
Subdomain Aware Contour Trees and Contour Evolution in Time-Dependent
Scalar Fields

Andrzej Szymczak
College of Computing

Georgia Institute of Technology
Atlanta, GA, 30332-0280, USA

email: andrzej@cc.gatech.edu

Abstract

For time-dependent scalar fields, one is often interested
in topology changes of contours in time. In this paper, we fo-
cus on describing how contours split and merge over a cer-
tain time interval. Rather than attempting to describe all in-
dividual contour splitting and merging events, we focus on
the simpler and therefore more tractable in practice prob-
lem: describing and querying the cumulative effect of the
splitting and merging events over a user-specified time in-
terval. Using our system one can, for example, find all con-
tours at time t0 that continue to two contours at time t1
without hitting the boundary of the domain. For any such
contour, there has to be a bifurcation happening to it some-
where between the two times, but, in addition to that, many
other events may possibly happen without changing the cu-
mulative outcome (e.g. merging with several contours born
after t0 or splitting off several contours that disappear be-
fore t1).

Our approach is flexible enough to enable other types of
queries, if they can be cast as counting queries for num-
bers of connected components of intersections of contours
with certain simply connected domains. Examples of such
queries include finding contours with large life spans, con-
tours avoiding certain subset of the domain over a given
time interval or contours that continue to two at a later time
and then merge back to one some time later.

Experimental results show that our method can handle
large 3D (2 space dimensions plus time) and 4D (3D+time)
datasets. Both preprocessing and query algorithms can eas-
ily be parallelized.

1. Introduction

Isosurfaces play an important role in visualization and
analysis of scalar fields. An isosurface is the set of all points

whose value is equal to a user-specified constant (isovalue).
The problem of finding a suitable isovalue resulting in a
meaningful isosurface has been recognized in [2], where the
authors propose a system helping the user to select an ‘in-
teresting’ isovalue based on several quantitative character-
istics of the isosurfaces like surface area, volume and num-
ber of connected components.

Time dependent datasets pose similar challenges. Com-
putational fluid dynamics simulation data is often analyzed
in terms of features and their behavior in time, in partic-
ular their correspondence to features in other time frames
and the way the features interact with each other (in partic-
ular, how they merge and split) [18, 17, 16]. Features are
often obtained by thresholding scalar fields and are there-
fore closely related to contours (connected components of
isosurfaces). Mimicking the static case, one may pose a
question of finding ‘meaningful’ isovalues and contours that
could lead to more complete understanding of the data. This
paper aims to provide tools for finding contours that evolve
and interact with other contours in a way consistent with a
number of constraints. In the most general form, each of the
constraints requires that a contour intersects a certain sim-
ply connected (space-time) subset at a user-specified num-
ber of connected components.

Contour trees have been widely used to describe the
topological structure of contours [8, 20, 19, 14, 15]. A num-
ber of algorithms for computing contour trees have been
proposed [20, 19, 8, 6, 7]. In most practical cases, con-
tour trees can be computed in O(n + m log m) time, where
n is the size of the grid and m is the number of critical
points. Critical points can be defined as nodes v of the grid
at which contour topology undergoes a local change. Time-
Varying Reeb Graphs of [10] precisely describe and clas-
sify changes that can happen to contour trees of time slices
as time progresses. The Safari interface described in [11] al-
lows to interactively explore time-dependent scalar fields. It
represents the structure of the isosurfaces computed for a
specific isovalue at a specific time by sampling the space of



all pairs (t, c) (t-time, c-isovalue) and then presenting the
isosurface properties to the user as an intuitive and easy to
navigate through height field parametrized by these two pa-
rameters. Note that by doing this, the Safari interface does
not capture information how contours deform in time into
each other, it only represents properties of entire isosurfaces
for time slices.

In this paper we describe an algorithm for finding cer-
tain kinds of user-specified behaviors of contours in reg-
ularly sampled time-dependent scalar fields. We assume
that the data is given in the form of a sequence of reg-
ularly sampled scalar fields, defining time sections corre-
sponding to integer times. Let D × [T0, T1] (with T0 and
T1 integer) be the domain of the input scalar field. In 2D
or 3D, D is a rectangle or a parallelepiped (respectively).
We first preprocess the input scalar field by computing con-
tour trees of its restrictions to several subdomains. With the
precomputed contour trees, we can efficiently find the con-
tour tree of the scalar field restricted to D × [t0, t1] (where
[t0, t1] ⊂ [T0, T1] and label its every edge e with a vec-
tor whose entries are numbers of connected components of
the intersection of the contour corresponding to e with in-
teger time sections and δD × [t0, t1]. In particular, this al-
lows to find all contours which intersect user-specified inte-
ger time sections at a prescribed number of connected com-
ponents. Using the count of connected components in the
intersection with δD × [t0, t1], one can additionally require
that the contours do not intersect the boundary.

One can interpret our approach as a description of merg-
ing and splitting events for contours. However, unlike [10],
we do not attempt to describe all structural changes that
happen to the contours. Rather than doing that, we attempt
to describe, measure and represent the cumulative effect
of all such events between the consecutive time slices. In
time-dependent scalar fields, contours can undergo topolog-
ical changes between the consecutive time slices through
the data (i.e. at non-integer times) even if the topology on
consecutive integer slices is preserved. This is illustrated in
Figure 1. In particular, the contour tree for time slice t can
change as t increases not only at integer but also at frac-
tional times. Our approach does not attempt to capture all
such changes, instead focusing only on the ‘total’ change
between two consecutive time slices. We believe that in
practical cases this loss of accuracy is in fact desirable since
it allows to eliminate the cost of finding and describing
topology changes whose effect is too short lived to be im-
portant. Such topology changes may be regarded as tempo-
ral topological noise.

As an example, suppose one asks for all contours in
D × [t0, t1] (where t0 and t1 are integers) whose t0 time
slice has one connected component and whose t1 time slice
has two connected components. The contours that our algo-
rithm would hand in could in fact merge with an arbitrary
number (restricted only be the grid size) of contours that
are born between t0 and t1. Similarly, an arbitrary number

of contours that later disappear before t1 can split off. How-
ever, for all these contours the cumulative effect of all these
events will be the same: one contour splitting into two. One
can refine the search by asking for all contours which inter-
sect slices for times t0, t0 +1, t0 +2, . . . , t0 +k at one con-
nected component and slices at t0 +k+1, t0+k+2, . . . , t1
at two connected components for some integer k between 0
and t1−t0−1. However, this still does not guarantee that the
contour undergoes just one splitting event: many more split-
ting and merging events may happen between the slices.

2. Contour Trees

For a scalar function f defined on a simply connected
domain X , its contour tree T is the quotient space X/ ≡,
where ≡ is the equivalence relation such that x ≡ y if and
only if x and y belong to the same contour. By a contour
we mean a connected component of an isosurface. T is in-
deed a tree (connected one-dimensional simplicial complex
with no loops) in all practical cases, like piecewise linear
scalar fields on simplicial domains or scalar fields defined
using multi-linear interpolation on regular grids. Note that,
since f is constant on every contour, it induces a scalar func-
tion on the contour tree T which we call the height function.
In practice, one usually wants to compute and use contour
trees to describe the topology of discrete isosurfaces com-
puted using a variant of the Marching Cubes algorithm [12],
which does not exactly fit into the above framework (for ex-
ample, isosurfaces for regular grid based data are not really
pre-images of a scalar value and they do not even have to be
disjoint for different isovalues). As prior work shows, con-
tour trees can nevertheless be defined correctly for a vari-
ety of flavors of Marching Cubes (see [5] for a discussion).
Generally, different isosurface extraction methods lead to
different isosurfaces (and isosurface topologies) and there-
fore also to different contour trees. Motivated by its simplic-
ity and ease of extension to higher dimensions, we use the
method of [4] as the isosurface extraction method for regu-
larly sampled scalar fields. The overall scheme of this algo-
rithm is the same as that of [12]: the vertices of the isosur-
face are points on the grid edges joining samples of differ-
ent signs. Their locations are computed assuming that the
value varies linearly over the edge. The vertices within a
single voxel are then joined by triangles using the informa-
tion stored in a lookup table. The lookup table is indexed by
all possible combinations of states of the vertices of a voxel
(two states for a vertex are ‘below the isovalue’ or ‘above
the isovalue’) and is built as follows. Let H be the con-
vex hull of the set of points consisting of all of the voxel’s
vertices having value below the isovalue and all centers of
edges joining vertices having different state. All triangles
of H that are not contained in the boundary of the voxel are
put into the lookup table (Figure 2).

Efficient algorithms for computing contour trees have re-
ceived a considerable amount of attention. Contour tree al-



20

2020

20
time slice at t+1

time slice at t
2 3 4 5 6 7 8 9

0

0

1717.5 15.5 15 13.5 13 11.5 11

Figure 1. A one-dimensional example showing that a contour may undergo several topological
changes between two consecutive slices while having the same topology at the slices. Numbers in-
dicate the density at nodes, blue line is the isosurface (the isovalue is about 10). Notice that even
though the topology of time sections for isosurfaces for isovalues close to 10 changes between the
two slices, these changes cannot be ‘observed’ by examining just the topology of the two integer sec-
tions.

gorithms can be classified into two categories: sweep and
divide and conquer. This paper builds upon both types of
algorithms. For the rest of this section, we outline the prior
work on computing contour trees and describe how they re-
late to the regular grid setting.

A divide and conquer algorithm for computing contour
trees, readily applicable to the regular grid case, is discussed
in [14, 15]. It recursively splits the domain into two parts of
roughly equal size, computes contour trees of restrictions to
each of the two parts and merges them to obtain the con-
tour tree of the input scalar field. In this paper, we make use
of the contour tree merging procedure when executing iso-
surface queries. The divide-and-conquer algorithm can be
made run in O(n + t log n) time, where t is the number of
critical points and n is the size of the grid [14].

The fastest algorithm in the worst case sense is the sweep
algorithm described in [7] and based on the results of [6]. It
runs in O(n + m log m) time, where n is the size of the
grid and n is the number of critical points. Experiments
involving our implementations of this and the divide-and-
conquer algorithm indicate that the sweep algorithm tends
to be faster in practice (at least within our framework) and
therefore we have chosen to use the sweep algorithm to
compute the contour trees in the pre-processing stage.

The sweep algorithm of [6, 7] proceeds by first comput-
ing the join tree and the split tree and then combining them
together to obtain the contour tree. Join tree describes how
connected regions below the isovalue (we shall call their
union the sublevel set) appear and merge with each other
as the isovalue is increased. Split trees describe how con-
nected regions above the isovalue (their union will be called
a superlevel set) are created and merge with each other as
the isovalue is decreased. Computing the join tree amounts
to scanning the nodes in order of increasing value and, for
each node, describing what components of the sublevel set
merge as the isovalue reaches the value at that node. This
can be implemented efficiently using the union find datas-
tructure. The split tree can be computed using the dual pro-
cedure. A detailed description of this process can be found
in [5, Section 14]. Instead of scanning all nodes, one could
sweep over the critical nodes (i.e. those where local con-
tour splitting or merging takes place), shooting monotonous

Figure 2. Example entry in the marching
cubes lookup table. Samples of positive
value are shown in blue and negative sam-
ples in red. The yellow spheres are put at the
midpoints of edges joining samples of differ-
ent signs. The triangles that are stored in the
lookup table are shown in green.

paths from these nodes until they reach a local extremum or
a previously traced path and keeping track of the connectiv-
ity of the union of paths as in [7].

The output of the contour tree algorithm is a tree whose
vertices correspond to nodes of the grid. Vertices that have
exactly one incident edge going up and exactly one incident
edge going down will be called regular vertices of the con-
tour tree. All other vertices will be called critical. Note that
this notion of criticality is slightly different from the one we
used with respect to the nodes of the grid (critical node is
one where local connectivity changes happen to contours).
In what follows, it will always be clear from context which
notion of criticality we use.

We will often simplify contour trees by removing some
or all regular vertices. When removing a regular vertex v,
we remove its incident edges and connect the lower and
upper neighbor of v with a new edge, preserving the tree
structure. By removing all regular vertices, one can obtain
the smallest possible representation of the contour tree. It



can be augmented with additional nodes if necessary. In our
case, we will be interested in computing contour trees of re-
strictions of the input scalar field to certain subdomains. In
order for our algorithm to work, we will need to make sure
that certain vertices present in certain trees are also present
in other trees. This is further explained in the subsequent
sections.

3. Finding contours corresponding to contour
tree edges

Contours corresponding to a point x of the contour tree
can be found using the path seed algorithm of [5]. Assume
that x is on edge e with endpoints p0 and p1, the height of
pi is hi (i = 0, 1), with h0 < h1 and the height of x is
h ∈ (h0, h1). To find the contour corresponding to x, one
can either follow an ascending path from the grid node cor-
responding to p0 or a descending path from the grid node
corresponding to p1 until it crosses an isosurface for iso-
value of h. The contour can be extracted by contour propa-
gation (as in [21]) from the last edge on the path. However,
not every path descending from p1 or ascending from p0

would lead to the right contour: we have to make sure that
the corresponding path in the contour tree descends or as-
cends along e. As [5] observes, to find such a path (called
the path seed corresponding to e) it is sufficient to follow the
first edge correctly and then extend the path in any way. We
compute path seeds for all edges while building the con-
tour tree using the approach of [5]. This requires remem-
bering the starting edges of monotonous paths used while
computing the split and join trees together with their edges
and then transferring this information to edges of the con-
tour tree when combining the split and join trees. See [5]
for more details.

4. Subdomain Aware Contour Trees

A subdomain aware contour tree is a contour tree
equipped with information describing how individual con-
tours intersect a simply connected subdomain Y ⊂ X .
More precisely, each edge of the subdomain aware con-
tour tree has a label that represents the number of connected
components of the intersection of any contour correspond-
ing to that edge with Y . Below we briefly describe formal
properties of subdomain-aware contour trees and the pro-
cedure for computing the edge labels.

Let us denote by fY the scalar field f restricted to Y .
For the scalar field fY we also have a contour tree (called
the restricted contour tree later on), which we denote by
TY . Since the inclusion map of Y into X maps contours of
fY into contours of f , one can define the inclusion-induced
map j of the restricted contour tree TY into the full con-
tour tree T . Note that j preserves height. In what follows,
we require that vertices of TY are also present in T .

The label of an edge e of the contour tree is equal to the
number of points in j−1(p) for any point p in the interior
of the edge e (i.e. belonging to e but different from its end-
points). This is clear from the definitions: points in the pre-
image of p correspond to contours of the restricted scalar
field that are contained in the contour of the full scalar field
corresponding to p.

Each edge in TY is mapped into an ascending path in the
full tree T (in what follows, we call such paths edge paths).
A label of an edge e counts how many such paths traverse e.
A linear time algorithm of computing the edge labels moti-
vated by the procedure for computing the topology of con-
tours of [14] has been proposed in [3]. We outline it below.

Knowing T , TY and the mapping j, for each vertex v
of T , one can easily compute ∆(v), the sum of all labels of
edges joining v with a higher vertex minus the sum of all la-
bels of edges joining v with a lower vertex. For every vertex
v of T which is not a vertex of TY , ∆(v) = 0: this is be-
cause no edge paths start or end at v. For vertices v that
are also present at TY , ∆(v) is equal to the difference of
the number of edge paths that start at v and the number of
edge paths that end at v (recall edge paths go up). There-
fore, ∆(v) is equal to the number of edges that join v with
a higher vertex in TY minus the number of edges that join v
with a lower vertex in TY .

Having computed ∆(v) for every vertex of T , we start
computing the edge labels. If e is an edge such that, for one
of its endpoints v, all labels of edges out of v other than
e have been computed (in what follows, we shall call such
an edge simple), then the label of e can be computed from
these labels and ∆(v). Our algorithm assigns labels to sim-
ple edges until all edges are labeled. It maintains a queue of
simple edges and a counter c(v) for each vertex v of T . Ini-
tially, the queue holds all leaf edges of T and c(v) is set to
the degree of v in T . Every time a label is assigned to an
edge e joining u and w, c(u) and c(w) have to be decre-
mented. Whenever the value of a counter c(v) becomes 1,
we find the edge incident to v that does not have a label
and insert it into the queue. This procedure has to termi-
nate with all edges labeled (all unlabeled edges form a tree,
and leaf edges of that tree are simple). The total amount of
time spent on computing the labels is O(n), where n is the
size of the tree T (TY has to be smaller since all its ver-
tices must be vertices of T ).

The same algorithm can be used to label edges with n-
dimensional vectors representing the number of connected
components at which contours intersect k simply connected
subdomains Y1, Y2, . . . , Yk. Its running time (assuming the
full contour tree and contour trees of all restrictions are al-
ready computed) can be bounded by O(nk), where n is the
number of vertices in the full tree (augmented with all ver-
tices of restricted trees).



A

B

C

D

E

F

G

H

j(D)

j(C)

j(B)

j(E)

j(F)

j(G)

1

1

2

2

1

2

j(A)

3

j(H)1

1

1

−1

−1−1

−1

1

Figure 3. Example: a contour tree of a restricted scalar field (left) and the full contour tree (right) with
edge labels. The mapping j is indicated by the vertex labels for the tree on the right. Edge labels count
connected components of the intersection of contours with the subdomain that the left tree is based
upon. ∆(v) are shown in red, next to vertices of the restricted tree. Note that we show here only the
part of the full tree that is traversed by the edge paths; typically, many edges and vertices of the full
tree are not visited by the edge paths at all. The edge labels can be computed in the following order:
j(A)j(B), j(B)j(E), j(C)j(D), j(D)j(E), j(E)j(F ), j(F )j(G), j(G)j(H).

5. Preprocessing

We preprocess the dataset by computing contour trees of
restrictions of the scalar input field to several subdomains.
Assume the domain of the input scalar field is D× [T0, T1],
where T0 and T1 are integers and D is either a rectangle (in
the 2D case) or a parallelepiped (in the 3D case). As in Sec-
tion 1, we assume that the data is represented as a sequence
of T1 − T0 + 1 scalar fields defined on D and correspond-
ing to integer time slices. We compute contour trees for re-
strictions of the input scalar field to the following subsets,
shown in Figure 4:

1. Time slices, D × {t} for all integer t ∈ [T0, T1]

2. Thick time slices, D × [t, t + 1] for all integer t ∈
[T0, T1 − 1]

3. Thick boundary slices, (δD) × [t, t + 1], where t ∈
[T0, T1 − 1] is an integer; Note that thick boundary
slices are homeomorphic to the Cartesian product of
the two-dimensional sphere and a closed interval and
hence simply connected in 3D. However, in the 2D
case, the thick boundary slices are not simply con-
nected. In this case, we break them into simply con-
nected parts, for example as shown in Figure 4.

To compute the contour trees, we use the sweep algo-
rithm described in Section 2). We keep the precomputed
trees on a hard disk so that they can be conveniently ac-
cessed during query execution.

In order to allow queries to run more efficiently, we en-
sure that the contour trees computed during preprocessing
stage have the smallest possible number of vertices that
would allow queries to run without flaws. We do that by

first computing the contour trees for time slices and simpli-
fying them by removing all their regular vertices. Let Rt be
the set of vertices of the tree corresponding to the time slice
for time t.

Then, we compute contour trees for the thick boundary
slices. For two consecutive thick boundary slices (δD) ×
[s − 1, s] and (δD) × [s, s + 1], we compute all vertices in
the s-time slice that are critical in either one of the two trees.
Let Bs be the set of all such vertices. We simplify the con-
tour tree for thick boundary slice (δD)× [t, t+1] (for all t)
by removing all vertices that are not in Bt∪Bt+1 (such ver-
tices have to be regular).

Finally, we proceed to compute contour trees for the
thick time slices. Let Hs be all vertices in the s-time slice
that are critical in the contour trees for thick time slices
D× [s−1, s] or D× [s, s+1]. We simplify the contour tree
for a thick time slice D × [t, t + 1] by removing all its ver-
tices except for those in Rt∪Rt+1∪Bt∪Bt+1∪Ht∪Ht+1

(all such vertices have to be regular).
By obeying the above rules, we can guarantee that:

1. If two thick boundary slices share a vertex and that ver-
tex is critical in the contour tree of one of these thick
boundary slices, then it is present in the contour tree
for the other one.

2. If two thick time slices share a vertex and that vertex is
critical in the contour tree of one of these thick time
slices, then it is present in the contour tree for the other
one.

3. If a vertex is critical in a contour tree for a time slice or a
contour tree for a thick boundary slice, it is present in
the contour tree for any thick time slice it belongs to.



thick slices

time slices

thick boundary slice

consecutive time slices

thick boundary
slice broken
into simply connected
parts

time

Figure 4. Thick slices, time slices and thick boundary slices for a time-dependent 2D scalar field. In the
2D case, thick boundary slices are not simply connected and therefore cannot be used as subdomains
for subdomain aware contour trees. Therefore, we break it into four simply connected parts (right).

These conditions will ensure that certain key contour
trees can be derived from the precomputed ones when exe-
cuting queries.

6. Queries

In this section we discuss the query algorithm in more
detail. We focus on queries allowing to find isosurfaces of
the scalar field restricted to D × [t0, t1] (where t0 and t1
are integers such that T0 ≤ t0 ≤ t1 ≤ T1) which inter-
sect the time slices at t0 at t1 at a user-specified numbers
of connected components n0 and n1. In addition, we allow
the user to restrict search to isosurfaces which do not inter-
sect the boundary of the dataset in any time slice, i.e. are
disjoint with δD × [t0, t1].

6.1. Query execution

In order to execute a query, we first compute the con-
tour trees of the restriction of the scalar field to the follow-
ing subsets:

(a) D × [t0, t1]

(b) δD × [t0, t1] (in the 3D case; the 2D case is discussed
later).

Both contour trees can be obtained by merging the trees
computed in the preprocessing stage using the algorithm
of [14, 15]. This naturally leads to a recursive procedure
which computes the contour tree of the restriction to D ×
[t0, t1] by recursively computing trees for restrictions to
D × [t0, b

t0+t1

2
c] and D × [b t0+t1

2
c, t1] and then merg-

ing the resulting trees if t1 − t0 ≥ 2 or just returning the
precomputed contour tree for a thick slice if t1 − t0 = 1.
The tree for the restriction to δD× [t0, t1] can be computed

in the same way. Since the tree merging operation is lin-
ear time [14, 15], the total running time of this algorithm is
O(n(1 + log(t1 − t0))), where n is the maximum size of a
contour tree for a thick boundary slice or thick time slice.
Having computed the two trees, we label each edge e of the
tree T corresponding to D × [t0, t1] with connected com-
ponent counts of intersections of the corresponding con-
tours with δD × [t0, t1] and the time slices D × {t0} and
D × {t1} (note the contour trees corresponding to restric-
tions to the two time slices have been computed in the pre-
processing stage). Before labeling the edges, the contour
tree for δD × [t0, t1] is simplified by removing all regu-
lar vertices, leading to Tδ and T is simplified by removing
all vertices that are not present in Tδ or the two trees for time
slices at t0 or t1. Ultimately, one might want to run simplifi-
cation after each contour tree merging operation while com-
puting the two trees (a) and (b).

In the 2D case thick boundary slices are not simply con-
nected, and the preprocessing stage computes four trees for
parts of thick boundary slices shown in figure 4. We can
use the contour trees for the parts to compute the con-
tour trees for restrictions of the scalar field to four faces
of δD × [t0, t1]. Then, we compute four edge labels corre-
sponding to the four trees and sum them up to get the ae la-
bel for every edge e. In this case, ae is not equal to the num-
ber of connected components of the intersection of a con-
tour in D × [t0, t1] with δD × [t0, t1]. However, it still can
be used to determine if the contour intersects δD × [t0, t1]
or not: ae is nonzero if and only if it does.

7. Experimental results

We have tested our algorithm on two input datasets: sim-
ulation of 2D spiral waves [9] obtained using ezspiral
code [1] and a 3D fluid mixing simulation from Lawrence



Figure 5. Example time slices for spiral waves dataset (top row) and 2D slices through the fluid simu-
lation dataset (bottom row).

Livermore National Laboratory described in [13]. Example
slices through these datasets are shown in Figure 5. The res-
olution of the 2D dataset is 512× 512 with 700 time slices,
while the 3D dataset is of resolution 256 × 256× 128 with
165 time slices. Since the fluid simulation dataset contains
numerous high frequency features, which makes it hard to
visualize the isosurfaces, we smoothed it by applying the
box filter 5 times before using it in our experiments. This
substantially reduced the number of contour tree edges re-
sulting from our queries, since a number of them resulted
from high frequency in the dataset.

We preprocessed both datasets as described in Section 5.
Then, we ran the query algorithm to find isosurfaces that
do not hit the boundary and that intersect the first and the
last section in a user-selected time range at one or more
connected components (i.e. all those that can be continue
throughout that time interval). Examples of contours found
by our system for the spiral waves dataset are shown in Fig-
ure 6. The examples were found by executing the query as
described above for time interval equivalent to 50 consecu-
tive slices. The number of edges output was typically small,
in fact for many time intervals no contours conforming to
our criteria have been found.

Examples of time-sections found in the fluid simulation
dataset using the same criteria are shown in Figure 7. In
this case, the output consisted of a large number of edges
(around 300). The examples we selected to show here are
contours whose time sections have a large surface area and
which arise from isovalues in the middle of the dynamic
range for the input scalar field.

The preprocessing time was about twenty minutes per

slice for the fluid simulation dataset and less than 2 min-
utes per time slice for the spiral waves dataset. The query
time (including finding seeds for isosurfaces but without
isosurface extraction time) is about a minute for time win-
dow equivalent to 50 slices for the spiral waves dataset and
about two minutes for the fluid simulation dataset (for time
interval equivalent to 10-20 time frames). All time measure-
ments have been made on a Pentium III-850MHz worksta-
tion.

The size of the contour trees for each of the thick time
slices is about 13000 nodes for the spiral wave dataset and
95000 for the fluid simulation dataset. The contour trees for
time slices were typically slightly less than half the size of
the thick time slices. The contour trees for the thick bound-
ary slices were much smaller. In both cases, the trees were
considerably smaller than the number of nodes in one time
slice, which reduces the memory footprint and running time
of the query algorithm when compared to simply comput-
ing the contour trees from scratch.

8. Summary and future work

We described a system allowing to query large time-
dependent datasets for time-space isosurfaces having a pre-
scribed number of connected components in user-specified
time sections. While the query times reported in this pa-
per are not interactive, they are low enough to make our
algorithm a useful tool for exploring time-dependent data.
Furthermore, they easy to implement efficiently on paral-
lel architectures. We believe that the most important task
for future research is to incorporate robustness measures in



Figure 6. Examples of complex contour evolution found by our algorithm in the spiral wave dataset.
Each picture shows several time sections of a space-time contour; the red and green curves are sec-
tions in the initial and final time sections (respectively).

our system, allowing to filter out contours (or contour sec-
tions) that can be removed by a small perturbation of the
data. In particular, we are interested in extending the con-
tour tree simplification algorithms in [5] to our setting. The
need for such filters has been demonstrated by our experi-
ments: in some cases we examined, for the fluid simulation
dataset the query algorithm reported over 300 edges satis-
fying the constraints. A number of these edges were short
and existed only because of very small connected compo-
nents created at the first or last frame of the time interval
of interest. Such components can be regarded as topologi-
cal noise and should be omitted from the output. We hope
that an effective simplification algorithm of this kind might
allow to visualize the topology of complex datasets using
contour trees with edge labels in a comprehensible manner.

Another interesting future research topic is to explore
the relationship between our work and [10]. For example,
given all contour trees that we computed in the preprocess-
ing stage, is there a way to determine the simplest way the
contour trees can evolve in time while being consistent with
the information carried by these trees? That would lead to a
simplified description of contour tree changes in time which
could be more comprehensible than the exact description
suggested by [10].

References

[1] http://www.maths.warwick.ac.uk/ barkley/ez software.html,
1999.

[2] C. Bajaj, V. Pascucci, and D. Schikore. The contour spec-
trum. In Proc. IEEE Visualization 1997, pages 167–175,
1997.

[3] N. Berglund and A. Szymczak. Making contour trees
subdomain-aware. In Proceedings of the 16th Canadian
Conference on Computational Geometry (CCCG’04), pages
188–191, 2004.

[4] P. Bhaniramka, R. Wenger, and R. Crawfis. Iso-contouring in
higher dimensions. In IEEE Visualization 2000, pages 267–
273, 2000.

[5] H. Carr. Topological Manipulation of Isosurfaces. PhD the-
sis, University of British Columbia, 2004.

[6] H. Carr, J. Snoeyink, and U. Axen. Computing contour
trees in all dimensions. Computational Geometry, 24:75–94,
2003.

[7] Y.-J. Chiang and X. Lu. Simple and optimal output-sensitive
computation of contour trees. Technical Report TR-CIS-
2003-02, Polytechnic University, June 2003.

[8] M. deBerg and M. vanKreveld. Trekking in the alps without
freezing or getting tired. Algorithmica, 18:306–323, 1997.

[9] M. Dowle, R. M. Mantel, and D. Barkley. Fast simulations
of waves in three-dimensional excitable media. Int. J. of Bi-
furcation and Chaos, 7(11):2529–2545, 1997.

[10] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci.
Time-varying reeb graphs for continuous space-time data. In



Figure 7. Examples of bifurcating contours evolution found by our algorithm in the fluid simulation
dataset.

Proceeding of the 20-th ACM Symposium on Computational
Geometry (SoCG), pages 366–372, 2004.

[11] L. Kettner, J. Rossignac, and J. Snoeyink. The safari inter-
face for visualizing time-dependent volume data using iso-
surfaces and contour spectra. Comput. Geom., 25(1-2):97–
116, 2003.

[12] W. E. Lorensen and H. E. Cline. Marching cubes: A high-
resolution 3d surface reconstruction algorithm. ACM Com-
puter Graphics, 21(3):163–169, 1987.

[13] A. Mirin, R. Cohen, B. Curtis, W. Dannevik, A. Dimi-
tis, M. Duchaineau, D. Eliason, D. Schikore, S. Anderson,
D. Porter, P. Woodward, L. Shieh, and S. White. Very high
resolution simulation of compressible turbulence on the ibm-
sp system. In Supercomputing’99, 1999.

[14] V. Pascucci and K. Cole-Mclaughlin. Efficient computation
of the topology of level sets. In Proc. IEEE Visualization
2002, pages 187–194, 2002.

[15] V. Pascucci and K. Cole-McLaughlin. Parallel computation
of the topology of level sets. Algorithmica, 38(2):249–268,
October 2003.

[16] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and
H. Doleisch. The state of the art in flow visualisation: Fea-
ture extraction and tracking. Computer Graphics Forum,
22(4):775–792, 2003.

[17] F. Reinders, F. H. Post, and H. J. Spoelder. Visualization of
time-dependent data using feature tracking and event detec-
tion. The Visual Computer, 17(1):55–71, 2001.

[18] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing
features and tracking their evolution. Computer, 27(7):20–
27, 1994.

[19] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for isosurface
generation. March 2004.

[20] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. R. Schikore. Contour trees and small seed sets for isosur-
face traversal. In Proceedings of the 13th ACM Annual Sym-
posium on Computational Geometry (SoCG), pages 212–
220, 1997.

[21] B. Wyvill, C. McPheeters, and G. Wyvill. Animating soft ob-
jects. The Visual Computer, 2(4):235–242, 1986.


