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ATLANTA. GEORGIA 30332 

SCHOOL OF 

ELECTRICAL ENGINEERING 
	

August 15, 1973 

Headquarters 
U. S. Army Missile Command 
Attn: ANSMI-IPWC/Robinson 
Contract No. DAAH01-73-C-0796 
Redstone Arsenal, Alabama 35809 

Subject: Quarterly Technical Letter Report No, 1, Projects E-21-628 and 
A-1535, "Analysis and Evaluation of Radome Materials and Configu-
rations for Advanced RF Seekers," Covering the period 27 April 
1973 to 31 July 1973. 

Gentlemen: 

The attached milestone chart shows that we are two to three weeks behind 
on our major tasks. Vacations, week long technical meetings, and Harold 
Bassett's one month trip to France are the main reasons for our delay. It 
is estimated that we will be back on schedule by 1 October 1973. 

We are now at the point where the detailed description of the far field 
pattern of the antenna without radome in place is needed for accurate deter-
mination of the aperture field. We are using a simple model for the far 
field pattern which we will continue to use until the more detailed pattern 
is available. 

Respectfully submitted, 

Edward B. Joy 
Project Director 

U 
EBJ/bew 

Attachment 
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	 EXPERDIEIT VITH1 	225 North Avenue, Northwest • Atlanta, Georgia 3033) 

2 November 1973 

Headquarters 
U. S. Army Missile Command 
Attn: AMSMI-IPWC/Robinson 
Contract No. DAAHO1-73-C-0769 
Redstone Arsenal, Alabama 35809. 

Subject: Quarterly Technical Letter Report No. 2, Georgia Tech Projects 
E-21-628 and A-1535, "Analysis and Evaluation of Radome 
Materials and Configurations for Advanced RF Seekers," Covering 
the period 31 July 1973 to 31 October 1973 

Gentlemen: 

This progress report will be the last report prior to the submission 
of the final report. The material in this particular report covers the 
background in the selection of a candidate radome material. Although a 
specific material has not been chosen to date, the trade-off studies are 
still underway, and a material will be selected during the first two weeks 
it November. 

Candidate Radome Materials  

The radome must perform both structural and electrical functions and 
due to the expected skin temperatures, the list of materials suitable for 
radome construction is limited. The criteria used in selecting the 
materials are: (1) strength during peak temperatures, (2) thermal shock 
resistance, (3) microwave transmission properties, (4) weight, (5) fabric-
ability, (6) rain erosion resistance, and (7) cost. Some of the materials 
considered are listed in Table I. The electrical properties of all the 
listed materials are relatively' good to the temperatures indicated. Mea-
surements,at Georgia Tech on the polyimide-quartz samples indicate that 
the material will operate to at least 1000 ° F with some degradation of 
electrical properties. The strength properties are based primarily on 
the wall thickness and the thermal properties of the material. The operat-
ing environment for the radome on this program is such that either one of 
the ceramics must be chosen or one of the two glass reinforced plastic 
composite structures. 

Two of the ceramics look particularly good at this point. Slip -cast 
fused silica has good to excellent properties with the exception of 
resistance to rain erosion. Cordierite is the other ceramic that looks 
attractive. The glass reinforced polyimide and the polybenzimidazole (PEI) 
are the only organic materials on the chart that are candidate materials. 
These four materials will be further evaluated based on the available 
data, and a final choice of material type will be made. 



TABTP 1. 

CANDIDATE RADOME MATERIALS FOR HIGH PERFORMANCE AIRCRAFT AND MISSIUS 
a 
C 
!- 

at 
a 

a 
C 

Material 
Decomposition 	Thermal Shock 	Rain Erosion 
or Melting Temp 	Resistance 	Resistance Weight 

Ease of 
Fabrication 

Relative 
Cost 

( 0 1, )  

a 
Glass reinforced 
polyester 

250-300 good 	 poor low good low C 

Glass reinforced 
epoxy 

300-400 good 	 poor low good low 

Glass reinforced 
polyimide 

600 good 	 poor low good low C 

Glass reinforced 
polybenzimidazole 

(competitive with polyimide) 

Aluminum oxide 3630 poor 	excellent high good low 

Slip-cast fused silica 3140 excellent 	. 	poor low good low 

Beryllium oxide 4620 -good 	excellent high good high 

Cordierite 24 60 good 	 good high good low 

Hot pressed boron 
nitride 

4950 excellent 	poor low poor high 

Isotropic pyrolytic 
boron nitride 

4950  excellent 	poor low poor high 

Reaction sintered 
silicon nitride 

3400 excellent 	good high good (?) a 
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For background information and to put some of these materials into 
perspective, a review of the current operating radomes is in order. Glass 
reinforced plastic radomes have been widely used to the range of Mach 3. 
The B-1 aircraft radome is constructed of polyimide quartz. Other air-
craft have used radomes made of glass reinforced polyesters, epoxies, and 
silicones. Available fibers include E-glass (most common), S-glass 
(slightly higher temperature capability than E-glass), fused quartz (highest 
temperature capability and most expensive), and PRD-49 (a high temperature 
organic fiber related to nylon and manufactured by DuPont). Other resins 
are available including polyurethane (low temperature capability, used on 
commercial aircraft), silicones (good elevated temperature properties but 
low strength), phenyl silanes (similar to silicones, used on F-14), Teflon 
(non-charring ablator), and polybutadiene (a newly developed high tempera-
ture resin, manufactured by Firestone). With present technology, none of 
the multitude of fiber reinforced resin systems can be expected to find 
applications above Mach 3 to 3.5. However, this class of materials is 
experiencing steady development for uses up to this range of mach numbers; 
polybutadiene resin and PRD-49 are the newest additions, just now becoming 
available in commercial quantities. As a class, the glass fiber reinforced 
plastics are usually preferred over ceramics for radome applications where 
mission requirements are mild enough for them to operate successfully. 
They do not suffer from the brittleness of ceramics, are light weight, 
relatively easy to fabricate, and relatively low in cost. 

Aluminum oxide has been used for missile radomes operating up to about 
Mach 3. One example is the Sparrow III air to air missile. This material 
has excellent rain erosion resistance, but above Mach 3 it cannot survive 
the thermal shock resulting from aerodynamic heating. 

Cordierite (PYROCERAM 9606 and Rayceram III) has been used for radomes 
up to about Mach 4. It is used on the Navy's Standard Missile for surface 
to air, anti-aircraft operation. Cordierite has good rain erosion resistance, 
but a low melting point and moderate thermal shock capability. It was a 
leading candidate for the Army's Sam-D missile, but was eventually dis- 
carded in favor of slip-cast fused silica because of thermal shock con-
siderations and the fact that it is manufactured by a proprietary process. 
It is a candidate, however, for this program and will be carefully con-
sidered as the radome material. 

Slip-cast fused silica presently appears to be the only candidate 
radome material for use above Mach 6. That does not mean, however, that 
it will be excluded as a candidate material. This material is being used 
on the SAM.-D program and has been a candidate for other missile programs. 
This material has excellent thermal shock resistance, but has poor rain 
erosion resistance. Fabrication technology has reached the point of 
commercial reliability, and the cost is moderate. 
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Boron nitrides, both hot pressed and isotropic pyrolytic boron nitride, 
have excellent thermal shock resistance but poor rain .erosion resistance. 
They have not been seriously considered for radomes because they cannot be 
fabricated in large shapes, and, even if fabrication technology were 
developed, the cost would probably be prohibitive. They are both good 
candidates for small windows operating to Mach 8 or higher. 

Beryllium oxide has excellent rain erosion resistance and good thermal 
shock resistance. It has never been used for an operational radome, primarily 
because of the toxic nature of finely divided beryllium oxide powders; costs 
of machining with the required safety precautions are prohibitive. It has 
been used for high power transmission windows. 

Reaction sintered silicon nitride is a new material currently under 
development for possible radome use. Potentially, it offers good thermal 
shock resistance in aerodynamic heating, much better rain erosion resistance 
and higher strength than fused silica. It probably will operate into the 
Mach 6 range. Fabrication techniques and cost should be comparable to fused 
silica, but this material is not yet ready for commercial production. 

From the preceding discussion of candidate radome materials, several 
observations are apparent. 

(1) Various materials, including glass fiber reinforced plastics 
and aluminum oxide, are suitable for radomes up to Mach 3. 

(2) Cordierite is suitable for radomes up to about Mach 4 or 5. 

(3) Slip-cast fused silica is presently the only strong candidate 
for radomes in the range above Mach 5. This material has low 
strength and poor rain erosion resistance. Reaction sintered 
silicon nitride may offer relief from these deficiencies, up 
to about Mach 6, with further development. 

(4) Beryllium odixe and the boron nitrides are not suitable for 
radomes because of fabrication difficulties and cost; they are 
useable for, dielectric windows, isotropic pyrolytic boron 
nitride up to Mach 9 or 10. 

For the application of concern here, the four candidate materials are 
polyimide-quartz, glass reinforced polybenzimidazole, slip-cast fused 
silica and cordierite. An idea of the strength properties of the poly-
benzimidazole (PBI) Laminate can be found in Figure 1. In Figure 2 is 
found the elastic modulus properties for the PBI laminate versus tempera-
ture. These data are presented to indicate that plastic composites might 
survive the operating environment of this particular radome. 

These data for the PBI resin and similar data for the other 3 candidate 
materials will be used in making the final selection of the radome material 
type. In addition, the electrical transmission data will be computed on 
the 4 materials and compared. 
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Radome Electrical Analysis  

The radome design computer program is now running in its final form 
with the exception of incorporation of first order reflections. For each 
radome analysis, the sum, the elevation difference, and the azimuth differ-
ence far-field patterns arc calculated with a candidate radome in place, at 
a given frequency, and a given antenna orientation and compared to the same 
pattern calculated without the radome in place. The power lost from the 
3-dB contour of the sum pattern is determined; the monopulse error slopes 
for the azimuth and elevation difference far-field patterns are determined; 
and the boresight errors (in azimuth and in elevation) are determined for 
each analysis. The analysis is carried out at three frequencies (8, 12, 
and 18' GHz), and for several orientations of the antenna within the radome. 
Final testing of the program is now being. accomplished with production 
runs estimated to begin in mid-November. 

Drag Coefficient Calculations 

The drag coefficient of a tangent ogive shape with a hemispherical 
nose cap has been computed for fineness ratios of 0 to 2.8. The drag 
coefficient varies from a value of 1.0 to 0.24 over these 0 to 2.8 
fineness ratio limits. These data will be useful in the determination of 
the missile flight characteristics once the specific shape of the radome 
is finalized. 

It is felt appropriate at this time to ask MICOM for an upper limit 
on the radome drag coefficient. The radome structural design can with-
stand a drag coefficient of 0.8 to 0.9 which corresponds to a 5-inch 
diameter hemispherical nose cap. It is not known at this time whether 
this would adversely affect missile performance or not. 

Temperature Calculations  

The stagnation temperature, turbulent recovery temperature and the 
laminar recovery temperature have been calculated as functions of missile 
velocity. At a velocity of 1000 m/s the stagnation temperature is 920° F, 
the turbulent recovery temperature is 820 ° F, and the laminar recovery 
temperature is 790° F. These data are to be used in the thermal analysis 
computations which will be performed during the next reporting period. 

Finalization of 1)c:slim 

Trade-offs are currently being made on the transmission properties of 
candidate materials. The weight and cost factors are being incorporated 
into the trade-off study. During the next two months the radome design 
will be optimized. At this point in time, it is anticipated that MICOM 
will specify the fineness ratio based on their drag requirements and also on 
electrical performance factors to be supplied by Georgia Tech. 



Progress to Date  

The attached milestone chart indicates that the program is near on-
schedule. Numerous calculations need to be made on the electrical per-
formance factors, and a decision will soon be made on the type material 
to be recommended. A more detailed thermal analysis is being done to 
fully determine if the plastic composite materials will withstand the 
operating environment. 

Respectfully silhmit-*" 

Harold L. Bassett 
Co-Project Director 

Approved; 

J. W. Dees, Chief 
Special Techniques Division 
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FOREWORD 

This final research report was prepared jointly by the School of 
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nology Branch of the Advanced Sensors Directorate, Research, Development, 
Engineering and Missile Systems Laboratory, U. S. Army Missile Command, 
Redstone Arsenal, Alabama. The contract was administered under the 
direction of Carlton H. Cash and Thomas W. Morgan of the RF Guidance 
Technology Branch. 

The period of performance covered by this report extends from 
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Report authors are: Edward B. Joy and Gene K. Huddleston of the 
School of Electrical Engineering and Harold L. Bassett, Charles W. Gorton 
and Steve H. Bomar, Jr., of the Engineering Experiment Station. Other 
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SECTION I 

INTRODUCTION 

This report describes the results of a research program to select, 

analyze, and evaluate various radome materials and configurations in order 

to determine a preliminary design of a radome which can be used with advanced 

RF seekers operating over the 8.0 to 18.0 GHz frequency band and physically 

constrained for operation in a five-inch (outside) diameter missile. 

The basic radome configuration considered consists of a tangent ogive 

shape surmounting a cylinder and an n-order monolithic wall structure. 

Attention is directed toward the first-order (half-wave) wall structure 

because of its superior bandwidth compared to the higher order structures; 

furthermore, the 5-inch outside diameter requirement dictates as thin a wall 

as possible to allow room inside for the antenna system. Details of the 

radome shape and position of the antenna inside the radome are given in the 

drawing of Figure 11. 

The radome design process described herein follows the natural course 

of determining the temperatures and mechanical stresses to be encountered, 

selecting candidate radome materials, and assessing the effects of radome 

shape and radome material on the electrical performance of the seeker system. 

Based on these results, a radome design is selected which yields the best 

electrical performance while meeting the requirements of the flight environ-

ment. 

Section II presents a discussion of the assumed aerodynamic heating 

and drag considerations for the radome under study. The range of temperatures 
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and effects of radome fineness ratio on missile trajectory and range are 

also presented. 

Section III presents electrical and mechanical data for candidate 

radome materials. Criteria for selecting a single material from among 

those studied are also discussed. 

Section IV presents computed electrical performance data for a number 

of radome configurations. 

The conclusions drawn from the data presented are given in Section V. 

A radome design is also recommended. 
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SECTION II 

AERODYNAMIC HEATING AND DRAG 

1. 	Introduction  

One of the first steps in the design of any radome is the determina-

tion of the effects of the flight environment on the radome. One of the 

most important effects to be determined is the range of temperatures and 

stresses to be encountered by the radome following a specified trajectory. 

Another important effect is that of the shape of the radome on the missile 

trajectory. These effects of temperature, stress, and radome shape are 

important because they influence greatly the choice of radome material 

and, ultimately, the electrical performance of the seeker antenna system 

enclosed by the radome. 

In this section, the aerodynamic heating and drag considerations are 

examined. Upper bounds on radome temperatures are calculated independently 

of the radome material, radome shape, and trajectory by using a steady-

state analysis and a flat plate assumption. These results, presented in 

Table I, influence the initial choice of candidate radome materials. 

Following the calculation of upper bounds on the temperature, the results 

of a transient temperature analysis are presented for three candidate 

materials. The transient analysis does account for the flight trajectory 

and radome material. The effects of the radome shape and wall thickness 

on the mechanical stresses and missile trajectory are also calculated and 

presented. 
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2. 	Aerodynamic Heating  

The initial calculations related to aerodynamic heating were the deter-

mination of the stagnation temperature, the flat plate laminar recovery 

temperature, and the flat plate turbulent recovery temperature. The stagna-

tion temperature is the upper bound on the temperature that any location 

on the radome surface can reach. Physically, it is the temperature attained 

by the air flowing around the radome (at the outer edge of the boundary 

layer) at the stagnation point on the radome. For a radome at zero angle 

of attack, the stagnation point is the radome tip. Actually, the outer 

surface of the radome at the stagnation point will reach a temperature 

that is less than the stagnation temperature because of thermal radiation 

from the surface and heat conduction into the radome material. The recovery 

temperatures calculated correspond to the temperature of a thin plate 

placed parallel to the flow under adiabatic conditions; i.e., internal con-

duction and thermal radiation are assumed to be zero. Physically, the 

recovery temperatures represent an upper bound of the outer surface tempera-

ture in the aft region of a pointed radome. Whether the laminar or turbulent 

recovery temperature is considered depends on whether the boundary layer 

is laminar or turbulent at the point under consideration. The results of 

the calculations of stagnation and recovery temperatures are presented in 

Table I. These calculations are based on sea-level conditions for a 

standard day under steady-state conditions. 

The transient temperature response of the hemispherical radome was 

determined at the stagnation point by means of finite difference equations 

and the aid of a high-speed digital computer. Inputs to the computer-aided 
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TABLE I 

STAGNATION AND RECOVERY TEMPERATURES 

Flight Velocity Stagnation 

Temperatures 

Turbulent Recovery Laminar Recovery 
(meters/sec.) ( F) CF) ( F) 

0 59 59 59 

200 95 90 91 

400 202 180 185 

600 380 330 342 

800 623 537 555 

1000 925 796 826 

temperature Analysis included radome material properties, nose radius, 

radome wall thickness, and flight velocity as a function of time. The 

radome material properties needed for determining temperature profiles are 

density, specific heat, thermal conductivity, and surface emittance. In 

addition, the coefficient of thermal expansion, modulus of elasticity, and 

Poisson's ratio were used as inputs so that thermal stresses could be cal-

culated. Also, a heat transfer coefficient for the outside surface (front 

side) and a boundary condition for the inside surface. (back side) of the 

radome were specified. The heat transfer.coefficient was calculated using 

an equation relating nose radius and flight velocity for sea level flight. 

The equation used is an empirical relationship,  which was developed following 
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the procedure recommended by van Driest [1]. The back side of the radome 

was assumed to be perfectly insulated; this is a fairly universal assump-

tion which uncouples the transient radome heating from the thermal response 

of the contents of the radome. Although a variety of intermediate results 

are obtained, those of primary interest are front side temperature (to see 

if material temperature limits are exceeded), back side temperature (to see 

if the interior of the radome becomes too high in temperature), and thermal 

stress (to see if material failure will result). The calculations for the 

three materials of interest are presented in Figures 1 and 2. It is noted 

that the temperatures and thermal stresses shown in these figures are 

well within the operating limits of the three materials shown. 

3. 	Radome Drag Coefficient  

As the fineness ratio L/D of the radome is changed, the overall drag 

of the hypothetical missile changes, resulting in a modified trajectory. 

In investigating; this effect, the modified trajectory was related to the 

original trajectory. The assumption was made that the overall drag co-

efficient was constant throughout the flight. The trajectory calculations 

for each fineness ratio were made using the same missile weight, fuel 

weight, thrust, and burn time. It is noted that the minimum velocity 

required for maneuverability is reached for a fineness ratio of 0.5 at 

about 0.67 on the normalized time axis of Figure 3. The results of these 

calculations are presented in Figure 3. 

In order to evaluate the mechanical loading on the radome with an angle 

of attack, calculations were made using a ten degree angle of attack at the 
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maximum velocity in the trajectory. Sea level conditions were assumed. 

These calculations are based on a Newtonian pressure distribution using the 

results presented by Mayo [2]. The stresses are calculated from the aero-

dynamic axial load and bending moment. The results of these calculations 

are presented in Table II. The stresses indicated refer to the maximum 

compressive or tensile stress in the radene wall at the base of the radome. 

All of the stresses shown in Table II are small for the three materials of 

interest. 

TABLE II 

MECHANICAL LOADING AT MAXIMUM VELOCITY 
ANGLE OF ATTACK = 10 0  

L/D Radome Wall Thickness 
(inches) 

Compressive Stress 
(p.s.i.) 

Tensile Stress 
(p.s.i.) 

1., 
-2 

0.250 

0.375 

224 

153 

0 

0 

1 0.250 242 < 

1 0.375 170 < 	1 

2 0.250 450 348 

2 0.375 330 242 

3 0.250 698 642 

3 0.375 500 462 
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SECTION III 

RADOME MATERIALS SELECTION 

1. 	Introduction  

The thermal and mechanical data presented in Section II were used as 

guidelines in selecting candidate radome materials. The criteria used in 

selecting the materials were: (1) strength during peak temperatures, (2) 

thermal shock resistance, (3) microwave transmission properties, (4) weight, 

(5) fabricability, (6) rain erosion resistance, and (7) cost. Some of the 

materials considered are listed in Table III. The electrical properties of 

all the listed materials are relatively good up to the temperatures indicated 

and higher; e.g., measurements at Georgia Tech on polyimide-quartz samples 

indicate that the material will operate to at least 1000 ° F with only small 

degradation of electrical properties. 

For background information and to put some of these materials into 

perspective, a review of the current operating radomes is in order. Glass 

reinforced plastic radomes have been widely used to the range of Mach 3. 

As an example, the B-1 aircraft radome is constructed of polyimide quartz. 

Other aircraft have used radomes made of glass reinforced polyesters, 

epoxies, and silicones. Available fibers include E-glass (most common), 

S-glass (slightly higher temperature capability than E-glass), fused quartz 

(highest temperature capability and most expensive), and PRD-49 (a high 

temperature organic fiber related to nylon and manufactured by DuPont). 

Other resins are available incleding polyurethane (low temperature capability, 

used on commercial aircraft), silicones (good elevated temperature properties 
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TABLE III 

CANDIDATE RADOME MATERIALS FOR HIGH PERFORMANCE AIRCRAFT AND MISSILES 

Decomposition 
Material 	or Melting Temp 

Thermal Shock 
Resistance 

Rain Erosion 
Resistance Weight 

Ease of 
Fabrication 

Relative 
Cost 

Glass reinforced 
polyester 

250-300 good poor low good low 

Glass reinforced 
epoxy 

300-400 good poor low good low 

Glass reinforced 
polyimide 

600 good poor low good low 

Glass reinforced 
polybenzimidazole 

(competitive with polyimide) 

Aluminum oxide 3630 poor excellent high good low 

Slip-cast fused silica. 3140 excellent poor low good low 

Beryllium oxide 4620 good excellent high good high 

Cordierite 2460 good good high good low 

Hot pressed boron 
nitride 

4950 excellent poor low poor high 

Isotropic pyrolytic 
boron nitride 

4950 excellent poor low poor high 

Reaction sintered 
silicon nitride 

3400 excellent good high good 



but low strength), phenyl silanes (similar to silicones, used on the F-14 

aircraft), Teflon (non-charring ablator), and polybutadiene (a newly developed 

high temperature resin, manufactured by Firestone). With present technology, 

none of the multitude of fiber reinforced resin systems can be expected to 

find applications above Mach 3 to 3.5. However, this class of materials is 

experiencing steady development for uses up to this range of Mach numbers; 

polybutadiene resin and FRD-49 are the newest additions, just now becoming 

available in commercial quantities. As a class, the glass fiber reinforced 

plastics are usually preferred over ceramics for radome applications where 

mission requirements are mild enough for them to operate successfully. 

They do not suffer from the brittleness of ceramics, are light weight, 

relatively easy to fabricate, and relatively low in cost. 

Aluminum oxide has been used for missile radomes operating up to about 

Mach 3. One example is the Sparrow III air-to-air missile. This material 

has excellent rain erosion resistance, but above Mach 3 it cannot survive 

the thermal'shock resulting from aerodynamic heating. 

Cordierite (PYROCERAM 9606' and Rayceram III) has been used for radomes 

up to about Mach 4. It is used on the Navy's Standard Missile for surface 

to air, anti-aircraft operation. Cordierite has good rain erosion resistance, 

but a low melting point and moderate thermal shock capability. It was a 

leading candidate for the Army's Sam -D missile, but was eventually discarded 

in favor of slip-cast fused silica because of thermal shock considerations 

and the fact that it is manufactured by a proprietary process. It was a 

Candidate, however, for this program and was carefully considered as the 

radome material. 
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Slip-cast fused silica presently appears to be the only candidate radome 

material for use above Mach 6. That does not mean, however, that it is ex-

cluded as a candidate material at lower speeds. This material is being 

used on the SAM-D program and has been a candidate for other missile pro-

grams. This material has excellent thermal shock resistance, but has poor 

rain erosion resistance. Fabrication technology has reached the point of 

commercial reliability, and the cost is moderate. 

Boron nitrides, both hot pressed and isotropic pyrolytic boron nitride, 

have excellent thermal shock resistance but poor rain erosion resistance. 

They have not been seriously considered for radomes because they cannot be 

fabricated in large shapes; even if fabrication technology were developed, 

the cost would probably be prohibitive. They are both good candidates for 

small windows operating to Mach 8 or higher. 

Beryllium oxide has excellent rain erosion resistance and good thermal 

shock resistance. It has never been used for an operational radome, pri-

marily because of the toxic nature of finely divided beryllium oxide powders. 

Costs of machining with the required safety precautions are prohibitive. 

It has been used for high power transmission windows. 

Reaction sintered silicon nitride is a new material currently under 

development for possible radome use. Potentially, it offers good thermal 

shock resistance in aerodynamic heating, much better rain erosion resis-

tance and higher strength than fused silica. It probably will operate into 

the Mach 6 range. Fabrication techniques and cost should be comparable to 

fused silica, but this material is not yet ready for commercial production. 
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From the preceding discussion of candidate radome materials, several 

observations are apparent: 

(1) Various materials, including glass fiber reinforced plastics 
and aluminum oxide, are suitable for radomes up to Mach 3. 

(2) Cordierite is suitable for radomes up to about Mach 4 or 5. 

(3) Slip-cast fused silica is presently the only strong candidate 
for radomes in the range above Mach 5. This material has re-
latively low strength and poor rain erosion resistance. Reaction 
sintered silicon nitride may offer relief, from these deficiencies, 
up to about Mach 6, with further development. 

(4) Beryllium oxide and the boron nitrides are not suitable for 
radomes because of fabrication difficulties and cost; they are 
useable for dielectric windows with isotropic pyrolytic boron 
nitride being useable up to very high Mach numbers. 

2. 	Materials Data  

For the application of concern here, four candidate radome materials 

were considered: polyimide-quartz, glass reinforced polybenzimidazole, 

slip -cast twied silica and cordierite (Pyroceram 9606. For comparison 

purposes, the strength properties of four glass fiber reinforced plastic 

materials are plotted in Figure 4. The strength properties of the PBI 

laminates are plotted in Figures 5 and 6. The ceramic material strength 

properties are plotted in Figure 7. Alumina is included here for com-

parison purposes. The radome stresses shown in Figure 2 of Section II are 

very low compared to the maximum stress that the materials will withstand. 

Both the polyimide/E-Glass BPI-373 and the polyimide quartz BPI-373 maintain 

gocd strength properties to 800 ° F. The PBI laminate possesses slightly 

better properties as indicated in Figure 5. 
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The other considerations for material properties were the electrical 

characteristics. As indicated in Figure 8, the dielectric constant of 

polyimide-quartz BPI-373 increases slightly from 3.25 to 3.3 over a 

temperature range from ambient to 600 ° F. This is a 1.5 percent increase 

and will not cause serious degradations in radome-antenna performance due 

to this effect. This change is also typical of PBI. The electrical pro-

perties of slip-cast fused silica and Pyroceram®  shown in Figures 9 and 10 

change very little over the operating temperature range shown in Figure 1. 

This particular property is a feature of the ceramic materials, and it is an 

advantage that is given due consideration when choosing a radome material. 

Fortunately, the maximum expected radome outer surface temperature is not 

very high so that the organic materials considered can survive the environ-

ment. 

In general, the expected change in electrical performance of the 

radome due to the temperature dependence of the electrical properties is 

not significant for the four radome materials considered. The perused data 

are not included in this report on organic materials whose temperature- 

electrical performance fell below the two organics considered. For example, 

Epoxy/E-Glass E-100 has a 7 percent variation in dielectric constant from 

ambient to 600° F' and its loss tangent is greater than 0.03. Similar re-

sults have been found with Polyester/E-Glass, Vibrin-135 and Polyimide/ 

E-Glass BPI-373. 

Since the environment is such that an organic material will survive, 

it is advantageous to eliminate the ceramics and consider only the organic 

materials. polyimide quartz and P131. The ceramics are much more fragile than 
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the organics; and if it is found that grinding of the ceramic is necessary 

to obtain a desired thickness, the organic design would be less expensive. 

The most desirable feature of Cordierite is its resistance to rain erosion. 

It will withstand rainfall conditions much better than the other materials. 

Slip-cast fused silica will absorb moisture and, although there are tech-

niques to seal the radome, this adds to the overall cost. 

In the next section, the effects of the radome shape and electrical 

properties of three radome materials on the electrical performance of the 

seeker system are presented. In the last section, a final choice of radome 

material and shape is made and presented. 
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SECTION IV 

ELECTRICAL PERFORMANCE STUDY 

1. Introduction  

Electrical performance data for a number of candidate radome designs 

were determined analytically using the radome analysis computer program 

developed earlier and described in Reference 5. The radiating properties 

of the phase monopulse antenna were characterized using the plane wave 

spectrum representation of the near field of the antenna as described in 

2c below. The important electrical performance parameters of the seeker 

system (boresight error, error slope, null depth, and power loss) were 

computed at three frequencies (8, 12, and 18 GHz) for three different 

radome materials (fused silica, polyimide, 1 
and Pyroceram(

-
iN  
) and for a 

number of fineness ratios (0.5 to 2.8) and antenna gimbal positions. Graphs 

of the electrical performance parameters of the antenna/radome combinations 

are presented in subsection 3 below and used in selecting an optimum radome 

design for the seeker system considered. The antenna/radome geometry, 

radome shape, electrical performance parameters, and antenna characteriza-

tion are described in subsection 2 below. 

2. Definitions of Input and Output Parameters  

(a) Radome Shape  

The radome shape considered is shown in Figure 11. The radome 

consists of a 5-inch outside diameter cylindrical section surmounted by a 

1 
The polyimide referred to in Section IV is polyimide E-glass which has a 
relative dielectric constant of 3.8. PBI also has a relative dielectric 
constant of 3.8; thus the polyimide curves are representative of the PBI 
materials. Polyimide quartz has dielectric properties similar to slip-
cast fused silica (p = 1.95 g/cc). 
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Figure 11, Antenna/Radome Geometry. 
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tangent ogive. Various degrees of streamlining of the radome are obtained 

by varying the fineness ratio of the tangent ogive portion of the two-

section radome where the fineness ratio F is defined as the ratio of the 

length L of the tangent ogive to its outside diameter D at a point P where 

a tangent to the ogive shape is parallel to the axis of symmetry of the 

radome; i.e., F = L/D. In Figure 11, the center of generation of the 

tangent ogive is located at the gimbal point of the antenna so that such 

a point P . lies on the outer surface of the radome in the plane.porpendicular 

to the radome axis and containing the gimbal point. In the analysis, fine- 

ness ratios of 0.5 (a hemisphere), 1.0, 1.5, 2.0, 2.5, and 2.8 were considered. 

The location and orientation of the near-field aperture of the circu- 

larly polarized, phase monopulse antenna are also shown in Figure 11. The 

aperture is offset from the gimbal point by the distance R A  as shown. A 

value of R
A = 1.20 inches was used in the analysis to conform to the dimen-

sions of an actual antenna system under consideration for this application. 

The maximum diameter of the circular aperture which can fit inside the 

radome is given by 

2 D
ap 

= 2 j 	- t
w - R

A (1)  

where 

D = Outside diameter of the radome 

tw = Thickness of the radome, wall 

R
A 
 = Distance of the aperture from the gimbal point 

The maximum wall thicknesses to consider follow from the equation defining 

a n-order monolithic radome wall [6]; i.e.', 

n-ko 

2  -4/ 2 
 Er  - sin2 8

d 

tw = (2) 
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where 

n = 1 for half-wave wall 

xo  = Free-space wavelength 

E
r 
= Dielectric constant of wall material 

Gd  = Design angle (60 degrees) 

Using the dielectric constants of the three wall materials considered in 

Equation (2) at the (center) design frequency of 12 GHz results in the 

following wall thicknesses for first-order walls: 

Material 	Er 	tan 8 
	t ( inches) 

Fused Silica 	3.33 	0.001 	0.306 

Polyimide 	3.80 	0.006 	0.282 

Pyroceram 	5.20 	0.001 	0.233 

From the above data it is clear that the material with the thickest wall 

is fused silica (polyimide quartz has dielectric properties similar to 

fused silica). Consequently, a maximum wall thickness of 0.31 inches was 

used in Equation (1) above to determine the diameter of the aperture. It 

is important to choose an aperture of maximum diameter as explained in 

subsection 2c below. (The loss tangents for the materials of interest are 

given in the above.data for completeness; tan 5 does not enter into the 

calculation of wall thickness.) 

To complete the specification of the radome shape, it is necessary to 

include a radome base as shown in Figure 11 to represent the bulkhead where 

the radome is attached to the missile body. The orientation of the aperture 

inside the radome at the maximum gimbal angle considered is also shown in 

Figure 11. 
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(b) Antenna/Radome Orientation  

The coordinate systems used to orient the antenna inside the radome 

are shown in Figure 12. These coordinate systems represent a specialization 

of the system defined in Reference 5 which explains why three systems of 

rectangular coordinates are used instead of just two. 

The antenna coordinate system (xA , yA , zA) is located in the reference 

system at (x = o, y = 0, z = RA) and oriented as shown. The principal 

planes of the antenna radiation patterns are also defined, in Figure 12 as 

the azimuth and elevation planes. For reference, the spherical coordinates 

of the origin 0
A 

of the antenna system in the reference system are 

OA  : (ra  = 1.20, e a  = 0° , ea  = 90°). The angle y3A  = 901°  to bring the z 

and z
A 

axes into coincidence. The z
A 

- axis also coincides with the true 

electrical boresight direction of the antenna. 

The orientation of the radome coordinate system (xR , yR, zR) with 

respect to the reference system may be specified by the spherical coordi-

nates of the origin 0
R 

of the radome system. Note that the z
R 

- axis 

(and z
A) passes Cirough the origin of the reference system which also coincides 

with the gimbal point inside the radome. For reference, O R  is located at 

r
r 
= 1.20 (inches) while 0 r and 8r are varied to produce the required 

scanning of the antenna inside the radome to various look directions. 

In order to simplify the specification of the antenna look direction, 
• 

the angles 0 and 0
L 

are defined as shown in Figure 12. These angles are 

related to , r , s r  according to 

	

o r  = o p  + 180P 
	

( 3 ) 

	

r 
= 180° -

L 
	 (4) 

When 0 = 0, e = 0, the axis of the radome coincides with the boresight 

direction of the antenna, and we say that the antenna is looking straight 
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ahead. When 0 = 0 and eL > 0, we say that the antenna is scanned in the 

azimuth plane (+ x
Z , zA 

 plane); when 0
L 

< 0, the antenna is still scanned 

in the azimuth plane but in the opposite direction (- x
Z , zA 

 plane). 

Similar scan of the antenna in the elevation plane is accomplished by 

setting o p  = 90° and varying gL . Any other plane of scan may be specified 

bysettingo p while varying 0 to produce the desired scan in that plane; 

e.g., when 0 = 45°, scan in the so-called crosstalk plane may be effected. 

It is advantageous to note—that identical effects will be produced in 

the antenna radiation patterns when scanned in either the azimuth or eleva-

tion planes because of symmetry in the radome and symmetry in the patterns 

of the antenna considered. For example, if the antenna is scanned in the 

azimuth plane, the azimuth pattern will be most affected, especially in 

boresight error. The same effects would be produced for scan in the eleva-

tion plane, with the roles of the azimuth and elevation principal planes 

being reversed. Note also that for scan in any given plane, the magnitudes 

of the effects will be the same for +0 1,  as for -0L . Consequently, it is 

necessary to consider scan of the antenna through only positive values of 

tei,  for any plane of scan specified by 0 in order to determine the magni- 

tudes of errors in the boresight direction, error slope, and so on. Further-

more, tests conducted using the radome analysis computer program showed that 
• 

maximum errors occurred in the azimuth pattern for scan in the azimuth plane; 

hence, it was concluded that for the purposes of selecting the best radome 

design, scan of the antenna in only the azimuth plane need be considered. 

This finding greatly reduced the number of look directions required to pro-

duce representative data, resulting in substantial savings in computation 

time. 
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(c) Antenna Characterization 

Ideally, the far-field radiation pattern of the antenna mounted 

in place, without radome, would be known in both amplitude and phase for 

two orthogonal components at each frequency and scan position of the 

antenna. Equally ideal would be the knowledge of the near field distri-

bution of the antenna mounted in place, without radome, both in ampli-

tude and phase for two orthogorr -l_components of electric field at each 
• 

frequency and scan position oftirre-antenna 	In most cases, however, this 

complete description is unavailable and some assumptions and approximations 

must be made. In the case at hand, the antenna to be used has not been 

designed, constructed or measured. It is known, however, that the antenna 

to be used should be circularly polarized and configured as a dual plane 

monopulse with sum, elevation plane difference and azimuth plane difference 

patterns. The pattern of the antenna should be frequency independent from 8-

18 GHz and would probably use spirals as its main radiating elements. And 

finally, the antenna will be gimballed and must fit within a 5-inch outer 

diameter radome woose maximum wall thickness is 0.31 inch. What follows is 

a synthesis of a complex vector near-field distribution which meets these 

specifications under the assumption of no near field variation with antenna 

scan. 

The far-field pattern of the antenna is specified in the antenna 

coordinate system of Figure 12. The far-field components are denoted 

Ee(f,o,r), E0(0,95,r) and Er (e,o,r) where Er (8,0,r) = 0 in the far field 

of any antenna of finite size. Also, in the far field, the dependence of 

the electric field components on r is of the form l/r so that on a sphere 

of constant radius about the antenna, this term is a constant and will be 
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suppressed. With the above simplifications the far field of the antenna 

iscomposedofE0 (8,9)aridE,(0.0). 

Let us now define a complex polarization ratio Bs follops: 

E9 (e,o) 
R(e,0) 	E 

0
(9,) 

Given that the polarization ratio has been specified for all angles 

(9,0) let us now calculate the relationship between E x
(8,0) abd 	(9,0) 

in the far field as these ate —the components that will relate to the 

near-field components which we ultima tely want to determine. 

It is well known that the E (9,0) and E (9,0) components of the far-

field may be written in terms of E (8,0) and E (e.0) under the assumption 

that E
r
(8,0)=0 as follows: 

Ex(0,0) = E 
0 
 (8,0) cos 0 cos 0 - E0 (0,0) sin 0 

E (9,0) = E (0,0) cos 0 sin 0 + E0 (0,0) cos 0 

Incorporating Equation (5) into Equations (6) and (7) and dividing 

Equation (6) by Equation (4) yields: 

Ex (" )  = 	cos e  cos 0 - sin 0  
E (0,0) 	R(9,0) cos 9 sin 0 + cos 0 

Thus it is seen that the polarization ratio R(0,0) also determines the ratio 

between E
x
(04) and E (9,0) for all angles (0,0). It is convenient to change 

the (0,0) coordinate used in E0a -tion (8) to normalize wavenumbers coordinates 

(k ,k ). The normalized wavenumbers k , k and kz 
are defined as follows: 

x y 	 x y 

k = sin 8 cos 0 	 (9) 

k = sin 0 sin y 	 (10) 

kz 
= cos 0 	 (11) 

k
2 
+ k

2 
+ k

2 
 = 1 	 (12) 

x 	y 	z 

(5 ) 

(8) 

32 



From these Equations the following useful relationships may be derived: 

1 
sin 0 = k-  + k2  

x 	y (13) 

cos 0 = -k2 - k
2 I 

x 	y (14) 

   

k 

     

sin - 

       

(15) 

       

  

k
2 
+ k

2 ' 
x 	y 

   

   

kx 

    

(16) cos ci — 	 

     

     

     

jk2  + k2 
 x 	y 

     

Substituting Equations (13) through (16) into Equation (8) yields: 

 

	

E (k k ) R(k ,k ) 	
k2 	k2 	k 	k  

x x' y  _ 	x y 	xyxy  M(k
x'

k
y
) = 

E (k ,k ) 
Y 	R(k ,k ) 	-k

2
-k

21 
k -k 

	

x y 	x 	y 	y 	x 

For the case at hand, the polarization ratio, R(k ,k ), is equal to 
x y 

j(=JITI ) for all angles (k ,k ); i.e., the radiation is circularly 
x y 

(17) 

polarized. 

        

The power pattern of an antenna may be specified as 

  

E
x
(k

x' 	
k
y

)  E
x
(k
x
,k
y
) + E

y 
 k 

x
,k
y 
 ) E 

y 
 (k 

x
,k
y 
 ) + E

z
(k

x'
k
y
) E

z
(k

x'
k
v
)  

(18) P(k
x'

k
y

)   

where 11 is the intrinsic impedance of free space in ohms and * denotes 

complex conjugate. At each point of the far field, the field is a plane 

wave for which 

= 0 

33 



Equation (19) may be expanded and Ez(kx'ky)  may be determined as a function 

of E 
x 
 (k 

 x 
 ,k 

 y 
 ) and E 

y 
 (k 

 x 
 ,k

y 
 ) as follows: 

Ez (kx ,ky 	
L

) = 	Ex(kx ,ky) + kyEy (kx ,ky)] 

	

x 

	 (20) 

Substituting Equation (20) into Equation (18), the far-field power pattern 

may be determined as a function of E (k ,k ) and E (k ,k ) as follows: 
x x y 	Y x' Y 

	

E * (k ,k ) E (k , k 	• - k
2 	

E (k ,k ) E (k ,k ) 	k
2 

P(k*  k
y
) = x x y x  x Yr  [1 + 	+ Y x._ YY3cY r1 + 	1 

k 	 L 	k
z 

	

E (k ,k ) E (k ,k ) + E (k ,k ) E (k ,k ) 	k - k xxy yxy 	yxy xxyr  x 	y] 
(21) 

L k2  
z 

Let us digress to show three relationships for arbitrary complex 

numbers. Let c = a + jb and d = e + jf be arbitrary complex numbers where 

a, b, e, and f are real. Then 

c*c = (a - jb)(a + jb) = a 2 
+ b

2
, a real number 	 (22) 

c+c* = (a + jb) + (a 	jb) = 2a, a real number 	 (23) 

c*d + d*c = (a - jb)(e + jf) + (c - jf)(a + jb) 	 (24) 

	

= ae + jaf - jbe + bf + ae + jbe 	jfa + bf 

= 2 (ae + be), a real number 

Using Equation (24) we see that the last term of Equation (21) is real 

and thus the whole right hand side of Equation (21) is real as it should be 

for real power flow. Substituting Equation (17) into Equation (21) yields 

P(k
x'

k
y
) -YxY YxY y 1  

E (k ,k ) E (k ,k ) 

` 	k - x 	y 
2 	k2 

) (M* (k x,k 
y 
 )M(k 

 x
,k
y 
 )(1-k

2
) 

	

+ (1 - kx
2 
 ) + (M (kx ,ky) + M(kx ,ky)(kx ,ky ))] 
	

(25) 
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2 	2 2 
where k

z = 1 - kx 
- k from Equation (12) has been used. 

Defining the factor of Equation (25) in brackets to be B(kx5  k y) Equation 

(25) becomes 
E (k ,k ) E (k ,k ) 

P(k
x 
 ,k 

y 
 ) =YxY Y 	

x ,ky 
 )1 

where from Equations (22) through (24), B(k ,k ) is seen to be real. 
X y 

P(k 
x 
 ,k 

y
) may be written as a product of conjugates as: 

P(k 
x 
 ,k

y 
 ) = A (k 

x 
 ,k 

 y 
 ) A(k 

x 
 ,k

y 
 ) 

Thus we may associate the factors in Equation (26) with 'those in Equation 

(27) as 

E (k ,k ) 	 *. E (k ,k ) 
A (k 

x 
 ,k 

 y 
 ) A(k 

x 
 ,k

y 
 ) Y xYB(k 

x 
 ,k

y  )i [ Yx3T B(k
x 
 ,k 

y 
 )1 (28) 
j  

Solving for E (k ,k ) yields 
y x y 

	 A(k ,k ) x  E (k k ) = V , 	11 4r 	
B(k ,k ) 

E, 
	x y 

x y 

E 
x 
 (k 

 x 
 ,k

y 
 may ) may then be found from Equation (17) as 

E 
x 
 (k 

 x 
 ,k

y 
 ) = M(k 

x
,k
y 
 ) E y(k 

x
,k
y 

 ) 

Unfortunately there is no unique way to accomplish the separation of 

the power pattern as indicated in Equation (27). One way to accomplish 

this however, is to let A(k ,k ) be the complex far-field component of the 
x y 

E (x.y) component of a first-guess near-field distribution which has 

characteristics similar to the specified antenna except that it has only 

a E (x.y) component. Such characteristics might include spatial limita-

tions and spatial variations which are characteristic of antennas in the 

class under consideration. Using the resultant far-field component 

(26) 

(27) 

(29) 

(30) 

35 



A(k ,k ), E and E
y 

in the far field may be determined from Equations (29) 
x y 	x  

and (30). The near field of the antenna may then be calculated from the 

well known inverse Fourier transform as follows: 

-1- 
FT IE x 

 (k 
 x 
 ,k 

 y 
 )1 

Exnf(x ' y) = 	
L 

 

z 
r 

FT-1LE;c (kx ,ky ) -1 

Eyn, 
c (x,y) = 

jkz e 

r 

where FT
-1 

is the inverse Fourier transform operation and E xnf (x,y) and 

Eynf (x,y) are the x and y components of the near field distribution, 

respectively. 

The procedure developed above allows one to determine E (x,Y) and 
x. 

E
ynf

(x,y) near field distributions which produce a far field which is 

circularly polarized (i.e. for the case R(A,o) = j) everywhere in the 

far field. Also the near field distribution has spatial characteristics 

which meet the specifications the class of antennas under consideration. 

The choice of the first-guess near-field distribution represents a 

compromise between a four-spiral antenna and a frequency independent 

antenna. The resultant is an expanding four-spiral phase monopulse 

antenna. the four spirals are located at the corners of a square and 

touch each other. The center of each spiral moves radially outward and each 

spiral expands inversely with frequency and directly with wavelength. Each 

spiral has a diam4ter of approximately 1.23x at all operating frequencies. 

k  
(31) 

(32) 
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The size of the spirals was limited by the space limitations within the 

radome at 8 GHz, the low end of the frequency band. The electric field 

distribution for each spiral is identical, except for phasing, and is 

symmetric about the axis of the spiral. The field on each spiral had a 

radial cosine distribution with zero field in the center and peak field 

near the edge of the spiral. 

After readjustment through the use of Equations (29) through (32) the 

resulting near field distributions produced the sum, elevation difference 

and azimuth differengb far-field patterns shown in Figures 13, 14, and 15, 

respectively. Tests showed that the cross polarization component of each 

of these fields (the opposite sense circular) was no greater than 30 db 

below the primary component of these fields throughout the entire far-field 

power patterns. As the near-field distributions had constant wavelength 

dimensions at all operating frequencies, the far-field power patterns did 

not change over the specified band. 

(d)  Output  Parameters  

The parameters chosen to characterize the electrical performance 

of the antenna/radome combination were boresight errors in the azimuth and 

elevation planes, monopulse error slope in these two planes, the depths of 

the difference pattern nulls, and the power loss in the 3-db contour of the 

sum pattern. For a given set of input parameters, the radome analysis 

computer program was used to calculate the sum power pattern SUM (k ,k ), 
x y 

the azimuth difference power pattern DAZ(k 
x 
 ,k

y 
 ), and the elevation difference 

power pattern DEL(k ,k ). The output parameters are then calculated from 
x y 

these power patterns as described in what follows. 
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Figure 13, Far Field Power Pattern of Antenna in 
Sum Mode 
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Figure 14, Far Field Power Pattern of Antenna in 
Elevation Difference ]Mode 
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Figure 15. Far Field Power Pattern of Antenna in 
Azimuth Difference Mode 
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The boresight error in the azimuth plane is found by first forming 

the ratio 

DAZ(k.... ,0) 1  
RAZ(kx) = 	sur.(k:,0) 	 (33) 

and then converting to decibels 

RAZDB(kx) = 20 log RAZ. 
	 (34) 

The square root is taken to convert the power patterns to voltage patterns. 

Setting ky  = 0 in Equation (33) has the effect of restricting attention to 

the azimuth plane defined in Figure 12. The discrete value of k
x 

for which 

RAX(k
x
) is a minimum is then found by a point-by-point comparison of the 

values of RAX(k
x) in the vicinity of k = 0. (The true boresight direction x 

is at k
x = 0, k = 0; the effect of the radome is to cause only small y 

errors in the electrical boresight direction.) Since the value of k 

found may not coincide with exact null position, parabolic interpolation 

(using three points on each side of the minimum point) is used to find the 

exact null position in wavenumber coordinates; viz., KXNULL. A similar 

procedure is used with DEL(k ,k ) to find the null position MULL in the 
x y 

elevation plane (k
x = 0). The boresight errors are then given in milli- 

radians by 

BSEAZ = Sin 	(KXNULL) • 1000 (35) 

BSEEL = Sin
-1 

 (KYNITLL) • 1000 (36) 

where the sense of the error is described by the :Following: 

BSEAZ < 	= rr  plane (Figure 12) 

BSEAZ > 	= 0 plane (Figure 12) 
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3 
BSEEL < 0 0 	u = —2  plane (Figure 12) 

7 
BSEEL > 0 0 = T  plane (Figure 12) 

The monopulse error slope in azimuth, ESLPAZ, is defined by 

ESLPAZ = 	FRAz(k.)] k. = MULL 	 (37) 
x L  

Since the derivative changes signs on either side of the null, the slope 

is actually found on both sides of the null and an average is taken of 

the two magnitudes. In the actual calculations, RAZDB(k x) is used so that 

4  the'error slope in volts peg degree. is given by 

,+ 
RAZDB(xx) - RAZDB(kx  

Antilog (NULLDB)  F d ( 	  
(38)  

ESLPAZ — 20 log e 	L dkx 	 2 

k
x = KXNULL 

where 

NULLDB = RAZDB (KXNULL) 

e = Eulers constant 

and where k
x
+ 
 , k

x 
indicate that the derivatives are taken on either side of 

the null. The depth of the null is just NULLDB. A similar procedure is 

carried out for these parameters in the elevation plane. 

The final output parameter is the power loss in the 3-dB contour of the 

sum pattern. This loss is defined by 

P3DR ) 
PLOSS = - 10 log (/ 17-5:55 	 (39) 

where 

P3DBR = Power in 3-dB contour of sum pattern with radome in place 

P3DBO = Power in 3-dB contour of sum pattern without radome 

The 3-dB contour is the half-power contour on a sphere for the sum power 

pattern. The power calculated is .that receivA by a circularly polarized 
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antenna when the seeker antenna transmits the sum pattern. The parameter 

PLOSS is an indication of the reduction in gain of the seeker antenna due 

to inner radome reflection, losses in the radome wall, distortions of 

the radiation pattern, and depolarization of the circularly polarized 

waves radiated by the seeker antenna as caused by the radome. 

3. 	Computed Electrical Performance  

The results of the computer analysis have been plotted and are pre-

sented in this section. The plots are grouped into two main divisions: 

The first division consists of plots of the boresight error in milliradians, 

the monopulse error slope in millivolts per degree, the power loss in deci-

bels and the depth of the difference null in decibels of the far field pattern 

with radome in place, all as a function of the look angle of the antenna 

within the radome. These plots are repeated for various candidate radome 

materials and fineness ratios at three frequencies. The second group of 

plots are principle plane cuts of a polyimide radome-enclosed antenna 

operating in the sum mode, the azimuth difference mode and the elevation 

difference mode. These plots are repeated for two fineness ratios and for 

three frequencies. 

The first group of plots are presented in order to determine which 

radome material is electrically superior and which fineness ratio is 

optimum. Far-field patterns were calculated for fused silica, polyimide 

and PyroceraM:' radomes with fineness ratios of 0.5, 1.5, and 2.5 at 8 GHz, 

12 GHz, and 18 GHz. All plots are a function of the look angle of the 

antenna with respect to the radome where zero degree look angle corres-

ponds to the tip of the radome. Figure 16 is a graph of the boresight 

error produced by the fused silica radome for look angles from zero degrees 
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to 35 degrees. Also on this figure is a graph of the monopulse error slope 

with a fused silica radome in place. Both of these graphs contain three 

sets of data, one for a radome of fineness ratio equal to 0,5,,one for a 

radome of fineness ratio equal to 1.5 and one for a radome of fineness ratio 

of 2.5, all operating at a frequency of 8 GHz. As expected, the boresight 

error for a fineness ratio of 0.5 (a_hemisphere) is zero and the error slope 

is constant for the various look angles. The boresight error is seen to be 

- greatest for a fineness ratio of 1.5 and returns to lower values for a fine-

ness ratio of 2.5. Graphs to be displayed later for a polyimide quartz 

radome show this variation in boresight error in more detail for interme-

diate fineness ratios. The error slope is seen to be a weak function of 

fineness ratio and look angle and, as shown later for polyimide, is only 

severe in the tip region. Figure 17 contains the graphs for power loss 

and null depth for a fuzed silica radome at 8 GHz for fineness ratios of 

0.5, 1.5, and 2.5. The power loss is seen to monotonically increase with 

fineness ratio and monotonically decrease with look angle. The graph of 

null depth shows that the null tends to fill in almost monotonically with 

look angle. Actually, it will be seen later that the null depth values 

peak at a look angle of approximately 20 degrees. This look angle corres-

ponds to the peak of one of the two difference pattern main lobes passing 

through the tip region of the radome. The 0.5 fineness ratio null depth is 

the lowest and remains constant with look angle, as expected. Figure 18 

and 19 are repetitions of Figures 16 and 17 but at a frequency of 12 GHz, the 

design frequency. The 12 GHz behavior is very similar to the 8 GHz behavior 

for the boresight error, the monopulse error slope and the null depth, but 

the losses for all fineness ratios at 12 GHz are very low. Figures 20 and 21 
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are repetitions of Figure 16 and 17 but for a frequency of 18 GHz. Small 

differences can be seen, but the overall performance is very similar to the 

8 GHz case. Figures 22 through 27 are similar to Figures 17 through 21 except 

that the material is polyimide instead of fused silica. All of the polyimide 

graphs contain data for six fineness ratios: 0.5, 1.0, 1.5, 2,0, 2.5, and 

2.8. Also, the look angle of zero degrees is included as well as additional 

look angles of 12.5 degrees, 17.5 degrees, and, on some graphs, 40 degrees. 

Figure 22 shows that the boresight error can be minimized at two fineness 

• 
ratios. A fineness ratio of 0.5 is ideal with zero boresight error for all 

look angles. Second best is a fineness ratio of 2.5 since this fineness 

ratio produces the least boresight error of the non-hemispherical fineness 

ratios. The error slope graph shows that the error slope increases with 

fineness ratio in the tip region. This increase in error slope is probably 

due to the attenuation as a function of look angle which would lower the 

gain of the difference pattern in the null region. Figure 23 shows that 

radome losses for polyimide can become quite severe in the tip region for 

large fineness ratios. The null depth graphs show a pronounced peak as a 

difference pattern main lobe passes through the tip of the radome at a look • 

angle of approximately 20 degrees. The remaining figures for polyimide at 

12 GHz and 18 GHz are very similar to those for fused silica but are given 

in more detail. Figures 28 through 33 are repetitions of Figure 16 through 

21 except that the material is Fyrocerag Pyroceran is seen to produce 

characteristics very similar to fused silica and polyimide. 

Two conclusions may be reached concerning the three materials tested. 

First, there is no dramatic difference between materials with regard to 

boresight error, error slope or null depth. Second, the losses for fused 
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silica and polyimide are approximately the same whereas the loss for Pyro-

ceram is a few decibels higher. 

Two conclusions regarding the best fineness ratio can be reached, First, 

the fineness ratio of 0.5 is clearly the best electrically. Second, the next-

best fineness ratio is 2.5, for as can be seen from the boresight error graphs, 

the boresight error becomes very large for fineness ratios of 1.0 and 1.5 then 

decreases to a minimum at 2.5 and then increases again for larger ratios. 

The second group of plots contains principal plane patterns for a polyi-

mide radome-enclosed antenna. The patterns are for various look angles and 

for two fineness ratios. Figures 34 through 39 are exceptions to the rule; 

these are principal plane patterns for an "air" radome (no radome at all). 

Figure 34 is the azimuth plane slice of the far-field sum and azimuth differ-

ence patterns. The sum pattern is normalized to zero decibels with a peak 

at zero degrees azimuth. The difference pattern is normalized to the sum 

pattern with resulting main lobes of approximately -3 dB at ±20 degrees in 

azimuth. Figure 35 is the elevation plane slice of the far-field sum and 

elevation difference patterns. These patterns are seen to be identical to 

the previous figure for the azimuth plane. This symmetry exists as the 

antenna is symmetric and the "air" radome is symmetric. Figures 36 and 37 

are the same as Figures 34 and 35 except that the frequency is now 12 GHz. 

The 12 GHz patterns are the same as the 8 GHz patterns since the antenna is 

frequency independent and so is the "air" radome. Figures 38 and 39 are 

repetitions of Figures 34 and 35 for 18 GHz and are also the same as the 

8 GHz patterns. Figures 40 and 41 are the 8 GHz patterns, Figures 42 and 

43 are the 12 GHz patterns and Figures 44 and 45 are the 18 GHz patterns for 

a polyimide radome with fineness ratio of 2.5 at a look angle of zero degrees 
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in azimuth and zero degrees in elevation. In these figures, the azimuth 

plane patterns are seen to be the same as the elevation plane patterns 

since the radome is symmetric for this look angle. 

It is noted that the losses are significant at 8 and 18 GHz and low 

at 12 GHz, Figures 46 through 51 are the 8, 12, and 198 GHz patterns for 

the polyimide radome with fineness ratio of 2,5 at a look angle of 17.5 

degrees in azimuth and zero degrees in elevation, Figures 46 and 47 are 

typical of these . patterns and show the asyii.etetry of the two principal 

planes since the radome is not symmetric at this look angle. The most 

significant feature of these figures is the rise of the difference pattern 

null in the azimuth plane. Figures 42 through 57 show the same radome with 

the same fineness ratio for a look angle of 40 degrees in azimuth and 0 

degrees in elevation. Figures 58 through 63 are the patterns for a look 

angle of 17.5 degrees in azimuth and 17.5 degrees in elevation. The sequence 

of figures from Figure 64 to Figure 87 are a repetition of Figures 40 through 

63 except that the fineness ratio is 0.5 (a hemisphere). The significant 

feature of the hemispherical radome is that no distortion of the patterns 

occur for any look angle. The only feature displayed is the constant losses 

at 8 and 18 GHz. 
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SECTION V 

CONCLUSIONS AND RECOMMENDATIONS 

1. Conclusions  

Based on the data presented in Sections II through IV, the following 

conclusions may be drawn: 

(a) Radome Materials  

All of the four radome materials considered (fused silica, 

polyimide quartz, polyimide E-glass, and Pyroceram) were found to have 

mechanical, thermal, and electrical properties commensurate with the mission 

of the radome under consideration. Therefore, the selection of a single 

material for this radome application must be based on small differences in 

electrical performance and other considerations such as rain erosion resis-

tance, ease of fabrication, cost, and handling in the field. 

(b) Radome Shape 

Of the six tangent ogive radome shapes considered, the two shapes 

with fineness ratios of F = 0.5 and F = 2.5 were found to be electrically 

superior. Aerodynamically, only those radome shapes having fineness 

ratios greater than approximately 1.5 will fulfill the minimum range and 

velocity requirements. All radome shapes having fineness ratios in the 

range 0.5 to 2.8 were found to be acceptable from a thermal and mechanical 

point of view. 

(c) Wall Structure 

Due to the stringent requirements on mechanical strength and 

maximum radome wall thickness, the monolithic first-order (half-wave) wall 

structure was selected. 
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2. Recounendations  

(a) Radome Composition  

It is recommended that the radome be a monolithic first-order 

(half-wave) wall structure constructed of polyimide quartz material 

having a dielectric constant of 3,40, loss tangent less than 0.006, and 

a thickness of 0.299 inch. The thickness is based on Equation (2) when a 

design frequency of 12 GHz and a design angle of 60 degrees are used. 

Deciding factors in this recommendation are superior electrical perfor-

mance, ease of fabrication, and ease of handling in the field. 

(b) Radome Shape  

It is recommended that the radome shape be a tangent ogive sur-

mounting a 5-inch outside diameter cylinder as shown in Figure 11 with an 

inside diameter of 4.402 inches. The fineness ratio of the tangent ogive 

section is recommended to be 2.5 so that both the electrical and aerodynamic 

performances will be acceptable; however, if the minimum range were reduced, 

a fineness ratio of 0.5 would be recomended because of its vastly superior 

electrical performance. 
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