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Abstract

In some otherwise attractive formalisms, it can be difficult or even impossible
to specify progress in such a way that a component of a distributed system can
be proved correct independent of its environment. This problem arises because
the nested dependencies between the component and its environment cannot be
conveniently expressed in the formalism. A typical example is a communication
protocol, which is supposed to provide reliable data transfer even over channels
that are unboundedly lossy: the channels only deliver messages if the protocol
transmits them often enough, while the protocol only guarantees reliable service if
the channels deliver sufliciently many messages. This paper investigates the extent
to which such progress specifications can be dealt with using predicate calculus and
a single temporal operator (leads-to) having a simple proof theory. It turns out that
under the proper semantic interpretation, many progress specifications expressing
complex dependences can be represented using certain boolean combinations of
leads-to properties. By adding two simple inference rules to an existing proof
theory, we obtain a (relatively) complete theory for a large class of conditional
progress properties, without the complexity of the full temporal logic; such a
theory can be used with various compositional specification formalisms. Based
on the results, an approach to specification of protocol progress is outlined and
illustrated with an example.
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1 Introduction

Temporal logic is a widely-studied tool for reasoning about concurrent and reactive systems.
Powerful theories have been developed, which allow very general properties of such systems
to be specified and verified [14]. As a practical matter, however, the more expressive the
specification language, the more complex is the logical machinery required to prove that a
program satisfies a specification. Theories like UNITY [7], which feature a small, elegant
proof system, have proven quite useful for reasoning about all kinds of distributed algorithms
and programs [11, 12, 13, 18]. However, when it comes to specifying certain kinds of progress
properties, these systems are sometimes inadequate because they trade expressive power for
a simpler proof mechanism.

The progress specification of a distributed program component defines what it may be
relied upon to do. For example, consider a protocol implementing a reliable message-stream
service over unreliable channels. The typical progress specification for such a protocol requires
that every message sent be eventually received. However, that specification cannot be satisfied
by any protocol alone: the channels must not be “broken,” i.e. they must not continually lose
data. Thus, the requirement that every message sent be received constrains both the protocol
and the underlying channels.

It is desirable to separate the protocol’s progress specification from that of the channels,
so that the protocol can be designed and implemented separately. One way to accomplish
this is to condition the protocol’s progress on channel progress: if the channels satisfy X, the
protocol satisfies Y, where X is the underlying channels’ progress specification, and Y says
that every message sent is delivered. However, in many cases X will itself be in the form
of a conditional. For example, a common specification of an unboundedly lossy channel says
“any packet sent infinitely often will be received infinitely often.” In this case, X in the above
specification would have the form “If the user (protocol) satisfies P, the channel will satisfy
@2, where P says the packet is transmitted infinitely often, and () says it is received infinitely
often. Thus the natural form of the protocol’s progress specification is a nested conditional
(P = Q) =Y. We would like to have a formalism that allows the protocol to be verified with
respect to such specifications, completely independently of the channels. Ideally, it should
also be compositional, allowing the immediate conclusion that the composite of protocol and
channels satisfies Y if P = () has been proved of the channels.

While UNITY admits a form of conditional property, nested dependencies like (P = Q) =
Y are not admitted in the specification languages of many of the “streamlined” formalisms,
including UNITY. Thus it becomes necessary to employ various tricks when specifying pro-
tocol progress using such formalisms. A common approach is to introduce a special proof
rule dealing with messages and channels, and then use the stronger Y as the protocol spec-
ification [7, 11, 19]. Such ad hoc approaches work, but showing that the extra rule is valid
for a particular channel must be done outside the system. Moreover, the approach may not
generalize to other instances of progress dependency.

Another approach is to introduce the full generality of temporal logic, admitting arbitrary
combinations of whatever temporal operators are used [14]. This can yield a very powerful
specification language, but with a corresponding increase in the size and complexity of the
proof system. For practical applications, we would like to restrict the size of the formal
mechanism to be comparable to, say, a medium-sized programming language.



conditional rules (z~y)=(p~q)
closure rules P g
program logic p ensures ¢, p unless q
predicate calculus [p]

Figure 1: Layers of Logic

This paper considers progress specifications constructed using a single temporal operator,
leads-to. We show that a large class of progress specifications, including those with nested
dependencies as above, can be represented using sets of leads-to properties of a certain simple
form. The advantage of this approach is that this additional power comes almost for free:
the proof theory, which is sound and (under certain assumptions) complete, is essentially the
UNITY proof theory for leads-to with a different semantic interpretation of conditional prop-
erties, plus the predicate calculus. These results support an approach in which a progress
specification is first written down in a natural form as a boolean combination of leads-to
properties, and then transformed into an equivalent specification in a form that is provable.
The approach is intended for use with a particular compositional theory of module specifica-
tions [3, 5], but it can be applied with other, similar theories, as well.

The rest of the paper is organized as follows. In the next section we describe the semantic
model and the basic proof theory for leads-to properties. In Section 3 we introduce two addi-
tional inference rules, and show that the resulting extended theory is sound and, under certain
assumptions, complete, with respect to conditional progress properties. Section 4 introduces
an example showing how such properties can be used to specify progress for a communication
protocol that uses lossy channels. Section 5 shows how a large class of properties can be trans-
formed, using predicate calculus, into a provable form. Section 6 applies such transformations
to the example of Section 4, and shows how the top-level progress property can be derived
from the specifications of the protocol and the underlying channels. Section 7 concludes the
paper with some discussion, including an outline of related work.

2 Foundations

The semantics used here is pretty standard for (individual) reactive systems: a program! is

viewed as a generator of behaviors, which are represented as sequences of states. An abstract
specification defines a temporal predicate, i.e., a boolean function on such sequences of states.
A given program satisfies a given abstract specification if and only if each of the program’s
possible behaviors satisfies the temporal predicate.

We assume a logical mechanism for proving that a program satisfies an abstract specifica-
tion. It is convenient to view this mechanism as having a “layered” structure. Figure 1 shows
this structure, and an example of the kind of conclusion that can be proved using each layer.
The foundation is the predicate calculus, by which we reason about boolean functions on the
state space; predicates are the basic building blocks of specifications. The next layer forms
the interface between the program and the abstract specification, by allowing certain “basis”

'The term “program” should be understood throughout to mean “program or concrete specfication”, i.e. the
object to be verified with respect to some abstract specification.
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Symbol or Expression Meaning

g, h k program states
p, b,z p etc. state predicates
P.g value of p at state g
[p] p.g = true for every g
w sequence of states (behavior)
P,Q,R simple leads-to properties, like p~» ¢
XY composite leads-to properties,
like ((p~ q) V (z~y)) A (r~b)
[X] every behavior satisfies X
OFP P is derivable from hypotheses ©
P P is provable without hypotheses
a, B ordinal numbers
m,n predicate indices (natural numbers)

Table 1: Notational Conventions

properties (ensures and unless) to be proved from the program itself. On top of this program
logic is a layer of “closure rules” allowing leads-to properties to be derived from basis proper-
ties and other leads-to properties. The idea is that leads-to properties are more abstract than
basis properties, and are used in formulating abstract specifications. The main result of this
paper shows that under certain conditions it is possible to add a simple top layer —consisting
of two additional rules— to deal with conditional progress properties, and thereby enable a
large class of conditional progress properties to be verified.

In the sequel, we follow some typographical conventions intended to aid the reader in
parsing the rather complex expressions that arise. Different letters and typefaces are used to
represent different types, as summarized in Table 1.

2.1 States, Transitions and Fairness

In our model, a program defines: a stale space, which is the cartesian product of the ranges
of all of its state variables; a transition relation (set of pairs of states) representing the pos-
sible state changes that can occur during execution of the program; and an initial condition.
Throughout this paper the initial condition is assumed to be true; this assumption simplifies
the presentation, but can be relaxed by standard techniques [17]. The transition relation is
not necessarily irreflexive, i.e. transitions from a state to itself are permitted. In what follows,
we consider a fixed program, and variables g, h and k range over its individual states.

A segment is a finite path through the state space as defined by the transition relation.
More precisely, the state space, initial condition, and transition relation define a set of segments
as follows:

e Every state is a segment.

e If there is a transition from the last state of one segment to the first state of another,
the concatenation of the two segments is a segment, defined in the obvious way.



The existence of a segment whose first state is g and whose last state is h represents the
possibility of a (possibly empty) sequence of state transitions taking the system from state g
to state h. We say h is reachable from g in this case.

A nonempty subset of the set of all segments are designated as (locally) fair. The precise
connection between the program and the set of fair segments is irrelevant here and is left
unspecified.? If there exists a fair segment whose first state is g and whose last state is h, we
say h is fairly reachable from g.

A behavior is any infinite sequence obtainable by concatenating infinitely many fair seg-
ments with a segment beginning with an initial state. Behaviors are denoted by roman letters
from the end of the alphabet, e.g. w.

The following statements summarize the characteristics of the semantics that are required
for later results (in particular for Lemma 2).

A0 The concatenation of a fair segment and a segment is a fair segment.

A1 The set of behaviors of the program contains exactly the infinite sequences that can be
constructed inductively by beginning with an initial state and iteratively concatenating
a fair segment with it.

A2 The set of states reachable from any state is countable.

2.2 Predicates

For reasoning about state predicates, we use the predicate calculus of Dijkstra and Scholl-
ten [8]. Function (or predicate) application is represented by an infix period, which has the
highest binding power. Universal and existential quantification are rendered as (Vm : r.m :
p.m) and (3m : r.m : ¢.m). These are equivalent to (Vm::r.m = p.m) and (Im:r.m A p.m)
respectively. An omitted range is understood to be true.

The syntactic precedence of the boolean operators used in this paper is as follows (most
binding at left; symbols grouped together in parentheses have the same precedence):

™ (/\7 \/)7 =, =

In later sections the predicate calculus will be used with temporal predicates as well as state
predicates. The boolean operator symbols will be overloaded and used with both temporal
predicates and state predicates. Where the operators appear more than once, with operands
of different types, liberal use of brackets will be made to avoid parsing ambiguity. However,
to avoid too many parentheses, we adopt the convention that boolean operators by default
bind more tightly than ~+; thus p~» ¢V r is parsed as p~ (¢ V r).

2.3 Temporal Predicates

Both safety and progress properties can be specified using temporal predicates, i.e. boolean
functions on (infinite) sequences of states. A program is said to satisfy the property repre-
sented by a temporal predicate if and only if the predicate is true for each of its behaviors. As
a shorthand for universal quantification over the behavior set of the program, we introduce

?Intuitively, a segment would be designated fair if it corresponds to a sequence of transitions that includes a
transition attributable to certain program components or statements.



the double square brackets: [X] means that the property X is satisfied by every behavior of
the (fixed) program.

Temporal predicates are constructed from state predicates using temporal operators; the
only temporal operators actually used in this paper are unless and ~». For state predicates p
and ¢, a sequence satisfies p unless ¢ iff® for every pair of adjacent states g, h in the sequence,

(pA-q).g= (pVg).h

Because every pair of adjacent states in a behavior is a transition, it is not difficult to see that
[p unless ¢] holds if and only if every state transition satisfies (g, h) the above condition.

A sequence satisfies the leads-to property p~> ¢ iff every (p A —¢)-state in the sequence is
followed by a g-state. For a given program, we say a leads-to property p~» ¢ is persistent iff
[p unless q]. The importance of this property is that a given behavior satisfies a persistent
leads-to property p~~ ¢ if and only if it has an infinite suffix containing only (p A —¢)-states.

The semantics of boolean combinations of leads-to properties are defined in the usual way:
a sequence satisfies (p~ ¢) A (z ~ y) iff it satisfies both p~ ¢ and 2~ y; (p~ q) V (x ~ y)
is satisfied iff either p ~» ¢ or @ ~ y is satisfied; —(p~ q) is satisfied iff p~+ ¢ is not; and a
sequence satisfies p~» ¢ = = ~ y iff either p~~+ ¢ is not satisfied or z ~ y is satisfied.

The following properties follow from the foregoing definitions:

[(p~r)A(r~q) = (p~q)] (1
[(Ym:pr~q) = ((Fm:p.m)~ q)] (2
l[q=r]=[p~q) = (p~7)] (3
[(p~bVr)A(b~q) = (p~qVrT)] (4

[r unless b] = [(p~¢q) = (pAr~ (gAr)Vb)] (5

' e e e e

For any state function M ranging over a set that is well-founded under an ordering <, we
have also the following;:

[(VkupAM=k ~ (pAM<k)Vq) = (p~q)] (6)

2.4 Program Logic

The next level of the logic enables the derivation of properties from the program itself. We
assume that a mechanism exists through which two types of properties can be proved, unless
and ensures. Well-known examples of such logics exist [7, 11]. We write F p unless ¢ and
F p ensures g to mean that these properties are provable for the given program and particular
p and g. We do not define ensures here; we require only that for any predicates p and ¢,

F p ensures ¢ = [p~ q].

2.5 Leads-to Logic

Leads-to properties are proved in the classical deductive manner, by applying inference rules
to other properties which have already been proved, postulated, or assumed. For a given
(fixed) program, we write © - p~» ¢ to indicate that p~ ¢ is derivable from the properties

3Throughout this paper, “iff” is used with the meaning “defined to be equivalent to”.



O p ensures ¢ OFp~r, OFr~y

OFp~yg

(Promotion) (Transitivity)

OFp~yq

(Vm:0OF p,~q)
OF3m:py)~q

OFp~q, brunlessb
OFpAr~(gAT)Vd

(PSP)

(Disjunction)

Figure 2: Proof rules for leads-to

that can be proved of the program using the program logic plus the set © of hypothesis leads-
to properties. (This “sequent calculus” form of assertion simplifies the bookkeeping regarding
which assumptions have been discharged. This will be important in the extended logic; at
this level, however, © is always empty.)
An inference rule such as
Obp~p,0Fqg~—¢
OFpAg~p' Ve

has a set of premises (in this case © F p~p’ and © F ¢~ ¢'), and a conclusion (in this
case © F pA g~ p'V¢'). The rule means “if p~ p' is and ¢~ ¢’ are both derivable from
properties provable in the program logic or in the set ©, then pAg~p'V ¢ is also derivable”. A
derivation is a finite sequence of lines, each containing an assertion of the form © F P, along
with the inference rule justifying its introduction, including an indication of the already-
derived assertions that match the premises of the rule. We define a proof to be a derivation
with no undischarged hypotheses (i.e. where O is empty); since the logic so far does not
admit the introduction of hypothesis properties, the only derivations we can construct using
this part of the logic are proofs.

The results that follow do not depend upon the particular inference rules used in the logic;
rather, they depend upon certain properties of the rules. However, for concreteness we present
a definite set of rules, similar to those used in UNITY [7]. The set comprises two kinds of
rules:

e Basis rules, which have leads-to properties in the conclusion but not the premises, and

e (losure rules, which have one or more leads-to properties in the premises and a single
leads-to property in the conclusion.

The rules used in this paper are shown in Figure 2.

Additional closure rules may be proved as metatheorems from the rules in Figure 2 by
induction on the length of the derivation [7]. For example, inference rules corresponding to
properties (3)—(6) can be proved as metatheorems in this way; they are shown in Figure 3.

The main characteristic of the inference rules that we require later is the following:

A3 All closure rules are valid for individual behaviors. That is, any behavior that satisfies
each premise of a rule also satisfies the conclusion.



OFp~yq, [¢g=7] OFp~qgVb, OFg~r

OF por (Cons. Weakening) OF pwr VD (Cancellation)
p = ¢ . (Vk:OFpAM=k ~ (pAM<Ek)V q) .
OF p~g (Implication) OF p—yq (Induction)

Figure 3: Derived Inference Rules

3 Proving Conditional Properties

We are now in a position to show how to add another “layer” on top of the logical mechanism
already described, to support proof of implications of the form P = (), or more generally
(Vm:: P,) = Q. The additional mechanism consists of two additional rules for the introduc-
tion and elimination of sets of leads-to properties as hypotheses in proofs. Throughout this
section, we refer to the proof system for proving simple leads-to properties as the underlying
proof system.

We want to consider sets of hypothesis leads-to properties. The notations {P,} and
{Zm ~ ym } hereafter denote countable sets of persistent leads-to properties. Without loss of
generality, we assume the hypothesis properties are ordered in some fashion, and the range
of m in both notations is understood to be the natural numbers less than the cardinality of
the set. The notation ©, P F ... is an abbreviation for © U P I~ .... Also, when the set of
hypothesis properties is small, we may write the antecedent of an implication as a conjunction
instead of defining a set explicitly (e.g. PAQ = R).

3.1 Inference Rules

We present two rules. One is a basis rule, allowing the introduction of any persistent leads-
to property as a hypothesis (i.e. on the left of the turnstile); the other is a rule allowing
hypotheses to be discharged (by moving them to the right of the turnstile). The rules are
shown in Figure 4. Note that in the Assumption rule, the property z,, ~ y,, on the right
side of the turnstile is implicitly universally quantified over the index m. Leaving such uni-
versal quantifications implicit (or equivalently, introducing universal quantification implicitly
by generalization) is traditional in the UNITY proof theory; the idea is that the index m is a
free variable about which nothing is known —or used in the proof— besides what is implied
by its range.

The addition of a rule for introducing hypotheses renders nontrivial the distinction between
a derivation and a proof. We reserve the latter term for a derivation in which no hypothesis
is undischarged, i.e. in which the set of properties on the left of the turnstile in the last line
is empty. As before, we write - P to indicate that P is provable.

Because we have added a new “basis” rule to the logic, any derived inference rules proved
by induction must be re-proved, taking into account that there are now two base cases. (This
is one reason for restricting hypotheses to persistent leads-to properties: the other basis rule
(Promotion) establishes a persistent leads-to property, and the corresponding unless property
is sometimes used in inductive proofs.) Verification that the proofs go through with the

-~



G)v{xm'\’*ym}'_p'\’*q
OFNVNm:ay,~ ym) = (p~q)

(Vm:: b, unless yy,)
O, {xm~ Ym} F 2m~ Ym

(Assumption) (Discharge)

Figure 4: Inference Rules for Conditional Properties
additional basis rule is left as an excercise for the reader.

3.2 Soundness and Completeness

Next we show that the extended theory is sound and, under certain assumptions, complete.

Lemma 0. Let {z,,~ym } be a countable set of leads-to properties. If {z,, ~ y, } F p~ ¢,
then every behavior satisfying x,, ~ y,, for each m also satisfies p~+ q. a

Proof. The proof is a straightforward induction on the length of the derivation of p~» ¢ from
{Zm ~ Ym}. The closure rules are valid for individual behaviors (A3) so every behavior that
satisfies each leads-to property x,, ~ y,, also satisfies every intermediate property appearing
in the proof, including p -~ q. a

Theorem 1. If there exists a proof of (Vm :: ., ~ ym) = (p~ ¢), then

[(Vm i 2m~ ym) = (P~ q)]
O

Proof. The only way a property containing an implication can be derived is via the discharge
rule. Thus to prove (Ym :: 2, ~ ym) = (p~ ¢), there must be a derivation of p~+ ¢ using
the properties z,, ~ y,,, (and no others) as hypotheses, i.e. {z,, ~ Y} F p~ ¢. The theorem
then follows by Lemma 0. a

We are able to prove completeness only certain assumptions, some of which have already
been mentioned (A0-A3). The following key Lemma introduces the other assumptions.

Lemma 2. Let {z,, ~ yn } be a countable set of leads-to properties such that
(Vm :: [z, unless y,]) (7)
[(Vm::zm~ ym) = (P~ 4] (8)

and assume further that
[p unless ] (9)

Then there exists a state function M mapping (p A —¢)-states to ordinal numbers, and for
each m, and each ordinal number « there exists a predicate u;,, such that the following hold:

[Ym Nup, = M < aV(| (10)

[up, unless M < aV ¢] (11)
[pPAM=a~ @m:uz, Aud)VM<aVd(] (12
O



The proof of Lemma 2 is given in the appendix.

Theorem 3. Let {z,, ~ y;n } be a countable set of leads-to properties, and let p and ¢ be
such that (7-8) hold. Assume further that the underlying logic is complete with respect to (9
12), i.e. proofs of those properties exist if they hold. Then a proof of (VY m::z,,, ~ y) = (p~q)
exists. a

Proof. A derivation of (Vm :: 2, ~ y) = (p~ ¢) is shown below. By Lemma 2, the
hypotheses of the Theorem imply properties (10-12); by the assumption of completeness,
proofs of (9-12) exist. In the derivation, the justification “completeness” is used for the
introduction of these properties. Note that in z,, ~ y,,, m is implicitly universally quantified
over the whole set of assumptions.

0. Ful unless M<aVgq { (11), completeness (all m, a) }
1. {2m~Yn} bt Tm~ Un { Assumption (all m) }
2. {epm~yntb o Aul~ (Ym Aus)VM<aVg {0,1, PSP }
3. {zm~yntbanAul,~M<aVg { 2, (10), Consequence Weakening. }
4. {zpm~yntF@muz, Aul)~M<aVg { 3, Disjunction }
5. {tm~yntbFpAM=a~ @muz, Aul)VM<aVg { (12), completeness }
6. {zpm~UYntFpAM=a~ M<aVgq { 4,5, Cancellation }
7. {zp,~yn} b punlessq { (9), completeness }
8. {zm~yntbFpAM=a~ (pA(M<aVq))Vg {7,6,PSP }
9. {zm~yntFpAM=a ~ (pAM<a)Vyg { 8, pred. calc. }
10. {z,, ~ym}Ep~q {9, induction }
11. E{(Vm iz, ~ ym) = (p~q) { 10, Discharge }

a

4 Conditional Progress Specifications

Let us consider the example of a data transport protocol that uses unreliable channels at
the lower level. The protocol layer consists of two peers, a Sender and a Receiver. Its
environment consists of a Sending User and Receiving User above, and two lossy channels
below. We describe the interfaces in terms of auziliary vartables, which are state variables
introduced to make the specification easier to formulate. They need not be present in the
actual implementation; any information they contain must be recoverable from other (non-
auxiliary) state variables.

The upper interface of the protocol is defined in terms of two auxiliary variables, ins and
outs. Each is a sequence of messages, initially empty. At any time, ins contains the sequence
of all bytes sent by the Sending User, while ouls is the sequence of bytes delivered to the
Receiving User. When the User sends a group of bytes, they are simultaneously appended to
ins; when a group of bytes is delivered to the Receiving User, they are appended to outs. The
number of bytes in a sequence s is denoted by |s|. At any state where |ins| > |outs|, a byte
has been sent but not yet received, and the system is required to make progress. (Because



we are concerned with progress specifications, we will ignore most of the safely aspects of the
specification. The latter would require, for example, that outs be a prefix of ins.)

The lower-level service used by the protocol is modeled by a lossy channel in each direction,
from the Sender to the Receiver and vice versa. These channels are designated sr and rs
respectively. For each channel ¢ € {sr, rs}, the set GG, contains the messages that may be
sent over the channel; we also define two boolean state functions, c-in and c-out, which map
messages in G, to true or false. The function c-in is true for message m € G, at a given state
iff m is being “transmitted” on channel ¢ at that state. When the protocol sends message m
on channel sr, it causes some state change that makes sr-in.m true; after a time, the channel
causes a state change that falsifies sr-in.m. There may be more than one message m such
that c-in.m is true. In a similar way c-out.m indicates that m is being “received” on c.

4.1 Lossy Channel Progress

A lossy channel can lose a message any finite number of times, but if the message is repeatedly
transmitted, it will eventually be delivered. In other words, for any message m, if m is trans-
mitted infinitely often, m is received infinitely often. The leads-to property that corresponds
to “p holds infinitely often” is {rue~+p. We thus arrive at the following progress specifications
for channels sr and rs:

(Vm:m € Gy (true~ sr-in.m) = (true ~ sr-out.m)) (13)

(Vm:m € G : (lrue~ rs-in.m) = (true ~ rs-out.m)) (14)

It is important to note that each leads-to property constrains only the channel, and says
that it need not deliver any message that is transmitted only a finite number of times. It
might seem that this requirement is too weak to be useful, since at any point a protocol will
have transmitted a message only a finite number of times. We shall see, however, that it is
adequate.

4.2 Protocol Progress

The protocol must ensure that for each byte sent (appended to ins), a byte is delivered
(appended to outs). This is expressed by the property

(V7 ::lins| > j~ |outs| > j)

This specification can only be implemented if the underlying channels are reliable. However,
the protocol progress specification should be written in such a way that it can still be satisfied
even if one or both of the underlying channels fails to satisfy its specification. Therefore
the above property should be conditioned on the progress property that the protocol expects
of the channels. Following the convention of leaving an outermost universal quantification
implicit, the resulting specification is:

(Vm :m € Gy, (true~ sr-in.m) = (lrue ~ sr-out.m))
A (Vn:n€G,s: (true~ rs-in.n) = (true~ rs-out.n)) (15)
= |ins| > j~ |outs| > j

10



For conciseness, define the following abbreviations:

R.j = |ins| > j~ |outs| > j
def .
Pm = true~s sr-in.m
def
Q.m = tlrue~ sr-out.m
def .
P'.m = true~s rs-in.m
/ def
Q'm = lrue~ rs-oul.m

Using these abbreviations and omitting ranges, the specification becomes:

(VmzPm=Qm)A(Vn:P.n=Q.n) = Rk (16)

5 Provable Progress Specifications

The specification (16) given above is not in a form that can be proved using the rules given in
Section 3, because of the nested implications. However, it turns out that for a large class of
progress properties, including the one above, it is possible to construct equivalent forms that
are provable in the extended theory. The equivalent properties are derived from the originals
by treating the properties as temporal predicates, and manipulating them using predicate
calculus. For example, a specification of the form

X=Y)=2Z

is propositionally equivalent to
(XVANY = 2)

As in this case, such manipulations may introduce disjunctions of leads-to properties, for
which we have no proof rule. It turns out, however, that any disjunction of persistent leads-to
properties can be replaced by single leads-to property (which also happens to be persistent).
It is also possible to similarly replace finite disjunctions of leads-to properties that are not
persistent with a single leads-to property [6]. For simplicity, we focus here on the case in
which all disjuncts are persistent.

5.1 Disjunctions of Leads-to Properties

The following theorem is the basis for the results that follow in this section.
Theorem 4. If [p unless ¢] and [p’ unless ¢'], then
[(p~a) V' ~d =pAp~qVd)]
a

Proof. For infinite sequence @ and state predicate p, define W, "p (“@ converges to p”) to
mean that w has an infinite suffix in which every state is a p-state. We first observe, for any
p and ¢:

11



1) w A pAg) = (@ p) A (@ 9)
(i) If [p unless q], then any behavior w satisfies p~ ¢ if and only if =(@ 7(p A —q)).
Next we observe that from [p unless ¢] and [p" unless ¢'] follows for any @, p and g:

(iii) [pAp unless ¢V ¢]
Now we calculate:

w satisfies (p~¢q) V (p'~ ¢')
= { definition of Vv }
(w satisfies p~+ q) V (W satisfies p' ~ ¢')
= { Observation (ii) }
=@,/ (pA—q)) V(@ (P A=)
= { DeMorgan’s Law }
(@A ApA=q)) A (@A A=)
= { Observation (i) }
(@ (pA—g AP A=)
— { predicate calculus and observations (ii) and (iii) }
w satisfies p A p'~ ¢V ¢

O

For any persistent leads-to properties P = p~¢q and Q = p'~ ¢, we now define PV Q) def
pAp ~ qV¢q'. We need to show that this operation enjoys the usual properties of disjunction—
e.g., it is idempotent, associative, and monotonic. These properties are necessary to make full
use of implications in a compositional theory. For example, in the protocol specification,
monotonicity is needed to derive the top-level progress specification R.k from the conditional
protocol specification and the channel specifications.

It is immediate from its definition that V for persistent leads-to properties is idempotent
and associative. Moreover, its unit is the leads-to equivalent of “false”, namely true~ false.
For our purposes, the following (weak) form of monotonicity of V suffices:

[P=Q]N[PVR]=[QVR]

An inference rule that states this form of the monotonicity of V (and also serves as a form
of Modus Ponens) is the following:

(Vm:=OFP,VR), OF(Vm:PF,)=Q
OFQVR

(Monotonicity of V)

Proof of Monotonicity. We first observe that ©@ - (Vm :: P,,) = @ holds only if ©,{P,,} -
(. Therefore it is sufficient to prove

(Vm:=0O+F P, VR), 0,{P,} FQ
OFQVR

Letting P, = pm~ pl, and @ = ¢~ ¢', and rewriting the latter rule using the definition of
V, we have:

12



VmuOkF pu Ar~pl V) O {pn~ptFa~¢
OFgAr~dqg vy

For later use, we observe that gAr~+¢'Vr' follows from ¢~ ¢’ using Implication, Transitivity,
and Consequence Weakening.

Now we induct on the length of the derivation of ¢~ ¢’ from © U {p,, ~ p..}. There are
two base cases and three step cases, depending on the rule rule applied to obtain ¢~ ¢’. Our
obligation in each case is to establish ¢ Ar~¢' V' (i.e. (g~ ¢')V (r~71')), using the other
premise of the monotonicity rule, the premises of the rule applied in each step case, and the
inductive hypothesis.

Base (Promotion) In this case g~¢’ follows by Promotion, so we have & ¢ ensures ¢'. Then
g A1~ ¢ Vr'is provable, as we observed above.

Base (Assumption) In the second base case g~ ¢’ is one of the assumptions, i.e. ¢~ ¢ €0
or ¢ = p,, and ¢’ = pl for some m. In either case g Ar~»¢'Vr' again follows as observed
above.

Step (Transitivity) In this step case ¢ ~ ¢’ follows by transitivity from ¢~ b and b~ ¢'.

0. OFpuAr~ p vr { premise of rule being proved (all m) }
1. O, {pn~p.}tFqg~0b { premise of Transitivity }
2. O, {pn~p.tFb~¢ { other premise of Transitivity }
3. OFgAr ~ bvr! { 0,1, Inductive Hypothesis }
4. OFbAT ~ ¢ V71! { 0,2, Ind. Hyp. }
5. b unlesst’ { r~r'is persistent }
6. OFgAr ~ (bAr)VT { 3,5, PSP and pred. calc. }
7. OFgAr~¢g vy { 6,4, Cancellation }

Step (Disjunction) In this case ¢ = (Ji::¢;), and O, {p,, ~pl,} - Ti:1¢;) ~ ¢ follows
from the fact that, for each i, ©,{p,, ~ pl.} F ¢; ~ ¢'. In the following derivation, ¢ is
implicitly universally quantified.

0. OFNmupnAr~p, Vr { premise of rule being proved }
1. O, {pp~p.ttq~¢ { premise of Disjunction rule }
2. OkFgAr~qgvVvry { 0,1, Inductive Hypothesis }
3. OFFiugAry~qgVvr { 2, Disjunction }
4. OFFiug)Ar~gVvr { 3, pred. calc. }

Step (PSP) In this case we have ¢ = (bAz), ¢’ = (' Az) V', and g~ ¢ follows from b~ b,
x unless @', by PSP.

0. OFpuAr~ p v { premise of rule being proved (note: all m) }
1. O,{pm~pn}Fb~0 { premise of PSP }
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2. + x unless a’ { other premise of PSP }
3. OFbAr~bV vy { 0,1, Ind. Hyp. }
4. OFbArAz~((W'Vr')Az)va! {23,PSP }
5. OFbAzAr~ Y Az)Va' v { 4, pred. calc. }

This concludes the induction, and we have thus established the simpler inference rule, from
which the Monotonicity rule follows. a

A simpler form of monotonicity is stated in the following inference rule:

OFPVR, OFP=Q
OFQVR

(Simple Monotonicity)

5.2 Putting Progress Properties in Provable Form

We say a property is in provable form iff it satisfies one of the following conditions:
e It is a simple leads-to property.
o It is of the form (Vm :: P,,) = @, where () and each P, is a simple property.

Using the results of the previous section, we can define a class of progress properties such
that for each member of the class there is an equivalent set of provable-form properties. More
precisely, for any property X in this class, there exists a collection of properties Qq,...QnN
such that each @; is in provable form, and

[X]=[QoAQiNA...AQN]

The right-hand side of the above is equivalent to

[Qol A QI A - AN [QN]

and thus the collection of properties constitutes a specification that is exactly equivalent to
X with respect to the given program.

For a given program, define the class P of progress properties to be the smallest class
satisfying the following conditions:

e For each leads-to property p~» ¢ such that [p unless q]], p~ ¢ is in P.
e If X and Y arein P, then soare X VY, X AY,and X = Y.

Note that P contains properties expressing arbitrarily-nested dependencies like (---(P =
Q) --- = R) = X. However, it can be shown that for every property in P there is an
equivalent specification consisting entirely of provable-form properties.

Theorem 5. For every property X € P, there exists a finite set Wy of properties such
that

(i) each property in Wy is in provable form, and
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(i) any behavior satisfies X if and only if it satisfies every property in Wx.

O

A proof of this result appears in an earlier report [6]. Translating to provable form involves
finding a conjunctive normal form (CNF) equivalent for X'; unfortunately, this may result in
an exponential blowup of the “size” of the property (i.e. the number of occurrences of simple
leads-to properties in the expression defining it).

Because universal quantification distributes over conjunction, we can actually enlarge the
class of properties having provable-form equivalents to include some quantified properties.

Theorem 6. If P, € P for each m, then there exists a set of provable-form properties,
the conjunction of which is equivalent to (¥ m :: Pp,). O

Proof. The set is just the union of the sets of provable-form equivalents for the properties
P,. a

In the next section we apply these results to the example protocol specification introduced
earlier.

6 Example Revisited

Let us consider how the results of the previous section can be applied to the specification
given earlier.

Using the predicate calculus, it is straightforward to show that the specification given in
(16) is equivalent to the following:

( P.mV P .nV Rk
A Qm = P.aVvRE
A Q'n = PmVRE
AN QmAaQ'.n = Rk

(Im,n g
) (17)
) )

Because each leads-to property in the original specification is persistent, we can replace each
disjunction in the above property by a single leads-to property as defined earlier. However, the
resulting property is not in provable form because of the enclosing existential quantification.
That is, the above specification has the general form

[(Fm:X(m, k)]

i.e., for every k, and every behavior W, there exists m such that @ satisfies X (m, k). Our proof
theory gives no way to establish such an assertion. If the message sets G5, and G (i.e. the
ranges of m and n) are finite, (17) is actually a finite disjunction. It is thusin the set P defined
earlier, and has a provable-form equivalent. However, as noted earlier, the transformation to
provable form can result in an exponential blowup in the size of the specification: in this case
the equivalent set contains an implication of the form (Vm : m € G' : Q.m) = - -- for every

subset G’ of Ggr U Gyps.
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A more reasonable approach is Skolemization. The specification (17) is equivalent to one

of the form

Gfu(Vw: X(f(w, k), k)

where f is a function from behaviors and natural numbers to messages. Such a specification
can sometimes be proved constructively by exhibiting a particular function of the appropriate
type, i.e. defining f and then showing that for every & and every behavior w, w satisfies
X(f(w,k),k). However, we must take care in defining f so the specification is provable,
because in general the value of f depends on the entire behavior, which is not visible at any
one state. The key observation in the case of our example is that the value of the Skolem
Sfunction is irrelevant for any behavior in which R.k holds. Operationally speaking, we need
only identify a particular lower-level message for a given behavior so that the protocol can
“blame” the lower-level channels if the higher-level progress specification R.k is not satisfied by
that behavior. We therefore define a state function for each channel, whose value is constant
in some infinite suffix of any behavior that does not satisfy R.k for some k. Fortunately this
is typically not difficult: there is usually some lower-level message that will be transmitted
repeatedly if progress is not made.

For the example, let us assume that auxiliary variables nat. and nzi,.; denote messages
that are transmitted infinitely often if R.k is not satisfied for some k. (That is, nats and
nzt,s act like Skolem functions, but they are functions only of the current state.) The above
specification then becomes

( Pzt v P.onat,s V RE )
( Q.nxty, = Pl.nxt.V Rk )
( Q'.nzt,;, = Pnxt, VR )
( Q.nats NQ'.nat,s = R.k )

A (18)
A

Now we need only replace the disjunctions with elementary leads-to properties in order to have
a provable-form specification. Thanks to the fact that the corresponding wunless-properties
hold for P, P’ and R, this is a valid transformation. The final specification then consists of
the following four properties:

lins| > k ~ sr-in.naty, V rs-in.nzt,s V |outs| > k (19)

(true~ sr-oul.nxty,) = (|ins| > k ~ rs-in.nat, s V |ouls| > k) (20)

(true~ rs-out.nzt,s) = (|ins| > k ~ sr-in.nzt,s, V |outs| > k) (21)

(true~ sr-out.nzty,) A (true~ rs-out.nzt,s) = (|ins| > k ~ |outs| > k) (22)

It remains to show that the desired progress property |ins| > k ~» |outs| > k can be
proved from the above and the channel specifications (13) and (14). The proof follows. To
aid in following the proof, the pattern match required to apply the inference rule is indicated
in each justification.

0. |ins| > k~ sr-oul.nzts. V rs-in.nxt,.s V |outs| > k
p,p' = true, sr-in.nxt g,
{ (13), (19), simple or-mono w/ | ¢, ¢ := true, sr-out.nat, }
r,r' = lins| > k, rs-in.nzt.s V |outs| > k
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1. [ins| > k~ rs-out.nztl,s V sr-in.nxts. V |outs| > k
p,p’ = true, rs-in.nxt .,
{ (14), (19), simple or-mono w/ | gq,¢ = true, rs-out.nt,; }
r,r’ = lins| > k, sr-in.nzls, V |outs| > k
2. |ins| > k-~ rs-in.nat,s V |outs| > k
p,p' 1= true, sr-oul.nzt,,
{ 0, (20), simple or-mono w/ | ¢,¢ :=|ins| > k, rs-in.nat, s V |outs| > k }
r,r' = |ins| > k, rs-in.nzt.s V |outs| > k
3. |ins| > k-~ sr-in.naty, V outs| > k
p,p' = true, rs-oul.nxt
{1, (21), simple or-mono w/ | ¢,q" := |ins > k, sr-in.nzts V |ouls| > k }

r,r' = |ins| > k, sr-in.nats, V |outs| > k
4.  |ins| > k~ rs-out.nzt,s V |outs| > k
p,p' = true, rs-in.nzt
{2, (14), simple or-mono w/ | ¢, ¢ := true, rs-oul.nzt,, }
r,r' = |ins| > k, |outs| > k
5. |ins| > k-~ sr-out.nzts, V |outs| > k
p,p' = lrue, sr-in.nxt ,,
{ 3, (13), simple or-mono w/ | ¢,¢ := true, sr-out.nxts, }

ror' = |ins| > k, |outs| > k
6.  [ins| >k~ |ouls| > k
Po, Py = true, sr-out.nzt s,
p1, P| = true, rs-out.nzl )
q,q = lins| > k,|outs| > k
ror' = |ins| > k,|outs| > k

{ 4, 5, (22), or-mono w/

7 Discussion

7.1 Using Persistent Properties in Specifications

The foregoing results depend in several places on persistent properties being used in specifi-
cations, i.e. that p unless ¢ holds for each leads-to property p ~+ ¢ used. This seems, on the
one hand, a reasonable condition—it suggests that each leads-to property in the specification
is somehow as weak as possible. On the other hand, it can be difficult to satisfy if a progress
requirement p~- ¢ is “distributed”—in the sense that p can only become true at one location
in the system and ¢ can only become true at a different location. In such cases, it may be most
convenient to have either p or ¢ or both be stable (i.e. once true they remain true forever,
as with |ins| > k in the example above); this is because p unless ¢ requires that p be falsified
only while g holds. 1f neither p nor ¢ is stable, satisfying p unless ¢ may impose additional
synchronization requirements in a distributed system in which p~» ¢ is a progress requirement
and p and ¢ are controlled at different locations: once p becomes true, it is necessary to en-
sure that ¢ becomes true. Once p and ¢ are both true, ¢ must remain true until p is falsified;
otherwise the progress obligation is not discharged.
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7.2 Relationship to UNITY Theory

A number of completeness proofs for the UNITY logic have been given in the literature [15,
16, 17, 9]. Althougth the underlying logic described in Section 2 differs in several ways from
the UNITY logic, the differences do not affect completeness.

The most obvious difference is the extra inference rule, PSP (which stands for Progress-
Safety-Progress). This rule is derived as a metatheorem in the standard theory [7]. Thus,
adding it as one of the postulated inference rules does not change the set of leads-to properties
that can be derived for a given program from a given set of assumptions. The reason the rule
is postulated here is that its inductive proof does not go through when properties can be
introduced by assumption: without ensures as a basis, there is no way to derive any kind of
interaction between safety and progress properties.

It should be noted that the additional postulated rule means that inductive proofs of
derived rules have to include an additional “step” case besides Disjunction and Transitivity.
The derived rules shown in Figure 3 (including the rules used in the proof of Lemma 3) are all
provable in this way. However, while the set of derivations of leads-to properties of the new
theory has not changed (and therefore its soundness and completeness is not affected), it is
not immediately clear whether all of the metatheorems that were provable for the old theory
are provable for the new one, although it seems likely that they are.?

Another difference between our theory and UNITY is the explicit treatment of conditional
properties and the semantic interpretation of P = ). In UNITY, the assertion “p~+»¢” means
what is rendered here as - p~» ¢. Conditional properties are formulated as pairs of the form
“Hypothesis: P, Conclusion: @7, where P and () may be unless or ensures properties as well
as — properties. The meaning of a specification with hypothesis z ~» y and conclusion p~»+ ¢
is really (in our notation)®

[z~y] = [p~d]
This means that either there exists a behavior that does not satisfy = ~» y, or every behavior
satisfies p~» ¢. This is weaker than our interpretation, which is

[¢~y=p~d]
The latter specification says something about every behavior, namely that it either does not
satisfy z ~ y or it satisfies p~ ¢.

7.3 Compositionality and Progress

A compositional theory is one allowing both programs and proofs to be composed. In such
a system, properties of programs are preserved under composition with other programs; this
permits proof structure to reflect the modular structure of a composite program. The primary
motivation for introducing conditional properties is so that when a program satisfying, say,
P = () is composed with one satisfying P, we can immediately conclude that ¢ holds in
the composite program, without having to prove it from scratch. The V-monotonicity rule,
proved in Section 5, justifies such a conclusion in a compositional theory.

Obviously the results presented here are of greatest utility in the context of a compositional
theory. The extended theory was developed for use with such a theory of module specifica-
tions [3, 5]. Proving conditional progress is tricky in compositional theories, becuase of the

* At this writing, the Completion rule [7] has not been proved for the new theory.
5We assume here that all properties apply to the same program.
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infinitary nature of progress properties: showing that a system does not satisly a progress
property requires exhibiting an infinite behavior. When two components interact, and one
has a progress specification of the form P = P’ A, while the other has a specification of the
form P = P AR, it is not always valid to conclude that the composite satisfies Q) A R. Abadi
and Lamport [2] have given sufficient semantic conditions for such a conclusion to be valid.
The results of this paper, together with the compositional theory of module specifications
presented elsewhere [5, 4] constitute a theory that satisfies the semantic conditions given by
Abadi and Lamport.

In the theory of Lam and Shankar, on the other hand, such “circular” dependencies are
avoided altogether by requiring the composite to have a certain kind of well-founded structure.
This ensures that some module satisfies its progress requirements unconditionally; progress
can then be proved hierarchically, with each module only depending on those whose progress
has already been proved correct. Using the theory presented here, such restrictions would be
unecessary.

7.4 Related Work

Various examples of problems exhibiting progress dependencies have appeared in the litera-
ture [11, 7, 18]. In some of these, boolean combinations of leads-to properties are used and
proved informally.

Tsay and Bagrodia [20] have shown equivalence between provability of UNITY conditional
properties of the form “Hypothesis: true~+ p Conclusion: true~+¢” and formulas of the form
“0¢p = O0<O¢” in Manna and Pnueli’s temporal logic [14]. They also give a relatively complete
inference rule for properties of this particular, which may be used to specify strong fairness.

Lamport’s Temporal Logic of Actions (TLA) [13] combines the single temporal operator
“0” with two-place predicates (relations) on states to obtain a theory in which programs and
abstract specifications are both defined using the same language, and satisfaction is simply
logical implication. Like UNITY and the theory presented here, TLA is a restricted form of
temporal logic. However, it admits arbitrary temporal formulas constructed using the “0O”
operator (and its dual, “4”), and is thus more powerful than the theory presented here. It also
has a more complex proof system: an axiomatization of the propositional fragment of TLA by
Abadi [1] has 14 axioms and three inference rules, in addition to the underlying propositional
calculus. The comparable portion of the formalism presented here (assuming UNITY as the
underlying program logic layer) has three axioms (the definitions of wp, unless and ensures)
and seven inference rules, in addition to the predicate logic.

7.5 Conclusions

The results presented here suggest the following approach to specification of conditional
progress properties of protocols:

1. Write down the specification in the form X = Y, where X includes all properties
expected of the environment, and Y includes all properties required of the protocol.

2. Try to massage the specification into an equivalent conjunction of provable form leads-
to properties and implications. Whether this is possible depends on the scopes of the
quantifiers appearing in the specification.
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3. If the result is in provable form except for enclosing existential quantifications, replace

existentially-quantified variables with state functions to the extent possible.

This approach is most likely to be useful for specifying and verifying algorithms, as opposed
tmplementations, e.g. of “real” protocols. The latter typically feature timeouts and fixed
bounds on the number of attempts before giving up on delivering a message. In designing and
verifying an algorithm, however, it is better to abstract from such details and characterize the
conditions needed for correctness as precisely and generally as possible.
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Appendix: Proof of Lemma 2

Lemma 2 asserts that for any countable set of properties z,, ~ y,,, the assumptions (7)-(9)
imply the existence of a metric function M (mapping (p A —¢)-states to ordinal numbers) and
a family of predicates u2, (for each index m and ordinal o) satisfying properties (10)—(12). For
convenience, the relevant assumptions about the underlying proof theory are restated here,
along with the main hypotheses of the lemma.

A0 The concatenation of a fair segment and a segment is a fair segment.

A1 The set of behaviors of the program contains exactly the infinite sequences that can be
constructed inductively by beginning with an initial state and iteratively extending the
sequence by concatenating a fair segment to it.

A2 The set of states reachable from any state is countable.

The hypotheses of the Lemma are:

(Vm :: [z, unless y,,]) (7)
[V @m ~ ym) = pr g] (8)
[p unless q] (9)
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where m ranges over some countable set. Our proof obligations are:

[Ym AU, = M<aV (10)
[un unless M<a V q] (11)
[pAM=a~ dm:z, Aul)V M<aVd] (12)

The definitions of M and «$, will follow from what these hypotheses imply about the
structure of the state space itself; in this sense the derivation is “constructive”. However,
our earlier assumption that we are dealing with mathematical objects rather than textual
representations becomes important here: M and u2, may not be representable as well-formed
formulas in any particular language.

To provide some motivation and intuition for the definition of M, consider first the special
case of a single hypothesis = ~» y. In general, if the hypotheses of the Lemma all hold, the
program may have behaviors that begin at (p A —¢)-states and do not contain any g¢-states,
and thus do not satisfy p~+¢. However, we can assert that any such behavior contains only a
finite number of y-states (otherwise it would satisfy z ~ y, contradicting (8)). It follows from
this that no (p A y)-state is fairly reachable from itself except via a g-state, or in other words,
every fair segment that begins and ends with the same (p Ay)-state contains a g-state. In fact,
we can go further. For a particular (p A —¢)-state g, consider any z-state h and y-state k such
that (refer to Figure 5):

e h is fairly reachable from g via a fair segment containing no ¢-state
e k is reachable from h via a segment containing no ¢-state.

We can assert that g ¢s not reachable from k withoul passing through a q-state—otherwise the
loop from g to k via h could be concatenated with itself infinitely many times to construct a
behavior satisfying z ~ y (because y holds infinitely often) but not p~» ¢, violating (8). The
point is that, along a path like the one shown in Figure 5, which goes through an z-state and
then a y-state, some states become reachable only via segments containing q-states. Moreover,
from any such g, some z-state such as h will eventually be reached if a ¢-state is not reached;
otherwise the property z ~ y will always be discharged, and the behavior will violate (8).
In going from the z-state h to the y-state k, something “decreases”, namely the number of
(p A —q)-states reachable via segmenta that do not contain g-states.

Thus we arrive at the intuition behind the metric for the single-hypothesis case: for a
given (p A —g¢)-state, there exists a (possibly transfinite) “upper bound” on the number of fair
segments ending in y-states that can be passed through without encountering a ¢-state.

For the multiple-hypothesis case, the reasoning is somewhat more complicated, but similar.
Again we consider g, and h fairly reachable from g, except that h is an z,,-state for some m
(and possibly more than one). The key idea is that there must be a particular index n such
that there is no y,-state k,,, reachable from h, such that g is reachable from k,,. Otherwise,
for every m, it is possible to go (fairly) back and forth between g and some y,,-state infinitely
often without encountering a g¢-state; in this way we can construct a behavior that satisfies
every hypothesis property but not p~- ¢, again violating (8).
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Figure 5: State reachability limitations

The definition of M begins with the introduction of two reachability relations on individual
states. The relation — (respectively —) denotes reachability (respectively fair reachability)
via a segment (fair segment) containing no g¢-state:

g—h 4f b is reachable from g via a segment containing no g-state

g —h 4l h is reachable from g via a fair segment containing no g¢-state

Note that g — h or g — h hold only if ~¢.g and —¢.h. Also, because an individual state
constitutes a segment, we have

g—8g = —¢g (23)

Next we define two other relations in terms of —3 and —. The relation — holds between
two states when — holds and the latter state satisfies z,, for some m:

g > h def g —hA @m:a,.h)

The other relation is actually a family of relations, one per index (i.e. one per value in the
range of m): —— holds between two states related by — when the latter state satisfies y,,:

g = h def g—h A y,.h

Next we make the key observation that states do not become reachable, only unreachable.

Lemma 7. Let R be any of the relations —, —, =%, and = (for m € W). Then for
any states g, h, k:
g—hAhRk = gRk

O

Proof. If R is — or —, the result is immediate from AO and the fact that none of the
segments contain g-states. For — we observe, for any state k:
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g—hAh 5k
= { definition }
g —hAh - kA@m:z,.k)
= { result for —, already proved }
g > kA@m:a,k)
= { definition }

g 5k
The proof for - is similar. a
Lemma 8. Let R be any of the relations —», —, —» and —», and let v be a state

predicate such that
vg=(Vk:gRk: )

“,oom

where stands for any term. Then [v unless ¢]. O

Proof. We have to show that every transition from a state where v A —q holds either preserves
v or establishes ¢g. Assume g and h are any states such that:

e (g,h) is a transition
o u.g

® ¢.g
® —|q.h
We shall establish v.h.

Because (g, h) is a transition, there exists a segment with g and h as its first and last
states, respectively. Since by hypothesis —¢ holds at both g and h, we have also g — h. By
Lemma 7, we have

(Vk:h Rk=g Rk) (24)

Now we calculate:

v.g
= { definition }
(Vk:gRk:--+)
= { strengthen the range using (24) }
(Vk:hRk:--)
= { definition }
v.h

O

Now we can define M as a function from (p A —¢)-states to ordinal numbers. The definition
is carefully constructed so that a contradiction can be derived from the assumption that M
is not defined at some (p A —g)-state.

M.g def (mina:(Vvh:g 5 h:(3n:z,h: (Vk:h 5 k: Mk<a)): a)
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As discussed above, M can be viewed as an upper bound on the number of “applications” of
hypothesis properties required to force progress to a g-state.
The following property is immediate from the definition of M:

Mg<a={(vh:g > h:(3n:z,.h: (¥Vk:h "5 k: Mk<a))) (25)

Clearly, M.g is defined if the range of the outer quantification is empty, i.e. if there are
no states h such that g — h. At such states, it is not possible to reach a state where any
hypothesis is undischarged without passing through a ¢-state, and the value of M is 0. Also,
M.g is defined if, for every h such that g == h, there is some n such that z,.h is true and no
yn-state is reachable from h without passing through a ¢-state; at such states again M’s value
is 0. Lemma 9 now establishes the definedness of M at a certain set of states, which includes
the above as “base cases”; Lemma 10 then shows that the set includes all (p A —¢)-states.

Lemma 9. M is defined at any g such that
(vh:g 25 h:(3n:az,h: (Yk:h "5 k: Mkis defined))) (26)

O

Proof. Let g be a state satisfying (26). We shall show the existence of an ordinal 3 such that
M.g < 3, i.e. such that the right-hand side of (25) holds with « replaced by 3. The existence
of an ordinal satisfying some property implies the existence of a least ordinal satisfying that
property; thus there exists a least ordinal « such that the right-hand side of (25) holds. By
definition the value of M is that a.

We begin by defining a function from states to indices (of hypotheses). For any state h
we let D.h be the least index n such that

2, h A (Vk:h 5 kAy,.k: Mk is defined)

That D is well-defined for each h such that g =% h follows from (26). Now we define one

more relation:
def

gk Gh:g S5 h:h 2K
By (26), M is defined at each state k such that g < k. Also, because g < k implies that
k is reachable from g, and because the number of states reachable from g is countable (A2),
the number of states k such that g < k holds is countable. We may therefore conclude that
there exists an ordinal § greater than M.k at each state k such that g < k. (The sum of any
countable set of ordinals is defined and is an ordinal; the successor of that sum exceeds any
ordinal in the sum [10].) That is, there exists an ordinal § such that:

(Vk:g—k: Mk<f)
= { definition — }
(vk:(3h:g 5 h:h 28Ky : Mk < p)
= { predicate calculus }
(Vhk:g >5hAh2BKk: Mk < )

= { predicate calculus }
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(vh:ig 5 h:(vk:h 28 k: Mk <p)
= { by definition every h in the range satisfies 2, }

(vh:g 25 h:(zpp)hA(vk:h 2R k. Mk < p)
= { existential generalization }

(Vvh:g > h:3nuaz, hAVk:h 5 k: Mk < 3))
= {®»)}

Mg<p

We have shown that an ordinal « satisfying the right-hand side of (25) exists; by the properties
of ordinal numbers, there exists a least such ordinal, which is the value of M.g. a

The foregoing Lemma implies that if M is not defined at some (p A —¢)-state, then there
exists a particular state g that is fairly reachable from that state without passing through
a g-state, and from which, for every index m, either z,, does not hold at g, or a y,,-state
h is reachable from g without passing through a g-state such that M is not defined at h.
Using this fact, we can construct inductively an infinite behavior satisfying every hypothesis
property but not p~- gq.

Lemma 10. Under the assumptions of Lemma 2, the value of the state function M as
defined above is well-defined at every (p A —¢)-state. O

Proof. Assume g is a state satisfying (p A =¢) at which M is not defined. By Lemma 9 and
predicate calculus, g satisfies

(Gh:g 5 h:(Ym:z,.h:(3k:h " k: Mkis undefined))) (27)

By the definition of =%, this implies the existence of a fair segment, containing no g¢-state,
from g to another state h which satisfies z,, for some index n. Moreover, using the definition
of %5, h has the property that, for each index m such that z,, holds at h (i.e., such that
Ty~ Y, 1s undischarged at h), there exists a segment containing no g-state leading from h
to a y,,-state k, such that M.k is also undefined.

We shall use this structure to construct (operationally) a fair behavior that contains no ¢-
state, in which, for each m, a y,,-state is reached infinitely often. The behavior so constructed
satisfies z,,, ~ y,, for each m. However, it does not satisfy p~+ ¢ (the first state is a p-state
and it contains no ¢-states), and so contradicts (8).

The construction proceeds as follows. Let some enumeration of indices be given in which
each index occurs infinitely often. (Because by assumption the set of hypotheses is countable,
such an enumeration exists.) Let the initial segment consist of the (p A —g)-state g, at which
M is (assumed to be) undefined, let the current position in the enumeration of indices be at
the beginning, and perform the following sequence of steps infinitely many times:

1. Concatenate to the existing segment the fair segment whose existence is asserted by
(27), leading from g to a state h and containing no ¢-state.

2. Let n be the first index to appear in the enumeration of indices after the current position,
such that z,,.h holds. (Such an n exists, by (27) and the definition of —%.) The position
of n becomes the new current position in the enumeration.
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3. Concatenate to the existing segment the segment whose existence is asserted by (27)
and the definition of —, leading from h to a y,,-state k, and containing no ¢-state. The
property z, ~ y, is discharged at k.

4. M is undefined at k; let k become the next g. Note that (27) holds at the new g; iterate.

The construction above yields an infinite concatenation of segments and fair segments
which, according to A0 and A1, is a behavior of the program. Also by construction, the
behavior satisfies z,, ~ y,, for each index m. (If z,, ~ y,, were not satisfied for some m,
the behavior would contain an infinite suffix of z,, A —y,, states. However, no predicate
Zpm N 7Y, holds continuously in the constructed behavior, because m always comes up again
in the enumeration, ensuring that a y,,-state is reached.) Also, every state in the constructed
behavior is a (p A —g)-state.

Thus we have shown the existence of a sequence satisfying (Vm::z,, ~ y,,) but not p~ g,
contradicting (8). Because the assumption that M is undefined at a (p A —¢)-state leads to a
contradiction, we conclude that M is well-defined at each (p A —¢)-state. a

Having defined M, it remains to define the family of predicates uf, and establish the
required properties. We define ug, for each index m and ordinal « as follows:

Uy .8 e (vh:g " h:Mh<a)

Operationally, u2, holds at g iff @ exceeds the value of M at every y,, state reachable from g.
To prove the properties of the predicates u,,, we need the following Lemma:

Lemma 11. In any behavior, for every (p A —¢)-state g there exists a later state h such
that either ¢.h or g == h. a

Proof. Consider a behavior containing a (p A —¢)-state g that is not followed by any ¢-state.
Because the behavior does not satisfy p~- ¢, it does not satisfy z, ~ y, for some index n,
and therefore it contains an infinite suffix in which all states satisfy (3m :: z,,). Moreover,
because the behavior can be partitioned into fair segments (A1), and any extension of a fair
segment is a fair segment (A0), the behavior contains a fair segment beginning with g that
ends in a (3m :: z,,)-state h. By definition, g = h holds. O

We can now established the required properties of uf:

Proof of (10). We observe, for any state g:

Ym-8 N Uy, .8
= { definition }
Ym-gAN{¥h:g "3 h: Mh<a)
= { definition =3 }
Un-8AN(Vh:g — hAy,h: Mh<a)
= { instantiate h := g }
Un-8N (8 —8AYn.g= Mg < a)
= ey
YUm-8 N (¢.8N\Nym.g = M.g < a)
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= { predicate calculus }

Ym-8 A (¢-8V ym.gV Mg < a)
= { again }

Ym-8Nq.8)V (Ym-g N Mg < a)
= { again }

ggVMg<a

O

Proof of (11). From the definition of u2 and Lemma 8, [u?, unless ¢] follows immedi-
ately. The required [u?, unless M <« V g] then follows by properties of unless (consequence
weakening). ]

Proof of (12). Consider any behavior containing a state g satisfying (p A 7¢) A M=a. We
have to show that g is followed by a state satisfying (Im ::z,, Aul)V M<aVg.

If no state following g in the behavior is a g-state, by Lemma 11 there exists a state h
later in the behavior such that g =% h. Now, because M.g = a, the right-hand side of (25)
holds. Instantiating the universal quantification for this h, we observe:

(An:z,.h: (Vk:h S5 k: Mk < a))
= { definition of u2 }

(In:ax,.h:ul h)
= { predicate calculus }

(n:zy tul).h

m

Thus we have shown that every state satisfying pA—gA M = « is followed by a state satisfying
gV {(dn:a,:ul), from which the desired property (12) follows. O

This concludes the proof of the existence of M and uZ, with the properties claimed in
Lemma 2.
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