firing rate, compares it to a target rate, and applies optical stimuli to the network when necessary. (b)
Confocal image of a dissociated cortical network expressing hSyn::ChR2-eYFP. Microelectrodes are circled
in white. Scale bars, 200 µm (top) and 50 µm (bottom). (c) Comparison of spontaneous and optically-
evoked bursts. Left, Voltage traces during a spontaneous burst in the absence of CNQX (top) and evoked
activity on the same electrode in the presence of CNQX (bottom). The colored bars below each trace
denote the action potential sequence of three units detected on the electrode. Right, Overlaid action-
potential waveforms of the three detected units. Scale bars, 50 µV, 200 ms (left); 25 µV, 1 ms (right).
(d) Left, Rastergram showing a spiking activity detected on all electrodes during a spontaneous bursts
(top) or optically evoked burst (middle). The zoomed rastergram shows spiking directly evoked by the
10 ms optical pulse (blue area). Scale bars, 100 ms (top and middle), 5 ms (bottom). Right, Network
firing rate profiles during spontaneous bursts in the absence of CNQX (top) and evoked bursts in the
presence of CNQX (bottom). The black line is the average burst waveform. Gray traces are individual
burst waveforms recorded during the 3-hour pre-drug recording (top) of and during the 24-hour CNQX
with photostimulation protocol (bottom). The blue arrow denotes timing of the light pulse. Bin size, 10
ms. Scale bar, 100 ms.
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6.2.4 Whole-cell voltage clamp recordings

Miniature excitatory postsynaptic currents (mEPSCs) were recorded from pyramidal-

shaped cells during continuous perfusion of artificial cerebrospinal fluid (aCSF) con-

taining (in mM): 126 NaCl, 3 KCl, 2 CaCl2, 1.5 MgSO4, 1 NaH2PO4, 25 NaHCO3,

and 25 D-glucose, and saturated with 95% O2 and 5% CO2 (pH 7.4, 315 mOsm).

To isolate our recordings to AMPAergic mEPSCs (and not spike-evoked or inhibitory

synaptic currents), the aCSF solution contained 1 µM TTX and 20 µM bicuculline.

aCSF temperature was regulated at 35◦C using an inline heater (Warner 64-0102).

The pipette solution contained (in mM): 100 K-gluconate, 30 KCl, 10 HEPES, 2

MgSO4, 0.5 EGTA, 3 ATP (pH 7.4, 290 mOsm). mEPSCs were recorded using an

EPC8 amplifier (HEKA, Lambrecht/Pfalz, Germany). Pipette resistances were 2-8

MΩ.

6.2.5 Data analysis

mEPSCs were analyzed, blind to the treatment condition, using MiniAnalysis (Synap-

tosoft, Decatur, GA), and mEPSCs with amplitudes less than 5 pA were excluded

from analysis. Both MEA recordings and extracted mEPSC data were analyzed us-

ing MATLAB (The Mathworks, Natick, MA). Statistical significance for firing and

burst rate data was determined using a Kruskal-Wallis test and post-hoc Wilcoxon

rank-sum tests with a Bonferroni adjustment. Statistical significance for mEPSC

data was determined using one-way ANOVA and post-hoc t-tests with a Bonferroni

adjustment. mEPSC amplitude distributions were compared using the Kolmogorov-

Smirnov test.

6.3 Results

The majority of spiking activity in cultured cortical networks occurs in tightly syn-

chronized bouts of network spiking activity called ‘bursts’ (Wagenaar et al., 2006c).
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Reduced spiking in networks treated with CNQX is due primarily to a reduction

in the frequency of network bursting. Therefore, to restore spiking activity during

CNQX treatment we used ‘on-off’ optical control, which we have shown is capa-

ble of reinstating network bursting activity in the presence of CNQX (Chapter 5,

Section 5.3.4). Indeed, we found that although optical stimuli did produce some

short-latency spiking activity, the vast majority of action potentials produced during

closed loop optical stimulation in the presence of CNQX occurred during longer (∼1

second long) bursts that occurred after the light had turned off (Figs. 46(d), 47).

Additionally, we found that the patterns of spiking activity produced by single units

(Fig. 46(c)), the time-course of network-wide bursting episodes (Figs. 46(d), 47),

and the activity correlations between electrodes (Fig 48) were nearly identical during

optically evoked bursting activity compared to spontaneous bursting before the ad-

dition of CNQX. These observations indicate that optical on-off control is capable of

emulating spontaneous bursting activity during CNQX treatment.

To deduce the mechanistic trigger for synaptic upscaling, experiments were con-

ducted on sets of sister cultures. With each set, cultures were assigned to one of the

following experimental groups:

• Group 1: 24-hour application of DMSO as vehicle. These cultures experience

normal AMPAergic and spiking activity levels (n=12 cultures).

• Group 2: 24-hour application 40 µM CNQX dissolved in DMSO. These cul-

tures experience no AMPAergic transmission and reduced spiking levels (n=13

cultures).

• Group 3: 24-hour application 40 µM CNQX dissolved in DMSO and chronic,

closed-loop optical stimulation. These cultures experience no AMPAergic trans-

mission and normal spiking activity (n=5 cultures).

Experiments conducted on culture sets containing groups 1 or 2, but not 3, were used
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Figure 47: Optically evoked network bursts in the presence of CNQX mimic spontaneous
bursts that occur in the absence of CNQX. (a) Voltage traces of bursts recorded from individual
electrodes before adding CNQX (black) or optically-evoked bursts following CNQX application (blue).
Recordings from the 8 electrodes for which activity was highest during the pre-drug period are shown
for each culture. Scale bars, 100 µV, 200 ms. (b) Rastergrams showing spiking activity on all channels
during the bursts shown in (a). Background colors have the same meaning as in (a). Scale bar, 200 ms.
(c) The average array-wide spike detection rate during spontaneously occurring bursts in the absence of
CNQX (black, averaged from 3 hours of activity) or during 24-hour closed-loop stimulation periods in
the presence of CNQX (blue, averaged over the full 24 hour treatment period). Shaded regions denote
standard deviation. Bin size, 10 ms. Scale bars, vertical: 5 kHz (cultures 1,3, 4, 5), 2 kHz (culture 2);
horizontal: 200 ms (all cultures).
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Figure 48: On-off control maintains pre-drug activity correlations in the presence of
CNQX. A spike detection rate cross-correlation function was computed for each channel pair and then
averaged over channel pairs to produce an average channel-to-channel correlation. These correlation
functions were calculated at various time points before and after the addition of CNQX to the bath for 5
sister pairs of CNQX-treated cultures without closed-loop optical stimulation (top) and with closed-loop
optical stimulation (bottom). On-off control maintains pre-CNQX activity correlations throughout the
CNQX treatment period.

to calculate firing statistics (Figs. 48, 49) but not to compare mEPSC distributions

(Fig. 50, 51). For comparison of mEPSC measurements, 5 triplicate culture sets,

each spanning all three treatment conditions, were used. Because voltage clamp

recordings could not be performed on all three cultures simultaneously, CNQX or

DMSO application was staggered at 3 hour intervals. This way, we could perform

whole-cell voltage clamp recordings on each culture during a 3 hour time window

after the 24-hour drug treatment period for each culture had elapsed. Drugs were

applied in random order for each culture set.

Although the degree to which CNQX affected network activity was variable, there

was always a reduction in firing levels relative the pre-drug firing rate for the duration

of the 24-hour treatment period in the presence of CNQX (Fig. 49(b,c)). In addition

to average firing levels, the burst rate in CNQX-treated cultures was also decreased

compared to vehicle-treated controls (Fig. 49(c)). In contrast, all CNQX-treated cul-

tures that received closed-loop firing rate restoration showed no significant difference
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from vehicle-treated controls in terms of average firing levels, burst rate, or interburst

firing rate (Fig. 49(c)). These observations, combined with the above results concern-

ing the similarity between light-evoked and spontaneous bursts (Figs. 47 and 48),

indicate that closed-loop control reinstated normal network firing behavior in the ab-

sence of AMPAergic neurotransmission. Therefore, any changes in synaptic strength

that we detected in these networks could not be due to changes in firing activity.

Incidentally, we also note that the similarity between the bursts evoked by optical

stimulation in the presence of CNQX and spontaneously occurring bursts indicates

that network-wide bursts are largely NMDA receptor driven.

To quantify the degree to which synaptic strength changed in each experimental

group, we recorded mEPSCs from individual cells using whole-cell voltage clamp

following the 24-hour drug application period (Fig. 50(a)). We then extracted mEPSC

waveforms and amplitude distributions for each experimental group. Our analyses

of mESPC amplitudes were based strictly on data collected from triplicate sister

networks (n = 5 triplicates).

We found that both CNQX-treated cultures without restored firing levels and

CNQX-treated cultures with restored firing levels had mEPSC amplitude distribu-

tions that were significantly shifted compared to those of vehicle-treated control cul-

tures. Further, we found that the mean and variance of these scaled distributions

were virtually identical (Fig. 50(b)). Finally, we found that the upward shift in

mEPSC amplitude distributions could be explained by a linear relationship, indi-

cating that increases in synaptic strength were consistent with previous descriptions

of upscaling (Turrigiano et al., 1998), and not due to another type of shift in am-

plitude (Fig. 50(c,d)). Additionally, we detected significant increases in the detec-

tion frequency and charge per event of mEPSCs following CNQX-treated cultures

(Fig. 51), indicating a potential pre-synaptic effect of chronic AMPAergic blockade

during closed-loop stimulation. Interestingly, changes in mEPSC detection frequency
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Figure 49: Optical on-off control provides reliable, long-term decoupling of AMPA re-
ceptor activation and network firing levels. (a) Firing restoration in the presence of CNQX. The
controller was turned on 5 minutes after the addition of CNQX to the bath at 0 hours. For the initial
2 hours of control, the average firing rate is restored, but bursts have a lower amplitude compared to
the pre-drug phase (bin size, 1 s). (b) Mean MEA-wide firing rates for cultures with restored spiking
(bin size, 3 hrs; errorbars, ±s.d.; vehicle-treated controls, n=12 cultures; CNQX, n=13 cultures; CNQX
and stimulation, n=5 cultures). (c) Time-averaged values of the MEA-wide firing rate, burst rate, and
interburst firing rate over the 24-hour treatment period as a percent of pre-drug levels. We detected
no difference between CNQX-treated cultures with optically restored activity and vehicle-treated controls
in terms of any of these metrics (CNQX with stimulation: MEA-wide firing rate, 100.2±0.4%, p <0.6;
burst rate, 97.7±32.0%, p <0.9; interburst firing rate, 96.2±24.9%, p <0.9). The MEA-wide firing
rate and burst rate were significantly reduced in CNQX-treated networks that did not receive activity
restoration compared to both vehicle-treated cultures and CNQX-treated networks with restored activity
(CNQX without stimulation: MEA-wide firing rate, 31.2%±4.8%, p < 1× 10−4; burst rate, 46.2±4.1%,
p <1×10−4).
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Figure 50: Reduced glutamatergic transmission directly triggers upward scaling. (a)
Left, Sample current traces obtained from whole-cell patch clamp recordings of cells from each treat-
ment condition. Scale bars, 25 pA, 200 ms. Right, Average mEPSC waveforms for each condition. Scale
bars, 5 pA, 20 ms. (b) Mean mESPC amplitudes from cells derived from 5 sister culture triplicates. (con-
trol: 12.6±0.6 pA, n=44 cells; CNQX: 17.4±0.7 pA, n=51 cells, p <10−5; CNQX+photostimulation:
17.4±0.8 pA, n=46 cells, p <10−5). (c) Cumulative mEPSC amplitude distributions for each treatment
condition. The multiplicatively scaled CNQX and CNQX+photostimulation distributions matched the
control distribution (p>0.9 for both), and there was no detectable difference between the unscaled CNQX
and CNQX+photostimulation distributions (p>0.9). (d) Sorted CNQX+photostimulation mEPSC am-
plitudes plotted against sorted control or CNQX-treatment amplitudes (R2=0.998 and R2=0.995, re-
spectively). The dotted line indicates identity.

were insignificant in cultures treated with CNQX whose firing rate was not controlled.

However, this result must be considered in the context of the 5 pA threshold imposed

for mEPSC detection. It is possible that because the amplitudes of mEPSC follow-

ing CNQX treatment were larger than those produced by vehicle-treated cultures,

that more events were ‘drawn out of the noise’, producing an spurious increase in

mEPSC detection frequency not related to the true frequency of mESPC generation

by pre-synaptic cells. Regardless of potential pre-synaptic effects, our results indicate

that the degree of scaling induced by bath applied CNQX is independent of CNQX’s

effects on firing activity in the network. Therefore, reduced AMPAergic transmission

can directly and independently induce synaptic upscaling.
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Figure 51: Various mESPC features following chronic drug treatment. Mean
mEPSC detection frequency (control, 1.6±0.2 pA, n=44 cells; CNQX, 2.3±0.3 pA, n=51 cells;
CNQX+photostimulation, 2.6±0.3 pA, n=46 cells; p <0.02), charge per event (control, 27.0±1.2
fC; CNQX, 34.8±1.6 fC; CNQX+photostimulation, 33.5±1.4 fC; p < 10−3), and decay time
(control, 2.0±0.06 ms; CNQX, 1.9±0.06 ms; CNQX+photostimulation, 1.8±0.04; p>0.2) for
CNQX+photostimulation experiments. There are significant differences in frequency of control versus
CNQX+photostimulation conditions (p < 10−2), and in charge per event of control versus both CNQX
cases (control vs. CNQX, p < 10−3; control vs. CNQX+photostimulation, p < 10−3).

6.4 Discussion

Hebbian learning rules dictate that synapses more likely to evoke post-synaptic neu-

ral activity are strengthened, and thus become more capable of evoking activity.

When represented mathematically, this type of learning rule introduces a positive

feedback into the update equations for synaptic weights that causes them to satu-

rate at large values (Miller and MacKay, 1994; von der Malsburg, 1973; Abbott and

Dayan, 2001). The stability problems associated with purely Hebbian learning rules

and the existence of stabilizing constraints on the runaway of synaptic strength have

been predicted for some time (von der Malsburg, 1973). In a seminal paper (Oja,

1982), Erkki Oja constructed a learning rule for the synapses contacting a simple,

linear neuron model with the following features:

1. The weight of a synapse grows when it and the neuron are active simultaneously.

2. There is stable equilibirum point for the sum of the squared synaptic strengths

that is equal to 1.

3. The return rate of the sum of the squared synaptic strengths back to its equi-

librium point is proportional to the activity level of the neuron.
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Rule 1 implemented a standard Hebbian update term. Rules 2 and 3 encapsulated

the main features of synaptic scaling, which were to be verified experimentally in

the following decades. Interestingly, Oja found that the effects of these simple con-

straints on the computational properties of the model cell were quite remarkable;

after the synaptic weights had stabilized, the model neuron acted much like a prin-

cipal component analyzer, producing a response equal to the linear combination of

synaptic inputs that produced maximal variance (the principal component of the in-

puts). Since the initial hints of its existence (Ramakers et al., 1990) and subsequent

confirmation (Turrigiano et al., 1998), synaptic scaling has fulfilled Oja’s and many

others’ (von der Malsburg, 1973; Miller and MacKay, 1994) predicted role as a stabi-

lizing counterbalance to Hebbian plasticity. Synaptic scaling seemed to be the key to

a number of interesting computational and learning properties in neurons and neural

circuits.

In accordance with Oja’s model, the current understanding of the scaling process

is that it adjusts synaptic weights in inverse proportion to post-synaptic firing lev-

els. Indeed, two recent experimental studies provide evidence that synaptic scaling

is a cell-autonomous process in which the post-synaptic spiking activity over long

time periods (or even the membrane voltage in the absence of spiking (Leslie et al.,

2001)) dictate the up or down regulation of post-synaptic strength (Goold and Nicoll,

2010; Ibata et al., 2008). In the stronger of these studies (Goold and Nicoll, 2010),

downscaling was induced by chronically elevating spiking activity in a very sparse

populations of neurons expressing ChR2 in organotypic hippocampal cultures. The

authors employed intentionally inefficient ballistic transfection methods to deliver a

ChR2 construct to a small number of cells (∼1-10 per culture). Because only a few

cells per network expressed by ChR2, spatially uniform illumination of the whole

culture induced spiking in these cells, but likely did not perturb global network firing

rates or neurotransmission levels. Using this assumption, the only activity change
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that could have triggered a downscaling response was increased spiking activity due

to optical stimulation. However, neither network spiking levels, intracellular spiking

levels in ChR2, or neurotransmission levels were monitored or controlled during long-

term photostimulation. The second study (Ibata et al., 2008) found that so-called

‘rapid’ synaptic upscaling could be induced in isolated cells by using local, somatic

micro-perfusions of TTX while leaving network AMPAergic transmission intact, but

not by local blockade of AMPAergic input to the cell. Aside from the rather dras-

tic decrease in the timescale required to induce a scaling compared to other studies,

the authors used the accumulation of recombinant AMPA-type glutamate receptors

fused with eYFP at individual synapses as a surrogate measure of synaptic strength.

Without validation of how these fluorescent signals are related to functional measures

of synaptic strength, such as mEPSC amplitude measurements, it is unclear if these

results apply to synaptic scaling as originally defined, or to another form of plasticity.

In contrast to these studies, we continuously monitored the effects of photostim-

ulation on network spiking activity and used a standard 24-hour treatment period.

Further, we used closed-loop stimulation to actively control network firing such that

there was minimal difference between activity levels prior to and following CNQX

treatment. Finally, we used standard voltage clamp recordings of mEPSC amplitudes

as a direct readout of synaptic strength. We found that the removal of AMPAergic

transmission from the network was capable of inducing scaling even when network-

wide spiking levels were normal for the duration of the drug treatment period. These

results are inconsistent with the two studies described above, and Oja’s original hy-

pothesis concerning the induction of homeostatic synaptic regulation. However, our

findings are supported by a number of experiments, carried out both in vitro and

in vivo, that indicate synaptic receptor activation is at least involved in producing

homeostatic increases in synaptic strength, if not fully required (Gonzalez-Islas and

Wenner, 2006; Sutton et al., 2006; Wilhelm and Wenner, 2008; Deeg and Aizenman,
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2011; Bé̈ıque et al., 2011; Hou et al., 2008). Together, these results suggest that the

cell-wide scaling effect induced by chronic activity blockade is a result of the spatially

uniform nature of drug application used to induce scaling, and that compensatory in-

creases in synaptic strength could occur in functional groups of synapses originating

from different pathways (Deeg and Aizenman, 2011) or even in isolated synapses (Hou

et al., 2008; Bé̈ıque et al., 2011).

In a particularly elegant study, Bé̈ıque et al. (2011) used inefficient transfection

methods to overexpress an inwardly rectifying potassium channel (Kir2.1) in a small

subset of neurons within dissociated cortical networks. They then identified individual

spines of post-synaptic cells that received input from the Kir2.1-expressing neurons,

and performed local, two-photon glutamate uncaging while using whole cell recordings

to monitor syanptic currents to the post-synaptic neuron. They found that spines

receiving input from Kir2.1-expressing cells, which had been deprived of normal levels

of AMPA receptor activation during development, supported stronger currents in

response the local glutamate compared to spines on the same dendritic arbor that

had received normal input during development. This result indicates that the strength

of individual synapses can be homeostatic regulated in inverse relation to the amount

of AMPA receptor activation they receive during development. We must emphasize,

however, that all results to date indicating a synapse-specific role for homeostatic

synaptic regulation (including our results) apply to upscaling only, and it is entirely

possible that a different set of mechanisms based upon post-synaptic depolarization

are required to induce downscaling (Goold and Nicoll, 2010; Leslie et al., 2001).

Additionally, the existence of mechanisms for local homeostatic regulation of synaptic

strength do not preclude the coexistence of global mechanisms.

However, if it is the case that the homeostatic regulation of synaptic strength

truly is a ‘synapse-autonomous’, as opposed to a ‘cell-autonomous’, process, its role
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as a stabilizer of neural activity fundamentally changes. Instead of regulating synap-

tic strength to maintain appropriate efferent (output) activity levels, synaptic scaling

would regulate synaptic strength to maintain appropriate afferent (input) activity.

The most troubling aspect of this change in function is that the regulatory processes

occurring at different synapses might not be coordinated. Many theories of memory

describe memory engrams as existing across synapses, requiring synaptic coordina-

tion. Mechanistic descriptions of cell-autonomous upscaling suggest that reductions

in somatic action potentials lead to reduced voltage-gated calcium channel activation

and subsequent reductions in cell-wide calcium signaling. This provides each synapse

with a common measure of activity and therefore a common multiplicative adjust-

ment factor (Turrigiano, 2011a). This form of synaptic scaling would provide an

elegant mechanism for simultaneously preserving the relative weights of synapses and

maintaining firing stability. However, our results suggest that the story may be more

complicated. If each synapse is capable of adjusting its own value in accordance with

the amount of afferent input it receives, then there is no guarantee that the relative

weights of synapses will be preserved during homeostatic regulation. In order to fully

understand the implications of the shift from cell-autonomous to synapse-autonomous

homeostatic regulation, future studies must investigate if synapse-autonomous homeo-

static synaptic regulation generalizes to downscaling, how it can function to stabilize

network activity, and how it functions without destroying memory engrams. Per-

haps the computational and stabilizing properties of networks governed by synapse-

autonomous homeostatic regulation of synaptic strength will be even more impressive

and robust than could be achieved via cell-autonomous mechanisms.
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CHAPTER VII

CONCLUSION

In this dissertation, I have described new technologies that advance optogenetic con-

trol of neural activity. I showed how ChR2 can be used to deliver time-varying

current fluctuations into cells in order to induce precise, irregular firing patterns. I

then showed that updating optogenetic stimulation based upon ongoing neural ac-

tivity permits effective control of firing levels over a wide range of time scales. After

describing these methods, I demonstrated their utility in a variety of experimental

contexts, including investigations concerning the effects of connectivity on population

encoding, somatosensory signal transduction in vivo, and the mechanistic underpin-

nings of homeostatic synaptic regulation.

Aside from their performance, a major reason that single protein (Boyden et al.,

2005) optogenetic tools have been so widely adopted in neuroscience research is their

ease of use. Neuroscience experiments are subject to considerable practical constraints

that limit the value of fragile or expensive techniques. Modern optogenetic tools are

easy to use, low cost, high-performance, and can be applied to many experimental

preparations. In this thesis, I sought to extend the capabilities of existing optoge-

netic technologies without introducing additional barriers that would hamper their

adoption. For instance, in Chapter 2 and Appendices A- C, I provided extensive de-

signs for low-cost alternatives to commercial hardware and software for multichannel

electrophysiology and optical stimulation. To implement feedback control capabili-

ties using these devices, I focused on widely used and well characterized algorithms

that require minimal levels of real-time processing. Finally, in Chapters 5 and 6, I

demonstrated how optogenetic feedback control can be used to address a range of
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important experimental questions both in vitro and in vivo, using simple equipment

and procedures. As a result, the technologies presented in this thesis offer greatly

improved control of neural activity without incurring significant increases in cost or

complexity for labs already engaged in electrophysiology research.

Even so, as with any design process, there are many avenues for the improvement

of these technologies. The brain is a complex system and there is no guarantee that

the simple technologies presented here will be sufficient to control more complex as-

pects of neural function. This task may require more complex hardware and software

arrangements to achieve adequate performance. Additionally, control over variables

more complex than firing rates will likely be required for closed-loop optical control to

meet its full potential. Moreover, although significant emphasis was placed on balanc-

ing performance and cost constraints during the design of the technologies presented

here, labs or individuals that do not have thousands of dollars to spend on equipment

are still excluded from the use of optogenetics and multichannel electrophysiology

techniques. Below I discuss how the technologies presented in this thesis might be

extended by recent advances in electronics and bioengineering to contend with more

complex control problems and to overcome bottlenecks in real-time hardware cost.

7.1 Extending optogenetic feedback control of firing activity

The population firing rate is the strongest (known) neural correlate of sensory in-

formation and motor action. Because firing levels are a key feature of every neural

system, techniques for properly controlling them support a wide range of potential

applications. Further specialization may be required to account for more detailed

measures of firing activity than were covered in this thesis.

To understand why, consider a population of J cells, each of which contributes a

set of spikes, which occur at times ti,j, where i is the index of a single spike produced
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by cell j. The time-dependent neuronal firing rate is given by

R(t) =
1

J∆T

∫ t+∆T

t

[∑
i,j

δ(τ − ti,j)

]
dτ, (72)

where ∆T is a small time interval and δ is the Dirac delta function. Two features of

this equation indicate that population firing levels are not quite as simple as they ini-

tially seem. First, this equation involves two averages, one over the time interval ∆T

and the other over the set of neurons, J , both of which are non-invertible operations.

The temporal arrangement of action potentials that occur within ∆T are ignored by

the averaging procedure, and spatial firing relationships are discounted over all time

scales. For example, synchronous versus asynchronous population spiking could be

mapped to the same firing level. Additionally, large asymmetries between the firing

rates of units within the population can result in the same average rate as homoge-

neous firing. Even so, we found that different control algorithms and optical input

signals could reliably evoke distinct patterns of firing activity during closed-loop fir-

ing rate control (Chapter 5). For instance, PI control using pulsed stimuli produced

highly synchronous firing (Section 5.3.2), on-off control reproduced network bursting

seen during spontaneous activity (Section 5.3.3), and PI control using continuously-

varying optical power produced highly irregular firing patterns in vivo (Section 5.3.5).

However, these aspects of firing were not actively regulated by the controller; they

were uncontrolled activity features that emerged via the implementation of partic-

ular algorithms and optical inputs. Therefore, we were not able to enforce strict

performance bounds on these features of neural activity during closed-loop control.

More sophisticated control algorithms and optical stimulation hardware might be

capable of controlling finer scale spatial or temporal features of neural activity in

constituent neurons. An important feature of optogenetic tools is their ability to use

genetic specificity to circumvent the need for spatially-modulated stimuli in order to

manipulate activity levels in particular cellular subpopulations. However, this does
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not preclude the usefulness of spatial light modulation for improving optogenetic feed-

back control (Reutsky-Gefen et al., 2013; Leifer et al., 2011; Stirman et al., 2011).

On the contrary, studies have effectively used closed-loop multisite electrical stimula-

tion to control network firing levels while desynchronizing spiking activity (Wagenaar

et al., 2005). If spatial light modulation was incorporated into our feedback con-

troller in a similar fashion, then closed-loop optical stimulation could potentially be

used to control firing in unstable tissue, which does not seem to be possible with

spatially uniform stimulation (Figs. 37, 36). Additionally, by directing light towards

the somata or axon initial segments of individual neurons during closed-loop control,

light exposure, abnormal ionic conductances, and passive dendritic filtering might be

minimized (Grossman et al., 2010).

If optical firing rate control is to be relevant for use in sensory prosthetic devices,

then it is important that it operates at timescales appropriate for effective communi-

cation with neural tissue. This highlights an additional issue with Eq. 72: the choice

of ∆T . This simple parameter has been the cause of a great ongoing debate in the

field of computational neuroscience (Rieke et al., 1997). What value of ∆T is small

enough such that most of the information content present in the time-varying firing

rate is captured, but not so small that unnecessary real-time computation is per-

formed? If ∆T is too large, critical information-bearing features of the time-varying

firing rate could be missed. In some sensory systems, information is conveyed at

the millisecond timescale (Rieke et al., 1997; Kayser et al., 2010). If this temporal

resolution is required for effective transmission of synthetic sensory information, the

technologies presented here may require increased real-time performance to be useful.

Finally, although this thesis presents several case studies that demonstrate the

utility of optogenetic feedback control, these studies have only scratched the surface

in terms of the potential applications for this technology. In Chapter 6 I showed how

optogenetic feedback control could be used to restore network firing levels during
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the blockade of AMPAergic synapses. This was just one of many possible combi-

nations. For instance, an alternative experiment might be to increase AMPAergic

synaptic transmission using an allosteric modulator of the AMPA receptor, such as

cyclothozide, while using closed-loop optogenetic inhibition to clamp network ac-

tivity. Another option would be to indirectly control firing in excitatory cells by

optogenetically actuating inhibitory cells within the network. Additionally, although

we successfully controlled activity in somatosensory thalamus of rats during ongoing

whisker stimulation, we did not investigate how this might affect sensory processing.

For instance, how are the spatial characteristics of the cortical response affected by

clamping activity within ventral posteromedial nucleus (Section 5.3.5) or reticular

thalamus to various basal levels during whisker stimulation (Wang et al., 2012)? Can

real-time control of thalamic activity be used to control cortical sensory discrimi-

nation (Wang et al., 2010)? The general importance of population firing levels for

dictating neural function suggests that there will be an abundance of questions for

which high-performance firing control is useful. I expect that in the years to come,

the technical demands of these studies will guide the improvement of the methods

presented in this thesis.

7.2 Beyond firing rate control

In the broadest sense, neural control entails the regulation of any measurable aspect

of neural activity to within specified performance bounds. An obvious limitation of

the technologies presented here is that they focus on controlling firing levels, which is

just one of many important features of neural activity. Recent advances in biosensors

and specialized optogenetic tools may allow for closed-loop optical control of neural

signaling processes other than firing levels, extending the usefulness of the concepts

presented in this thesis to a more complex set of control problems.

Neurotransmission is a ubiquitously important form of neural activity. Recently,
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technologies have been introduced that may enable all optical, closed-loop control

of neurotransmission. Ionotropic glutamate-binding receptors (iGluRs) coupled with

fluorescent reporters provide millisecond time-scale readout of glutamatergic neuro-

transmission at individual synapses (Marvin et al., 2013). Additionally, there are

now several technologies available for direct optogenetic control of neurotransms-

sion. One approach showed that iGluRs conjugated with an allosteric photoswitch

enabled optical glutamate receptor activation (Volgraf et al., 2006). Another study

used chromophore-assisted light inactivation of the SNARE complex, and the resul-

tant disruption of neurotransmitter vesicle exocytosis, to optically inhibit arbitrary

types of neurotransmission (Lin et al., 2013). Together, these tools provide sensors

and actuators that could conceivably be used for direct, closed-loop control of neuro-

transmission.

Aside from firing levels of constituent neurons, there are other electrical signatures

of brain activity that may be readily controlled using real-time optogenetic feedback.

Many studies postulate the oscillatory coherence between neural circuits plays an

important role in attention, and may provide a flexible communication channel be-

tween neuronal populations (Fries, 2005). A recent computational study explored the

potential of optogenetic feedback to control the relative phase of local field poten-

tials recorded from two neuronal subpopulations, with the goal of controlling their

phase coherence (Witt et al., 2013). This approach may allow more straightforward,

‘bottom-up’ investigations of attention by examining the behavioral effects of forced

coherence between different brain regions.

Aside from electrochemical signaling measurements, more abstract neural activ-

ity features may be used to drive closed-loop optogenetic stimulation. Many studies

concerning neural sensory processing investigate how statistical features of the stim-

uli affect the encoding process. A long-term goal of this research is to inform the

design of sensory prosthetic devices that use synthetic actuation of sensory circuits to
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bypass non-functional sensory modalities. However, neural dynamics are highly non-

stationary, and the optimal transformation of sensory measurements to stimulation

is likely to change depending on brain state and with learning. Real-time measure-

ments of response discriminability may be necessary for optimizing stimuli in order

to achieve a robust synthetic communication channel with sensory circuits during

ongoing alterations in brain state (Wang et al., 2010; Stanley, 2013).

Finally, newly developed optogenetic tools have recently been used for synthetic

manipulations of context-dependent memories in mice (Ramirez et al., 2013). The

use of optogenetic methods for influencing memory formation, for instance to im-

prove context-dependent memory recall, is an exciting possibility. For example, per-

haps navigational performance can be improved using optogenetic activation of re-

ward circuits triggered by real-time decoding during hippocampal place-field replay

events (Bendor and Wilson, 2012). Although synthetic memory control may be out

of reach using current methods and technologies, the successful optogenetic manipu-

lation of existing memories offers an enticing preview of what may become possible

using closed-loop optogenetic control.

7.3 Democratizing real-time hardware

The technologies presented in this thesis were designed to minimize monetary and

technical barriers that prevent widespread adoption. For instance, NeuroRighter

(Chapter 2) costs about an order of magnitude less than a comparable commercial

alternative. However, NeuroRighter, and systems like it (Lin et al., 2010; Wagenaar

et al., 2006a), rely on commercial data acquisition cards that are expensive, difficult to

scale, and are not explicitly designed for real-time operation. Additionally, low-level,

on-board processing is often accessible only through proprietary software drivers,

which offer limited options for full customization. These facts indicate that although

the technologies presented here to do not impose additional financial burdens beyond
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those of existing electrophysiology equipment, they do not greatly alleviate these

burdens either. This is unfortunate because there is a general need for increased

throughput in neurophysiology experiments, which are notorious for their lack of

statistical power (Button et al., 2013). In order for an average lab to operate many

electrophysiology experiments simultaneously, a drastic reduction in cost is required.

Open-hardware projects, such as the Arduino1 microcontroller platform, have

demonstrated how competition and growth within the semiconductor industry can

be leveraged for applications beyond those originally intended. If open-access neuro-

physiology hardware could circumvent the use of ready-made scientific instruments

altogether, it would be more capable of reducing cost constraints and increasing real-

time performance standards. Recent advances in bioacquisition hardware, mobile

computing technologies, and real-time computing have opened new possibilities for

substantially lowering the cost of high-performance, real-time control hardware.

There are currently more than 1 billion smartphones in use around the world.

The explosive growth of the mobile computing industry has driven the development

of powerful, low-cost chipsets for embedded processing. The ARM R© architecture

encompasses a family of reduced instruction set processor designs that are low-cost,

high-performance, and often include powerful co-processors for digital signal process-

ing (e.g. DSPs) or peripheral interfacing (e.g. FPGAs). Further, recent advances

in single-chip biosignal amplification, filtering, and digitization have vastly reduced

the cost and complexity of multichannel data acquisition (Du et al., 2011)2. Fi-

nally, there have been several recent improvements in the stability and usability of

real-time development tools for the Linux operating system3 and software for utiliz-

ing hard real-time processing capabilities for electrophysiology research4 (Lin et al.,

1http://www.arduino.cc/
2http://www.intantech.com/
3https://www.kernel.org/pub/linux/kernel/projects/rt/, http://www.xenomai.org/
4http://www.rtxi.org/
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2010). Together, these technologies form the basic ingredients for a new generation

of electrophysiology tools. They provide the performance required for the most tech-

nically demanding neurophysiology experiments, combined with the price-point and

mass appeal of ‘hacker’-friendly open hardware projects. I expect that this will soon

enable a democratization of cutting-edge electrophysiology research, making the re-

quired materials for ultra-precise manipulation of neural circuity available to small

labs, classrooms, and motivated individuals.
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APPENDIX A

NEURORIGHTER USAGE AND EXAMPLES.*

Here I provided extended usage information for the NeuroRighter electro-
physiology system. Aside from this text, NeuroRighter’s code repositories,
user’s forum, and reference manuals will be available in electronic form for
the foreseeable future on several websites:

• https://code.google.com/p/neurorighter/: The NeuroRighter
code repository.

• https://sites.google.com/site/neurorighter/: The NeuroRighter
System Reference Manual/Wiki

• https://groups.google.com/forum/#!forum/neurorighter-users: The
NeuroRighter User’s Forum

• https://potterlab.gatech.edu/main/neurorighter-api-ref/: The
NeuroRighter API Reference

A.1 Scripted output

Real-time plugins have on-the-fly access to NeuroRighter’s output servers. However,

NeuroRighter’s output servers can also be controlled in open-loop mode using prede-

fined stimulation scripts, referred to here as ‘scripted output’. Scripted output allows

the generation of continuous, non-periodic, uninterrupted output streams on all of

NeuroRighter’s available output channels (Fig. 5, Table 1, and see Chapter 4 which

*Newman, J.P., Zeller-Townson, R, Fong, M.-f., Desai, S.A., Gross, R.E., Potter, S.M. Closed-

loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform.

Front. Neural Circuits 6:98, 2013. c©2013 Newman, Zeller-Townson, Fong, Arcot Desai, Gross

and Potter. This is an open-access article distributed under the terms of the Creative Commons

Attribution License.
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uses this feature extensively). Using scripted output, manipulation of electrical stim-

ulation lines, analog outputs, and digital outputs occurs with 10 µs precision relative

to the start of a clock-synchronized recording session. Scripts can be generated within

MATLAB(R) (Mathworks, Natick, MA) or Octave1 using three functions provided

with a standard NeuroRighter installation: makestimfile.m, makeauxfile.m, and

makedigfile.m. Each of these functions contains documentation in their file header,

which can be accessed using the ‘help’ command.

In the following example, we generate two output files that control NeuroRighter’s

analog and digital output streams, respectively. The first file produces 10 changes in

the voltage of analog output channel 0 (AO.0). The second file encodes the voltage

changes on AO.0 using the first 8 bits of the digital output port 0 (P0.0-7). Changes

in the voltage of AO.0 and port state of P0.0-7 will occur once a second relative to

the start of the recording, on the same 100 kHz clock edge.

t = (1:10)’; % 1,2,3,...,10 seconds

a = rand(10,1); % 10 random voltages

c = zeros(size(a)); % use channel AO.0

d = ceil(a*255); % encode ‘a’ with 8-bit resolution on P0.0-7

makeauxfile(’myAuxTest’,t,c,a);

makedigfile(’myDigTest’,t,d);

This MATLAB script produces two files, myAuxTest.olaux and myDigTest.olaux,

which can be loaded into NeuroRighter’s GUI for execution. The user must enable

analog and digital output lines in NeuroRighter’s hardware settings in order for these

scripts to function (Chapter 2; Fig. 52(c)). This example illustrates an advantage

of having direct access to the analog and digital output lines: because all physical

inputs and outputs to and from NeuroRighter are synchronized to the same hardware

clock, the digital output that encodes changes in analog voltage AO.0 can be recorded

instead of AO.0’s raw voltage. Since only changes in the state of the digital port are

1http://www.gnu.org/software/octave/
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recorded, this vastly reduces the amount of disk space required to encode the delivered

output stream.

Aside from the manipulation of the NI cards’ analog and digital output lines,

scripted protocols can be created to drive NeuroRighter’s all-channel electrical micro-

stimulation board. Below, we provide a MATLAB script that produces the scripted

stimulation protocol used to generate Fig. 5.

% Stimulation protocol with 1 second epochs of a new or repeated

% realization of spatially uniform random, temporally Poisson,

% voltage-controlled square wave stimuli. New and repeated stimulation

% trials are interleaved in time with no down time between trials.

lambda = 15; % Poisson rate parameter (1/seconds)

num_trials = 100; % Number of random realizations

start_time = 60; % Protocol start time (seconds)

tot = start_time; % Total time;

T = []; % Stimulation times

C = []; % Stimulation channels

% Uniform random points over defined time epoch is equivalent

% to Possionian point process (exp dist. of times between stimuli).

rept = rand(lambda,1);

repc = 59*rand(size(rept));

for i = 1:num_trials

% New random realization

T = [T;tot(end) + rand(lambda,1)];

C = [C;59*rand(size(rept))];

tot = tot + 1; % 1 sec. increment

% Repeated realization

T = [T;tot(end) + rept];

C = [C;repc];

end

% Waveform is +-0.75 volt, 400 us/phase, postive-first, square-wave.

% This can also be used as a current waveform by adjusting NR’s

% hardware settings to enable current-controlled stimulation.

fs = 1e5;

w = [zeros(1,5) 0.75*ones(1,40) -0.75*ones(1,40) zeros(1,5)];

W = w(ones(size(T)),:);

% Write the file

makestimfile(’pois-stim-protocol’,T,C,W)
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A.2 Using the real-time API

A real-time plugin is an externally compiled class library, written in C] or some

other .NET supported language, that can be used for a wide variety of tasks. For

instance, plugins allow on-the-fly manipulation NeuroRighter’s electrical stimulation

board as well as analog and digital output lines, with 10 µs precision. Plugins can

also be used to change NeuroRighter’s outputs as a function of incoming data, such as

neural recordings, auxiliary analog inputs, or digital input channels in order to close

the loop around neural tissue. Since plugins are externally compiled programs, they

can be created without editing NeuroRighter’s source code, and can reference third

party libraries, such as those available for sending information over the Internet or

for executing MATLAB code. In the following section we demonstrate the creation

and use of real-time plugins with NeuroRighter.

A.2.1 Using a pre-compiled real-time plugin

A compiled plugin is a class library, or, in Microsoft parlance, a ‘Dynamic-linked

Library’ (DLL) file. A DLL is a type of Windows file which contains compiled code

that cannot be executed by itself (like an executable or ‘*.exe’ file), but can be

referenced or used by executable code. To start, we will detail the usage of a plugin

that has already been complied and exists as a DLL file. The compiled DLLs that

were used in the case-studies in Section 2.4 of Chapter 2 are available online2, an can

be used as described in the following paragraphs.

After downloading a pre-compiled plugin, we need to configure NeuroRighter’s

hardware settings to match the details of our recording system (Section 2.3.2.1; Ta-

ble 1). Figure 52 outlines this process for a 64-channel MEA1060-Up amplifier (Multi-

channel Systems, Reutlingen, Germany) with a 1200X passband gain. First we enter

2http://code.google.com/p/neurorighter/downloads/list
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A B C

Figure 52: Configuring hardware settings for a real-time plugin. (A) The ‘Real-Time’ tab is
used to adjust the hardware polling period and configure NeuroRighter’s data servers. (B) The ‘Neural
Input’ tab is used to configure multichannel amplifier settings and specifies which NI boards are used to
acquire raw, LFP, and EEG voltages. (C) The ‘Output’ tab is used to configure electrical stimulation as
well as generic analog and digital output lines.

the ‘Real-time’ tab (Fig. 52(a)) where we can specify the A/D and D/A polling peri-

ods (which determine the loop speed of the plugin), and where we select which data

servers we want to expose to the plugin. For example, to run the closed-loop reac-

tion time case-study (Section 2.4.1), we only needed to select the ‘Spike Data’ buffer.

Data servers are inactive by default, in order to decrease computational overhead and

memory requirements. Next, in the ‘Neural Input’ tab (Fig. 52(b)), we supply our

amplifier gain and select the NI boards being used to route neural signals. Finally,

in the ‘Output’ tab, we can define how to deliver electrical stimuli and whether we

want to use generic digital or analog output lines.

After configuring hardware and streaming settings, we can load the plugin library.

To do this, we open NeuroRighter’s ‘Stim/Output’ tab (Fig. 53(a)) and then navigate

to the ‘Real-time Plugin’ box (Fig. 53(b)). A plugin library is a collection of plugin

classes that are all stored in the same file. To load a library, we click the ‘...’ button

in the Real-Time Plugin box and select the DLL file that we have downloaded or
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Figure 53: Loading a plugin library. (A) Plugin libraries are loaded through the ‘Stim/Output’ tab
on the main NeuroRighter interface. (B) Once a plugin library is loaded, all the classes it encapsulates
are exposed for execution. (C) Simple stimulus waveforms can be designed in NeuroRighter’s GUI and
accessed from a closed-loop plugin.

compiled. After we select a library, the drop down list underneath the load button

is populated with the names of the individual real-time plugin classes that are stored

inside the selected library.

After selecting the plugin we want to execute, we click the ‘Start’ button in the

‘Real-Time Plugin’ box to activate the plugin and begin data acquisition. The plugin

can be interrupted at any time by clicking the ‘Stop’ button in the ‘Real-Time Plugin’

box. A final detail worth mentioning is that plugins can use stimulus waveforms that

are designed within the NeuroRighter GUI (Fig. 53(c)) if the plugin references this

PredefinedWaveform in its code. Referencing this GUI-defined waveform is a way

to quickly configure stimulation parameters without writing any code or recompiling

the plugin library.
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A.2.2 Writing a real-time plugin

The source-code for all plugins used as case-studies in Chapter 2 text are available

online3. Additionally, the code used to produce the first case-study from Chapter 2

(Section 2.4.1) is provided at the end of this appendix, in Section A.4. In this section,

we walk through the steps required to write a custom real-time plugin for NeuroR-

ighter.

Creating a real-time plugin library consists of creating a class library, writing

a plugin class within that library, and adding special methods to the plugin class

that will be activated by NeuroRighter. All plugin classes follow a similar code tem-

plate, regardless of their complexity and have automatic access to NeuroRighter’s

data servers as well as NeuroRighter’s stimulation servers. Different integrated de-

velopment environments (IDEs) can be used to write a plugin library. Two good

development options are Microsoft Visual Studio (Microsoft, Redmond, WA) or the

open-source and free MonoDevelop4. The steps required for creating a plugin do not

change significantly for different IDE options.

Our first step to write a new plugin is to create a new project that will contain our

plugin library. This can be done by creating a new project of the type ‘Class Library’

in your IDE of choice (this should be something similar to: file→ new→ project→

class library). In general, the difference between an executable and a class library

is that a class library lacks a generic entry point (nominally a ‘main()’ method)

from which to start code execution. Instead, it requires a parent executable to deter-

mine how the library code should be entered and executed at runtime. In our case,

the parent executable is NeuroRighter, so we must make our newly created class li-

brary aware of NeuroRighter’s existence. To do this, we reference the NeuroRighter

3http://code.google.com/p/neurorighter/source/browse/NR-ClosedLoop-Examples/
4http://monodevelop.com/
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Figure 54: Referencing the NeuroRighter executable to create a real-time plugin.

executable from our library by adding NeuroRighter.exe to the ‘References’ list asso-

ciated with our project (Fig. 54). This exposes NeuroRighter’s public namespaces to

our library, which then can be used by individual classes with the ‘using’ keyword.

These namespaces are described in Table 2, and referred to their as ‘packages’ to

avoid programming jargon, and are reiterated here.

• NeuroRighter.NeuroRighterTask This namespace must be referenced in ev-
ery real-time plugin class, as it contains the NRtask abstract class that all plugin
classes must implement to integrate with NeuroRighter while it is running.

• NeuroRighter.Server This namespace provides access to NeuroRighter’s
NRDataSrv data server object and NRStimSrv output server object.

• NeuroRighter.DataTypes This namespace provides several data types that
are used by NRDataSrv and NRStimSrv (e.g. SpikeEvent, AuxOutEvent, etc.).

• NeuroRighter.dbg This namespace provides access to a debugging tool that
allows user messages to be logged to a text file along with timing information
that is generated by NeuroRighter during plugin execution.

Next, we create a new class that will define our plugin. A plugin class inherits func-

tionality from the base-class NRTask which provides automatic access to the following

features.
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• Overrideable methods for setting up (the Setup() method), executing (the

Loop() method), and cleaning up (the Cleanup() method) a real-time loop

within NeuroRighter.

• Access to NeuroRighter’s server objects NRDataSrv and NRStimSrv, which are

used to read from and write to hardware. Manipulation of the objects requires

including the Server namespace, as mentioned above.

• Information concerning the state of the NeuroRighter executable, such as whether

or not it is currently recording data and the file-paths being used to save data.

The basic structure of a plugin class mimics high-level programming languages for

micro-controllers, such as Arduino5. Below, we provide an example of a very simple

plugin.

using NeuroRighter.Output

namespace NRpluginExample

{

public class HelloWorld: NRtask

{

override void Setup()

{

Console.WriteLine("Hello, World!");

}

override void Loop()

{

Console.WriteLine("I’m still here, World!");

}

override void Cleanup()

{

Console.WriteLine("Goodbye, World!");

}

}

}

In this example, NRpluginExample is the name of the library that is being created,

and HelloWorld is the name of a single plugin class within that library. When we

are finished writing our class, we can compile the class library. In our example, this

5http://arduino.cc/en/
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would result in NRpluginExample.dll, which can be loaded into the NeuroRighter

GUI as described above.

Once loaded into NeuroRighter, the ‘Start’ button is clicked which starts the

plugin’s execution along with data acquisition in NeuroRighter. When start is clicked,

the Setup() method is called a single time. In our example, this would result in

“Hello, World” being printed to the console (System→ Show Console, from within

NeuroRighter). After the Setup() method finishes, NeuroRighter’s input and output

servers are activated, and the Loop() method is called periodically (Fig. 5), at a

frequency specified by the DAC polling period (Fig. 52). This would result in “I’m

still here, World!” being printed to the console many times, in rapid succession.

Execution would continue until the user clicks the ‘Stop’ button, which calls the

Cleanup() method. At this point our example plugin would display the message

“Goodbye, World!” to the console and NeuroRighter’s input and output servers would

shut down.

A.2.3 Event-based methods

Note that, in contrast to the example above, a plugin is not required to override any

of the three base methods supplied by the NRTask class. For example, instead of using

the Loop function, which is executed periodically by NeuroRighter’s output servers,

we can execute code upon the capture of new data into NeuroRighter’s input servers

using NewData events (Sections 2.3.2.2 and A.4.2). For example, the following code

snippet will write the line “New spikes captured” to the console immediately after

new spikes are pushed to the SpikeSrv data stream. As shown in Fig. 7, this method

provides the lowest feedback latency.
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override void Setup()

{

// Subscribe to the NewData event on the SpikeSrv data server

NRDataSrv.SpikeSrv.NewData +=

new EventDataSrv<NeuroRighter.DataTypes.SpikeEvent>.

NewDataHandler(SpikeSrv_NewData);

}

// This method is called every time the SpikeSrv.NewData event fires

private void SpikeSrv_NewData()

{

Console.Writeline("New spikes captured!");

}

A.2.4 Reading data within a plugin

Reading data streams within a plugin is performed using the NRDataSrv object.

NRDataSrv contains a set of servers that buffer the most recent data collected by

NeuroRighter. NRDataSrv encapsulates two general types of data, continuous data

and packet data. Continuous data is defined by an NxM dimensional array, where

N is the channel count, and M is the sampling frequency multiplied by the buffer’s

duration. Continuous data servers buffer raw voltage values from electrodes, auxiliary

analog streams, or filtered outputs from the spike, SALPA, LFP and EEG streams.

NeuroRighter’s continuous data servers are listed in the top section of Table 8. Packet

data is defined by asynchronous physical events, that are not necessarily temporally

periodic (e.g. detected spikes). Like continuous data buffers, packet buffers contain

data over the time period specified in hardware settings but, since they are not sam-

pled continuously, the amount of data in these buffers can fluctuate. For example,

if the spike detection rate increases, the number of spikes in NRDataSrv.SpikeSrv

will increase. NeuroRighter’s packet data servers are listed in the bottom section of

Table 8.

All data servers are null by default in order to decrease computational overhead

and memory requirements. They can be activated using the hardware settings GUI

(Fig. 52(a)). The amount of data that is buffered by each server object can also be
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Table 8: NeuroRighter’s data servers. All servers are null unless activated using the hardware
settings GUI.

Server Name Description
Continuous NRDataSrv.AuxAnalogSrv Provides access to data from auxiliary analog channels
Data NRDataSrv.EEGSrv Provides access to data from EEG channels
Servers NRDataSrv.LFPSrv Provides access to data from LFP channels

NRDataSrv.RawElectrodeSrv Provides access to raw electrode voltages.
NRDataSrv.FilteredElectrodeSrv Provides access to data produced by the ‘spike filter’ which is used

to pass signals from ∼100 to 5000 Hz.
NRDataSrv.SalpaElectrodeSrv Provides access to data processed by the SALPA filter, which is used for

rapid electrical artifact subtraction (Wagenaar and Potter, 2002)

Packet NRDataSrv.SpikeSrv Provides access to recently detected spikes (containing time, channel,
Data waveform, unit number, etc.)
Servers NRDataSrv.AuxDigitalSrv Provides access to the state changes recently detected on the auxiliary

digital input lines (time and port state)
NRDataSrv.StimSrv Provides access to recently recorded electrical stimuli (time, channel,

voltage, etc.)

set in the hardware settings GUI. The default buffer history is 1 second. This means

that at any point in time, the plugin has access to data that is up to 1 second old. If

a plugin needs access to older data, hardware settings must be configured to allow for

a longer buffer or the plugin must implement its own buffer to save past data values.

To read from continuous- or packet-based data servers, the ReadFromBuffer

method is used. The ReadFromBuffer method is an attribute of each server ob-

ject that takes start and stop sample indices as input arguments. For example, to

read all the spikes that occurred between times 10 seconds and 12 seconds relative to

the start of the recording, we could use the following code snippet:

// Convert required read start and stop times to samples

ulong start = (ulong) (10*NRDataSrv.SpikeSrv.SampleFrequencyHz);

ulong stop = (ulong) (12*NRDataSrv.SpikeSrv.SampleFrequencyHz);

// Read samples from the buffer

EventBuffer<SpikeEvent> recordedSpikes;

recordedSpikes = NRDataSrv.SpikeSrv.ReadFromBuffer(start, stop);

At this point, all the spikes recorded between seconds 10 and 12 are assigned to the

recordedSpikes object (assuming they were available in the buffer when the read call

was made). To find what samples are currently available, the EstimateAvailableTimeRange()

method can be used. Alternatively, as described above, the data server can inform

listening processes, like our plugin, whenever new data is available using a NewData

event.
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A.2.5 Generating output from a plugin

The easiest way to change NeuroRighter’s outputs from within a plugin is to use the

NRStimSrv object, which is automatically provided to classes that are derived from

NRTask. This is not the only option to produce output with NeuroRighter. Standard

communication protocols (TCP/IP, USB, RS232, etc.) as well as direct communica-

tion with the NI boards can also be used (see, for instance, Sections A.4.2 and A.4.3).

Analogous to NRDataSrv, NRStimSrv encapsulates server objects that can be used to

generate physical outputs from within a plugin. These servers are:

• NRStimSrv.AuxOut This server is used to write values to the analog auxil-
iary channels.

• NRStimSrv.DigitalOut This server is used to write digital values out to the
auxiliary digital port.

• NRStimSrv.StimOut This server is used to write electrical stimuli.

Writing to these servers is accomplished using the WriteToBuffer method. For ex-

ample, if we wanted a plugin to generate electrical stimuli at times 1.2, 1.5, 1.7

seconds, on channels 3, 7, and 9, using the waveform specified in the ‘Manual Stim’

GUI (Fig. 53(c)), we could use the following code segment within our plugin class:

// Define stimulus times and channels

double[] times = {1.2,1.5,1.7};

int[] channels = {3,7,9};

override void Setup()

{

// Here, we access the waveform created within NR’s ’Manual Stim’ GUI

double[] waveform = PredefinedWaveform;

// Grab the output sampling frequency

double fs = NRStimSrv.SamplingFrequencyHz;

List<StimulusOutEvent> stimuli = new List<StimulusOutEvent>();

for (int i = 0; i < times.Length; i++)

{

stimuli.Add(new StimulusOutEvent(channels[i],(ulong)(times[i]*fs), waveform));

}

// Add the stimuli to the buffer - one time write since we are in Setup()

NRStimSrv.StimOut.WriteToBuffer(stimuli)

}
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Like when reading data from input servers, the timing of these outputs are mea-

sured in samples since the experiment began. All output servers operate with a hard-

coded 10 µs precision. To find the next sample available for writing on a particular

output buffer during a real-time protocol, the GetTime() or GetCurrentSample()

methods can be used.

For more information regarding the usage and creation of real-time plugins with

NeuroRighter, visit NeuroRighter’s website and examine the example code provided

in Section A.4.

A.3 Spike detection and sorting with NeuroRighter

A.3.1 Spike detection and validation

Putative spikes are detected as voltage samples, vk[t] for which

|vk[t]| > γV RMS
k , (73)

where γ is a user-defined coefficient (Table 9). When the detection criterion is met,

vk[t] is searched for a voltage peak or trough following the threshold crossing. V RMS
k

is defined as the average of lowest 10% of RMS values calculated from a group of

100 millisecond data windows of voltage values taken from channel k. This method

prevents overestimates of V RMS
k by excluding windows with large amounts of spiking

activity from the RMS calculation (Wagenaar et al., 2006a). V RMS
k can be a fixed

value, based upon the first 10 seconds (100 windows) of a recording or the 10 seconds

after the user clicks the ‘Retrain’ button. Alternatively, V RMS
k can be calculated

adaptively using a sliding 10 second window to adapt to changes in channel noise

levels. Following detection, a short voltage ‘snippet’, aligned at the absolute voltage

peak, is then extracted from the raw trace. The number of voltage samples included

in each snippet is user-defined (Table 9).

Following detection, spike snippets are validated as true action potentials using

203



Table 9: User defined parameters for spike detection, validation, and sorting.

Parameter Description Typical Value
Detection Threshold (γ) RMS multiplier defining detection threshold 4-7

Pre-spike time Time before spike to store in snippet 0.5 msec
Post-spike time Time following spike to store in snippet 1.5 msec
Noise estimation algorithm Method used to estimate RMS noise adaptive/fixed
Spike alignment algorithm Method used to align spikes align by peak

Validation Min. spike width Minimum allowable spike width 80 µsec
Max. spike width Maximum allowable spike width 1500 µsec
Max spike amplitude Maximum allowable peak-to-peak amplitude 500 µV
Min. spike slope Minimum average absolute spike slope 2-5 µV/samp.
Dead time Detection pause following validation 0.5-1 msec

Sorting Projection type Method to project spike snippets into feature space PCA
Projection dimension Dimensionality of feature space projection 2
Max. K Maximal number of units per recording channel 4
P-value P-value to consider a classified spike an outlier 0.01

a series of tests based on waveform slope, width and peak-to-peak amplitude (Fig-

ure 55, Table 9). If a spike is successfully validated, a detection pause is enforced

on the channel of origin to prevent multiple detections of a single spike that contains

multiple peaks. Following spike validation, the spike snippet and associated infor-

mation (time of occurrence, channel, etc.) is pushed to the SpikeSrv.Buffer data

stream (Table 1).

A.3.2 Spike sorting

NeuroRighter uses an automated Gaussian mixture modeling algorithm to classify

spikes based on low-dimensional features of their waveform shape (Xu and Wunsch,

2009). The algorithm is implemented using the Aforge.NET and Accord.NET libraries

for machine learning6. The following explanation of the spike sorting algorithm applies

to a single recording channel. During an actual recording, spike sorting is performed

for all recording electrodes that have been enabled in the hardware settings GUI.

First, a training data set is collected. This consists of a set of spike snippets,

{Xn} ∈ RD where D is the number of voltage samples in each waveform. After a user-

defined number of spikes have been collected, the classifier can be trained. To do this,

waveforms are first projected into a low dimensional feature space, {Yn}Nn=1 ∈ RM ,

6http://accord-net.origo.ethz.ch/ and http://code.google.com/p/aforge/
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Figure 55: Spike detection and validation in NeuroRighter is a multi-step process. Spikes
are detected as voltage events that exceed the estimated RMS noise level for a given channel (Top).
Putative spikes are then validated using ad hoc tests based on the spike width and rectified slope (Bottom).

M < D using one of several available methods (principle component analysis, take the

peak voltage value, or take the peak voltage and and after-polarization amplitude).

Next, a mixture of K Gaussians is fit to {Yn}Nn=1 using the expectation maximization

algorithm (EM) (Dempster and Laird, 1977), initialized using K-means clustering.

Following EM convergence, the minimum description length (MDL) is calculated as

MDL(K) =
1

2
Np log(N ∗M)− log py(y|K, θ), (74)

whereNp is the number of free parameters in θ and log py(y|K, θ) is the maximized log-

likelihood of the training set {Yn}Nn=1 according to the Gaussian mixture parametrized

by θ. MDL therefore weighs model complexity against the goodness-of-fit of a given

mixture (Xu and Wunsch, 2009). The value of K is iteratively decremented, and the

model fitting and calculation of the MDL proceeds for each decreased model order.

The value of K, and corresponding mixture, that minimizes the MDL is selected for

online classification. The starting value of K is user-settable.

Following training, spikes are classified online. The unit number of each projected
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datum is defined as,

κn = arg max
K

py(yn|K, θ). (75)

The Mahalanobis distance between the classified datum, yn and its putative compo-

nent distribution, fκ(y), is then calculated as

dn = [(yn − µκ)ᵀCκ(yn − µκ)]1/2. (76)

Here, (µκ, Cκ) are the (mean, covariance) pair for fκ(y). A Pearson’s χ2-test is per-

formed to detect outliers in comparison with a χ2 distribution fit to the Mahalanobis

distances derived from the training data (Filzmoser, 2004). Outliers remain unsorted

(they are assigned to κn = 0).
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A.4 Latency measurement plugin code

Below we provide the code to produce the three NeuroRighter plugins used to measure

NeuroRighter’s closed-loop response latency in Section 2.4.1. Each example is a C]

class file that is derived from the NRTask base class. After making the proper API

references and inheriting methods from NRTask, calls can be made to NeuroRighter’s

input and output servers. Each of these classes follows one of the basic structures

outlined in code listing 1 and was created using the steps detailed in Section A.2.

Aside from these examples, the code used to produce all case-studies presented in

Chapter 2 (with the exception of the Silent Barrage robotic embodiment) are available

on NeuroRighter’s code repository7.

A.4.1 StimSrv-based real-time loop

/// <summary>

/// This class uses StimSrv to produce a series of 32-bit digital pulses in

/// response to spikes produced by two, pre-specified units. Each pulse encodes

/// the unit number that produced the spike and the time (32-bit sample integer)

/// that the spike occurred. This method uses double buffering and therefore

/// results in a large reaction latency.

/// </summary>

// References

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using NeuroRighter.NeuroRighterTask;

using NeuroRighter.DataTypes;

using NeuroRighter.Server;

using NeuroRighter.Network;

namespace NR_CL_Examples

{

class StimSrv_UnitReaction : NRTask

{

// Unit that we will react to with a digital pulse

private int[] units = { 1, 2 };

// Internal variables

private ulong lastSampleRead = 0;

protected EventBuffer<SpikeEvent> newSpikes;

7http://code.google.com/p/neurorighter/source/browse/NR-ClosedLoop-Examples/
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ulong nextAvailableSample;

// When using StimSrv, most setup tasks are taken care of automatically.

protected override void Setup()

{

nextAvailableSample = 0;

}

// Loop is called periodically by the double buffering system when the

// read-head has exhausted all the samples in one of the buffers and

// that buffer is made available for writing.

protected override void Loop(object sender, EventArgs e)

{

// First, figure out what history of spikes we have

ulong[] spikeTimeRange =

NRDataSrv.SpikeSrv.EstimateAvailableTimeRange();

// Is there any new data yet?

if (spikeTimeRange[1] > lastSampleRead)

{

// Try to get the number of spikes within the available time range

newSpikes =

NRDataSrv.SpikeSrv.ReadFromBuffer(lastSampleRead, spikeTimeRange[1]);

// Update the last sample read

lastSampleRead = spikeTimeRange[1];

}

else

{

return;

}

// Is one of my units in here?

List<SpikeEvent> unitGSpikes =

newSpikes.Buffer.Where(x => x.Unit == units[0]).ToList();

List<SpikeEvent> unitTSpikes =

newSpikes.Buffer.Where(x => x.Unit == units[1]).ToList();

// Get the current buffer sample and make sure that we are going

// to produce stimuli that are in the future

ulong currentLoad =

NRStimSrv.StimOut.GetNumberBuffLoadsCompleted() + 1;

nextAvailableSample =

currentLoad * (ulong)NRStimSrv.GetBuffSize();

// Create the output buffer

List<DigitalOutEvent> DigitalOutBuffer =

new List<DigitalOutEvent>();

for (int i = 0; i < unitGSpikes.Count; i++)

{

// Use the native digital output server to send digital change

DigitalOutBuffer.Add(

new DigitalOutEvent(nextAvailableSample, 71));
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SpikeEvent sG = unitGSpikes[0];

DigitalOutBuffer.Add(

new DigitalOutEvent(nextAvailableSample + 10,

(uint)sG.SampleIndex));

}

for (int i = 0; i < unitTSpikes.Count; i++)

{

// Use the native digital output server to send digital change

DigitalOutBuffer.Add

(new DigitalOutEvent(nextAvailableSample, 84));

SpikeEvent sT = unitTSpikes[0];

DigitalOutBuffer.Add

(new DigitalOutEvent(nextAvailableSample+10,

(uint)sT.SampleIndex));

}

if (DigitalOutBuffer.Count > 0)

NRStimSrv.DigitalOut.WriteToBuffer(DigitalOutBuffer);

}

// Shutdown StimSrv etc.

protected override void Cleanup()

{

Console.WriteLine("Terminating protocol...");

}

}

}
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A.4.2 NewData-based real-time loop

/// <summary>

/// This class produces a series of 32-bit digital pulses in response to

/// spikes produced by two, pre-specified units. Each pulse encodes the unit

/// number that produced the spike and the time (32-bit sample integer)

/// that the spike occurred.

/// </summary>

// References

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using NeuroRighter.NeuroRighterTask;

using NeuroRighter.DataTypes;

using NeuroRighter.Server;

using NeuroRighter.Log;

using NationalInstruments.DAQmx;

using NationalInstruments;

using System.Windows.Forms;

using System.ComponentModel;

using MoreLinq;

namespace NewDataEventCatcher

{

class NewData_UnitReactionDO : NRTask

{

// Unit that we will react to with a digital pulse

int[] units = { 1, 2 };

// Internal variables

int numberOfSpikesReactedTo = 0;

uint spkSamp; // The sample of the latest spike detection

// NI Stuff

Task DOTask;

DigitalSingleChannelWriter DOWriter;

// Take the first 32-bit port

string DOChannel1 = "/Dev1/Port0/line0:31";

// The sample frequency of the output channel

double DOSampleFreqHz = 10000.0;

protected override void Setup()

{

// Subscribe to the NewData event on the spikes input server

NRDataSrv.SpikeSrv.NewData +=

new EventDataSrv<NeuroRighter.DataTypes.SpikeEvent>.

NewDataHandler(SpikeSrv_NewData);

// Setup an digital on demand output line. Make sure that you don’t

// reserve this line through the Hardware Settings GUI in
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// NeuroRighter for digital input or output. Also, make sure that

// double-buffering is disabled.

try

{

// Create and configure tasks. This is unbuffered, on-demand

// output to reduce response latency.

DOTask = new Task("DOTask");

DOTask.DOChannels.CreateChannel(

DOChannel1,

"DOChannel1",

ChannelLineGrouping.OneChannelForAllLines);

DOTask.Timing.SampleTimingType = SampleTimingType.OnDemand;

// Verify tasks and reserve the port and clock lines

DOTask.Control(TaskAction.Verify);

DOTask.Control(TaskAction.Reserve);

// Create and configure writers

DOWriter = new DigitalSingleChannelWriter(DOTask.Stream);

// Clear the port

DOWriter.WriteSingleSamplePort(true, 0);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

// There is no loop function needed when doing closed loops based on

// NewData events. In this case, the NewData Event will trigger the

// NewData Event Handler to react with whatever code you want.

// Here is the NewData event handler:

private void SpikeSrv_NewData

(object sender, NewEventDataEventArgs<SpikeEvent> eArgs)

{

// Is my unit in here? (eArgs automatically contains the new data on

// the spike server. No read is required.)

List<SpikeEvent> unit1Spikes =

eArgs.NewDataBuffer.Buffer.Where(x => x.Unit == units[0]).ToList();

List<SpikeEvent> unit2Spikes =

eArgs.NewDataBuffer.Buffer.Where(x => x.Unit == units[1]).ToList();

// In the case that the first unit spiked

if (unit1Spikes.Count > 0 && unit2Spikes.Count == 0)

{

// Write a digital pulse representing the detected unit and

// the time it occurred

spkSamp =

(uint)unit1Spikes.MaxBy(x => x.SampleIndex).SampleIndex;

WriteDO(units[0]);

numberOfSpikesReactedTo++;

}

// In the case that the second unit spiked
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if (unit1Spikes.Count == 0 && unit2Spikes.Count > 0)

{

// Write a digital pulse representing the detected unit and

// the time it occurred

spkSamp =

(uint)unit2Spikes.MaxBy(x => x.SampleIndex).SampleIndex;

WriteDO(units[1]);

numberOfSpikesReactedTo++;

}

// In the case that both spiked in the new data buffer

if (unit1Spikes.Count > 0 && unit2Spikes.Count > 0)

{

// Write a digital pulse representing the detected unit and

// the time it occurred

uint spkSamp1 =

(uint)unit1Spikes.MaxBy(x => x.SampleIndex).SampleIndex;

uint spkSamp2 =

(uint)unit2Spikes.MaxBy(x => x.SampleIndex).SampleIndex;

uint[] spkSamps = {spkSamp1,spkSamp2};

spkSamp = spkSamps.Max();

WriteDO(units[0] + units[1]);

numberOfSpikesReactedTo++;

}

}

// This method interacts with the NI Card to produce digital pulses

public void WriteDO(int whichUnit)

{

// Write a sample that says which unit fired

DOWriter.WriteSingleSamplePort(true, whichUnit);

// Write a sample that says when the unit fired

DOWriter.WriteSingleSamplePort(true, spkSamp);

// Clear the port

DOWriter.WriteSingleSamplePort(true, 0);

}

// Dispose the National Instruments virtual channel objects

protected override void Cleanup()

{

DOTask.Stop();

DOTask.Dispose();

}

}

}
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A.4.3 Arduino-based real-time loop

/// <summary>

/// This class uses an RS232 serial communication protocol to generate digital

/// pulses using an Arduino micro-controller board in response to spikes produced

/// by particular units. The ascii_response.ino or digital_reaction.ino script

/// must be running on the Arduino prior to executing this protocol.

/// </summary>

// References

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using NeuroRighter.NeuroRighterTask;

using NeuroRighter.DataTypes;

using NeuroRighter.Server;

using System.IO.Ports;

namespace NR_CL_Examples

{

class Arduino_UnitReaction : NRTask

{

// Unit that we will react to with a digital pulse

private int[] units = { 1, 2 };

// I/O variables

private ulong lastSampleRead = 0;

protected EventBuffer<SpikeEvent> newSpikes;

// Serial Port

private SerialPort serialPort1;

// Initialize the plugin

protected override void Setup()

{

try

{

// Serial port object and properties (RS232)

System.ComponentModel.IContainer components

= new System.ComponentModel.Container();

serialPort1 = new SerialPort(components);

serialPort1.PortName = "COM3";

serialPort1.BaudRate = 9600;

serialPort1.Open();

if (!serialPort1.IsOpen)

{

Console.WriteLine("Failed to connect to device.");

return;

}

}

catch (Exception ex)

{
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Console.WriteLine(ex.Message);

}

// Turns on the serial port

serialPort1.DtrEnable = true;

// Callback for text coming back from the Arduino

serialPort1.DataReceived += OnReceived;

// Give it 2 secs to start up the sketch

System.Threading.Thread.Sleep(2000);

Console.WriteLine("Serial-communication established.");

}

protected override void Loop(object sender, EventArgs e)

{

// First, figure out what history of spikes we have

ulong[] spikeTimeRange =

NRDataSrv.SpikeSrv.EstimateAvailableTimeRange();

// Is there any new data yet?

if (spikeTimeRange[1] > lastSampleRead)

{

// Get the number of spikes within the available time range

newSpikes =

NRDataSrv.

SpikeSrv.

ReadFromBuffer(lastSampleRead,spikeTimeRange[1]);

// Update the last sample read

lastSampleRead = spikeTimeRange[1];

}

else

{

return;

}

// Is my unit in here?

List<SpikeEvent> unitGSpikes =

newSpikes.Buffer.Where(x => x.Unit == units[0]).ToList();

List<SpikeEvent> unitTSpikes =

newSpikes.Buffer.Where(x => x.Unit == units[1]).ToList();

for (int i = 0; i < unitGSpikes.Count; i++)

{

// Use the serial port to send a command to the Arduino

serialPort1.Write(new byte[] { 1 }, 0, 1);

}

for (int i = 0; i < unitTSpikes.Count; i++)

{

// Use the serial port to send a command to the Arduino

serialPort1.Write(new byte[] { 2 }, 0, 1);

}
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}

// Callback from Arduino

private void OnReceived(object sender, SerialDataReceivedEventArgs c)

{

try

{

// write out text coming back from the Arduino

Console.Write(serialPort1.ReadExisting());

}

catch (Exception exc)

{

Console.Write(exc.Message);

}

}

// Shut down the serial port on protocol termination

protected override void Cleanup()

{

serialPort1.Close();

}

}

}
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APPENDIX B

CYCLOPS: AN ULTRA-PRECISE, FAST LED DRIVER

Here I provide performance and usage information for the ‘Cyclops’ high-
power LED driver. Additional design information, PCB design files, Ger-
ber files for PCB fabrication, etc. can be found on the following websites:

• https://potterlab.gatech.edu/main/newman/wiki: Hardware and soft-
ware wiki on the Potter lab server.

• https://github.com/jonnew/Cyclops-LED-Driver: The public Cyclops
Driver design repository.

B.1 Circuit Specification

The Cyclops Driver (revision 2, -R2) is a circuit that can drive high power light-

emitting diodes (LEDs). In the context of this thesis work, it has been used primary

for optogenetic stimulation of neurons. However it can be used to drive LEDs for any

application where a fast switching, ultra-stable, high power light source is required

(e.g. fluorescent imaging). The device is designed to source up to 4 amps @ 40 volts,

so a single PCB can drive several high power LEDs in series. The printed circuit

board (PCB) is modular. Multiple PCBs, each driving a particular set of LEDs, can

be stacked on top of one another while sharing a single power supply.

B.1.1 Feedback modes

The main functional component of the device is a feedback assisted, power, enhancement-

mode N-MOSFET. Current is drawn from the source pin of the FET in accordance

with one of two feedback modes: current feedback or auxiliary feedback. In both

cases, the FET acts as a variable resistor which is controlled in inverse relation to
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Figure 56: Schematic of the Cyclops driver circuit. A single input voltage, V REF, is driven
by an external D/A converter. The circuit can be switched between two modes: current feedback and
optical feedback. In current feedback mode, the current supplied to the LED (V CURR) is forced to
follow the V REF signal. In optical feedback mode, the light power emitted from the LED (V PD),
which is measured using a photodiode and converted to a voltage using a transimpedance amplifier, is
forced to follow the reference voltage. Optical feedback ensures that the fluctuating light waveforms
follow V REF even in the face of changing LED temperature.

the gate voltage. The difference between the two feedback modes is in how the gate

voltage is regulated.

• In current feedback mode, the gate voltage is adjusted such that the voltage

drop across the sense resistor (0.2 Ω resistor in Fig. 56) is equal to a user-supplied

reference voltage.

• In auxiliary feedback mode, some external voltage that has a positive and

monotonic relationship with optical power is provided as a feedback signal.

B.1.1.1 Current feedback

Using the circuit in current feedback mode ensures that the forward diode current

across the LED is precisely modulated according the the voltage at the V REF pin.

This configuration is a standard method for driving LEDs because the relationship

217



between current and LED irradiance is smooth and monontonic. This means that

more current through the LED will generate more light power (while staying within

the LED’s absolute maximum ratings, of course). However, the relationship between

current and irradiance is not linear. For most LEDs, it looks like a logarithmic func-

tion. Additionally, the efficiency of the LED is inversely related to its temperature.

So, as the LED operates and heats up, the amount of light it produces drops even

when the current is held constant. The severity of an LED’s temperature dependence

and current/irradiance nonlinearity depend on the type of LED (the semiconductor

used and who made it) and the effectiveness of thermal management. These proper-

ties should be clearly documented in the LED’s data sheet. With a quality LED and

proper thermal management, the effects of temperature and static current/irrandi-

ance nonlinearity are fairly minimal and can be ignored in most circumstances.

B.1.1.2 Optical feedback

When extremely stable, linear control of light power is required, the auxiliary feedback

port can be used to compensate for the temperature dependence and static nonlinear-

ity of the current/irradiance relationship of the LED. For example, when the auxiliary

voltage is supplied by a amplified photodiode that is somewhere indecent to radia-

tion from the LED (Fig. 56), the gate voltage at the FET is adjusted such that the

measured light power matches a DAC-supplied reference voltage. This configuration

is referred to as optical feedback mode. For the experiments in Chapters 3 and 4,

I operated the circuit in optical feedback mode. To measure light power, I used the

PDA36 adjustable transimpedance amplified photodiode from ThorLabs. However, a

custom amplified photodiode can be assembled for a fraction of the price (Wagenaar,

2012).

218

http://www.thorlabs.com/thorProduct.cfm?partNumber=PDA36A


Figure 57: Small signal bandwidth of the Cyclops LED driver. The -3 dB point occurs
at ∼90 kHz.

B.1.2 Performance

The following summary of device performance pertains to optical feedback mode.

All characterizations were carried out using the Thorlabs PDA36 adjustable tran-

simpedance amplified photodiode at a gain of 20 dB (100x) tied to the auxiliary input

of the Cyclops in parallel with a 50 Ohm load while driving a blue XPE LED (Cree

Inc., Durham, NC). The PDA36 has a bandwidth of 1 MHz at this gain/load setting,

which is much faster than the Cyclops. For this reason, the bandwidth measurements

presented here are likely comparable to those for current-feedback mode.

The small-signal bandwidth of the circuit (i.e. the performance not limited by the

current slew rate) is shown in Fig. 57. Fig. 57 indicates that the device is capable of

modulating LED brightness to around 90 kHz before its half-power point. Fig. 58(a)

provides a demonstration of the device for tracking large signal steps. The rise time

for a 5 mW·mm−2 increase in light intensity (at the photodiode) is approximately

10 µs. Note that this is an on-to-on step; a step from off-to-on incurs an additional

delay of ∼50 µs, but a comparable rise time. To achieve this step in light power,

approximately 500 mA needed to be sourced to the LED, indicating an approximate

current slew rate of 50 mA/µs. Fig. 58(b) shows the device driving an LED to follow
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a filtered Guassian waveform, generated by an external DAC, such as those used in

Chapters 3 and 4.
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Figure 58: Step performance and bandwidth of the Cyclops LED driver in optical feed-
back mode. (a) Transient response to a large, 1 millisecond step in light power. V REF was stepped
such that ∼V CURR = 500 mA was required for the measured light power, V PD, to track V REF.
Arrows indicate the step time. Inset figures show the zoomed transient response of three voltage states,
V REF, V PD, and V CURR (see Fig. 56). The rise time of the measured light power is approximately
10 µs. This rise time is determined by the current slew rate of the circuit, which is 50 mA/µs, shown in
the zoomed inset of V CURR. This slew rate is affected by the snubber network preceding the gate of the
N-MOSFET and the reactance of the LED. (b) Performance of the circuit following a filtered Gaussian
random process with mean and standard deviation light intensity of 0.5 and 0.2 mW·mm−2, respectively,
and a time constant of τ = 50 ms. V REF is shown in grey and the measured light power, V PD, is
shown in blue. An amplitude histogram and the corresponding best-fit Gaussian for the processes is
shown to the right. One millisecond snippets of the time series are displayed within the insets so that
the finer temporal aspects of the signals can be viewed. The scale bar refers to these snippets.
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B.2 Building the circuit

The Cyclops-R2 PCB was designed to be low-cost and easy to manufacture. Exclu-

sively, 0.1-inch pitch or greater, through-hole components were used in order make

board construction easy. Below I provide information on constructing and using the

circuit.

B.2.1 Bill of materials

A full bill of materials, excluding the PCB itself, is provided in Table 10. Most of

the components required to construct the circuit can be obtained from Digi-Key. For

the two parts that cannot be ordered from Digi-Key, the number provided in the

‘Digi-Key No.’ column of Table 10 is preceded by a ‘*’, and an alternate supplier is

given parenthetically.

B.2.2 PCB fabrication

I suggest one of two options for PCB fabrication:

1. OSH Park. PCBs can now be ordered directly from OSH Park. They are

available at my shared projects page located here.

2. Advanced Circuits. Advanced Circuits offers a no-minimum-quantity, $33.00

PCB deal for students.

B.3 Tuning the circuit

Before using the driver, several trimpots must be tuned to ensure proper operation.

The following checklist describes a basic setup procedure. These steps can be modified

so long as signals and power supply rails stay within the manufacturer provided

specifications for the ICs on the board and the LED being driven. Fig. 59 provides a

visual reference for the pins, jumpers, and trimmers referred to in these steps.
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Table 10: Bill of materials for the Cyclops driver.

Name Description Part No. Digi-Key No. Quantity

Integrated Circuits

LM324N quad opamp LM324N 296-1391-5-ND 1
317 positive voltage reg LM317AHVT LM317AHVT-ND 1
N-MOSTFET n-channel power FET FQP30N06L FQP30N06L-ND 1
REF02Z prec. voltage ref REF02CPZ REF02CPZ-ND 1

Passive Components

REG ADJ 5K Trimmer PV36P103C01B00 490-2869-ND 1
REF ADJ, I MEAS K,
CTL K 10K Trimmer PV36P103C01B00 490-2856-ND 3
R CURR resistor, 0.2 ohm, 1% PAC500002007FAC000 PPC5D.20CT-ND 1
R8 resistor, 120 ohm PR01000101200JR500 PPC120W-1CT-ND 1
R10 resistor, 240 ohm PR01000102400JR500 PPC240W-1CT-ND 1
R12 resistor, 470 ohm PR01000104700JR500 PPC470W-1CT-ND 1
R9 resistor, 1 kohm PR01000101001JR500 PPC1.0KW-1CT-ND 1
R2 resistor, 1.5 kohm PR01000101501JR500 PPC1.5KW-1CT-ND 1
R3,4 resistor, 10 kohm PR01000101002JR500 PPC10KW-1CT-ND 2
C2,4,6,7 capacitor, 0.1 uF RDEF51H104Z0K1C03B 490-5401-ND 4
C3,5 capacitor, 1 uF ECA-1HM010 P5174-ND 2
C8 capacitor, 10 uF ECA-1CM100 P5134-ND 1
ON On/Off LED, 20 mA LTL1CHTBK4 160-1602-ND 1
N.A. 5A fuse, blade 0891005.NXS F5927-ND 1
N.A. 2A fuse, blade 0891002.NXT F3675-ND 1

Electro-mechanical

FUSE fuse holder 3557-2 3557-2K-ND 1
N.A. TO-220 heat sink 507002B00000G HS112-ND 2
TEST ST3P through hole A27AV A27AW-ND 1
CURR/AUX SPDT right angle A12AH A12AH-ND 1
J3-6 2 pos. jumper header 87224-2 A26543-ND 4
J1,2 2X3 pos. jumper header 87227-3 A26569-ND 2
V IN1 red banana tip jack 05-0752-001 J109-ND 1
N.A. red banana tip plug 105-0302-001 J103-ND 1
LED+ yellow banana tip jack 105-0757-001 J113-ND 1
N.A. yellow banana tip plug 105-0307-001 ∗530-105-0307-1(mouser) 1
+12V white banana tip jack 105-0751-001 J108-ND 1
N.A. white banana tip plug 105-0301-001 J300-ND 1
GND1,2 LED- black banana tip jack 105-0753-001 J110-ND 3
N.A. black banana tip plug 105-0303-001 J104-ND 3
POW2 2 pos. screw term (pow) 282834-2 A98333-ND 1
EXT CTL K 3 pos. screw term (pot) 282834-3 A98334-ND 1
LED OUT 4 pos. screw term (out) 282834-4 A98335-ND 1
I/O BLOCK 5 pos. screw term (in) 282834-5 A98336-ND 1
V CTL, V CURR, V REF,
V AUX BNC connector 50 Ohm 1-1634613-0 A97554-ND 4
N.A. 20 mm standoff, 4-40 8799 8799K-ND 4
N.A 2X4 DIP socket 1-390261-2 A100204-ND 1
N.A. 2X7 DIP socket 1-390261-3 A100205-ND 1
POW1, MECH1,2,3 4 pos. power header ESQ-102-24-G-D ∗ESQ-102-24-G-D (samtec) 4

Power Supply

N.A. HD48-3-AG 48 volt, 3 amp, linear 179-2335-ND 1
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Figure 59: Cyclops LED driver pinout.

1. Obtain a power supply which can source at least 1 amp at 15 volts. You can

use a switching supply, since the current sourced to the LED is regulated.

2. Obtain a multimeter capable of measuring resistance and DC voltage.

3. Tune the LM317 voltage regulator output to around 12 VDC.

• Put your multimeter in DC voltage measurement mode.

• Tie the negative probe to ground and the positive probe to the positive

lead (either the tip-jack or screw terminal) of V REG.

• Provide power (>=15V) to the POWER terminals using either the tip-jack

connectors or the screw terminals

• Examine the voltage at V REG. Turn the REG ADJ trimpot until the

measured voltage is ∼12 VDC.

• Note that V REG is made available as an output on the PCB, and therefore

can be used to drive external boards, fans, etc so long as <1 amp is drawn
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and sufficient current headroom is provided for LED operation.

4. Adjust the voltage reference level, V REF. V REF is an on-board reference

voltage for the TEST switch. It serves the purpose of the V CTL signal when

the TEST switch is engaged without needing an external (e.g. DAC-supplied)

source.

• Put your multimeter in DC voltage measurement mode.

• Tie the negative probe to ground and the positive probe to the TP 5V test

point, which located between the V CURR BNC connector and the TEST

switch.

• Examine the voltage at TP 5V. Turn the REF ADJ trimpot until the

measured voltage is 5.00 VDC.

5. Next we must ensure that upon the first test of the LED driver, it will not

source too much current to the LED and destroy it. The conversion from the V -

CTL input to the current through the LED, assuming the circuit is functioning

properly, is ILED (Amps)= V CURR (Volts) = V REF (Volts) = CTL Gain ∗

V CTL (Volts). V CURR is the measured current, and V REF is the desired

current level. The CTL Gain trimpot scales signals from the V CTL pin, which

are 0-5 volts, into a lower range so that the circuit does not fry the LED. For

instance, if a 5 volt TTL pulse is applied to V CTL, and CTL GAIN is set to

1/5, then 1 amp will be sourced to the LED.

• Put your multimeter in DC voltage measurement mode.

• Use a BNC converter to tie the multimeter input to the V REF output

BNC connector.

• The circuit operates under the assumption that a the maximal value of

V CTL is 5 volts. This makes it suitable for being driven by a TTL
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line if pulsed stimuli are required. For this reason, we can examine the

current that will be sourced to an LED by engaging the TEST switch and

measuring the resulting scaled voltage, V REF with our multimeter

• To start, adjust the CTL GAIN trimpot until the measured voltage is∼200

mV, which will correspond to 200 mA sourced to the LED.

6. Test the LED.

• Obtain a high power LED. Ensure that it can handle the 200 mA current

that we are about to supply to it. Tie its cathode to LED+ and anode

to LED-, respectively, using either the tip-jack connector or the screw

terminal. Make sure the LED has adequate thermal management. Consult

the LED’s data sheet for recommended thermal management options.

• Ensure that the CURR/AUX switch is pointed toward CURR. This means

that the circuit will used current feedback when regulating the current

supplied to the LED. If the device is left in AUX mode, and there is a high

impedance at the V AUX input (e.g. nothing is plugged in), the circuit

will appear not to function.

• Flip the TEST switch and the LED will turn on, with 200 mA flowing

across the diode. Don’t look directly at the LED.

7. Now, time-varying input, from 0-5 volts, can be tied to the V CTL pin to drive

the LED.
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APPENDIX C

A SERVO-CONTROLLED PELTIER HEATER/COOLER

FOR REGULATING CULTURE TEMPERATURE

My thesis work often involved MEA recordings lasting many hours. It was
important to precisely regulate the culture temperature over the course of
these long experiments. In our lab, MEA recordings are obtained from a
60-channel MEA amplifier, which is located within a culturing incubator.
The amplifier can dissipate substantial amounts of heat, especially dur-
ing electrical stimulation. Therefore the culture must be actively cooled
during long-term recordings to prevent medium evaporation and resultant
increases in medium osmolarity. To solve this problem, our lab has pre-
viously used Peltier regulators to control the amplifier’s temperature. I
improved upon the lab’s thermal regulator design by incorporating a servo-
controller to precisely regulate the culture’s temperature even during very
long epochs of electrical stimulation. Here I describe this system.

C.1 Design

The Peltier temperature regulator used in my experiments is modified from a design

introduced by Daniel Wagenaar in his PhD dissertation (Wagenaar, 2006). A mechan-

ical drawing and photographs of the finished device are shown in Figs. 60 and 61, re-

spectively. The device consists of two copper plates separated by a flat thermoelectric

Peltier heater/cooler. Depending on the direction of current flow through the Peltier

device, heat will be pumped from the UPPER PLATE to the LOWER PLATE or

vice-versa, allowing bidirectional temperature control, which is not available using

the heater integrated into the 60-channel MEA amplifier (MEA1060-Up, Multichan-

nel Systems, Germany). The copper plates are held together using Teflon bolts in

order to minimize passive thermal coupling. During use, the MEA amplifier sits atop

the UPPER PLATE, which draws heat to the LOWER PLATE where it is dissipated
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from a passive heat sink. The whole assembly is stored in a culturing incubator. I have

also created a secondary version of this device that provides a trans-illumination port

and mounting points for a Köhler illuminator following straightforward modifications

of the design presented here (Fig. 33(a)).

Thus far, the design is essentially identical to Daniel’s original version of the

device. However, in Daniel’s device, the Peltier module was driven by an external

power supply set to deliver a constant current during operation. I found that dur-

ing long experiments, especially those involving a lot of electrical stimulation (e.g.

Fig. 10), a constant drive current did not provided adequate temperature regulation

over the duration of the experiment, and condensation would often form on the cul-

turing lid (Potter and DeMarse, 2001). For this reason, I modified Daniel’s design

by adding a servo-controller that regulated current to the Peltier device in order to

precisely control the temperature of the MEA amplifier.

This system used an MOT7000 precision temperature controller (Modular One

Technology, Parker, TX; Fig. 61), which was integrated into a MOT700-EVM eval-

uation board. Essentially, this device is a bipolar constant current source with an

integrated PID controller. The PID controller compares an internally supplied ref-

erence voltage to an external temperature measurement obtained from a thermistor,

which is implanted in the UPPER PLATE. Current is sourced to the Peltier module

such that the difference between the measured and reference voltages is minimized.

This device provides several outputs, such as the instantaneous current supplied to the

Peltier module, a temperature over/under alarm, and the temperature measurement,

which can be monitored or recorded during a long-term experiment.
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Figure 60: Mechanical drawing of the Peltier temperature regulator’s basic components.
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Figure 61: The assembled Peltier temperature regulator.

C.2 Assembly

The device can be assembled in an hour or so. The required tools are as follows:

• Bandsaw

• Drill Press

• Bit set (ANSI)

• Tap Set (ANSI)

• Deburring tool

• Metal file

• Dremel tool with rough sandpaper attachment

• Spirit level

To assemble the device, follow the steps below while referring to Figs. 60 and 61 along

with Table 11.

1. Cut the copper plate into two 6 in. square pieces using a bandsaw. Make sure

to use a fence on bandsaw table. File the sharp copper edges until rounded.

File only against the file grain; going in both directions dulls the file.
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2. Mark hole placement on the UPPER PLATE as per Fig. 60. Drill the holes

using a drill press making sure to use a vice which is secured to the drill press

stage. The drill speed should be 100-200 surface feet per minute (SFM) for

copper. Note that this speed is dependent on the diameter of your drill bit

according to

Spindle speed (RPM) =
SFM

1
12
× π × tool diameter (in.)

. (77)

Plunge the bit slowly, making sure to clear debris using compressed air. Deburr

the holes with a deburring tool. Countersink the holes on the UPPER PLATE

to accommodate the flat head machine screws such that the amplifier will make

flush contact with the UPPER PLATE.

3. Drill a small pocket into the bottom of the UPPER PLATE that can accom-

modate the thermistor. The precise location of this pocket is not important.

However, moving it closer to the Peltier module will result in more stable PID

control loop.

4. Lay the LOWER PLATE flush over the UPPER PLATE and clamp both to-

gether in a square vise. Mark hole placement on the UPPER PLATE using the

pre-drilled holes in LOWER PLATE as a guide. Drill these holes with the drill

press, deburr, and tap if necessary.

5. If RUBBER FEET need to be cut, do so with a bandsaw or hack saw whist

being careful not to lose your fingers. For my device, I used standard styrene-

butadiene rubber stoppers with pre-drilled center holes.

6. Apply thermal grease to both sides of the Peltier module and press onto the

LOWER PLATE between the four holes at the front. When the plate is viewed

from the rear, the positive lead of the Peltier module should be on the right of

LOWER PLATE. Sandwich the module between the LOWER PLATE and the
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UPPER PLATE using the nylon bolts. If the nylon bolts project above the top

surface of the UPPER PLATE, remove this excess material with a Dremel tool

such that the screws are flush with the top of the UPPER PLATE.

7. Mount the larger RUBBER FEET onto the UPPER PLATE using the machine

screws. Make sure the top surface of the screws is flush with the UPPER

PLATE via proper countersinking. Attach the smaller RUBBER FEET to the

LOWER PLATE using 1/4”-20 X 1” bolts. Use a spirit level to make sure

the UPPER PLATE is approximate horizontal. If the device is not level, use

washers between the RUBBER FEET and the PLATES to make adjustments

where needed.

8. Apply thermal adhesive to the back of the the passive heat sink and press onto

the LOWER PLATE as shown in Fig. 60. Make sure that there is flush surface

contact between the heat sink and the copper plate.

9. Mount the MOT700-EVM onto the LOWER PLATE using 4 aluminum stand-

offs. The MOT700-EVM should be positioned over the passive heat sink (Fig. 61).

Finally, using thermal adhesive, glue a 10 kΩ negative temperature coefficient

(NTC) thermistor into the small pocket previously drilled into the bottom of

the UPPER PLATE. After the glue has dried, tie the thermistor’s anode and

cathode to the appropriate screw terminals on the MOT700-EVM board. The

MOT700-EVM board should be powered from a 3.3-5V benchtop supply. For

instructions on adjusting the temperature set-point and tuning the circuit, refer

to the MOT700-EVM user manual.
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Table 11: Bill of materials for the Peltier temperature regulator.

Name Description Supplier Part No. Quantity

Mechanical

Copper plate Copper alloy 110, 1/4” T., 6” W., 1’ L. McMaster-Carr 8964K422 1
Nylon bolts Nylon cap screw 1/4”-20, 3/4” L. McMaster-Carr 91244A140 4
4-40 bolts Socket head cap screw 4-40, 3/4” L. McMaster-Carr 91251A113 4
4-40 nuts Hex nut 4-40 thread size, 1/4” W., 3/32” H. McMaster-Carr 90257A005 2
Steel bolts Socket head cap screw 1/4”-20 Thread, 1” L. McMaster-Carr 91251A542 2
Machine screw Flat head machine screw 1/4”-20 Thread, 3/4” L. McMaster-Carr 91500A540 4
PCB standoff Hex standoff, male/female, 4-40 Digi-Key 8412K-ND 4
Thermal grease Silicon thermal dielectric compound Digi-Key 473-1097-ND 1
Thermal adhesive Arctic Silver arctic alumina Newegg AATA-5G 1
Heat sink Rectangular alu. heat sink Digi-Key 102-1489-ND 1

Electrical

Peltier module 40 mm L., 40 mm W., 4 mm H., 6.0 A Digi-Key 102-1678-ND 1
Peltier driver MOT7000 evaluation board Modular One MOT700-EVM 1
Thermistor 10 kΩ NTC Thermistor Digi-Key 495-2142-ND 1

C.3 Performance

To measure the device’s performance, I filled the culturing well of an old MEA with

phosphate buffered saline (PBS) and mounted the MEA in a 60-channel amplifier.

I then placed the amplifier on the Peltier regulator, which was contained within

a culturing incubator regulated to 35◦C. I used the Peltier device to regulate the

powered amplifier’s temperature over a 1-hour time period. I recorded the Peltier

module drive current and the UPPER PLATE temperature, which were provided by

the MOT700-EVM, using NeuroRighter’s auxiliary analog input lines. Additionally,

I used a secondary 10 kΩ NTC thermistor, which was submerged in the saline bath in

the culturing chamber, to measure the PBS temperature. To convert the thermistor’s

temperature to a voltage, I used a Warner Instruments TM-3 thermistor converter

to obtain a 0.1 V/◦C temperature measurement. Fig. 62 shows these measurements

over a 1-hour regulation period.

There was an oscillation in the control loop, which is apparent in the measurements

of the Peltier drive current and the UPPER PLATE temperature (Fig. 62(Middle,

Bottom)). This indicates that the PID control loop is likely unstable due to the phase

shift between thermal actuation by the Peltier module and the measurement at the
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Figure 62: Culture temperature regulation over a 1-hour time period. Top, Temperature
of the culturing medium and, Middle, the UPPER PLATE over a 1-hour time period. Bottom, Drive
current supplied to the Peltier module.

thermistor, which is introduced by the copper plate. However, I found that the large

thermal inertia of the copper plate smoothed this oscillation and provided worst-case

temperature jitter of ∼ 0.2 ◦C within the PBS (Fig. 62 (Top)). To stabilize the control

loop, the thermistor could be moved closer to the Peltier module. However, I found

the performance of the device adequate for my experiments because no condensation

formed on the culturing lid.
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Fiscella, M., Farrow, K., Jones, I.L., Jäckel, D., Müller, J., Frey, U., et al. (2012).
Recording from Defined Populations of Retinal Ganglion Cells Using a High-Density
CMOS-Integrated Microelectrode Array with Real-Time Switchable Electrode Se-
lection. J. Neurosci. Meth., 211:103–113.

Friedberg, M., Lee, S., and Ebner, F. (1999). Modulation of receptive field properties
of thalamic somatosensory neurons by the depth of anesthesia. J. Neurophysiol.,
81:2243–2252.

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn. Sci., 9:474–480.
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