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“Whatever you do in life will be insignificant, but it is very important that you do it;

because you can’t know. You can’t ever really know the meaning of your life. And you

don’t need to. Every life has a meaning, whether it lasts one hundred years or one hundred

seconds. Every life, and every death, changes the world in its own way. You can’t know.

So don’t take it for granted. But don’t take it too seriously. Don’t postpone what you want.

Don’t leave anything misunderstood. Make sure the people you care about know. Make

sure they know how you really feel. Because just like that...It could end.”

-Mohandas Karamchand Gandhi



For my grandpa, Joseph Anthony Weber. May he rest in peace.

November 25th, 1934–April 6th, 2023
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NOMENCLATURE

A area of membrane [m]

Ai free-fractional volume diffusion theory molecule-polymer system dependant con-

stant [m2s−1]

ayi activity of component i in Phase y; if second subscript present; ayi,h refers to evalu-

ation at z = h

ay vector of n component activities in Phase y, ay = (ay1, a
y
2, . . . , a

y
n); ay

h refers to

evaluation at z = h

b electrodialysis (ED) channel width [m]

Bi free-fractional volume diffusion theory molecule dependant constant

bi Langmuir affinity parameter for component i [bar]

Ci ED channel i concentration, where i = C,D for concentrate or dilute channel [mol

m−3]

ci concentration of component i [mol m−3]

CH
i volume Langmuir free volume capacity for component i [m3 penetrant m−3 poly-

mer]

ÐV
ij volume based binary Maxwell-Stefan diffusivity for component i and j [m2s−1]

DIEM salt permeability coefficient [m2 s−1]
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F Farday’s constant; 96,485 [C mol−1]

f ◦
i pure component fugacity for component i at defined T y, P y, [bar]

f y
i mixture fugacity for component i in Phase y [bar]

fs,SOL shadow factor for solution channel [1]

fy vector of n Phase y fugacities, f = (f y
1 , f

y
2 , . . . , f

y
n)

I total current [A]

i current density [A m−2]

Ji molar flux of salt where i = {tot, diff, cond} [mol m−2 hr−1]

ki volume Henry’s law parameter for component i [m3 penetrant Pa−1 m−3 polymer]

LIEM
p water permeability coefficient [m3Pa−1s−1m−2]

Mw molecular weight of water; 18 [g mol−1]

n number of permeating component, where component n+1 refers to the active layer

(Phase II) membrane component

Ni molar flux of component i [mol m−2s−1]

NV
i volumetric flux of component i [L m−2s−1]

Ns number of ED stages

Ntot total molar flux [mol m−2s−1]

Ncp number of ED cell pairs

NV vector of n volumetric fluxes. N = (NV
1 , NV

2 , . . . , NV
n )

P y total pressure of Phase y [bar]
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Pi power of stage i or i = tot for total power of single ED stage, where P = V I [W]

Qi ED channel i volumetric flowrate, where i = C,D for concentrate or dilute channel

[m3 hr−1]

qi volumetric flux of water where i = {w, osm, eosm} [m3 m−2 hr−1]

R gas constant [bar m3 mol−1K−1] or [J mol−1K−1]

Ri areal resistance, where i = {tot,CEM,AEM, C,D} [Ωm−2]

T temperature of system [K]

tcounter
i transport number of counter ion through membrane where i = {CEM,AEM} [-]

V i partial molar volume of component i [m3mol−1]

Vi voltage drop where i = {tot, cp}, cp = cell pair, [V]

V ◦
i molar volume of pure component i at (T, P II) [m3mol−1]

vF,II free-fractional volume diffusion theory polymer free volume

V◦ vector of n pure component molar volumes, V◦ = (V ◦
1 , V

◦
2 , . . . , V

◦
n )

w total water transport number [1]

x ED channel length coordinate [m]

xy
i mol fraction of component i in Phase y

xy vector of n component mol fractions in Phase y, xy = (xy
1, x

y
2, . . . , x

y
n)

z spacial dimension through membrane layer [m]

γy
i activity coefficient of component i in Phase y
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γy vector of activity coefficients in Phase y. γy = (γy
1 , γ

y
2 , . . . , γ

y
n; γy

h) refers to evalu-

ation at z = h

δi thickness of either i = {IEM,SOL} [m]

δy,i Hansen solubility parameters for dispersion forces (y = D), intermolecular forces (y

= P), and hydrogen bonding (y = H) [Pa0.5]

η non-ohmic voltage contributions [V]

µ◦
i chemical potential of component i at pure component system temperature T and

pressure P ◦ reference state [J mol−1]

µy
i chemical potential of component i in Phase y [J mol−1]; µy

i,h refers to evaluation at

z = h

ΦIEM
i osmotic coefficient for i = C,D for concentrate or dilute channel

ϕi volume fraction of component i dissolved in the Phase II; ϕi,h refers to evaluation

at z = h

ρw density of water [g m−3]

ϕ vector of Phase II volume fractions.

ϕ = (ϕ1, ϕ2 . . . , ϕn, ϕm); for all methods except discretization, ϕh refers to evalu-

ation at z = h, ϕ1:n is ϕi for i = 1, 2, .., n, for the discretization methods, ϕk is ϕ

evaluated at node k
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SUMMARY

This dissertation addresses the need for improved industrial membrane process mod-

eling and simulation by developing a general framework that considers complex mixture

coupling. As our society shifts from everyday products stemming from distillation-based

fossil-fuel refineries, to those same products made by means of bio-refineries; utilizing

novel separation technologies such as membranes and complex mixtures will be ever more

prevalent. A complex mixture refers to either a liquid or gas stream with no single ma-

jority component and usually gives rise to mixture interactions (thermodynamic or diffu-

sional coupling) between species. Membranes are used for complex mixture separations

in many applications, including water purification, carbon capture, hydrogen separation,

olefin/paraffin separation, benzene derivative concentration, and membrane reactor sys-

tems. Currently, overall membrane process modeling is heavily reliant on simple models

that do not consider complex mixture interactions. In addition, numerical algorithms for

simulating membrane performance using a rigorous modeling framework are inefficient

and unreliable for systems with many permeants or strong thermodynamic/diffusional cou-

pling. Moreover, membrane thermodynamic and diffusional modeling capabilities are still

lacking for transport predictions based on parameters fit from minimal experimental data.

Consequently, a general-purpose membrane simulation method with sufficient accuracy,

robustness, and efficiency to be included in process flowsheet simulation environments is

non-existent. Therefore, there is a critical need for improved numerical algorithms and

modeling capabilities for industrial membrane processes involving complex mixtures.

To address this need, the overall objective of this work is to develop new theory and

algorithms for modeling and simulating industrial membrane modules. Such theory and

algorithms must be applicable to any complex mixture, membrane material, and module

geometry for integration into overall process flowsheet simulation. This dissertation will

start by working with the most logical aspect that is microscopic (local) membrane trans-

port. For the detailed contribution, chapter 2 presents improved numerical methods to solve

xxxiv



complex mixture local membrane transport using a Maxwell-Stefan model. For membrane

modeling, the most significant challenges have to do with accurate thermodynamic and dif-

fusional predictions that require no multicomponent mixture parameterization (i.e. models

with parameters that are fit based solely on pure component data to minimize the number

of experiments required). To find the contributions that work towards this goal, chapter 3

presents novel sorption and diffusion models. Additionally, a more compact version of the

Flory-Huggins sorption model is presented to enable simulation of complex mixtures with

hundreds of components. Then, chapter 4 presents a software package of our contributions

for pressure-based industrial membrane processes for use by practicing chemical engineers

within process simulation environments. Finally, chapter 5 provides a base case nutrient re-

covery scenario, simulation framework, preliminary control strategies, preliminary process

designs, and a working unit operation code of electrified industrial membranes for nutri-

ent recovery from wastewater treatment plant and concentrated animal farming operation

streams. Overall, this work has resulted in novel algorithms, modeling capabilities, and a

software package for industrial membrane process simulation. In addition to that, contri-

butions towards electrified industrial membrane processes are presented. Moving forward,

the membrane design process involving complex mixtures can compete with the seamless

design process of traditional energy or chemically intensive separations such as distillation,

extraction, air stripping, or crystallization. Overall, this will enable deployment of complex

mixture membrane processes (i.e. more energy efficient and smaller chemical processes).

This will benefit society by reducing our environmental footprint, and allow for design of

intensified chemical systems.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This dissertation provides improved numerical methods, phenomenological relationships,

and software tools to enable pressure-based industrial membrane process modeling and

simulation that considers complex mixture coupling. In addition to that, this dissertation

provides process design tools for electrified industrial membrane nutrient recovery pro-

cesses to produce nitrogen and phosphorous fertilizers from wastewater treatment plant

and concentrated animal farming operation streams. The contributions from this disserta-

tion aim to make it possible for process design of industrial membrane processes utilizing

complex mixtures. The end-goal of these modeling and numerical method approaches is

to extend them and enable mixture simulations of up to hundreds (or thousands) of com-

ponents. While the numerical methods herein have been applied to organic solvent reverse

osmosis and fertilizer nutrient recovery, these methods are generally applicable to mem-

brane processes that utilizes streams with complex mixture coupling and/or electrochemical

potential gradients. Given that, the models used may need alterations to match the given ap-

plication. The next sections provide background on complex mixture chemical separations,

pressure-based industrial membrane processes, existing phenomenological relationships

used to model pressure-based industrial membrane transport, existing numerical methods to

simulate pressure-based industrial membrane transport, available tools to design pressure-

based industrial membrane processes, electrified industrial membrane based-processes, and

available software to design electrified industrial membrane processes. Within the last sec-

tions, the shortcomings of each piece will be highlighted to define the knowledge gaps

which this dissertation specifically addresses. Finally, the chapter ends with an outline of
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contributions to each topic, and where it can be found.

1.2 Complex Chemical Mixture Separations

As chemical engineers, we confront separations in everything we work with. Even as

a consumer, every product has been through some sort of separation process somewhere

along its synthesis. In fact, from the 32% of energy that is used within the US for the

industrial sector, 45–55% of that energy is devoted to chemical separations [2]. A good

rule of thumb for chemical engineering is that half of the energy is used to synthesize the

chemical of interest, while the other half is used to separate it. This project will consider

complex mixtures as the fundamental process stream when modeling and simulating indus-

trial membrane processes. This is significant because realistically every chemical process

contains at least one complex mixture stream. A complex mixture refers to either a liquid or

gas chemical process stream with no single majority component. This usually gives rise to

mixture interactions (either through thermodynamic and/or diffusional coupling) between

species. In the context of industrial membrane processes, many assume solution ideality

such that single component properties carry over to higher component mixtures. However,

this assumption misses phenomena only observed in complex mixtures [2]. As an exam-

ple, membranes for olefin/paraffin separation have been shown to have increased separation

performance with a realistic process stream that has five added impurities relative to what

would be expected based on pure component olefin and paraffin permeation experiments

[3].

When considering the transition from everyday chemicals derived from fossil-fuel re-

fineries to ones derived from environmentally sustainable bio-refineries, complex mixtures

are guaranteed to be encountered. Koutinas et al. presents a reaction network consisting

of 24 chemical building blocks that can be produced via fermentation [4]. These building

blocks range from fuels, polymers, pharmaceuticals, niche/bulk commodity chemicals, etc.

Throughout all proposed biological networks, most of them have side-products creating a
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complex mixture that will need to be refined. Other sources of complex mixture separa-

tions are the valorization of industrial waste and byproduct streams. In the wood, pulp, and

paper industries for example, Koutinas et al. states that wood residues account for about

10% of the starting material going to waste, and black liquors are produced at a rate of 7

tons per ton of paper pulp. These streams contain cellulose, hemicellulose, lignin, phenolic

compounds, dissolved salts, etc. These complex mixtures can then be either separated as

recyclable process streams, biochemicals, biopolymers, bioethanol, or biodiesel. Looking

towards solvent use in the chemical and pharmaceutical industries, raw materials can be up

to 85% solvent by mass [5]. Producing these solvents by means of sustainable biological

precursors will also lead to a complex reaction broth that will need to be refined [6].

As far as everyday chemical separations that utilize complex mixtures, crude oil has

to be the largest example of a mixture containing over 10,000 compounds that each end

up in almost every product we use [7]. Two final notable examples are wastewater treat-

ment plant (WWTP) and concentrated animal farming operation (CAFO) streams. These

streams contain many different organic acids, large organics, and salts that end up creating

a complex system of various particle interactions. For specific component breakdowns,

Table 1.1 and Table 1.2 show the common components for a synthetic inlet WWTP and

CAFO lagoon manure streams, respectively. In addition to these examples, to reach realis-

tic process stream simulations, exemplar complex mixture streams must first be understood

and modeled [8].

1.3 Pressure-based Industrial Membrane Processes

1.3.1 Overview

Starting from the beginning of life itself, the development of a physical barrier between an

internal system and its environment is thought to have been the crucial prerequisite to chem-

ical evolution for life on Earth [11]. That chemical autonomy theoretically then evolved to

human life with the foundational physical barrier being a lipid bi-layer membrane. Then, in

1748, the discovery of osmosis to describe the permeation of water through a pig bladder by
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Table 1.1: CAFO lagoon manure composition [9].

Component CAFOs Manure (mg/L)
NH+

4 -N 407
Organic-N 168

Total Nitrogen 575
P2O5 336
K2O 731
Ca 103
Mg 55
Zn 4
Cu 2
Mn 1
S 37

Na 216

Table 1.2: WWTP inlet stream synthetic recipe [10].

Ingredient Synthetic WWTPs Inlet solution (mg/L)
Urea 97
NH4Cl 12.7
Na-acetate 79.4
Peptone 17.4
MgPO4·H2O 29.0
KH2PO4 23.4
FeSO4·7H2O 5.8
Starch 122.0
Milk powder 116.19
Yeast 52.2
Soy Oil 29.0
Cr(NO3)3·9H2O 0.8
CuCl2·2H2O 0.5
MnSO4·H2O 0.1
NiSO4·6H2O 0.3
PbCl2 0.1
ZnCl2 0.2
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Figure 1.1: FE-SEM image of asymmetric membrane [14].

Abbé Nolet sparked inspiration from nature to continue to study these semipermiable ma-

terials. Almost 200 years later in the 1960s, atomically precise physical barriers for large

scale chemical separations were first commercialized [12]. Today, membranes are used for

water purification, carbon capture, hydrogen separation, olefin/-paraffin separation, ben-

zene derivative concentration, and many other applications [2]. Moreover, membranes are

a low-energy alternative when comparing to traditional thermal separation processes such

as distillation and evaporation. In fact, membrane processes have been shown to be the most

applicable energy-saving alternative for chemical separations across a set of industries that

currently account for 98% of the total U.S. separations energy consumption [13]. In these

same industries, it has been estimated that a transition to low-energy separations including

membrane processes could lead a 16% reduction in the total annual energy consumed by

chemical separations [13]. In absolute amounts, this could save 223 trillion BTU/yr, or

the equivalent energy of 25.5 Empire State Buildings worth of coal by weight per year.

With that energy savings in mind, the next paragraph outlines some general background on

industrial membrane structure, material, and module geometry.

Although this dissertation will focus mainly on the local scale membrane transport, it

is relevant to understand membrane modules as a whole. This is important because fu-

ture work may focus on incorporating capabilities to simulate the most industrially relevant

membrane processes using numerical methods and models presented in this dissertation.
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This will be significant because it provides a complete toolkit for the end user to model and

simulate complex membrane processes given any relevant material, module geometry, or

flow configuration. While membrane technology was first limited to lab scale performance

for many years, increased availability and application of industrial membrane technology in

the early 1960s was due to the Loeb-Sourirajan process for making "defect-free, high-flux,

anisotropic reverse osmosis membranes" [15]. Figure 1.1 shows an example of asymmet-

ric membrane that utilizes a thin active layer fabricated on a porous support layer. The

cited paragraph continues, stating that this technique allowed reverse osmosis membranes

to have a 10-fold increase in productivity for water purification, which ultimately led to its

commercialization. Asymmetric membranes also allow for a rigid backbone that can with-

stand harsher environments, while the nanometer-thin active layer can provide the proper

separation selectivity and permeation rate.

For those reasons, this dissertation will be restricted to asymmetric membrane process

modeling and simulation. Relevant industrial membrane materials can either be inorganic

(zeolites, metallic organic frameworks–MOFs, thin metallic layers) or organic (polymeric,

carbon molecular sieves, carbon nanotubes) [16]. Combining the two, mixed-matrix mem-

branes provide the high component selectivity of dense polymer membranes and the high

permeation rates of inorganic materials [17]. The material chosen affects the variables used

to model the system and will be important in later sections. There are transport regimes

based on nominal pore size[12]. Simple relationships such as Darcy’s law and Knudsen dif-

fusion describe the transport well for pore sizes above 1 nanometer. This project will focus

on molecular-scale (subnanometer) nominal pore sizes. This leads to complex interactions,

and challenges arise when modeling and simulating such phenomena.

At the global scale, module geometries and flow configurations can take many forms.

Geometries include flat plate, tubular, plate-and-frame, hollow fiber, spiral wound, and sub-

merged modules [18]. The main trade-offs between each type of configuration has to do

with ease of manufacturing and packing density (area of active membrane layer per unit
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volume of membrane module). For hollow fiber membranes, the values can reach 30,000

m2/m3. Conversely, plate-and-frame modules can be one the order of 100 m2/m3. Dif-

ferent flow geometries and configurations can be considered as well. Cross-flow is more

commonly seen in industrial applications where streams flow parallel to the membrane

surface. These streams can also flow in co-current, counter current, or perpendicular direc-

tions (which is also referenced in certain texts as "cross-flow", so care should be taken to

understand the context since "cross-flow" is also a common term for lab-scale/industrial-

sized permeators with tangential flow along the membrane surface rather than vertically

perpendicular to the membrane surface as found in "dead-end" permeators). Figure 1.2

shows the general system set-up for a co-current cross-flow flat plate membrane module.

When thinking about the different scales to model and simulate such processes, the overall

membrane module is defined as the global transport scale. Following that, the third part

of Figure 1.2 show the local transport scale. In later chapters, the difference between the

two scales will entail vastly different simulation strategies. While chapter 2 and chapter 3

will go into rigorous detail of the modeling and simulation of membrane processes using

complex mixtures, subsection 1.3.2 provides a high-level overview of the membrane local

flux modeling and simulation problem.

1.3.2 Modeling and Simulation

This section aims to present a high-level overview of pressure-based industrial membrane

process modeling and simulation. In doing so, the cohesiveness of each objective to the

overall goal of this dissertation is established. Moreover, challenges and critical needs will

be highlighted to motivate the completed dissertation work. The following subsections will

then provide detail to justify claims. While this dissertation does not deal with contributions

to global membrane module transport, it is still important to understand the state of the art,

and how an interested reader might extend the numerical methods and models presented

in later chapters from local scale transport to the global scale transport. That relevant

background can be found in Appendix C for the interested reader.
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Figure 1.2: Three views of the same flat plate membrane module with co-current flow
configurations

To begin, any industrial membrane module is composed of a feed stream that comes into

contact with a membrane layer and partially transports through to a permeate stream. From

that basis, there are three main aspects to model: the feed channel model, the permeate

channel model, and a model that describes the flux through the surface of the membrane

(also known as the local transport model). Each piece combined creates a coupled system

of partial differential and algebraic equations (PDAEs). The global transport model is the

overall transport model that combines these 3 parts. Note that the physical properties model

will be assumed known at all times.

The feed and permeate channel models are comprised of differential species concen-

tration, momentum, and energy balances. The local transport model is dependant on the

feed-side species concentrations, permeate-side species concentrations (in certain cases this

is not needed, as seen in chapter 2), temperatures, and pressures at each point on the mem-

brane surface. Using those values on each side, a driving force or gradient for transport is

created. This gradient dictates the flux that travels across the membrane, which is the main

unknown.

The mechanism for local transport can be described by the sorption-diffusion (SD)
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Figure 1.3: Solution-diffusion mechanism, figure adapted from [19].

model. This mechanism can be described by three steps (see Figure 1.3):

1. thermodynamic equilibrium (sorption) between bulk feed (Phase I) and the active

layer membrane (Phase II)

2. diffusion through the active layer membrane (Phase II)

3. thermodynamic equilibrium between active layer membrane (Phase II) and support

layer membrane (Phase III)

The main driving force for transport is the gradient of chemical potential, which is a

function of all species concentrations, pressure, and temperature. The pressure in Phase II

has been shown theoretically to be constant (or of negligible importance) and equal to the

Phase I pressure [20].

This three-step mechanism implies there are two main sub-models to the local mem-

brane transport problem–a thermodynamic sorption model, and a membrane diffusion model.

The main problems addressed in the dissertation are: (i) simulation of the local trans-

port model, (ii) insight and novel modeling approaches for thermodynamic and diffusional

modeling, and (iii) tools to design such processes within chemical process flowsheeting en-

vironments. The critical needs for (i) are fast and reliable numerical methods when dealing
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with complex mixture separation. For (ii), the critical need is improved models for predict-

ing complex mixture membrane sorption/diffusion with minimal computational complexity

and experimental data.

The main flow for the next subsections will start with the most basic piece and build on

complexity.

Membrane Sorption Modeling

The local transport framework relies on accurate thermodynamic models to make realistic

permeation predictions. This project will focus on thermodynamic models applied to poly-

meric and inorganic materials. Charged interactions between species will be ignored for

now.

The most basic ideal thermodynamic sorption model is Henry’s Law. This provides a

linear relationship for phase equilibrium partitioning. This model is valid for low species

activities (related to concentration) in a penetrant-polymer mixture. When considering

higher activities and complex mixtures, this model will fail. This is because of nonlinearity

in the experimental pure-component isotherms, and interactions with other mixture species

(see Minellie et al. for this trend in the experimental data) [21].

For inorganic nanoporous materials, the sorption phenomena is known as adsorption.

Well-known example thermodynamic models take the form of either Langmuir or Ideal

Adsorbed Solution Theory (IAST) [22]. The Langmuir model deals with pure component

adsorption, and is based on a surface reaction balance between adsorption/desorption. The

multicomponent extension of this theory is the second term of (Equation 1.2) [23]. This

model works for gas systems with non-interacting species. The latter multicomponent

adsorption model, IAST, has been the standard for gas adsorption modeling over the last

50 years [24]. Yet, the assumptions built-in breakdown for complex mixtures. There have

been extensions of IAST to predict real mixtures, namely real adsorbed solution theory

(RAST) [25]. However, the equations are difficult to parameterize without a multitude

of multicomponent mixture data. This is because an underlying activity model is needed
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where binary interaction parameters are needed.

In modeling rubbery polymer membranes, the thermodynamics between penetrant-

penetrant and penetrant-polymer pairs is well described by the Flory-Huggins polymer

solution theory [26] [27]. The challenge lies with glassy polymers, which contain non-

equilibrium frozen voids within the polymer matrix. These voids disappear as the polymer

swells (plasticize) with increased penetrant activity. The polymer matrix is then rubber-

like, and described by a Flory-Huggins type sorption. Current models to describe glassy

polymer sorption are the non-equalibrium lattice fluid (NELF), and the dual-mode sorp-

tion (DMS) model. The NELF model requires many fitting parameters even for the single

component case, and fails to capture the higher activity transition to a rubbery polymer

membrane state (see Minelli et al. for this trend in the experimental data) [21]. The NELF

equation for a simple permeant (1) and polymer (2) system can be written as [21]

lnS0 = ln

(
TSTP

pSTPT

)
+ r01

{[
1 +

(
v∗1
v∗2
− 1

)]
ln

(
1− ρ20

ρ∗2

)}
+

(
v∗1
v∗2
− 1

)
+

ρ20
ρ∗2

T ∗
1

T

2(1− k12)

p∗1

√
p∗1p

∗
2. (1.1)

For DMS, the sorption is split into two distinct types, one being this glassy void filling

and the other a simple Henry’s law dissolution type [28]. Combing the two, the working

equation becomes

cmi = cmd,i + cmh,i = kd,if
m
i +

Cm,sat
h,i bif

m
i

1 +
∑n

j=1 bj f̂
m
j

. (1.2)

The predicted isotherm is similar to that of the NELF prediction in Minellie et al. [21].

The main problems outlined for thermodynamic membrane sorption modeling are ei-

ther (i) the models are simple but do not apply to complex mixtures, or (ii) the models

work well for complex mixtures but are difficult to parameterize and implement even in the

single permeant case.
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Figure 1.4: Quantitative representation of an asymmetric membrane layer at the local level.
We assume that the support layer provides no resistance to transport.

Local Transport Modeling and Simulation

Given a suitable thermodynamic sorption model, the local transport model calculates the

component fluxes. All physical properties are assumed to be known. Figure 1.4 shows a

quantitative representation of the local transport system.

The simplest uncoupled approach assumes the permeant driving forces are not depen-

dant on other mixture species. The workhorse permeability, Pi, or Permeance, P̃i, model

for membrane transport can be written as

Ni = −
Di,(m),FickSi

lmem

(
cIIIi − cIi

)
= − P̂i

lmem

(
cIIIi − cIi

)
= −P̃i

(
cIIIi − cIi

)
. (1.3)

This equation is simple to implement, but has these assumptions: (i) constant permeant

activity throughout the membrane layer, (ii) concentration independence from the other

components in the mixture, and (iii) Henry’s type thermodynamic partitioning. All of these

assumptions fail to capture complex mixture species coupling between each ij pair [29]

[30].
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As a better approach, the Maxwell-Stefan (MS) transport model is built for complex

mixture coupling [31]. There are other formulations such as the generalized Fick’s law and

Onsager formulations. For generalized Fick’s law, the derived cross-diffusion coefficients

are specific for each multicomponent mixture [32]. For the Onsager formulation, parame-

ters are solvent and reference frame specific for each multicomponent mixture. [33]. The

basis for fixed-membrane phase (Nm = 0) Maxwell-Stefan expressions are a chemical

vs. friction force balance between each molecule in the mixture. This model can be written

for an n component mixture in matrix form as system of ordinary differential equations

(ODEs) 

dϕ1

dz

dϕ2

dz

...

dϕn

dz


= −Γ−1Bn, (1.4)

where,

Γij = ϕi
∂ln(aIIi )

∂ϕj

=
ϕi

f II
i

∂f II
i

∂ϕj

, Bii =

 n∑
j=1
j ̸=i

ϕj

ÐV
ij

+
ϕm

ÐV
im

, Bij = −
ϕj

ÐV
ij

.

This approach is useful, and easily interpreted as thermodynamic coupling between all

ij pairs though Γij , along with the diffusional coupling though each ÐV
ij .

This model is built to handle complex mixture transport. Yet, there are two notable

problems. The first is modeling each Ðij using predictive models with minimal or no mix-

ture experimental data. The second is implementing and simulating the system of equa-

tions.

For diffusional models within polymer membranes, the concentration dependence of

the penetrant-polymer diffusivity is dependant on the swelling state of the polymer. The
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phenomena presented is usually of an exponential form like [34]

ÐV
1m = ÐV

1m,0 exp[A1(ϕ1 + C12ϕ2)]. (1.5)

This expression is not easily extended to higher component mixtures without arbitrary extra

fitting terms. For rigid polymer matrix diffusion models, they usually have to do with

the degree of loading within the nanopourous material, and requires further investigation.

Known models are almost always empirical in nature and more work is needed to be done

to establish diffusion theories.

Regarding simulation of (Equation 1.4), it cannot be directly integrated like the simple

permeability model. The main point is this rigorous approach creates a 2-point boundary

value problem since there is are two fixed boundary conditions. The first boundary con-

dition is volume fraction of all components evaluated at z = 0. This can be found using

Phase I molar compositions that are assumed in equilibrium with the Phase II at z = 0. To

model and simulate local asymmetric membrane transport in a predictive manner (based on

feed composition), a relationship coined by C.Y. Pan is used [35]. This relates the ratio of

partial fluxes to the molar composition in the support layer Phase III as

xIII
i =

Ni∑n
j=1Nj

, i = 1, 2, ..., n. (1.6)

Using this relationship, and assuming equilibrium between Phase II and III, the volume

fraction at z = L can be found. This equation pair has been shown in the literature before

[36] [37] [38]. However, the methods used to solve them are insufficient for a high number

of permeants, strong thermodynamic coupling, or strong diffusional coupling. The method

by Hesse et al. uses discretization and partitions Phase II into discrete nodes while keeping

equation (Equation 1.4) in terms of chemical potential gradients. This avoids having to

evaluate derivatives to generate the thermodynamic factor matrix, Γ. Even so, the ODE

system begins to take on non-linearity through the 1
RT

dµII
i

dz
=

d ln aIIi
dz

term. See Figure 1.5 for
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Figure 1.5: (A) Simulated chemical potential gradient, (B) equivalent volume fraction gra-
dient.

comparison of state variable profiles. The introduction of highly nonlinear profiles begins

to cause the number of discretization nodes to increase greatly, and make the computational

times unreasonable.

Izák et al. presents a form of these ODE equations by assuming a linear profile through-

out the membrane phase (only two nodes). The matrices in equation (Equation 1.4) are

evaluated at an average concentration of component i in Phase II. This method is also pre-

sented by Krishna et al., but does not invoke Pan’s relationship [39]. These methods have

been shown to work well for a small number of components. However, after looking into

5 or 9 components, we found that the matrices can actually vary significantly across the

membrane layer and can cause error from the true solution [40].

In summary, the Maxwell-Stefan transport model is the workhorse for local complex

mixture membrane transport. Given that, there are still pitfalls with this approach to model-

ing and simulation that must be addressed. First, novel diffusional relationships are needed

based on minimal computational complexity and parameterization requirements. Along

with that, the state-of-the-art methods for simulating this local transport framework present

challenges for general use. One challenge is requiring a large inefficient system of equa-

tions when discretizing highly nonlinear chemical potential gradients. The other is encoun-

tering large error for systems exhibiting strong thermodynamic or diffusional coupling that
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varies significantly with concentration throughout the membrane layer.

1.3.3 Available Software

Now that the exact problem is motivated to model and simulate asymmetric (polymeric,

inorganic, or mixed-matrix materials) industrial membrane processes (flat plate, plate-and-

frame, spiral wound, hollow fiber, and submerged module geometries with co-current,

counter-current, or perpendicular flow configurations) using complex mixtures for use in

process simulation environments. The most notable known tools (either commercially

available or standalone software) are the Chemstations, Inc. membrane process unit model,

commercially available example files within AspenPlus process flowsheeting software, a

commercially available unit operation in gPROMs, a software package developed by Uni-

versity of Minnesota to simulate spiral-wound membranes called memPy, and MEMSIC

(which simulates gas separation in various flow configurations of a flat plate membrane

module) [41] [42]. From a recent review article, there are another 17 different membrane

modeling and simulation tools released [43]. The article also states that the software pack-

ages lack features to interface with proprietary simulators and error handling for model

convergence failure. Another observation is that half are restricted to gas separations,

including the Chemstations, AspenPlus, and gPROMS unit operations. organic solvent

nanofiltration (OSN) Designer is another general purpose tool that actually takes a step in

the right direction and implements their MATLAB code into Aspen using Computer-Aided

Process Engineering Open (CAPE-OPEN) standards [44]. However, the limitations are that

the software is limited to binary mixtures, and only applicable for organic solvent nanofil-

tration. These tools are a good first milestone being commercially available, but they are

lacking in being a general purpose tool for complex mixture separations since most are

limited to uncoupled gas separations.
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1.4 Electrified Industrial Membrane Processes

1.4.1 Overview

Compared to traditional industrial membrane processes, where transport is based on a me-

chanical pressure and/or concentration gradient that drives transport from the feed (which

is usually concentrated in the chemical of interest) to the permeate (usually dilute in the

chemical of interest), electrified industrial membrane processes work in the opposite man-

ner by using an electrical potential gradient to drive ions from a dilute stream to a more

concentrated stream. The most common application of this is desalination of seawater to

produce clean drinking water [45]. Additionally, this electrified industrial membrane pro-

cess is usually referred to as ED. The basic principles of how it works are as follows. The

feed stream is considered a dilute stream with one or more charged ions (salts). The product

or waste stream (depending on the application) is a concentrated charged ion stream. Sep-

arating these streams are ion-exchange membranes (IEM). The simplest subsystem can be

thought of as a cell-pair where from left-to-right there is a concentrate channel (product or

waste), cation-exchange membrane (CEM), dilute (feed) channel, and an anion-exchange

membrane (AEM). This cell pair repeats as many times as needed to give a full electro-

dialysis stack. On the ends, there are electrode channels (anode and cathode) to provide

an electrical current that passes across the ED stack to drive transport of ions from each

respective dilute channel to each of the concentrate channels. For the purposes of this dis-

sertation, ED will be applied to nutrient recovery of ammonium and phosphate salts from

WWTP and CAFO streams. This is not a novel application on the lab-scale. However, it is

when applied on an industrial scale. There are many intricacies involved in process design

which this dissertation aims to address. The next section looks available software to design

these processes on an industrial scale.
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1.4.2 Available Software

As with the available software to design such processes for pressure-based industrial mem-

brane unit operations utilizing complex mixtures, the available software to design electri-

fied industrial membrane processes is scarce; even for a single salt solution. The publication

by Capione et al. describes their implementation is done in gPROMS (a commercial process

simulator), but the code is unavailable for open-source use. QSDsan (https://qsdsan.com/ )

is a software package available for open-source use in Python that has many unit op-

erations available that are common in wastewater treatment plants. While the software

package does have an electrodialysis unit operation, the model is more rudimentary than

the one presented in the previous section such that the model is based on fixed recovery

rates. Given that, it is mainly only useful for high level system energy and flow calcula-

tions. The only other main open-source software that actually implements the same mod-

eling framework as outlined previously is found in a software package called WaterTAP

(https://www.nawihub.org/knowledge/watertap/ ). The embedded unit operation has many

great options for ED simulation, and also implements state-of-the-art electrolyte solution

activity models. Compared to anything else, this software would seems like the option to

do preliminary process design and optimization. While it is for someone really proficient

in Python, after installing it and getting it up and running, the code itself is not straightfor-

ward to use for a practicing engineer or an experimental academic researcher. Moreover,

there are no dynamic capabilities if wanting to model lab-scale experiments to fit parame-

ters and/or look at various control strategies due to process disturbances. That is why there

is a need for a more user-friendly tool to design nutrient recovery processes.

1.5 Contributions

Currently, pressure-based membrane process modeling is heavily reliant on simple models

that do not consider complex mixture interactions. In addition, numerical algorithms for

simulating membrane performance using a rigorous modeling framework are inefficient,
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and unreliable for systems with many permeants or strong thermodynamic or diffusional

coupling. Moreover, membrane thermodynamic and diffusional modeling capabilities are

still lacking for transport prediction when parameters are fit from minimal experimen-

tal data. Consequently, a general-purpose membrane simulation method with sufficient

accuracy, robustness, and efficiency to be included in process flowsheet simulation envi-

ronments is non-existent for pressure-based or electrified industrial membrane processes.

Therefore, chapter 2 will present improved numerical algorithms and modeling capabili-

ties for industrial membrane processes involving complex mixtures. We start by working

with the most logical aspect which is local membrane transport. For membrane modeling,

chapter 3 addresses the most significant challenges having to do with accurate thermo-

dynamic/diffusional predictions that require no multicomponent mixture parameterization,

and enabling high component number complex mixture simulations. Then, in chapter 4, we

will package our contributions applied to pressure-based industrial membrane processe for

use by practicing chemical engineers. Finally, chapter 5 will provide preliminary process

designs that show various electrodialysis-based membrane cascades to produce a viable

fertilizer product. From this work, the membrane design process involving complex mix-

tures can compete with the seamless design process of traditional energy or chemically

intensive separations such as distillation or extraction. Enabling rapid deployment of com-

plex mixture membrane processes will lead to more energy efficient and smaller chemical

processes. This work will enable practicing engineers and researchers to help society by re-

ducing our environmental footprint, and allow for design of modular chemical systems that

may be used for modular purposes (e.g. on-demand farmer operated fertilizer production,

consumer produced bio-fuels, and/or space colonization applications).
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CHAPTER 2

IMPROVED NUMERICAL METHODS FOR LOCAL MEMBRANE TRANSPORT

2.1 Introduction

This chapter presents improved numerical methods for predicting complex mixture separa-

tion across asymmetric polymer membranes. The term complex mixture refers to a multi-

component fluid mixture with no clear majority component, which usually gives rise to in-

teractions between species that strongly affect membrane performance. Complex mixtures

are ubiquitous in chemical processes and are most often separated using energy-intensive

thermal methods such as distillation. In fact, 45–55% of U.S. in-plant energy is used for

separations [13]. Fortunately, membranes offer an alternative that can potentially achieve

significant process intensification. Sholl and Lively [2] estimated that membrane processes

could significantly reduce energy intensity compared to thermal separation routes in crude

oil refining, bio-oil refining, olefin/paraffin separation, benzene derivative concentration,

o/p-xylene separation, and more. Unfortunately, the complex hydrocarbon mixtures in

these applications are often theromdynamically non-ideal and their separations via mem-

brane processes are difficult to predict. Standard membrane modeling practices involving

constant permabilities or uncoupled Fick’s law approaches are often unsuitable [29, 30, 46].

This leads to significant challenges in modeling these systems, parameterizing the models

from minimal experiments, and numerically solving the resulting models. At present, all

three of these issues are major impediments to widespread adoption of membrane processes

in the chemical industry [47]. Our recent publication (adapted text can be found in chap-

ter 3) presented a promising theoretical framework for modeling complex solvent mixture

separation with glassy polymer membranes, including procedures for parametrizing the

model using only pure component experiments [14]. Here, we focus on the numerical so-
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lution procedures needed to efficiently and reliably solve this class of models. The methods

developed here may also be advantageous for other applications where strong inter-species

coupling occurs.

This chapter specifically considers numerical methods for the local flux problem. The

objective of this problem is to predict the partial flux of each component through a mem-

brane layer in contact with a uniform feed material of known composition, temperature,

and pressure, and a uniform permeate material of known temperature and pressure. This

is in contrast to simulating a complete (i.e., global) membrane module, where material

flows across the membrane surface in some specified configuration such that the feed and

permeate conditions are different at each point on the membrane surface. The local flux

problem is suitable for predicting the outcome of laboratory permeation experiments with

≪1% stage cut, which is valuable for material screening, model testing, and parameter

estimation. It is also a critical subtask required for solving global module models since the

latter can be viewed as a continuum of local flux problems coupled by feed and permeate

conservation laws.

The mathematical form of the local flux problem we aim to solve is based on the as-

sumption that transport is described by a sorption-diffusion mechanism, which is well es-

tablished for polymer membranes [12, 19]. Accordingly, the feed and permeate phases

are taken to be in equilibrium with the adjacent membrane phases. Transport through the

active layer of the membrane is assumed to occur by Maxwell-Stefan diffusion. This ac-

counts for both thermodynamic coupling (through the use of chemical potential driving

forces) and diffusional coupling (through the use of cross diffusivities). Finally, we assume

Pan’s relationship for asymmetric membranes [35], which states that the composition in

the membrane support layer is specified completely by the partial fluxes through the mem-

brane, and is therefore an additional unknown. The model comprising these basic parts

is now well-established [14, 37, 38, 48, 49, 50, 51, 52, 53, 54]. Overall, this results in

a challenging nonlinear two-point boundary value problem in differential-algebraic equa-
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tions (differential and algebraic equations (DAEs)).

A variety of numerical methods have been proposed for solving the local flux problem,

both directly and with the aid of simplifying assumptions. If thermodynamic and diffu-

sional coupling are ignored, then the Maxwell-Stefan model reduces to Fick’s law (the

standard uncoupled diffusion model). If the sorption model is also assumed to be linear,

then the standard constant permeability model is obtained, resulting in a much simpler nu-

merical problem. Notably, however, even this model cannot be solved explicitly when Pan’s

relationship is used. Moreover, these approximations often lead to large prediction errors

for complex mixtures [14, 55, 56, 57, 58]. In [39], Krishna proposed a more accurate model

by first including thermodynamic and diffusional coupling matrices derived from a rigorous

Maxwell-Stefan model and then evaluating these matrices at the membrane midpoint com-

position and assuming them to be constant. This model admits a simple explicit solution

procedure in the case of pervaporation where the permeate composition is known, but not

otherwise. Izák et al. [37] proposed a similar model combined with Pan’s relationship to

address the general case with unknown permeate composition. The model is solved using a

numerical method previously published by Heintz and Stephan [48]. However, this method

is only applicable to binary systems and ignores thermodynamic coupling. Hesse et al. [36]

proposed a method for solving the complete local flux problem without simplification us-

ing finite difference approximation of the governing equations. However, few details are

given about the method used for solving the resulting system of equations. Additionally,

this approach is highly sensitive to the initial guess provided, and no guidance is given for

that choice. Mittal et al. [38] presents a similar Maxwell-Stefan model for butane isomer

separation through zeolite membranes and solves the system using gPROMs. However, the

exact numerical method used is not specified and no analysis of the methods performance

is given. In addition to these specialized methods, a variety of general-purpose methods are

available for solving two-point boundary value problems, and their relative merits are well

known to domain experts [59, 60, 61, 62]. However, these techniques are not prevalent in
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the membrane literature and their suitability for membrane simulations has not been well

studied.

This chapter describes improved numerical methods to solve the local flux problem for

asymmetric membranes without the simplifying assumptions mentioned above. First, we

develop a full discretization method similar to Hesse et al., but with the equations cast dif-

ferently and a different choice of iteration variables. Next, we propose a shooting algorithm

based on the same formulation. We also provide reliable initialization strategies. Finally,

we provide a detailed comparison with existing methods using three organic solvent sepa-

ration case studies with validated models from [14]. We find that the methods that rely on

simplifications of the Maxwell-Stefan model give poor results for the realistic hydrocarbon

mixtures considered. Moreover, among numerical methods that address the full Maxwell-

Stefan model, the proposed methods offer significant advantages in terms of computational

efficiency, accuracy, and robustness.

2.2 Problem Statement and Modeling Background

2.2.1 General Problem Statement

The local flux problem is illustrated schematically in Figure 2.1. The membrane active

layer is in contact with feed material at a constant composition, temperature, and pressure,

all of which are known. The entire system is assumed to be isothermal. While temperature

effects can be nontrivial in some cases [63], consideration of these effects is out of the

scope of this work. The membrane support layer is in contact with a bulk permeate with

known pressure. The objective is to find the permeate compositions and total molar flux

through the membrane at steady-state.

A sorption-diffusion mechanism is assumed. Therefore, the feed, active layer, support

layer, and permeate are distinct thermodynamic phases (Phases I–IV). The feed and active

layer are in equilibrium at z = 0, and the active and support layers are in equilibrium

at z = L. Concentration polarization is assumed to be negligible. Transport through
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the active layer occurs by diffusion. We assume the bulk permeate does not mix into the

support layer. This implies that the composition in the support layer (xIII) is constant and

fully determined by the component fluxes through the active layer. In turn, the flux through

the active layer depends on the driving force established by xIII , so these variables must

be determined simultaneously. Since the system is at steady-state, the component fluxes

entering the permeate are the same as those entering the support layer. The permeate is

simply viewed as a constant reservoir with xIV = xIII . Therefore, only xIII is actually

solved for in the proposed methods. In a model of a complete membrane module, where

the local flux problem describes just a single point on the membrane surface, xIV would be

different from xIII and would be determined by permeate balances considering the influx

of material from the support layer as well as bulk permeate inflows and outflows. However,

xIII would be unchanged, as would the driving forces experienced by the active layer. This

is the essence of Pan’s relationship for asymmetric membranes [35]. Therefore, the local

flux problem addressed here involves exactly the same equations that would need to be

solved at each point on the membrane in a more complex full-module model.

Pan’s relationship is valid for ideal cross-flow contactors and is a good approximation

for other types of contactors provided that there is minimal back-mixing of material from

the bulk permeate stream into the support layer. However, it may be a poor approximation

otherwise. In fact, it may be desirable in some cases to design contactors with a high

degree of back-mixing so that the bulk permeate can be used as a sweep stream to enhance

the driving force across the membrane. In such cases, a more suitable version of the local

flux problem is to omit Pan’s relationship and instead assume that xIII = xIV is given

(i.e., perfect back-mixing). We do not consider this variant of the problem in the main

text. However, the implications of this change for the numerical methods studied here are

discussed in section A.6.

The following subsections present the model equations for each piece of the local flux

model.
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Figure 2.1: Top: Set-up of the local flux problem for an asymmetric membrane with
knowns in black font and unknowns in red font (see nomenclature table). Bottom:
Schematic of the solution-diffusion model. The chemical potential driving force includes
contributions from both activity and pressure. Resistance to transport through the support
layer is assumed to be negligible.
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2.2.2 Phase Equilibrium

Equilibrium between Phases I and II at z = 0 and Phases II and III at z = L implies that,

for all i = 1, . . . , n,

µI
i,0 = µII

i,0, (2.1)

µIII
i,L = µII

i,L. (2.2)

Defining the activity of component i in Phase y, ayi , relative to a pure i reference state at

the same T and P of Phase y, and letting ◦ denote a pure component property, we have

ln(ayi ) = ln

(
f y
i

f ◦
i (T

y, P y)

)
=

µy
i − µ◦

i (T
y, P y)

RT y
. (2.3)

To conform with standard property models for each phase, activity coefficients will be used

to describe Phases I and III, while fugacity will be used to describe the membrane Phase II.

With this convention, combining, (Equation 2.1)–(Equation 2.3) gives

µ◦
i (T, P

I) +RT ln
(
γI
i x

I
i

)
= µ◦

i (T, P
II) +RT ln

(
f II
i,0

f ◦
i (T, P

II)

)
, (2.4)

µ◦
i (T, P

III) +RT ln
(
γIII
i xIII

i

)
= µ◦

i (T, P
II) +RT ln

(
f II
i

f ◦
i (T, P

II)

)
. (2.5)

Using P I = P II and the approximation µ◦
i (T, P

III) − µ◦
i (T, P

II) ≈ V ◦
i (P

III − P II)

(the full derivation of this expression can be found in section A.1), and V ◦
i is the pure

component molar volume at (T, P II), (Equation 2.4) and (Equation 2.5) simplify to
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f II
i,0 =f ◦

i (T, P
II)γI

i x
I
i , (2.6)

f II
i,L =f ◦

i (T, P
II)γIII

i xIII
i exp

[
−V ◦

i (P
II − P III)

RT

]
. (2.7)

Thermodynamic models describing the activity coefficients and fugacities in (Equation 2.6)–

(Equation 2.7) as functions of T , P , and composition are assumed to be available in the

form of general implicit relationships:

g◦(f◦, T, P ) = 0, (2.8)

gI(γI ,xI , T, P I) = 0, (2.9)

gII(f II ,ϕ, T, P II) = 0, (2.10)

gIII(γIII , xIII , T, P III) = 0, (2.11)

where 0 is an n-dimensional vector of zeroes and the vectors γI , γIII , f II , f◦, f◦, gI , gII ,

and gIII all have n components. In subsubsection 3.2.2, several options are presented for

the membrane fugacity model gII .

Equations (Equation 2.6), (Equation 2.9), and (Equation 2.10) provide a complete de-

scription of the phase equilibrium between Phases I and II, while equations (Equation 2.7),

(Equation 2.10), and (Equation 2.11) describe the equilibrium between Phases II and III.

Note that equation (Equation 2.10) is used twice, once to relate f II0 and ϕ0 at z = 0, and

again to relate f IIL and ϕL at z = L.

2.2.3 Active Layer Transport by Maxwell-Stefan Diffusion

The active layer (Phase II) is viewed as a mixture of n + 1 components, with the (n + 1)st

being the membrane itself. The volume fractions ϕi and chemical potentials µII
i for each
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component vary with position z, and are related to the volumetric transmembrane fluxes

NV
i by the volume-fraction form of the Maxwell-Stefan model from [50]:

− ϕi

RT

dµII
i

dz
=

n∑
j=1
j ̸=i

ϕjN
V
i − ϕiN

V
j

ÐV
ij

+
ϕn+1N

V
i

ÐV
i,n+1

. (2.12)

Our model includes a copy of equation (Equation 2.12) for every i = 1, . . . , n. The (n+1)st

equation is also valid, but is redundant with the first n by the Gibbs-Duhem relation (see

section A.2). To clarify notation below, we will replace the subscript n + 1 with m for

‘membrane’ wherever it appears.

The chemical potential µII
i is determined by the independent set of variables (T, P,ϕ1:n).

The last component of ϕ is excluded because it depends on the first n via

n+1∑
j=1

ϕj = 1. (2.13)

Since T and P are constant in the active layer, the left-hand side of (Equation 2.12) can be

expanded by the chain rule as

− ϕi

RT

dµII
i

dz
= − ϕi

RT

n∑
j=1

∂µII
i

∂ϕj

dϕj

dz
. (2.14)

Then, using dµII
i = RTd ln f II

i ,

− ϕi

RT

dµII
i

dz
= −

n∑
j=1

ϕi

f II
i

∂f II
i

∂ϕj

dϕj

dz
. (2.15)

Substituting this into (Equation 2.12) and writing the resulting system of n equations com-

pactly in matrix form gives

Γ(ϕ, f II)
dϕ1:n

dz
= −B(ϕ)NV , (2.16)
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where NV is the vector of volumetric fluxes NV
i and Γ(ϕ) and B(ϕ) are n-by-n matrices

with elements Γij =
ϕi

fII
i

∂fII
i

∂ϕj
and

Bij(ϕ) = −
ϕi

ÐV
ij

, (i ̸= j) (2.17)

Bii(ϕ) =
n∑

j=1, j ̸=i

ϕj

ÐV
ij

+
ϕm

ÐV
im

. (2.18)

Derivations of the thermodynamic factor matrix Γ for various membrane fugacity models

can be found in section A.5. Physically, this matrix depends on T , P II , and ϕ. Above, we

suppress the dependence on T and P II for brevity and add f II as an additional argument.

When the active layer fugacity model (Equation 2.10) is explicit (i.e., simple enough to

solve analytically for f II in terms of ϕ), it is possible to derive an expression for Γ as a

function of ϕ only. However, when (Equation 2.10) is implicit, the corresponding equations

for Γ involve both ϕ and f II . In this case, evaluating Γ at a given ϕ involves first using

ϕ to calculate f II by solving (Equation 2.10), and then evaluating the Γ equations with

the pair (ϕ, f II). See section A.5 for further details. The notation Γ(ϕ, f II) clarifies the

discussion of numerical solution procedures because it correctly reflects the fact that values

for both ϕ and f II are needed to compute Γ in general. Regarding B(ϕ), we assume the

MS diffusivities are known for all i,m pairs and the Vignes relationship is used to evaluate

each Ðij (assuming V i = V ◦
i (T, P

II)) [64]:

ÐV
ij = V ◦

j (Ð
V
im/V

◦
j )

ϕi/(ϕi+ϕj)(ÐV
jm/V

◦
j )

ϕj/(ϕi+ϕj). (2.19)

In [14], the Vignes relationship was shown to result in a reasonable fit between simulations

and data for the test mixtures we use for our numerical comparisons in section 2.5. How-

ever, it may not work well for certain systems and, in such cases, other correlations such as

the Darken relationship or correlations based on liquid diffusivities can be used [65]. None
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of the numerical methods we study require the use of any particular correlation here.

2.2.4 Pan’s Relationship and Degrees of Freedom Analysis

The local flux model is completed by Pan’s relationship, which asserts that the composition

in the support layer is completely specified by the molar fluxes entering it [35]:

Ni = xIII
i

n∑
j=1

Nj = xIII
i Ntot. (2.20)

In terms of the volumetric flux NV
i , this is

NV
i = V ◦

i x
III
i Ntot, (2.21)

or, in vector form,

NV = diag(V◦)xIIINtot. (2.22)

Substituting this into (Equation 2.16) gives:

Γ(ϕ, f II)
dϕ1:n

dz
= −B(ϕ)diag(V◦)xIIINtot. (2.23)

The complete system of equations we aim to solve is summarized in Figure 2.2. Al-

though different solution strategies will solve these equations in different orders, it is help-

ful to walk through them sequentially to understand the degrees-of-freedom. The first block

considers phase equilibrium at z = 0. Since xI is known, the unknowns are f◦, f II0 , γI ,

and ϕ0 (4n + 1 unknowns). Since there are 4n + 1 equations in this block, all of these

unknowns are specified. Thus, this block contributes zero degrees-of-freedom and can be

solved independently of the rest of the model. The values of ϕ0 and f II0 provide the initial
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condition for the second block, which describes the transport across the active layer using

differential algebraic equations (DAEs) derived from (Equation 2.13) and (Equation 2.23).

The unknowns here are the trajectories ϕ(z) and f II(z) for all z ∈ [0, L]. If the active layer

fugacity model (Equation 2.10) is explicit, then Γ can be expressed as a function of ϕ only.

In that case, the variables f II(z) and equations gII are not needed in this block. However,

when (Equation 2.10) is implicit, it is necessary to write Γ as a function of both ϕ and f II

and invoke gII to relate ϕ and f II at every z ∈ [0, L], resulting in DAEs. In either case, if

Ntot and xIII were known, then this system could be solved from 0 to L to obtain ϕL and

fL. Therefore, this block contributes n + 1 degrees-of-freedom. The third block models

the phase equilibrium at z = L. With ϕL and f IIL specified, the only new unknown in this

block is γIII (xIII and f◦ were counted above). Since, there are 2n + 1 equations, this

block consumes n+ 1 degrees-of-freedom. Thus, the overall system is well-posed.

In general, solving systems of DAEs can be much more challenging than solving ODEs

due to several issues that are unique to DAEs models; interested readers are referred to [66]

for details. Fortunately, the DAEs system in the second block of Figure 2.2 is of a relatively

simple type called semi-explicit index 1 DAEs, as shown in section A.7. Consequently, we

do not need to consider manual index reduction or specialized methods for high-index

systems.

2.3 Existing Solution Methods

This section reviews existing methods for solving the system of equations in Figure 2.2.

These methods are compared with the proposed new methods in section 2.4. The methods

in subsection 2.3.1 and subsection 2.3.2 invoke various common assumptions to substan-

tially simplify the rigorous Maxwell-Stefan equations in the second block of Figure 2.2

before solving the system. The purpose of comparing against these methods is to assess the

impact of these additional assumptions and better understand when it is necessary to solve

the rigorous model. In contrast, the method in subsection 2.3.3 solves the rigorous model,
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Phase Equilibrium at z = 0

g◦(f◦, T, P II) = 0

gI(γI , xI , T, P I) = 0

gII(f II0 ,ϕ0, T, P
II) = 0

f II
i,0 = γI

i,0x
I
i f

◦
i , i = 1, . . . , n

n+1∑
j=1

ϕj,0 = 1

Active Layer Diffusion
dϕ1:n

dz
= −Γ−1(ϕ, f II)B(ϕ)diag(V◦)xIIINtot

dϕm

dz
= −

n∑
j=1

dϕj

dz

gII(f II ,ϕ, T, P II) = 0

Phase Equilibrium at z = L

gIII(γIII , xIII , T, P III) = 0

f II
i,L = γIII

i,L xIII
i f ◦

i exp

[
−V ◦

i (P
II − P III)

RT

]
, i = 1, . . . , n

n∑
j=1

xIII
j = 1

Known variables: (xI , T, P I , P II , P III)

Unknown variables: (f◦,γI ,γIII , fII0 , fIIL ,ϕ0,ϕL, xIII , Ntot)

DoF: 5n+ 3(n+ 1) equations
−5n+ 3(n+ 1) unknowns

= 0 DoF

Figure 2.2: Full set of equations and degrees of freedom analysis for the local transport
problem.
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but uses a different numerical procedure than the new methods presented in section 2.4.

The purpose of comparing against this method is to better understand the pros and cons of

different numerical methods for solving the rigorous model in terms of efficiency, accuracy,

and robustness.

2.3.1 Fick’s Law Approximation

The Fick’s Law approximation simplifies the Maxwell-Stefan equations in the second block

of Figure 2.2 by assuming that both thermodynamic and diffusional cross-coupling are neg-

ligible. This approximation can be derived from (Equation 2.16) by setting Γij(ϕ, f
II) = 0

and Bij(ϕ) = 0 (i.e., ÐV
ij → ∞) for all i ̸= j, and further assuming that the diagonal

terms Γii(ϕ, f
II) and Bii(ϕ) are constant. Defining DV

im,Fick = Γii/Bii, (Equation 2.16)

simplifies to n independent equations of the form

NV
i = −DV

im,Fick
dϕi

dz
. (2.24)

Unlike (Equation 2.16), this version is simple enough to be integrated analytically from

z = 0 to z = L, giving

NV
i = −

DV
im,Fick

L
(ϕi,L − ϕi,0) . (2.25)

This is the classical Fick’s law model for membrane transport rewritten in terms of volume

fractions. If one assumes the Henry’s law sorption relation ϕi = Sixi, which we do not do

here, (Equation 2.25) simplifies further to the standard constant permeability model with

Pi = SiD
V
im,Fick [19]. Fick’s law and constant permeability models have been widely used

for gas separations, dialysis, reverse osmosis, and more [12].

To construct a complete model analogous to Figure 2.2 based on the Fick’s Law ap-

proximation, we first plug (Equation 2.21) into (Equation 2.25) to obtain

V ◦
i x

III
i Ntot = −

DV
im,Fick

L
(ϕi,L − ϕi,0) . (2.26)
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These n equations replace the first equation in the second block of Figure 2.2. Since these

are algebraic equations that only involve ϕ(z) at z = 0 and z = L, rather than differential

equations describing ϕ(z) for all z ∈ [0, L], the second and third equations in that block

are no longer needed for all z, but only at z = L. Thus, they are replaced with

n+1∑
i=1

ϕi,L = 1, (2.27)

gII(f IIL ,ϕL, T, P
II) = 0. (2.28)

The first and third blocks are unchanged.

To solve the complete model, the first block in Figure 2.2 is first solved independently

to obtain f◦, γI , fII0 , and ϕ0. Next, the modified second and third blocks are solved simul-

taneously to obtain γIII , fIIL , ϕL, xIII , and Ntot. In our implementation, we actually use

(Equation 2.7) to eliminate f IIL from the remaining equations analytically, resulting in only

3n+2 equations solved simultaneously for γIII , ϕL, xIII , and Ntot. Note that, although the

Fick’s law approximation decouples and greatly simplifies the MS model (Equation 2.16),

the complete model is still coupled and must be solved simultaneously. This is caused by

the use of Pan’s relationship and is in contrast to many common applications of Fick’s law

where xIII is assumed to be known (e.g., in pervaporation) [43, 67]. Further simplifications

that can be made when gII is explicit in fugacity are discussed in section A.4.

For the case studies in section 2.5, the required Fickian diffusivities DV
im,Fick were ob-

tained by fitting the model to pure component permeation experiments as described in [14].

Alternatively, they could be calculated by evaluating models for Γii and Bii at some refer-

ence condition ϕ∗ and f II,∗ as DV
im,Fick = ÐV

imΓii(ϕ
∗, f II,∗)/ϕ∗

m.
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2.3.2 Average Coupling Approximations

This section discusses two methods that simplify the Maxwell-Stefan equations in the sec-

ond block of Figure 2.2 by assuming that the coupling matrices B(ϕ) and/or Γ(ϕ, f II)

can be evaluated at average membrane conditions. In the first method, these matrices are

evaluated with the average quantities ϕavg = ϕ0+ϕL

2
and f IIavg =

fII0 +fIIL

2
, which makes them

constant but not necessarily diagonal as in the Fick’s law approximation. This greatly sim-

plifies the model while still including diffusional and thermodynamic coupling. Making

this approximation in (Equation 2.23) and integrating gives

diag(V◦)xIIINtot = −B−1(ϕavg)Γ(ϕavg, f
II
avg)

ϕ1:n,L − ϕ1:n,0

L
. (2.29)

Similar to the Fick’s law approximation, the complete model for this approximation is ob-

tained by replacing the equations in the second block of Figure 2.2 with (Equation 2.27)–

(Equation 2.29). The first and third blocks are unchanged. The numerical solution proce-

dure is exactly analogous to that described in subsection 2.3.1.

The second method is similar but begins from a more compact form of the Maxwell-

Stefan equations that does not involve Γ, thereby avoiding the assumption that Γ is con-

stant. Specifically, substituting dµII
i = RTd ln f II

i into the LHS of (Equation 2.12) yields

diag(ϕ1:n)
d ln

(
f II
)

dz
= −B(ϕ)NV . (2.30)

where the natural log is taken component-wise. Combining with (Equation 2.22) then

yields

diag(ϕ1:n)
d ln

(
f II
)

dz
= −B(ϕ)diag(V◦)xIIINtot. (2.31)

Finally, applying the average concentration approximation to the matrices diag(ϕ1:n) and
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B(ϕ) and integrating yields

diag(ϕ1:n,avg)

((
ln
(
f IIL )− ln(f II0 )

))
L

)
= −B(ϕavg)diag(V◦)xIIINtot. (2.32)

The complete model for this approximation is obtained by replacing the equations in the

second block of Figure 2.2 with (Equation 2.27), (Equation 2.28), and (Equation 2.32). The

first and third blocks are unchanged. The numerical solution procedure is exactly analogous

to that described in subsection 2.3.1. We refer to these two methods as the ϕ-form and f -

form average coupling approximations, respectively, since the first uses the volume-fraction

form of the MS equations in (Equation 2.16), while the second uses the fugacity form in

(Equation 2.30).

The ϕ-form approximation has been proposed in multiple papers [37, 39, 48]. Krishna

et al. proposed it for simulating pervaporation membranes in [39]. However, since ϕL is

assumed to be zero in pervaporation, ϕavg is known in that work, whereas it depends on the

unknown ϕL here. The papers [37] and [48] propose similar approximations in conjunction

with Pan’s relationship for cases with unknown ϕL, but ignore thermodynamic coupling.

Izák et al. [37] also make further simplifications that only apply to binary systems. Thus,

the ϕ-form described above is a generalization of the methods in these papers. The f -

form approximation was proposed in Mathias et al. [14] and more recently by Marshall et

al. [68].

2.3.3 Fugacity Form Finite Difference Method

Hesse et al. [36] proposed a numerical method based on finite differences (FD) for solving

the full local flux problem without additional assumptions. This is the most closely related

method in the literature to the methods proposed in this paper. Although the model used in

[36] is equivalent to our formulation, Hesse et al. cast the equations in terms of membrane-

phase mass fractions and mass-based fluxes. This is inconsistent with our derivations so
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far and with the thermodynamic models used in our case studies, both of which are cast

in terms of volume fractions and volume-based fluxes. Moreover, the final solution proce-

dure in [36] is not described in sufficient detail to reproduce the method exactly. For both

reasons, we chose to implement and compare against a variant that is consistent with our

formulation but follows the main ideas in [36].

To formulate this method, we first replace the Maxwell-Stefan differential equations

in the second block of Figure 2.2 with the equivalent f -form in (Equation 2.31), which

does not involve Γ. This form is used by Hesse et al. and is a key difference between

their approach and the finite difference method proposed in subsection 2.4.1. Next, the

spatial domain of the active layer [0, L] is discretized into S + 1 equally spaced nodes,

0 = z0 < z1 < · · · < zS = L, each with corresponding volume fractions ϕs and fugacities

f IIs . Finally, (Equation 2.10),(Equation 2.13), and (Equation 2.31) are enforced at nodes 1

through S with the derivatives in (Equation 2.31) approximated by FD. The equations for

a generic node 0 < s < S are

0 = hs(ϕs−1, f
II
s−1,ϕs, f

II
s ,ϕs+1, f

II
s+1,x

III , Ntot) (2.33)

≡


diag(ϕ1:n,s) ln

(
fIIs+1

fIIs−1

)
zs+1−zs−1

+B(ϕs)diag(V◦)xIIINtot

1−
∑n+1

i=1 ϕi,s

gII(ϕs, f
II
s , T, P II)

 ,

where again the natural log and the division within it are taken component-wise. The

equations for the terminal node S are modified to use backward differences.

The final system of equations is obtained by replacing the entire second block of Fig-

ure 2.2 with the (2n + 1)S equations (h1, . . . ,hS) = 0. The first and third blocks are

unchanged. The numerical solution procedure is exactly analogous to that described in

subsection 2.3.1 but with additional equations and unknowns corresponding to the S nodes.
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2.4 Proposed Solution Methods

This section presents two new numerical methods for solving the local flux problem stated

in Figure 2.2. The first is based on a FD approximation (subsection 2.4.1), while the sec-

ond uses a novel shooting approach (subsection 2.4.2). Finally, automated initialization

procedures for both methods are presented in subsection 2.4.3.

Our new methods are both based on the ϕ-form of the MS equation in (Equation 2.23)

as opposed to the f -form (Equation 2.30) used by Hesse et al. [36]. In fact, this is the

only difference between our FD method and the one in subsection 2.3.3. We developed

the shooting algorithm because shooting has several well-known advantages relative to FD

and other simultaneous solution methods that seemed potentially important for treating

complex mixtures (see section 2.5). In contrast, we originally developed our FD method

simply to provide a more direct comparison of shooting with FD (i.e., using identical for-

mulations). However, comparisons in subsection 2.5.4 show that this version of FD actually

offers some significant advantages over the one in subsection 2.3.3.

2.4.1 Volume-Fraction Form Finite Difference Method

In this method, we again discretize the spatial domain of the active layer [0, L] into S

equally spaced nodes, 0 = z0 < z1 < · · · < zS = L, and introduce the corresponding vol-

ume fractions ϕs and fugacities f IIs . Next, the equations in the second block of Figure 2.2

are enforced at nodes 1 through S with the derivatives approximated by FD. The equations

for a generic node 0 < s < S are
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0 = hs(ϕs−1, f
II
s−1,ϕs, f

II
s ,ϕs+1, f

II
s+1,x

III , Ntot) (2.34)

≡



Γ(ϕs, f
II
s )

(ϕ1:n,s+1−ϕ1:n,s−1)

zs+1−zs−1

+B(ϕs)diag(V◦)xIIINtot

1−
∑n+1

i=1 ϕi,s

gII(ϕs, f
II
s , T, P II)


.

The equations for the terminal node S are modified to use backward differences. The final

system of equations is obtained by replacing the entire second block of Figure 2.2 with the

(2n + 1)S equations (h1, . . . ,hS) = 0. The first and third blocks are unchanged. The

numerical solution procedure is exactly analogous to that described in subsection 2.3.1 but

with additional equations and unknowns corresponding to the S nodes.

2.4.2 Volume-Fraction Form Shooting Method

This section presents a custom shooting approach for solving the local flux problem in

Figure 2.2. The method is described in detail in Figure 2.3. To begin, the equations in

the first block of Figure 2.2 are solved independently for ϕ0, f II0 , f◦, and γI . The rest

of the problem is split into outer and inner solves. The outer loop solves for xIII and

Ntot. With these values fixed for any current iteration, γIII can be obtained by solving

(Equation 2.11). Moreover, fixing these variables reduces the problem to an initial value

problem (IVP) in either ODEs or DAEs depending on whether (Equation 2.10) is explicit

or implicit, respectively. In the general DAEs case (left branch of the inner solver box

in Figure 2.3), the inner solver integrates the DAEs system consisting of (Equation 2.10),

(Equation 2.13), and (Equation 2.23) with the initial conditions ϕ0 and f II0 from z = 0 to

z = L to obtain ϕL and f IIL . At this point, all equations in the first and second blocks of

Figure 2.2 are satisfied, as is the first equation in the third block. The remaining n + 1

equations serve as a check on the current guesses for xIII and Ntot. Specifically, the outer
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solver iteration is completed by explicitly calculating xIII from (Equation 2.5), comparing

it to the guessed values, and checking that it sums to one. If these tests are satisfied, then

the algorithm terminates. Otherwise, a new guess is generated. Any standard Newton-

type equation solver can be used to generate these iterates and converge the outer loop.

Similarly, any standard DAEs solver can be used to solve the IVP in the inner loop.

A significant advantage of this approach is that error control mechanisms in modern

IVP solvers automatically determine a mesh over [0, L] that effectively balances solution

accuracy and efficiency. In contrast, FD methods require a mesh to be specified in advance

and manually refined if the solution is insufficiently accurate. The shooting approach also

eliminates the need for initial guesses for the nodal values ϕs and f IIs , which can be a sig-

nificant challenge for FD methods. These advantages are particularly important for stiff

DAEs. Finally, our shooting algorithm is arranged so that the bulk phase activity coef-

ficients γI and γIII are always evaluated by solving (Equation 2.9) and (Equation 2.11)

independently rather than within a system of coupled equations. This naturally accommo-

dates “black-box” activity model evaluations using process flowsheet simulation software,

which cannot be used easily in FD methods.

2.4.3 Initialization Strategies

All of the methods presented in section 2.3 through section 2.4 require initial guesses for

γIII , xIII , and Ntot. In addition, the approximation methods require guesses for ϕL and

fIIL , while the FD methods require guesses for all of the nodal values ϕs and fIIs with

s = 1, . . . , S. This section presents automated methods for providing all of these values.

Methods for (xIII , Ntot) and (ϕs, fIIs ) are covered in subsubsection 2.4.3 and subsubsec-

tion 2.4.3, respectively, and we always guess γIII ← 1. As shown in section 2.5, these

methods have a significant impact on the robustness and solution times of all algorithms.

Moreover, they provide a standard initialization for comparing methods.
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Figure 2.3: Shooting algorithm for the local flux problem in Figure 2.2. Different outer
solvers may use slightly different termination criteria.
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Explicit One-Step Shooting for Total Flux and Phase III Molar Compositions

A simple but sensible initial guess for (Ntot,x
III) is to set xIII ← xI and Ntot ← 0. In

the numerical comparisons in section 2.5, we refer to this as the “first-pass” initial guess.

However, we found that this did not work robustly over a range of systems with different

membrane thicknesses and diffusivities of different magnitudes. To generate guesses in a

more adaptive manner, we implemented a variant of the shooting algorithm in which the

forward integration step in the inner loop is replaced by a single step of the explicit Euler

formula. We call this the explicit one-step shooting algorithm. The algorithm follows the

flowchart in Figure 2.3 exactly until the outer solver is entered. The first block within the

outer solver is replaced with the assumption that γIII = 1, after which the inner solver

is entered. At this point, the initial conditions ϕ0 and f II0 are known. However, instead

of numerically integrating the DAEs forward from these conditions, the terminal volume

fractions are determined explicitly by

ϕL = ϕ0 + Γ−1(ϕ0, f
II
0 )B(ϕ0)diag(V◦)xIIINtotL. (2.35)

The terminal fugacity f IIL is then obtained by solving (Equation 2.10). If (Equation 2.10)

is explicit w.r.t. f II , then the inner solver becomes completely explicit. The rest of the

algorithm proceeds exactly as in Figure 2.3 and the resulting solution (Ntot,x
III) serves as

the desired initial guess. In the numerical comparisons in section 2.5, we refer to this as

the “informed” initial guess. Note that this simplified shooting algorithm itself requires an

initial guess for Ntot and xIII , which we set simply as Ntot ← 0 and xIII ← xI .

Shooting-Based Initialization of Nodal Variables

For the approximation methods, reasonable guesses for ϕL and f IIL are given by ϕL ← ϕ0

and f IIL ← f II0 . Recall that all methods solve the first block of equations in Figure 2.2

independently, so ϕ0 and fII0 are always known before initial guesses for ϕL and f IIL are
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needed. We used these guesses for both the “first-pass” and “informed” initialization strate-

gies. When the “informed” strategy is used, ϕL and f IIL could alternatively be initialized

using the values of these variables at the end of the explicit one-step shooting procedure

described above. However, we found that this did not add significant benefit.

For the FD methods in subsection 2.3.3 and §subsection 2.4.1, a simple strategy for

initializing the nodal variables ϕs and f IIs is to guess that, for all components except the

membrane itself, both ϕi and f II
i decrease linearly from ϕ0,i and f II

0,i at s = 0 to 0.1% of

these initial values at s = S. As for the membrane volume fraction, it must increase as

the other fractions decrease, so it is guessed to increase linearly from its initial value to

0.999. This approach is always used in the “first-pass” initialization strategy. To obtain

more accurate guesses, we can alternatively execute a single forward integration from the

known initial conditions ϕ0 and fII0 using an IVP solver exactly as in the inner solver in

Figure 2.3. This requires values for Ntot and xIII , which are obtained from the informed

method in subsubsection 2.4.3. The results of this forward integration are then interpolated

at each mesh point s to obtain guesses for ϕs and f IIs . This approach is always used in the

“informed” initialization strategy.

2.5 Numerical Comparisons

This section presents numerical results for all methods in section 2.3–section 2.4. Sec-

tions subsection 2.5.1–subsection 2.5.3 define the test cases used, the implementation de-

tails, and the metrics used to compare methods. Results are given in subsection 2.5.4–

subsection 2.5.7.

2.5.1 Test Cases

We compare numerical methods using three test systems studied experimentally in Math-

ias et al. [14]. In these systems, three, five, and nine-component complex hydrocarbon

mixtures defined in Table 2.1 permeate through glassy polymer membranes. The five-
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component case uses a 1.5 µm polymer membrane of intrinsic microporosity (PIM-1) as

the active layer (Phase II), while the other two use a 300 nm spirobifluorene aryl diamine

(SBAD-1) membrane as the active layer (Phase II). The three and five component mixture

were simulated with a 30 bar transmembrane pressure, while the nine component mixture

was simulated with 40 bar transmembrane pressure (P III = 1 bar). More details on these

systems can be found in [14].

For each test system, we consider two different options for the active layer fugacity

model (Equation 2.10): the multicomponent Flory-Huggins (FH) model and the Flory-

Huggins-Langmuir (FH-LM) model from [14]. The latter model generalizes the classic

dual-mode sorption model by replacing the Henry’s law component with a more flexible

FH model. This was shown to provide superior predictions for multicomponent perme-

ation experiments with the three test systems in [14]. Both models are described further in

subsubsection 3.2.2.

The FH model specifies the fugacity f II explicitly as a function of ϕ. In contrast, the

FH-LM model is implicit. As discussed in subsection 2.2.4, this distinction implies that

the FH-LM case requires the general DAEs formulation presented in Figure 2.1, while

the FH case can be formulated more simply as an ODEs model. Specific implementation

differences are discussed in section A.4. In the discussions below, the FH and FH-LM

models will be referred to as “explicit” and “implicit” fugacity models, respectively.

In all three test systems, we assume that the bulk feed and permeate phases behave

ideally; i.e., γI = γIII = 1. This allows our comparisons to focus on the key differences

in the numerical methods, which all relate to how they handle complexity in the membrane

model. Since all methods handle the feed-side calculations in essentially the same way,

introducing a numerically challenging feed activity model would not provide additional

insight and could make the results harder to interpret.

The complete set of test cases is summarized in Table 2.2. All model parameters re-

quired to simulate these cases (diffusivities, thermodynamic parameters, feed conditions,
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Table 2.1: Feed compositions for each of the three test cases.

n Mixture Components Mol%
3 toluene 28.4

iso-octane 38.8
iso-cetane 32.8

5 toluene 25.7
heptane 21.6
p-xylene 20.5
o-xylene 26.4
iso-cetane 5.8

9 toluene 17.1
methylcyclohexane 28.1
1-methylnaphthalene 2.0
decalin 10.7
n-octane 22.1
iso-octane 15.0
tert-butlybenzene 2.1
1,3,5-triisopropylbenzene 1.6
iso-cetane 1.3

Table 2.2: Test cases for numerical method comparisons.

Fugacity Model n, Membrane
Explicit 3, SBAD-1

5, PIM-1
9, SBAD-1

Implicit 3, SBAD-1
5, PIM-1
9, SBAD-1

etc.) were obtained directly from [14]. For convenience, they are listed in section A.11

2.5.2 Implementation Details

All simulations were done on a laptop with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

and 16 GB of RAM. The code is implemented in MATLAB 2020b using the built-in non-

linear equation solver fsolve, the stiff ODEs integrator ode15s, and the implicit differential

equation integrator ode15i. The integrators ode15s and ode15i are used for the shooting

algorithm with explicit and implicit thermodynamic models, respectively, while fsolve is
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used for all methods. We used 10−6 for the fsolve function tolerance and first-order op-

timality tolerance, 10−4 for the integrator relative tolerances, and 10−6 for the integrator

absolute tolerances. The fsolve default algorithm is “trust-region-dogleg”.

To keep the equations and variables well-scaled, the code uses different units than pre-

sented in section 2.2. Specifically, we scale ÐV
ij to µm2s−1, z to µm, f ◦ and fi to torr, bi to

torr, Ntot to mol µm−2 s−1, and V ◦
i to µm3 mol−1. The other known and unknown variables

in Figure 2.2 are left the same as defined in the nomenclature table.

The multicomponent FH and FH-LM fugacity models both involve multiple nested

summations (see section A.3 and section 3.3 for more details) that are not evaluated ef-

ficiently in MATLAB. Indeed, in preliminary experiments, the evaluation of these models

and the associated Γ matrices consumed significant computational time in all methods.

Therefore, we derived alternative matrix-vector forms of the FH and FH-LM formulas, as

well as the respective Γ matrices, that can be evaluated using fast linear algebra routines

native to MATLAB. These formulas decreased convergence time by at least 30% for the

approximation methods with FH and led to a 4× speed up for the shooting algorithm using

FH-LM. As an added advantage, they are simpler to implement and allow the Γ matrices

to be derived much more easily using standard matrix calculus rules. These formulas are

used in all numerical experiments. Details are given in section A.3 and section 3.3.

2.5.3 Comparison Metrics

All methods are compared in terms of efficiency, accuracy, and robustness. Efficiency is

characterised by reporting the wall-clock time required by each method to converge to a

solution. Accuracy is characterized by comparing the converged solution of each algorithm

against the true mathematical solution of the complete local flux model in Figure 2.2. We

compare against the true model solution rather than experimental data because our primary

aim is to assess the ability of each numerical method to solve the postulated model. This

question is independent of whether the model matches experiments, and in general these
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Figure 2.4: Convergence of the solution error between FD and the shooting algorithm with
increasing number of nodes for the volume fraction form FD method applied to the nine-
component SBAD-1 test case with the Flory-Huggins-Langmuir implicit fugacity model.

two errors may compound or cancel. The interested reader is referred to [14] for compar-

isons of many of the methods considered here to experimental results.

To obtain the true solution for each case, the complete model was solved from high-

quality initial guesses with both the shooting algorithm in subsection 2.4.2 and the FD

method in subsection 2.4.1 with the number of nodes increased until the solution no longer

changed appreciably. We then verified that both approaches yielded the same true solution

to very high accuracy for all test cases (see Figure 2.4).

Given the true solution, the error for the solution obtained by a numerical method is

defined as the absolute mean percentage error of all solution components as

Error % =

∑n
i=1

∣∣∣xIII,∗
i −xIII

i

xIII,∗
i

∣∣∣+ ∣∣∣N∗
tot−Ntot
N∗

tot

∣∣∣
n+ 1

× 100. (2.36)

By this definition, our shooting algorithm has near-perfect accuracy whenever it con-

verges because it solves the full model. The same is true of both FD methods provided S is

large enough, but more generally these methods should be viewed as providing a trade-off
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between accuracy and efficiency governed by S. Finally, the approximation methods are

expected to have moderate errors in most cases because they solve simplified models. In

our comparisons, we view all methods with ≤0.1% error as maximally accurate. Further-

more, errors of 0.1–1% are viewed as good enough for most purposes (i.e., well within

typical experimental error). Errors of 1–50% are viewed as the result of inaccurate approx-

imations or low S, while those above 50% are most likely due to convergence failures. For

later figures, shaded regions correspond to the following error ranges: black >50%, red

1–50%, yellow 0.1–1%, and green <0.1%. These categories are not precise, but are useful

for collecting informative statistics. To obtain a favorable S for comparing FD methods,

for each FD method and each test case, we increased S starting from S0 until either: (i)

the solution error was less than 0.1%, (ii) the simulation time was more than 2.5× that of

the shooting algorithm, or (iii) the maximum number of nodes S = 30 was reached. We

report the error and solution time for only the last solve with the final S value. We used

S0 = 1 in most cases. However, in some cases, solution time was not monotonically in-

creasing with S due to convergence issues at low S, which caused criterion (ii) to trigger

prematurely. In such cases, a suitable S0 was determined manually. Using this procedure,

in the absence of convergence failures, FD methods will achieve maximal accuracy unless

doing so requires large S or a wall-clock time that is no longer competitive with shooting.

Note that this methodology is favorable to the FD methods because it does not consider the

computational effort required to determine a suitable S.

Lastly, robustness is assessed by determining the ability of each method to converge

from various initial guesses. For each method, we first compare the convergence behavior

when using the first-pass and informed initial guess strategies outlined in subsection 2.4.3.

Then, in subsection 2.5.7, we evaluate the fraction of cases converged when the method is

challenged with 300 randomly generated initial guesses.
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2.5.4 Approximation Methods

This section presents numerical results for the Fick’s law and average coupling approxi-

mations discussed in subsection 2.3.1 and subsection 2.3.2. Figure 2.5 shows the solution

error and solution time for all test cases. The colored regions correspond to the error re-

gions defined in subsection 2.5.3. All methods converge for all test cases except the 9

component case with both explicit and implicit fugacity models. In that case, all meth-

ods fail with the first-pass initial guess but succeed with the informed initial guess, which

shows the importance of good initial guesses for complex mixtures. On the other hand, the

proposed initialization strategy appears to be too heavy-handed for these simple methods,

significantly increasing the solution time for all cases and adding nearly an order of magni-

tude for the implicit fugacity model cases. Even so, all methods are fairly efficient, taking

less than a second for all converged cases and only 0.01–0.1s when using first-pass initial

guesses.

The Fick’s law approximation results in large errors for all test cases. The solution error

is nearly acceptable (<1%) for the 3 component case with an explicit fugacity model. How-

ever, for higher component numbers and the implicit fugacity model, the majority of runs

have large error. This is attributed to the assumption that Γ and B are diagonal and con-

stant. Figure S1 in the SI shows that Γ has significant off-diagonal entries when evaluated

at z = 0 for the 5 and 9 component test cases. The diffusional coupling matrix, B, also has

non-negligible off-diagonal elements (not shown). Moreover, the implicit fugacity model

has larger off-diagonal elements compared to the explicit model and contains negative val-

ues, as seen in Figure S1. Because of these issues, both of the average coupling approaches

are more accurate than Fick’s law. The ϕ-form average coupling approximation is the most

accurate for these test cases, with less than 1% error for all cases that converged, while the

f -form has less than 10% error for all cases that converged. However, the f -form has been

shown to be more competitive with the ϕ-form for cases without diffusional coupling in

[14, 68]. To aid in understanding these results, the transmembrane volume fraction profiles
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(a) Fick’s Law Approximation
(b) ϕ-form Average Coupling Approxima-
tion

(c) f-form Average Coupling Approxi-
mation

Figure 2.5: Error (%) versus solution time (s) for the Fick’s law and average coupling
approximations.

and total fluxes predicted by each method for the five and nine component test cases with

implicit fugacity model are shown in section A.8 and compared to the full model solutions.

To conclude, Fick’s law is too inaccurate for these complex mixtures, while the ϕ-form

average coupling approximation outperforms the f -form average coupling approximation

with respect to accuracy by an order of magnitude. Notably, however, all methods show

convergence errors with high component number and first-pass initial guesses.
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(a) f-form FD (b) ϕ-form FD

Figure 2.6: Error (%) versus solution time (s) for finite difference methods.

2.5.5 Finite Differences Methods Comparison

Figure 2.6 shows the solution error and solution time for all test cases for the f -form and

ϕ-form FD methods described in subsection 2.3.3 and subsection 2.4.1, respectively.

The most notable distinction between these methods is their robustness. The ϕ-form

method converges for all cases from both first-pass and informed initial guesses, while

the f -form fails for all but one case with first-pass guesses (according to the >50% error

criterion discussed in subsection 2.5.3). Notably, although the informed initial guesses are

not required for convergence of the ϕ-form method, they do lead to faster solution times in

five out of six cases, showing that the added cost of good initialization is compensated by

faster convergence. The ϕ-form method is also much more accurate, achieving the 0.1%

error target in all cases, while the f -form only achieves this for the 3 component case.

Although both methods can achieve arbitrary accuracy with sufficiently large S, recall

that the methodology for determining S described in subsection 2.5.3 will not increase

S further if S = 30 or the solution time for the current S is more than 2.5× that of the

shooting algorithm for the same case. Therefore, the accuracy results in Figure 2.6 actually

indicate that the ϕ-form method does not reach these limits for any test cases, while the

f -form method reaches them in all but two. Further investigation shows that all cases with
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> 0.1% error in Figure 2.6a reached the solution time limit specifically. Thus, the f -form

method either fails to converge altogether, or requires significantly more time than the ϕ-

form method to achieve similar accuracy.

One possible explanation for these trends is that, for these complex mixtures, some of

the chemical potentials RT ln(f II
i ) vary with z in a highly nonlinear way, whereas all of the

volume fractions ϕi change nearly linearly. This can be seen in Figure 2.7 and Figure 2.8,

which show profiles obtained using a high-order numerical integrator with state-of-the-art

error control, as in the inner-loop of the shooting algorithm. As a result, more nodes are

required to approximate the derivatives d ln(f)
dz

to a desired accuracy as compared to dϕ
dz

.

Indeed, the ϕ-form FD method requires only 3–9 nodes to solve all test cases to within

0.1% error, whereas the f -form method requires 17 nodes to achieve 0.1% error for the 3

component case with the explicit fugacity model.

The poor results of the f -form method for all other cases in Figure 2.6 are, however,

better explained by another critical issue. Namely, the appearance of the terms ln(f IIs ) in

the equations for the f -form method causes these equations to be undefined (or produce

imaginary values) when evaluated with non-positive f II
i values. Unfortunately, we found

that the solver often produces iterates with such f II
i values and, in many cases, never re-

covers. This happens reliably from the first-pass initial guesses, but also to a lesser extent

from the informed guesses. For this reason, the f -form accuracy results in Figure 2.6 do

not improve even when the number of nodes is set to 50 and the time limit is relaxed to 2.5

minutes. These results are shown in section A.9.

Compared to the best approximation method (ϕ-form average coupling), the ϕ-form

FD method is significantly more accurate in all cases. It is also more robust since it avoids

the convergence failure for the 9 component test cases with first-pass initial guesses. How-

ever, it is also slower in most cases, often by a factor of 2–10×, particularly with the implicit

fugacity model. Thus, the ϕ-form average coupling model may be preferable when ∼1%

error is acceptable and some convergence failures can be tolerated.
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(a) Volume Fraction Profiles (b) Chemical Potential Profiles

Figure 2.7: Volume fraction and chemical potential profiles through the membrane active
layer for the five-component mixture with the Flory-Huggins fugacity model. Each line
represents a different component. Some components overlap and the membrane phase
volume fraction, ϕm, is excluded from this figure.

(a) Volume Fraction Profiles (b) Chemical Potential Difference Profiles

Figure 2.8: Volume fraction and chemical potential profiles through the membrane active
layer for the nine-component mixture with the Flory-Huggins fugacity model. Each line
represents a different component. Some components overlap and the membrane phase
volume fraction, ϕm, is excluded from this figure.
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2.5.6 Shooting Algorithm

Figure 2.9 shows the solution error and solution time for all test cases for the shooting

method described in subsection 2.4.2. No convergence failures were observed and highly

accurate solutions were obtained for all cases with solution times between 0.07 and 3 sec-

onds. The informed initial guess had little effect on the convergence behavior but slightly

increased computational time in most cases.

Compared to the ϕ-form average coupling results presented in Figure 2.5, the shooting

algorithm is consistently more accurate and robust. However, if an informed solution strat-

egy is used and 1% error is acceptable, then the ϕ-form average coupling approximation

provides solutions much more efficiently. Compared to the ϕ-form FD method, the shoot-

ing algorithm is more accurate for all cases and more efficient in most cases. However,

if 0.1% error is acceptable, then the ϕ-form FD method with the proposed initialization

strategies provides competitive results. Yet, the FD approach requires the user to manually

tune the number of nodes. In contrast, the shooting algorithm automatically determines a

discretization that achieves a good balance between accuracy and efficiency by exploiting

the adaptive step-size and error control mechanisms within the IVP solver used in the in-

ner solve. Moreover, the solution times for the shooting algorithm could be reduced by

relaxing the solver tolerances used by fsolve and/or the inner IVP solver such that the re-

sulting solution errors are on the order of 0.1%. However, preliminary experiments with

this approach (not shown) indicated that the speed-up is not very significant.

2.5.7 Extended Robustness Comparisons

To provide a more comprehensive test of robustness, all methods were challenged with a

large number of random initial guesses for xIII and Ntot. The generation of these guesses

is discussed below. The remaining unknowns for each method are initialized as follows. As

described in subsection 2.5.1, γI = γIII = 1 in all cases. For the approximation methods,

ϕL and f IIL are initialized to their respective values at z = 0. For the FD methods, the nodal
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Figure 2.9: Error (%) versus solution time (s) for the shooting algorithm. The true solution
errors for all cases are actually less than 1E-10, but the values are clipped at 1E-3 for
consistency with the other figures.

variables ϕs and f IIs were handled as described in subsubsection 2.4.3. Specifically, they

are specified following either the procedure used in the ‘informed’ initialization strategy

in subsubsection 2.4.3, or the procedure used in ‘first-pass’ strategy. We refer to these

different methods here as either with or without nodal good initial guess (NGIG). These

terms are used in place of ‘informed’ and ‘first-pass’ in this section because they apply

only to the nodal values ϕs and f IIs , while we consider random initial guesses for xIII and

Ntot.

The random initial guesses for xIII and Ntot were split into three sets of 100 points

each representing base-case, worst-case, and best-case guesses. In the base-case set, each

component of the initial guess for xIII is a random number of the form a× 10−b, where a

is uniformly distributed in the interval [0, 1] and b is a random integer in the interval [1, 8].

The guess for Ntot is generated in exactly the same way and then multiplied by 0.01 to

account for the fact that the total molar flux is experimentally observed to be on the order

of 0.01 mol/m2s. Note that all variables are non-negative in the base-case set.

The best-case and worst-case sets were generated as modifications of unique base-case

sets. To generate each worst-case guess from the corresponding base-case guess, each
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variable in the base-case guess was multiplied by either −1 or 1 with equal probability,

specifically to generate non-physical values. In contrast, to generate each best-case guess

from the corresponding base-case guess, xIII was scaled so that the mole fractions sum to

one, making the guess more physically reasonable.

The rationale for using random guesses, and particularly for using non-physical guesses,

is as follows. Although we typically have control over the initial guess provided to a solver,

we generally have no control over the guesses that the solver itself generates in subsequent

iterations. In practice, it is common for at least some of these guesses to be inaccurate or

even non-physical in basic ways, such as having some variables negative. Thus, it is im-

portant to understand how different numerical methods and formulations respond to such

points. Explicitly providing such points as initial guesses allows us to thoroughly sample

the space of possible iterates and ensure that all methods are subjected to the same set of

test points.

These 300 initial guesses were generated for each of the three mixtures described in

subsection 2.5.1 and combined with each of the two fugacity models described in sub-

section 2.5.1 to create 1800 test cases. For each numerical method, we also considered

using fsolve with the solver algorithm set to trust-region-dogleg (default) and Levenberg-

Marquardt, making 3600 test cases per method. These test cases were solved with each

of the six numerical methods presented in section 2.3 and section 2.4. Moreover, the FD

methods were tested separately with and without NGIG.

For each numerical method, Figure 2.10 shows the solution errors obtained for all 3600

runs in monotonically increasing order. These results are summarized more concisely in

Figure 2.11, which shows the fraction of runs with solution errors > 50% (did not con-

verge), 1–50% (large approximation error), 0.1–1% (acceptable error), and < 0.1% (effec-

tively no error).

Figure 2.10a compares the shooting algorithm to all approximation methods. The

shooting algorithm converges in 79% of all runs, with high accuracy as expected, and
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(a) Approximation Methods Robustness Comparison

(b) Finite Difference Methods Robustness Comparison

Figure 2.10: Solution errors for all methods on 3600 test cases with random initial guesses.
The results for each method are sorted in order of increasing error. Shaded regions corre-
spond to the following error ranges: >50%, 1–50%, 0.1–1%, <0.1%. NGIG = nodal good
initial guess. For the shooting algorithm, the solution error is often much less than 1E-3,
but the values are clipped at 1E-3 for plotting.

Figure 2.11: Percentage of runs from Figure 2.10 with errors >50%, 1–50%, 0.1–1%, and
<0.1%.
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fails to converge in the remaining 21%. The next best method is the ϕ-form average cou-

pling approximation, which achieves an acceptable error (<1%) in 58% of cases and fails

to converge in 31% (10% more than shooting). Finally, the Fick’s law and f -form average

approximations fail to converge in 41% and 65% of cases, respectively.

Figure 2.10b compares the shooting algorithm to the f -form and ϕ-form FD methods.

The shooting method is evidently much more robust than either FD method. The f -form FD

performs the worst, with a convergence failure rate of 99% without using the NGIG strategy

and 77% with NGIG. The ϕ-form FD performs significantly better with a convergence

failure rate of 54% without NGIG and 44% with NGIG.

To understand the impact of the initial guesses, we also analyzed the results separately

for the base, best, and worst-case guess sets. The results for all sets (not shown) were

found to be very similar, giving percentages within a few points of the aggregated values

in Figure 2.11 for all methods.

Based on these results, we conclude that the shooting algorithm converges much more

reliably than any of the competing methods for this test set. The convergence failures that

do occur in the shooting algorithm are nearly always caused by failures of the IVP solver

used in the inner solve, which may result from the current iterate creating an unstable IVP.

In contrast, the more frequent convergence failures in the other methods are likely related

to the highly nonlinear phase equilibrium problem at the permeate side of the active layer,

for which good initial guesses are not known. The shooting algorithm largely avoids this

issue because the inner IVP solver propagates the key variables ϕ and fII from the feed

side z = 0 to the permeate side z = L smoothly through a sequence of small, sequential

steps. More specifically, within the IVP solver, each incremental step through the active

layer involves computing ϕ and fII at the current location z using very high-quality initial

guesses derived from the converged values of ϕ and fII at previous step z − ∆z. Thus,

the shooting method avoids ever solving a phase equilibrium problem from scratch, except

the one at feed side itself, which is typically easier since xI is known. This advantage
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of shooting is expected to be more pronounced the more complex the membrane fugacity

model becomes, which is important for complex mixtures.

The number of convergence failures observed for these methods is somewhat depen-

dent on our decision to use fsolve rather than some other general-purpose nonlinear equa-

tion solver. However, the Newton-Raphson-type methods used by fsolve are standard in

such solvers and provide a good representative benchmark. Notably, changing the fsolve

algorithm option from trust-region-dogleg to Levenberg-Marquardt had very little impact

on the robustness results. This can be seen in §S8 of the SI, which parses the results in

Figure 2.10a–Figure 2.10b by the algorithm option used. Moreover, note that the most sig-

nificant convergence problems arise in the f -form average approximation and FD methods.

As discussed in subsection 2.5.5, this is largely caused by iterates falling outside of the

domains of the natural logarithms in those formulations, which is likely to cause problems

for any general-purpose solver.

2.6 Conclusions

This chapter presented improved numerical methods for solving the local flux problem and

provided extensive numerical comparisons with existing methods in the context of organic

reverse osmosis with complex hydrocarbon mixtures. Our proposed shooting algorithm

provided the best all-around performance in terms of accuracy, efficiency, and robustness.

Our proposed ϕ-form FD method showed significant improvement over the existing f -

form FD method and nearly matched the shooting method in accuracy and efficiency, but

not robustness. Moreover, shooting is preferred due to the manual tuning required by FD

methods. Finally, the ϕ-form average approximation method performed surprisingly well

for the complex mixtures tested, drastically outperforming Fick’s law and offering a low-

cost alternative to shooting with reductions of accuracy and robustness that will often be

acceptable. Our complete implementation of these methods is available as an open-source

MATLAB package called aysMemSim. See section 2.8 for the download details. The
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software features scripts for fitting model parameters to single component data and running

predictive simulations with any of the models presented in this paper.

Although the shooting algorithm outperformed the FD approaches tested here, we ac-

knowledge that future advances in FD approaches could make them significantly more

powerful. Specifically, their robustness could potentially be improved through the use of

alternative nonlinear equation solvers or customized iterative schemes.

While the local flux problem addressed in this paper is a suitable stand-alone model for

ideal cross-flow contactors (as in most experimental set-ups), additional work is required

to extend our results to the simulation of industrial membrane modules in spiral-wound,

hollow-fiber, plate-and-frame, or tubular configurations. Such global module models in-

volve partial differential-algebraic equations describing a continuum of local flux problems

coupled together by feed and permeate channel balances. Among the many possible ap-

proaches, the shooting algorithm proposed here could be extended to such cases through

the use of a method-of-lines-type partial discretization.
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CHAPTER 3

EXTENDED MODELS FOR PREDICTING COMPLEX MIXTURE

PERMEATION

3.1 Overview

This chapter outlines two different extended modeling applications (see section 3.2 and

section 3.3). In the first application, a framework for predicting fractionation of complex

mixture feeds via polymer membranes was developed for organic solvent reverse osmo-

sis. This frameworks presents a novel sorption model, and two diffusion models that better

predict the transport through two glassy polymers. The theory behind them is presented

and compared to state-of-the-art modeling approaches. The conclusion from this work is

that the proposed models are much better at describing the permeation and thermodynamic

sorption phenomena observed [14]. In the second application, data-driven predictions of

complex organic mixture permeation in polymer membranes is investigated. Given that,

section 3.3 will outline how the underlying sorption model was better represented math-

ematically in order to realistically converge simulations of complex mixture permeation

that included hundreds of components [69]. Then, modeling predictions show how the

machine-learned parameters were able to predict the separation of crude oil mixtures with

polymers that have never before been synthesized.

3.2 Framework for Predicting the Fractionation of Complex Liquid Feeds via Poly-

mer Membranes

3.2.1 Introduction

Most commodities derived from petroleum and biorefining feedstocks involve the separa-

tion of molecules in the 100-400 g/mol range, and the majority of these separations are
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achieved via thermally-intensive distillation and extraction processes. As industries seek to

reduce the energy and resource consumption associated with separation processes, mem-

branes have emerged as attractive low-energy options either in hybrid separation process

configurations or as standalone alternatives. Importantly, real mixtures that need to be sep-

arated are often concentrated liquids that are “complex” in nature; in this section, we use

“complex” to identify streams with many components without a clear majority species.

Crude oil refining represents an important target for membrane-based separations, as the

initial fractionation of crude oil is commonly done by distillation, which accounts for nearly

15% of all US manufacturing energy [70]. Thermal fractionation of liquid hydrocarbons

can, in principle, be translated to membrane separations via membrane cascades contain-

ing varying separation modalities (e.g. OSN, organic solvent reverse osmosis (OSRO))

[71, 72]. The ability to predict multicomponent transport in many different classes of mem-

branes is essential to accelerate the development of materials for such cascade systems that

would otherwise require lengthy experimental timelines for material synthesis, membrane

fabrication, and separation testing.

Significant attention has been paid to experimental and theoretical aspects of membrane-

based separations of dilute mixtures [67, 72]; however, there is a lack of methods avail-

able for modeling complex mixture permeation data or predicting complex mixture per-

meations based on easily accessible experimental parameters. Complex liquid permeation

of similarly-sized molecules, wherein multiple components are present in high concentra-

tions (such as in crude oil separations), has not yet been successfully modeled and matched

with experimental data in a scalable manner for polymer systems. The challenge is accu-

rately describing both multicomponent liquid occupancy throughout a polymer membrane

and diffusional cross-coupling for multiple species with similar physicochemical proper-

ties. Several studies have modeled liquid transport in polymer membranes via pore-flow

and solution-diffusion models [37, 44, 67]. Pore-flow models assume no change in solvent

activity across the thickness of a membrane, which does not match experimental observa-
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tions for microporous or dense polymer materials, especially in the case of reverse osmosis

regimes [73, 74]. It is now general consensus that the permeation of molecules through

dense membranes is best described by the solution-diffusion model, whose driving force is

a pressure-induced concentration gradient and not a pressure gradient across the membrane

thickness [19, 67].

Several researchers have published detailed studies of small organic molecule flux

through OSN and OSRO membranes that provide the backdrop for understanding com-

plex organic transport [75, 76, 77, 78]. A number of researchers have applied Paul and

Ebra-Lima’s solution-diffusion model in Fick’s law form to describe the transport of pure

molecules or dilute mixtures through polymeric membranes and observed a close agree-

ment with experimental data [79, 80, 81]. Although Fick’s law is easily combined with

mass balances and requires less complex equations to solve than the Maxwell-Stefan model,

the omission of cross-coupling effects, the assumption of thermodynamic ideality and ne-

glecting the dependence of Fickian diffusivity on concentration bring about significant error

in describing multicomponent transport [31, 46, 55]. The Maxwell-Stefan model does not

possess the shortcomings of this classical approach to the solution-diffusion model, which

is why the solution-diffusion form of the Maxwell-Stefan model is preferred to describe

multicomponent liquid separations via polymer membranes [82, 83, 84]. However, such

predictive studies with liquid mixtures containing three or more species in »1% concentra-

tions are scarce.

Ribeiro et al. first described the Maxwell-Stefan transport equations with volume frac-

tion terms in conjunction with the Flory-Huggins sorption model to predict the permeation

of binary mixtures of CO2/C2H6 across crosslinked polyethylene oxide membranes [85].

Krishna further developed explicit analytic expressions such that these fluxes could be de-

scribed in two-dimensional matrix notation [39]. He used this notation to predict fluxes

for CO2/C2H6 in Ribeiro et al. experiments and water/alcohol pervaporation via cellulose

acetate and polyimide membranes. While this approach showed potential for experimental
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simplicity as mutual diffusion parameters did not have to be experimentally measured, it

requires further validation for complex, nonpolar feeds such as those found in crude oil.

Here we use Krishna’s approach as a starting point to predict the separation of liquid hy-

drocarbon mixtures containing up to nine similarly-sized molecules with two microporous,

glassy polymer materials: PIM-1 and SBAD-1 (see Figure 3.1) [86, 87].

We demonstrate that complex mixture separations can be adequately predicted (i.e.,

within an average of 10% of the experimental values of permeate compositions and an

average of 35% for permeate fluxes) via a Maxwell-Stefan framework with single compo-

nent molecule-polymer sorption and diffusion parameters as the only experimental input

requirements. These values were obtained from a combination of unary gravimetric vapor

sorption, unary liquid swelling experiments, and unary liquid permeation. A new sorption

model that additively combines Langmuir-type and Flory-Huggins-type sorption contribu-

tions is proposed to fit the unique sorption in glassy polymers and serves as a generalizable

model, capable of extension to low- and high-swelling polymers. Comparisons to other

thermodynamic models such as classical FH and DMS) are made based on unary, binary,

and ternary sorption experiments as well as unary and mixture membrane permeation ex-

periments. Vignes mixing rules are investigated as empirical correlations of binary dif-

fusion interactions amongst hydrocarbons. Finally, free volume theory and an alternative

average diffusivity concept are investigated to capture the influence of polymer dilation and

plasticization on guest diffusivities.

3.2.2 Theory and Background

Maxwell-Stephan Transport of Mixed Feeds

This section is analogous to subsection 2.2.3. For the general set-up of the sorption-

diffusion membrane transport mechanism, please refer to subsection 2.2.1.
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Figure 3.1: Complex mixture transport via PIM-1 and SBAD-1 membranes. Exem-
plar non-linear chemical potential profiles of individual molecules in complex mixtures are
shown across the thickness of selective polymer membranes with corresponding chemi-
cal structures. It is assumed that the support layer does not hinder transport and chemical
potential is unchanged throughout the support. Higher nonlinearity is observed for more
dilute or low sorbing components, and as the number of components is increased (i.e., the
mixture becomes more complex and each molecule becomes less concentrated in the mix-
ture), Fick’s law becomes insufficient to describe liquid hydrocarbon transport. Note that
the membrane and support thicknesses are not to scale. [14]
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Liquid Sorption in Polymers

This section describes the specific membrane fugacity models used in the phase equilibrium

calculations in subsection 2.2.2. Recall that the generic notation for these models in the

main text is gII(f II ,ϕ, T II , P II) = 0. For brevity in this section, we drop the arguments

T II and P II and suppress the superscript II on all variables. Lastly, unless specified, all

variables are the same as defined in the main text nomenclature table.

Flory-Huggins Fugacity Model The multicomponent FH model gives the fugacity fi of

component i in the membrane phase at (T, P ) as (assuming V i = V ◦
i (T, P )) [26, 88]

ln
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f ◦
i (T, P )
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V ◦
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V ◦
i

V ◦
j

ϕjϕk, (3.1)

where ϕn+1 = ϕm = 1 −
∑n

i=1 ϕi is the membrane volume fraction and χii = 0. Flory

interaction parameters are commonly understood to be composition-dependent. Yang and

Lue have explicitly shown that sorption is predicted more accurately when χim and χij are

considered to be functions of concentration, and are asymmetric such that χij is not equal

to χji [89]. They show that hyperbolic and polynomial functions need to be fit to obtain

χim − ϕi and χij − ϕi relationships. However, these involve extensive mixture sorption

experiments to verify, and are difficult to apply in a Maxwell-Stefan framework with n

components. For simplicity, we will assume that χim is constant across different loading

conditions, and χim is equal to the observed value at unit activity (when the polymer is in

contact with pure liquid, see paragraph 3.2.3). Additionally, χij = χji is the Flory-Huggins

parameter for component pair ij, which can be approximated for i ̸= j ̸= m using Hansen

solubility parameters as [90]
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χij =

(
V ◦
i V

◦
j

)0.5
RT

[
(δD,i − δD,j)

2 + 0.25(δP,i − δP,j)
2 + 0.25(δH,i − δH,j)

2

]
. (3.2)

Detailed multicomponent sorption experiments and analyses are required to further ver-

ify this simplified approach, and will be the focus of future work. Table A.3 shows the

Hansen solvent parameters used in this study [91]. The more alike two solvents are, the

lower the difference between the parameters will be; and the lower the binary chi parame-

ters will be, resulting in greater binary sorption coupling.

Classical Dual Mode Sorption Model The two most common multicomponent sorption

models for glassy polymers are the non-equalibrium lattice fluid (NELF) and the Dual-

Mode Soroptin [92, 93]. In subsubsection 1.3.2, the NELF model is shown as infeasible

for the purposes of predictive multicomponent sorption predictions based solely on pure

component experiments. Additionally, there were a number of parameters to fit even in

the single component case. Therefore, the classical DMS is described herein for uptake

in glassy polymer membranes as a sum of two contributions: a dissolved phase follow-

ing Henry’s law, and an adsorbed phase following a Langmuir isotherm. The membrane

concentration can therefore be written as

cpi = cp,Henry
i + cp,Langmuir

i , (3.3)

where the superscript p denotes that the concentration is based on the skeletal polymer

volume. Substituting in expressions for the Henry’s law and Langmuir adsorption terms

gives:

cpi = k′
ifi +

CH′
i bifi

1 +
∑n

k=1 bkfk
, (3.4)

where k′
i and CH′

i are based on moles of solvent per skeletal polymer volume.

Recall that the MS model in subsection 2.2.3 describes the membrane phase compo-
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sition in terms of volume fractions ϕi based on total system volume (defined as skeletal

polymer and sorbed molecule volume). To cast (Equation 3.4) in terms of the same vari-

ables, first assume that the partial molar volume of component i is the same in both the

dissolved and adsorbed phases and V i = V ◦
i (T, P ). Then, cpi can be related ϕi by

ϕi = ϕmV
◦
i (T, P )cpi . (3.5)

The units above are

ϕi

[
m3 component i

m3 total

]
= ϕm

[
m3 polymer

m3 total

]
V ◦
i

[
m3 component i

mol component i

]
cpi

[
mol component i
m3 polymer

]
.

Using this relation and letting ki = k′
iV

◦
i (T, P ) and CH

i = CH′
i V ◦

i (T, P ), (Equation 3.4)

becomes

ϕi = ϕm

(
kifi +

CH
i bifi

1 +
∑n

k=1 bkfk

)
. (3.6)

Consequently, (Equation 3.6) is the final form of the DMS model used in this work.

This approach has been highly successful for describing gas sorption into glassy polymers,

but fails to capture many features of solvent sorption isotherms.

Combined Flory-Huggins-Langmuir Model Before going into details of the derivation,

it is beneficial to provide some context on how we derived this relationship theoretically

and why the proposed mechanisms are valid for swollen glassy polymer membrane layers.

Figure 3.2a shows the proposed mechanism where initially there is a hole-filling glassy

soprtion mechanism followed by a transition to lattice theory-based dissolution mechanism.

In fact, the concept of additively combining Langmuir hole-filling with lattice theory-based

dissolution has been theorized much earlier by Barrer et al., but with a formulation that

resembles DMS more closely than the formulation proposed in here [94]. In developing

the proposed FH-LM sorption model, we conceptualize the dry polymer system as having
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polymer and void regions, while at high activities we imagine the system to be made up of

polymer and sorbed guest molecule regions. We assume that sorbates take up the entire free

volume space present in the polymer above a certain activity corresponding to the transition

of the polymer from the Langmuir-dominant regime to the Flory-Huggins-dominant regime

(which often coincides with a glassy to rubbery transition). While the proposed FH-LM

sorption model is similar to DMS in that both models describe a combination of a pore-

filling and dissolution mechanisms, the convexity of sorption at higher activities for certain

hydrocarbon molecules is not accurately captured by the Henry’s sorption component of

DMS. The competitive sorption of multiple penetrants into free volume elements in a glass

can be described by the multi-component Langmuir model as seen in the right hand side

term of (Equation 3.4).

Inspired by this dual mode approach, in this work we propose that the sorption of hy-

drocarbon vapors and liquids in glassy polymers can be more accurately described over

the full range of solvent activities by a combination of Langmuir micropore-filling and

Flory-Huggins swelling type sorption contributions. In the FH-LM model, the Henry’s

Law sorption term in DMS is replaced with a Flory-Huggins type sorption term [14]:

ci = cFlory−Huggins
i + cLangmuir

i , (3.7)

where the concentrations are normalized by the total system volume (defined as skeletal

polymer and sorped molecule volume). Assuming again that the partial molar volumes

are equal in each phase and equal to the pure component molar volume, the model can be

rewritten in terms of volume fractions as

ϕi = ϕFlory−Huggins
i + ϕLangmuir

i . (3.8)
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Figure 3.2: Sorption Regimes and diffusive modes of transport in polymer mem-
branes. A. Dependence of sorption regime and membrane volume on solvent activity.
It is important to note that the two guest populations are in equilibrium but Langmuir-style
sorption will dominate at low solvent activities and Flory-Huggins-style sorption will dom-
inate at high solvent activities. B. Conventional diffusion mechanism where a molecule
makes diffusive jumps through free space in a polymer network. C. Maxwell-Stefan inter-
pretation of mixture diffusion where frictional forces between molecules cause diffusion
coupling such that faster molecules are slowed and slower molecules are sped up, leading
to a loss in diffusion selectivity. D. Cohort motion mode of transport where molecules dif-
fuse collectively as a unit and no diffusion selectivity is obtained. [14]
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Using Equations (Equation 3.4)–(Equation 3.5) for the Langmuir term gives

ϕi = ϕFH
i + ϕm

CH
i bifi

1 +
∑n

k=1 bkfk
. (3.9)

In this Equation, ϕFH
i is specified from f as the solution of (Equation 3.17). Thus,

Equations (Equation 3.17) and (Equation 3.9) constitute the final model.

Accessible Free Volume Theory

Penetrant-polymer Maxwell-Stefan diffusivities can be calculated via experimentally mea-

sured pure molecule permeation, pure molecule sorption, and (Equation 2.23). However,

significantly different polymer swelling in the presence of a range of solvents could result

in a wide range of mixture-accessible free volumes; these depend on the various possible

upstream and downstream concentration ratios for a given set of molecules. This com-

plicates simple attempts to estimate separation performance of a multicomponent mixture

because the diffusion of each molecule through the polymer matrix could also vary with

the accessible free volume in the system. Several versions of the free volume theory have

been previously used in gas transport studies to correlate penetrant diffusivity with the ac-

cessible free volume of the dry polymer. Here, we have used one such model to correlate

the same [95]

ÐV
im = Aiexp

(
−Bi

vf

)
, (3.10)

where Ai is a molecule-polymer system dependent constant, Bi is a molecule-dependent

constant and is related with the molecule size, and vF is the polymer free volume. Assum-

ing the diffusivities of liquid species are also similarly dependent on accessible volume due

to membrane swelling, we can derive the following correlation for each molecule:

ÐV
im,polymer state I

ÐV
im,polymer state II

= exp
[
B

(
1

vF,I
− 1

vF,II

)]
, (3.11)
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Thus, solvent-polymer Maxwell-Stefan diffusivities that are calculated from permeation

experiments with known polymer states (i.e., degree of swelling) can be used in conjunc-

tion with (Equation 3.11) to estimate diffusivities in mixtures where the degree of polymer

swelling is dependent on multicomponent sorption and is different from the swelling in-

duced by the pure solvent. Here, we take vF,I as the unit activity volume fraction of com-

ponent i and vF,II to be the mixture accessible volume (i.e., vF,II =
∑n

j=1 ϕj = 1− ϕm).

Cohort-style Average Diffusivity

Going a step further in relating diffusivities with polymer state upon sorption, Damle and

Koros observed a loss of diffusion selectivity in glassy polymers that strongly dilate and

plasticize in the presence of condensable adsorbates [96]. On the feed side, the mixture un-

dergoes equilibrium partitioning into the membrane, which is swollen to the point that it has

negligible microvoids, such that sorption is most appropriately described by Flory-Huggins

lattice interactions. Inside the membrane, small collections of molecules act as a unit since

the membrane is sufficiently swollen or plasticized, such that they collectively diffuse to-

gether. While the Maxwell-Stefan framework naturally takes the thermodynamic and cross-

diffusional coupling into account, we noticed that setting all the penetrant-membrane dif-

fusivities to some volume corrected average value gave the best results compared to any

other approach we considered (subsection 3.2.4, vide infra). Since ÐV
im is proportional to

the inverse drag coefficient, this approach can be considered as setting all the friction forces

experienced by the permeants to be almost equivalent. When tracking the motion of an in-

dividual molecule, it would have a velocity or a displacement that is equivalent to all other

molecules as they are moving in this unit. The mixture then partitions into the adjacent

permeate phase according to the FH sorption model again. This is different from the free

volume vision of a single molecule "hop" from sorption site to sorption site, which is the

classic picture for gases and polymers that have not plasticized or dilated. Figure 3.2b–

d provides a visual representation of these mechanisms. The cohort-style diffusivity can
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be calculated a using a Vignes-style volume-corrected interpolation formula of the pure

component Maxwell-Stefan molecule-polymer diffusivities:

ÐV
im = (Vi)

−1

n∏
k=1

(ÐV
km)

ϕk∑n
j=1

ϕj , (3.12)

Many averaging and weighting approaches have been tested, and this version gave the best

results for our initial description of the complex mixture permeation framework.

Simulation and Parameter Fitting of Modeling Framework

This section outlines how parameters were fit and simulated for the modeling framework.

While the experimental aspects are detailed, the main contribution from this dissertation

deals with the computation aspect. The experimental work was all carried out by the co-

first author, Dr. Ronita Mathias [14].

Sorption Models The Langmuir capacity can be estimated by visual observation of the

curvature of the measured isotherms and is typically designated as the initial step uptake at

a relative pressure of 0.3 for SBAD-1 (better fits were obtained by using the uptake at a rel-

ative pressure of 0.5 for 1-methylnaphthalene in SBAD-1) and 0.4 for PIM-1. For the FH-

LM sorption model, the Flory-Huggins contribution is then calculated by subtracting CH
i

from the total sorption at unit activity, which effectively removes sorption in the microvoids

such that these contributions are not double counted. For each solvent, χim can then be cal-

culated based on this Flory-Huggins sorption contribution via (Equation 3.1). This single

parameter (assumed to be concentration-independent, see paragraph 3.2.2) is sufficient to

describe the Flory-Huggins contribution at different solvent activities. Finally, the Lang-

muir sorption parameter, bi, is obtained by performing a least-squares fit of the Langmuir

term in (Equation 3.9) to the total experimental sorption isotherm. In the case of the FH

sorption model, where the dry polymer fractional free volume is assumed to be negligible,

χim is calculated using sorption at unit activity in (Equation 3.1). For the DMS model,
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the three model parameters are fit simultaneously via a least-squares fit of (Equation 3.6)

to the experimental sorption isotherm. The error in calculated sorption model parameters

was estimated by fitting to upper and lower bounds of the raw sorption isotherms measured

from duplicate and triplicate data and is listed in the Supplemental Information along with

the isotherm parameters.

Penetrant-polymer Diffusivities Experimental unary fluxes at a fixed transmembrane

pressure were used in combination with each sorption model (FH, DMS, and FH-LM)

to calculate three sets of ÐV
im corresponding to each sorption model. This was done via

the Maxwell-Stefan equation reduced to a binary system of one penetrant in a polymer

((Equation 2.23), n = 1). These ÐV
im values were then utilized in the Maxwell-Stefan

framework along with the respective sorption models to predict unary fluxes at higher trans-

membrane pressures for model validation. These diffusivities are then used as the inputs

into the multicomponent transport models. As described in subsubsection 3.2.2, ÐV
im is

expected to be a function of polymer free volume and we adjust for polymer swelling in

multicomponent transport via (Equation 3.11). The free volume theory dictates that B is

unique to each molecule and is dependent on penetrant size. Evaluating appropriate B val-

ues for each molecule requires at least two distinct experimentally-measured diffusivities

for each penetrant at different accessible free volumes of the polymer. This increases the

experimental effort required by the predictive framework and is also difficult to calculate

for molecules that do not noticeably swell polymers. Therefore, we have explored several

different possible B values and, in each sorption model case, a single value was consistently

applied to all penetrants for simplicity. This method enables modification of a single com-

ponent diffusivity (measured at a condition of vF,I) to a case where the polymer is swollen

to a much different degree due to the sorption of many different molecules resulting in the

vF,II polymer condition.
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Multi-component Transport Simulation Framework The Maxwell-Stefan framework

discussed above was implemented to obtain multi-component permeation predictions us-

ing the Dual-Mode sorption model, the Flory-Huggins sorption model, and the proposed

Flory-Huggins + Langmuir sorption model. Additionally, several different transport mod-

els were tested, which affect how the B and Γ matrices are specified in the Maxwell-Stefan

framework. These are described in the following scenarios:

a) Scenario 1 (Sc1): Fick’s Law flux formulation as in (Equation 2.26)

b) Scenario 2 (Sc2): Maxwell-Stefan approach in (Equation 2.23) without diffusional

cross-coupling (i.e., B→ diag(B))

c) Scenario 3 (Sc3): identical to Sc2 but with a Vignes correlation (Equation 2.19) to

describe diffusion cross-coupling

d) Scenario 4 (Sc4): identical to Sc3 but with ÐV
im adjusted for polymer swelling via the

free volume theory (Equation 3.11), where B=0.03 is assumed to be a constant value

for all molecules for experimental simplicity.

e) Scenario 5 (Sc5): identical to Sc2 but with ÐV
im replaced via the average diffusivity

concept (Equation 3.12).

The proposed framework makes the following assumption:

i. The partial molar volume of each component is equivalent to its molar volume at

pure conditions, 298 K, 1 atm

ii. The proposed framework for modeling transport through the asymmetric membrane

is a three-step sorption-diffusion mechanism

To simulate the transport, please refer back to subsection 2.2.4 for the problem state-

ment and subsection 2.5.6 for the proposed numerical method. The only difference to

highlight is that the activity coefficients for Phase I and III are calculated by AspenTech

UNIQUAC (or PC-SAFT) methods.
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3.2.3 Experimental

All experiments were carried out by Dr. Ronita Mathias. This section outlines the complete

experimental details that accompany the previously outlined simulation framework [14].

Materials The synthesis of PIM-1 and SBAD-1 were performed according to literature

procedures as detailed previously [87, 97]. All other chemicals were purchased from Sigma

Aldrich, Acros Organics, Alfa Aesar, Oakwood Chemical, or TCI and used as received.

Helium Pycnometry Dried SBAD-1 powder samples were analyzed via helium gas at

22 °C (AccuPyc II 1340 FoamPyc V3.00, Micromeritics). An average skeleton density of

1.29 g/cm3 was calculated from 10 cycles.

Membrane Fabrication Thin film composite fabrication of SBAD-1 is detailed in previ-

ous work [87]. Briefly, a 0.8wt% chloroform solution of SBAD-1 was coated on crosslinked

polyetherimide support (surface pore size of 9 nm) via a roll-to-roll process line at a speed

of 5m/min and a drying temperature of 55 °C in an air-convection dryer. A 1 wt% chloro-

form solution of PIM-1 was blade-coated on crosslinked polyetherimide support (surface

pore size of 25 nm) via a blade of 25.4-micron thickness. SBAD-1 and PIM-1 dense films

were prepared by pouring chloroform solutions of the polymers (10-20 wt%) into leveled

Teflon dishes in a glove bag saturated with chloroform vapor. Films stood in the saturated

environment for 24 h and were then allowed to dry as the atmosphere was gradually de-

pleted of solvent vapor. The films were then dried under vacuum (-29 mm Hg) at 110 °C

overnight.

Vapor Sorption SBAD-1 and PIM-1 powder obtained directly from synthesis were used

for vapor sorption experiments. The powder was dried under 29 mm Hg vacuum and 110

°C overnight before analysis and dried again in situ at 110 °C under flowing nitrogen for

200 minutes before sorption. The vapor sorption instrument (VTI SA+, TA Instruments)
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utilized Wagner equation constants to determine the saturation vapor pressure of a liquid

and the relative pressure pi
psat

was controlled by mixing dry nitrogen gas and the headspace

of a saturator containing hydrocarbon liquid. Measurements were performed at 25 °C and

in duplicate or triplicate to determine experimental error.

Unit Activity (Liquid) Sorption The sorption at unit activity was measured by submerg-

ing weighed dense film fragments in liquid hydrocarbon at room temperature (22 °C) for at

least 1 month. The resulting solvated films were weighed after wiping the surface dry with

a Kimwipe. Each measurement was performed twice to improve accuracy. Measurements

with sorption under 5 wt% were not included in the final data as reliable mass uptakes could

not be obtained.

Liquid Permeation Thin film composite permeation was measured with a custom-built

cross flow system pressurized by an HPLC pump (Azura P 4.1S, Knauer). A constant feed

flow rate of 10 mL/min was employed, which satisfied the upper limit of a 1% stage cut for

all mixtures. Aliquots from the permeate were taken at 24 h intervals until the permeance

and permeate concentrations were stable (typically 3-5 days). The permeate compositions

were determined using gas chromatography (Agilent 7890B) which, in combination with

the total permeate flux measured, were used to determine individual molecule fluxes. Sam-

ples from each membrane sheet were tested in triplicate.

Scanning Electron Microscopy The thickness of thin polymer films in PIM-1 and SBAD-

1 were measured via Field Emission Scanning Electron Microscopy (FE-SEM) (Hitachi

SU8010). Membrane samples were cut with a sharp razor blade and placed on aluminum

mounts using carbon tape. The samples were sputter coated with a gold/palladium alloy

using a turbomolecular pumped coater (Quorum Q-150 T ES) under a deposition current

of 10 mA for 30 seconds. SEM images were captured at a voltage of 3kV and a current of

10 µA (Figure B.1). The resulting SBAD-1 and PIM-1 film thicknesses were estimated to
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be 300 and 1500 nm, respectively.

3.2.4 Results and Discussion

A key factor in the multicomponent transport framework is a sorption isotherm that accu-

rately captures the uptake of multiple penetrants in a polymer system. Unary experimental

hydrocarbon sorption isotherms and model fits for PIM-1 and SBAD-1 are shown in Fig-

ure 3.3. The higher experimental error observed for low sorbing molecules such as iso-

cetane is expected as the data approaches the lower end of the instrument accuracy range.

It should be noted that due to slow transport in SBAD-1, certain sorption data likely did

not reach full equilibrium (Figure B.2). These include sorption of methylcyclohexane, 1-

methylnaphthalene, tert-butylbenzene, 1,3,5-triisopropylbenzene and iso-cetane. Despite

this, the data at each relative pressure that was collected within reasonable timeframes (up

to 2 weeks of equilibration time per point) were used to fit the desired sorption param-

eters with the understanding that the model isotherms will likely be underpredicting the

true uptakes. Beyond a relative pressure of 0.3, vapor uptakes of tert-butylbenzene were

difficult to measure due to accumulation and condensation of the fluid within the instru-

ment chamber and so, limited experimental data is available for this molecule. In general,

FH-LM and DMS enable good predictions of sorption at different activities while the FH

model with constant χim underpredicts sorption within the entire range of activities. Fig-

ure B.3 shows that χim varying with the volume fraction of the penetrant enables more

accurate predictions of sorption via the FH model, but ultimately complicates multicompo-

nent transport solutions. For certain highly sorptive molecules, such as o-xylene in PIM-1

and 1-methylnaphthalene in SBAD-1, the proposed FH-LM sorption model delivers bet-

ter isotherm fits than DMS. Based on this observation, we suggest that multicomponent

sorption of liquid hydrocarbons to be best captured by FH-LM.

It is essential for a model that describes the transport of complex liquid feeds to be

capable of describing permeation of simple feeds - the simplest being a pure liquid. There-
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Figure 3.3: Unary sorption in PIM-1 and SBAD-1. Experimental hydrocarbon sorp-
tion isotherms ( ) and predictions for PIM-1 (A) and SBAD-1 (B) at 25◦C assuming
Dual-mode (- -), Flory-Huggins (· · · ), and Flory Huggins + Langmuir (-·-). X-axes in-
dicate relative pressure of the molecule and y-axes represent molecule uptake (cc [STP]
molecule/cc polymer). Data are shown as averages of at least two measurements with stan-
dard deviation error bars. Abbreviations are shown for 1-methylnaphthalene (1-MN) and
1,3,5-triisopropylbenzene (TIPB) [14].
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Table 3.1: Multicomponent separations via SBAD-1 and PIM-1 performed at 22◦C.

Separation 1 via PIM-1 at a transmembrane pressure of 30 bar
Permeate Flux (L/m2/hr) 6.33±3.96

Feed Composition Permeate Composition
Component mole fraction mole fraction error %

toluene 0.257 0.267 0.37
heptane 0.216 0.210 0.95
p-xylene 0.205 0.212 0.47
o-xylene 0.264 0.269 0.74

iso-octane 0.058 0.042 4.8
Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar

Permeate Flux (L/m2/hr) 0.88±0.52
Feed Composition Permeate Composition

Component mole fraction mole fraction error %
toluene 0.171 0.201 1.5

methycyclohexane 0.281 0.253 0.79
1-methynaphthalene 0.020 0.028 3.6

decalin 0.107 0.110 0.91
n-octane 0.221 0.245 2.0

iso-octane 0.150 0.123 6.5
tert-butylbenzene 0.022 0.027 3.7

1,3,5-triisopropylbenzene 0.016 8.2×10−3 12
iso-cetane 0.013 4.5×10−3 22

Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
Permeate Flux (L/m2/hr) 0.40±0.12

Feed Composition Permeate Composition
Component mole fraction mole fraction error %

toluene 0.284 0.318 1.9
iso-octane 0.388 0.422 1.4
iso-cetane 0.328 0.260 4.2

fore, we first apply the Maxwell-Stefan model (Equation 2.23) to unary liquid hydrocarbon

permeation at a range of different transmembrane pressures as seen in Figure 3.4. The pure

component diffusivities ÐV
im were estimated using the experimental unary permeation flux

for each solvent-polymer pair at a transmembrane pressure of 20 bar (30 bar for iso-octane)

(Figure 3.4 and Figure 3.5a). The calculated ÐV
im were then used to predict and compare

with experimentally measured fluxes at higher transmembrane pressures of 30, 40, 50, and

60 bar. It should be noted that the high error in the experimental permeation for PIM-1 was
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likely due to the greater variation in thickness of the thin films in the thin film composite

membranes. To reduce the contribution of experimental error to the predictive framework,

the same set of membranes were utilized in all permeation experiments, including complex

mixture separations. Figure 3.4 shows that the predicted fluxes fit closely with experimen-

tally measured values in the case of all three sorption models. An anomaly exists in the

experimental values for 1,3,5-triisopropylbenzene (TIPB), where the fluxes were so low

that an accurate measurement was only recorded for one sample (which was the highest)

and error bars could not be calculated. In general, all sorption models enable unary flux

predictions that are within error of experimental values. For aromatic molecules such as

toluene, p-xylene and o-xylene in PIM-1 and tert-butylbenzene and 1-methylnaphthalene

in SBAD-1, where a clear preference of the FH-LM model was observed in Figure 3.3, no

such preference is seen in the prediction of their fluxes in Figure 3.4. It is observed that

TIPB flux predictions are out of the range of experimental values. The good matches for all

other hydrocarbon fluxes and the excellent TIPB sorption predictions suggest that the mea-

sured TIPB fluxes (which are very low) are on the order of the leak rate in the permeation

cell resulting in unexpectedly higher values.

Figure 3.5a correlates ÐV
im with molecule liquid molar volumes and as expected, higher

Maxwell-Stefan diffusivities are calculated for molecules with lower liquid volumes. There

is an almost linear negative correlation of the data except for one outlier: 1-methylnapthalene.

It is possible that due to the long timescales of 1-methylnaphthalene diffusion within SBAD-

1 that the five-day unary permeation experiments were not at the same sorption state as as-

sumed from Figure 3.3. Lower 1-methylnaphthalene uptake in the membrane would result

in lower measured fluxes, which would then lead to lower calculated ÐV
1-MN,SBAD-1. We con-

clude that for this molecule, further long-term sorption and permeation experiments may

be needed to more accurately estimate ÐV
1-MN,SBAD-1. Moreover, the diffusivities of toluene

and iso-cetane in PIM-1 are higher than those in SBAD-1 which align with the expected

higher fractional free volume in PIM-1 compared to SBAD-1.
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Figure 3.4: Unary permeation in PIM-1 and SBAD-1. Experimental liquid hydrocar-
bon unary flux (♦) and predicted flux for thin-film composites at 22◦C with an estimated
film thickness of 1500 nm for PIM-1 (A) and 300 nm for SBAD-1 (B) assuming Dual-
mode (- -), Flory-Huggins (· · · ), and Flory Huggins + Langmuir (-·-) sorption models.
X-axes indicate transmembrane pressure (bar) and y-axes represent flux (Lm−2h−1). Data
are shown as averages of three measurements on separate films with standard deviation er-
ror (with the exception of TIPB for which only one sample had measurable permeate flux).
Abbreviations are shown for 1-methylnaphthalene (1-MN) and 1,3,5-triisopropylbenzene
(TIPB)[14].
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Figure 3.5: Unary diffusion and multicomponent liquid hydrocarbon sorption. A.
Volume-based Maxwell Stefan diffusivities, ÐV

im (cm2/s), in SBAD-1 (•) and PIM-1 (♦)
at 22◦C calculated using the Flory Huggins + Langmuir sorption parameters and unary
permeate fluxes at 20 bar. Abbreviations are shown for methylcyclohexane (MCH),
1-methylnaphthalene (1-MN), tert-butylbenzene (TBB) and 1,3,5-triisopropylbenzene
(TIPB). B-D. Multicomponent experimental sorption in PIM-1 compared with sorption
predictions using single component parameter fits and estimates for competitive sorption
effects for Dual-Mode, Flory-Huggins, and Flory Huggins + Langmuir models. Exper-
imental measurements are from submerging dense films of PIM-1 in liquid mixtures at
22◦C and atmospheric pressure. Molecule activities were taken into account when pre-
dicting multicomponent sorption here. B. Binary sorption indicated as volume fractions of
swollen polymer system. Values in parentheses indicate initial mole fractions of the sur-
rounding bulk fluid (heptane:o-xylene). C. Ternary sorption indicated as volume fractions
of sorbed liquid in PIM-1 dense films in bulk fluid initially composed of toluene, heptane
and p-xylene in mole fractions of 0.35, 0.36 and 0.29 respectively, and D. Total solvent
uptake (g solvent / g polymer) in the swollen polymer from the ternary sorption condition
in C [14].
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Beyond single component sorption, it is important that the new sorption models ade-

quately describe mixture sorption phenomena. While a complete analysis of multicompo-

nent sorption is beyond the scope of this paper due to the large amount of experimental

data that is required, we have compared a few binary liquid sorption measurements of hep-

tane and o-xylene (Figure 3.5b, Figure B.4) and one ternary mixture sorption of toluene,

p-xylene and iso-cetane Figure 3.5c–d in PIM-1 with predictions from the three sorption

models. For the binary uptakes, we observe equally good predictions by the FH and FH-

LM sorption models. In the case of ternary sorption, the total uptake (g mixture/g polymer)

seems to match predictions in the order of FH-LM > DMS > FH with the latter being out of

the range of experimental error. All sorption models predict the composition of the sorbed

species in the ternary system to a similar degree of accuracy. We conclude, based on this

limited dataset, that the FH-LM mixture sorption model – parameterized with single com-

ponent data – results in the closest agreement with the experimental uptakes out of the three

sorption models.

Experimentally-measured permeate fluxes and compositions for three complex mix-

tures via PIM-1 and SBAD-1 membranes are detailed in Table 3.1. The three separations

vary in complexity: a five-component separation via PIM-1, a nine-component separation

via SBAD-1 and a three-component separation via SBAD-1. SBAD-1, being less suscepti-

ble to dilation than PIM-1, as observed in Figure 4, results in better separation of mixtures

(significant decrease in concentration of large molecules such as iso-cetane and TIPB). It

is of interest to include both polymers in the Maxwell-Stefan transport predictions because

of their differing behavior in solvents, despite both being glassy and rigid in the dry state.

The transport of these mixtures is predicted via the varying sorption and diffusion scenar-

ios described in paragraph 3.2.2 and the resulting predicted partial fluxes are summarized

in Figure B.5, Figure B.6, and Figure B.7. The experimental partial flux of a molecule

is calculated as the product of its volume-based composition in the permeate and the to-

tal permeate volume flux. It is informative to define the success of a transport model by
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Figure 3.6: Permeate flux and composition-based prediction of multicomponent sepa-
rations in Table 1. A. Comparison of predicted experimental permeate compositions with
predicted values for Separations 1, 2, and 3 where the ÐV

im for all molecules are assumed
to be equal (average diffusivity approach: Sc5). For each separation, Dual-mode (red),
Flory-Huggins (blue) and Flory Huggins + Langmuir (2) sorption models are investigated.
Dotted parity lines (x=y) are included as a guide for comparisons between predicted and
experimental values. Error bars are included but are too small to be visible in some cases.
B. Heatmaps showing composition based and total flux based root mean square percent-
age error (RMSPE) of each combination of sorption and diffusion assumptions. Y-axes
vary sorption between Dual-mode, Flory-Huggins, and Flory Huggins + Langmuir mod-
els while x-axes vary diffusion conditions as: Sc1 = Fickian transport, Sc2 = no diffusion
coupling, Sc3 = Vignes diffusion coupling, Sc4 = Vignes diffusion coupling + free volume
theory, Sc5 = average diffusivity assumption [14].
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how precise the predicted permeate compositions are and to a lesser extent, by how pre-

cise the predicted total permeate fluxes are. This precision can be calculated for any single

experiment via RMSPE calculations where:

RMSPE =


∑n

i=1

[
|Predicted Valuei−Experimental Valuei|

Experimental Valuei

]2
n


1
2

. (3.13)

The average RMSPE of the separations listed in Table 1 are reported for different com-

binations of the three sorption models and five diffusion scenarios and are summarized in

Figure 3.6b.

The best overall agreement of permeate composition and total permeate flux with ex-

perimental data is obtained with the FH-LM sorption model and Sc4 where the free vol-

ume theory is used within the Maxwell-Stefan framework to adjust ÐV
im based on polymer

swelling. When the permeate composition needs to be more accurate but the flux can have a

larger band of error, the cohort-style average diffusivity approach (Sc5) excels with all sorp-

tion models, particularly FH-LM (Figure 3.6a). For thin film membranes, such as the ones

used in this work, it is not uncommon to encounter membranes with 30-40% variability in

thickness. Despite the dependence of permeate flux on membrane thickness, the permeate

compositions are expected to be independent of thickness if a defect-free membrane is uti-

lized. The low experimental error in permeate compositions in Figure 3.6a is reflective of

defect-free membranes. Therefore, we place greater importance on the precision of perme-

ate composition predictions than permeate flux predictions which are sensitive to variations

in membrane thickness.

Interestingly, the simple Fick’s law formulation (Sc1) generates better predictions of

the permeate composition via the DMS and FH-LM model than the Maxwell-Stefan frame-

work (Sc2) although the latter predicts the total flux slightly more accurately (Figure 7B).

On the other hand, the FH sorption model behaves as expected with Fick’s law (Sc1) per-

forming worse than Maxwell-Stefan (Sc2) in both permeate composition and permeate flux
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predictions. Vignes cross-coupling only provides minimal improvements in the accuracy

of permeate composition predictions and, in fact, generates worse permeate flux predic-

tions. This indicates that the Vignes equation does not sufficiently describe the various

intermolecular coupling of diffusive transport of molecules in a liquid mixture through a

glassy polymer. Even when the cross-diffusivities ÐV
im are deliberately fit to match the ex-

perimental compositions (Figure B.8), there is still an undesirably large discrepancy in the

flux predictions suggesting that manipulation of cross-diffusivities is insufficient to capture

the transport in these glassy polymers.

As discussed in subsubsection 3.2.2, the ÐV
im can be correlated with the degree of poly-

mer swelling. Said more plainly, the pure component diffusivity is strongly dependent on

the state of dilation of the polymer, and the polymer will exist at different states of dilation

depending on the solvent mixture it is in contact with. Our simplified free volume theory

expression (Equation 3.11) enables a first pass estimate of this complex process (estimates

of ÐV
im for a range of swollen FFVs is shown in Figure B.9 and are maintained below self-

diffusivities [98]. A clear issue associated with assuming a constant B parameter is that the

polymer’s diffusion selectivity for specific molecular pairs is maintained at various states

of dilation, whereas it is almost certain that the selectivity will be reduced at higher levels

of dilation. For this reason, individual B values may be estimated by fitting the equation to

self-diffusivities, although we have not pursued this approach in an effort to simplify the

framework such that it can be more easily generalized and applied. The B value of 0.03 was

chosen as the optimum value in a range of arbitrary values investigated (Figure B.10 and

Figure B.11). In Sc4, the free volume theory adjustment of diffusivity when applied with

an optimized B value, offers noticeable improvement in slow molecule flux predictions for

Separations 2 and 3 via SBAD-1 (Figure B.6 and Figure B.7, Sc4 vs Sc1-Sc3) but not for

Separation 1 via PIM-1 (Figure B.5, Sc4 versus Sc1-Sc3).

As discussed earlier, when considering the composition-based error, the average dif-

fusivity approach (Sc5) results in the lowest RMSPE, with small differences across the
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three sorption models. It appears that without sufficient adjustment of ÐV
im with polymer

dilation and plasticization as described in the average diffusivity concept, the compositions

of the slower molecules (decalin, 1-methylnaphthalene, 1,3,5-triisopropylbenzene and iso-

cetane) are underpredicted in Separation 2 via SBAD-1 (Figure B.6, Sc5 versus Sc1-Sc4).

The next lowest error is when both Vignes cross-coupling and free volume theory are em-

ployed (Sc4), where an RMSPE of <30% is maintained for all sorption models. In Sc5,

all molecule diffusivities are equivalent, caused by strong coupling of molecules such that

they cannot diffuse independently, resulting in no diffusion selectivity. Note that this level

of coupling is not possible Vignes cross-coupling approaches. On the other hand, in Sc4, a

constant diffusion selectivity is maintained for each pair of molecules, but absolute diffu-

sivities change with polymer sorption, caused by swelling of the polymer and an increase

in accessible volume. The differentiating transport mechanisms thus are i) guest cohort

motion across the membrane where molecules move collectively in small units versus ii)

individual molecules hopping from one open site to another, which move faster when more

sorption sites become available upon membrane dilation.

Based on unary, binary and ternary sorption experiments, if we narrow down the results

to just the FH-LM model, we observe a consistent decrease in composition-based RMSPE

from Sc2 to Sc5. One could deduce that this aligns with increasing solvent-solvent and

solvent-polymer diffusive coupling within a Maxwell-Stefan framework in the ascending

order of scenarios. The error in total permeate fluxes does not follow a similar trend and

cannot be correlated as easily but it remains low enough (<40%), such that preference is

given to the predictions of composition based RMSPE. This point is further supported by

the difficulty in precisely measuring thin film thicknesses that are on the order of hundreds

of nanometers and the large relative variabilities in thicknesses across several samples dur-

ing membrane production, that lead to low confidence in measured thicknesses and there-

fore, expected permeance (permeate flux that is normalized by the thickness of a given

sample). We may therefore conclude that both the free volume theory approach and the
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average diffusivity approach show potential in making fast predictions of permeate compo-

sitions and fluxes of multicomponent liquid mixtures via glassy spirocyclic polymers like

PIM-1 and SBAD-1.

3.2.5 Conclusions

We explored three sorption models – FH, FH-LM, and DMS – as distinct conceptual ap-

proaches to the problem of membrane-based separation of complex mixtures. When con-

sidered in combination with the unary and multicomponent sorption experiments, FH-LM

is the most robust isotherm model that could be implemented with numerical and experi-

mental ease. A variety of transport scenarios were also compared in this study. We find

that the Vignes correlation did not offer significant improvements in the predictability of

multicomponent transport and while the Vignes equation was included here as a stand-in

for cross-coupling, such types of empirical correlations that do not have a well-defined

physical significance hinder us from improving diffusional coupling correlations at this

point. On the other hand, with a reasonable estimate of individual B values used in the free

volume theory, varying degrees of improvements in predictions were obtained. The free

volume theory improves the predictions of slow molecule fluxes but introduces more pa-

rameters that need to be fit or chosen arbitrarily, which would require further experiments

or molecular dynamics simulations to evaluate fully. Critically, the average diffusivity ap-

proach based on an average guest diffusivity effectively had the best success in predicting

permeate compositions in all 3 multicomponent separations and does not require the fitting

of additional parameters. This is an important observation, as it has the potential to dra-

matically simplify deployment of this multicomponent transport framework in the case of

more complex mixtures.

When drawing conclusions from the presented data, it is important to keep a few things

in mind. First, the slow kinetics of bulky molecules such as 1-MN shown in Figure B.2

could very well mean that experimental permeate compositions and fluxes were measured
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at what appears to be a pseudo-equilibrium state in the unary permeation testing period

due to slow solvent-induced relaxations of the polymer structure. Further experiments will

be needed to confirm this and accurately calculate the diffusivity of 1-MN and other such

molecules as a function of penetrant activity and polymer free volume simultaneously.

Second, investigating the predictability of a small dataset of experiments is just a start –

an extensive database of experimental data for a variety of solvent and polymer systems is

required to validate the generalizability, accuracy, and ease of computing a multicompo-

nent transport model. Furthermore, there is a need to standardize the success of transport

models. A model with a low RMSPE for a random set of experiments (preferably >100),

could be deemed a suitable framework.

Overall, we demonstrated that complex multicomponent transport in polymers can be

quantitatively predicted with some degree of accuracy, using only pure molecule-polymer

sorption and diffusion parameters. While this is a complex problem, the average diffusivity

simplification provides a potentially simplistic approach which could pave a practical path

to multi-component diffusion modeling of complex mixtures in PIM-1 and SBAD-1. For

more fundamentally accurate predictions, the diffusional and thermodynamic cross cou-

pling of molecule pairs could be better defined with more complex approaches. Although

our aim is to eventually describe the transport of real crude feeds containing thousands of

molecules, we focused on less complex feeds here due to the extensive experimental effort

required to validate the model. Future computational efforts that can also predict pure sol-

vent sorption and diffusion that replace experimental measurements will be needed before

more complex feeds can be investigated.
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3.3 Extension of the Transport Model for Large Component Simulations

This section outlines the work done in order to enable simulations of crude oil mixture per-

meation through glassy polymers. Specifically, the work presented here was a crucial piece

of a co-authored publication titled "Data-driven Predictions of Complex Organic Mixture

Permeation in Polymer Membranes" [69]. This paper presented a framework using the

Polymer Genome (https://www.polymergenome.org/ ) such that machine learned polymer

parameters could be used to predict permeation of complex mixture feeds for polymers

that were never before synthesised based on a training set of known polymer properties. In

order to scale the simulation to make it feasible to go from 9 components to 353 component

crude oil mixtures, a serious revamping of the implemented sorption and transport models

had to be undertaken. The need for such a change was that the simulation was estimated

to take almost a year to converge with the initial implementation of the model. This es-

timation is based on taking the time for evaluating a single entry of the Jacobian matrix

of the outer solver as shown in Figure 2.3 (which for the shooting-algorithm specified in

subsection 2.5.6 was a two forward integration of DAEs that took about 4 hours each), mul-

tiplying that by the number of evaluations required to get a complete Jacobian matrix (353),

and again multiplying that by the number of average iterations required to converge a so-

lution (8). After some clever rearrangements of the underlying models using matrix-vector

algebra, the convergence time dropped to around 16 hours for the same simulation.

The major change implemented was taking the Flory-Huggins model and transforming

it from something that was written in terms of summations (which in code was represented

in terms of three nested FOR loops), to something that was compacted into a single line of

matrix-vector multiplications and additions. To see exactly how this process works, please
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first refer to (Equation 3.1) for original form. This is the main sorption model that was

used in Lee et al. [69]. In order to understand the full reduction in model complexity, the

speed up did not come just from vectorization of the model. While solely vectorization

would only benefit in interpreted programming languages such as MATLAB or Python,

compiled programming languages such as C++ would not see much of a speed-up. That

is why it is imperative to understand that while vectorization was part of the speed-up, the

Flory-Huggins fugacity model was first rewritten to allow for a more compact matrix-vector

implementation. First, (Equation 3.1) was simplified by making some clever substitutions

for the membrane phase volume fractions, and also combining summation terms to yield a

more compact equation that takes the form

ln

(
fi

f ◦
i (T, P )

)
= ln(ϕi) + 1−

n+1∑
j=1

V ◦
i

V ◦
j

ϕj +

(
i−1∑
j=1

χjiϕj
V ◦
i

V ◦
j

+
n+1∑

j=i+1

χijϕj

)

−
n∑

j=1

n+1∑
k=j+1

χjk
V ◦
i

V ◦
j

ϕjϕk. (3.14)

Here, (Equation 3.14) has less multiplications, and the double summation is simplified

greatly to not have multiple i ̸= j terms compared to (Equation 3.1). After a lengthy but

fairly straightforward set of rearrangements, (Equation 3.14) can be written compactly in

matrix-vector form as

ln

(
f

f◦

)
= ln (ϕ1:n) +Cϕ−V◦

n+1(ϕ
TQϕ), (3.15)

where the division and natural logs are meant componentwise and C ∈ Rn×(n+1), V◦ ∈

Rn+1, and Q ∈ R(n+1)×(n+1) are defined by

cij =


V ◦
i

V ◦
j
(χij − 1) if j ≤ i

χij − V ◦
i

V ◦
j

otherwise
,
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V◦
n+1 = (V ◦

1 , V
◦
2 , . . . , V

◦
n+1),

Q = UT [diag(V◦)]−1 ,

U =



0 χ12 · · · · · · χ1,n+1

0 0 χ23
...

... 0
. . . ...

0
. . . χn,n+1

0 0 · · · 0 0


.

Using (Equation 3.15), the complete vector of fugacities can be computed from ϕ with

a number of floating point operations that scales as n2, whereas evaluating (Equation 3.1)

separately for each component scales as n3. The new version (Equation 3.15) also benefits

from the speed-up of vectorization in interpreted languages such as MATLAB and Python.

Thus, (Equation 3.15) offers a significant speed-up for simulations with many components.

The change shown in (Equation 3.15) also makes it significantly easier to derive the ther-

modynamic factors
(
Γij = ϕi

∂ln(fi)
∂ϕj

= ϕi

fi

∂fi
∂ϕj

)
using standard matrix-vector calculus rules.

However, to obtain the correct derivatives, we must first express f as a function of ϕ1:n only

by eliminating the membrane volume fraction ϕm using ϕm = 1 −
∑n

i=1 ϕi. This is done

most simply by observing that ϕ = Kϕ1:n + ϵ with K ∈ R(n+1)×n and ϵ ∈ Rn+1 defined

by

K =

In×n

−1T
n

 , ϵ =

0n

1

 , (3.16)

where In×n is the n × n identity matrix, 1n is an n-dimensional vector of ones, and 0n is

an n-dimensional vector of zeros. Substituting this relation into (Equation 3.15) gives

ln

(
f

f◦

)
= ln (ϕ1:n) + p+ C̃ϕ1:n −V◦

n+1(ϕ
T
1:nQ̃ϕ1:n), (3.17)
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where

p = 1n + χm −
1

V ◦
m

V◦,

C̃ = CK−V◦ϵTQTK,

Q̃ = KTQK,

and χm = (χ1m, χ2m, . . . , χnm).

Additionally, this transition from a multi-line implementation to a single line compact

matrix-vector equation allows for storage of constant matrices in parameter structs as well

to streamline. The real difference in speed comes from differentiating this model to find the

thermodynamic factor matrices. Before the compaction of this model, the Flory-Huggins

thermodynamic matrix took the form (differentiating (Equation 3.1) with respect to ϕ1:n),

the thermodynamic factors Γij = ϕi
∂ln(aIIi )

∂ϕj
= ϕi

f̂II
i

∂f̂II
i

∂ϕj
can be evaluated as:

For i = j

(Γ)ij = ϕi

(
1

ϕi

− 1− V i

i−1∑
k=1

ϕkχki

V k

+ V i

n∑
k=1
k ̸=i

ϕkχmk

V j

+
V i

V m

−
n∑

k=i+1

χikϕk

− V i

i−1∑
k=1

ϕkχki

V k

− χim

n∑
k=1
k ̸=i

ϕk − 2ϕmχim

)
. (3.18)

For i < j

(Γ)ij = ϕi

(
−V i

V j

+ V i

i−1∑
k=1

ϕkχki

V k

+
n∑

k=i+1
k ̸=j

ϕkχik + χij

n∑
k=1
k ̸=i,j

ϕk + 2ϕjχij − V i

j−1∑
k=1
k ̸=i

ϕkχkj

V k

− V i

V j

n∑
k=j+1

ϕkχjk +
V i

V m

−
n∑

k=i+1
k ̸=j

χikϕk − V i

i−1∑
k=1

ϕkχki

V k

− χim

n∑
k=1
k ̸=i,j

ϕk + V i

n∑
k=1
k ̸=i,j

ϕkχmk

V j

+ (ϕm − ϕj)(χim + χij −
V i

V j

χjm)− 2ϕmχim

)
. (3.19)
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For i > j

(Γ)ij = ϕi

(
−V i

V j

+V i

i−1∑
k=1
k ̸=j

ϕkχki

V k

+
n∑

k=i+1

ϕkχik+χji
V i

V j

n∑
k=1
k ̸=i,j

ϕk+2ϕjχij
V i

V j

−V i

j−1∑
k=1

ϕkχkj

V k

− V i

V j

n∑
k=j+1

ϕkχjk +
V i

V m

−
n∑

k=i+1

χikϕk − V i

i−1∑
k=1
k ̸=j

ϕkχki

V k

− χim

n∑
k=1
k ̸=i,j

ϕk + V i

n∑
k=1
k ̸=i,j

ϕkχmk

V j

+ (ϕm − ϕj)(χmi + χij
V i

V j

− V i

V j

χjm)− 2ϕmχim

)
. (3.20)

Now, instead of a page of equations and an implementation that requires nested FOR

loops, (Equation 3.17) can be differentiated to yield:

Γ(ϕ1:n) = In×n + diag(ϕ1:n)

[
C̃−V◦ϕT

1:n

(
Q̃T + Q̃

)]
, (3.21)

where the required matricies are defined in (Equation 3.17). Using (Equation 3.21), the

full Γ(ϕ1:n) matrix can be evaluated in order n2 operations. Whereas (Equation 3.18),

(Equation 3.20), and (Equation 3.21) is evaluated in n3 operations. Additionally, this equa-

tion can also be found in subsection A.3.1.

Now that the vectorization of the model is complete, the results from the publication can

be shown. The first thing to show is how the transport model fit into the overall data-driven

machine learning framework. Again, the contribution in this dissertation is not the machine

learning aspect, but how the transport model was tweaked to enable permeation simulations

of complex crude oil mixtures with hundreds of components. Figure 3.7, Figure 3.8, and

Figure 3.9 outline the framework, trained diffusivities, experimental vs. predicted Permain

crude oil permeation through SBAD-1, and experimental vs. predicted Arab Light crude

permeation through DUCKY-9. Overall, the transport modeling framework predicts the

transport with reasonable accuracy.
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Figure 3.7: Polymer structures and solvent mixtures are converted to simplified molecular-
input line entry system (SMILES) strings and used as inputs for machine-learning algo-
rithms designed to relate polymer-solvent structure to solvent diffusivities (D) and sol-
ubilities (S) within polymer membranes. These parameters – in addition to the various
physicochemical properties of the solvents (e.g., molar volumes (Vi), vapor pressures (psat),
Hansen solubility parameters (δi)) at the desired operating conditions (e.g., pressure (P ),
temperature (T ), composition of the feed mixture (xI), membrane thickness (l) – are then
used as inputs into an N-component Maxwell-Stefan model that outputs a vector of fluxes
(N) and compositions (xIV ) for each component permeating through the membrane.[69].
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Figure 3.8: a, b Parity plots between experimentally obtained and ML predicted diffusion
coefficients and sorption uptakes, respectively (the methods of the model development are
described in “Methods” section of Lee et al. ). Both diffusion and sorption models are
trained using 10-fold cross-validation (CV). The 10 models from the 10 CV splits were
used to make predictions on the 90% training (blue) and the 10% test set (red). The error
bars on each point represent the standard deviations from 10 predictions. R2 and AOME in
the plots are defined as the coefficient of determination and averaged order of magnitude
error, respectively [69].
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Figure 3.9: a, c Parity plots comparing experimental and predicted permeate mole fractions
after the fractionation of Permain crude oil by SBAD-1 membrane (a) and Arab Light crude
oil by DUCKY-9 membrane (c). Blue-to-red colors are assigned to different boiling point
ranges of molecules in the crude oil mixtures. The shaded area around each point repre-
sents the standard deviation of the permeate concentration predictions for each molecule.
The deviations are from the uncertainty in the machine learning (ML) sorption model pa-
rameter predictions. The deviations in the total flux predictions are the uncertainty in the
ML diffusion model predictions. b, d Differential weight fraction relative to boiling points
of molecules in the Permian crude oil mixture before and after fractionation by SBAD-1
membrane (b) and in the Arab Light crude oil mixture before and after fractionation by
DUCKY-9 membrane (d). The curve shows the local slope of the concentration/boiling
point over a period of 6 molecules. The lighter shade displays the deviation in the pre-
dicted weight fractions of the permeate [69].
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CHAPTER 4

DEVELOPMENT OF A SOFTWARE PACKAGE FOR USE IN PROCESS

SIMULATION ENVIRONMENTS

4.1 Overview

This chapter outlines the software package, asyMemSim, that was developed over the

course of this research project in collaboration with Dr. Ryan Lively, Dr. Ronita Math-

ias, and Youngjoo Lee. The purpose of this chapter is to present a succinct and complete

description of the simulation problem this code aims to solve, how the code is structured

(input/output files, coding standards applied, modeling and simulation capabilities, code

file indexes, etc.), an exemplar tutorial simulation, custom model implementation details,

and finally the extension of this code to be used within process simulation environments. In

doing so, this dissertation will serve as a document for practicing researchers and engineers

to use this open-source software in their own applications, and possibly build other simu-

lation codes for different applications using this structure. The motivation for this software

is that such an open-source pressure-based industrial membrane modeling and simulation

package is non-existent (as described in subsection 1.3.3). Thus, this chapter will be a

worthwhile reference for years to come.

4.2 Simulation Problem Description

This code implements the exact simulation problem outlined in section 2.2. Please refer

back to that section for a complete description of the local transport problem for com-

plex mixture asymmetric membrane transport. For the specific modeling and simulation

capabilities this software can execute, see subsection 4.3.3.
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4.3 asyMemSim Code Structure

In order to properly run this code, the user needs to be familiar with the general philosophy

used to organize and construct asyMemSim. The next set of subsections will expand upon

this idea. When applicable, the direct code is presented to show the exact inner workings,

and how each piece comes together to create a single working piece of software. Addition-

ally, the general naming conventions and etiquette are presented in subsection 4.3.1.

As an overview of the code structure, the general types of code files found within are as

follows: centralized databank files, single mixture simulation initialization scripts, experi-

mental specification files, model and solver specification files, diffusion coefficient param-

eter fitting scripts, single-component permeation simulations with varied system condition

loop scripts, multiple mixture/model/membrane simulation loop scripts, ODEs solver ini-

tialization files, ODEs right-hand side (RHS) functions, DAE solver initialization files,

DAEs RHS functions, shooting algorithm numerical method scripts, shooting algorithm

RHS functions, full-discretization solver initialization functions, full-discretization RHS

functions, fugacity model matrix and model evaluations for transport modeling framework

(e.g. thermodynamic factor evaluation functions, Phase I/II phase equilibrium solvers with

respective RHS functions, and Phase II/III phase equilibrium solvers with respective RHS

functions), diffusion/fugacity model parameter correlation evaluations, numerical method

initialization functions with respective RHS functions. The complete code file index can

be found in subsection 4.3.4.

4.3.1 General Code Etiquette and Naming Conventions

Throughout my graduate career, a number of helpful code writing tools have been learned

that should be mentioned in this dissertation before going into the specific files within this

piece of software. The first piece of advice is to always include a preamble in every function

that gives details on the function name, a short description, and the required input/output
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variables. A quick example is shown below

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: evalFH_RHS(stateVar,params) %

% Description: Evaluate RHS of Flory-Huggings equation. %

% Input: stateVar - (ODE, FH) n+1 dimensional vector of volume %

% fractions in membrane phase %

% (DAE, FH-LM or DSM) 2*n+1 dimensinal vector %

% of n+1 volume fractions and n fugacities %

% of membrane phase %

% params - struct of system parameters %

% (see dataBank function for specs) %

% Output: FH_RHS - nonlinear function value of FH RHS equation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

With these preambles, the effort required to dig and debug by an end-user will be greatly

reduced since they can instantly understand the purpose of the function. Another good code

standard that has been applied throughout all files is to name variables by starting with

lower case letters and then having words begin with an uppercase letter rather than sepa-

rating them by "_". In some cases, this is necessary if there are short variable extensions

or names (e.g. "stateVar_1", "FH_RHS"). Overall this has made the code more readable,

especially when straying away from single letter variable names like "B". Sometimes, the

single letter variable names are obvious if one is familiar with the equations from the mod-

eling framework documentation such that exceptions can be made. However, most of the

time, it is not. The last piece of advice that is exemplified throughout the code is proper

commenting where it is needed. Without this, again the end-user who needs to dig and

debug will again have many hours wasted trying to understand the purpose of certain vari-

ables and sections of code. By utilizing these coding standards, the software presented in

this dissertation aims to alleviate the difficulty in reproducing, re-purposing, and reusing

asyMemSim for any possible application.

4.3.2 Input File Descriptions

Here, the details for each of the inputs files is described. Generally, there are three main

input files required to run the code. The first is the central dataBank.m file that is a repos-

itory for penetrant and membrane parameters. The second is solverModelSpec.m, which
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allows the user to specify exactly the different fugacity models, diffusion models, numer-

ical method, and solver specifications. The last input file is expSpec.m, which allows for

exact specification of the experimental conditions such as the mixture components, mix-

ture compositions, membrane, Phase I pressure, Phase III pressure, system temperature,

etc. Please refer to the following sub-subsections for more detail.

Parameter Database Function – dataBank.m

This function is the database for all membrane and component parameters. There is func-

tionality for custom polymers to be added by copy and pasting the "if...then" statement that

checks for a certain polymer name as a template. See subsection 4.5.1 for more details on

adding additional membrane material and mixture parameters.

Please see the code-snippet below for a good visual aid

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: dataBank(sysInfo) %

% Description: Build parameter matricies based on system specifications. %

% Input: sysInfoExt - external struct defining simulation specs %

% (memID, mixID, yf, n, lmem, Pu, Pd, T, R %

% memPhaseModel, diffModel, swlDiffModel) %

% Output: params - struct of system parameters %

% (compID, n, Vs, HanSolParam, psat, chis [FH %

% or FH-LM], diffs, Ch & bs [FH-LM or DSM], %

% ks [DSM], unitActPhis, Bffv, and all %

% fields listed in sysInfo struct) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [params] = dataBank(sysInfo)

%-----------------------------------------------------------------------------------------------------------------%

%full parameter/property sets

if contains(sysInfo.memID,'SBAD1')

% Lively/Ronita's 9-comp data TOL/MCH/1MN/DCN/NOC/IOC/TBB/TPB/ICE/SBAD-1

params.lmem = 0.3; % thickness of active membrane layer um

params.compID = struct('TOL', 1, 'MCH', 2, 'MNP', 3, 'DEC', 4, 'NOC', 5, 'IOC', 6, 'TBB', 7, 'TPB', 8, 'ICT', 9)

;

params.n = 9;

params.Vs = [106.521;128.123;139.823;156.962;163.42;165.552;155.529;240.069;293.267;62326]; %cm3/mol

params.HanSolParam = [18,1.4,2;16,0,1;20.6,0.8,4.7;18,0,0;15.5,0,0;14.1,0,0;17.4,0.1,1.1;18,0,0.6;16.3,0,0]; %[

delD,delP,delH;...]

params.psat = [28.998;46.596;0.059;0.975;14.805;49.087;2.115;0.0352;0.0458];%torr

if contains(sysInfo.memPhaseModel,'F-H')

params.chis_im = [0.871;1.672;0.705;2.783;1.163;3.049;1.648;2.5;3.130];

if sysInfo.lowDiffErrorBar == 0

params.diffs_im = [12.7;2.8617;2.8617;2.8617;2.8617;2.8617;2.8617;2.8617;2.8617]; %um2/s FH Exp Based

tweaked for single comp MS diffs
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elseif sysInfo.lowDiffErrorBar == 1

params.diffs_im = [14.157;2.870;0.042;1.296;4.458;4.2057;0.975;0.069;0.536]; %Mixed Exp (LOW ERROR)

Based FH Tweaked to match single comp FH um2/s

end

if sysInfo.memPhaseModel_FicksOG == 1

if sysInfo.lowDiffErrorBar == 0

params.diffs_im = [3.622;3.329;0.009;1.395;2.369;6.091;0.833;0.055;0.520]; %um2/s FICKS FH-BC

tweaked for single comp 20bar

elseif sysInfo.lowDiffErrorBar == 1

params.diffs_im = [3.316;1.709;0.0076;1.085;1.838;3.6712;0.580;0.055;0.473]; %um2/s FICKS (LOW ERROR

) FH-BC tweaked for single comp 20 bar

end

end

elseif contains(sysInfo.memPhaseModel,'DSM')

...

Please note that the above code snippet is not the full function but just the first complete

fugacity model and membrane parameter definition block. Additionally, the dataBank.m

function is separated by sorption model since for any given membrane, there may be dif-

ferent fugacity model parameters. Then with each fugcity model, there may be different

Maxwell-Stefan (MS) penetrant-membrane diffusivites to be fit. The order of magnitudes

should be the same, but the values will vary.

Other notes are that there are also separate sections for "lowError" MS penetrant-

membrane diffusivities, and Fick’s law diffusivities that assume a constant thermodynamic

contribution (Γii constant and Γij = 0) that will need to be updated after running each

respective diffusivity fitting script has been run (if desired).

Units are given in the nomenclature section and also commented out to each side. If

not units are given, then it is assumed that the variable is unitless. The units were chosen

to give order of magnitude of equations to be O(1). The main list of parameters in this

function will be listed below to help understanding:

• params.lmem – thickness of active layer (Phsae II), µm

• params.compID – struct defining component name and order of parameters to be

defined in subsequent parameter set definitions

• params.n – total number of components for which parameters are defined below
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(equal to number of components listed in "params.compID")

• params.Vs – penetrant pure component molar volumes, cm3mol−1, and Vm is the

membrane molar volume that is assumed to be equal to a large estimate V̄m =

62, 326 cm3mol−1 based on polymer weight average molecular weight and bulk den-

sity

• params.HanSolParam – Hansen solubility parameters (dispersion, intermolecular forces,

and hydrogen bonding), note = [δD1, δP1, δH1; ...; δDn, δPn, δHn] where n is equal to

params.n, MPa0.5

• params.psat – permeant vapor pressures evaluated at system T , torr

• params.chis – **Flory-Huggins or combined Flory-Huggins-Langmuir sorption model**

χim where m refers to the membrane component and χij = 1 are placeholders until

relevant Hansen solubility parameter relationships are applied

• params.bs – **Dual-mode or Flory-Huggins-Langmuir sorption** Langmuir affinity

constants, torr−1

• params.Ch – **Dual-mode or Flory-Huggins-Langmuir sorption** volume based

Langmuir free volume capacities, mol (cm3 polymer)−1

• params.ks – **Dual-mode sorption** Henry’s type sorption parameter,

(cm3 solvent)(cm3 polymer)−1torr−1

• params.diffs Maxwell-Stefan penetrant-membrane Ðim and Ðij = 1 as placeholder

until cross-diffusivity relationship is applied or user-specified cross-diffsivity Ðij are

given, µm2s−1 ; also note there are 4 sets of diffusivities for one given soprtion model

(normal MS, lowFluxError MS, normal Fick’s law, and lowFluxError Fick’s law) and

if doing error calculations
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With all these parameter pieces in place, one can move on to the model and numerical

method specifications.

Numerical Method and Model Specifications — solverModelSpec.m

This paragraph deals with the more technical specifications of how to solve the local flux

complex mixture modeling framework presented in chapter 2. Below is a code-snippet

example of the input file.

function [sysInfo] = solverModelSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%sorption/diffusion model and thermodynamic assumpstions spec

%sorption membrane phase model

sysInfo.memPhaseModel = "F-H"; %other options: "FH-LM", "F-H", and "DSM"

%specify thermodynamic assumptions

sysInfo.noThermoCoupling = 0;

sysInfo.memPhaseModel_FicksOG = 0;

%specify diffusional relationships

sysInfo.diffModel = "Vignes";

sysInfo.swlDiffModel = "none";

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%numerical method sepcs

sysInfo.numMethod = "NormShootAlg"; %classical shooting algorithm (SA) [Recommended]

% sysInfo.numMethod = "FullDis";

% sysInfo.numNodes = 1;

% sysInfo.numMethod = "bvp4cTEST";

%solver specs

sysInfo.solverSpec = "trust-region-dogleg"; %default, use for FUD

sysInfo.iterDetail = 1; %0 = all main solver output will be suppressed

%initial guess specs

sysInfo.initGuessApprox = 0; %0 = use feed mol fraction vector and small total flux value (use if Forward Euler IVP

approx fails)

sysInfo.nodalGuessApprox = 0; %only applicable to FUD methods N>1

sysInfo.customInitGuessApprox = []; %set to match your experimental compostion number plus total flux as [n+1 by 1]

vector for custom initial guess

%sys of eqns spec

sysInfo.currentStateLit_eqnSetup = 0; %default == 0 (no difference to genreal simulations)

sysInfo.noGammaFugacityODEs = 0; % ONLY USE FOR FULL MS and SA or FUD method (FICK == 0 and noThermo == 0)! option

keep MS system interms of fugacity gradients and do not make chain rule trick to get gamma matrix

%-----------------------------------------------------------------------------------------------------------------%

The following choices are for "sorption membrane phase model" where

sysInfo.memPhaseModel can equal ("F-H", "DSM", "FH-LM") which stand for classi-

cal Flory-Huggins, Dual-mode sorption, or our novel combined Flory-Huggins-Langmuir.

Model derivations can be found in subsubsection 3.2.2. Note that, for some scripts a vector
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sysInfo.modSpec will be specified instead to test different sorption models at once. Please

see the diffusivity fitting script and single component prediction script EXAMPLE inputs

for direct use.

The thermodynamic assumptions are a simple logic 1 == yes or 0 == no. Then for

cross-diffusion models, sysInfo.diffModel can equal ("NoCoupling", "Vignes", "Darken",

or "Fudge") where the first are self explanatory, and the last option is used if user specified

cross-diffusivites are used.

Then, there are the specifications of the membrane swelling diffusivity model where

sysInfo.swlDiffModel can equal ("none", "FFV", "Avg-Diff") where "none" uses constant

diffusivities, "FFV" uses the fractional free volume novel diffusion model presented in

subsubsection 3.2.2. Then "Avg-Diff" utilizes the novel sorption-vection average cohort

style diffuson presented in subsubsection 3.2.2.

Next, one can specify which method they would like to use to simulate the local flux

transport where sysInfo.numMethod can equal ("NormShootAlg", "FullDis", and "Mult-

ShootAlg"). See chapter 2 for extended details. Regardless, the first is the single shooting

algorithm, second is the full discritization style solve, and the last is a multiple shooting

numerical method (which is a future direction of the code for advanced users, and not to be

used by the end-user).

**Note if sysInfo.numMethod equals "FullDis" then the additional variable

sysInfo.numNodes must be provided with good initial value of "5".

**Note if sysInfo.numMethod equals "MultShootAlg" then the additional variable

sysInfo.numShootPoints must be provided with good initial value of "5". Also sys-

Info.casADi is a logical that must be provided and only used for FH-LM sorption model,

with Fick’s law and no thermodynamic coupling options disabled ( ==0 ) since casADi mul-

tiple shooting capability is still in development for the other models (it really only needs to

be used for the difficult system to solve using FH-LM and full Maxwell-Stefan).

The recommended method is our shooting algorithm, but for a quick estimate that is
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probably within less than 20% error in most cases (see section 2.5), full discritization is

recommended. For strong diffusional coupling (Ðij << 1), the multiple shooting point

algorithm is recommended with number of shooting points starting at 5, and increasing if

needed.

The next part of the numerical method specifications is the outer solver algorithm speci-

fications sysInfo.solverSpec, iterate detail option, and if different approximation of the ini-

tial guess is required to make the problem converge with less iterations–or vice-versa sys-

Info.initGuessApprox or sysInfo.nodalGuessApprox. If simulating a large component

system that is fairly sensitive to the initial guess, the option sysInfo.customInitGuessApprox

allows for the input of custom n+1 unknowns (n component phase III molar compositions

and 1 total volumetric flux variable). If the value is equal to "[ ]", then the custom initial

guess option will not be used. Alternatively, if "[xIII
1 ; . . . ;xIII

n ;NV
tot] is set equal to the cus-

tom initial guess variable, other outer solver initialization strategies will be circumvented

and that custom initial guess will be used. The other solver options are those found in the

fsolve solver options page (i.e. sysInfo.iterDetail). The specified algorithm has been found

to be generally applicable.

**Note for the multiple mixture/model prediction loop, only the numerical method

specifications are needed.

Experimental Specifications – expSpec.m

This is the last required input file, and is the most pertinent to the experiment or industrial

process stream the end-user is trying to simulate. The function takes the form

function [sysInfo] = expSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%specify single simulation

%mixture components, compositions, system parameters

%YJL MA/DU9/DU10

% sysInfo.memID = "Matrimidd"; % polymer spec

%9 COMP M1

% sysInfo.mixID = ["IOC","NOC","MCH","TOL","DEC","TBB","ICT","TPB","MNP"]; % mixture spec

% sysInfo.yf = [0.117;0.188;0.197;0.327;0.089;0.0385;0.0109;0.013;0.016]; % composition spec (must sum to 1)

% PuM = 40; %bar

%SBAD1 Data
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sysInfo.memID = "SBAD1"; % polymer spec

% %9 COMP M1

sysInfo.mixID = ["TOL","MCH","MNP","DEC","NOC","IOC","TBB","TPB","ICT"]; % mixture spec

sysInfo.yf = [0.171;0.281;0.0199;0.107;0.221;0.15;0.0217;0.0158;0.013]; % composition spec (must sum to 1)

PuM = 40; %bar

%3 COMP M1

% sysInfo.mixID = ["TOL","IOC","ICT"]; % mixture spec

% sysInfo.yf = [0.282;0.385;0.333]; % composition spec (must sum to 1)

% PuM = 30; %bar

% sysInfo.memID = "PIM1"; % polymer spec

% % %5 COMP M1

% sysInfo.mixID = ["TOL","HEP","PXY","OXY","ICT"]; % mixture spec

% sysInfo.yf = [0.257;0.216;0.205;0.264;0.058]; % composition spec (must sum to 1)

% PuM = 30; %bar

% %3 COMP M2

% sysInfo.mixID = ["TOL","HEP","PXY"]; % mixture spec

% sysInfo.yf = [0.345;0.362;0.293]; % composition spec (must sum to 1)

% PuM = 1; %bar

%2 COMP M2

% sysInfo.mixID = ["HEP","OXY"]; % mixture spec

% sysInfo.yf = [0.01;0.99]; % composition spec (must sum to 1)

% PuM = 1; %bar

% sysInfo.memID = "MATRIMID";

% sysInfo.mixID = ["TOL"];

% PuM = 1;

% sysInfo.yf = 1;

%system specs

sysInfo.n = length(sysInfo.yf); % number of permeants

sysInfo.Pu = PuM*0.9869; % feed side pressure [bar]*0.9832 = [atm]

sysInfo.Pd = 1; % support side pressure (atm)

sysInfo.pervapMode = 0; % %BETA(UNSTABLE) pervap capability -- yes if == 1 (assume downstream pressure = 0 bar)

sysInfo.T = 295; % system temperature (K)

sysInfo.R = 82.05; % gas constant (atm cm^3/ mol K)

sysInfo.diffFit = 0; %see code below for diffusivity fitting

sysInfo.crossDiffFudge = 0; %if = 0 then no specified cross-diffusivities D_ij will be used

if sysInfo.crossDiffFudge == 1

sysInfo.crossDiffSpecs = [1,2,1,3]; % e.g. [i,j] = D_ij^MS

sysInfo.crossDiffVals = [0.1,0.5]; %um2/s

end

sysInfo.lowDiffErrorBar = 0; % if = 1 then diffusivities fit to low error sing comp will be used

%-----------------------------------------------------------------------------------------------------------------%

end

A good rule-of-thumb when using asyMemSim is that the lower "system specs" section

is usually constant and self explanatory across the different main scripts, whereas the top

section will change based on the different main script used. This will be explained further

in the next subsection. The above code snippet also has various mixtures and membrane

mixture simulations that can be easily commented in and out. Another good feature to

note is that even though the dataBank.m file can have as many component parameters
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defined as needed, the end-user has the ability to pick any custom mixture such that the

code will automatically build the required and correctly sized parameter vectors to simulate

the complex mixture membrane permeation.

4.3.3 Modeling and Simulation Capabilities

This subsection deals with the main software scripts of asyMemSim and what it is gener-

ally capable of in terms of modeling and simulation. As an overview, the current software

can either fit diffusivities based on a set of experimental single component permeation flux

data across either one or multiple fugacity models at a time, simulate a single mixture

permeation, iterate over a loop of single component permeations with different experimen-

tal conditions and/or models, and run multiple mixture simulations for different numerical

methods/fugacity models/diffusion models/initial guess strategies. The latter script was

used extensively for the numerical comparisons in section 2.5, the extended robustness

tests in subsection 2.5.7, and the experimental validations for different modeling scenarios

presented in subsubsection 3.2.2.

Diffusivity Fitting

This script deals with input of single component permeation flux data (including the low

flux error), to fit model diffusivities for each polymer and sorption model specified. See

expSpec.m input file below

function [sysInfo] = expSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%specify exp

%mixture components, compositions, system parameters

%SBAD1 Data

sysInfo.memID = "SBAD1"; % polymer spec

sysInfo.mixID_OG = ["TOL","MCH","MNP","DEC","NOC","IOC","TBB","TPB","ICT"]; % mixture spec **NUMBER of entries

should equal params.compID number listed in dataBank.m

sysInfo.singFluxVec = [8.76;0.74;0.054;0.063;2.23;0.302;0.23;0.0054;0.0266]; %LMH 20 bar flux (30 IOCT)

sysInfo.singFluxVec_Error = [0.74;0.36;0.011;0.014;0.5;0.120;0.07;0;0.0024]; %LMH 20 bar flux error (30 IOCT)

% sysInfo.memID = "PIM1"; % polymer spec

% sysInfo.mixID_OG = ["TOL","HEP","PXY","OXY","ICT"];

% sysInfo.singFluxVec = [10.04;27.7;7.88;4.74;0.93]; %LMH %20baru flux

% sysInfo.singFluxVec_Error = [2.58;5.20;1.98;0.87;0.424]; %LMH %20bar flux error
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PuM = 20; %feed-side pressure (bar)

% sysInfo.memID = "MATRIMID"; % polymer spec

% sysInfo.mixID_OG = ["TOL","MES","TPB"];

% sysInfo.singFluxVec = [0.798;0.0666;0.00734]; %LMH %20baru flux

% sysInfo.singFluxVec_Error = [0;0;0]; %LMH %20bar flux error

% PuM = 20; %feed-side pressure (bar)

%system specs

sysInfo.n = 1; % number of permeants

sysInfo.Pu = PuM*0.9869; % feed side pressure [bar]*0.9832 = [atm]

sysInfo.Pd = 1; % support side pressure (atm)

sysInfo.pervapMode = 0; % %BETA(UNSTABLE) pervap capability -- yes if == 1 (assume downstream pressure = 0 bar)

sysInfo.T = 295; % system temperature (K)

sysInfo.R = 82.05; % gas constant (atm cm^3/ mol K)

sysInfo.diffFit = 0; %see code below for diffusivity fitting

sysInfo.crossDiffFudge = 0; %if = 0 then no specified cross-diffusivities D_ij will be used

if sysInfo.crossDiffFudge == 1

sysInfo.crossDiffSpecs = [1,2,1,3]; % e.g. [i,j] = D_ij^MS

sysInfo.crossDiffVals = [0.1,0.5]; %um2/s

end

sysInfo.lowDiffErrorBar = 0; % if = 1 then diffusivities fit to low error sing comp will be used

%-----------------------------------------------------------------------------------------------------------------%

end

The vectors "singFluxVec" and "singFluxVec_error" are to be the exact size and component

order and the defined "sysInfo.mixID_OG" is set to. The only other input spec for this script

that is slightly tweaked is the solverModelSpec.m as shown below

function [sysInfo] = solverModelSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%sorption/diffusion model and thermodynamic assumpstions spec

%sorption membrane phase model

sysInfo.modSpec = [1 3]; %specify which models to fit diffusivities for -- FH - 1 ; DSM - 2; FH-LM - 3

%specify thermodynamic assumptions

sysInfo.noThermoCoupling = 0;

sysInfo.memPhaseModel_FicksOG = 1; %==1 if you want to fit Fick's diffusivities

%specify diffusional relationships **set for parameter fitting**

sysInfo.diffModel = "NoCoupling";

sysInfo.swlDiffModel = "none";

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%numerical method sepcs **best specs for fitting code**

sysInfo.numMethod = "FullDis"; %classical shooting algorithm (SA) [Recommended]

sysInfo.numNodes = 1;

%solver specs

sysInfo.solverSpec = "trust-region-dogleg"; %default, use for FUD

sysInfo.iterDetail = 0; %0 = all main solver output will be suppressed

%initial guess specs

sysInfo.initGuessApprox = 0; %0 = use feed mol fraction vector and small total flux value (use if IVP approx fails)

sysInfo.nodalGuessApprox = 0;

sysInfo.customInitGuessApprox = 0; %set to match your experimental compostion number plus total flux as [n+1 by 1]

vector for custom initial guess
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%sys of eqns spec

sysInfo.currentStateLit_eqnSetup = 0; %default == 0 (no difference to genreal simulations)

sysInfo.noGammaFugacityODEs = 0; % ONLY USE FOR FULL MS (FICK == 0 and noThermo == 0)! option keep MS system interms

of fugacity gradients and do not make chain rule trick to get gamma matrix

%-----------------------------------------------------------------------------------------------------------------%

Now the main diffusivity script can be shown and ran as

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% script: diffFit_asyMemLocal.m %

% Description: Asymmetric membrane local flux model/method solver for: %

% -single component diffsivity fitting from single exp %

% (See tutorial document for specific info regarding use) %

% %

% Copyright 2021 Georgia Tech Research Corporation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------------------------------------------------%

%add /SOURCE/ folder and /casADi-v3.5.5/ to MATLAB session search path

soFolder = fullfile(pwd,'..','..','SOURCE');

mainFolder = fullfile(pwd,'..','..');

addpath(fullfile(soFolder,'casadi-v3.5.5'));

addpath(genpath(soFolder));

addpath(genpath(mainFolder));

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%specify simulation input file names and load data

sysInfoEXP = expSpec_EXAMPLE(); %change function name to match input file name

sysInfoSMS = solverModelSpec_EXAMPLE(); %change function name to match input file name

sysInfo = cell2struct([struct2cell(sysInfoEXP);struct2cell(sysInfoSMS)],[fieldnames(sysInfoEXP);fieldnames(

sysInfoSMS)]);

sysInfo.dataBankName = "dataBank_EXAMPLE";

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%diffusivity fit from sing comp permeation

singFluxVec = sysInfo.singFluxVec; %LMH 20 bar flux (30 IOCT)

singFluxVec_Error = sysInfo.singFluxVec_Error; %LMH 20 bar flux error (30 IOCT)

singFluxVec_LOW = singFluxVec-singFluxVec_Error; %LMH

modSpec = sysInfo.modSpec;

%run fitting function

[allModSingCompDiff,allModSingCompDiffLOW] = ...

asyMemDiffFitSolve(sysInfo,singFluxVec,singFluxVec_Error,modSpec);

%-----------------------------------------------------------------------------------------------------------------%

With those scripts ran, and using the output vectors, one can update the dataBank.m func-

tion for each normal and low diffusivity for each polymer fit. Then to fit Fick’s law diffu-

sivities set "sysInfo.memPhaseModel_FicksOG = 1" as seen in the first line of the above

figure and rerun the script/update of "dataBank.m".

111



Single Mixture Simulation

This script is used when one wants to look at a single mixture local flux membrane perme-

ation simulation. The main script takes the form
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% script: singMixSim_asyMemLocal.m %

% Description: Asymmetric membrane local flux model/method solver for: %

% -single mixture permeation simulation %

% (See tutorial document for specific info regarding use) %

% %

% Copyright 2023 Georgia Tech Research Corporation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------------------------------------------------%

%add /SOURCE/ folder and /casADi-v3.5.5/ to MATLAB session search path

soFolder = fullfile(pwd,'..','SOURCE');

mainFolder = fullfile(pwd,'..');

addpath(fullfile(soFolder,'casadi-v3.5.5'));

addpath(genpath(soFolder));

addpath(genpath(mainFolder));

addpath(fullfile(pwd,'DATA_353_NEW'));

addpath(fullfile(pwd,'DATA_bio_3'));

addpath(fullfile(pwd,'Aug_2023_Vignes_Sim_Data'));

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%specify simulation input file names and load data

sysInfoEXP = expSpec_EXAMPLE_VIG(); %change function name to match input file name

sysInfoSMS = solverModelSpec_EXAMPLE_VIG(); %change function name to match input file name

sysInfo = cell2struct([struct2cell(sysInfoEXP);struct2cell(sysInfoSMS)],[fieldnames(sysInfoEXP);fieldnames(

sysInfoSMS)]);

sysInfo.dataBankName = "dataBank_EXAMPLE_VIG";

%-----------------------------------------------------------------------------------------------------------------%

%run single simulation

[localCompFlux,partialFlux,totVolFlux,exitFlag,output] = asyMemLocalSolve(sysInfo)

%-----------------------------------------------------------------------------------------------------------------%

Again, the expSpec.m takes the form

function [sysInfo] = expSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%specify single simulation

%mixture components, compositions, system parameters

%SBAD1 Data

sysInfo.memID = "SBAD1"; % polymer spec

% %9 COMP M1

sysInfo.mixID = ["TOL","MCH","MNP","DEC","NOC","IOC","TBB","TPB","ICT"]; % mixture spec

sysInfo.yf = [0.171;0.281;0.0199;0.107;0.221;0.15;0.0217;0.0158;0.013]; % composition spec (must sum to 1)

PuM = 40; %bar

%3 COMP M1

% sysInfo.mixID = ["TOL","IOC","ICT"]; % mixture spec
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% sysInfo.yf = [0.282;0.385;0.333]; % composition spec (must sum to 1)

% PuM = 30; %bar

%system specs

sysInfo.n = length(sysInfo.yf); % number of permeants

sysInfo.Pu = PuM*0.9869; % feed side pressure [bar]*0.9832 = [atm]

sysInfo.Pd = 1; % support side pressure (atm)

sysInfo.pervapMode = 0; % %BETA(UNSTABLE) pervap capability -- yes if == 1 (assume downstream pressure = 0 bar)

sysInfo.T = 295; % system temperature (K)

sysInfo.R = 82.05; % gas constant (atm cm^3/ mol K)

sysInfo.diffFit = 0; %see code below for diffusivity fitting

sysInfo.crossDiffFudge = 0; %if = 0 then no specified cross-diffusivities D_ij will be used

if sysInfo.crossDiffFudge == 1

sysInfo.crossDiffSpecs = [1,2,1,3]; % e.g. [i,j] = D_ij^MS

sysInfo.crossDiffVals = [0.1,0.5]; %um2/s

end

sysInfo.lowDiffErrorBar = 0; % if = 1 then diffusivities fit to low error sing comp will be used

%-----------------------------------------------------------------------------------------------------------------%

end

The solverModelSpec.m file is exactly as described in subsubsection 4.3.2.

Multiple Mixture Simulations

This script has two forms. The first is based on cycling through many different single com-

ponent permeation at various experimental conditions and/or fugacity models to generate

figures similar to Figure 3.4. This allows for assessment of prediction capabilities of single

component permeation based on diffusivities fit at a single transmembrane pressure. The

expSpec.m function takes the form

function [sysInfo] = expSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%specify experiment

%mixture components, compositions, system parameters

%SBAD1 Data

% sysInfo.memID = "SBAD1"; % polymer spec

% sysInfo.mixID_OG = ["TOL","MCH","MNP","DEC","NOC","IOC","TBB","TPB","ICT"]; % mixture spec **NUMBER of entries

should equal params.compID number listed in dataBank.m

% sysInfo.memID = "PIM1"; % polymer spec

% sysInfo.mixID_OG = ["TOL","HEP","PXY","OXY","ICT"];

sysInfo.memID = "MATRIMID";

sysInfo.mixID_OG = ["TOL","MES","TPB"];

sysInfo.pressureVec = [10,20,30,40,50,60,70,80,90,100]; %bar -- specify pressures to loop over

sysInfo.yf = 1;

%system specs

sysInfo.n = 1; % number of permeants

sysInfo.Pd = 1; % support side pressure (atm)

sysInfo.pervapMode = 0; % %BETA(UNSTABLE) pervap capability -- yes if == 1 (assume downstream pressure = 0 bar)
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sysInfo.T = 295; % system temperature (K)

sysInfo.R = 82.05; % gas constant (atm cm^3/ mol K)

sysInfo.diffFit = 0; %see code below for diffusivity fitting

sysInfo.crossDiffFudge = 0; %if = 0 then no specified cross-diffusivities D_ij will be used

if sysInfo.crossDiffFudge == 1

sysInfo.crossDiffSpecs = [1,2,1,3]; % e.g. [i,j] = D_ij^MS

sysInfo.crossDiffVals = [0.1,0.5]; %um2/s

end

sysInfo.lowDiffErrorBar = 0; % if = 1 then diffusivities fit to low error sing comp will be used

%-----------------------------------------------------------------------------------------------------------------%

end

And the solverModelSpec.m looks like

function [sysInfo] = solverModelSpec_EXAMPLE()

%-----------------------------------------------------------------------------------------------------------------%

%sorption/diffusion model and thermodynamic assumpstions spec

%sorption membrane phase model

sysInfo.modSpec = [1]; %specify which models to fit diffusivities for -- FH - 1 ; DSM - 2; FH-LM - 3

%specify thermodynamic assumptions

sysInfo.noThermoCoupling = 0; %==1 if want to predict using no thermodynamci coupling

sysInfo.memPhaseModel_FicksOG = 0; %==1 if you want to predict using Fick's Law

%specify diffusional relationships **set for single comp loop**

sysInfo.diffModel = "NoCoupling";

sysInfo.swlDiffModel = "none";

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%numerical method sepcs **best specs for fitting code**

sysInfo.numMethod = "NormShootAlg"; %classical shooting algorithm (SA) [Recommended]

%solver specs

sysInfo.solverSpec = "trust-region-dogleg"; %default, use for FUD

sysInfo.iterDetail = 0; %0 = all main solver output will be suppressed

%initial guess specs

sysInfo.initGuessApprox = 0; %0 = use feed mol fraction vector and small total flux value (use if IVP approx fails)

sysInfo.nodalGuessApprox = 0;

sysInfo.customInitGuessApprox = 0; %set to match your experimental compostion number plus total flux as [n+1 by 1]

vector for custom initial guess

%sys of eqns spec

sysInfo.currentStateLit_eqnSetup = 0; %default == 0 (not applicable to genreal simulations)

sysInfo.noGammaFugacityODEs = 0; % ONLY USE FOR FULL MS (FICK == 0 and noThermo == 0)! option keep MS system interms

of fugacity gradients and do not make chain rule trick to get gamma matrix

%-----------------------------------------------------------------------------------------------------------------%

Finally, the single component permeation prediction loop script can be seen below

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% script: singCompLoop_asyMemLocal.m %

% Description: Asymmetric membrane local flux model/method solver for: %

% -single component permeation predictions loop %

% (See tutorial document for specific info regarding use) %

% %

% Copyright 2021 Georgia Tech Research Corporation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%-----------------------------------------------------------------------------------------------------------------%

%add /SOURCE/ folder and /casADi-v3.5.5/ to MATLAB session search path

soFolder = fullfile(pwd,'..','..','SOURCE');

mainFolder = fullfile(pwd,'..','..');

addpath(fullfile(soFolder,'casadi-v3.5.5'));

addpath(genpath(soFolder));

addpath(genpath(mainFolder));

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%specify simulation input file names and load data

sysInfoEXP = expSpec_EXAMPLE(); %change function name to match input file name

sysInfoSMS = solverModelSpec_EXAMPLE(); %change function name to match input file name

sysInfo = cell2struct([struct2cell(sysInfoEXP);struct2cell(sysInfoSMS)],[fieldnames(sysInfoEXP);fieldnames(

sysInfoSMS)]);

sysInfo.dataBankName = "dataBank_EXAMPLE";

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%pure comp predictions loop

pressureVec = sysInfo.pressureVec; %bar

modSpec = sysInfo.modSpec;

[allMPSCF,failedRuns] = asyMemSingCompEval(sysInfo,pressureVec,modSpec); %MPSCF = model, pressure, single component

fluxes

%-----------------------------------------------------------------------------------------------------------------%

Please refer to the variable comments and structure to help with understanding. The outputs

are matrices detailing predicted fluxes for each column to be at the given pressure defined

from the sysInfo.pressureVec, each component defined from the sysInfo.mixID_OG, and

sysInfo.memID string vector. Then the given matrix has n component fluxes for each

sorption model. So if three sorption models are specified then the output matrices will

contain 3n rows. Additionally, within the code folder, there is an example experimental

data and simulated data file titled "Example_Data.xlsx" for provided example input files to

see how the output matrices look like if the data is separated out.

The second prediction loop script is the most involved, and mimics the last loop pre-

sented. However, instead of varying the single component pressures, each defined mixture,

sorption model, diffusion models, and thermodynamic assumptions are looped through to

give a comprehensive set of predictive modeling data. Please refer to the examples within

the asyMemSim code package for exact details. The code is very similar to the previous

sections, except there are many embedded FOR loops to iterate over different defined mix-

tures, fugacity models, numerical methods, diffusion models, etc. There are many included
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example files that were used in the data generation for Mathais et al., and Roos et al., and

Weber et al. [14, 17, 40]

Since the output is a vary large matrix, organized simulated data is provided as a tem-

plate to figure out how to trace the for loops to what the data is actually representing. See

file "Example_Data_Error_Analysis.xlxs" and workbook titled "SIM DATA". The main

script that this data was generated from was mixLoop_asyMemLocal_Lively_Ronita_Pub.m.

4.3.4 Complete Code File Index

Throughout the software package, a number of functions are used for various purposes. To

be exact, there 3 main input file types as described in subsection 4.3.2, four main scripts as

described in section subsection 4.3.3, and 63 helper functions that are mostly all essential

for the entire piece of software to run properly. Certainly, for one model and one numerical

method, less helper functions are needed. The following list provides the name and brief

definition of what the function does for the interested user. Note that, some of the functions

may not be used unless for advanced options that should only be for code expansion or

exploration.

• asyMemDiffFit_RHS: RHS function for diffusivity fitting function

• asyMemDiffFitSolve: solver function for diffusivity script described in subsubsec-

tion 4.3.3

• asyMemGlobalRHS: (UNUSED) RHS function for old code that solved local flux

problem within a idealized cocurrent flat-plate global module where the results were

presented at AIChE 2020 Annual Meeting

• asyMemGlobalSolve: (UNUSED) solver function for problem outlined in previous

function description
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• asyMemLocal_bvp4c_BC_DAE: (UNUSED) boundary condition function for at-

tempting to solve a ODEs with a built-in MATLAB boundary value problem solver

that can only handle DAEss (it did not work)

• asyMemLocal_bvp4c_BC_ODE: (UNUSED): boundary condition function for ODEs

BVP solver to test functionality compared to numerical methods presented in chap-

ter 2

• asyMemLocal_IVP: function that evaluates the IVP for the ODEs/DAEs implemen-

tations outlined in section 2.2

• asyMemLocal_IVP_JAC_FH: (UNUSED) function for evaluating the Jacobian of

the Flory-Huggins (FH) IVP that was for testing the speed-up when supplying the

Jacobian to the integrator (never fully had time to test but initial tests showed not

much of a speed-up)

• asyMemLocal_IVP_JAC_FHLM: (UNUSED) function for evaluating the Jacobian

of the FH-LM IVP that was not fully tested or implemented

• asyMemLocal_IVP_pervap: (EXPERIMENTAL) function for solving the local trans-

port when assuming pervaporation happening (Phase III pressure goes approaches 0

so ϕL → 0 since a vacuum is being pulled on the downstream membrane side)

• asyMemLocalALG_RHS_casADi: (UNUSED) function for solving system with casADi

(was only tested with FH-LM when trying to solve local flux problem using multiple

shooting point numerical method)

• asyMemLocalFoEu_QUICK: implementation of single step forward Euler method

for genreating informed initial guesses as described in subsubsection 2.4.3

• asyMemLocalFoEu_QUICK_RHS: RHS for intialization strategy described in sub-

subsection 2.4.3
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• asyMemLocalFUD: implementation of full FD method to solve the local flux prob-

lem outlined in chapter 2

• asyMemLocalFUD_RHS: RHS function for the above function description

• asyMemLocalFUD_RHS_pervap: (EXPERIMENTAL) function for solving the lo-

cal transport when assuming pervaporation happening (Phase III pressure goes ap-

proaches 0 so ϕL → 0 since a vacuum is being pulled on the downstream membrane

side) using the FUD numerical method

• asyMemLocalSA: implementation of shooting algorithm (SA) method to solve the

local flux problem outlined in chapter 2

• asyMemLocalSA_IVP_TimeStep: function to manually integrate the IVP for the

local flux problem

• asyMemLocalSA_IVP_TimeStep_RHS: RHS function to manually integrate the IVP

for the local flux problem

• asyMemLocalSA_RHS: RHS function to sole the implementation of the SA to solve

the local flux problem

• asyMemLocalSA_RHS_OG_eqn: (OUTDATED) RHS function to solve the imple-

mentation of the SA to solve the local flux problem

• asyMemLocalSA_RHS_pervap: RHS function for solving the local transport when

assuming pervaporation happening (Phase III pressure goes approaches 0 so ϕL → 0

since a vacuum is being pulled on the downstream membrane side) using the SA

numerical method

• asyMemLocalSolve: main function that all simulation scripts call to solve for initial

phase equilibrium, initialize the parameter struct, and solve the local flux problem

using the specified numerical method
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• asyMemLoopDeLoop: (OUTDATED) main function that was the same as asyMem-

LocalSolve but with paramters hard-coded

• asyMemSingCompEval: function called when using the diffusivity fitting code that

runs the single component simulations

• correlationEval: helper function that evaluates all fugacity model and diffusion model

paramters (e.g. Vignes, Darken, Cohort, Hansen, etc.)

• correlationEval_casASi: (UNUSED) same as previous function description but writ-

ten for casADi

• DAEevalDSM_RHS: DAEs RHS evaluation function for Dual-Mode Sorption (DMS)

fugacity model

• DAEevalFH_LM_RHS: DAEs RHS evaluation function for FH fugacity model

• DAEevalFH_RHS: DAEs RHS evaluation function for FH-LM fugacity model

• dataBank: main paramter, component property, membrane property database func-

tion described in subsubsection 4.3.2

• diffFit_asyMemLocal: one of the main scripts described in subsubsection 4.3.3

• expSpec: experimental specification function described in subsubsection 4.3.2

• evalFH_LM_RHS_casADi: (UNUSED) function similar to DAEevalFH_LM, but

written to be used with casADi

• matrixEvalB: function that evaluate the B within the Maxwell-Stefan model

• matrixEvalGammaB_DSM function that evaluates the B and Γ within the Maxwell-

Stefan model when assuming the DMS fugacity model
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• matrixEvalGammaB_FH: function that evaluates the B and Γ within the Maxwell-

Stefan model when assuming the FH fugacity model

• matrixEvalGammaB_FH_LM: function that evaluates the B and Γ within the Maxwell-

Stefan model when assuming the FHLM fugacity model

• matrixEvalGammaB_FH_LM_casADi: (UNUSED) function that evaluates the B

and Γ within the Maxwell-Stefan model when assuming the FHLM fugacity model,

but written to be used with casADi

• mixLoop_asyMemLocal: one of the main scripts detailed in subsubsection 4.3.3

• modelFH_functionMapping: (UNUSDE) funtion that tests teh feasible set that the

FH fugacity model can predict based on different parameter sets

• outfun: (UNUSED) old function used to have custom solver output functions

• phi2fugPhaseEq_DSM: function to solve DMS fugacity model for an input of vol-

ume fractions and output fugacities

• phi2fugPhaseEq_FH_LM: function to solve FHLM fugacity model for an input of

volume fractions and output fugacities

• phi2fugPhaseEq_FH_RHS: RHS function to solve FHLM fugacity model for an in-

put of volume fractions and output fugacities

• singCompLoop_asyMemLocal: one of the main scripts to loop over single compo-

nent simulations as described in subsubsection 4.3.3

• singMixSim_asyMemLocal: one of the main scripts to simulate the local flux prob-

lem for a single complex mixture as described in subsubsection 4.3.3

• solverModelSpec: function to specify the numerical method and model options as

described in subsubsection 4.3.2
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• vol2molFrac: (UNUSED) helper code to take volume fractions and convert to mole

fractions

• vol2molFrac_casADi: (UNUSED) helper code to take volume fractions and convert

to mole fractions but written for casADi

• vol2molFrac_RHS: (UNUSED) RHS for helper code to take volume fractions and

convert to mole fractions

• y2evalFH_LM_RHS: function similar to DAEeval_FHLM

• y2phiPhaseEq_DSM: function to solve phase equilibrium for Phase I and Phase II

assuming the DSM fugacity model

• y2phiPhaseEq_DSM_RHS: RHS function to solve phase equilibrium for Phase I and

Phase II assuming the DSM fugacity model

• y2phiPhaseEq_FH: function to solve phase equilibrium for Phase I and Phase II as-

suming the FH fugacity model

• y2phiPhaseEq_FH_LM: function to solve phase equilibrium for Phase I and Phase II

assuming the FHLM fugacity model

• y2phiPhaseEq_FH_LM_RHS: RHS function to solve phase equilibrium for Phase I

and Phase II assuming the FHLM fugacity model

• y2phiPhaseEq_FH_RHS: RHS function to solve phase equilibrium for Phase I and

Phase II assuming the FH fugacity model

4.4 asyMemSim Tutorial Examples For Use in MATLAB

The purpose of this section is to outline how to find the respective minimum working exam-

ple files for each main script described in subsection 4.3.3. Since each main script shares
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the same central database function, it can be found in the main folder with the name data-

Bank_EXAMPLE.m. This is not a requirement for the code to function properly since the

database can be stored in any subfolder as long as a line of code is added to make sure

the folder is in the MATLAB path (i.e. use the "addpath()" function). Documentation can

be found here (https://www.mathworks.com/help/matlab/ref/addpath.html). Next, within

each main script folder, one can find a respective expSpec_EXAMPLE.m and solerMod-

elSpec_EXAMPLE.m files that will allow one to run the code without modification until

necessary or warranted. Please use these files as templates for future applications. Again,

all main scripts are ready to run as-is when the code is downloaded and the current version

can be found here [99].

4.5 asyMemSim Custom Model Implementations

This section is written for advanced end-users that are interested in expanding this code for

additional membrane materials, mixture components, fugacity models, diffusion models,

and alternative modeling frameworks. The expansion and addition of these capabilities is

fairly straightforward, but the subsequent subsections will describe exactly what functions

to edit in order to get a custom addition working properly.

4.5.1 Additional Membrane Materials and Mixture Parameters

In order to add additional membrane materials and mixture parameters, the file that needs

to be edited is dataBank.m. Within this file, there will be sections like the one shown below

function [params] = dataBank(sysInfo)

%-----------------------------------------------------------------------------------------------------------------%

%full parameter/property sets

if contains(sysInfo.memID,'SBAD1')

% Lively/Ronita's 9-comp data TOL/MCH/1MN/DCN/NOC/IOC/TBB/TPB/ICE/SBAD-1

params.lmem = 0.3; % thickness of active membrane layer um

params.compID = struct('TOL', 1, 'MCH', 2, 'MNP', 3, 'DEC', 4, 'NOC', 5, 'IOC', 6, 'TBB', 7, 'TPB', 8, 'ICT', 9)

;

params.n = 9;

params.Vs = [106.521;128.123;139.823;156.962;163.42;165.552;155.529;240.069;293.267;62326]; %cm3/mol

params.HanSolParam = [18,1.4,2;16,0,1;20.6,0.8,4.7;18,0,0;15.5,0,0;14.1,0,0;17.4,0.1,1.1;18,0,0.6;16.3,0,0]; %[

delD,delP,delH;...]
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params.psat = [28.998;46.596;0.059;0.975;14.805;49.087;2.115;0.0352;0.0458];%torr

...

To add additional membrane materials, simply copy and paste the entire block from the

example database and change the name from "SBAD1" to the new membrane material to

be added. Then, one can fit and add fugacity model/diffusion parameters based on the

defined mixture components. Additionally, to change the mixture components that per-

meate through the membrane material, simply update the params.compID to reflect the

components of interest. The parameters Vs, HanSolParam, n, and psat will also need to

be updated. Then, the fugacity model and diffusion model parameters will also need to be

entered within the same order and size. Once that is done, the end-user can specify the

desired sysInfo.memID and sysInfo.mixID in expSpec.m, which will then pull the required

parameters from dataBank.m.

4.5.2 Membrane Fugacity Models

If the end-user wants to add a custom fugacity model, one will need first make sure the form

of the fugacity model is in terms of volume fractions such that it is compatible with the im-

plemented Maxwell-Stefan formulation of the local flux problem. If it is not, then please

refer to subsection 4.5.5 first for tweaking the modeling framework basis. Once that is ver-

ified, one can add respective fugacity model parameters in dataBank.m, create a function

to solve the phase equilibrium between Phase I/II (y2phisPhaseEq_customModelName.m

and accompanying y2phisPhaseEq_customModelName_RHS.m, add a section of code to

asyMemLocalSolve.m to get the required boundary conditions, add a section of code to

evaluate the initial value problem function for the custom fugacity model in asyMemLo-

cal_IVP.m, (if the fugacity model is implicit) create a DAEevalCustomModelName_RHS.m

function, (if the fugacity model is explicit) create a phis2yPhaseEq_customModelName_RHS.m,

add a section of code to asyMemLocalSA_RHS.m to solve the inner ODEs/DAEs properly,

add a section of code to asyMemSim and create a matrixEvalGammaB_customModelName.m

123



function (the code to evaluate the B does not change, but the Γ evaluation will need to be

updated). For each modification required, the next paragraphs will provide the specific

details to add the custom fugacity model.

For the addition of custom fugacity model parameters, the databank.m needs to be

edited as seen below (assuming the membrane material is SBAD1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: dataBank(sysInfo) %

% Description: Build parameter matricies based on system specifications. %

% Input: sysInfoExt - external struct defining simulation specs %

% (memID, mixID, yf, n, lmem, Pu, Pd, T, R %

% memPhaseModel, diffModel, swlDiffModel) %

% Output: params - struct of system parameters %

% (compID, n, Vs, HanSolParam, psat, chis [FH %

% or FH-LM], diffs, Ch & bs [FH-LM or DSM], %

% ks [DSM], unitActPhis, Bffv, and all %

% fields listed in sysInfo struct) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [params] = dataBank(sysInfo)

%-----------------------------------------------------------------------------------------------------------------%

%full parameter/property sets

if contains(sysInfo.memID,'SBAD1')

% Lively/Ronita's 9-comp data TOL/MCH/1MN/DCN/NOC/IOC/TBB/TPB/ICE/SBAD-1

params.lmem = 0.3; % thickness of active membrane layer um

params.compID = struct('TOL', 1, 'MCH', 2, 'MNP', 3, 'DEC', 4, 'NOC', 5, 'IOC', 6, 'TBB', 7, 'TPB', 8, 'ICT', 9)

;

params.n = 9;

params.Vs = [106.521;128.123;139.823;156.962;163.42;165.552;155.529;240.069;293.267;62326]; %cm3/mol

params.HanSolParam = [18,1.4,2;16,0,1;20.6,0.8,4.7;18,0,0;15.5,0,0;14.1,0,0;17.4,0.1,1.1;18,0,0.6;16.3,0,0]; %[

delD,delP,delH;...]

params.psat = [28.998;46.596;0.059;0.975;14.805;49.087;2.115;0.0352;0.0458];%torr

if contains(sysInfo.memPhaseModel,'F-H')

params.chis_im = [0.871;1.672;0.705;2.783;1.163;3.049;1.648;2.5;3.130];

if sysInfo.lowDiffErrorBar == 0

params.diffs_im = [12.7;2.8617;2.8617;2.8617;2.8617;2.8617;2.8617;2.8617;2.8617]; %um2/s FH Exp Based

tweaked for single comp MS diffs

elseif sysInfo.lowDiffErrorBar == 1

params.diffs_im = [14.157;2.870;0.042;1.296;4.458;4.2057;0.975;0.069;0.536]; %Mixed Exp (LOW ERROR)

Based FH Tweaked to match single comp FH um2/s

end

if sysInfo.memPhaseModel_FicksOG == 1

if sysInfo.lowDiffErrorBar == 0

params.diffs_im = [3.622;3.329;0.009;1.395;2.369;6.091;0.833;0.055;0.520]; %um2/s FICKS FH-BC

tweaked for single comp 20bar

elseif sysInfo.lowDiffErrorBar == 1

params.diffs_im = [3.316;1.709;0.0076;1.085;1.838;3.6712;0.580;0.055;0.473]; %um2/s FICKS (LOW ERROR

) FH-BC tweaked for single comp 20 bar

end

end

elseif contains(sysInfo.memPhaseModel,'DSM')

...
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From there, one simply needs to add an elseif constains(sysInfo.memPhaseModel, ’custom-

ModelName’) followed by all the respective parameters for the model (e.g. for FH, all χim

must be specified for each component). Additionally, the diffusion parameters (Maxwell-

Stefan, Ficks, low error bar if all are required) must be specified and fit for the respective

custom fugacity model. Refer to subsubsection 4.3.3 for more details after all the other cus-

tom fugacity model modifications have been made. Lastly, the bottom of the databank.m

function needs to have a line added to transform the string variable to a number for faster

performance when calling the parameter struct. See code below for where to add it

%-----------------------------------------------------------------------------------------------------------------%

%carry over needed sysInfo to params

params.T = sysInfo.T;

params.R = sysInfo.R;

params.mixID = sysInfo.mixID;

if contains(sysInfo.memID,'SBAD1')

params.memID = 1;

elseif contains(sysInfo.memID,'PIM1')

params.memID = 2;

end

params.compID = cell2struct(mat2cell(1:sysInfo.n,1,ones(sysInfo.n,1)),params.mixID,2);

params.Pu = sysInfo.Pu;

params.Pd = sysInfo.Pd;

params.yf = sysInfo.yf;

params.n = sysInfo.n;

if contains(sysInfo.memPhaseModel,'F-H')

params.memPhaseModel = 1;

elseif contains(sysInfo.memPhaseModel,'DSM')

params.memPhaseModel = 2;

elseif contains(sysInfo.memPhaseModel,'FH-LM')

params.memPhaseModel = 3;

end

if contains(sysInfo.diffModel,'NoCoupling')

params.diffModel = 1;

elseif contains(sysInfo.diffModel,'Vignes')

params.diffModel = 2;

elseif contains(sysInfo.diffModel,'Darken')

params.diffModel = 3;

elseif contains(sysInfo.diffModel,'Fudge')

params.diffModel = 4;

end

if contains(sysInfo.swlDiffModel,'none')

params.swlDiffModel = 1;

elseif contains(sysInfo.swlDiffModel,'FFV')

params.swlDiffModel = 2;

elseif contains(sysInfo.swlDiffModel,'Avg-Diff')

params.swlDiffModel = 3;

end

if contains(sysInfo.numMethod,'FullDis')

params.numNodes = sysInfo.numNodes;

125



elseif contains(sysInfo.numMethod,'MultShootAlg')

params.numShootPoints = sysInfo.numShootPoints;

params.casADi = sysInfo.casADi;

end

params.solverSpec = sysInfo.solverSpec;

params.iterDetail = sysInfo.iterDetail;

params.crossDiffFudge = sysInfo.crossDiffFudge;

params.memPhaseModel_FicksOG = sysInfo.memPhaseModel_FicksOG;

params.noThermoCoupling = sysInfo.noThermoCoupling;

if sysInfo.crossDiffFudge == 1

params.crossDiffSpecs = sysInfo.crossDiffSpecs;

params.crossDiffVals = sysInfo.crossDiffVals;

end

params.pervapMode = sysInfo.pervapMode;

params.currentStateLit_eqnSetup = sysInfo.currentStateLit_eqnSetup;

params.noGammaFugacityODEs = sysInfo.noGammaFugacityODEs;

params.nodalGuessApprox = sysInfo.nodalGuessApprox;

%-----------------------------------------------------------------------------------------------------------------%

end

Right after the elseif contains(sysInfo.memPhaseModel,’FH-LM’), a line should be copy/-

pasted to have elseif contains(sysInfo.memPhaseModel,’customModelName’), followed by

params.memPhaseModel = 4;.

For the phase equilibrium problem between Phase I/II, the functions y2phisPhaseEq_FH.m

and y2phisPhaseEq_FH_RHS.m can be used as templates. As long as one if familiar with

solving nonlinear equations in MATLAB, the same idea applies here. After that is com-

pleted, a short section of code needs to be added to actually solve for the boundary condi-

tions in asyMemLocalSolve.m as seen below

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: asyMemLocalSolve(sysInfoExt) %

% Description: Solve boundary value problem for local flux model of %

% asymetric membrane layer using Maxwell-Stefan (MS) %

% coupled transport framework in terms of volume fractions %

% that is useful for modeling polymeric materials. %

% Input: sysInfo - external struct defining simulation specs %

% (memID, mixID, yf, n, lmem, Pu, Pd, T, R %

% memPhaseModel, diffModel, swlDiffModel) %

% *see descriptions below. %

% Output: localCompFlux - n+1 dimensional vector of support layer %

% compositions and total local mem flux %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [localCompFlux,partialFlux,totVolFlux,exitFlag,output,params] = asyMemLocalSolve(sysInfo)

%-----------------------------------------------------------------------------------------------------------------%

%assign/unpack parameters

[params] = feval(sysInfo.dataBankName,sysInfo);

n = params.n;
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if contains(sysInfo.memPhaseModel,'DSM')||contains(sysInfo.memPhaseModel,'FH-LM')

bs = params.bs;

Ch = params.Ch;

end

psat = params.psat;

T = params.T;

R = params.R;

Vs = params.Vs;

Pu = params.Pu;

yf = params.yf;

if contains(sysInfo.memPhaseModel,'DSM')

ks = params.ks;

params.chis = ones(n+1);

end

params.purFug = psat.*exp(Vs(1:n).*(Pu-psat*0.00131)/(R*T));

params.chisDone = 0;

params.diffsDone = 0;

params.phiFeed = ones(n+1);

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%solve for feed conditions

if params.memPhaseModel == 1

phiFeed_FH_IS = y2phiPhaseEq_FH(params); %FH ideal solution

phiFeed = phiFeed_FH_IS; %can change accordingly for IS or RM

elseif params.memPhaseModel == 2

phiFeed_DSM_IS = y2phiPhaseEq_DSM(params);

phiFeed = phiFeed_DSM_IS; %can change accordingly for IS or RM

params.chis = ones(n+1,n+1);

elseif params.memPhaseModel == 3

phiFeed_FH_LM_IS = y2phiPhaseEq_FH_LM(params);

phiFeed = phiFeed_FH_LM_IS; %can change accordingly for IS or RM

end

fugFeed_IS = yf.*psat.*exp(Vs(1:n).*(Pu-psat*0.00131)/(R*T)); %0.00131 converts torr to bat

% fugFeed_IS = yf; %if assuming fs = activity

[chis,diffs] = correlationEval(phiFeed,params.diffs,params.chis,params);

params.diffs = diffs;

params.chis = chis;

params.chisDone = 1;

params.diffsDone = 1;

params.phiFeed = phiFeed;

params.fugFeed = fugFeed_IS;

%-----------------------------------------------------------------------------------------------------------------%

similar to the previous modifications in the databank.m, elseif params.memPhaseModel

== 4 needs to be added along with phiFeed_customModelName_IS =

y2phiPhaseEq_customModelName(params); and phiFeed = phiFeed_customModelName_IS;.

To modify the IVP evaluation that ends up being the RHS equations for the integrator, it

is similar to the modification of the database in terms of simply copy/pasting and adding an

additional elseif constains(sysInfo.memPhaseModel, ’customModelName’) line. See code
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below for the specific section

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: asyMemLocalSA_IVP(z,stateVar,diffVar,localCompFlux,params) %

% Description: RHS function for solveing of initial value problem %

% Input: z - spacial variable to integrate over (um) %

% stateVar - (ODE, FH) n+1 dimensional vector of volume %

% fractions in membrane phase %

% (DAE, FH-LM or DSM) 2*n+1 dimensinal vec %

% of n+1 volume fractions and n fugacities %

% of membrane phase %

% diffVar - (ODE) diffVar = 0 (n/a) %

% (DAE) 2*n+1 dimensinal derivative vcector %

% of n+1 volume fractions and n fugacities %

% of membrane phase %

% localCompFlux - n+1 dimensional vector of support layer %

% compositions and total local mem flux %

% params - struct of system parameters %

% (see dataBank function for specs) %

% Output: funIVP - function value for integrator solver %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [funIVP] = asyMemLocal_IVP(z,stateVar,diffVar,localCompFlux,params)

%-----------------------------------------------------------------------------------------------------------------%

%unpack parameters and modify as needed

diffs = params.diffs;

if params.memPhaseModel == 1 || params.memPhaseModel == 3

chis = params.chis; %note chi_ji = chi_ij

elseif params.memPhaseModel == 2

chis = zeros(params.n+1);

end

n = params.n;

HanSolParam = params.HanSolParam;

T = params.T;

R = params.R;

psat = params.psat;

Vs = params.Vs;

Pu = params.Pu;

funIVP = zeros(n+1,1);

[chis,diffs] = correlationEval(stateVar,diffs,chis,params);

params.diffs = diffs;

params.chis = chis;

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%evaluate IVP residual functions

if params.memPhaseModel == 1

%solving for volume fluxes and mol fractions

if params.memPhaseModel_FicksOG == 1

B = matrixEvalB(stateVar,params);

funIVP(1:n)=-B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct convertsion

from LMH to UM3/UM2/s

funIVP(n+1)=-sum(funIVP(1:n));

elseif params.noGammaFugacityODEs == 0

if params.noThermoCoupling == 1

B = matrixEvalB(stateVar,params);
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funIVP(1:n)=-B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct

convertsion from LMH to UM3/UM2/s

funIVP(n+1)=-sum(funIVP(1:n));

else

%ODE

[B,invGam] = matrixEvalGammaB_FH(stateVar,params);

funIVP(1:n)=-invGam*B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600;

funIVP(n+1)=-sum(funIVP(1:n));

end

else

B = matrixEvalB(stateVar,params);

funIVP(1:n) = -diffVar(n+2:end)./stateVar(n+2:end).*stateVar(1:n)-B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct convertsion

from LMH to UM3/UM2/s

funIVP(n+1) = sum(diffVar(1:n+1));

funIVP(n+2:n+1+n) = DAEevalFH_RHS(stateVar,params); %FH

end

elseif params.memPhaseModel == 2

%solving for volume fluxes and mol fractions

if params.memPhaseModel_FicksOG == 1

B = matrixEvalB(stateVar,params);

funIVP(1:n) = -diffVar(1:n)-B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct convertsion

from LMH to UM3/UM2/s

funIVP(n+1) = sum(diffVar(1:n+1));

funIVP(n+2:n+1+n) = DAEevalDSM_RHS(stateVar,params); %DSM

elseif params.noGammaFugacityODEs == 0

if params.noThermoCoupling == 1

B = matrixEvalB(stateVar,params);

funIVP(1:n) = -diffVar(1:n)-B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct

convertsion from LMH to UM3/UM2/s

funIVP(n+1) = sum(diffVar(1:n+1));

funIVP(n+2:n+1+n) = DAEevalDSM_RHS(stateVar,params); %DSM

else

[B,invGam] = matrixEvalGammaB_DSM(stateVar,params);

funIVP(1:n) = -diffVar(1:n)-invGam*B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct

convertsion from LMH to UM3/UM2/s

funIVP(n+1) = sum(diffVar(1:n+1));

funIVP(n+2:n+1+n) = DAEevalDSM_RHS(stateVar,params); %DSM

end

else

B = matrixEvalB(stateVar,params);

funIVP(1:n) = -diffVar(n+2:end)./stateVar(n+2:end).*stateVar(1:n)-B*(localCompFlux(1:n)...

.*Vs(1:n).*localCompFlux(n+1));%./sum(Vs(1:n).*localCompFlux(1:n)))*1000/3600; %note correct convertsion

from LMH to UM3/UM2/s

funIVP(n+1) = sum(diffVar(1:n+1));

funIVP(n+2:n+1+n) = DAEevalDSM_RHS(stateVar,params); %FH-DSM

end

elseif params.memPhaseModel == 3

From the above code snippet, one only needs to copy/paste the section and change the el-
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seif params.memPhaseModel == 4 to the number that the custom fugacity model number

was set to in the databank.m function. The only other change (if the fugacity model is

explicit, as in the above snippit of code when params.memPhaseModel == 1) is to up-

date the matrixEvalGammaB_customModelName.m in the funIVP(1:n) line of code. If the

fugacity model is implicit (as in the above snippit when params.memPhaseModel == 2),

then matrixEvalGammaB_customModelName.m needs to be updated as well as DAEeval-

CustomModelName_RHS.m needs to be created and updated in asyMemLocalIVP.m. Any

of the other DAEs evaluation RHS functions can be used as a template.

Next, the matrixEvalBGamma_customModelName.m must be created and can be made

from the other fugacity model functions as a template. Finally, a line of code must be added

in asyMemLocalSA_RHS.m to add the functionality for the custom fugacity model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: asyMemLocalSA_RHS(phiFeed,localCompFlux,fugFeed,params) %

% Description: RHS function for shooting algorithm of asyMem local flux. %

% Input: phiFeed - n+1 dimensional vector of feed side %

% membrane phase volume fractions %

% localCompFlux - n+1 dimensional vector of support layer %

% compositions and total local mem flux %

% fugFeed - n dimensional vector of penetrant %

% feed side fugacities (torr) %

% params - struct of system parameters %

% (see dataBank function for specs) %

% Output: funRHS - function value vector for nonlinear solver %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [funRHS] = asyMemLocalSA_RHS(phiFeed,localCompFlux,fugFeed,params)

%-----------------------------------------------------------------------------------------------------------------%

%unpack parameters and modify as needed

T = params.T;

R = params.R;

psat = params.psat;

Vs = params.Vs;

Pu = params.Pu;

Pd = params.Pd;

n = params.n;

diffs = params.diffs;

if params.memPhaseModel == 1 || params.memPhaseModel == 3

chis = params.chis; %note chi_ji = chi_ij

elseif params.memPhaseModel == 2

chis = zeros(params.n+1);

end

if params.swlDiffModel == 1

params.Bffvtype = 'NA';
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elseif any(params.Bffv == 0)

params.Bffvtype = 'some0some1';

else

params.Bffvtype = 'cons1';

end

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%IVP solve

zspan=[0 params.lmem]; %um

if params.memPhaseModel == 1 && params.noGammaFugacityODEs == 0

% ode15s route

diffVar = 0;

funIVP = @(z,stateVar)asyMemLocal_IVP(z,stateVar,diffVar,localCompFlux,params); %solve IVP

%funIVP = @(z,stateVar)asyMemLocal_IVP(z,stateVar,diffVar,[ypGuess;localCompFlux(n+1)],params); %solve IVP

opt = odeset('RelTol',1e-5,'AbsTol',1e-7);%,'Jacobian',@(z,stateVar)asyMemLocal_IVP_JAC_FH(z,stateVar,

localCompFlux,params));

[z,stateVars] = ode15s(funIVP,zspan,phiFeed,opt);

phiFinal = stateVars(end,1:n+1).';

[params.chis,~] = correlationEval(phiFinal,diffs,chis,params);

ypFinal = phis2yPhaseEq_FH_RHS(phiFinal,params);% FH based

elseif params.memPhaseModel == 2 || params.memPhaseModel == 3 || (params.memPhaseModel == 1 && params.

noGammaFugacityODEs == 1)

% DAE ode15i route

funIVP = @(z,W,D)asyMemLocal_IVP(z,W,D,localCompFlux,params); %solve IVP

D0 = ones(n+1+n,1); %FH-DSM

opt = odeset('InitialSlope', D0,'RelTol',1e-6,'AbsTol',1e-8);

[W0_new,D0_new] = decic(funIVP,0,[phiFeed;fugFeed],[ones(n+1,1);zeros(n,1)],D0,zeros(1,n+1+n),opt); %FH-DSM

opt = odeset(opt,'InitialSlope', D0_new,'RelTol',1e-3,'AbsTol',1e-5);

[z,stateVars] = ode15i(funIVP,zspan,W0_new,D0_new,opt);

fugFinal = (stateVars(end,n+2:end).');

ypFinal = fugFinal./(exp(-Vs(1:n).*(Pu-Pd)/(R*T)))./params.purFug;

end

%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%fsolve residual functions

funRHS(1:n) = localCompFlux(1:n)-ypFinal(1:n);

funRHS(n+1) = 1-sum(ypFinal(1:n));

%-----------------------------------------------------------------------------------------------------------------%

If the custom fugacity model is explicit, then the params.memPhaseModel == 4 can be

appended as params.memPhaseModel == 1 && params.noGammaFugacityODEs == 0

to (params.memPhaseModel == 1 && params.noGammaFugacityODEs == 0)

|| (params.memPhaseModel == 4 && params.noGammaFugacityODEs == 0). Similarly,

if the fugacity model is implicit, then a simple || params.memPhaseModel == 4 can be

added. If wanting to use a custom fugacity model with the FD numerical methods, the

same would need to be done for asyMemLocalFUD_RHS.m.
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4.5.3 Membrane Diffusion Models

To add custom membrane diffusion models for ÐV
im, one simply needs to edit dataBank.m

and correlationEval.m. First, the bottom of dataBank.m needs to have a line of code similar

to the previous section when adding a custom fugactiy model

%-----------------------------------------------------------------------------------------------------------------%

%carry over needed sysInfo to params

params.T = sysInfo.T;

params.R = sysInfo.R;

params.mixID = sysInfo.mixID;

if contains(sysInfo.memID,'SBAD1')

params.memID = 1;

elseif contains(sysInfo.memID,'PIM1')

params.memID = 2;

end

params.compID = cell2struct(mat2cell(1:sysInfo.n,1,ones(sysInfo.n,1)),params.mixID,2);

params.Pu = sysInfo.Pu;

params.Pd = sysInfo.Pd;

params.yf = sysInfo.yf;

params.n = sysInfo.n;

if contains(sysInfo.memPhaseModel,'F-H')

params.memPhaseModel = 1;

elseif contains(sysInfo.memPhaseModel,'DSM')

params.memPhaseModel = 2;

elseif contains(sysInfo.memPhaseModel,'FH-LM')

params.memPhaseModel = 3;

end

if contains(sysInfo.diffModel,'NoCoupling')

params.diffModel = 1;

elseif contains(sysInfo.diffModel,'Vignes')

params.diffModel = 2;

elseif contains(sysInfo.diffModel,'Darken')

params.diffModel = 3;

elseif contains(sysInfo.diffModel,'Fudge')

params.diffModel = 4;

end

if contains(sysInfo.swlDiffModel,'none')

params.swlDiffModel = 1;

elseif contains(sysInfo.swlDiffModel,'FFV')

params.swlDiffModel = 2;

elseif contains(sysInfo.swlDiffModel,'Avg-Diff')

params.swlDiffModel = 3;

end

if contains(sysInfo.numMethod,'FullDis')

params.numNodes = sysInfo.numNodes;

elseif contains(sysInfo.numMethod,'MultShootAlg')

params.numShootPoints = sysInfo.numShootPoints;

params.casADi = sysInfo.casADi;

end

params.solverSpec = sysInfo.solverSpec;

params.iterDetail = sysInfo.iterDetail;

params.crossDiffFudge = sysInfo.crossDiffFudge;
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params.memPhaseModel_FicksOG = sysInfo.memPhaseModel_FicksOG;

params.noThermoCoupling = sysInfo.noThermoCoupling;

if sysInfo.crossDiffFudge == 1

params.crossDiffSpecs = sysInfo.crossDiffSpecs;

params.crossDiffVals = sysInfo.crossDiffVals;

end

params.pervapMode = sysInfo.pervapMode;

params.currentStateLit_eqnSetup = sysInfo.currentStateLit_eqnSetup;

params.noGammaFugacityODEs = sysInfo.noGammaFugacityODEs;

params.nodalGuessApprox = sysInfo.nodalGuessApprox;

%-----------------------------------------------------------------------------------------------------------------%

end

The only change needed is to add elseif contains(sysInfo.swlDiffModel,’customModelName’)

and params.swlDiffModel = 4;. For the next part in correlationEval.m see the section of

code below

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function: correlationEval(stateVar,diffs,chis,params) %

% Description: Evaluate diffusional and sorption correlations based on %

% stateVar values and component properties. %

% Input: stateVar - (ODE, FH) n+1 dimensional vector of volume %

% fractions in membrane phase %

% (DAE, FH-LM or DSM) 2*n+1 dimensinal vec %

% of n+1 volume fractions and n fugacities %

% of membrane phase %

% diffs - n x n+1 dimensinal matrix of volume based MS %

% diffusivities (um^2/s) %

% chis - n+1 x n+1 dimensional matrix of FH or FH-LM %

% chi parameters %

% params - struct of system parameters %

% (see dataBank function for specs) %

% Output: diffs, chis - evaluated matricies as defined above %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [chis,diffs] = correlationEval(stateVar,diffs,chis,params)

%-----------------------------------------------------------------------------------------------------------------%

%unpack parameters

yf = params.yf;

Vs = params.Vs;

R = params.R;

T = params.T;

HanSolParam = params.HanSolParam;

n = params.n;

pDiffs = params.diffs;

unitActPhis = params.unitActPhis;

B = params.Bffv;

% molFracStateVar = vol2molFrac(stateVar,params);

purFug = params.purFug;

if length(stateVar) < 2*n+1

stateVar = [stateVar;ones(n,1)];

end

% stateVar = stateVar./1000;
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%-----------------------------------------------------------------------------------------------------------------%

%-----------------------------------------------------------------------------------------------------------------%

%diffusivity modify for swelling model

if params.swlDiffModel == 2 && params.diffsDone == 0

for i = 1:n

diffs(i,n+1) = pDiffs(i,n+1)*exp(B(i)*(1/unitActPhis(i)-1/abs((1-stateVar(n+1)))));

end

elseif params.swlDiffModel == 3

for i = 1:n

...

From there, another line of code needs to be added elseif params.swlDiffModel == 4 fol-

lowed by the custom diffusion model equation. The equation must be explicitly dependant

on the volume fractions but other methods and constant correlations can be explored.

4.5.4 Permeant Parameter Correlation Models

This section deals with different diffusion parameter model correlations such as Vignes or

Darken for ÐV
ij . Also, certain fugacity models may have parameter evaluations required

such as the Hansen solubility parameter evaluation for χij . Similar to the last section, elseif

contains(sysInfo.diffModel,’customModelName’) and elseif params.diffModel == 5 needs

to be added to dataBank.m. Then, the same procedure as the previous subsection needs to

be applied except for elseif params.diffModel == 5.

For the fugacity model parameter evaluation, a simple line of code will need to be added

to evaluate correlations based on the parameters and is highly model dependant. See code

below of correlationEval.m for details of how the χij was implemented

%-----------------------------------------------------------------------------------------------------------------%

%cross-chi-parm calc

if params.chisDone == 0

for m = 1:n

for k = m+1:n

% chis(m,k) = 2.5;

chis(m,k) = ((Vs(m)*Vs(k))^0.5)/(R*T/9.86)*((HanSolParam(m,1)-HanSolParam(k,1))^2+...

0.25*(HanSolParam(m,2)-HanSolParam(k,2))^2+0.25*(HanSolParam(m,3)-HanSolParam(k,3))^2); %atm/9.86 = MPa

chis(k,m) = chis(m,k);

end

end

elseif params.chisDone == 1

0;

end

%-----------------------------------------------------------------------------------------------------------------%
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As a final note, the params.chisDone variable was needed for the high component num-

ber simulations to ensure that some constant parameters were not evaluated every single

iteration, but only when needed.

4.5.5 Membrane Transport Model Modifications

Lastly, for changing the basis of units (e.g. from volume fractions to mole fractions),

asyMemLocal_IVP.m would need to be overhauled. Additionally, all inputs and phase equi-

librium functions would need to be rewritten in terms of these new units. This would be

a fairly lengthy and rigorous modification. However, with the complete state of the code,

and the numerical methods implemented; the overall benefit would outweigh the effort in

rewriting the entire code implementation for a simple change of units in the Maxwell-Stefan

framework. The general equation structure would be preserved, but careful modifications

would be necessary to ensure units properly line-up.

4.6 asyMemSim Extension to Process Simulation Environments

Now that the tool, asyMemSim has been presented in its entirety, the next logical step is to

extend the capability of asyMemSim to be used in a process simulation environment. This is

a natural next step in order to realize the full potential to design membrane cascades for any

application in OSRO. As an example of use within a process simulation environment, the

main process simulator will be AspenPlus, and the custom unit operation software will be

AmsterChem’s MATLAB Unit-op (https://www.amsterchem.com/matlabunitop.html). The

level of comfort with AspenPlus will be assumed to be fairly high for the next steps of this

section (e.g. setting up flowsheet, component specification, thermodynamic model speci-

fication, enabling CAPE-OPEN unit-op library through "manage libraries tab", etc.). Re-

gardless, this custom unit operation package allows for a seamless transition of any MAT-

LAB code to be used within any CAPE-OPEN compliant process simulator (see Figure 4.1).

Before using this piece of software, some time should be spent installing, activating the li-
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Figure 4.1: AspenPlus flowsheet with MATLAB CAPE-OPEN unit operation.

cense (the software is free for academic use, and a small fee is incurred for commercial

use), and reading the great help documentation

(https://www.amsterchem.com/matlabunitophelp.php). Note that, similar versions this soft-

ware are also available for implementing custom unit operations into process simulation

environments using tools created with Microsoft Excel, Python, and SciLab. Figure 4.2

shows how to first initialize the ports. For the membrane module, a feed, retentate, and

permeate stream is shown for a simple cross-flow permeator set-up. This is the simplest

global module membrane model such that the driving force is assumed constant across the

entire membrane area. With this assumption, the total flux across the membrane multiplied

by the total area, and permeate compositions fully specifies all streams for the membrane

module. This assumption is great for a first-pass system design and lab-scale, cross-flow

permeators. Future work will be focused on extending these local transport models to more

complex global membrane module transport (as briefly described in Appendix C and sec-

tion 6.3).

Next, Figure 4.3 shows the parameter tab shows the only specified parameter required–
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Figure 4.2: AmsterChem MATLAB CAPE-OPEN unit operation user interface – Ports tab.

the total membrane area (units of m2). This allows for output stream calculations based

on the permeate compositions, and total flux through the membrane based on soling the

local transport problem described in chapter 2. The reports tab is unused in this case, so the

MATLAB tab is the most important (as seen in Figure 4.4), and that is where the main single

mixture simulation is found. Lastly, Figure 4.5 allows a place for all the supplemental

functions to be added. Also, excel spreadsheets could be added if there are membranes that

have many components and the "xlsread" MATLAB function is used. The main simulation

script found in the MATLAB tab is exactly the single component simulation script described

in subsubsection 4.3.3. The only difference is that the expSpec.m file is set partially through

the feed stream specification and also in the MATLAB tab. The other difference is that the

solerModelSpec.m is also manually set within the MATLAB tab as well to allowe for a single

specification file. The dataBank.m function is the same as described in subsubsection 4.3.2,

and can be found in the Additional files tab.

The current implementation is based in a flowsheet that is proprietary to ExxonMobil.

However, the custom unit operations can be saved as a separate file with a ".MUM" file

extension, and can be loaded within any AspenPlus flowsheet that has the MATLAB custom
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Figure 4.3: AmsterChem MATLAB CAPE-OPEN unit operation user interface – Parameters
tab.

Figure 4.4: AmsterChem MATLAB CAPE-OPEN unit operation user interface – MATLAB
tab.
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Figure 4.5: AmsterChem MATLAB CAPE-OPEN unit operation user interface – Additional
files tab.

CAPE-OPEN unit op installed. The model file can be found at the respective GitHub

citation [99].

4.7 Conclusions

Throughout this chapter, the software package asyMemSim was introduced and compre-

hensively described such that any future user can understand this code from the inside out.

In particular, the simulation problem description, code standards, input files descriptions,

modeling/simulation capabilities, code file index, tutorial files, various custom code mod-

ifications, and the natural extension of the software package was described in full detail.

Along with that, code snippets and screenshots were included to help the end-user as much

as possible. Using this chapter as a solid set of software documentation, asyMemSim will

be able to be used and added to for many years to come. In doing so, realistic process

designs of industrial membrane processes utilizing complex mixtures can be constructed.
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CHAPTER 5

MODELING AND SIMULATION OF ELECTRIFIED MEMBRANE PROCESSES

5.1 Introduction

This chapter presents preliminary results on control strategies and process design of elec-

trodialysis processes for nutrient recovery from wastewater. While these results are un-

published, these initial process designs will be refined, optimized, and made into a solid

future contribution towards a modular nutrient recovery process. Additionally, a succinct

modeling and simulation framework is shown for these processes based on either: steady-

state (1D and 0D approximation), batch, or dynamic operation modes. The software is also

available for use in MATLAB, and the steady-state mode has the capability to be used in a

process simulation environment for proper process design. This work is supported by the

Center for Advancing Sustainable Fertilizer Production (CASFER), https://www.casfer.us/,

NSF Award#: 2133576.

Looking towards motivation for the nutrient recovery problem, of the total applied fer-

tilizer to farms, 80% of that is washed into our environments [100]. This causes a slough

of environmental problems (e.g. algae blooms) that have large health and socioeconomic

impacts [101]. Since this agricultural runoff is in the form of nitrogen and phosphorous

based fertilizer, the target nutrients to be recovered are nitrogen and phosphorous (N/P)

for agricultural production. The end goal of this 10-year engineering research center is to

foster a circular N/P economy. In addition to agricultural runoff, there are many differ-

ent industrial wastewater streams with theses nutrients available in non-negligible concen-

trations including: municipal wastewater, concentrated animal farming operations, steam

electric power generation, textile industrial effluent, ion-exchange brine, landfill leachate,

agricultural runoff, and fertilizer production effluent [102, 103, 104, 105, 106, 107]. Given
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that, the target waste streams this nutrient recovery process is focused on are those from

WWTPs and CAFOs. These streams have dilute concentrations of nutrients, but massive

throughput available that make them ideal economical and environmental targets for nutri-

ent recovery [9]. Additionally, other streams can contain impurities that make it hard for

biological use, while those from WWTPs and CAFOs are already biologically sourced and

safe for biological-use once treated for bio-hazardous contaminants. Since WWTPs are

readily known, CAFOs may not be as commonly known. These operations are used for

meat/dairy/egg production raising animals such as poultry, swine, and beef for a profit such

that the concentrations of animals on a given property is high. This creates a large amount

of organic waste that needs to be treated on-site.

For the last few decades, nutrient recovery has been applied on a commercial scale

(as seen in Table 5.1 and Table 5.2). However, the scale has been restricted to a few key

successful companies, and the technology mainly relies on traditional separation methods

that have major drawbacks. Additionally, WWTPs and CAFOs have been treating these

streams for N/P using biological methods for many decades. The issue is that these nu-

trients are converted to either gaseous nitrogen, lost to the environment in a nonviable

product form, or remain untreated (which pollutes the environment). A key difference is

that these industries have been utilizing treatment rather than recovery. Of the commercial

installations that have been marketing nutrient recovery, the traditional technologies are:

air stripping, crystallisation, thermal distillation, biological digestion, or pressure-based

membrane processes. Each of these processes bring about some real disadvantages such

as high energy requirements, production of greenhouse gases, constant addition of chemi-

cals required, or large process footprints that do not allow for modular system installations

[108, 109, 13, 110, 111, 112].

Electrodialysis is a promising technology that has already seen success in the desali-

nation industry [113]. Using this key body of knowledge and experience gained with that

mature application, ED can be applied to nutrient recovery by using the same approach. The
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difference is that, instead of considering the concentrated brine stream as waste, ED applied

to nutrient recovery has the potential valorize the concentrated waste to yield a total of two

product stream. The first is the concentrated salt stream that can be marketed as a fertilizer

product. The second is a dilute steam that can be treated to a level of safe environmental im-

pact such that it is considered treated water for discharge to waterways or recycled on-site

of WWTPs/CAFOs. These systems have been applied vastly in the literature on nutrient

recovery at the lab scale or small pilot-plant testing [45, 114, 115, 116, 117]. However,

there is a void in the literature for a systems level design and optimization of these systems

for nutrient recovery on an industrial scale. The main challenges hindering the ability to do

so is the existence of a user-friendly ED unit operation model that can be used within a pro-

cess simulation environment. Even though there are a number of current tools available (as

discussed subsection 1.4.2), the tools either quick user-friendly design implementation/it-

eration compatibility (as with WaterTAP, https://www.nawihub.org/knowledge/watertap/ ),

are not available for open-source use (Capione et al. 2019), and/or do have the required

modeling and simulation fidelity required for detailed ED process design for nutrient re-

covery (as with QSDsan, https://qsdsan.com/ ).

Hence, this work describes a set of modeling and simulation contributions for different

ED operation modes that is compatible and easily translatable to a user-friendly tool for

use in process simulation environments. Namely, we provide a steady-state, batch, and

dynamic ED simulation code. In addition to that the steady-state software is available for

use within AspenPlus (a standard process simulation environment for chemical engineers).

With these tools, this chapter provides preliminary work towards: a base case scenario for

an average-sized CAFO that will enable level comparisons of current technologies with

novel CASFER developed technologies, control strategies given realistic nutrient recov-

ery process disturbances, and a ED cascade process design that shows a proof-of-concept

process that could be implemented to recover recycle quality water along with a 5.6 wt%

nitrogen-based fertilizer product. With these preliminary contributions, a step forward can
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be taken to solidify the CASFER vision of installing a modular process that can recover

a 10 wt% nitrogen fertilizer product to realize a N/P circular economy. By doing so, our

society can shift towards scaling-back the need for energy and capital intensive processes

that are unsustainable, and detrimental to our environments.
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5.2 Theory and Background

In this section, a modeling and simulation framework for electrodialysis is presented for a

number of process operation modes. The modes include: steady-state, batch, and dynamic

operation. For the steady-state model, a zero-dimensional approximation is presented (in

addition to a one-dimensional boundary value problem model) that assumes a constant inlet

and constant ED module channel concentrations, current density, and channel volumetric

flowrates. This approximation is also used to reduce the partial differential equation sys-

tems in the batch and dynamic operation mode to systems of DAEs. The models derived

below are for a single cell-pair, and adapted from Campione et al. [1, 139]. The only differ-

ence in the current implementation is that the activity coefficient in the dilute/concentrate

channels, γint,IEM
i , is assumed to be unity (as well as the osmotic coefficient in the dilute and

concentrate channel, ΦIEM
i ). Additionally, the equivalent conductivity, ΛSOL(x) is fixed.

These expressions can easily be adjusted and accounted for to reflect non-ideal systems

with the addition of simple equations found in the Appendix of Campione et al. [1].

5.2.1 Steady-State Electrodialysis Model

First, in order to properly simulate an ED unit operation, the complexity of model must be

chosen. Here, a simplified single salt model will be assumed. For later iterations of the

simulation framework that include multiple salt solutions and other complex molecules,

a Nernst-Plank model should be used that is similar to the Maxwell-Stefan model. The

difference is the former takes into account electrical potential gradients while neglecting

thermodynamic interactions (the Nernst-Plank model assumes a co-existing concentration

gradient rather than an activity gradient). The main model to be listed below is adapted

from Campione et al. [1]. Additionally, Figure 1 from Campione et al. shows a great

schematic of the ED system set-up to be simulated [1].
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Modeling Steady-State ED

This derivation will focus on a single cell pair as described in the previous section. The

first piece of the model is to provide mass balances for the dilute and concentrate channels.

The process is assumed to be at steady-state (unchanging with respect to time), and the

main dynamics to model are the concentration and flow rate changes along the channels

(changing with respect to the channel length variable, x). The components to be modeled

are the single salt (in terms of concentration), and the water (in terms of a volumetric flow

rate). For the concentrate and dilute channels, the equations for each component can be

written as

d (QD(x)CD(x))

dx
= −bJtot(x), (5.1)

d (QC(x)CC(x))

dx
= bJtot(x), (5.2)

dQD(x)

dx
= −bqw(x), (5.3)

dQC(x)

dx
= bqw(x). (5.4)

The next piece is the constitutive equations that describe the mechanisms of trans-

port across the IEM. The different mechanisms for salt transport are either a concentration

and/or a electrical potential gradient. Additionally, the water can transport via an osmotic
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or electroosmotic gradient. Those equations take the form

Jtot(x) = Jcond(x) + JAEM
diff (x) + JCEM

diff (x), (5.5)

Jcond(x) = [tcounter
CEM − (1− tcounter

AEM )]
i(x)

F
, (5.6)

J IEM
diff (x) = −

DIEM

δIEM (CC(x)− CD(x)) , (5.7)

qw(x) = qeosm(x) + qosm(x), (5.8)

qeosm(x) =
wJtot(x)Mw

ρw
, (5.9)

qIEM
osm (x) = LIEM

p

[
vRT

(
ΦIEM

C CC(x)− ΦIEM
D CD(x)

)]
, (5.10)

where IEM = {CEM,AEM}. The final piece of the model relates the electrical constraints

to the constitutive expressions. Those equations manifest as

Vcp = η(x) +Rtot(x)i(x), (5.11)

Vtot =
RblankI

A
+

Ncp∑
i=1

Vcp,i, (5.12)

Rtot(x) = RCEM(x) +RAEM(x) +RC(x) +RD(x), (5.13)

RSOL(x) = fs,SOL
δSOL

ΛSOL(x)CSOL(x)
, (5.14)

η(x) = ηCEM(x) + ηAEM(x), (5.15)

ηIEM(x) = αIEM
RGT

F
ln
[
γC(x)CC(x)

γD(x)CD(x)

]
, (5.16)

where SOL = {C,D} for either the concentrate or dilute channel. A few useful process

metrics are specific energy consumption per mass of salt processes
(
Esalt

spec

)
, and the pro-
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ductivity of salt produced (Jp)

Esalt
spec =

∑Ns

i=1 Pi

C IN
D,Ns

QIN,tot
D,Ns
− COUT

D,Ns
QOUT,tot

D,Ns

, (5.17)

Jp =
COUT

C,Ns
QOUT,tot

C,Ns

2ANcp

. (5.18)

With these equations, the complete model is specified, and the next part deals with how

to simulate the process. As a quick reference, Figure 5.1 shows the full set of equation

required to simulate the ED module cell-pair at steady-state.

Simulation of Steady-State ED

Continuing on with the general theme of this dissertation, the model is one very important

problem to understand. However, the actual implementation to successfully simulate the

model is another problem entirely, and is not found as much within the academic membrane

literature. From the previous section, (Equation 5.1)-(Equation 5.16) creates a system of

DAEs. Moreover, the fact that the total current is required within the system of DAEs

through (Equation 5.12) creates a 2-point boundary value problem. In order to solve for

this system of equations, a guess of the total current, I , must be supplied to the DAEs

solver. In order to calculate this total current at the end of the integration, an additional

ordinary differential equation must be added

dI

dx
= i(x)b. (5.19)

The above equation should be initialized to I = 0 at x = 0, and then the total current

will be found at x = L. With that value, the guess can be updated, and a simple outer

loop solver could be coded up to do this automatically. However, compared to the 2-point

boundary value problem outlined in chapter 2, the observed convergence behavior here

is much simpler, and can be done manually in one or two iterations. With that in mind,
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the simplified ED unit operation can be implemented fairly easily in any scientific coding

language. One other tweak to the model that should be listed is whether the user would like

to specify total voltage, or total power. The model listed in the previous section is already

set-up to specify total voltage, but if the user would like to specify the total power, this

simple equation should be substituted for the total voltage in the above model

Vtot =
Ptot

I
. (5.20)

This completes the full modeling and simulation of an ED process. The next section deals

with available software to design such processes.

Zero-dimensional Approximation

To reduce the steady-state ED DAEs problem to that of simply algebraic equations,

(Equation 5.1) through (Equation 5.4) can be modified by evaluating the total salt and water

flux, Jtot and qw, respectively, at average channel concentrations and volumetric flowrates

based on the inlet and outlet conditions. This average flux model reduces the steady-state

ED DAEs model to a zero-dimensional model that is a system of nonlinear algebraic equa-

tions. This numerical approach is analogous to that presented in subsection 2.3.2. Fig-

ure 5.2 shows the final system of equations.

5.2.2 Batch Electrodialysis Model

In order to simulate lab-scale experimental set-ups, a batch operation that includes differ-

ential equations for the tanks will be derived below. Figure 8 from Campione et al. show

this process arrangement in great detail [1]. This operation mode assumes the temporal dy-

namics of the tanks are on a much longer time scale than the temporal dynamics of the ED

module such that the 0D-ED model from the previous subsection will be assumed. Without

this assumption, the system of equations would be that of PDAEs, which is computation-
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Conservation Equations d (QD(x)CD(x))

dx
= −bJtot(x)

d (QC(x)CC(x))

dx
= bJtot(x)

dQD(x)

dx
= −bqw(x)

dQC(x)

dx
= bqw(x)

Constitutive Equations

Jtot(x) = Jcond(x) + JAEM
diff (x) + JCEM

diff (x)

Jcond(x) =
[
tcounter
CEM − (1− tcounter

AEM )
] i(x)

F

J IEM
diff (x) = −DIEM

δIEM (CC(x)− CD(x))

qw(x) = qeosm(x) + qosm(x)
AEM + qosm(x)

CEM

qeosm(x) =
wJtot(x)Mw

ρw

qIEM
osm (x) = LIEM

p

[
vRGT

(
ΦIEM
C CC(x)− ΦIEM

D CD(x)
)]

Electrical Constraints
Vcp = η(x) +Rtot(x)i(x)

Vtot =
RblankI

A
+

Ncp∑
i=1

Vcp,i

Rtot(x) = RCEM(x) +RAEM(x) +RC(x) +RD(x)

RSOL(x) = fs,SOL
δSOL

ΛSOL(x)CSOL(x)

η(x) = ηCEM(x) + ηAEM(x)

ηIEM(x) = αIEM
RGT

F
ln
[
γC(x)CC(x)

γD(x)CD(x)

]

Figure 5.1: Full set of equations to simulate an electrodialysis module cell-pair at steady-
state.
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Conservation Equations (
QOUT

D COUT
D −QIN

DCIN
D

)
Lc

= −bJAVG
tot(

QOUT
C COUT

C −QIN
C CIN

C

)
Lc

= bJAVG
tot

QOUT
D −QIN

D

Lc
= −bqAVG

w

QOUT
C −QIN

C

Lc
= bqAVG

w

Constitutive Equations

JAVG
tot = JAVG

cond + JAEM,AVG
diff + JCEM,AVG

diff

JAVG
cond =

[
tcounter
CEM − (1− tcounter

AEM )
] I

FbLc

J IEM,AVG
diff = −DIEM

δIEM

(
CAVG
C − CAVG

D

)
qAVG
w = qAVG

eosm + qAEM,AVG
osm + qCEM,AVG

osm

qAVG
eosm =

wJAVG
tot Mw

ρw

qIEM,AVG
osm = LIEM

p

[
vRGT

(
ΦIEM
C CAVG

C − ΦIEM
D CAVG

D

)]

Electrical Constraints
Vcp = ηAVG +RAVG

tot
I

bLc

Vtot =
RblankI

A
+

Ncp∑
i=1

Vcp,i

RAVG
tot = RAVG

CEM +RAVG
AEM +RAVG

C +RAVG
D

RAVG
SOL = fs,SOL

δSOL

ΛAVG
SOLC

AVG
SOL

ηAVG = ηAVG
CEM + ηAVG

AEM

ηAVG
IEM = αIEM

RGT

F
ln
[
γAVG
C CAVG

C

γAVG
D CAVG

D

]

Figure 5.2: Full set of equations to simulate a 0D-ED module cell-pair at steady-state.
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ally intractable for the scope of using these tools within process simulation environments.

Dedicated PDAEs solvers would be required such as those found in the COMSOL fluid dy-

namics simulation environment (which is only capable of simulating a single system, and

not an entire process flowsheet). In addition to the 0D-ED model presented in the previous

section, a set of differential equations in terms of time derivatives will be required to fully

specify the system. These equations take the form:

d (Vtank(t)Ctank(t))

dt
= Ctank(t)

INQIN
tank − Ctank(t)

OUTQOUT
tank , (5.21)

dVtank

dx
= QIN

tank −QOUT
tank , (5.22)

where the tank can either be the dilute or concentrate tank. The above equations for each

copy can directly be added to the conservation equations block in Figure 5.2 to create a

system of DAEs in time. The only difference is that the "IN" and "OUT" for the 0D model

is switched notation-wise since the "IN" and "OUT" refer to the tanks in the batch operation

mode.

5.2.3 Dynamic Electrodialysis Model

When disturbances in feed conditions (e.g. concentrations, power, and volumetric flowrates)

are experienced, a dynamic ED model is required to simulate the observed process behav-

ior. This model allows for detailed dynamic operation so a proper control strategy can

be implemented (e.g. the results presented in section 5.4). Again, the dynamic model is

adapted from Campione et al. [139]. The approach is similar to the 0D-ED model, except

the main mass balance equations for the salt and water have an additional time derivative

term to describe the temporal dynamics experienced by the ED module (i.e. dCSOL
dt
̸= 0 ̸=

dQSOL
dt

where SOL = {C,D}). Again, the system of equations to solve takes a form similar

to Figure 5.2 with time derivatives, and can be found in Figure 5.3.
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Conservation Equations

bδD
dCOUT

D

dt
=

(
QOUT

D COUT
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D

)
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tot
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=
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C

)
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tot

QOUT
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D
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= −bqAVG

w

QOUT
C −QIN

C

Lc
= bqAVG

w

Constitutive Equations

JAVG
tot = JAVG

cond + JAEM,AVG
diff + JCEM,AVG

diff

JAVG
cond =

[
tcounter
CEM − (1− tcounter

AEM )
] I

FbLc

J IEM,AVG
diff = −DIEM

δIEM

(
CAVG
C − CAVG

D

)
qAVG
w = qAVG

eosm + qAEM,AVG
osm + qCEM,AVG

osm

qAVG
eosm =

wJAVG
tot Mw

ρw

qIEM,AVG
osm = LIEM

p

[
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(
ΦIEM
C CAVG

C − ΦIEM
D CAVG

D

)]

Electrical Constraints
Vcp = ηAVG +RAVG

tot
I

bLc

Vtot =
RblankI

A
+

Ncp∑
i=1

Vcp,i

RAVG
tot = RAVG

CEM +RAVG
AEM +RAVG

C +RAVG
D

RAVG
SOL = fs,SOL

δSOL

ΛAVG
SOLC

AVG
SOL

ηAVG = ηAVG
CEM + ηAVG

AEM

ηAVG
IEM = αIEM

RGT

F
ln
[
γAVG
C CAVG

C

γAVG
D CAVG

D

]

Figure 5.3: Full set of equations to simulate a time-dynamic module cell-pair.
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5.3 CAFO Base Case Process

Prior to showing different control strategies and process designs for nutrient recovery, a

realistic base case scenario must be built. This is so a nutrient recovery process can be de-

signed and controlled based on this scenario. Even though WWTPs are a target application,

CAFO waste streams have about an order of magnitude higher concentration of nutrients.

Consequently, they will be the first target installation for creating a fertilizer product. For

future work, WWTPs may only be economical for directly treating the water and getting a

more dilute fertilizer product. Conversely, CAFOs have more realistic direct use available

since CAFOs are located in rural areas where farmland is already located. Additionally,

WWTPs are in densely populated, urban areas that would incur higher transportation costs.

To create this base case, first it is imperative to understand the relative sizes of different

CAFO operations based on different types of animals, and also the traditional means to

treat the manure stream. For the latter part, a lagoon is a pond that is built on the prop-

erty with biological treatment depths that will treat the wastewater for high nitrogen, high

phosphorous, and harmful biological species so that it can be recycled or put on specific

crops called "spray crops". These crops are usually as certain grasses that are meant to

absorb the excess nitrogen to turn the contaminants into organic matter. See Chastain et

al. for an example of the different treatment volumes [9]. One major problem with these

lagoons is that over half of the nitrogen is lost as gaseous ammonia, which is a green-

house gas, and one of the largest polluters of our atmosphere along with CO2. For the for-

mer part, the Clemson Extension Confined Animal Manure Managers Program has many

training manuals with useful information [9]. Chapter 3 of that training manual shows

information on the generation of swine wastewater per animal unit (AU). Utilizing a ta-

ble from the EPA which breaks down the number of animals per AU for different types

(https://www3.epa.gov/npdes/pubs/sector_table.pdf ), coupled with the ranges for an av-

erage CAFO size, the base case CAFO is chosen to be 1000 AU. Given the information
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Figure 5.4: Lagoon treatment volume diagram. Flows were calculated based on concentra-
tions and flowrates found in [9].

presented in Table 3.3 of the Clemson Extension Confined Animal Manure Managers Pro-

gram manual, relative flowrates can be calculated. The final base case scenario is presented

in Figure 5.4. The ED system will fit into this figure by replacing the lagoon and spray

crops to create a fertilizer product, and recycle quality water.

5.4 Control Strategies for Electrodialysis Processes

Using the model presented in subsection 5.2.3, along with the base case scenario built

in section 5.3, an identification of disturbed, control, and manipulated variables can be

found for the nutrient recovery system based on electrodialysis. Even though the final

system design will be an entire ED cascade comprised of multiple units, the initial control

strategies investigated here only consider a single dynamic ED unit operation. Since the

system is anticipated to be powered from renewable energy sources, which are dynamic

in nature, the first disturbance has been identified to be the input power (or total voltage).

Moreover, because the variability in waste depends on the number of animals present and

the biological treatment rate (which both will vary from season to season and year to year),

the second disturbance is considered to be the feed concentration. This unit operation

has the controlled variable as the dilute concentration since for this example the dilute

stream needs to be of recycle water quality for the on-site reuse throughout the CAFO.
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Lastly, the manipulated variable will be the dilute flowrate. In the end, this will cause the

CAFO to use more recycle water if the dilute flowrate is decreased. However, keeping the

concentration of the recycle water quality was chosen to be more important such that an

additional concentration control-loop to keep the recycle quality water mixed with the fresh

water at a constant concentration is not required. Instead, the concentration is fixed, and

only the total CAFO inlet volumetric flowrate needs to be consistent.

Figure 5.6 shows the dynamic process behavior when the ED module is initialized at

the inlet concentrations, C IN
C and C IN

D . The ED system design was chosen based on the

base case presented in section 5.3. The ED module size was based on the pilot plant ED

desalination units from Campione et al. [1]. Table 5.3 and Figure 5.5 show the exact details

to replicate this simulation. Note that the flowrates were chosen based on the wastewater

stream from the CAFO barn shown in Figure 5.4. The stream was then split into the re-

spective dilute and concentrate streams such that the treated dilute stream can be sent back

as the recycled flush/pit water with the same flowrate listed in Figure 5.4. For the initial

control strategy analysis, an open-loop response for a 50% decrease in the total voltage

(seen in Figure 5.7a) and 50% increase in the feed concentration (seen in Figure 5.8a) input

to the ED module was first tested. Then, a simple proportional control law of the form is

presented below

QOUT
D = QOUT

D,SS +Kp

(
CSET

C − COUT
C

)
, (5.23)

with CSET
C = 65 mol/m3, and Kp = 1 able to properly handle each disturbance (as shown in

Figure 5.7b and Figure 5.8b). From these results, initial control strategies and identification

of key control variables have been elucidated for ED nutrient recovery applied to a realistic

CAFO base case.
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Figure 5.5: Technical membrane parameter data for AEM, CEM, and end cap CEM from
PCA "Ion Exchange Membranes for Electromembrane Processes" – Membrane Handling
Guide.
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Electrodialysis Module Specifications
Total Voltage 260 V
Channel Length 0.5 m
Channel Width 0.15 m
Channel Dilute Flowrate 0.012 m3/hr
Channel Concentrate Flowrate 0.004 m3/hr
Calculated Total Current 59 A
Calculated Specific Energy Consumption 0.25 kWh/kg NH4

Table 5.3: ED Module Specifications for control strategy test cases. Membrane/ED system
parameters from manufacturer, transport number based on KCl can be found in Figure 5.5

Figure 5.6: Convergence of ED module to steady-state with COUT
C and COUT

D initialized to
C IN

C and C IN
D , respectively.
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(a) Open-loop response to disturbance (b) Closed-loop response with proportional
control

Figure 5.7: Process disturbance responses for a 50% decrease in the total voltage input to
the ED module. The green dotted line represents the set-point dilute concentration.

(a) Open-loop response to disturbance (b) Closed-loop response with proportional
control

Figure 5.8: Process disturbance responses for a 50% increase in the feed concentration
input to the ED module. The green dotted line represents the set-point dilute concentration.
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5.5 Processes Design of ED Processes

This section details: (i) the implementation of the steady-state model presented in subsec-

tion 5.2.1 into a process simulation environment using AmsterChem’s MATLAB custom

unit operation and (ii) the preliminary process design capabilities of the custom ED unit-

op. While the presented design is rough and unoptimized, the simulated ED process is

shown to be more energy efficient by almost an order of magnitude compared to fertilizer

production using the Haber-Bosch process.

5.5.1 ED Custom Unit Operation

Similar to the custom unit operation implemented in section 4.6, the steady-state ED model

presented in subsection 5.2.1 can be used within any process simulation environment using

AmsterChem’s MATLAB unit operation. The only difference is that this ED code is much

less involved given that there is only a main script to initialize the DAEs solver, and the

accompanying DAEs residual function. Screenshots of the AspenPlus flowsheet, port tab,

parameter tab, MATLAB tab, and additional files tab can be found in Figure 5.9, Figure 5.10,

Figure 5.11, Figure 5.12, and Figure 5.13, respectively. Again, the modeling and simulation

framework presented is exactly that in subsection 5.2.1 and subsubsection 5.2.1. This tool

is available on the transport-modeling GitHub [99].

5.5.2 Preliminary ED Process Design Results

Using the tool built from the previous subsection, a preliminary ED cascade process design

can be done for the first time. Given that capability, there are still many degrees of freedom

including the module size, power consumption for each module, split ratios of feed streams,

recycle stream placements, and overall process goal (e.g. to create a fertilizer product for

an economical gain, to treat the water fully for an environmental gain, or a mix of both).

To create a first-pass process, the module size will be fixed to the one from Campione et
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Figure 5.9: Basic AspenPlus flowsheet with MATLAB CAPE-OPEN ED unit operation.

al. [1]. The use of recycle streams will be left out, and the split ratio of the feed streams

will be fixed at 50%. Lastly, the total voltage was fixed at the maximal separation possible

before the extra power would cause dead zones within the ED module (i.e. minimize ED

module parts where no concentration change would be occurring, similar to Figure 5.6, but

with the x-axis being channel length rather than time).

Figure 5.14 shows the first-pass process design to see how concentrated of a fertilizer

product was achievable. Eventually, water transport due to osmotic pressure and salt trans-

port due to an applied voltage began to cancel each other out such that no product stream

concentration would occur (i.e. concentrate stream dilution due to the water transport from

the feed stream). Given that, the final fertilizer product was found to be 5.6 wt% NH4-N.

For context, the 5 year goal for the CASFER project is to create a technology that can create

10 wt% NH4-N. Considering this is bringing a stream all the way from 0.1 wt%, this is a

massive concentration factor. At the same time, all dilute streams from all 10 ED modules

were of recycle quality, and mixed into a single stream to be sent back to the CAFO barn.

Figure 5.15 shows the entire ED cascade put back into the base case process flowsheet to
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Figure 5.10: AmsterChem MATLAB CAPE-OPEN ED unit operation user interface – Ports
tab.
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Figure 5.11: AmsterChem MATLAB CAPE-OPEN ED unit operation user interface – Pa-
rameter tab. The parameter units are the same as used in Table 5.3.
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Figure 5.12: AmsterChem MATLAB CAPE-OPEN ED unit operation user interface – MAT-
LAB tab.
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Figure 5.13: AmsterChem MATLAB CAPE-OPEN ED unit operation user interface – Ad-
ditional files tab.
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see the overall stream amounts. From this design, there is a 72% recovery of ammonium

from the CAFO wastewater. Additionally, the energy consumption is calculated to be 2.26

kWh/kg NH4-N. This value is almost 4 times lower than ammonia production using con-

ventional Haber-Bosch (which is reported to be 8.44 kWh/kg NH4-N) [140]. Lastly, the

system footprint is estimated to be the size of a fridge, which can fit within a modular

process with no problem. Given these great results, they are unoptimized and a first-pass.

One major drawback that needs to be address is the maximum flowrate an ED module of

this size can handle. If the limit is much lower than what is assumed now, then there will

need to be additional ED modules added. This will bring the specific energy consumption

up, but also possibly down since the power consumption can be spread out across multiple

modules that will possibly create an overall lower power consumption. Regardless, the tool

and first-pass process design are a step forward in the right direction to determine the limits

and applicability of ED from a system design standpoint. There are other CASFER tech-

nologies such as ion magnetic adsorption, biologically-assisted struvite crystallization, and

sludge electrolysis that also need to be simulated on a systems level to create a library of

different technologies that can be coupled together in many possible configurations. From

this, a toolkit to design modular nutrient recovery processes can be realized.

5.6 Conclusions

Within this chapter, electrodialysis was presented as a promising technique to decarbonize

the nitrogen and phosphorous economy through electrification. From a modeling and sim-

ulation standpoint, many different operation modes were shown including: steady-state,

zero-dimensional approximation, batch, and dynamic modes. The code is open-source and

available through MATLAB. For the dynamic ED model, initial control strategies and pro-

cess behavior were investigated for realistic disturbances in the total available power and

the feed concentration. The results show that a simple proportional control law works well

for the test cases. For the steady-state ED model, the code was extended to be used within
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Figure 5.14: ED cascade AspenPlus flowsheet with MATLAB CAPE-OPEN ED unit oper-
ation. System specifications: 100V for each ED UO, 500 cell pairs (0.2V per cell pairs),
16.5A avg calculated current, 0.025 A/m2 average calculated current density, 0.5 m ED
UO length, 0.15 ED UO width, 155-micron channel thickness.

a process simulation environment (e.g. AspenPlus). Using that custom unit operation, a

preliminary process design was created. This yielded a higher amount of recycle-quality

water compared to the base case presented in section 5.3. Additionally, a 5.6 wt% NH4-N

fertilizer product can be delivered at a power cost that is about 4 times less than the conven-

tional means of producing ammonia. From these results, the next graduate student to work

on this project will have a solid foundation to write a publication on an extension of this

process design, or possibly take it one step further to run some initial process optimization

techniques.
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Figure 5.15: Base case flowsheet with ED system added in place of the lagoon and spray
crops. Note that 3.18 tonnes/day 5.6 wt% product (0.15 tonnes per day NH4-N) is pro-
duced.
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CHAPTER 6

CONCLUSIONS AND FUTURE OUTLOOK

6.1 Conclusions

This dissertation addresses the main problem of lowering the entry barrier to modeling

and simulation of industrial membrane processes when confronted with complex mixture

streams. Specifically, the numerical methods, sorption models, diffusion models, stream-

lined model implementations, software, and process designs will enable, for the first time,

the ability for practicing engineers and/or experimental researchers to rigorously implement

these processes that utilize complex mixtures within process simulation environments. In

doing so, industrial membrane processes can be properly and fairly compared to the previ-

ously identified traditional separation routes to test for economic, operational, and energetic

viability for applications that are of industrial relevance. Exemplar applications in which

complex mixtures and industrial membrane processes have been listed to be: seawater de-

salination, brackish groundwater treatment, zero liquid discharge processes, xylene isomer

separation, catalyst recovery, biorefinery separations, hydrocarbons from crude oil, alkenes

from alkanes, uranium from seawater, rare-earth metals from ores, nitrogen/phosphorous

nutrient recover from WWTP/CAFO streams, and carbon capture from atmospheric/indus-

trial streams [2, 8, 141].

6.2 Summary of Novel Research Capabilities

6.2.1 Local Membrane Transport

In chapter 2, improved numerical methods were presented for the membrane local flux

problem when confronted with complex mixtures. Specifically, our proposed shooting

algorithm was identified as the most accurate, efficient, and robust for all test cases. How-
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ever, for certain applications, the average coupling approximation was shown to be highly

competitive and sometimes preferred since its implementation results in a simpler system

of nonlinear algebraic equations. In contrast, the proposed shooting algorithm must solve

DAEs in the worst case, so its implementation is not so straightforward. As an exemplar

application to rigorously test these developed numerical methods, organic solvent reverse

osmosis through pressure-based industrial membrane processes using glassy asymmetric

polymer membranes was studied (permeating complex organic liquid feeds with up to nine

components in non-dilute conditions). Regardless, the numeral methods can be modified

for different applications based on: different thermodynamic sorption models, custom dif-

fusion models, various concentration representations based on moles or adsorbed species

concentration, mixed-matrix membrane materials, and downstream mixing rules (as seen

in pervaporation, highly diffusive back-mixing Phase III support layers, and possible tem-

perature differences as seen in membrane distillation).

In section 2.2, the local flux problem was rigorously derived and presented in a way

that has never been seen in the literature (i.e. Figure 2.2 shows the exact number of knowns

and unknowns in the system, and how every piece fits together when assuming a three-step

sorption-diffusion mechanism). The key point to recognize is that this modelling frame-

work is predictive in that all that needs to be known are the inlet conditions and all necessary

system conditions/parameters. Then, section 2.3 presents the existing simulation methods

in great detail such that they can be recreated in a simple manner. Again, throughout the

literature on membrane modeling and simulation, there has rarely been a solid write-up of

such numerical methods outside of general numerical method textbooks. When applied to

pressure-based membrane modeling and simulation, these numerical method implementa-

tions will save academic and industrial researchers hours of time and effort. Next, sec-

tion 2.4 proposes a novel shooting algorithm, a simpler finite differences implementation,

and two initialization strategies for proper good initial guesses to the nonlinear equation

solver. These initialization strategies were shown to improve robustness for all numerical
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methods. Again, scientific literature in the space of membrane modeling and simulations

focuses more on the modeling aspect without many details on the simulation and imple-

mentation of the model. This dissertation bridges that gap. The results and conclusions

show that the proposed shooting algorithm is the most efficient, accurate, and robust for all

examined test cases.

6.2.2 Extended Membrane Modeling

In chapter 3, two different modeling problems were presented and solved. In the first prob-

lem, section 3.2 presents extended thermodynamic sorption and diffusion capabilities when

applied to organic solvent reverse osmosis through glassy polymers. The first challenge

identified was the strong thermodynamic interactions between the organic solvent mixture

species. Then, the second challenge (consequential from the first) was the way these sol-

vents plasticized the membrane to a rubbery state that caused a transition in the observed

permeation landscape. To bridge the gap from theoretical predictions to experimental ob-

servations when using state-of-the-art sorprion and diffusion models, three new membrane

permeation concepts were constructed. The first concept had to do with the thermodynamic

soprion that took place; specifically, how the complex mixture species partitioned from a

bulk-feed mixture into the membrane matrix. This model was coined the Flory-Huggins-

Langmuir sorption model, which was shown to better describe how the membrane phase

interacted with the organic solvents. This concept of two different sorption mechanisms

with a multicomponent Flory-Huggins lattice theory coupled with a glassy polymer void

filling sorption type was never before seen in the literature. Through a comprehensive

set of complex mixture experiments and preliminary multicomponent sorption data, this

model was shown as promising to describe organic solvent and glassy polymer membrane

interactions and was parameterized solely using single component data.

The second concept that was introduced was based on the observed swelling of the

glassy polymer membranes through solvent plasticization which required a different ap-
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proach to how the membrane diffusion was theorized. The idea was based on an exponential-

type diffusion rate-law that was simple to parameterize based on a known swollen polymer

state in the single component case. Consequently, this was easily extended for multicom-

ponent mixture swollen polymer states. The last concept proposed was an even simpler

approach to describing this swollen polymer diffusion landscape. The idea was based on

an averaging of the diffusion coefficients such that a "cohort" type diffusion was coined

to be happening in this polymer state. The simple explanation is that in this state, the

membrane loses all diffusion selectivity, and the only selectivity observed is from ther-

modynamic partitioning. This idea was recently extended and shown to be true in certain

cases of OSRO [68]. Applying and implementing these concepts for three complex mix-

tures permeating through two different polymer membranes, Figure 3.6 shows a profusion

of comparisons between state-of-the-art models, and shows how the extended modeling

framework outperforms in all cases.

For the final problem shown in section 3.3, the transport modeling framework was

extended to be capable of simulating complex organic liquid feeds of up to hundreds of

components. Prior to any modifications, the simulations were estimated to converge a

solution in over year. After reconstructing the underlying thermodynamic sorption model

and accompanying derivative to be represented in matrix-vector notation rather than nested

summations, the model could be evaluated in n2 operations. Whereas before, the model

had to be evaluated in n3 operations by writing multiple nested FOR loops. While part

of the speed-up was due to vectorization in an interpreted programming language such

as MATLAB, there was also a compacting of the Flory-Huggins fugacity model that took

place to enable the model to be evaluated in n less computations (compare (Equation 3.1)

with (Equation 3.14)) by reducing the number of multiplications required as well as the

amount of nested summations that needed to be evaluated. This enabled a novel data-

driven machine learning approach to crude oil membrane permeation predictions that is

further presented in Lee et al. [69].
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6.2.3 Pressure-based Industrial Membrane Software

From chapter 4, a MATLAB-based software package asyMemSim, was established for open-

source use. The code allows for simulation of all numerical methods, membrane sorp-

tion models, membrane diffusion models, cross-diffusional coupling models, and initial-

ization strategies presented in this dissertation. Within this software package, various

pieces of code allow for running multiple mixture simulations at once, running many

single component permeation predictions, fitting single component diffusivities based on

single component data, running custom complex mixture simulations, and a centralized

databank to store any number of model parameters, polymer parameters, and componen-

t/polymer properties. This code has been used by many students within Dr. Ryan Lively’s

research group with relative ease. The code is available at https://github.com/transport-

modeling/asyMemSim for use by any academic researcher. Practicing chemical engineers

can also use this software after reading through the accompanying README modeling

document, and chapter 4. In addition to this, since the goal of this dissertation is to en-

able industrial membrane process simulation within process simulation environments, a

CAPE-OPEN compliant custom unit operation is available for use in the AspenPlus chem-

ical process simulator. This custom unit op is untested in other CAPE-OPEN compliant

process simulation environments, but theoretically should work exactly the same. The im-

plementation is made possible through AmsterCHEM’s MATLAB CAPE-OPEN Unit Op-

eration (https://www.amsterchem.com/matlabunitop.html). The custom unit operations can

be found within the previously provide GitHub link. While there are many functionalities

and code additions to address, this is a first step in the right direction.

6.2.4 Electrified Industrial Membrane Processes

From chapter 5, a promising application of nitrogen and phosphorous nutrient recovery

from CAFOs and WWTPs was presented. Additionally, a modeling and simulation frame-

work was derived for a number of operation modes to have a toolkit of different codes
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for lab-scale simulation, control strategy implementation, and overall process design. All

codes are open-source and available for use in MATLAB. As a necessary extension, the

steady-state code is available as a custom unit operation within the AspenPlus process sim-

ulation environment. This allowed for a preliminary process design that is presented in

subsection 5.5.2. Moreover, a proper CAFO base case was constructed using relevant lit-

erature, and simple control strategies were investigated for realistic process disturbances

using the dynamic operation ED code. With these contributions, a step forward has been

taken for elucidating a modular nutrient recovery process that can be directly deployed on

CAFOs to create a fertilizer product, while still treating large quantities of wastewater for

reuse on-site.

6.3 Future Outlook

Considering the future of the research presented in this dissertation, the flame is far from

dying. Each chapter has its respective possibilities for future work. For chapter 2, the natu-

ral extension of solving the local flux problem is to extend it to the global scale modeling.

This will allow for modeling and simulation of full-scale pressure-based membrane mod-

ules utilizing complex mixtures. The challenge lies within approximating the local problem

in such a way that it can easily be extended to the material, energy, and momentum bal-

ances that describe the transport through a global membrane module (see subsection 1.3.1

and Appendix C for details of global modules). This is to avoid solving a system of partial

differential and algebraic equations such that the problem can be solved within a process

simulation environment. Alternatively, one can approximate the global module transport

problem by discretizing it into segments, and solve the full local transport problem using

the proposed shooting algorithm in subsection 2.4.2. Determining which way is more effi-

cient, accurate, and reliable is an open question. Moreover, for the local transport problem,

there are still many different tweaks to the implementation that can enable speed-ups to the

code such that it is faster for higher component systems. One of those is writing the DAE
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system in Figure 2.2 in terms of a fugacity gradient, and not making the simplification to

the volume fraction gradient. From there, the thermodynamic matrix, Γ, is circumvented

(i.e. less computations are required). However, with this implementation, there will be a 1
f

multiplied by the fugacity gradient term that can cause solver instabilities for certain val-

ues of fugacity. Again, the relative trade-offs in efficiency, accuracy, and robustness is an

open question. Another implementation tweak is supplying the Jacobian to the integrator

and/or the outer solver. This can also possibly increase the three qualities listed previously.

Extending the local transport problem presented here, and testing alternative model formu-

lations is another possible future application. Specifically, those based in mole fractions

and adsorbed species concentrations may be explored to expand the possible applications

of the software, asyMemSim, while preserving the work done on the local flux problem

numerical method development.

From chapter 3, there is still a need for applying the Flory-Huggins-Langmuir fugacity

model and Vignes diffusional coupling model to large component systems. From sec-

tion 3.3, only the cohort diffusion and Flory-Huggins models were assumed. While the

experimental data matched fairly well, these alternative models are anticipated to still be

applicable when the polymer system is not in a swollen state such that the cohort style

diffusion occurs, and the diffusion selectivity is retained. Another natural extension for the

work presented in section 3.2 is more rigorous testing of the transport framework and FH-

LM fugacity model for many more OSRO systems. The FH-LM model may also be applied

to rigid adsorption systems with type-II isotherm behavior. Progressing towards additional

high-component simulations (n > 1000) is also a possible avenue of research since there

are still numerical tweaks that can be applied an explored to make the high component

simulations converge more efficiently, accurately, and reliably. Taking advantage of GPU

parallelization is another great extension of the code to enable complex mixture permeation

simulations of thousands of components. Lastly, exploring a pseudocomponent structure

oriented lumping framework extension for membrane permeation simulations would also
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enable high component simulations. This is similar to the grouped component models that

are already used in high component distillation simulations. Utilizing some sort of pa-

rameterization based on penetrant-polymer interactions and molecule shape/size could be

a useful basis for such a structure-oriented lumped component model.

In chapter 4, there are many custom implementations and tweaks that can be applied

(as described in section 4.5). As far as using the code within a process simulation environ-

ment, there are many contributions to be found from process design/optimization/control

of ORSO membrane cascades to replicate an oil refinery (or bio-oil) with glassy polymer

membranes. All the experimental work done thus far from chapter 2 has been focused

on the lab-scale local transport problem. However, the next logical step is to take these

parameters and results to see how the performance scales and compares with traditional

separation methods. The conclusion from that work may be some sort of hybrid process

that can be retrofitted within existing refineries. The possibilities are endless in that regard.

Finally, chapter 5 is the most open-ended work presented in this dissertation. Since

the work presented is mainly preliminary, the foundations are there for a solid publication.

Specifically, the process design of electrified industrial membrane processes for nutrient

recovery from wastewater is something that is missing from the literature. Additionally,

the modeling and simulation framework presented was a simple single salt model. Exten-

sions for multicomponent complex mixtures will be required when moving towards more

realistic process streams from WWTPs and CAFOs. Possible models are the Nernt-Plank

and Maxwell-Stefan. These models account for the thermodynamic and diffusional cou-

pling between species at the cost of being more computationally complex. The balance

between matching experiments with the level of computational complexity to include in

the process design is a trade-off with an open question. Another extension of this work

is to take the lab-scale ED simulators and attempt to fit parameters to more realistic salt

species (since the current membrane parameters are based on KCl). Even though KCl and

NH4Cl are both monovalent salts on their own, there will most likely be different transport
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behaviors when in contact with multiple species within a complex mixture. There are many

experimental collaborations within CASFER to be made, and Dr. Marta Hatzell at Georgia

Tech is a great start. Even at the other partner institutions, there are other unit operations

such as electrolysis, biologically-assisted struvite production, and magnetic adsorption that

should also have custom unit operations and implementations to test the correct treatment

train to yield the optimal fertilizer product. Pretreatment filtration and reverse osmosis is

another avenue to test feasibility to decrease total solids and water content to be fed to the

ED modules. Additional base case scenarios for different CAFO and WWTP operations

will also be another research avenue to explore to see how each nutrient recovery process

design and control strategies change as a function of the various scenarios.

With all these different branches of research to explore, I hope this dissertation will

provide a stepping stone for someone to stand on, and progress in their own contribution(s)

to the web of science. Please feel free to reach out to me with any questions or ideas that I

could possibly help with. No matter what, we are all in this together to progress the human

condition forward in a positive direction.
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APPENDIX A

IMPROVED NUMERICAL METHODS FOR LOCAL TRANSPORT

SUPPLEMENTAL INFORMATION

This chapter provides all the necessary supplemental information for chapter 2 and ref-

erences to the paper titled "Improved numerical methods for simulating complex mixture

transport across asymmetric polymer membranes using a Maxwell–Stefan model" [40].

A.1 Derivation of Chemical Potential Expression

This section is meant to derive a common equation written in membrane literature (see

(Equation 2.4) and (Equation 2.5)) [19]. After only reading it in the final form without

derivation in [19], understanding its origin will be a good reference below. There are two

parts to this derivation. The first will be deriving the relationship between activity and fu-

gacity. The second will be the derivation of the Poynting correction factor from differences

in chemical potential reference states. This textbook was used as reference [142]. For sake

of simplicity, the superscript phase y notation will be disregarded since throughout these

derivations we only work with one phase. Staring with the first derivation, we write the

definition of activity in terms of chemical potentials and Gibbs free energy at some T,P as

(defining the reference state be pure component, i.e. µ◦
i = Gi(T, P )):

RT ln(ai) = µi − µ◦
i (T, P ) = µi −Gi(T, P ) (A.1)

Next, the definition for the mixture fugacity can be written as the deviation from a

reference state that is an pure component ideal gas at the same T, P :

µi − µ◦,IG
i = RT ln

(
fi
P

)
(A.2)
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The same can also be written for the pure component chemical potential, µ◦(T, P ),

reference state as:

µ◦
i − µ◦,IG

i = RT ln

(
f ◦
i

P

)
(A.3)

Subtracting (Equation A.2) and (Equation A.3) then setting equal to the LHS of (Equation A.1)

yields the final expression:

RT ln(ai) = RT ln

(
fi
f ◦
i

)
(A.4)

For the second derivation we again start from (Equation A.1) at some T, P but with an

arbitrary pure component Gibbs free energy reference state at T, P+:

RT ln(ai) = µi − µ◦
i (T, P ) = µi −Gi(T, P ) +Gi(T, P

+)−Gi(T, P
+). (A.5)

Then, one can integrate the fundamental property relation for Gibb’s free energy dGi =

VidP − SidT :

Gi(T, P
+)−Gi(T, P ) =

∫ T,P+

T,P

VidP, (A.6)

so we end up with (for incompressible liquid):

µi = µ◦
i +RT ln(ai) + Vi(P − P+), (A.7)

or in differential form (constant T):

dµi = RTd ln(ai) + VidP. (A.8)

A.2 Maxwell-Stefan Equation Analysis

The equations below were adapted from (S10)-(S12) of [64]. In this section we aim to

justify why only n Maxwell-Stefan equations are needed. First we will present the initially

force-balance derived Maxwell-Stefan model in terms of mole fractions and component
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velocities as:

−dµ1

dz
=

RT

Ð12

x2(u1 − u2) +
RT

Ð13

x3(u1 − u3) + · · ·+
RT

Ð1m

xm(u1 − um), (A.9)

−dµ2

dz
=

RT

Ð21

x1(u2 − u1) +
RT

Ð23

x3(u2 − u3) + · · ·+
RT

Ð2m

xm(u2 − um), (A.10)

...

−dµn

dz
=

RT

Ðn1

x1(u1 − un) +
RT

Ðn2

x2(un − u2) + · · ·+
RT

Ðnm

xm(un − um), (A.11)

−dµm

dz
=

RT

Ðm1

x1(um − u1) +
RT

Ðm3

x3(um − u3) + · · ·+
RT

Ðmn

xn(um − un), (A.12)

where Ðij is the molar-based Maxwell-Stefan diffusivity for the ij component pair, and ui

is the velocity of component i.

Multiplying each Maxwell-Stefan equation by its respective mole fractions, xi, the RHS

of each equation can be added up to yield zero (noting that Ðij = Ðji). This is exactly the

Gibbs-Duhem relationship,

x1
dµ1

dz
+ x2

dµ2

dz
+ · · ·+ xn

dµn

dz
+ xm

dµm

dz
= 0, (A.13)

and as such, only the first 1 to n chemical potential gradients, dµi

dz
, are independent.

A.3 Thermodynamic Factor Matrix Calculations

This section provides the necessary derivative matrices, also called thermodynamic fac-

tors
(
Γij = ϕi

∂ln(fi)
∂ϕj

= ϕi

fi

∂fi
∂ϕj

)
, required for the transport framework outlined in subsec-

tion 2.2.3. Since there are three implemented sorption models, there are again three differ-

ent derivations required for each model (Flory-Huggins, Dual-Mode, and Flory-Huggins-

Langmuir).
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A.3.1 Flory-Huggins

This derivative is fairly straightforward when starting from (Equation 3.17). Differentiating

(Equation 3.17) gives

Γ(ϕ1:n) = In×n + diag(ϕ1:n)

[
C̃−V◦ϕT

1:n

(
Q̃T + Q̃

)]
. (A.14)

Where the required matricies are defined in (Equation 3.17). Using (Equation A.14), the

full Γ(ϕ1:n) matrix can be evaluated in order n2 operations.

A.3.2 Dual-Mode Sorption

The thermodynamic factor matrix is not a straightforward as the previous section. Starting

from (Equation 3.6), note that there is no way to rearrange this equation to give fugacity

explicitly as a function of the volume fractions. Thus, this must be treated as a general

implicit fugacity model of the form g(f ,ϕ) = 0. Specifically, the ith component of g is

given by

gi(f ,ϕ1:n) = ϕi − (1−
n∑

j=1

ϕj)

(
kifi +

CH
i bifi

1 +
∑n

k=1 bkfk

)
. (A.15)

The function f(ϕ1:n) that maps a given set of volume fractions into the unique set of com-

ponent fugacities in the corresponding mixture is defined implicitly by the condition

λ(ϕ1:n) ≡ g(f(ϕ1:n),ϕ1:n) = 0. (A.16)

Since Γ involves the derivatives of this function, it must be obtained by implicit differen-

tiation. This is done by first taking the total derivative of λ and setting it equal to zero (it

must equal zero since λ(ϕ1:n) is constant by (Equation A.16)):

dλ

dϕ1:n

=
∂g

∂f

∂f

∂ϕ1:n

+
∂g

∂ϕ1:n

= 0. (A.17)
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Rearranging for the needed derivative of f(ϕ1:n) gives

∂f

∂ϕ1:n

= −
(
∂g

∂f

)−1
∂g

∂ϕ1:n

. (A.18)

The derivatives of g above should be taken as if f and ϕ1:n are independent variables.

Moreover, note that ϕn+1 was eliminated from (Equation A.15) using ϕn+1 = 1−
∑n

i=1 ϕ1.

Thus, both g and the implicit function f(ϕ1:n) defined by (Equation A.16) are functions

of only the n independent volume fractions ϕ1:n. This is necessary for obtaining correct

derivatives via (Equation A.18).

Equation (Equation 3.6) can be vectorized as

g(f ,ϕ1:n) = ϕ1:n − (1− 1T
nϕ1:n)

(
diag(k)− (1 + bTf)−1diag(cH)diag(b)

)
f , (A.19)

where k = (k1, . . . , kn), cH = (CH
1 , . . . , CH

n ), and b = (b1, . . . , bn). Using (Equation A.19),

the derivative matrices needed for (Equation A.18) can be obtained using standard matrix

calculus rules:

∂g

∂ϕ1:n

= In×n +
(
diag(k) + (1 + bTf)−1diag(cH)diag(b)

)
f1T

n, (A.20)

∂g

∂f
= −(1− 1T

nϕ1:n)

(
diag(k)−

diag
(
cH
)

diag (b)
(1 + bTf)

[(
1 + bTf

)−1
fbT − In×n

])
.

(A.21)

The DMS thermodynamic factor matrix can now be computed as

Γ(ϕ1:n, f) = diag(ϕ1:n)diag(f)−1 ∂f

∂ϕ1:n

. (A.22)
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A.3.3 Combined Flory-Huggins-Langmuir

To get the required derivatives for this model, the derivation will start from (Equation 3.17)

and (Equation 3.9). As with the DMS model, this model cannot be rearranged to give

fugacity explicitly as a function of ϕ1:n, and is more complex still because it involves the

intermediate variables ϕFH
1:n. Thus, it is an implicit model with 2n equations of the form

g(ϕ1:n,ϕ
FH
1:n, f) =

r(ϕ1:n,ϕ
FH
1:n, f)

s(ϕ1:n,ϕ
FH
1:n, f)

 =

0n

0n

 , (A.23)

where r and s represent (Equation 3.9) and (Equation 3.17), respectively. In matrix-vector

form,

r(ϕ1:n,ϕ
FH
1:n, f) = ϕ1:n − ϕFH

1:n − (1− 1T
nϕ1:n)(1 + bTf)−1diag(cH)diag(b)f , (A.24)

s(ϕ1:n,ϕ
FH
1:n, f) = ln

(
ϕFH

1:n

)
− ln

(
f

f◦

)
+ p+ C̃ϕFH

1:n −V◦
n+1(ϕ

FH
1:n)

TQ̃ϕFH
1:n, (A.25)

where the natural log and division are taken componentwise.

Given any ϕ1:n, these equations can be solved simultaneously to obtain the correspond-

ing ϕFH
1:n and f . Thus, the functions ϕFH

1:n(ϕ1:n) and f(ϕ1:n) that map a given set of volume

fractions into the unique set of Flory-Huggins volume fractions and component fugacities

in the corresponding mixture are defined implicitly by the conditions

Λ(ϕ1:n) ≡ r
(
ϕ1:n, f(ϕ1:n),ϕ

FH
1:n(ϕ1:n)

)
= 0, (A.26)

Υ(ϕ1:n) ≡ s
(
ϕ1:n, f(ϕ1:n),ϕ

FH
1:n(ϕ1:n)

)
= 0. (A.27)

Since Γ involves the derivatives of f(ϕ1:n), it must be obtained by implicit differentiation.

This is done by first taking the total derivatives of Λ and Υ and setting them equal to zero

185



(they must equal zero since they are constant by (Equation A.26) and (Equation A.27)):

dΛ

dϕ1:n

=
∂r

∂f

∂f

∂ϕ1:n

+
∂r

∂ϕFH
1:n

∂ϕFH
1:n

∂ϕ1:n

+
∂r

∂ϕ1:n

= 0, (A.28)

dΥ

dϕ1:n

=
∂s

∂f

∂f

∂ϕ1:n

+
∂s

∂ϕFH
1:n

∂ϕFH
1:n

∂ϕ1:n

+
∂s

∂ϕ1:n

= 0. (A.29)

Noting that ∂s
∂ϕ1:n

= 0, (Equation A.29) can be solved for ∂ϕFH
1:n

∂ϕ1:n
as

∂ϕFH
1:n

∂ϕ1:n

= −
(

∂s

∂ϕFH
1:n

)−1
∂s

∂f

∂f

∂ϕ1:n

. (A.30)

Substituting this into (Equation A.28) and solving for ∂f
∂ϕ1:n

then gives

∂f

∂ϕ1:n

= −

(
∂r

∂f
− ∂r

∂ϕFH
1:n

(
∂s

∂ϕFH
1:n

)−1
∂s

∂f

)−1
∂r

∂ϕ1:n

. (A.31)

Finally, the thermodynamic factor matrix (Equation A.22) is given by

Γ(ϕ1:n, f) = −diag(ϕ1:n)diag(f)−1

(
∂r

∂f
− ∂r

∂ϕFH
1:n

(
∂s

∂ϕFH
1:n

)−1
∂s

∂f

)−1
∂r

∂ϕ1:n

. (A.32)

The derivatives of r and s above should be taken as if f , ϕFH
1:n, and ϕ1:n are independent

variables. These derivatives are readily derived from (Equation A.24) and (Equation A.25)

using standard matrix calculus rules as
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∂s

∂f
= −diag (f)−1 , (A.33)

∂s

∂ϕFH
1:n

= diag
(
ϕFH

1:n

)−1
+ C̃−V◦(ϕFH

1:n)
T
(
Q̃T + Q̃

)
, (A.34)

∂r

∂ϕFH
1:n

= −In×n, (A.35)

∂r

∂ϕ1:n

= In×n + (1 + bTf)−1diag(cH)diag(b)f1T
n, (A.36)

∂r

∂f
= ϕm

(
diag(cH)diag(b)

[(
1 + bTf

)−2
fbT −

(
1 + bTf

)−1
In×n

])
, (A.37)

where the matrices in (Equation A.34) are defined in (Equation 3.17).

A.4 Explicit Isotherm Simulation Method Simplifications

As mentioned in Section 3.1 of the main text, the implementation of the approximation

methods and finite difference (FD) methods described in the main text can all be simplified

when the membrane phase fugacity model is explicit in fugacity (simplifications of the

shooting method in this case are discussed in the main text; see Figure 3). Recall that

the general implicit membrane fugacity model takes the form gII(f II ,ϕII , T II , P II) = 0.

The model is said to be explicit in fugacity if there exists and algebraic rearrangement that

isolates f II on one side of the equation; i.e.,

f II = g̃II(ϕII
1:n, T

II , P II). (A.38)

Among the fugacity models used in this paper, only the Flory-Huggins (FH) model can

be rearranged in this way, so only the simulations using the FH model benefited from the

simplifications described in this section.

Recall that the complete set of equations describing the rigorous local flux model with

no simplifications is given in Figure 2.2 of the main text. That figure groups the equations
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into three blocks describing, respectively, phase equilibrium on the feed side of the mem-

brane, transport across the active layer, and phase equilibrium on the permeate side. All of

the approximation and FD methods described in the main text were presented in terms of

the modifications they make to this set of equations, which all occur in Block 2. Also recall

that, for all of those methods, the final numerical procedure involved first solving Block

1 independently, and then solving Blocks 2 and 3 simultaneously. The simplifications of

these methods enabled by the explicit form (Equation A.38) involve using (Equation A.38)

to completely eliminate the unknowns f II from Blocks 2 and 3, resulting in a smaller set

of equations to solve numerically.

To accomplish this, first note that, as a consequence of having an explicit fugacity

model, the corresponding thermodynamic factor matrix Γ(ϕII
1:n, f

II) can be written as a

function of ϕII
1:n only. This is because

Γ(ϕII
1:n) = diag(ϕII

1:n)diag(f II)−1 ∂f II

∂ϕII
1:n

, (A.39)

= diag(ϕII
1:n)diag(g̃II(ϕII

1:n, T
II , P II))−1 ∂g̃

II

∂ϕII
1:n

(ϕII
1:n, T

II , P II).

This implies that the first equation in Block 2 no longer depends on f II , and hence both the

unknowns f II and the equations gII = 0 can be completely eliminated from Block 2. To

completely eliminate f II , the value at the permeate side, f II , must also be eliminated from

Block 3 by directly substituting g̃II(ϕII
L,1:n, T

II , P II). If the bulk permeate is assumed to

be ideal (γIII = 1), then the first equation in Block 3 is also not needed and the second

equation can be used to completely eliminate the variables xIII as well.

Since each of the approximation and FD methods handle the Block 2 equations differ-

ently, the following subsections show the final form of these equations for each method

after incorporating the explicit fugacity model simplifications outlined above.
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A.4.1 Fick’s Law Approximation

0 = h(ϕL,x
III , Ntot) (A.40)

=

diag(V◦)xIIINtot + diag(DFick)
ϕ1:n,L−ϕ1:n,0

L

1−
∑n+1

i=1 ϕi,L

 , (A.41)

where DFick = (DV
1m,Fick, D

V
2m,Fick, . . . , D

V
nm,Fick)

A.4.2 Volume Fraction-form Average Coupling Approximation

0 = h(ϕL,x
III , Ntot) (A.42)

=

diag(V◦)xIIINtot +B−1(ϕavg)Γ(ϕavg)
ϕ1:n,L−ϕ1:n,0

L

1−
∑n+1

i=1 ϕi,L

 . (A.43)

A.4.3 Fugacity Form Average Coupling Approximation

0 = h(ϕL,x
III , Ntot) (A.44)

≡

diag(ϕ1:n,avg) ln

(
g̃II (ϕL)

g̃II (ϕ0)

)
L

+B(ϕavg)diag(V◦)xIIINtot

1−
∑n+1

i=1 ϕi,L

 .

A.4.4 Fugacity Form Finite Difference Method

The equations for a generic node 0 < s < S are
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0 = hs(ϕs−1,ϕs,ϕs+1,x
III , Ntot) (A.45)

≡

diag(ϕ1:n,s) ln

(
g̃II (ϕs+1))

g̃II (ϕs−1))

)
zs+1−zs−1

+B(ϕs)diag(V◦)xIIINtot

1−
∑n+1

i=1 ϕi,s

 .

A.4.5 Volume-Fraction Form Finite Difference Method

The equations for a generic node 0 < s < S are

0 = hs(ϕs−1,ϕs,ϕs+1,x
III , Ntot) (A.46)

≡

Γ(ϕs)
(ϕ1:n,s+1−ϕ1:n,s−1)

zs+1−zs−1
+B(ϕs)diag(V◦)xIIINtot

1−
∑n+1

i=1 ϕi,s

 .

A.5 Thermodynamic Factor Matrix Comparison

Figure A.1, discussed in Section 5.4 of the main text, shows that Γ has significant off-

diagonal entries when evaluated at z = 0 for the 5 and 9 component test cases. The

implicit fugacity model has larger off-diagonal elements compared to the explicit model

and contains negative values.

A.6 Solving the Local Flux Problem with Fixed Permeate Composition

As discussed in subsection 2.2.1 of the main text, the use of Pan’s relationship may not al-

ways be appropriate in the formulation of the local flux problem. In this section, we provide

details on an alternative formulation in which Pan’s relationship is omitted and we instead

assume that xIII = xIV is given. While Pan’s relationship assumes that the bulk permeate

stream does not back-mix into the membrane support layer, and hence xIII is determined

entirely by the component fluxes through the active layer, the formulation discussed here
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Figure A.1: Thermodynamic coupling matrix, Γ, evaluated at z = 0 for the explicit fugac-
ity model nine component mixture through SBAD-1, and the implicit fugacity model five
component mixture through PIM-1.

instead assumes that back-mixing occurs so completely that xIII is determined entirely by

the fixed permeate composition xIV . Figure A.2 shows the complete set of equations and

unknowns for this formulation. In the corresponding figure assuming Pan’s relationship in

the main text, the unknown component volumetric fluxes NV were eliminated from the MS

equations using Pan’s relationship in the form

NV = diag(V◦)xIIINtot,

and both xIII and Ntot were unknowns. In contrast, in Figure A.2, xIII is known and, since

Pan’s relationship no longer holds, the unknown NV is retained in the MS equations. In

sum, the n + 1 unknowns xIII and Ntot are swapped for the n unknowns NV . This results

in the loss of one degree of freedom, but the system is made square again by eliminating

the equation
∑

i x
III
i = 1 from the third block.

We now discuss the impacts of these change on the numerical methods discussed in the

main text. The most significant impact is on the Fick’s law and average-coupling approx-
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Phase Equilibrium at z = 0

g◦(f◦, T, P II) = 0

gI(γI , xI , T, P I) = 0

gII(f II0 ,ϕ0, T, P
II) = 0

f II
i,0 = γI

i,0x
I
i f

◦
i , i = 1, . . . , n

n+1∑
j=1

ϕj,0 = 1

Active Layer Diffusion

dϕ1:n

dz
= −Γ−1(ϕ, f II)B(ϕ)NV

dϕm

dz
= −

n∑
j=1

dϕj

dz

gII(f II ,ϕ, T, P II) = 0

Phase Equilibrium at z = L

gIII(γIII , xIII , T, P III) = 0

f II
i,L = γIII

i,L xIII
i f◦

i exp

[
−V ◦

i (P
II − P III)

RT

]
,

i = 1, . . . , n

Known variables: (xI , xIII , T, P I , P II , P III)

Unknown variables: (f◦,γI ,γIII , fII0 , fIIL ,ϕ0,ϕL,NV )

DoF: 6n+2(n+1) equations− [6n+2(n+1)] unknowns
= 0 DoF

Figure A.2: Full set of equations and degrees of freedom analysis for the local transport
problem when assuming a fixed permeate (Phase IV) composition.

192



imation methods. Specifically, fixing the value of xIII enables then permeate-side phase

equilibrium problem to be solved independently for ϕL and f IIL in exactly the same way

that the feed side is handled in the main text. Then, with ϕ and f II known on both sides

of the active layer, it becomes straightforward to solve for NV explicitly, without the need

for an iterative procedure (see, e.g., [39]). In consequence, all three approximation meth-

ods become more efficient and significantly more robust (although the permeate side phase

equilibrium problem could still fail to converge in principle). However, the main drawback

of these methods is their inaccuracy relative to the solution of the full MS model, which is

unchanged.

The changes to the FD and shooting approaches are much less significant. For the FD

methods, the governing equations are still discretized over S nodes and solved simultane-

ously as before. The structure of the shooting algorithm, which is nearly identical to the

original, is shown in Figure A.3. While is it is true that fixing xIII enables then permeate-

side phase equilibrium problem to be solved independently for these methods as well, this

does not result in a significant simplification of the overall solution procedures because it

remains necessary to solve the implicit membrane phase fugacity model at every interme-

diate point inside the active layer. The only potentially significant simplification is that

γIII can now be computed in advance, as reflected by this calculation lying outside of the

main loop in Figure A.3. Based on these observations, we expect that our conclusions in

the main text about the accuracy, efficiency, and robustness of these approaches are largely

applicable to this alternative formulation of the problem as well.

A.7 Index of the DAE System in the Local Flux Problem

In this section, we justify the claim in the main text that the DAE system in the second block

of Figure 2.2 is index 1. The algebraic equations in that system are the implicit fugacity
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Figure A.3: Shooting algorithm for the local flux problem in Figure A.2 assuming a fixed
permeate (Phase IV) composition. Different outer solvers may use slightly different termi-
nation criteria.
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model, which must hold at every point in the membrane:

gII(f II(z),ϕ1:n(z), T, P
II) = 0, ∀z ∈ [0, L]. (A.47)

By definition, this system is index 1 if we can derive an equivalent set of ODEs describing

how f II changes with respect to z by differentiating (Equation A.47) one time.

In the following derivations, we assume that gII has been written as a function of ϕ1:n

rather than ϕ by using the fact that the volume fractions sum to one to explicitly elimi-

nate the dependent membrane phase volume fraction, ϕm. Taking the total derivative with

respect to z (and dropping the function arguments for brevity) results in

∂gII

∂f II
∂f II

∂z
+

∂gII

∂ϕ1:n

∂ϕ1:n

∂z
= 0. (A.48)

Solving for ∂fII

∂z
, we obtain the following ODEs for f II :

∂f II

∂z
= −

(
∂gII

∂f II

)−1
∂gII

∂ϕ1:n

∂ϕ1:n

∂z
. (A.49)

Therefore, the system is index 1 provided that the matrix ∂gII

∂fII
is full rank everywhere

along the solution trajectory. This of course depends on the function gII and could fail in

principle. However, this is exactly the condition that ensures that the fugacity model can

be solved for f II given any value of ϕ1:n, which is required of any meaningful model (note

that the inverse of ∂gII

∂fII
was also used in the derivation of Γ for the FH, dual mode, and

FHLM models).

A.8 Predicted Volume Fraction Profiles and Fluxes for the Approximation Methods

Figure A.6 shows the volume fraction profiles predicted by each approximation method

for the five and nine component test cases with implicit fugacity model. For comparison,

Figure A.4 and Figure A.5 show the correct profiles obtained using a high-order numerical
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(a) Volume Fraction Profiles (b) Chemical Potential Profiles

Figure A.4: Volume fraction and chemical potential profiles through the membrane active
layer for the five-component mixture with the Flory-Huggins-Langmuir fugacity model.
Each line represents a different component. Some components overlap and the membrane
phase volume fraction, ϕm, is excluded from this figure.

(a) Volume Fraction Profiles
(b) Chemical Potential Difference
Profiles

Figure A.5: Volume fraction and chemical potential profiles through the membrane active
layer for the nine-component mixture with the Flory-Huggins-Langmuir fugacity model.
Each line represents a different component. Some components overlap and the membrane
phase volume fraction, ϕm, is excluded from this figure.

integrator with state-of-the-art error control, as in the inner-loop of the shooting algorithm.

Similarly, Table Table A.1 shows the predicted and correct total molar fluxes for these test

cases. As expected, the profiles and fluxes predicted using Fick’s law exhibit large errors.

Conversely, the ϕ-form and f -form average approximation methods both predict profiles

that are very close to correct, and the ϕ-form also produces relatively accurate fluxes.
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(a) Fick’s law, five-component mixture (b) Fick’s law, nine-component mixture

(c) ϕ-form average approximation, five-
component mixture

(d) ϕ-form average approximation,
nine-component mixture

(e) f -form average approximation, five-
component mixture

(f) f -form average approximation, nine-
component mixture

Figure A.6: Volume fraction profiles predicted by the approximation methods for five and
nine component mixtures assuming the Flory-Huggins-Langmuir fugacity model. Each
line represents a different component. Some components overlap and the membrane phase
volume fraction, ϕm, is excluded from this figure.
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Table A.1: Predicted total volumetric fluxes for the approximation methods for five and
nine component test cases with implicit and explicit fugacity models.

Mixture and Fugacity Model Total Volumetric Flux, NV
tot,

L
m2hr

True Solution Fick’s Law ϕ-form f -form
5C-FH 5.46 3.975 5.43 5.93

5C-FHLM 5.47 2.24 5.29 6.12
9C-FH 0.725 0.725 0.723 0.757

9C-FHLM 0.613 0.52 0.61 0.644

A.9 Fugacity Form Finite Difference Results with Fifty Nodes and Extended Time

Recalling the discussion near the end of subsection 2.5.5 in the main text, Figure A.7 shows

the results of the f -form FD method with S = 50 and a maximum solution time limit of

2.5 minutes. All points on the right-hand boundary of the figure correspond to simulations

that reached the 2.5 minute limit without converging, but the data points are clipped at

100s to keep the axes consistent with the figures in the main text. Inspection of the iterates

in these runs showed that, in all cases, there were variables with small negative values

and/or imaginary parts caused by violations of the domains of the natural logarithms in this

formulation. The other solution components were not far from the true solution, but the

problematic components caused excessively slow convergence.

A.10 Impact of Solver Algorithm on Extended Robustness Comparisons

As discussed at the end of subsection 2.5.7 in the main text, Figure A.8 show that the

robustness results are negligibly affected by the fsolve solver algorithm used.

A.11 Model Parameters

This section details all the parameters used throughout this study. Specifically, Table Ta-

ble A.2 and Table A.3 give permeant physical property data. Then, Tables Table A.4–

Table A.6 give all required fugacity model parameters. Lastly, Tables Table A.7 and Ta-

ble A.8 give transport parameters for each permeant. All data was extracted from [14].
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Figure A.7: Error (%) versus solution time (s) for the f-form finite difference method with
S = 50. Note simulation time is 2.5 minutes and has been clipped at 100 seconds for the
figure.

Table A.2: Physical properties of permeants.

Mixture Components Vapor Pressure, P vap
i Molar Volume, V ◦

i

torr cm3

mol
heptane 44.845 146.927

p-xylene 8.803 123.738
o-xylene 6.637 121.196

toluene 28.998 106.521
methylcyclohexane 46.596 128.123

1-methylnaphthalene 0.059 139.823
decalin 0.975 156.962

n-octane 14.805 163.420
iso-octane 49.087 165.552

tert-butlybenzene 2.115 155.529
1,3,5-triisopropylbenzene 0.035 240.069

iso-cetane 0.046 298.267
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(a) Approximation Methods Robustness Comparison

(b) Finite Difference Methods Robustness Comparison

Figure A.8: Solution errors for all methods on 3600 test cases with random initial guesses.
Runs 0–1800 are for the trust-region-dogleg solver algorithm and runs 1801–3600 are for
the Levenberg-Marquardt solver algorithm. The results for each method are sorted in order
of increasing error. Shaded regions correspond to the following error ranges: >50%, 1–
50%, 0.1–1%, <0.1%. NGIG = nodal good initial guess. For the shooting algorithm, the
solution error is often much less than 1E-3, but the values are clipped at 1E-3 for plotting.
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Table A.3: Hansen solubility parameters of permeants [91]. Molecules in parentheses
were determined as satisfactory substitutes for species that did not have recorded solubility
parameters. These species include: decalin (average of isomers), tert-butlybenzene (n-
isomer), 1,3,5-triisopropylbenzene (mesitylene), and iso-cetane (n-isomer).

Mixture Components Dispersion, δD.i Polarity, δP,i Hydrogen Bonding, δH,i

MPa1/2

heptane 15.3 0 0
p-xylene 17.6 1 3.1
o-xylene 14.1 1 3.1

toluene 18 1.4 2
methylcyclohexane 16 0 1

1-methylnaphthalene 20.6 0.8 4.7
decalin 18.4 0 0

n-octane 15.5 0 0
iso-octane 14.1 0 0

tert-butlybenzene 17.4 0.1 1.1
1,3,5-triisopropylbenzene 18 0 0.6

iso-cetane 16.3 0 0

Table A.4: Flory-Huggins fugacity model parameters

Membrane Material Mixture Components χim

PIM-1 toluene 0.648
heptane 0.826

p-xylene 0.642
o-xylene 0.560

iso-cetane 0.698
SBAD-1 toluene 0.871

methylcyclohexane 1.672
1-methylnaphthalene 0.705

decalin 2.783
n-octane 1.163

iso-octane 3.049
tert-butlybenzene 1.648

1,3,5-triisopropylbenzene 2.500
iso-cetane 3.130
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Table A.5: Dual mode sorption fugacity model parameters.

Membrane Material Mixture Components CH
i bi ki

m3 penetrant
m3 polymer torr−1 m3 penetrant

m3 polymer torr

PIM-1 toluene 0.770 0.0566 0.0443
heptane 0.679 0.595 0.00401

p-xylene 0.858 0.618 0.117
o-xylene 0.844 0 0.538

iso-cetane 0.812 146 14.3
SBAD-1 toluene 0.314 0.141 0.0138

methylcyclohexane 0.0730 0.180 0.00121
1-methylnaphthalene 0.405 0 18.5

decalin 0.00759 0 0.0263
n-octane 0.0510 0.0000195 0.0148

iso-octane 0.0112 0.202 0.000158
tert-butlybenzene 0.0158 0 0.0525

1,3,5-triisopropylbenzene 0.0137 6.66 0.792
iso-cetane 0.00801 67.6 0.258

Table A.6: Flory-Huggins-Langmuir fugacity model parameters.

Membrane Material Mixture Components CH
i bi χim

m3 penetrant
m3 polymer torr−1

PIM-1 toluene 0.770 0.590 0.726
heptane 0.679 0.726 1.65

p-xylene 0.858 2.48 0.724
o-xylene 0.844 2.99 0.571

iso-cetane 0.812 331 0.891
SBAD-1 toluene 0.314 0.472 1.09

methylcyclohexane 0.0730 0.278 2.32
1-methylnaphthalene 0.405 88.8 0.775

decalin 0.00759 2.12 3.06
n-octane 0.0510 0.01645 1.25

iso-octane 0.0112 0.168 3.75
tert-butlybenzene 0.0158 0.258 1.73

1,3,5-triisopropylbenzene 0.0137 150 2.86
iso-cetane 0.00801 110 3.64
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Table A.7: Maxwell-Stefan diffusivities for each fugacity model.

Membrane Material Mixture Components ÐV,FH
im ÐV,DMS

im ÐV,FHLM
im

µm2

s
PIM-1 toluene 50.30 27.75 25.14

heptane 184.24 119.67 119.06
p-xylene 35.05 18.89 15.52
o-xylene 16.21 5.61 6.85

iso-cetane 2.81 1.17 1.17
SBAD-1 toluene 16.77 13.15 12.60

methylcyclohexane 5.57 4.95 5.29
1-methylnaphthalene 0.053 0.035 0.034

decalin 1.66 1.57 1.78
n-octane 5.71 6.25 6.37

iso-octane 6.99 6.55 6.86
tert-butlybenzene 1.40 1.34 1.488

1,3,5-triisopropylbenzene 0.069 0.059 0.069
iso-cetane 0.590 0.496 0.59

Table A.8: Fickian diffusivities for each fugacity model.

Membrane Material Mixture Components DV,FH
Fick,im DV,DMS

Fick,im DV,FHLM
Fick,im

µm2

s
PIM-1 toluene 15.25 94.35 35.81

heptane 72.18 876.70 925.62
p-xylene 10.92 80.88 27.88
o-xylene 4.46 26.67 8.51

iso-cetane 1.12 5.08 3.55
SBAD-1 toluene 6.51 31.73 16.85

methylcyclohexane 3.70 10.57 10.70
1-methylnaphthalene 0.018 0.078 0.032

decalin 1.43 1.62 1.89
n-octane 2.98 7.72 3.68

iso-octane 6.23 13.75 12.87
tert-butlybenzene 0.93 1.50 1.06

1,3,5-triisopropylbenzene 0.057 0.075 0.088
iso-cetane 0.530 0.676 0.88
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APPENDIX B

A FRAMEWORK FOR PREDICTING THE FRACTIONATION OF COMPLEX

LIQUID FEEDS VIA POLYMER MEMBRANES SUPPLEMENTAL

INFORMATION

This chapter provides all the necessary supplemental information for chapter 3 and refer-

ences to the paper titled "A Framework for Predicting the Fractionation of Complex Liquid

Feeds via Polymer Membranes" [14].

B.1 Derivation of Multicomponent Flory-Huggins

The Flory-Huggins lattice theory may be applied to a multicomponent system as [88]

∆Gm

RT
=

∆Hm − T∆Sm

RT
=

n+1∑
i=1

(
nm
i ln(ϕi) +

n+1∑
j=i+1

χijn
m
i ϕj

)
, (B.1)

where the (n + 1)st component is the membrane component itself. From there, we may

convert mole terms to volume fraction terms using the following relationship

ϕi =
Vin

m
i∑n+1

j=1 Vjϕj

(B.2)

Fundamentally, χij is dependent on the composition of the mixture. However, if com-

position dependence is assumed, then extensive multicomponent sorption experiments are

required to determine the [89]. Additionally, the differentiation of (Equation B.1) will be-

come much more involved. Here, we focus on a key approximation, which is the assump-

tion that is concentration independent, thus enabling utilization of experimental measure-

ments of this value. Substituting (Equation B.2) into (Equation B.1) and differentiating it
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yields

ln(ai) = ln

(
fi

f ◦
i (T, P )

)
=

∆µi

RT
=

∂

∂ni

(
∆Gm

RT

)
(B.3)

= ln(ϕi) + 1−
n+1∑
j=1

V ◦
i

V ◦
j

ϕj +

(
i−1∑
j=1

χjiϕj
V ◦
i

V ◦
j

+
n+1∑

j=i+1

χijϕj

)
(1− ϕi)

−
n∑

j=1
j ̸=i

n+1∑
k=j+1
k ̸=i

χjk
V ◦
i

V ◦
j

ϕjϕk.

The above expression has been verified as correct by taking finite differences of (Equation B.1)

and comparing the evaluated values to those given by (Equation B.3). The values matched

within the order of magnitude of the finite differences step-size.

B.2 Tables and Figures Cited in Manuscript

Table B.1: Physical properties of polymers and solvents at 25 °C and atmospheric pressure
[143, 144, 145, 146]. Vapor pressure for 1-methylnaphthalene, decalin (50/50 mol% cis +
trans mix), tert-butylbenzene, 1,3,5-triisopropylbenzene and iso-cetane were obtained from
Aspen Plus using the PC-SAFT EoS.

Density Vapor Pressure Molar Mass Molar Volume
Component g/mL torr g/mol cm3/mol
toluene 0.865 28.998 92.141 106.521
methylcyclohexane 0.766 46.596 98.188 128.123
1-methylnaphthalene 1.017 0.059 142.2 139.823
decalin 0.881 0.975 138.253 156.962
n-octane 0.699 14.805 114.231 163.42
iso-octane 0.69 49.087 114.231 165.552
tert-butylbenzene 0.863 2.115 134.221 155.529
1,3,5-triisopropylbenzene 0.855 0.0352 204.356 240.069
iso-cetane 0.757 0.0458 226.446 293.267
heptane 0.682 44.854 100.204 146.927
p-xylene 0.858 8.803 106.167 123.738
o-xylene 0.876 6.637 106.167 121.196
PIM-1 (skeleton) = 1.4
SBAD-1 (skeleton) = 1.29

205



(a) SBAD-1 (b) PIM-1

Figure B.1: SEM images showing the approximate thickness of (a) SBAD-1 membrane
film thickness of around 300 nm and (b) PIM-1 membrane film thickness of around 1.5
microns

Figure B.2: Kinetic sorption of toluene in PIM-1 at toluene activity = 0.7 (left) and 1-
methylnaphthalene in SBAD-1 at 1-methylnaphthalene activity = 0.7 (right).
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Figure B.3: Calculation of Flory-Huggins solvent-polymer interaction parameter χim using
the FH model for composition-dependent interaction parameters, ln(ai) = ln(ϕi) + (1 −
ϕi)− (1− ϕi)

Vi

Vm
+ χim(1− ϕi)

2 + ϕi(1− ϕi)
∂χim

∂ϕi
[39], and measured sorption isotherms

for PIM-1 (A) and SBAD-1 (B) in single penetrant systems. Vm ≫ Vi was assumed. Here,
χim is not fixed at a constant value and is allowed to vary with activity of the penetrant.
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Figure B.4: Predicted multicomponent sorption of heptane/o-xylene mixtures in PIM-1
according to Flory-Huggins (left, blue), Dual-mode (middle, red) and Langmuir + Flory-
Huggins (right, black) models compared with experimental measurements (yellow). Leg-
end: heptane, + ; o-xylene, ∗ ; polymer, –

Figure B.5: Partial flux predictions for Separation 1 via PIM-1 at varying combinations
of sorption and diffusion assumptions. Markers indicate Dual-mode (red), Flory-Huggins
(blue) and Langmuir + Flory-Huggins (black) sorption models. X-axis error bars are prop-
agated from error in penetrant-polymer diffusivities (from unary flux measurements) and
y-axis error bars are propagated from error in mixture separation flux measurements.
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Figure B.6: Partial flux predictions for Separation 2 via PIM-1 at varying combinations
of sorption and diffusion assumptions. Markers indicate Dual-mode (red), Flory-Huggins
(blue) and Langmuir + Flory-Huggins (black) sorption models. X-axis error bars are prop-
agated from error in penetrant-polymer diffusivities (from unary flux measurements) and
y-axis error bars are propagated from error in mixture separation flux measurements.

Figure B.7: Partial flux predictions for Separation 3 via PIM-1 at varying combinations
of sorption and diffusion assumptions. Markers indicate Dual-mode (red), Flory-Huggins
(blue) and Flory-Huggins + Langmuir (black) sorption models. X-axis error bars are prop-
agated from error in penetrant-polymer diffusivities (from unary flux measurements) and
y-axis error bars are propagated from error in mixture separation flux measurements.
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Figure B.8: Separation 3 (via SBAD-1) partial fluxes predicted using FH-LM and cross-92
diffusivities (Ðij) fit to match permeate compositions.

Figure B.9: Free-volume theory-based prediction of diffusivity, ÐV
im, as it varies with ac-

cessible 96 free volume indicated by solid lines for PIM-1 (left) and SBAD-1 (right) as-
suming B = 0.03. 97 Dotted lines are the self-diffusivities of molecules (excluding 1-
methylnaphthalene, tert-98 butylbenzene and 1,3,5-triisopropylbenzene) and represent an
upper limit on diffusivity in the polymers [98].
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Figure B.10: Separation 1 (via PIM-1) predicted using FH-LM, Vignes diffusion coupling,
and free volume theory with varying B = i) 0.005, ii) 0.03 and iii) 0.1.

Figure B.11: Separation 2 (via SBAD-1) predicted using FH-LM, Vignes diffusion cou-
pling and free volume theory with varying B = i) 0.005, ii) 0.03 and iii) 0.1. Left plot has
log-log scale while right plot in linear.
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B.3 Raw Data

Table B.2: Experimentally measured sorption isotherms of hydrocarbons in PIM-1 at 25◦C.

Activity Uptake Error Uptake Error Uptake Error
p/psat g solvent / g polymer

toluene p-xylene o-xylene
0.05 0.225 0.00272 0.302 0.00607 0.301 0.00583
0.1 0.294 0.00431 0.348 0.00453 0.347 0.00647
0.25 0.403 0.00592 0.445 0.00336 0.445 0.00709
0.4 0.476 0.00696 0.526 0.00822 0.528 0.00929
0.55 0.547 0.00746 0.595 0.00494 0.605 0.00613
0.7 0.636 0.00757 0.685 0.00403 0.692 0.00644
1 1.248 0.00926 1.297 0.00416 3.339 0.02220

heptane iso-cetane
0.05 0.209 0.00238
0.1 0.235 0.00483 0.244 0.01326
0.25 0.297 0.00539
0.4 0.331 0.00589 0.439 0.00917
0.55 0.363 0.00866
0.7 0.402 0.00972 0.546 0.05514
1 0.392 0.03200 0.785 -
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Table B.3: Experimentally measured sorption isotherms of hydrocarbons in SBAD-1 at
25◦C.

Activity Uptake Error Uptake Error Uptake Error
p/psat g solvent / g polymer

toluene n-octane iso-octane
0.1 0.08464 0.00371 0.024290 0.00608 0.00342 0.00052
0.3 0.21028 0.00315 0.027619 0.00340 0.00597 0.00067
0.5 0.27565 0.00407 0.034537 0.00522 0.00681 0.00057
0.7 0.32198 0.00363 0.054731 0.01057 0.00784 0.00089
0.85 0.37918 0.00709 0.082895 0.01146 0.00911 0.00137
1 0.51419 - 0.167621 0.01367 - -

1-methylnaphthalene iso-cetane methylcyclohexane
0.1 0.06908 - 0.001312 0.00016 0.02109 0.00227
0.3 0.18240 0.06233 0.004700 0.00165 0.04335 0.00301
0.5 0.31957 0.08424 0.006487 0.00258 0.05283 0.00353
0.7 0.47995 0.02836 0.007953 0.00308 0.06100 0.00225
0.85 0.65000 0.05000 0.009234 0.00362 0.06500 0.00744
1 1.09844 - - - 0.07236 0.00236

tert-butylbenzene 1,3,5-triisopropylbenzene decalin
0.1 0.00549 0.00050 0.004568 0.00191 0.00145 0.00022
0.3 0.01060 0.00079 0.009098 0.00209 0.00518 0.00069
0.5 0.02363 0.00309 0.013380 0.00096 0.00764 0.00180
0.7 - - 0.018540 0.00291 0.01203 0.00210
0.85 - - 0.022217 0.00501 0.01574 0.00208
1 0.08468 - - - - -
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Table B.4: Flory-Huggins sorption isotherm parameters of hydrocarbons in PIM-1 and
SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-triisopropylbenzene and iso-cetane
are estimates. Upper bound and lower bound predictions are calculated from experimental
error.

χim

Average Upper bound Lower bound
PIM-1 toluene 0.648 0.647 0.649

heptane 0.826 0.806 0.849
p-xylene 0.642 0.641 0.642
o-xylene 0.56 0.559 0.56
iso-cetane 0.698 - -

SBAD-1 toluene 0.871 0.827 0.93
iso-octane 3.049 2.949 3.241
n-octane 1.163 1.129 1.202
methylcyclohexane 1.672 1.652 1.693
decalin 2.783 2.667 2.86
tert-butylbenzene 1.648 - -
1-methylnaphthalene 0.705 0.678 0.743
1,3,5-triisopropylbenzene 2.5 2.339 2.765
iso-cetane 3.13 2.912 3.61

Table B.5: Average Dual-mode sorption isotherm parameters of hydrocarbons in PIM-1
and SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-triisopropylbenzene and iso-
cetane are estimates. Upper bound and lower bound predictions are calculated from exper-
imental isotherm error.

Average
CH

i

(
cc solvent
cc polymer

)
(torr−1) ki

(
cc solvent
cc polymer

)
PIM-1 toluene 7.70E-01 5.66E-02 4.43E-02

heptane 6.79E-01 5.95E-01 4.01E-03
p-xylene 8.58E-01 6.18E-01 1.17E-01
o-xylene 8.44E-01 0.00E+00 5.38E-01
iso-cetane 8.12E-01 1.46E+02 1.43E+01

SBAD-1 toluene 3.14E-01 1.41E-01 1.38E-02
iso-octane 1.12E-02 2.02E-01 1.58E-04
n-octane 5.10E-02 1.90E-05 1.48E-02
methylcyclohexane 7.30E-02 1.80E-01 1.21E-03
decalin (average of isomers) 7.59E-03 0.00E+00 2.63E-02
tert-butylbenzene 1.58E-02 0.00E+00 5.25E-02
1-methylnaphthalene 4.05E-01 0.00E+00 1.85E+01
1,3,5-triisopropylbenzene 1.37E-02 6.66E+01 7.92E-01
iso-cetane 8.01E-03 6.76E+01 2.58E-01
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Table B.6: Upper bound Dual-mode sorption isotherm parameters of hydrocarbons in PIM-
1 and SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-triisopropylbenzene and iso-
cetane are estimates. Upper bound and lower bound predictions are calculated from exper-
imental isotherm error.

Upper Bound
CH

i

(
cc solvent
cc polymer

)
(torr−1) ki

(
cc solvent
cc polymer

)
PIM-1 toluene 7.82E-01 6.56E-02 4.33E-02

heptane 6.92E-01 5.65E-01 4.79E-03
p-xylene 8.72E-01 6.48E-01 1.15E-01
o-xylene 8.59E-01 0.00E+00 5.42E-01
iso-cetane 8.29E-01 1.66E+02 1.45E+01

SBAD-1 toluene 3.18E-01 8.75E-02 1.69E-02
iso-octane 1.24E-02 2.11E-01 1.78E-04
n-octane 5.72E-02 1.31E-05 1.65E-02
methylcyclohexane 7.81E-02 1.91E-01 1.26E-03
decalin (average of isomers) 8.60E-03 0.00E+00 3.05E-02
tert-butylbenzene 1.70E-02 0.00E+00 5.34E-02
1-methylnaphthalene 5.12E-01 0.00E+00 2.12E+01
1,3,5-triisopropylbenzene 1.69E-02 6.49E+01 9.24E-01
iso-cetane 1.08E-02 5.79E+01 3.77E-01

Table B.7: Lowe bound bound Dual-mode sorption isotherm parameters of hydrocarbons
in PIM-1 and SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-triisopropylbenzene
and iso-cetane are estimates. Upper bound and lower bound predictions are calculated from
experimental isotherm error.

Lower Bound
CH

i

(
cc solvent
cc polymer

)
(torr−1) ki

(
cc solvent
cc polymer

)
PIM-1 toluene 7.59E-01 4.58E-02 4.59E-02

heptane 6.67E-01 6.26E-01 3.24E-03
p-xylene 8.45E-01 5.86E-01 1.19E-01
o-xylene 8.29E-01 0.00E+00 5.33E-01
iso-cetane 7.95E-01 1.25E+02 1.41E+01

SBAD-1 toluene 3.09E-01 1.97E-01 1.13E-02
iso-octane 9.91E-03 2.12E-01 1.32E-04
n-octane 4.47E-02 0.00E+00 1.31E-02
methylcyclohexane 6.79E-02 1.68E-01 1.17E-03
decalin (average of isomers) 6.58E-03 0.00E+00 2.21E-02
tert-butylbenzene 1.47E-02 0.00E+00 5.15E-02
1-methylnaphthalene 2.98E-01 0.00E+00 1.65E+01
1,3,5-triisopropylbenzene 1.06E-02 6.82E+01 6.62E-01
iso-cetane 5.20E-03 9.41E+01 1.40E-01
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Table B.8: Average Flory-Huggins-Langmuir sorption isotherm parameters of hy-
drocarbons in PIM-1 and SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-
triisopropylbenzene and iso-cetane are estimates. Upper bound and lower bound predic-
tions are calculated from experimental isotherm error.

Average
CH

i

(
cc solvent
cc polymer

)
(torr−1) χim

PIM-1 toluene 7.70E-01 5.90E-01 7.26E-01
heptane 6.79E-01 7.26E-01 1.65E+00
p-xylene 8.58E-01 2.48E+00 7.24E-01
o-xylene 8.44E-01 2.99E+00 5.71E-01
iso-cetane 8.12E-01 3.31E+02 8.91E-01

SBAD-1 toluene 3.14E-01 4.72E-01 1.09E+00
iso-octane 1.12E-02 1.68E-01 3.75E+00
n-octane 5.10E-02 1.64E-02 1.25E+00
methylcyclohexane 7.30E-02 2.78E-01 2.32E+00
decalin (average of isomers) 7.59E-03 2.12E+00 3.06E+00
tert-butylbenzene 1.58E-02 2.58E-01 1.73E+00
1-methylnaphthalene 4.05E-01 8.88E+01 7.75E-01
1,3,5-triisopropylbenzene 1.37E-02 1.50E+02 2.86E+00
iso-cetane 8.01E-03 1.11E+02 3.64E+00

Table B.9: Upper bound Flory-Huggins-Langmuir sorption isotherm parameters of hy-
drocarbons in PIM-1 and SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-
triisopropylbenzene and iso-cetane are estimates. Upper bound and lower bound predic-
tions are calculated from experimental isotherm error.

Upper Bound
CH

i

(
cc solvent
cc polymer

)
(torr−1) χim

PIM-1 toluene 7.82E-01 5.92E-01 7.25E-01
heptane 6.92E-01 6.98E-01 1.44E+00
p-xylene 8.72E-01 2.46E+00 7.25E-01
o-xylene 8.59E-01 2.98E+00 5.70E-01
iso-cetane 8.29E-01 3.82E+02 8.99E-01

SBAD-1 toluene 3.18E-01 4.15E-01 9.84E-01
iso-octane 1.24E-02 1.73E-01 3.65E+00
n-octane 5.72E-02 4.03E-02 1.21E+00
methylcyclohexane 7.81E-02 3.16E-01 2.34E+00
decalin (average of isomers) 8.60E-03 2.38E+00 2.93E+00
tert-butylbenzene 1.70E-02 3.99E-01 1.74E+00
1-methylnaphthalene 5.12E-01 7.98E+01 7.46E-01
1,3,5-triisopropylbenzene 1.69E-02 1.32E+02 2.69E+00
iso-cetane 1.08E-02 1.43E+02 3.44E+00

216



Table B.10: Lower bound Flory-Huggins-Langmuir sorption isotherm parameters of
hydrocarbons in PIM-1 and SBAD-1 at 25◦C. Values for iso-octane, decalin, 1,3,5-
triisopropylbenzene and iso-cetane are estimates. Upper bound and lower bound predic-
tions are calculated from experimental isotherm error.

Lower Bound
CH

i

(
cc solvent
cc polymer

)
(torr−1) χim

PIM-1 toluene 7.59E-01 5.87E-01 7.26E-01
heptane 6.67E-01 7.64E-01 2.04E+00
p-xylene 8.45E-01 2.51E+00 7.23E-01
o-xylene 8.29E-01 2.99E+00 5.71E-01
iso-cetane 7.95E-01 2.85E+02 8.83E-01

SBAD-1 toluene 3.09E-01 5.61E-01 1.25E+00
iso-octane 9.91E-03 2.27E-01 4.09E+00
n-octane 4.47E-02 0.00E+00 1.29E+00
methylcyclohexane 6.79E-02 2.41E-01 2.31E+00
decalin (average of isomers) 6.58E-03 1.24E+00 3.12E+00
tert-butylbenzene 1.47E-02 1.45E-01 1.72E+00
1-methylnaphthalene 2.98E-01 1.07E+02 8.13E-01
1,3,5-triisopropylbenzene 1.06E-02 2.34E+02 3.17E+00
iso-cetane 5.20E-03 1.38E+02 4.21E+00

Table B.11: Experimentally measured liquid hydrocarbon fluxes in PIM-1 at 22◦C.

∆p Flux Error Flux Error Flux Error
bar Lm−2hr−1

toluene o-xylene p-xylene
20 10.03847 2.58284 4.74276 0.8665 7.88225 1.983
30 17.08978 6.27083 7.31397 2.27264 12.75304 4.66493
40 24.37002 9.4645 10.54603 3.5375 18.61956 6.91919
50 28.73756 10.65754 11.60172 3.69922 21.47525 8.23786
60 34.09515 12.86672 14.00018 4.55125 24.73986 9.19547

heptane iso-cetane
20 27.69568 5.20394 0.88812 0.40465
30 40.81357 14.00933 1.3965 0.66492
40 55.87734 19.42812 1.85738 1.00806
50 69.42885 24.97179 2.30408 1.17764
60 83.63427 30.17899 2.72396 1.38315
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Table B.12: Experimentally measured liquid hydrocarbon fluxes in SBAD-1 at 22◦C.

∆p Flux Error Flux Error Flux Error
bar Lm−2hr−1

toluene n-octane iso-octane
20 8.76 0.74 2.23 0.5 0.087 0.025
30 14.89 1.99 3.55 0.79 0.302 0.12
40 17.26 5.28 4.76 0.94 0.419 0.176
50 24.06 2.52 6.01 1 0.537 0.233
60 27.53 3.09 7.5 1.71 0.627 0.3

1-methylnaphthalene iso-cetane decalin
20 0.054 0.011 0.0266 0.0024 0.063 0.014
30 0.072 0.008 0.0377 0.0021 0.104 0.017
40 0.1 0.01 0.0499 0.0016 0.13 0.016
50 0.108 0.007 0.0626 0.003 0.173 0.016
60 0.121 0.008 0.0762 0.0037 0.186 0.015

1,3,5-triisopropylbenzene tert-butylbenzene methylcyclohexane
20 0.0054 - 0.23 0.07 0.74 0.36
30 0.0132 - 0.32 0.09 1.16 0.46
40 0.0155 - 0.44 0.11 1.51 0.6
50 0.0201 - 0.53 0.12 2.41 0.92
60 0.0233 - 0.66 0.16 2.37 0.93

Table B.13: Calculated FH-LM Maxwell-Stefan diffusivities, ÐV
im, of liquid hydrocarbons

in PIM-1 and SBAD-1 at unit activity, 22◦C. For Maxwell-Stefan diffusivities calculated
based on other fugacity models, see Table A.7. For Fickian diffusivities, see Table A.8.

PIM-1
Diffusivity (cm2/s) Error

toluene 2.51E-07 6.46E-08
heptane 1.19E-06 2.14E-07
p-xylene 1.55E-07 3.90E-08
o-xylene 6.85E-08 1.26E-08
iso-cetane 1.17E-08 5.36E-09

SBAD-1
Diffusivity (cm2/s) Error

toluene 1.27E-07 1.07E-08
iso-octane 6.97E-08 2.76E-08
n-octane 6.44E-08 1.44E-08
methylcyclohexane 5.35E-08 2.60E-08
decalin 1.83E-08 4.08E-09
tert-butylbenzene 1.50E-08 4.56E-09
1-methylnaphthalene 3.52E-10 7.20E-11
1,3,5-triisopropylbenzene 7.03E-10 0.00E+00
iso-cetane 6.98E-09 6.32E-10

218



Table B.14: Experimentally measured ternary sorption versus predictions of toluene, p-
xylene and heptane in PIM-1 at 22◦C with a bulk fluid containing 0.321 wt% toluene, 0.314
wt% p-xylene and 0.365 wt% heptane. Note that ϕtotal = 1 − ϕm and ϕtolulene, ϕp-xylene.
Additionally, ϕheptane are only on the basis of sorped species (i.e. ϕtolulene + ϕp-xylene +
ϕheptane = 1).

Exp FH DMS FH-LM
ϕtotal 0.916 ± 0.128 0.557 ± 0.013 0.754 + 0.006 0.824 ± 0.075
ϕtolulene 0.431 ± 0.038 0.317 ± 0.002 0.308 ± 0.007 0.315 ± 0.009
ϕp-xylene 0.333 ± 0.044 0.304 ± 0.002 0.260 ± 0.002 0.359 ± 0.007
ϕheptane 0.236 ± 0.083 0.379 ± 0.003 0.432 ± 0.004 0.326 ± 0.013

Table B.15: Experimentally measured binary sorption of heptane and o-xylene in PIM-1 at
22◦C.

Experimental FH DMS FH-LM
Bulk fluid: heptane = 0.2548 mol%, o-xylene = 0.7452 mol%

ϕpolymer 0.299 ± 0.011 0.281 ± 0.003 0.258 ± 0.002 0.303 ± 0.038
ϕheptane 0.132 ± 0.036 0.182 ± 0.002 0.164 ± 0.003 0.161 ± 0.016
ϕp-xylene 0.570 ± 0.025 0.539 ± 0.002 0.578 ± 0.001 0.537 ± 0.022

Bulk fluid: heptane = 0.4722 mol%, o-xylene = 0.5278 mol%
ϕpolymer 0.391 ± 0.013 0.411 ± 0.013 0.304 ± 0.004 0.403 ± 0.035
ϕheptane 0.206 ± 0.026 0.291 ± 0.008 0.217 ± 0.005 0.268 ± 0.022
ϕp-xylene 0.403 ± 0.013 0.299 ± 0.004 0.479 ± 0.001 0.329 ± 0.013

Bulk fluid: heptane = 0.7578 mol%, o-xylene = 0.2422 mol%
ϕpolymer 0.399 ± 0.066 0.508 ± 0.014 0.382 ± 0.006 0.474 ± 0.028
ϕheptane 0.360 ± 0.039 0.362 ± 0.012 0.291 ± 0.008 0.364 ± 0.024
ϕp-xylene 0.241 ± 0.027 0.130 ± 0.002 0.327 ± 0.003 0.327 ± 0.005
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Table B.16: Predicted partial fluxes (Lm−2h−1) for hydrocarbon molecules according to
Scenario 1 where Fick’s law transport is assumed.

Exp FH DMS FH-LM
Separation 1 via PIM-1 at a transmembrane pressure of 30 bar

toluene 1.3791 0.7216 1.9818 0.6207
heptane 1.4961 1.1141 2.6668 0.7516
p-xylene 1.2720 0.6223 1.8671 0.4961
o-xylene 1.5808 0.4226 2.4642 0.4874
iso-cetane 0.5973 0.1166 0.2668 0.2611
Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar
toluene 0.1319 0.1145 0.2036 0.0968
methylcyclohexane 0.1996 0.2178 0.3333 0.2016
1-methylnaphthalene 0.0241 0.0006 0.0097 0.0013
decalin 0.1063 0.0532 0.0306 0.0357
n-octane 0.2466 0.2248 0.4451 0.2487
iso-octane 0.1254 0.1324 0.2381 0.1258
tert-butylbenzene 0.0259 0.0137 0.0181 0.0108
1,3,5-triisopropylbenzene 0.0120 0.0008 0.0003 0.0005
iso-cetane 0.0081 0.0036 0.0011 0.0022
Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
toluene 0.0764 0.0187 0.0186 0.0155
iso-octane 0.1579 0.0411 0.0410 0.0401
iso-cetane 0.1678 0.0353 0.0196 0.0303
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Table B.17: Predicted partial fluxes (Lm−2h−1) for hydrocarbon molecules according to
Scenario 2 where Maxwell-Stefan transport without diffusion coupling is assumed.

Exp FH DMS FH-LM
Separation 1 via PIM-1 at a transmembrane pressure of 30 bar

toluene 1.3791 1.4761 2.0036 1.9376
heptane 1.4961 1.7463 2.3983 2.8581
p-xylene 1.2720 1.3030 1.8258 1.8218
o-xylene 1.5808 1.4736 2.0341 1.8835
iso-cetane 0.5973 0.2202 0.0742 0.0783
Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar
toluene 0.1319 0.1179 0.0145 0.1412
methylcyclohexane 0.1996 0.2206 0.0292 0.2660
1-methylnaphthalene 0.0241 0.0028 0.0028 0.0023
decalin 0.1063 0.0543 0.0137 0.0336
n-octane 0.2466 0.2343 0.0306 0.3143
iso-octane 0.1254 0.1254 0.0209 0.1090
tert-butylbenzene 0.0259 0.0158 0.0028 0.0144
1,3,5-triisopropylbenzene 0.0120 0.0009 0.0015 0.0005
iso-cetane 0.0081 0.0033 0.0038 0.0014
Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
toluene 0.0764 0.0187 0.0151 0.0145
iso-octane 0.1569 0.0406 0.0334 0.0354
iso-cetane 0.1678 0.0362 0.0148 0.0222
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Table B.18: Predicted partial fluxes (Lm−2h−1) for hydrocarbon molecules according to
Scenario 3 where Maxwell-Stefan transport with Vignes diffusion coupling is assumed.

Exp FH DMS FH-LM
Separation 1 via PIM-1 at a transmembrane pressure of 30 bar

toluene 1.3791 1.4493 0.5657 1.5199
heptane 1.4961 1.7108 0.3111 2.0929
p-xylene 1.2720 1.2832 0.5287 1.5693
o-xylene 1.5808 1.4626 0.7193 1.7248
iso-cetane 0.5973 0.2950 0.0576 0.1972
Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar
toluene 0.1319 0.1138 0.1373 0.1204
methylcyclohexane 0.1996 0.2130 0.1983 0.2292
1-methylnaphthalene 0.0241 0.0028 0.0056 0.0025
decalin 0.1063 0.0525 0.0088 0.0291
n-octane 0.2466 0.2270 0.2907 0.2703
iso-octane 0.1254 0.1182 0.1392 0.0814
tert-butylbenzene 0.0259 0.0153 0.0114 0.0125
1,3,5-triisopropylbenzene 0.0120 0.0009 0.0003 0.0005
iso-cetane 0.0081 0.0032 0.0006 0.0012
Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
toluene 0.0764 0.0185 0.0145 0.0138
iso-octane 0.1579 0.0401 0.0319 0.0334
iso-cetane 0.1678 0.0360 0.0141 0.0215

222



Table B.19: Predicted partial fluxes (Lm−2h−1) for hydrocarbon molecules according to
Scenario 4 where Maxwell-Stefan transport with Vignes diffusion coupling and a diffusiv-
ity dependence on polymer swelling is assumed.

Exp FH DMS FH-LM
Separation 1 via PIM-1 at a transmembrane pressure of 30 bar

toluene 1.3791 1.3490 0.5637 1.5075
heptane 1.4961 1.5940 0.3100 2.0793
p-xylene 1.2720 1.1943 0.5268 1.5563
o-xylene 1.5808 1.3568 0.7165 1.7068
iso-cetane 0.5973 0.2765 0.0576 0.1963
Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar
toluene 0.1319 0.2387 0.2116 0.1821
methylcyclohexane 0.1996 0.4166 0.2770 0.3328
1-methylnaphthalene 0.0241 0.0020 0.0057 0.0024
decalin 0.1063 0.1669 0.0108 0.0615
n-octane 0.2466 0.4367 0.4171 0.3747
iso-octane 0.1254 0.3137 0.2783 0.1576
tert-butylbenzene 0.0259 0.0331 0.0167 0.0192
1,3,5-triisopropylbenzene 0.0120 0.0036 0.0008 0.0012
iso-cetane 0.0081 0.0229 0.0013 0.0036
Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
toluene 0.0764 0.2201 0.0691 0.0590
iso-octane 0.1579 0.4702 0.1497 0.1357
iso-cetane 0.1678 0.5109 0.0743 0.1061
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Table B.20: Predicted partial fluxes (Lm−2h−1) for hydrocarbon molecules according to
Scenario 5 where Maxwell-Stefan transport an average diffusivity of all molecules is as-
sumed.

Exp FH DMS FH-LM
Separation 1 via PIM-1 at a transmembrane pressure of 30 bar

toluene 1.3791 2.5377 2.8841 2.9000
heptane 1.4961 2.7358 1.9286 3.3457
p-xylene 1.2720 2.3094 2.7630 2.9371
o-xylene 1.5808 2.9313 3.7122 3.6870
iso-cetane 0.5973 0.9903 1.1648 1.1562
Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar
toluene 0.1319 0.1286 0.1870 0.1296
methylcyclohexane 0.1996 0.2399 0.2510 0.2420
1-methylnaphthalene 0.0241 0.0200 0.0324 0.0223
decalin 0.1063 0.0868 0.0235 0.0583
n-octane 0.2466 0.2557 0.3264 0.2604
iso-octane 0.1254 0.1139 0.2473 0.0737
tert-butylbenzene 0.0259 0.0225 0.0284 0.0215
1,3,5-triisopropylbenzene 0.0120 0.0196 0.0169 0.0173
iso-cetane 0.0081 0.0141 0.0063 0.0077
Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
toluene 0.0764 0.1051 0.0980 0.0665
iso-octane 0.1579 0.1944 0.2059 0.1228
iso-cetane 0.1678 0.2802 0.1269 0.1766
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APPENDIX C

GLOBAL MODULE MODELING AND SIMULATION

This section will discuss existing methods for modeling and simulation of the global trans-

port through an industrial membrane module. This problem combines feed channel model,

permeate channel model, and local membrane transport model discussed in the previous

section to generate a partial differential algebraic equation (PDAE) system (see Figure C.1

for visual of the system and dimensions). Many papers on modeling and simulation of the

global transport through the membrane module discretize material, momentum, and energy

balances in the feed and permeate channels to converge a set of algebraic equations [147]

[148] [149] [150].

Of many ways to solve different membrane module geometries, the literature is sparse

in using the Maxwell-Stefan framework. Most often, a simple local flux model like equa-

tion (Equation 1.3) is employed. By employing this, the coupling between each species is

inherently not captured.

The first existing method that applies Maxwell-Stefan is by Virales et al. [151]. They

use finite differences for the feed and permeate channels. Then they use orthogonal collo-

cation throughout the membrane layer to converge the algebraic equations using gPROMS.

Figure C.1: Representation of dimensions and driving for changes within flat-plate mem-
brane module.
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Although, the full solution procedure is not specified nor is the code available for general-

purpose use. The publication also lists assumptions including negligible pressure-drop

ideal gas behavior in bulk channels. Both of which are not genrealizable for systems with

complex mixtures and appreciable momentum loses. Another publication coded the PDAEs

in gPROMs as well, but gave no indication of how to simulate the presented model equa-

tions [38]. Lastly, Graaf et al. assumed well mixed volumes through the feed and permeate

channels [152]. This reduces the global membrane transport problem to solving the local

transport fluxes and multiplying it by the total module membrane area to get channel flow

rate changes.

Even when assuming a simple local transport model, the global transport is still a chal-

lenging two-point boundary value problem. The governing and constitutive equations for

material, momentum, and energy balances (including boundary conditions) are presented

below.

For the feed channel, the PDAEs system in Figure C.1 can be expressed as ∀x ∈

(0, L),∀z ∈ (0, P ) [153]

Axial material balance on component i, momentum balance, and energy balance

∂F f
i

∂z
= −Ni(x, z),

∂
(
ρm(vf )2

)
∂z

= −∂P f

∂z
− f f

v ,
∂ef

∂z
= qf , (C.1)

Definition of molar flux of component i, heat flux, frictional pressure loss

F f
i = cfi v

f −Di
∂cfi
∂z

, ef = ρvfH − kc∂T
f

∂z
, f z

v =
κ

KF

vz, (C.2)

Boundary conditions

(cfi v
f )|z=0 = Afmf

i , P f |z=0 = Po, T f |z=0 = To, (C.3)

where ρ is density, kc is thermal conductivity, Af is cross-sectional area of the feed channel,
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vf is axial velocity in feed channel, κ is viscosity, KF is pressure loss parameter, and other

variable have been defined but superscript f means for feed channel.

For the permeate channel, the equations are exact except superscript f goes to p, and

flux sign should be flipped in the material balances. As stated above, the equations are

usually discritized to take advantage of a "succession of states" methodology [147]. This

numerical approach works great for simple flux relationships, however in highly nonlinear

systems when using complex mixtures are subject to the same pitfalls for the 2-point bound-

ary value problem of complex mixture local transport outlined in section 2.2. These pitfalls

arise when dealing with high component numbers, strong cross-diffusional coupling, and

non-ideal thermodynamics.

Given the state of the literature on global module modeling using Maxwell-Stefan as the

local transport model, the main challenge is that a generalizable global membrane transport

numerical method using complex mixtures has not been demonstrated in the literature. This

presents a critical need to fulfill in order to have a complex mixture industrial membrane

module unit operation within commercial process simulation environments. Again, this

dissertation does not contribute any solutions, but will list possible future directions in

section 6.3.
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